src/share/classes/com/sun/tools/javac/comp/Attr.java

Fri, 20 Jun 2014 20:36:54 +0100

author
vromero
date
Fri, 20 Jun 2014 20:36:54 +0100
changeset 2543
c6d5efccedc3
parent 2428
ce1d9dd2e9eb
child 2558
d560276b8a35
permissions
-rw-r--r--

8044546: Crash on faulty reduce/lambda
Reviewed-by: mcimadamore, dlsmith
Contributed-by: maurizio.cimadamore@oracle.com, vicente.romero@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.source.tree.IdentifierTree;
    34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    35 import com.sun.source.tree.MemberSelectTree;
    36 import com.sun.source.tree.TreeVisitor;
    37 import com.sun.source.util.SimpleTreeVisitor;
    38 import com.sun.tools.javac.code.*;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Symbol.*;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.comp.Check.CheckContext;
    43 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.jvm.*;
    47 import com.sun.tools.javac.tree.*;
    48 import com.sun.tools.javac.tree.JCTree.*;
    49 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    50 import com.sun.tools.javac.util.*;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.List;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    55 import static com.sun.tools.javac.code.Flags.BLOCK;
    56 import static com.sun.tools.javac.code.Kinds.*;
    57 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    58 import static com.sun.tools.javac.code.TypeTag.*;
    59 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    60 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    62 /** This is the main context-dependent analysis phase in GJC. It
    63  *  encompasses name resolution, type checking and constant folding as
    64  *  subtasks. Some subtasks involve auxiliary classes.
    65  *  @see Check
    66  *  @see Resolve
    67  *  @see ConstFold
    68  *  @see Infer
    69  *
    70  *  <p><b>This is NOT part of any supported API.
    71  *  If you write code that depends on this, you do so at your own risk.
    72  *  This code and its internal interfaces are subject to change or
    73  *  deletion without notice.</b>
    74  */
    75 public class Attr extends JCTree.Visitor {
    76     protected static final Context.Key<Attr> attrKey =
    77         new Context.Key<Attr>();
    79     final Names names;
    80     final Log log;
    81     final Symtab syms;
    82     final Resolve rs;
    83     final Infer infer;
    84     final DeferredAttr deferredAttr;
    85     final Check chk;
    86     final Flow flow;
    87     final MemberEnter memberEnter;
    88     final TreeMaker make;
    89     final ConstFold cfolder;
    90     final Enter enter;
    91     final Target target;
    92     final Types types;
    93     final JCDiagnostic.Factory diags;
    94     final Annotate annotate;
    95     final TypeAnnotations typeAnnotations;
    96     final DeferredLintHandler deferredLintHandler;
    97     final TypeEnvs typeEnvs;
    99     public static Attr instance(Context context) {
   100         Attr instance = context.get(attrKey);
   101         if (instance == null)
   102             instance = new Attr(context);
   103         return instance;
   104     }
   106     protected Attr(Context context) {
   107         context.put(attrKey, this);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         syms = Symtab.instance(context);
   112         rs = Resolve.instance(context);
   113         chk = Check.instance(context);
   114         flow = Flow.instance(context);
   115         memberEnter = MemberEnter.instance(context);
   116         make = TreeMaker.instance(context);
   117         enter = Enter.instance(context);
   118         infer = Infer.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         cfolder = ConstFold.instance(context);
   121         target = Target.instance(context);
   122         types = Types.instance(context);
   123         diags = JCDiagnostic.Factory.instance(context);
   124         annotate = Annotate.instance(context);
   125         typeAnnotations = TypeAnnotations.instance(context);
   126         deferredLintHandler = DeferredLintHandler.instance(context);
   127         typeEnvs = TypeEnvs.instance(context);
   129         Options options = Options.instance(context);
   131         Source source = Source.instance(context);
   132         allowGenerics = source.allowGenerics();
   133         allowVarargs = source.allowVarargs();
   134         allowEnums = source.allowEnums();
   135         allowBoxing = source.allowBoxing();
   136         allowCovariantReturns = source.allowCovariantReturns();
   137         allowAnonOuterThis = source.allowAnonOuterThis();
   138         allowStringsInSwitch = source.allowStringsInSwitch();
   139         allowPoly = source.allowPoly();
   140         allowTypeAnnos = source.allowTypeAnnotations();
   141         allowLambda = source.allowLambda();
   142         allowDefaultMethods = source.allowDefaultMethods();
   143         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
   144         sourceName = source.name;
   145         relax = (options.isSet("-retrofit") ||
   146                  options.isSet("-relax"));
   147         findDiamonds = options.get("findDiamond") != null &&
   148                  source.allowDiamond();
   149         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   150         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   152         statInfo = new ResultInfo(NIL, Type.noType);
   153         varInfo = new ResultInfo(VAR, Type.noType);
   154         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   155         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   156         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   157         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   158         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   159     }
   161     /** Switch: relax some constraints for retrofit mode.
   162      */
   163     boolean relax;
   165     /** Switch: support target-typing inference
   166      */
   167     boolean allowPoly;
   169     /** Switch: support type annotations.
   170      */
   171     boolean allowTypeAnnos;
   173     /** Switch: support generics?
   174      */
   175     boolean allowGenerics;
   177     /** Switch: allow variable-arity methods.
   178      */
   179     boolean allowVarargs;
   181     /** Switch: support enums?
   182      */
   183     boolean allowEnums;
   185     /** Switch: support boxing and unboxing?
   186      */
   187     boolean allowBoxing;
   189     /** Switch: support covariant result types?
   190      */
   191     boolean allowCovariantReturns;
   193     /** Switch: support lambda expressions ?
   194      */
   195     boolean allowLambda;
   197     /** Switch: support default methods ?
   198      */
   199     boolean allowDefaultMethods;
   201     /** Switch: static interface methods enabled?
   202      */
   203     boolean allowStaticInterfaceMethods;
   205     /** Switch: allow references to surrounding object from anonymous
   206      * objects during constructor call?
   207      */
   208     boolean allowAnonOuterThis;
   210     /** Switch: generates a warning if diamond can be safely applied
   211      *  to a given new expression
   212      */
   213     boolean findDiamonds;
   215     /**
   216      * Internally enables/disables diamond finder feature
   217      */
   218     static final boolean allowDiamondFinder = true;
   220     /**
   221      * Switch: warn about use of variable before declaration?
   222      * RFE: 6425594
   223      */
   224     boolean useBeforeDeclarationWarning;
   226     /**
   227      * Switch: generate warnings whenever an anonymous inner class that is convertible
   228      * to a lambda expression is found
   229      */
   230     boolean identifyLambdaCandidate;
   232     /**
   233      * Switch: allow strings in switch?
   234      */
   235     boolean allowStringsInSwitch;
   237     /**
   238      * Switch: name of source level; used for error reporting.
   239      */
   240     String sourceName;
   242     /** Check kind and type of given tree against protokind and prototype.
   243      *  If check succeeds, store type in tree and return it.
   244      *  If check fails, store errType in tree and return it.
   245      *  No checks are performed if the prototype is a method type.
   246      *  It is not necessary in this case since we know that kind and type
   247      *  are correct.
   248      *
   249      *  @param tree     The tree whose kind and type is checked
   250      *  @param ownkind  The computed kind of the tree
   251      *  @param resultInfo  The expected result of the tree
   252      */
   253     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   254         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   255         Type owntype;
   256         if (!found.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   257             if ((ownkind & ~resultInfo.pkind) != 0) {
   258                 log.error(tree.pos(), "unexpected.type",
   259                         kindNames(resultInfo.pkind),
   260                         kindName(ownkind));
   261                 owntype = types.createErrorType(found);
   262             } else if (allowPoly && inferenceContext.free(found)) {
   263                 //delay the check if there are inference variables in the found type
   264                 //this means we are dealing with a partially inferred poly expression
   265                 owntype = resultInfo.pt;
   266                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   267                     @Override
   268                     public void typesInferred(InferenceContext inferenceContext) {
   269                         ResultInfo pendingResult =
   270                                 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   271                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   272                     }
   273                 });
   274             } else {
   275                 owntype = resultInfo.check(tree, found);
   276             }
   277         } else {
   278             owntype = found;
   279         }
   280         tree.type = owntype;
   281         return owntype;
   282     }
   284     /** Is given blank final variable assignable, i.e. in a scope where it
   285      *  may be assigned to even though it is final?
   286      *  @param v      The blank final variable.
   287      *  @param env    The current environment.
   288      */
   289     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   290         Symbol owner = owner(env);
   291            // owner refers to the innermost variable, method or
   292            // initializer block declaration at this point.
   293         return
   294             v.owner == owner
   295             ||
   296             ((owner.name == names.init ||    // i.e. we are in a constructor
   297               owner.kind == VAR ||           // i.e. we are in a variable initializer
   298               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   299              &&
   300              v.owner == owner.owner
   301              &&
   302              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   303     }
   305     /**
   306      * Return the innermost enclosing owner symbol in a given attribution context
   307      */
   308     Symbol owner(Env<AttrContext> env) {
   309         while (true) {
   310             switch (env.tree.getTag()) {
   311                 case VARDEF:
   312                     //a field can be owner
   313                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   314                     if (vsym.owner.kind == TYP) {
   315                         return vsym;
   316                     }
   317                     break;
   318                 case METHODDEF:
   319                     //method def is always an owner
   320                     return ((JCMethodDecl)env.tree).sym;
   321                 case CLASSDEF:
   322                     //class def is always an owner
   323                     return ((JCClassDecl)env.tree).sym;
   324                 case BLOCK:
   325                     //static/instance init blocks are owner
   326                     Symbol blockSym = env.info.scope.owner;
   327                     if ((blockSym.flags() & BLOCK) != 0) {
   328                         return blockSym;
   329                     }
   330                     break;
   331                 case TOPLEVEL:
   332                     //toplevel is always an owner (for pkge decls)
   333                     return env.info.scope.owner;
   334             }
   335             Assert.checkNonNull(env.next);
   336             env = env.next;
   337         }
   338     }
   340     /** Check that variable can be assigned to.
   341      *  @param pos    The current source code position.
   342      *  @param v      The assigned varaible
   343      *  @param base   If the variable is referred to in a Select, the part
   344      *                to the left of the `.', null otherwise.
   345      *  @param env    The current environment.
   346      */
   347     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   348         if ((v.flags() & FINAL) != 0 &&
   349             ((v.flags() & HASINIT) != 0
   350              ||
   351              !((base == null ||
   352                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   353                isAssignableAsBlankFinal(v, env)))) {
   354             if (v.isResourceVariable()) { //TWR resource
   355                 log.error(pos, "try.resource.may.not.be.assigned", v);
   356             } else {
   357                 log.error(pos, "cant.assign.val.to.final.var", v);
   358             }
   359         }
   360     }
   362     /** Does tree represent a static reference to an identifier?
   363      *  It is assumed that tree is either a SELECT or an IDENT.
   364      *  We have to weed out selects from non-type names here.
   365      *  @param tree    The candidate tree.
   366      */
   367     boolean isStaticReference(JCTree tree) {
   368         if (tree.hasTag(SELECT)) {
   369             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   370             if (lsym == null || lsym.kind != TYP) {
   371                 return false;
   372             }
   373         }
   374         return true;
   375     }
   377     /** Is this symbol a type?
   378      */
   379     static boolean isType(Symbol sym) {
   380         return sym != null && sym.kind == TYP;
   381     }
   383     /** The current `this' symbol.
   384      *  @param env    The current environment.
   385      */
   386     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   387         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   388     }
   390     /** Attribute a parsed identifier.
   391      * @param tree Parsed identifier name
   392      * @param topLevel The toplevel to use
   393      */
   394     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   395         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   396         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   397                                            syms.errSymbol.name,
   398                                            null, null, null, null);
   399         localEnv.enclClass.sym = syms.errSymbol;
   400         return tree.accept(identAttributer, localEnv);
   401     }
   402     // where
   403         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   404         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   405             @Override
   406             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   407                 Symbol site = visit(node.getExpression(), env);
   408                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   409                     return site;
   410                 Name name = (Name)node.getIdentifier();
   411                 if (site.kind == PCK) {
   412                     env.toplevel.packge = (PackageSymbol)site;
   413                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   414                 } else {
   415                     env.enclClass.sym = (ClassSymbol)site;
   416                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   417                 }
   418             }
   420             @Override
   421             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   422                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   423             }
   424         }
   426     public Type coerce(Type etype, Type ttype) {
   427         return cfolder.coerce(etype, ttype);
   428     }
   430     public Type attribType(JCTree node, TypeSymbol sym) {
   431         Env<AttrContext> env = typeEnvs.get(sym);
   432         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   433         return attribTree(node, localEnv, unknownTypeInfo);
   434     }
   436     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   437         // Attribute qualifying package or class.
   438         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   439         return attribTree(s.selected,
   440                        env,
   441                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   442                        Type.noType));
   443     }
   445     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   446         breakTree = tree;
   447         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   448         try {
   449             attribExpr(expr, env);
   450         } catch (BreakAttr b) {
   451             return b.env;
   452         } catch (AssertionError ae) {
   453             if (ae.getCause() instanceof BreakAttr) {
   454                 return ((BreakAttr)(ae.getCause())).env;
   455             } else {
   456                 throw ae;
   457             }
   458         } finally {
   459             breakTree = null;
   460             log.useSource(prev);
   461         }
   462         return env;
   463     }
   465     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   466         breakTree = tree;
   467         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   468         try {
   469             attribStat(stmt, env);
   470         } catch (BreakAttr b) {
   471             return b.env;
   472         } catch (AssertionError ae) {
   473             if (ae.getCause() instanceof BreakAttr) {
   474                 return ((BreakAttr)(ae.getCause())).env;
   475             } else {
   476                 throw ae;
   477             }
   478         } finally {
   479             breakTree = null;
   480             log.useSource(prev);
   481         }
   482         return env;
   483     }
   485     private JCTree breakTree = null;
   487     private static class BreakAttr extends RuntimeException {
   488         static final long serialVersionUID = -6924771130405446405L;
   489         private Env<AttrContext> env;
   490         private BreakAttr(Env<AttrContext> env) {
   491             this.env = env;
   492         }
   493     }
   495     class ResultInfo {
   496         final int pkind;
   497         final Type pt;
   498         final CheckContext checkContext;
   500         ResultInfo(int pkind, Type pt) {
   501             this(pkind, pt, chk.basicHandler);
   502         }
   504         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   505             this.pkind = pkind;
   506             this.pt = pt;
   507             this.checkContext = checkContext;
   508         }
   510         protected Type check(final DiagnosticPosition pos, final Type found) {
   511             return chk.checkType(pos, found, pt, checkContext);
   512         }
   514         protected ResultInfo dup(Type newPt) {
   515             return new ResultInfo(pkind, newPt, checkContext);
   516         }
   518         protected ResultInfo dup(CheckContext newContext) {
   519             return new ResultInfo(pkind, pt, newContext);
   520         }
   522         protected ResultInfo dup(Type newPt, CheckContext newContext) {
   523             return new ResultInfo(pkind, newPt, newContext);
   524         }
   526         @Override
   527         public String toString() {
   528             if (pt != null) {
   529                 return pt.toString();
   530             } else {
   531                 return "";
   532             }
   533         }
   534     }
   536     class RecoveryInfo extends ResultInfo {
   538         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   539             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   540                 @Override
   541                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   542                     return deferredAttrContext;
   543                 }
   544                 @Override
   545                 public boolean compatible(Type found, Type req, Warner warn) {
   546                     return true;
   547                 }
   548                 @Override
   549                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   550                     chk.basicHandler.report(pos, details);
   551                 }
   552             });
   553         }
   554     }
   556     final ResultInfo statInfo;
   557     final ResultInfo varInfo;
   558     final ResultInfo unknownAnyPolyInfo;
   559     final ResultInfo unknownExprInfo;
   560     final ResultInfo unknownTypeInfo;
   561     final ResultInfo unknownTypeExprInfo;
   562     final ResultInfo recoveryInfo;
   564     Type pt() {
   565         return resultInfo.pt;
   566     }
   568     int pkind() {
   569         return resultInfo.pkind;
   570     }
   572 /* ************************************************************************
   573  * Visitor methods
   574  *************************************************************************/
   576     /** Visitor argument: the current environment.
   577      */
   578     Env<AttrContext> env;
   580     /** Visitor argument: the currently expected attribution result.
   581      */
   582     ResultInfo resultInfo;
   584     /** Visitor result: the computed type.
   585      */
   586     Type result;
   588     /** Visitor method: attribute a tree, catching any completion failure
   589      *  exceptions. Return the tree's type.
   590      *
   591      *  @param tree    The tree to be visited.
   592      *  @param env     The environment visitor argument.
   593      *  @param resultInfo   The result info visitor argument.
   594      */
   595     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   596         Env<AttrContext> prevEnv = this.env;
   597         ResultInfo prevResult = this.resultInfo;
   598         try {
   599             this.env = env;
   600             this.resultInfo = resultInfo;
   601             tree.accept(this);
   602             if (tree == breakTree &&
   603                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   604                 throw new BreakAttr(copyEnv(env));
   605             }
   606             return result;
   607         } catch (CompletionFailure ex) {
   608             tree.type = syms.errType;
   609             return chk.completionError(tree.pos(), ex);
   610         } finally {
   611             this.env = prevEnv;
   612             this.resultInfo = prevResult;
   613         }
   614     }
   616     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   617         Env<AttrContext> newEnv =
   618                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   619         if (newEnv.outer != null) {
   620             newEnv.outer = copyEnv(newEnv.outer);
   621         }
   622         return newEnv;
   623     }
   625     Scope copyScope(Scope sc) {
   626         Scope newScope = new Scope(sc.owner);
   627         List<Symbol> elemsList = List.nil();
   628         while (sc != null) {
   629             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   630                 elemsList = elemsList.prepend(e.sym);
   631             }
   632             sc = sc.next;
   633         }
   634         for (Symbol s : elemsList) {
   635             newScope.enter(s);
   636         }
   637         return newScope;
   638     }
   640     /** Derived visitor method: attribute an expression tree.
   641      */
   642     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   643         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   644     }
   646     /** Derived visitor method: attribute an expression tree with
   647      *  no constraints on the computed type.
   648      */
   649     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   650         return attribTree(tree, env, unknownExprInfo);
   651     }
   653     /** Derived visitor method: attribute a type tree.
   654      */
   655     public Type attribType(JCTree tree, Env<AttrContext> env) {
   656         Type result = attribType(tree, env, Type.noType);
   657         return result;
   658     }
   660     /** Derived visitor method: attribute a type tree.
   661      */
   662     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   663         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   664         return result;
   665     }
   667     /** Derived visitor method: attribute a statement or definition tree.
   668      */
   669     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   670         return attribTree(tree, env, statInfo);
   671     }
   673     /** Attribute a list of expressions, returning a list of types.
   674      */
   675     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   676         ListBuffer<Type> ts = new ListBuffer<Type>();
   677         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   678             ts.append(attribExpr(l.head, env, pt));
   679         return ts.toList();
   680     }
   682     /** Attribute a list of statements, returning nothing.
   683      */
   684     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   685         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   686             attribStat(l.head, env);
   687     }
   689     /** Attribute the arguments in a method call, returning the method kind.
   690      */
   691     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   692         int kind = VAL;
   693         for (JCExpression arg : trees) {
   694             Type argtype;
   695             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   696                 argtype = deferredAttr.new DeferredType(arg, env);
   697                 kind |= POLY;
   698             } else {
   699                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   700             }
   701             argtypes.append(argtype);
   702         }
   703         return kind;
   704     }
   706     /** Attribute a type argument list, returning a list of types.
   707      *  Caller is responsible for calling checkRefTypes.
   708      */
   709     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   710         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   711         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   712             argtypes.append(attribType(l.head, env));
   713         return argtypes.toList();
   714     }
   716     /** Attribute a type argument list, returning a list of types.
   717      *  Check that all the types are references.
   718      */
   719     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   720         List<Type> types = attribAnyTypes(trees, env);
   721         return chk.checkRefTypes(trees, types);
   722     }
   724     /**
   725      * Attribute type variables (of generic classes or methods).
   726      * Compound types are attributed later in attribBounds.
   727      * @param typarams the type variables to enter
   728      * @param env      the current environment
   729      */
   730     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   731         for (JCTypeParameter tvar : typarams) {
   732             TypeVar a = (TypeVar)tvar.type;
   733             a.tsym.flags_field |= UNATTRIBUTED;
   734             a.bound = Type.noType;
   735             if (!tvar.bounds.isEmpty()) {
   736                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   737                 for (JCExpression bound : tvar.bounds.tail)
   738                     bounds = bounds.prepend(attribType(bound, env));
   739                 types.setBounds(a, bounds.reverse());
   740             } else {
   741                 // if no bounds are given, assume a single bound of
   742                 // java.lang.Object.
   743                 types.setBounds(a, List.of(syms.objectType));
   744             }
   745             a.tsym.flags_field &= ~UNATTRIBUTED;
   746         }
   747         for (JCTypeParameter tvar : typarams) {
   748             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   749         }
   750     }
   752     /**
   753      * Attribute the type references in a list of annotations.
   754      */
   755     void attribAnnotationTypes(List<JCAnnotation> annotations,
   756                                Env<AttrContext> env) {
   757         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   758             JCAnnotation a = al.head;
   759             attribType(a.annotationType, env);
   760         }
   761     }
   763     /**
   764      * Attribute a "lazy constant value".
   765      *  @param env         The env for the const value
   766      *  @param initializer The initializer for the const value
   767      *  @param type        The expected type, or null
   768      *  @see VarSymbol#setLazyConstValue
   769      */
   770     public Object attribLazyConstantValue(Env<AttrContext> env,
   771                                       JCVariableDecl variable,
   772                                       Type type) {
   774         DiagnosticPosition prevLintPos
   775                 = deferredLintHandler.setPos(variable.pos());
   777         try {
   778             // Use null as symbol to not attach the type annotation to any symbol.
   779             // The initializer will later also be visited and then we'll attach
   780             // to the symbol.
   781             // This prevents having multiple type annotations, just because of
   782             // lazy constant value evaluation.
   783             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   784             annotate.flush();
   785             Type itype = attribExpr(variable.init, env, type);
   786             if (itype.constValue() != null) {
   787                 return coerce(itype, type).constValue();
   788             } else {
   789                 return null;
   790             }
   791         } finally {
   792             deferredLintHandler.setPos(prevLintPos);
   793         }
   794     }
   796     /** Attribute type reference in an `extends' or `implements' clause.
   797      *  Supertypes of anonymous inner classes are usually already attributed.
   798      *
   799      *  @param tree              The tree making up the type reference.
   800      *  @param env               The environment current at the reference.
   801      *  @param classExpected     true if only a class is expected here.
   802      *  @param interfaceExpected true if only an interface is expected here.
   803      */
   804     Type attribBase(JCTree tree,
   805                     Env<AttrContext> env,
   806                     boolean classExpected,
   807                     boolean interfaceExpected,
   808                     boolean checkExtensible) {
   809         Type t = tree.type != null ?
   810             tree.type :
   811             attribType(tree, env);
   812         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   813     }
   814     Type checkBase(Type t,
   815                    JCTree tree,
   816                    Env<AttrContext> env,
   817                    boolean classExpected,
   818                    boolean interfaceExpected,
   819                    boolean checkExtensible) {
   820         if (t.tsym.isAnonymous()) {
   821             log.error(tree.pos(), "cant.inherit.from.anon");
   822             return types.createErrorType(t);
   823         }
   824         if (t.isErroneous())
   825             return t;
   826         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   827             // check that type variable is already visible
   828             if (t.getUpperBound() == null) {
   829                 log.error(tree.pos(), "illegal.forward.ref");
   830                 return types.createErrorType(t);
   831             }
   832         } else {
   833             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   834         }
   835         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   836             log.error(tree.pos(), "intf.expected.here");
   837             // return errType is necessary since otherwise there might
   838             // be undetected cycles which cause attribution to loop
   839             return types.createErrorType(t);
   840         } else if (checkExtensible &&
   841                    classExpected &&
   842                    (t.tsym.flags() & INTERFACE) != 0) {
   843             log.error(tree.pos(), "no.intf.expected.here");
   844             return types.createErrorType(t);
   845         }
   846         if (checkExtensible &&
   847             ((t.tsym.flags() & FINAL) != 0)) {
   848             log.error(tree.pos(),
   849                       "cant.inherit.from.final", t.tsym);
   850         }
   851         chk.checkNonCyclic(tree.pos(), t);
   852         return t;
   853     }
   855     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   856         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   857         id.type = env.info.scope.owner.type;
   858         id.sym = env.info.scope.owner;
   859         return id.type;
   860     }
   862     public void visitClassDef(JCClassDecl tree) {
   863         // Local classes have not been entered yet, so we need to do it now:
   864         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   865             enter.classEnter(tree, env);
   867         ClassSymbol c = tree.sym;
   868         if (c == null) {
   869             // exit in case something drastic went wrong during enter.
   870             result = null;
   871         } else {
   872             // make sure class has been completed:
   873             c.complete();
   875             // If this class appears as an anonymous class
   876             // in a superclass constructor call where
   877             // no explicit outer instance is given,
   878             // disable implicit outer instance from being passed.
   879             // (This would be an illegal access to "this before super").
   880             if (env.info.isSelfCall &&
   881                 env.tree.hasTag(NEWCLASS) &&
   882                 ((JCNewClass) env.tree).encl == null)
   883             {
   884                 c.flags_field |= NOOUTERTHIS;
   885             }
   886             attribClass(tree.pos(), c);
   887             result = tree.type = c.type;
   888         }
   889     }
   891     public void visitMethodDef(JCMethodDecl tree) {
   892         MethodSymbol m = tree.sym;
   893         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   895         Lint lint = env.info.lint.augment(m);
   896         Lint prevLint = chk.setLint(lint);
   897         MethodSymbol prevMethod = chk.setMethod(m);
   898         try {
   899             deferredLintHandler.flush(tree.pos());
   900             chk.checkDeprecatedAnnotation(tree.pos(), m);
   903             // Create a new environment with local scope
   904             // for attributing the method.
   905             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   906             localEnv.info.lint = lint;
   908             attribStats(tree.typarams, localEnv);
   910             // If we override any other methods, check that we do so properly.
   911             // JLS ???
   912             if (m.isStatic()) {
   913                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   914             } else {
   915                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   916             }
   917             chk.checkOverride(tree, m);
   919             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   920                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   921             }
   923             // Enter all type parameters into the local method scope.
   924             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   925                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   927             ClassSymbol owner = env.enclClass.sym;
   928             if ((owner.flags() & ANNOTATION) != 0 &&
   929                 tree.params.nonEmpty())
   930                 log.error(tree.params.head.pos(),
   931                           "intf.annotation.members.cant.have.params");
   933             // Attribute all value parameters.
   934             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   935                 attribStat(l.head, localEnv);
   936             }
   938             chk.checkVarargsMethodDecl(localEnv, tree);
   940             // Check that type parameters are well-formed.
   941             chk.validate(tree.typarams, localEnv);
   943             // Check that result type is well-formed.
   944             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
   945                 chk.validate(tree.restype, localEnv);
   947             // Check that receiver type is well-formed.
   948             if (tree.recvparam != null) {
   949                 // Use a new environment to check the receiver parameter.
   950                 // Otherwise I get "might not have been initialized" errors.
   951                 // Is there a better way?
   952                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   953                 attribType(tree.recvparam, newEnv);
   954                 chk.validate(tree.recvparam, newEnv);
   955             }
   957             // annotation method checks
   958             if ((owner.flags() & ANNOTATION) != 0) {
   959                 // annotation method cannot have throws clause
   960                 if (tree.thrown.nonEmpty()) {
   961                     log.error(tree.thrown.head.pos(),
   962                             "throws.not.allowed.in.intf.annotation");
   963                 }
   964                 // annotation method cannot declare type-parameters
   965                 if (tree.typarams.nonEmpty()) {
   966                     log.error(tree.typarams.head.pos(),
   967                             "intf.annotation.members.cant.have.type.params");
   968                 }
   969                 // validate annotation method's return type (could be an annotation type)
   970                 chk.validateAnnotationType(tree.restype);
   971                 // ensure that annotation method does not clash with members of Object/Annotation
   972                 chk.validateAnnotationMethod(tree.pos(), m);
   973             }
   975             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   976                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   978             if (tree.body == null) {
   979                 // Empty bodies are only allowed for
   980                 // abstract, native, or interface methods, or for methods
   981                 // in a retrofit signature class.
   982                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   983                     !relax)
   984                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   985                 if (tree.defaultValue != null) {
   986                     if ((owner.flags() & ANNOTATION) == 0)
   987                         log.error(tree.pos(),
   988                                   "default.allowed.in.intf.annotation.member");
   989                 }
   990             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   991                 if ((owner.flags() & INTERFACE) != 0) {
   992                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   993                 } else {
   994                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   995                 }
   996             } else if ((tree.mods.flags & NATIVE) != 0) {
   997                 log.error(tree.pos(), "native.meth.cant.have.body");
   998             } else {
   999                 // Add an implicit super() call unless an explicit call to
  1000                 // super(...) or this(...) is given
  1001                 // or we are compiling class java.lang.Object.
  1002                 if (tree.name == names.init && owner.type != syms.objectType) {
  1003                     JCBlock body = tree.body;
  1004                     if (body.stats.isEmpty() ||
  1005                         !TreeInfo.isSelfCall(body.stats.head)) {
  1006                         body.stats = body.stats.
  1007                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1008                                                           List.<Type>nil(),
  1009                                                           List.<JCVariableDecl>nil(),
  1010                                                           false));
  1011                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1012                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1013                                TreeInfo.isSuperCall(body.stats.head)) {
  1014                         // enum constructors are not allowed to call super
  1015                         // directly, so make sure there aren't any super calls
  1016                         // in enum constructors, except in the compiler
  1017                         // generated one.
  1018                         log.error(tree.body.stats.head.pos(),
  1019                                   "call.to.super.not.allowed.in.enum.ctor",
  1020                                   env.enclClass.sym);
  1024                 // Attribute all type annotations in the body
  1025                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1026                 annotate.flush();
  1028                 // Attribute method body.
  1029                 attribStat(tree.body, localEnv);
  1032             localEnv.info.scope.leave();
  1033             result = tree.type = m.type;
  1035         finally {
  1036             chk.setLint(prevLint);
  1037             chk.setMethod(prevMethod);
  1041     public void visitVarDef(JCVariableDecl tree) {
  1042         // Local variables have not been entered yet, so we need to do it now:
  1043         if (env.info.scope.owner.kind == MTH) {
  1044             if (tree.sym != null) {
  1045                 // parameters have already been entered
  1046                 env.info.scope.enter(tree.sym);
  1047             } else {
  1048                 memberEnter.memberEnter(tree, env);
  1049                 annotate.flush();
  1051         } else {
  1052             if (tree.init != null) {
  1053                 // Field initializer expression need to be entered.
  1054                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1055                 annotate.flush();
  1059         VarSymbol v = tree.sym;
  1060         Lint lint = env.info.lint.augment(v);
  1061         Lint prevLint = chk.setLint(lint);
  1063         // Check that the variable's declared type is well-formed.
  1064         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1065                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1066                 (tree.sym.flags() & PARAMETER) != 0;
  1067         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1069         try {
  1070             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1071             deferredLintHandler.flush(tree.pos());
  1072             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1074             if (tree.init != null) {
  1075                 if ((v.flags_field & FINAL) == 0 ||
  1076                     !memberEnter.needsLazyConstValue(tree.init)) {
  1077                     // Not a compile-time constant
  1078                     // Attribute initializer in a new environment
  1079                     // with the declared variable as owner.
  1080                     // Check that initializer conforms to variable's declared type.
  1081                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1082                     initEnv.info.lint = lint;
  1083                     // In order to catch self-references, we set the variable's
  1084                     // declaration position to maximal possible value, effectively
  1085                     // marking the variable as undefined.
  1086                     initEnv.info.enclVar = v;
  1087                     attribExpr(tree.init, initEnv, v.type);
  1090             result = tree.type = v.type;
  1092         finally {
  1093             chk.setLint(prevLint);
  1097     public void visitSkip(JCSkip tree) {
  1098         result = null;
  1101     public void visitBlock(JCBlock tree) {
  1102         if (env.info.scope.owner.kind == TYP) {
  1103             // Block is a static or instance initializer;
  1104             // let the owner of the environment be a freshly
  1105             // created BLOCK-method.
  1106             Env<AttrContext> localEnv =
  1107                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1108             localEnv.info.scope.owner =
  1109                 new MethodSymbol(tree.flags | BLOCK |
  1110                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1111                     env.info.scope.owner);
  1112             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1114             // Attribute all type annotations in the block
  1115             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1116             annotate.flush();
  1119                 // Store init and clinit type annotations with the ClassSymbol
  1120                 // to allow output in Gen.normalizeDefs.
  1121                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1122                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1123                 if ((tree.flags & STATIC) != 0) {
  1124                     cs.appendClassInitTypeAttributes(tas);
  1125                 } else {
  1126                     cs.appendInitTypeAttributes(tas);
  1130             attribStats(tree.stats, localEnv);
  1131         } else {
  1132             // Create a new local environment with a local scope.
  1133             Env<AttrContext> localEnv =
  1134                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1135             try {
  1136                 attribStats(tree.stats, localEnv);
  1137             } finally {
  1138                 localEnv.info.scope.leave();
  1141         result = null;
  1144     public void visitDoLoop(JCDoWhileLoop tree) {
  1145         attribStat(tree.body, env.dup(tree));
  1146         attribExpr(tree.cond, env, syms.booleanType);
  1147         result = null;
  1150     public void visitWhileLoop(JCWhileLoop tree) {
  1151         attribExpr(tree.cond, env, syms.booleanType);
  1152         attribStat(tree.body, env.dup(tree));
  1153         result = null;
  1156     public void visitForLoop(JCForLoop tree) {
  1157         Env<AttrContext> loopEnv =
  1158             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1159         try {
  1160             attribStats(tree.init, loopEnv);
  1161             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1162             loopEnv.tree = tree; // before, we were not in loop!
  1163             attribStats(tree.step, loopEnv);
  1164             attribStat(tree.body, loopEnv);
  1165             result = null;
  1167         finally {
  1168             loopEnv.info.scope.leave();
  1172     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1173         Env<AttrContext> loopEnv =
  1174             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1175         try {
  1176             //the Formal Parameter of a for-each loop is not in the scope when
  1177             //attributing the for-each expression; we mimick this by attributing
  1178             //the for-each expression first (against original scope).
  1179             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
  1180             attribStat(tree.var, loopEnv);
  1181             chk.checkNonVoid(tree.pos(), exprType);
  1182             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1183             if (elemtype == null) {
  1184                 // or perhaps expr implements Iterable<T>?
  1185                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1186                 if (base == null) {
  1187                     log.error(tree.expr.pos(),
  1188                             "foreach.not.applicable.to.type",
  1189                             exprType,
  1190                             diags.fragment("type.req.array.or.iterable"));
  1191                     elemtype = types.createErrorType(exprType);
  1192                 } else {
  1193                     List<Type> iterableParams = base.allparams();
  1194                     elemtype = iterableParams.isEmpty()
  1195                         ? syms.objectType
  1196                         : types.wildUpperBound(iterableParams.head);
  1199             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1200             loopEnv.tree = tree; // before, we were not in loop!
  1201             attribStat(tree.body, loopEnv);
  1202             result = null;
  1204         finally {
  1205             loopEnv.info.scope.leave();
  1209     public void visitLabelled(JCLabeledStatement tree) {
  1210         // Check that label is not used in an enclosing statement
  1211         Env<AttrContext> env1 = env;
  1212         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1213             if (env1.tree.hasTag(LABELLED) &&
  1214                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1215                 log.error(tree.pos(), "label.already.in.use",
  1216                           tree.label);
  1217                 break;
  1219             env1 = env1.next;
  1222         attribStat(tree.body, env.dup(tree));
  1223         result = null;
  1226     public void visitSwitch(JCSwitch tree) {
  1227         Type seltype = attribExpr(tree.selector, env);
  1229         Env<AttrContext> switchEnv =
  1230             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1232         try {
  1234             boolean enumSwitch =
  1235                 allowEnums &&
  1236                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1237             boolean stringSwitch = false;
  1238             if (types.isSameType(seltype, syms.stringType)) {
  1239                 if (allowStringsInSwitch) {
  1240                     stringSwitch = true;
  1241                 } else {
  1242                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1245             if (!enumSwitch && !stringSwitch)
  1246                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1248             // Attribute all cases and
  1249             // check that there are no duplicate case labels or default clauses.
  1250             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1251             boolean hasDefault = false;      // Is there a default label?
  1252             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1253                 JCCase c = l.head;
  1254                 Env<AttrContext> caseEnv =
  1255                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1256                 try {
  1257                     if (c.pat != null) {
  1258                         if (enumSwitch) {
  1259                             Symbol sym = enumConstant(c.pat, seltype);
  1260                             if (sym == null) {
  1261                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1262                             } else if (!labels.add(sym)) {
  1263                                 log.error(c.pos(), "duplicate.case.label");
  1265                         } else {
  1266                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1267                             if (!pattype.hasTag(ERROR)) {
  1268                                 if (pattype.constValue() == null) {
  1269                                     log.error(c.pat.pos(),
  1270                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1271                                 } else if (labels.contains(pattype.constValue())) {
  1272                                     log.error(c.pos(), "duplicate.case.label");
  1273                                 } else {
  1274                                     labels.add(pattype.constValue());
  1278                     } else if (hasDefault) {
  1279                         log.error(c.pos(), "duplicate.default.label");
  1280                     } else {
  1281                         hasDefault = true;
  1283                     attribStats(c.stats, caseEnv);
  1284                 } finally {
  1285                     caseEnv.info.scope.leave();
  1286                     addVars(c.stats, switchEnv.info.scope);
  1290             result = null;
  1292         finally {
  1293             switchEnv.info.scope.leave();
  1296     // where
  1297         /** Add any variables defined in stats to the switch scope. */
  1298         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1299             for (;stats.nonEmpty(); stats = stats.tail) {
  1300                 JCTree stat = stats.head;
  1301                 if (stat.hasTag(VARDEF))
  1302                     switchScope.enter(((JCVariableDecl) stat).sym);
  1305     // where
  1306     /** Return the selected enumeration constant symbol, or null. */
  1307     private Symbol enumConstant(JCTree tree, Type enumType) {
  1308         if (!tree.hasTag(IDENT)) {
  1309             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1310             return syms.errSymbol;
  1312         JCIdent ident = (JCIdent)tree;
  1313         Name name = ident.name;
  1314         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1315              e.scope != null; e = e.next()) {
  1316             if (e.sym.kind == VAR) {
  1317                 Symbol s = ident.sym = e.sym;
  1318                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1319                 ident.type = s.type;
  1320                 return ((s.flags_field & Flags.ENUM) == 0)
  1321                     ? null : s;
  1324         return null;
  1327     public void visitSynchronized(JCSynchronized tree) {
  1328         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1329         attribStat(tree.body, env);
  1330         result = null;
  1333     public void visitTry(JCTry tree) {
  1334         // Create a new local environment with a local
  1335         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1336         try {
  1337             boolean isTryWithResource = tree.resources.nonEmpty();
  1338             // Create a nested environment for attributing the try block if needed
  1339             Env<AttrContext> tryEnv = isTryWithResource ?
  1340                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1341                 localEnv;
  1342             try {
  1343                 // Attribute resource declarations
  1344                 for (JCTree resource : tree.resources) {
  1345                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1346                         @Override
  1347                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1348                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1350                     };
  1351                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1352                     if (resource.hasTag(VARDEF)) {
  1353                         attribStat(resource, tryEnv);
  1354                         twrResult.check(resource, resource.type);
  1356                         //check that resource type cannot throw InterruptedException
  1357                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1359                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1360                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1361                     } else {
  1362                         attribTree(resource, tryEnv, twrResult);
  1365                 // Attribute body
  1366                 attribStat(tree.body, tryEnv);
  1367             } finally {
  1368                 if (isTryWithResource)
  1369                     tryEnv.info.scope.leave();
  1372             // Attribute catch clauses
  1373             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1374                 JCCatch c = l.head;
  1375                 Env<AttrContext> catchEnv =
  1376                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1377                 try {
  1378                     Type ctype = attribStat(c.param, catchEnv);
  1379                     if (TreeInfo.isMultiCatch(c)) {
  1380                         //multi-catch parameter is implicitly marked as final
  1381                         c.param.sym.flags_field |= FINAL | UNION;
  1383                     if (c.param.sym.kind == Kinds.VAR) {
  1384                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1386                     chk.checkType(c.param.vartype.pos(),
  1387                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1388                                   syms.throwableType);
  1389                     attribStat(c.body, catchEnv);
  1390                 } finally {
  1391                     catchEnv.info.scope.leave();
  1395             // Attribute finalizer
  1396             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1397             result = null;
  1399         finally {
  1400             localEnv.info.scope.leave();
  1404     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1405         if (!resource.isErroneous() &&
  1406             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1407             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1408             Symbol close = syms.noSymbol;
  1409             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1410             try {
  1411                 close = rs.resolveQualifiedMethod(pos,
  1412                         env,
  1413                         resource,
  1414                         names.close,
  1415                         List.<Type>nil(),
  1416                         List.<Type>nil());
  1418             finally {
  1419                 log.popDiagnosticHandler(discardHandler);
  1421             if (close.kind == MTH &&
  1422                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1423                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1424                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1425                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1430     public void visitConditional(JCConditional tree) {
  1431         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1433         tree.polyKind = (!allowPoly ||
  1434                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1435                 isBooleanOrNumeric(env, tree)) ?
  1436                 PolyKind.STANDALONE : PolyKind.POLY;
  1438         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1439             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1440             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1441             result = tree.type = types.createErrorType(resultInfo.pt);
  1442             return;
  1445         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1446                 unknownExprInfo :
  1447                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1448                     //this will use enclosing check context to check compatibility of
  1449                     //subexpression against target type; if we are in a method check context,
  1450                     //depending on whether boxing is allowed, we could have incompatibilities
  1451                     @Override
  1452                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1453                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1455                 });
  1457         Type truetype = attribTree(tree.truepart, env, condInfo);
  1458         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1460         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1461         if (condtype.constValue() != null &&
  1462                 truetype.constValue() != null &&
  1463                 falsetype.constValue() != null &&
  1464                 !owntype.hasTag(NONE)) {
  1465             //constant folding
  1466             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1468         result = check(tree, owntype, VAL, resultInfo);
  1470     //where
  1471         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1472             switch (tree.getTag()) {
  1473                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1474                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1475                               ((JCLiteral)tree).typetag == BOT;
  1476                 case LAMBDA: case REFERENCE: return false;
  1477                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1478                 case CONDEXPR:
  1479                     JCConditional condTree = (JCConditional)tree;
  1480                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1481                             isBooleanOrNumeric(env, condTree.falsepart);
  1482                 case APPLY:
  1483                     JCMethodInvocation speculativeMethodTree =
  1484                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1485                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1486                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1487                 case NEWCLASS:
  1488                     JCExpression className =
  1489                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1490                     JCExpression speculativeNewClassTree =
  1491                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1492                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1493                 default:
  1494                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1495                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1496                     return speculativeType.isPrimitive();
  1499         //where
  1500             TreeTranslator removeClassParams = new TreeTranslator() {
  1501                 @Override
  1502                 public void visitTypeApply(JCTypeApply tree) {
  1503                     result = translate(tree.clazz);
  1505             };
  1507         /** Compute the type of a conditional expression, after
  1508          *  checking that it exists.  See JLS 15.25. Does not take into
  1509          *  account the special case where condition and both arms
  1510          *  are constants.
  1512          *  @param pos      The source position to be used for error
  1513          *                  diagnostics.
  1514          *  @param thentype The type of the expression's then-part.
  1515          *  @param elsetype The type of the expression's else-part.
  1516          */
  1517         private Type condType(DiagnosticPosition pos,
  1518                                Type thentype, Type elsetype) {
  1519             // If same type, that is the result
  1520             if (types.isSameType(thentype, elsetype))
  1521                 return thentype.baseType();
  1523             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1524                 ? thentype : types.unboxedType(thentype);
  1525             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1526                 ? elsetype : types.unboxedType(elsetype);
  1528             // Otherwise, if both arms can be converted to a numeric
  1529             // type, return the least numeric type that fits both arms
  1530             // (i.e. return larger of the two, or return int if one
  1531             // arm is short, the other is char).
  1532             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1533                 // If one arm has an integer subrange type (i.e., byte,
  1534                 // short, or char), and the other is an integer constant
  1535                 // that fits into the subrange, return the subrange type.
  1536                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1537                     elseUnboxed.hasTag(INT) &&
  1538                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1539                     return thenUnboxed.baseType();
  1541                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1542                     thenUnboxed.hasTag(INT) &&
  1543                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1544                     return elseUnboxed.baseType();
  1547                 for (TypeTag tag : primitiveTags) {
  1548                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1549                     if (types.isSubtype(thenUnboxed, candidate) &&
  1550                         types.isSubtype(elseUnboxed, candidate)) {
  1551                         return candidate;
  1556             // Those were all the cases that could result in a primitive
  1557             if (allowBoxing) {
  1558                 if (thentype.isPrimitive())
  1559                     thentype = types.boxedClass(thentype).type;
  1560                 if (elsetype.isPrimitive())
  1561                     elsetype = types.boxedClass(elsetype).type;
  1564             if (types.isSubtype(thentype, elsetype))
  1565                 return elsetype.baseType();
  1566             if (types.isSubtype(elsetype, thentype))
  1567                 return thentype.baseType();
  1569             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1570                 log.error(pos, "neither.conditional.subtype",
  1571                           thentype, elsetype);
  1572                 return thentype.baseType();
  1575             // both are known to be reference types.  The result is
  1576             // lub(thentype,elsetype). This cannot fail, as it will
  1577             // always be possible to infer "Object" if nothing better.
  1578             return types.lub(thentype.baseType(), elsetype.baseType());
  1581     final static TypeTag[] primitiveTags = new TypeTag[]{
  1582         BYTE,
  1583         CHAR,
  1584         SHORT,
  1585         INT,
  1586         LONG,
  1587         FLOAT,
  1588         DOUBLE,
  1589         BOOLEAN,
  1590     };
  1592     public void visitIf(JCIf tree) {
  1593         attribExpr(tree.cond, env, syms.booleanType);
  1594         attribStat(tree.thenpart, env);
  1595         if (tree.elsepart != null)
  1596             attribStat(tree.elsepart, env);
  1597         chk.checkEmptyIf(tree);
  1598         result = null;
  1601     public void visitExec(JCExpressionStatement tree) {
  1602         //a fresh environment is required for 292 inference to work properly ---
  1603         //see Infer.instantiatePolymorphicSignatureInstance()
  1604         Env<AttrContext> localEnv = env.dup(tree);
  1605         attribExpr(tree.expr, localEnv);
  1606         result = null;
  1609     public void visitBreak(JCBreak tree) {
  1610         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1611         result = null;
  1614     public void visitContinue(JCContinue tree) {
  1615         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1616         result = null;
  1618     //where
  1619         /** Return the target of a break or continue statement, if it exists,
  1620          *  report an error if not.
  1621          *  Note: The target of a labelled break or continue is the
  1622          *  (non-labelled) statement tree referred to by the label,
  1623          *  not the tree representing the labelled statement itself.
  1625          *  @param pos     The position to be used for error diagnostics
  1626          *  @param tag     The tag of the jump statement. This is either
  1627          *                 Tree.BREAK or Tree.CONTINUE.
  1628          *  @param label   The label of the jump statement, or null if no
  1629          *                 label is given.
  1630          *  @param env     The environment current at the jump statement.
  1631          */
  1632         private JCTree findJumpTarget(DiagnosticPosition pos,
  1633                                     JCTree.Tag tag,
  1634                                     Name label,
  1635                                     Env<AttrContext> env) {
  1636             // Search environments outwards from the point of jump.
  1637             Env<AttrContext> env1 = env;
  1638             LOOP:
  1639             while (env1 != null) {
  1640                 switch (env1.tree.getTag()) {
  1641                     case LABELLED:
  1642                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1643                         if (label == labelled.label) {
  1644                             // If jump is a continue, check that target is a loop.
  1645                             if (tag == CONTINUE) {
  1646                                 if (!labelled.body.hasTag(DOLOOP) &&
  1647                                         !labelled.body.hasTag(WHILELOOP) &&
  1648                                         !labelled.body.hasTag(FORLOOP) &&
  1649                                         !labelled.body.hasTag(FOREACHLOOP))
  1650                                     log.error(pos, "not.loop.label", label);
  1651                                 // Found labelled statement target, now go inwards
  1652                                 // to next non-labelled tree.
  1653                                 return TreeInfo.referencedStatement(labelled);
  1654                             } else {
  1655                                 return labelled;
  1658                         break;
  1659                     case DOLOOP:
  1660                     case WHILELOOP:
  1661                     case FORLOOP:
  1662                     case FOREACHLOOP:
  1663                         if (label == null) return env1.tree;
  1664                         break;
  1665                     case SWITCH:
  1666                         if (label == null && tag == BREAK) return env1.tree;
  1667                         break;
  1668                     case LAMBDA:
  1669                     case METHODDEF:
  1670                     case CLASSDEF:
  1671                         break LOOP;
  1672                     default:
  1674                 env1 = env1.next;
  1676             if (label != null)
  1677                 log.error(pos, "undef.label", label);
  1678             else if (tag == CONTINUE)
  1679                 log.error(pos, "cont.outside.loop");
  1680             else
  1681                 log.error(pos, "break.outside.switch.loop");
  1682             return null;
  1685     public void visitReturn(JCReturn tree) {
  1686         // Check that there is an enclosing method which is
  1687         // nested within than the enclosing class.
  1688         if (env.info.returnResult == null) {
  1689             log.error(tree.pos(), "ret.outside.meth");
  1690         } else {
  1691             // Attribute return expression, if it exists, and check that
  1692             // it conforms to result type of enclosing method.
  1693             if (tree.expr != null) {
  1694                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1695                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1696                               diags.fragment("unexpected.ret.val"));
  1698                 attribTree(tree.expr, env, env.info.returnResult);
  1699             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1700                     !env.info.returnResult.pt.hasTag(NONE)) {
  1701                 env.info.returnResult.checkContext.report(tree.pos(),
  1702                               diags.fragment("missing.ret.val"));
  1705         result = null;
  1708     public void visitThrow(JCThrow tree) {
  1709         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1710         if (allowPoly) {
  1711             chk.checkType(tree, owntype, syms.throwableType);
  1713         result = null;
  1716     public void visitAssert(JCAssert tree) {
  1717         attribExpr(tree.cond, env, syms.booleanType);
  1718         if (tree.detail != null) {
  1719             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1721         result = null;
  1724      /** Visitor method for method invocations.
  1725      *  NOTE: The method part of an application will have in its type field
  1726      *        the return type of the method, not the method's type itself!
  1727      */
  1728     public void visitApply(JCMethodInvocation tree) {
  1729         // The local environment of a method application is
  1730         // a new environment nested in the current one.
  1731         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1733         // The types of the actual method arguments.
  1734         List<Type> argtypes;
  1736         // The types of the actual method type arguments.
  1737         List<Type> typeargtypes = null;
  1739         Name methName = TreeInfo.name(tree.meth);
  1741         boolean isConstructorCall =
  1742             methName == names._this || methName == names._super;
  1744         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1745         if (isConstructorCall) {
  1746             // We are seeing a ...this(...) or ...super(...) call.
  1747             // Check that this is the first statement in a constructor.
  1748             if (checkFirstConstructorStat(tree, env)) {
  1750                 // Record the fact
  1751                 // that this is a constructor call (using isSelfCall).
  1752                 localEnv.info.isSelfCall = true;
  1754                 // Attribute arguments, yielding list of argument types.
  1755                 attribArgs(tree.args, localEnv, argtypesBuf);
  1756                 argtypes = argtypesBuf.toList();
  1757                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1759                 // Variable `site' points to the class in which the called
  1760                 // constructor is defined.
  1761                 Type site = env.enclClass.sym.type;
  1762                 if (methName == names._super) {
  1763                     if (site == syms.objectType) {
  1764                         log.error(tree.meth.pos(), "no.superclass", site);
  1765                         site = types.createErrorType(syms.objectType);
  1766                     } else {
  1767                         site = types.supertype(site);
  1771                 if (site.hasTag(CLASS)) {
  1772                     Type encl = site.getEnclosingType();
  1773                     while (encl != null && encl.hasTag(TYPEVAR))
  1774                         encl = encl.getUpperBound();
  1775                     if (encl.hasTag(CLASS)) {
  1776                         // we are calling a nested class
  1778                         if (tree.meth.hasTag(SELECT)) {
  1779                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1781                             // We are seeing a prefixed call, of the form
  1782                             //     <expr>.super(...).
  1783                             // Check that the prefix expression conforms
  1784                             // to the outer instance type of the class.
  1785                             chk.checkRefType(qualifier.pos(),
  1786                                              attribExpr(qualifier, localEnv,
  1787                                                         encl));
  1788                         } else if (methName == names._super) {
  1789                             // qualifier omitted; check for existence
  1790                             // of an appropriate implicit qualifier.
  1791                             rs.resolveImplicitThis(tree.meth.pos(),
  1792                                                    localEnv, site, true);
  1794                     } else if (tree.meth.hasTag(SELECT)) {
  1795                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1796                                   site.tsym);
  1799                     // if we're calling a java.lang.Enum constructor,
  1800                     // prefix the implicit String and int parameters
  1801                     if (site.tsym == syms.enumSym && allowEnums)
  1802                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1804                     // Resolve the called constructor under the assumption
  1805                     // that we are referring to a superclass instance of the
  1806                     // current instance (JLS ???).
  1807                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1808                     localEnv.info.selectSuper = true;
  1809                     localEnv.info.pendingResolutionPhase = null;
  1810                     Symbol sym = rs.resolveConstructor(
  1811                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1812                     localEnv.info.selectSuper = selectSuperPrev;
  1814                     // Set method symbol to resolved constructor...
  1815                     TreeInfo.setSymbol(tree.meth, sym);
  1817                     // ...and check that it is legal in the current context.
  1818                     // (this will also set the tree's type)
  1819                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1820                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1822                 // Otherwise, `site' is an error type and we do nothing
  1824             result = tree.type = syms.voidType;
  1825         } else {
  1826             // Otherwise, we are seeing a regular method call.
  1827             // Attribute the arguments, yielding list of argument types, ...
  1828             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
  1829             argtypes = argtypesBuf.toList();
  1830             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1832             // ... and attribute the method using as a prototype a methodtype
  1833             // whose formal argument types is exactly the list of actual
  1834             // arguments (this will also set the method symbol).
  1835             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1836             localEnv.info.pendingResolutionPhase = null;
  1837             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1839             // Compute the result type.
  1840             Type restype = mtype.getReturnType();
  1841             if (restype.hasTag(WILDCARD))
  1842                 throw new AssertionError(mtype);
  1844             Type qualifier = (tree.meth.hasTag(SELECT))
  1845                     ? ((JCFieldAccess) tree.meth).selected.type
  1846                     : env.enclClass.sym.type;
  1847             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1849             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1851             // Check that value of resulting type is admissible in the
  1852             // current context.  Also, capture the return type
  1853             result = check(tree, capture(restype), VAL, resultInfo);
  1855         chk.validate(tree.typeargs, localEnv);
  1857     //where
  1858         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1859             if (allowCovariantReturns &&
  1860                     methodName == names.clone &&
  1861                 types.isArray(qualifierType)) {
  1862                 // as a special case, array.clone() has a result that is
  1863                 // the same as static type of the array being cloned
  1864                 return qualifierType;
  1865             } else if (allowGenerics &&
  1866                     methodName == names.getClass &&
  1867                     argtypes.isEmpty()) {
  1868                 // as a special case, x.getClass() has type Class<? extends |X|>
  1869                 return new ClassType(restype.getEnclosingType(),
  1870                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1871                                                                BoundKind.EXTENDS,
  1872                                                                syms.boundClass)),
  1873                               restype.tsym);
  1874             } else {
  1875                 return restype;
  1879         /** Check that given application node appears as first statement
  1880          *  in a constructor call.
  1881          *  @param tree   The application node
  1882          *  @param env    The environment current at the application.
  1883          */
  1884         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1885             JCMethodDecl enclMethod = env.enclMethod;
  1886             if (enclMethod != null && enclMethod.name == names.init) {
  1887                 JCBlock body = enclMethod.body;
  1888                 if (body.stats.head.hasTag(EXEC) &&
  1889                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1890                     return true;
  1892             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1893                       TreeInfo.name(tree.meth));
  1894             return false;
  1897         /** Obtain a method type with given argument types.
  1898          */
  1899         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1900             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1901             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1904     public void visitNewClass(final JCNewClass tree) {
  1905         Type owntype = types.createErrorType(tree.type);
  1907         // The local environment of a class creation is
  1908         // a new environment nested in the current one.
  1909         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1911         // The anonymous inner class definition of the new expression,
  1912         // if one is defined by it.
  1913         JCClassDecl cdef = tree.def;
  1915         // If enclosing class is given, attribute it, and
  1916         // complete class name to be fully qualified
  1917         JCExpression clazz = tree.clazz; // Class field following new
  1918         JCExpression clazzid;            // Identifier in class field
  1919         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1920         annoclazzid = null;
  1922         if (clazz.hasTag(TYPEAPPLY)) {
  1923             clazzid = ((JCTypeApply) clazz).clazz;
  1924             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1925                 annoclazzid = (JCAnnotatedType) clazzid;
  1926                 clazzid = annoclazzid.underlyingType;
  1928         } else {
  1929             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1930                 annoclazzid = (JCAnnotatedType) clazz;
  1931                 clazzid = annoclazzid.underlyingType;
  1932             } else {
  1933                 clazzid = clazz;
  1937         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1939         if (tree.encl != null) {
  1940             // We are seeing a qualified new, of the form
  1941             //    <expr>.new C <...> (...) ...
  1942             // In this case, we let clazz stand for the name of the
  1943             // allocated class C prefixed with the type of the qualifier
  1944             // expression, so that we can
  1945             // resolve it with standard techniques later. I.e., if
  1946             // <expr> has type T, then <expr>.new C <...> (...)
  1947             // yields a clazz T.C.
  1948             Type encltype = chk.checkRefType(tree.encl.pos(),
  1949                                              attribExpr(tree.encl, env));
  1950             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1951             // from expr to the combined type, or not? Yes, do this.
  1952             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1953                                                  ((JCIdent) clazzid).name);
  1955             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1956             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1957             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1958                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1959                 List<JCAnnotation> annos = annoType.annotations;
  1961                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1962                     clazzid1 = make.at(tree.pos).
  1963                         TypeApply(clazzid1,
  1964                                   ((JCTypeApply) clazz).arguments);
  1967                 clazzid1 = make.at(tree.pos).
  1968                     AnnotatedType(annos, clazzid1);
  1969             } else if (clazz.hasTag(TYPEAPPLY)) {
  1970                 clazzid1 = make.at(tree.pos).
  1971                     TypeApply(clazzid1,
  1972                               ((JCTypeApply) clazz).arguments);
  1975             clazz = clazzid1;
  1978         // Attribute clazz expression and store
  1979         // symbol + type back into the attributed tree.
  1980         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1981             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1982             attribType(clazz, env);
  1984         clazztype = chk.checkDiamond(tree, clazztype);
  1985         chk.validate(clazz, localEnv);
  1986         if (tree.encl != null) {
  1987             // We have to work in this case to store
  1988             // symbol + type back into the attributed tree.
  1989             tree.clazz.type = clazztype;
  1990             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1991             clazzid.type = ((JCIdent) clazzid).sym.type;
  1992             if (annoclazzid != null) {
  1993                 annoclazzid.type = clazzid.type;
  1995             if (!clazztype.isErroneous()) {
  1996                 if (cdef != null && clazztype.tsym.isInterface()) {
  1997                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1998                 } else if (clazztype.tsym.isStatic()) {
  1999                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  2002         } else if (!clazztype.tsym.isInterface() &&
  2003                    clazztype.getEnclosingType().hasTag(CLASS)) {
  2004             // Check for the existence of an apropos outer instance
  2005             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  2008         // Attribute constructor arguments.
  2009         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  2010         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
  2011         List<Type> argtypes = argtypesBuf.toList();
  2012         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  2014         // If we have made no mistakes in the class type...
  2015         if (clazztype.hasTag(CLASS)) {
  2016             // Enums may not be instantiated except implicitly
  2017             if (allowEnums &&
  2018                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2019                 (!env.tree.hasTag(VARDEF) ||
  2020                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2021                  ((JCVariableDecl) env.tree).init != tree))
  2022                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2023             // Check that class is not abstract
  2024             if (cdef == null &&
  2025                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2026                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2027                           clazztype.tsym);
  2028             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2029                 // Check that no constructor arguments are given to
  2030                 // anonymous classes implementing an interface
  2031                 if (!argtypes.isEmpty())
  2032                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2034                 if (!typeargtypes.isEmpty())
  2035                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2037                 // Error recovery: pretend no arguments were supplied.
  2038                 argtypes = List.nil();
  2039                 typeargtypes = List.nil();
  2040             } else if (TreeInfo.isDiamond(tree)) {
  2041                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2042                             clazztype.tsym.type.getTypeArguments(),
  2043                             clazztype.tsym);
  2045                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2046                 diamondEnv.info.selectSuper = cdef != null;
  2047                 diamondEnv.info.pendingResolutionPhase = null;
  2049                 //if the type of the instance creation expression is a class type
  2050                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2051                 //of the resolved constructor will be a partially instantiated type
  2052                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2053                             diamondEnv,
  2054                             site,
  2055                             argtypes,
  2056                             typeargtypes);
  2057                 tree.constructor = constructor.baseSymbol();
  2059                 final TypeSymbol csym = clazztype.tsym;
  2060                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2061                     @Override
  2062                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2063                         enclosingContext.report(tree.clazz,
  2064                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2066                 });
  2067                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2068                 constructorType = checkId(tree, site,
  2069                         constructor,
  2070                         diamondEnv,
  2071                         diamondResult);
  2073                 tree.clazz.type = types.createErrorType(clazztype);
  2074                 if (!constructorType.isErroneous()) {
  2075                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2076                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2078                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2081             // Resolve the called constructor under the assumption
  2082             // that we are referring to a superclass instance of the
  2083             // current instance (JLS ???).
  2084             else {
  2085                 //the following code alters some of the fields in the current
  2086                 //AttrContext - hence, the current context must be dup'ed in
  2087                 //order to avoid downstream failures
  2088                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2089                 rsEnv.info.selectSuper = cdef != null;
  2090                 rsEnv.info.pendingResolutionPhase = null;
  2091                 tree.constructor = rs.resolveConstructor(
  2092                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2093                 if (cdef == null) { //do not check twice!
  2094                     tree.constructorType = checkId(tree,
  2095                             clazztype,
  2096                             tree.constructor,
  2097                             rsEnv,
  2098                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2099                     if (rsEnv.info.lastResolveVarargs())
  2100                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2102                 if (cdef == null &&
  2103                         !clazztype.isErroneous() &&
  2104                         clazztype.getTypeArguments().nonEmpty() &&
  2105                         findDiamonds) {
  2106                     findDiamond(localEnv, tree, clazztype);
  2110             if (cdef != null) {
  2111                 // We are seeing an anonymous class instance creation.
  2112                 // In this case, the class instance creation
  2113                 // expression
  2114                 //
  2115                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2116                 //
  2117                 // is represented internally as
  2118                 //
  2119                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2120                 //
  2121                 // This expression is then *transformed* as follows:
  2122                 //
  2123                 // (1) add a STATIC flag to the class definition
  2124                 //     if the current environment is static
  2125                 // (2) add an extends or implements clause
  2126                 // (3) add a constructor.
  2127                 //
  2128                 // For instance, if C is a class, and ET is the type of E,
  2129                 // the expression
  2130                 //
  2131                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2132                 //
  2133                 // is translated to (where X is a fresh name and typarams is the
  2134                 // parameter list of the super constructor):
  2135                 //
  2136                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2137                 //     X extends C<typargs2> {
  2138                 //       <typarams> X(ET e, args) {
  2139                 //         e.<typeargs1>super(args)
  2140                 //       }
  2141                 //       ...
  2142                 //     }
  2143                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2145                 if (clazztype.tsym.isInterface()) {
  2146                     cdef.implementing = List.of(clazz);
  2147                 } else {
  2148                     cdef.extending = clazz;
  2151                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2152                     isSerializable(clazztype)) {
  2153                     localEnv.info.isSerializable = true;
  2156                 attribStat(cdef, localEnv);
  2158                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2160                 // If an outer instance is given,
  2161                 // prefix it to the constructor arguments
  2162                 // and delete it from the new expression
  2163                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2164                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2165                     argtypes = argtypes.prepend(tree.encl.type);
  2166                     tree.encl = null;
  2169                 // Reassign clazztype and recompute constructor.
  2170                 clazztype = cdef.sym.type;
  2171                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2172                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2173                 Assert.check(sym.kind < AMBIGUOUS);
  2174                 tree.constructor = sym;
  2175                 tree.constructorType = checkId(tree,
  2176                     clazztype,
  2177                     tree.constructor,
  2178                     localEnv,
  2179                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2182             if (tree.constructor != null && tree.constructor.kind == MTH)
  2183                 owntype = clazztype;
  2185         result = check(tree, owntype, VAL, resultInfo);
  2186         chk.validate(tree.typeargs, localEnv);
  2188     //where
  2189         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2190             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2191             List<JCExpression> prevTypeargs = ta.arguments;
  2192             try {
  2193                 //create a 'fake' diamond AST node by removing type-argument trees
  2194                 ta.arguments = List.nil();
  2195                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2196                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2197                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2198                 Type polyPt = allowPoly ?
  2199                         syms.objectType :
  2200                         clazztype;
  2201                 if (!inferred.isErroneous() &&
  2202                     (allowPoly && pt() == Infer.anyPoly ?
  2203                         types.isSameType(inferred, clazztype) :
  2204                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2205                     String key = types.isSameType(clazztype, inferred) ?
  2206                         "diamond.redundant.args" :
  2207                         "diamond.redundant.args.1";
  2208                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2210             } finally {
  2211                 ta.arguments = prevTypeargs;
  2215             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2216                 if (allowLambda &&
  2217                         identifyLambdaCandidate &&
  2218                         clazztype.hasTag(CLASS) &&
  2219                         !pt().hasTag(NONE) &&
  2220                         types.isFunctionalInterface(clazztype.tsym)) {
  2221                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2222                     int count = 0;
  2223                     boolean found = false;
  2224                     for (Symbol sym : csym.members().getElements()) {
  2225                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2226                                 sym.isConstructor()) continue;
  2227                         count++;
  2228                         if (sym.kind != MTH ||
  2229                                 !sym.name.equals(descriptor.name)) continue;
  2230                         Type mtype = types.memberType(clazztype, sym);
  2231                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2232                             found = true;
  2235                     if (found && count == 1) {
  2236                         log.note(tree.def, "potential.lambda.found");
  2241     /** Make an attributed null check tree.
  2242      */
  2243     public JCExpression makeNullCheck(JCExpression arg) {
  2244         // optimization: X.this is never null; skip null check
  2245         Name name = TreeInfo.name(arg);
  2246         if (name == names._this || name == names._super) return arg;
  2248         JCTree.Tag optag = NULLCHK;
  2249         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2250         tree.operator = syms.nullcheck;
  2251         tree.type = arg.type;
  2252         return tree;
  2255     public void visitNewArray(JCNewArray tree) {
  2256         Type owntype = types.createErrorType(tree.type);
  2257         Env<AttrContext> localEnv = env.dup(tree);
  2258         Type elemtype;
  2259         if (tree.elemtype != null) {
  2260             elemtype = attribType(tree.elemtype, localEnv);
  2261             chk.validate(tree.elemtype, localEnv);
  2262             owntype = elemtype;
  2263             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2264                 attribExpr(l.head, localEnv, syms.intType);
  2265                 owntype = new ArrayType(owntype, syms.arrayClass);
  2267         } else {
  2268             // we are seeing an untyped aggregate { ... }
  2269             // this is allowed only if the prototype is an array
  2270             if (pt().hasTag(ARRAY)) {
  2271                 elemtype = types.elemtype(pt());
  2272             } else {
  2273                 if (!pt().hasTag(ERROR)) {
  2274                     log.error(tree.pos(), "illegal.initializer.for.type",
  2275                               pt());
  2277                 elemtype = types.createErrorType(pt());
  2280         if (tree.elems != null) {
  2281             attribExprs(tree.elems, localEnv, elemtype);
  2282             owntype = new ArrayType(elemtype, syms.arrayClass);
  2284         if (!types.isReifiable(elemtype))
  2285             log.error(tree.pos(), "generic.array.creation");
  2286         result = check(tree, owntype, VAL, resultInfo);
  2289     /*
  2290      * A lambda expression can only be attributed when a target-type is available.
  2291      * In addition, if the target-type is that of a functional interface whose
  2292      * descriptor contains inference variables in argument position the lambda expression
  2293      * is 'stuck' (see DeferredAttr).
  2294      */
  2295     @Override
  2296     public void visitLambda(final JCLambda that) {
  2297         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2298             if (pt().hasTag(NONE)) {
  2299                 //lambda only allowed in assignment or method invocation/cast context
  2300                 log.error(that.pos(), "unexpected.lambda");
  2302             result = that.type = types.createErrorType(pt());
  2303             return;
  2305         //create an environment for attribution of the lambda expression
  2306         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2307         boolean needsRecovery =
  2308                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2309         try {
  2310             Type currentTarget = pt();
  2311             if (needsRecovery && isSerializable(currentTarget)) {
  2312                 localEnv.info.isSerializable = true;
  2314             List<Type> explicitParamTypes = null;
  2315             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2316                 //attribute lambda parameters
  2317                 attribStats(that.params, localEnv);
  2318                 explicitParamTypes = TreeInfo.types(that.params);
  2321             Type lambdaType;
  2322             if (pt() != Type.recoveryType) {
  2323                 /* We need to adjust the target. If the target is an
  2324                  * intersection type, for example: SAM & I1 & I2 ...
  2325                  * the target will be updated to SAM
  2326                  */
  2327                 currentTarget = targetChecker.visit(currentTarget, that);
  2328                 if (explicitParamTypes != null) {
  2329                     currentTarget = infer.instantiateFunctionalInterface(that,
  2330                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2332                 currentTarget = types.removeWildcards(currentTarget);
  2333                 lambdaType = types.findDescriptorType(currentTarget);
  2334             } else {
  2335                 currentTarget = Type.recoveryType;
  2336                 lambdaType = fallbackDescriptorType(that);
  2339             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2341             if (lambdaType.hasTag(FORALL)) {
  2342                 //lambda expression target desc cannot be a generic method
  2343                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2344                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2345                 result = that.type = types.createErrorType(pt());
  2346                 return;
  2349             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2350                 //add param type info in the AST
  2351                 List<Type> actuals = lambdaType.getParameterTypes();
  2352                 List<JCVariableDecl> params = that.params;
  2354                 boolean arityMismatch = false;
  2356                 while (params.nonEmpty()) {
  2357                     if (actuals.isEmpty()) {
  2358                         //not enough actuals to perform lambda parameter inference
  2359                         arityMismatch = true;
  2361                     //reset previously set info
  2362                     Type argType = arityMismatch ?
  2363                             syms.errType :
  2364                             actuals.head;
  2365                     params.head.vartype = make.at(params.head).Type(argType);
  2366                     params.head.sym = null;
  2367                     actuals = actuals.isEmpty() ?
  2368                             actuals :
  2369                             actuals.tail;
  2370                     params = params.tail;
  2373                 //attribute lambda parameters
  2374                 attribStats(that.params, localEnv);
  2376                 if (arityMismatch) {
  2377                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2378                         result = that.type = types.createErrorType(currentTarget);
  2379                         return;
  2383             //from this point on, no recovery is needed; if we are in assignment context
  2384             //we will be able to attribute the whole lambda body, regardless of errors;
  2385             //if we are in a 'check' method context, and the lambda is not compatible
  2386             //with the target-type, it will be recovered anyway in Attr.checkId
  2387             needsRecovery = false;
  2389             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2390                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2391                     new FunctionalReturnContext(resultInfo.checkContext);
  2393             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2394                 recoveryInfo :
  2395                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2396             localEnv.info.returnResult = bodyResultInfo;
  2398             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2399                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2400             } else {
  2401                 JCBlock body = (JCBlock)that.body;
  2402                 attribStats(body.stats, localEnv);
  2405             result = check(that, currentTarget, VAL, resultInfo);
  2407             boolean isSpeculativeRound =
  2408                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2410             preFlow(that);
  2411             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2413             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2415             if (!isSpeculativeRound) {
  2416                 //add thrown types as bounds to the thrown types free variables if needed:
  2417                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2418                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2419                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
  2421                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2424                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2426             result = check(that, currentTarget, VAL, resultInfo);
  2427         } catch (Types.FunctionDescriptorLookupError ex) {
  2428             JCDiagnostic cause = ex.getDiagnostic();
  2429             resultInfo.checkContext.report(that, cause);
  2430             result = that.type = types.createErrorType(pt());
  2431             return;
  2432         } finally {
  2433             localEnv.info.scope.leave();
  2434             if (needsRecovery) {
  2435                 attribTree(that, env, recoveryInfo);
  2439     //where
  2440         void preFlow(JCLambda tree) {
  2441             new PostAttrAnalyzer() {
  2442                 @Override
  2443                 public void scan(JCTree tree) {
  2444                     if (tree == null ||
  2445                             (tree.type != null &&
  2446                             tree.type == Type.stuckType)) {
  2447                         //don't touch stuck expressions!
  2448                         return;
  2450                     super.scan(tree);
  2452             }.scan(tree);
  2455         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2457             @Override
  2458             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2459                 return t.isCompound() ?
  2460                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2463             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2464                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2465                 Type target = null;
  2466                 for (Type bound : ict.getExplicitComponents()) {
  2467                     TypeSymbol boundSym = bound.tsym;
  2468                     if (types.isFunctionalInterface(boundSym) &&
  2469                             types.findDescriptorSymbol(boundSym) == desc) {
  2470                         target = bound;
  2471                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2472                         //bound must be an interface
  2473                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2476                 return target != null ?
  2477                         target :
  2478                         ict.getExplicitComponents().head; //error recovery
  2481             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2482                 ListBuffer<Type> targs = new ListBuffer<>();
  2483                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2484                 for (Type i : ict.interfaces_field) {
  2485                     if (i.isParameterized()) {
  2486                         targs.appendList(i.tsym.type.allparams());
  2488                     supertypes.append(i.tsym.type);
  2490                 IntersectionClassType notionalIntf =
  2491                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2492                 notionalIntf.allparams_field = targs.toList();
  2493                 notionalIntf.tsym.flags_field |= INTERFACE;
  2494                 return notionalIntf.tsym;
  2497             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2498                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2499                         diags.fragment(key, args)));
  2501         };
  2503         private Type fallbackDescriptorType(JCExpression tree) {
  2504             switch (tree.getTag()) {
  2505                 case LAMBDA:
  2506                     JCLambda lambda = (JCLambda)tree;
  2507                     List<Type> argtypes = List.nil();
  2508                     for (JCVariableDecl param : lambda.params) {
  2509                         argtypes = param.vartype != null ?
  2510                                 argtypes.append(param.vartype.type) :
  2511                                 argtypes.append(syms.errType);
  2513                     return new MethodType(argtypes, Type.recoveryType,
  2514                             List.of(syms.throwableType), syms.methodClass);
  2515                 case REFERENCE:
  2516                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2517                             List.of(syms.throwableType), syms.methodClass);
  2518                 default:
  2519                     Assert.error("Cannot get here!");
  2521             return null;
  2524         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2525                 final InferenceContext inferenceContext, final Type... ts) {
  2526             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2529         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2530                 final InferenceContext inferenceContext, final List<Type> ts) {
  2531             if (inferenceContext.free(ts)) {
  2532                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2533                     @Override
  2534                     public void typesInferred(InferenceContext inferenceContext) {
  2535                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2537                 });
  2538             } else {
  2539                 for (Type t : ts) {
  2540                     rs.checkAccessibleType(env, t);
  2545         /**
  2546          * Lambda/method reference have a special check context that ensures
  2547          * that i.e. a lambda return type is compatible with the expected
  2548          * type according to both the inherited context and the assignment
  2549          * context.
  2550          */
  2551         class FunctionalReturnContext extends Check.NestedCheckContext {
  2553             FunctionalReturnContext(CheckContext enclosingContext) {
  2554                 super(enclosingContext);
  2557             @Override
  2558             public boolean compatible(Type found, Type req, Warner warn) {
  2559                 //return type must be compatible in both current context and assignment context
  2560                 return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
  2563             @Override
  2564             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2565                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2569         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2571             JCExpression expr;
  2573             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2574                 super(enclosingContext);
  2575                 this.expr = expr;
  2578             @Override
  2579             public boolean compatible(Type found, Type req, Warner warn) {
  2580                 //a void return is compatible with an expression statement lambda
  2581                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2582                         super.compatible(found, req, warn);
  2586         /**
  2587         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2588         * are compatible with the expected functional interface descriptor. This means that:
  2589         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2590         * types must be compatible with the return type of the expected descriptor.
  2591         */
  2592         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2593             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2595             //return values have already been checked - but if lambda has no return
  2596             //values, we must ensure that void/value compatibility is correct;
  2597             //this amounts at checking that, if a lambda body can complete normally,
  2598             //the descriptor's return type must be void
  2599             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2600                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2601                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2602                         diags.fragment("missing.ret.val", returnType)));
  2605             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
  2606             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2607                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2611         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
  2612          * static field and that lambda has type annotations, these annotations will
  2613          * also be stored at these fake clinit methods.
  2615          * LambdaToMethod also use fake clinit methods so they can be reused.
  2616          * Also as LTM is a phase subsequent to attribution, the methods from
  2617          * clinits can be safely removed by LTM to save memory.
  2618          */
  2619         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
  2621         public MethodSymbol removeClinit(ClassSymbol sym) {
  2622             return clinits.remove(sym);
  2625         /* This method returns an environment to be used to attribute a lambda
  2626          * expression.
  2628          * The owner of this environment is a method symbol. If the current owner
  2629          * is not a method, for example if the lambda is used to initialize
  2630          * a field, then if the field is:
  2632          * - an instance field, we use the first constructor.
  2633          * - a static field, we create a fake clinit method.
  2634          */
  2635         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2636             Env<AttrContext> lambdaEnv;
  2637             Symbol owner = env.info.scope.owner;
  2638             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2639                 //field initializer
  2640                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2641                 ClassSymbol enclClass = owner.enclClass();
  2642                 /* if the field isn't static, then we can get the first constructor
  2643                  * and use it as the owner of the environment. This is what
  2644                  * LTM code is doing to look for type annotations so we are fine.
  2645                  */
  2646                 if ((owner.flags() & STATIC) == 0) {
  2647                     for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
  2648                         lambdaEnv.info.scope.owner = s;
  2649                         break;
  2651                 } else {
  2652                     /* if the field is static then we need to create a fake clinit
  2653                      * method, this method can later be reused by LTM.
  2654                      */
  2655                     MethodSymbol clinit = clinits.get(enclClass);
  2656                     if (clinit == null) {
  2657                         Type clinitType = new MethodType(List.<Type>nil(),
  2658                                 syms.voidType, List.<Type>nil(), syms.methodClass);
  2659                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
  2660                                 names.clinit, clinitType, enclClass);
  2661                         clinit.params = List.<VarSymbol>nil();
  2662                         clinits.put(enclClass, clinit);
  2664                     lambdaEnv.info.scope.owner = clinit;
  2666             } else {
  2667                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2669             return lambdaEnv;
  2672     @Override
  2673     public void visitReference(final JCMemberReference that) {
  2674         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2675             if (pt().hasTag(NONE)) {
  2676                 //method reference only allowed in assignment or method invocation/cast context
  2677                 log.error(that.pos(), "unexpected.mref");
  2679             result = that.type = types.createErrorType(pt());
  2680             return;
  2682         final Env<AttrContext> localEnv = env.dup(that);
  2683         try {
  2684             //attribute member reference qualifier - if this is a constructor
  2685             //reference, the expected kind must be a type
  2686             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2688             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2689                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2690                 if (!exprType.isErroneous() &&
  2691                     exprType.isRaw() &&
  2692                     that.typeargs != null) {
  2693                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2694                         diags.fragment("mref.infer.and.explicit.params"));
  2695                     exprType = types.createErrorType(exprType);
  2699             if (exprType.isErroneous()) {
  2700                 //if the qualifier expression contains problems,
  2701                 //give up attribution of method reference
  2702                 result = that.type = exprType;
  2703                 return;
  2706             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2707                 //if the qualifier is a type, validate it; raw warning check is
  2708                 //omitted as we don't know at this stage as to whether this is a
  2709                 //raw selector (because of inference)
  2710                 chk.validate(that.expr, env, false);
  2713             //attrib type-arguments
  2714             List<Type> typeargtypes = List.nil();
  2715             if (that.typeargs != null) {
  2716                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2719             Type desc;
  2720             Type currentTarget = pt();
  2721             boolean isTargetSerializable =
  2722                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2723                     isSerializable(currentTarget);
  2724             if (currentTarget != Type.recoveryType) {
  2725                 currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
  2726                 desc = types.findDescriptorType(currentTarget);
  2727             } else {
  2728                 currentTarget = Type.recoveryType;
  2729                 desc = fallbackDescriptorType(that);
  2732             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
  2733             List<Type> argtypes = desc.getParameterTypes();
  2734             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2736             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2737                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2740             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2741             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2742             try {
  2743                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
  2744                         that.name, argtypes, typeargtypes, referenceCheck,
  2745                         resultInfo.checkContext.inferenceContext(),
  2746                         resultInfo.checkContext.deferredAttrContext().mode);
  2747             } finally {
  2748                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2751             Symbol refSym = refResult.fst;
  2752             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2754             if (refSym.kind != MTH) {
  2755                 boolean targetError;
  2756                 switch (refSym.kind) {
  2757                     case ABSENT_MTH:
  2758                         targetError = false;
  2759                         break;
  2760                     case WRONG_MTH:
  2761                     case WRONG_MTHS:
  2762                     case AMBIGUOUS:
  2763                     case HIDDEN:
  2764                     case STATICERR:
  2765                     case MISSING_ENCL:
  2766                     case WRONG_STATICNESS:
  2767                         targetError = true;
  2768                         break;
  2769                     default:
  2770                         Assert.error("unexpected result kind " + refSym.kind);
  2771                         targetError = false;
  2774                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2775                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2777                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2778                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2780                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2781                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2783                 if (targetError && currentTarget == Type.recoveryType) {
  2784                     //a target error doesn't make sense during recovery stage
  2785                     //as we don't know what actual parameter types are
  2786                     result = that.type = currentTarget;
  2787                     return;
  2788                 } else {
  2789                     if (targetError) {
  2790                         resultInfo.checkContext.report(that, diag);
  2791                     } else {
  2792                         log.report(diag);
  2794                     result = that.type = types.createErrorType(currentTarget);
  2795                     return;
  2799             that.sym = refSym.baseSymbol();
  2800             that.kind = lookupHelper.referenceKind(that.sym);
  2801             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2803             if (desc.getReturnType() == Type.recoveryType) {
  2804                 // stop here
  2805                 result = that.type = currentTarget;
  2806                 return;
  2809             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2811                 if (that.getMode() == ReferenceMode.INVOKE &&
  2812                         TreeInfo.isStaticSelector(that.expr, names) &&
  2813                         that.kind.isUnbound() &&
  2814                         !desc.getParameterTypes().head.isParameterized()) {
  2815                     chk.checkRaw(that.expr, localEnv);
  2818                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2819                         exprType.getTypeArguments().nonEmpty()) {
  2820                     //static ref with class type-args
  2821                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2822                             diags.fragment("static.mref.with.targs"));
  2823                     result = that.type = types.createErrorType(currentTarget);
  2824                     return;
  2827                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2828                         !that.kind.isUnbound()) {
  2829                     //no static bound mrefs
  2830                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2831                             diags.fragment("static.bound.mref"));
  2832                     result = that.type = types.createErrorType(currentTarget);
  2833                     return;
  2836                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2837                     // Check that super-qualified symbols are not abstract (JLS)
  2838                     rs.checkNonAbstract(that.pos(), that.sym);
  2841                 if (isTargetSerializable) {
  2842                     chk.checkElemAccessFromSerializableLambda(that);
  2846             ResultInfo checkInfo =
  2847                     resultInfo.dup(newMethodTemplate(
  2848                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2849                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
  2850                         new FunctionalReturnContext(resultInfo.checkContext));
  2852             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2854             if (that.kind.isUnbound() &&
  2855                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2856                 //re-generate inference constraints for unbound receiver
  2857                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
  2858                     //cannot happen as this has already been checked - we just need
  2859                     //to regenerate the inference constraints, as that has been lost
  2860                     //as a result of the call to inferenceContext.save()
  2861                     Assert.error("Can't get here");
  2865             if (!refType.isErroneous()) {
  2866                 refType = types.createMethodTypeWithReturn(refType,
  2867                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2870             //go ahead with standard method reference compatibility check - note that param check
  2871             //is a no-op (as this has been taken care during method applicability)
  2872             boolean isSpeculativeRound =
  2873                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2874             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2875             if (!isSpeculativeRound) {
  2876                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
  2878             result = check(that, currentTarget, VAL, resultInfo);
  2879         } catch (Types.FunctionDescriptorLookupError ex) {
  2880             JCDiagnostic cause = ex.getDiagnostic();
  2881             resultInfo.checkContext.report(that, cause);
  2882             result = that.type = types.createErrorType(pt());
  2883             return;
  2886     //where
  2887         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2888             //if this is a constructor reference, the expected kind must be a type
  2889             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2893     @SuppressWarnings("fallthrough")
  2894     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2895         Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2897         Type resType;
  2898         switch (tree.getMode()) {
  2899             case NEW:
  2900                 if (!tree.expr.type.isRaw()) {
  2901                     resType = tree.expr.type;
  2902                     break;
  2904             default:
  2905                 resType = refType.getReturnType();
  2908         Type incompatibleReturnType = resType;
  2910         if (returnType.hasTag(VOID)) {
  2911             incompatibleReturnType = null;
  2914         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2915             if (resType.isErroneous() ||
  2916                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2917                 incompatibleReturnType = null;
  2921         if (incompatibleReturnType != null) {
  2922             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2923                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2926         if (!speculativeAttr) {
  2927             List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
  2928             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2929                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2934     /**
  2935      * Set functional type info on the underlying AST. Note: as the target descriptor
  2936      * might contain inference variables, we might need to register an hook in the
  2937      * current inference context.
  2938      */
  2939     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2940             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2941         if (checkContext.inferenceContext().free(descriptorType)) {
  2942             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2943                 public void typesInferred(InferenceContext inferenceContext) {
  2944                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2945                             inferenceContext.asInstType(primaryTarget), checkContext);
  2947             });
  2948         } else {
  2949             ListBuffer<Type> targets = new ListBuffer<>();
  2950             if (pt.hasTag(CLASS)) {
  2951                 if (pt.isCompound()) {
  2952                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2953                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2954                         if (t != primaryTarget) {
  2955                             targets.append(types.removeWildcards(t));
  2958                 } else {
  2959                     targets.append(types.removeWildcards(primaryTarget));
  2962             fExpr.targets = targets.toList();
  2963             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2964                     pt != Type.recoveryType) {
  2965                 //check that functional interface class is well-formed
  2966                 try {
  2967                     /* Types.makeFunctionalInterfaceClass() may throw an exception
  2968                      * when it's executed post-inference. See the listener code
  2969                      * above.
  2970                      */
  2971                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2972                             names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2973                     if (csym != null) {
  2974                         chk.checkImplementations(env.tree, csym, csym);
  2976                 } catch (Types.FunctionDescriptorLookupError ex) {
  2977                     JCDiagnostic cause = ex.getDiagnostic();
  2978                     resultInfo.checkContext.report(env.tree, cause);
  2984     public void visitParens(JCParens tree) {
  2985         Type owntype = attribTree(tree.expr, env, resultInfo);
  2986         result = check(tree, owntype, pkind(), resultInfo);
  2987         Symbol sym = TreeInfo.symbol(tree);
  2988         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2989             log.error(tree.pos(), "illegal.start.of.type");
  2992     public void visitAssign(JCAssign tree) {
  2993         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2994         Type capturedType = capture(owntype);
  2995         attribExpr(tree.rhs, env, owntype);
  2996         result = check(tree, capturedType, VAL, resultInfo);
  2999     public void visitAssignop(JCAssignOp tree) {
  3000         // Attribute arguments.
  3001         Type owntype = attribTree(tree.lhs, env, varInfo);
  3002         Type operand = attribExpr(tree.rhs, env);
  3003         // Find operator.
  3004         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  3005             tree.pos(), tree.getTag().noAssignOp(), env,
  3006             owntype, operand);
  3008         if (operator.kind == MTH &&
  3009                 !owntype.isErroneous() &&
  3010                 !operand.isErroneous()) {
  3011             chk.checkOperator(tree.pos(),
  3012                               (OperatorSymbol)operator,
  3013                               tree.getTag().noAssignOp(),
  3014                               owntype,
  3015                               operand);
  3016             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  3017             chk.checkCastable(tree.rhs.pos(),
  3018                               operator.type.getReturnType(),
  3019                               owntype);
  3021         result = check(tree, owntype, VAL, resultInfo);
  3024     public void visitUnary(JCUnary tree) {
  3025         // Attribute arguments.
  3026         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  3027             ? attribTree(tree.arg, env, varInfo)
  3028             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  3030         // Find operator.
  3031         Symbol operator = tree.operator =
  3032             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  3034         Type owntype = types.createErrorType(tree.type);
  3035         if (operator.kind == MTH &&
  3036                 !argtype.isErroneous()) {
  3037             owntype = (tree.getTag().isIncOrDecUnaryOp())
  3038                 ? tree.arg.type
  3039                 : operator.type.getReturnType();
  3040             int opc = ((OperatorSymbol)operator).opcode;
  3042             // If the argument is constant, fold it.
  3043             if (argtype.constValue() != null) {
  3044                 Type ctype = cfolder.fold1(opc, argtype);
  3045                 if (ctype != null) {
  3046                     owntype = cfolder.coerce(ctype, owntype);
  3050         result = check(tree, owntype, VAL, resultInfo);
  3053     public void visitBinary(JCBinary tree) {
  3054         // Attribute arguments.
  3055         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3056         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3058         // Find operator.
  3059         Symbol operator = tree.operator =
  3060             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3062         Type owntype = types.createErrorType(tree.type);
  3063         if (operator.kind == MTH &&
  3064                 !left.isErroneous() &&
  3065                 !right.isErroneous()) {
  3066             owntype = operator.type.getReturnType();
  3067             // This will figure out when unboxing can happen and
  3068             // choose the right comparison operator.
  3069             int opc = chk.checkOperator(tree.lhs.pos(),
  3070                                         (OperatorSymbol)operator,
  3071                                         tree.getTag(),
  3072                                         left,
  3073                                         right);
  3075             // If both arguments are constants, fold them.
  3076             if (left.constValue() != null && right.constValue() != null) {
  3077                 Type ctype = cfolder.fold2(opc, left, right);
  3078                 if (ctype != null) {
  3079                     owntype = cfolder.coerce(ctype, owntype);
  3083             // Check that argument types of a reference ==, != are
  3084             // castable to each other, (JLS 15.21).  Note: unboxing
  3085             // comparisons will not have an acmp* opc at this point.
  3086             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3087                 if (!types.isEqualityComparable(left, right,
  3088                                                 new Warner(tree.pos()))) {
  3089                     log.error(tree.pos(), "incomparable.types", left, right);
  3093             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3095         result = check(tree, owntype, VAL, resultInfo);
  3098     public void visitTypeCast(final JCTypeCast tree) {
  3099         Type clazztype = attribType(tree.clazz, env);
  3100         chk.validate(tree.clazz, env, false);
  3101         //a fresh environment is required for 292 inference to work properly ---
  3102         //see Infer.instantiatePolymorphicSignatureInstance()
  3103         Env<AttrContext> localEnv = env.dup(tree);
  3104         //should we propagate the target type?
  3105         final ResultInfo castInfo;
  3106         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3107         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3108         if (isPoly) {
  3109             //expression is a poly - we need to propagate target type info
  3110             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3111                 @Override
  3112                 public boolean compatible(Type found, Type req, Warner warn) {
  3113                     return types.isCastable(found, req, warn);
  3115             });
  3116         } else {
  3117             //standalone cast - target-type info is not propagated
  3118             castInfo = unknownExprInfo;
  3120         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3121         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3122         if (exprtype.constValue() != null)
  3123             owntype = cfolder.coerce(exprtype, owntype);
  3124         result = check(tree, capture(owntype), VAL, resultInfo);
  3125         if (!isPoly)
  3126             chk.checkRedundantCast(localEnv, tree);
  3129     public void visitTypeTest(JCInstanceOf tree) {
  3130         Type exprtype = chk.checkNullOrRefType(
  3131             tree.expr.pos(), attribExpr(tree.expr, env));
  3132         Type clazztype = attribType(tree.clazz, env);
  3133         if (!clazztype.hasTag(TYPEVAR)) {
  3134             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3136         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3137             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3138             clazztype = types.createErrorType(clazztype);
  3140         chk.validate(tree.clazz, env, false);
  3141         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3142         result = check(tree, syms.booleanType, VAL, resultInfo);
  3145     public void visitIndexed(JCArrayAccess tree) {
  3146         Type owntype = types.createErrorType(tree.type);
  3147         Type atype = attribExpr(tree.indexed, env);
  3148         attribExpr(tree.index, env, syms.intType);
  3149         if (types.isArray(atype))
  3150             owntype = types.elemtype(atype);
  3151         else if (!atype.hasTag(ERROR))
  3152             log.error(tree.pos(), "array.req.but.found", atype);
  3153         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3154         result = check(tree, owntype, VAR, resultInfo);
  3157     public void visitIdent(JCIdent tree) {
  3158         Symbol sym;
  3160         // Find symbol
  3161         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3162             // If we are looking for a method, the prototype `pt' will be a
  3163             // method type with the type of the call's arguments as parameters.
  3164             env.info.pendingResolutionPhase = null;
  3165             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3166         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3167             sym = tree.sym;
  3168         } else {
  3169             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3171         tree.sym = sym;
  3173         // (1) Also find the environment current for the class where
  3174         //     sym is defined (`symEnv').
  3175         // Only for pre-tiger versions (1.4 and earlier):
  3176         // (2) Also determine whether we access symbol out of an anonymous
  3177         //     class in a this or super call.  This is illegal for instance
  3178         //     members since such classes don't carry a this$n link.
  3179         //     (`noOuterThisPath').
  3180         Env<AttrContext> symEnv = env;
  3181         boolean noOuterThisPath = false;
  3182         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3183             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3184             sym.owner.kind == TYP &&
  3185             tree.name != names._this && tree.name != names._super) {
  3187             // Find environment in which identifier is defined.
  3188             while (symEnv.outer != null &&
  3189                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3190                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3191                     noOuterThisPath = !allowAnonOuterThis;
  3192                 symEnv = symEnv.outer;
  3196         // If symbol is a variable, ...
  3197         if (sym.kind == VAR) {
  3198             VarSymbol v = (VarSymbol)sym;
  3200             // ..., evaluate its initializer, if it has one, and check for
  3201             // illegal forward reference.
  3202             checkInit(tree, env, v, false);
  3204             // If we are expecting a variable (as opposed to a value), check
  3205             // that the variable is assignable in the current environment.
  3206             if (pkind() == VAR)
  3207                 checkAssignable(tree.pos(), v, null, env);
  3210         // In a constructor body,
  3211         // if symbol is a field or instance method, check that it is
  3212         // not accessed before the supertype constructor is called.
  3213         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3214             (sym.kind & (VAR | MTH)) != 0 &&
  3215             sym.owner.kind == TYP &&
  3216             (sym.flags() & STATIC) == 0) {
  3217             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3219         Env<AttrContext> env1 = env;
  3220         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3221             // If the found symbol is inaccessible, then it is
  3222             // accessed through an enclosing instance.  Locate this
  3223             // enclosing instance:
  3224             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3225                 env1 = env1.outer;
  3228         if (env.info.isSerializable) {
  3229             chk.checkElemAccessFromSerializableLambda(tree);
  3232         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3235     public void visitSelect(JCFieldAccess tree) {
  3236         // Determine the expected kind of the qualifier expression.
  3237         int skind = 0;
  3238         if (tree.name == names._this || tree.name == names._super ||
  3239             tree.name == names._class)
  3241             skind = TYP;
  3242         } else {
  3243             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3244             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3245             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3248         // Attribute the qualifier expression, and determine its symbol (if any).
  3249         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3250         if ((pkind() & (PCK | TYP)) == 0)
  3251             site = capture(site); // Capture field access
  3253         // don't allow T.class T[].class, etc
  3254         if (skind == TYP) {
  3255             Type elt = site;
  3256             while (elt.hasTag(ARRAY))
  3257                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3258             if (elt.hasTag(TYPEVAR)) {
  3259                 log.error(tree.pos(), "type.var.cant.be.deref");
  3260                 result = types.createErrorType(tree.type);
  3261                 return;
  3265         // If qualifier symbol is a type or `super', assert `selectSuper'
  3266         // for the selection. This is relevant for determining whether
  3267         // protected symbols are accessible.
  3268         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3269         boolean selectSuperPrev = env.info.selectSuper;
  3270         env.info.selectSuper =
  3271             sitesym != null &&
  3272             sitesym.name == names._super;
  3274         // Determine the symbol represented by the selection.
  3275         env.info.pendingResolutionPhase = null;
  3276         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3277         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3278             site = capture(site);
  3279             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3281         boolean varArgs = env.info.lastResolveVarargs();
  3282         tree.sym = sym;
  3284         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3285             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3286             site = capture(site);
  3289         // If that symbol is a variable, ...
  3290         if (sym.kind == VAR) {
  3291             VarSymbol v = (VarSymbol)sym;
  3293             // ..., evaluate its initializer, if it has one, and check for
  3294             // illegal forward reference.
  3295             checkInit(tree, env, v, true);
  3297             // If we are expecting a variable (as opposed to a value), check
  3298             // that the variable is assignable in the current environment.
  3299             if (pkind() == VAR)
  3300                 checkAssignable(tree.pos(), v, tree.selected, env);
  3303         if (sitesym != null &&
  3304                 sitesym.kind == VAR &&
  3305                 ((VarSymbol)sitesym).isResourceVariable() &&
  3306                 sym.kind == MTH &&
  3307                 sym.name.equals(names.close) &&
  3308                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3309                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3310             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3313         // Disallow selecting a type from an expression
  3314         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3315             tree.type = check(tree.selected, pt(),
  3316                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3319         if (isType(sitesym)) {
  3320             if (sym.name == names._this) {
  3321                 // If `C' is the currently compiled class, check that
  3322                 // C.this' does not appear in a call to a super(...)
  3323                 if (env.info.isSelfCall &&
  3324                     site.tsym == env.enclClass.sym) {
  3325                     chk.earlyRefError(tree.pos(), sym);
  3327             } else {
  3328                 // Check if type-qualified fields or methods are static (JLS)
  3329                 if ((sym.flags() & STATIC) == 0 &&
  3330                     !env.next.tree.hasTag(REFERENCE) &&
  3331                     sym.name != names._super &&
  3332                     (sym.kind == VAR || sym.kind == MTH)) {
  3333                     rs.accessBase(rs.new StaticError(sym),
  3334                               tree.pos(), site, sym.name, true);
  3337             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
  3338                     sym.isStatic() && sym.kind == MTH) {
  3339                 log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
  3341         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3342             // If the qualified item is not a type and the selected item is static, report
  3343             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3344             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3347         // If we are selecting an instance member via a `super', ...
  3348         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3350             // Check that super-qualified symbols are not abstract (JLS)
  3351             rs.checkNonAbstract(tree.pos(), sym);
  3353             if (site.isRaw()) {
  3354                 // Determine argument types for site.
  3355                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3356                 if (site1 != null) site = site1;
  3360         if (env.info.isSerializable) {
  3361             chk.checkElemAccessFromSerializableLambda(tree);
  3364         env.info.selectSuper = selectSuperPrev;
  3365         result = checkId(tree, site, sym, env, resultInfo);
  3367     //where
  3368         /** Determine symbol referenced by a Select expression,
  3370          *  @param tree   The select tree.
  3371          *  @param site   The type of the selected expression,
  3372          *  @param env    The current environment.
  3373          *  @param resultInfo The current result.
  3374          */
  3375         private Symbol selectSym(JCFieldAccess tree,
  3376                                  Symbol location,
  3377                                  Type site,
  3378                                  Env<AttrContext> env,
  3379                                  ResultInfo resultInfo) {
  3380             DiagnosticPosition pos = tree.pos();
  3381             Name name = tree.name;
  3382             switch (site.getTag()) {
  3383             case PACKAGE:
  3384                 return rs.accessBase(
  3385                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3386                     pos, location, site, name, true);
  3387             case ARRAY:
  3388             case CLASS:
  3389                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3390                     return rs.resolveQualifiedMethod(
  3391                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3392                 } else if (name == names._this || name == names._super) {
  3393                     return rs.resolveSelf(pos, env, site.tsym, name);
  3394                 } else if (name == names._class) {
  3395                     // In this case, we have already made sure in
  3396                     // visitSelect that qualifier expression is a type.
  3397                     Type t = syms.classType;
  3398                     List<Type> typeargs = allowGenerics
  3399                         ? List.of(types.erasure(site))
  3400                         : List.<Type>nil();
  3401                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3402                     return new VarSymbol(
  3403                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3404                 } else {
  3405                     // We are seeing a plain identifier as selector.
  3406                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3407                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3408                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3409                     return sym;
  3411             case WILDCARD:
  3412                 throw new AssertionError(tree);
  3413             case TYPEVAR:
  3414                 // Normally, site.getUpperBound() shouldn't be null.
  3415                 // It should only happen during memberEnter/attribBase
  3416                 // when determining the super type which *must* beac
  3417                 // done before attributing the type variables.  In
  3418                 // other words, we are seeing this illegal program:
  3419                 // class B<T> extends A<T.foo> {}
  3420                 Symbol sym = (site.getUpperBound() != null)
  3421                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3422                     : null;
  3423                 if (sym == null) {
  3424                     log.error(pos, "type.var.cant.be.deref");
  3425                     return syms.errSymbol;
  3426                 } else {
  3427                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3428                         rs.new AccessError(env, site, sym) :
  3429                                 sym;
  3430                     rs.accessBase(sym2, pos, location, site, name, true);
  3431                     return sym;
  3433             case ERROR:
  3434                 // preserve identifier names through errors
  3435                 return types.createErrorType(name, site.tsym, site).tsym;
  3436             default:
  3437                 // The qualifier expression is of a primitive type -- only
  3438                 // .class is allowed for these.
  3439                 if (name == names._class) {
  3440                     // In this case, we have already made sure in Select that
  3441                     // qualifier expression is a type.
  3442                     Type t = syms.classType;
  3443                     Type arg = types.boxedClass(site).type;
  3444                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3445                     return new VarSymbol(
  3446                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3447                 } else {
  3448                     log.error(pos, "cant.deref", site);
  3449                     return syms.errSymbol;
  3454         /** Determine type of identifier or select expression and check that
  3455          *  (1) the referenced symbol is not deprecated
  3456          *  (2) the symbol's type is safe (@see checkSafe)
  3457          *  (3) if symbol is a variable, check that its type and kind are
  3458          *      compatible with the prototype and protokind.
  3459          *  (4) if symbol is an instance field of a raw type,
  3460          *      which is being assigned to, issue an unchecked warning if its
  3461          *      type changes under erasure.
  3462          *  (5) if symbol is an instance method of a raw type, issue an
  3463          *      unchecked warning if its argument types change under erasure.
  3464          *  If checks succeed:
  3465          *    If symbol is a constant, return its constant type
  3466          *    else if symbol is a method, return its result type
  3467          *    otherwise return its type.
  3468          *  Otherwise return errType.
  3470          *  @param tree       The syntax tree representing the identifier
  3471          *  @param site       If this is a select, the type of the selected
  3472          *                    expression, otherwise the type of the current class.
  3473          *  @param sym        The symbol representing the identifier.
  3474          *  @param env        The current environment.
  3475          *  @param resultInfo    The expected result
  3476          */
  3477         Type checkId(JCTree tree,
  3478                      Type site,
  3479                      Symbol sym,
  3480                      Env<AttrContext> env,
  3481                      ResultInfo resultInfo) {
  3482             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3483                     checkMethodId(tree, site, sym, env, resultInfo) :
  3484                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3487         Type checkMethodId(JCTree tree,
  3488                      Type site,
  3489                      Symbol sym,
  3490                      Env<AttrContext> env,
  3491                      ResultInfo resultInfo) {
  3492             boolean isPolymorhicSignature =
  3493                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3494             return isPolymorhicSignature ?
  3495                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3496                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3499         Type checkSigPolyMethodId(JCTree tree,
  3500                      Type site,
  3501                      Symbol sym,
  3502                      Env<AttrContext> env,
  3503                      ResultInfo resultInfo) {
  3504             //recover original symbol for signature polymorphic methods
  3505             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3506             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3507             return sym.type;
  3510         Type checkMethodIdInternal(JCTree tree,
  3511                      Type site,
  3512                      Symbol sym,
  3513                      Env<AttrContext> env,
  3514                      ResultInfo resultInfo) {
  3515             if ((resultInfo.pkind & POLY) != 0) {
  3516                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3517                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3518                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3519                 return owntype;
  3520             } else {
  3521                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3525         Type checkIdInternal(JCTree tree,
  3526                      Type site,
  3527                      Symbol sym,
  3528                      Type pt,
  3529                      Env<AttrContext> env,
  3530                      ResultInfo resultInfo) {
  3531             if (pt.isErroneous()) {
  3532                 return types.createErrorType(site);
  3534             Type owntype; // The computed type of this identifier occurrence.
  3535             switch (sym.kind) {
  3536             case TYP:
  3537                 // For types, the computed type equals the symbol's type,
  3538                 // except for two situations:
  3539                 owntype = sym.type;
  3540                 if (owntype.hasTag(CLASS)) {
  3541                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3542                     Type ownOuter = owntype.getEnclosingType();
  3544                     // (a) If the symbol's type is parameterized, erase it
  3545                     // because no type parameters were given.
  3546                     // We recover generic outer type later in visitTypeApply.
  3547                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3548                         owntype = types.erasure(owntype);
  3551                     // (b) If the symbol's type is an inner class, then
  3552                     // we have to interpret its outer type as a superclass
  3553                     // of the site type. Example:
  3554                     //
  3555                     // class Tree<A> { class Visitor { ... } }
  3556                     // class PointTree extends Tree<Point> { ... }
  3557                     // ...PointTree.Visitor...
  3558                     //
  3559                     // Then the type of the last expression above is
  3560                     // Tree<Point>.Visitor.
  3561                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3562                         Type normOuter = site;
  3563                         if (normOuter.hasTag(CLASS)) {
  3564                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3566                         if (normOuter == null) // perhaps from an import
  3567                             normOuter = types.erasure(ownOuter);
  3568                         if (normOuter != ownOuter)
  3569                             owntype = new ClassType(
  3570                                 normOuter, List.<Type>nil(), owntype.tsym);
  3573                 break;
  3574             case VAR:
  3575                 VarSymbol v = (VarSymbol)sym;
  3576                 // Test (4): if symbol is an instance field of a raw type,
  3577                 // which is being assigned to, issue an unchecked warning if
  3578                 // its type changes under erasure.
  3579                 if (allowGenerics &&
  3580                     resultInfo.pkind == VAR &&
  3581                     v.owner.kind == TYP &&
  3582                     (v.flags() & STATIC) == 0 &&
  3583                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3584                     Type s = types.asOuterSuper(site, v.owner);
  3585                     if (s != null &&
  3586                         s.isRaw() &&
  3587                         !types.isSameType(v.type, v.erasure(types))) {
  3588                         chk.warnUnchecked(tree.pos(),
  3589                                           "unchecked.assign.to.var",
  3590                                           v, s);
  3593                 // The computed type of a variable is the type of the
  3594                 // variable symbol, taken as a member of the site type.
  3595                 owntype = (sym.owner.kind == TYP &&
  3596                            sym.name != names._this && sym.name != names._super)
  3597                     ? types.memberType(site, sym)
  3598                     : sym.type;
  3600                 // If the variable is a constant, record constant value in
  3601                 // computed type.
  3602                 if (v.getConstValue() != null && isStaticReference(tree))
  3603                     owntype = owntype.constType(v.getConstValue());
  3605                 if (resultInfo.pkind == VAL) {
  3606                     owntype = capture(owntype); // capture "names as expressions"
  3608                 break;
  3609             case MTH: {
  3610                 owntype = checkMethod(site, sym,
  3611                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3612                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3613                         resultInfo.pt.getTypeArguments());
  3614                 break;
  3616             case PCK: case ERR:
  3617                 owntype = sym.type;
  3618                 break;
  3619             default:
  3620                 throw new AssertionError("unexpected kind: " + sym.kind +
  3621                                          " in tree " + tree);
  3624             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3625             // (for constructors, the error was given when the constructor was
  3626             // resolved)
  3628             if (sym.name != names.init) {
  3629                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3630                 chk.checkSunAPI(tree.pos(), sym);
  3631                 chk.checkProfile(tree.pos(), sym);
  3634             // Test (3): if symbol is a variable, check that its type and
  3635             // kind are compatible with the prototype and protokind.
  3636             return check(tree, owntype, sym.kind, resultInfo);
  3639         /** Check that variable is initialized and evaluate the variable's
  3640          *  initializer, if not yet done. Also check that variable is not
  3641          *  referenced before it is defined.
  3642          *  @param tree    The tree making up the variable reference.
  3643          *  @param env     The current environment.
  3644          *  @param v       The variable's symbol.
  3645          */
  3646         private void checkInit(JCTree tree,
  3647                                Env<AttrContext> env,
  3648                                VarSymbol v,
  3649                                boolean onlyWarning) {
  3650 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3651 //                             tree.pos + " " + v.pos + " " +
  3652 //                             Resolve.isStatic(env));//DEBUG
  3654             // A forward reference is diagnosed if the declaration position
  3655             // of the variable is greater than the current tree position
  3656             // and the tree and variable definition occur in the same class
  3657             // definition.  Note that writes don't count as references.
  3658             // This check applies only to class and instance
  3659             // variables.  Local variables follow different scope rules,
  3660             // and are subject to definite assignment checking.
  3661             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3662                 v.owner.kind == TYP &&
  3663                 canOwnInitializer(owner(env)) &&
  3664                 v.owner == env.info.scope.owner.enclClass() &&
  3665                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3666                 (!env.tree.hasTag(ASSIGN) ||
  3667                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3668                 String suffix = (env.info.enclVar == v) ?
  3669                                 "self.ref" : "forward.ref";
  3670                 if (!onlyWarning || isStaticEnumField(v)) {
  3671                     log.error(tree.pos(), "illegal." + suffix);
  3672                 } else if (useBeforeDeclarationWarning) {
  3673                     log.warning(tree.pos(), suffix, v);
  3677             v.getConstValue(); // ensure initializer is evaluated
  3679             checkEnumInitializer(tree, env, v);
  3682         /**
  3683          * Check for illegal references to static members of enum.  In
  3684          * an enum type, constructors and initializers may not
  3685          * reference its static members unless they are constant.
  3687          * @param tree    The tree making up the variable reference.
  3688          * @param env     The current environment.
  3689          * @param v       The variable's symbol.
  3690          * @jls  section 8.9 Enums
  3691          */
  3692         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3693             // JLS:
  3694             //
  3695             // "It is a compile-time error to reference a static field
  3696             // of an enum type that is not a compile-time constant
  3697             // (15.28) from constructors, instance initializer blocks,
  3698             // or instance variable initializer expressions of that
  3699             // type. It is a compile-time error for the constructors,
  3700             // instance initializer blocks, or instance variable
  3701             // initializer expressions of an enum constant e to refer
  3702             // to itself or to an enum constant of the same type that
  3703             // is declared to the right of e."
  3704             if (isStaticEnumField(v)) {
  3705                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3707                 if (enclClass == null || enclClass.owner == null)
  3708                     return;
  3710                 // See if the enclosing class is the enum (or a
  3711                 // subclass thereof) declaring v.  If not, this
  3712                 // reference is OK.
  3713                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3714                     return;
  3716                 // If the reference isn't from an initializer, then
  3717                 // the reference is OK.
  3718                 if (!Resolve.isInitializer(env))
  3719                     return;
  3721                 log.error(tree.pos(), "illegal.enum.static.ref");
  3725         /** Is the given symbol a static, non-constant field of an Enum?
  3726          *  Note: enum literals should not be regarded as such
  3727          */
  3728         private boolean isStaticEnumField(VarSymbol v) {
  3729             return Flags.isEnum(v.owner) &&
  3730                    Flags.isStatic(v) &&
  3731                    !Flags.isConstant(v) &&
  3732                    v.name != names._class;
  3735         /** Can the given symbol be the owner of code which forms part
  3736          *  if class initialization? This is the case if the symbol is
  3737          *  a type or field, or if the symbol is the synthetic method.
  3738          *  owning a block.
  3739          */
  3740         private boolean canOwnInitializer(Symbol sym) {
  3741             return
  3742                 (sym.kind & (VAR | TYP)) != 0 ||
  3743                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3746     Warner noteWarner = new Warner();
  3748     /**
  3749      * Check that method arguments conform to its instantiation.
  3750      **/
  3751     public Type checkMethod(Type site,
  3752                             final Symbol sym,
  3753                             ResultInfo resultInfo,
  3754                             Env<AttrContext> env,
  3755                             final List<JCExpression> argtrees,
  3756                             List<Type> argtypes,
  3757                             List<Type> typeargtypes) {
  3758         // Test (5): if symbol is an instance method of a raw type, issue
  3759         // an unchecked warning if its argument types change under erasure.
  3760         if (allowGenerics &&
  3761             (sym.flags() & STATIC) == 0 &&
  3762             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3763             Type s = types.asOuterSuper(site, sym.owner);
  3764             if (s != null && s.isRaw() &&
  3765                 !types.isSameTypes(sym.type.getParameterTypes(),
  3766                                    sym.erasure(types).getParameterTypes())) {
  3767                 chk.warnUnchecked(env.tree.pos(),
  3768                                   "unchecked.call.mbr.of.raw.type",
  3769                                   sym, s);
  3773         if (env.info.defaultSuperCallSite != null) {
  3774             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3775                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3776                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3777                 List<MethodSymbol> icand_sup =
  3778                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3779                 if (icand_sup.nonEmpty() &&
  3780                         icand_sup.head != sym &&
  3781                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3782                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3783                         diags.fragment("overridden.default", sym, sup));
  3784                     break;
  3787             env.info.defaultSuperCallSite = null;
  3790         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3791             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3792             if (app.meth.hasTag(SELECT) &&
  3793                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3794                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3798         // Compute the identifier's instantiated type.
  3799         // For methods, we need to compute the instance type by
  3800         // Resolve.instantiate from the symbol's type as well as
  3801         // any type arguments and value arguments.
  3802         noteWarner.clear();
  3803         try {
  3804             Type owntype = rs.checkMethod(
  3805                     env,
  3806                     site,
  3807                     sym,
  3808                     resultInfo,
  3809                     argtypes,
  3810                     typeargtypes,
  3811                     noteWarner);
  3813             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3814                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3816             argtypes = Type.map(argtypes, checkDeferredMap);
  3818             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3819                 chk.warnUnchecked(env.tree.pos(),
  3820                         "unchecked.meth.invocation.applied",
  3821                         kindName(sym),
  3822                         sym.name,
  3823                         rs.methodArguments(sym.type.getParameterTypes()),
  3824                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3825                         kindName(sym.location()),
  3826                         sym.location());
  3827                owntype = new MethodType(owntype.getParameterTypes(),
  3828                        types.erasure(owntype.getReturnType()),
  3829                        types.erasure(owntype.getThrownTypes()),
  3830                        syms.methodClass);
  3833             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3834                     resultInfo.checkContext.inferenceContext());
  3835         } catch (Infer.InferenceException ex) {
  3836             //invalid target type - propagate exception outwards or report error
  3837             //depending on the current check context
  3838             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3839             return types.createErrorType(site);
  3840         } catch (Resolve.InapplicableMethodException ex) {
  3841             final JCDiagnostic diag = ex.getDiagnostic();
  3842             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3843                 @Override
  3844                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3845                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3847             };
  3848             List<Type> argtypes2 = Type.map(argtypes,
  3849                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3850             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3851                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3852             log.report(errDiag);
  3853             return types.createErrorType(site);
  3857     public void visitLiteral(JCLiteral tree) {
  3858         result = check(
  3859             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3861     //where
  3862     /** Return the type of a literal with given type tag.
  3863      */
  3864     Type litType(TypeTag tag) {
  3865         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3868     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3869         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3872     public void visitTypeArray(JCArrayTypeTree tree) {
  3873         Type etype = attribType(tree.elemtype, env);
  3874         Type type = new ArrayType(etype, syms.arrayClass);
  3875         result = check(tree, type, TYP, resultInfo);
  3878     /** Visitor method for parameterized types.
  3879      *  Bound checking is left until later, since types are attributed
  3880      *  before supertype structure is completely known
  3881      */
  3882     public void visitTypeApply(JCTypeApply tree) {
  3883         Type owntype = types.createErrorType(tree.type);
  3885         // Attribute functor part of application and make sure it's a class.
  3886         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3888         // Attribute type parameters
  3889         List<Type> actuals = attribTypes(tree.arguments, env);
  3891         if (clazztype.hasTag(CLASS)) {
  3892             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3893             if (actuals.isEmpty()) //diamond
  3894                 actuals = formals;
  3896             if (actuals.length() == formals.length()) {
  3897                 List<Type> a = actuals;
  3898                 List<Type> f = formals;
  3899                 while (a.nonEmpty()) {
  3900                     a.head = a.head.withTypeVar(f.head);
  3901                     a = a.tail;
  3902                     f = f.tail;
  3904                 // Compute the proper generic outer
  3905                 Type clazzOuter = clazztype.getEnclosingType();
  3906                 if (clazzOuter.hasTag(CLASS)) {
  3907                     Type site;
  3908                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3909                     if (clazz.hasTag(IDENT)) {
  3910                         site = env.enclClass.sym.type;
  3911                     } else if (clazz.hasTag(SELECT)) {
  3912                         site = ((JCFieldAccess) clazz).selected.type;
  3913                     } else throw new AssertionError(""+tree);
  3914                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3915                         if (site.hasTag(CLASS))
  3916                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3917                         if (site == null)
  3918                             site = types.erasure(clazzOuter);
  3919                         clazzOuter = site;
  3922                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3923             } else {
  3924                 if (formals.length() != 0) {
  3925                     log.error(tree.pos(), "wrong.number.type.args",
  3926                               Integer.toString(formals.length()));
  3927                 } else {
  3928                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3930                 owntype = types.createErrorType(tree.type);
  3933         result = check(tree, owntype, TYP, resultInfo);
  3936     public void visitTypeUnion(JCTypeUnion tree) {
  3937         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3938         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3939         for (JCExpression typeTree : tree.alternatives) {
  3940             Type ctype = attribType(typeTree, env);
  3941             ctype = chk.checkType(typeTree.pos(),
  3942                           chk.checkClassType(typeTree.pos(), ctype),
  3943                           syms.throwableType);
  3944             if (!ctype.isErroneous()) {
  3945                 //check that alternatives of a union type are pairwise
  3946                 //unrelated w.r.t. subtyping
  3947                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3948                     for (Type t : multicatchTypes) {
  3949                         boolean sub = types.isSubtype(ctype, t);
  3950                         boolean sup = types.isSubtype(t, ctype);
  3951                         if (sub || sup) {
  3952                             //assume 'a' <: 'b'
  3953                             Type a = sub ? ctype : t;
  3954                             Type b = sub ? t : ctype;
  3955                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3959                 multicatchTypes.append(ctype);
  3960                 if (all_multicatchTypes != null)
  3961                     all_multicatchTypes.append(ctype);
  3962             } else {
  3963                 if (all_multicatchTypes == null) {
  3964                     all_multicatchTypes = new ListBuffer<>();
  3965                     all_multicatchTypes.appendList(multicatchTypes);
  3967                 all_multicatchTypes.append(ctype);
  3970         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3971         if (t.hasTag(CLASS)) {
  3972             List<Type> alternatives =
  3973                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3974             t = new UnionClassType((ClassType) t, alternatives);
  3976         tree.type = result = t;
  3979     public void visitTypeIntersection(JCTypeIntersection tree) {
  3980         attribTypes(tree.bounds, env);
  3981         tree.type = result = checkIntersection(tree, tree.bounds);
  3984     public void visitTypeParameter(JCTypeParameter tree) {
  3985         TypeVar typeVar = (TypeVar) tree.type;
  3987         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3988             annotateType(tree, tree.annotations);
  3991         if (!typeVar.bound.isErroneous()) {
  3992             //fixup type-parameter bound computed in 'attribTypeVariables'
  3993             typeVar.bound = checkIntersection(tree, tree.bounds);
  3997     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3998         Set<Type> boundSet = new HashSet<Type>();
  3999         if (bounds.nonEmpty()) {
  4000             // accept class or interface or typevar as first bound.
  4001             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  4002             boundSet.add(types.erasure(bounds.head.type));
  4003             if (bounds.head.type.isErroneous()) {
  4004                 return bounds.head.type;
  4006             else if (bounds.head.type.hasTag(TYPEVAR)) {
  4007                 // if first bound was a typevar, do not accept further bounds.
  4008                 if (bounds.tail.nonEmpty()) {
  4009                     log.error(bounds.tail.head.pos(),
  4010                               "type.var.may.not.be.followed.by.other.bounds");
  4011                     return bounds.head.type;
  4013             } else {
  4014                 // if first bound was a class or interface, accept only interfaces
  4015                 // as further bounds.
  4016                 for (JCExpression bound : bounds.tail) {
  4017                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  4018                     if (bound.type.isErroneous()) {
  4019                         bounds = List.of(bound);
  4021                     else if (bound.type.hasTag(CLASS)) {
  4022                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  4028         if (bounds.length() == 0) {
  4029             return syms.objectType;
  4030         } else if (bounds.length() == 1) {
  4031             return bounds.head.type;
  4032         } else {
  4033             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  4034             // ... the variable's bound is a class type flagged COMPOUND
  4035             // (see comment for TypeVar.bound).
  4036             // In this case, generate a class tree that represents the
  4037             // bound class, ...
  4038             JCExpression extending;
  4039             List<JCExpression> implementing;
  4040             if (!bounds.head.type.isInterface()) {
  4041                 extending = bounds.head;
  4042                 implementing = bounds.tail;
  4043             } else {
  4044                 extending = null;
  4045                 implementing = bounds;
  4047             JCClassDecl cd = make.at(tree).ClassDef(
  4048                 make.Modifiers(PUBLIC | ABSTRACT),
  4049                 names.empty, List.<JCTypeParameter>nil(),
  4050                 extending, implementing, List.<JCTree>nil());
  4052             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4053             Assert.check((c.flags() & COMPOUND) != 0);
  4054             cd.sym = c;
  4055             c.sourcefile = env.toplevel.sourcefile;
  4057             // ... and attribute the bound class
  4058             c.flags_field |= UNATTRIBUTED;
  4059             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4060             typeEnvs.put(c, cenv);
  4061             attribClass(c);
  4062             return owntype;
  4066     public void visitWildcard(JCWildcard tree) {
  4067         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4068         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4069             ? syms.objectType
  4070             : attribType(tree.inner, env);
  4071         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4072                                               tree.kind.kind,
  4073                                               syms.boundClass),
  4074                        TYP, resultInfo);
  4077     public void visitAnnotation(JCAnnotation tree) {
  4078         Assert.error("should be handled in Annotate");
  4081     public void visitAnnotatedType(JCAnnotatedType tree) {
  4082         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4083         this.attribAnnotationTypes(tree.annotations, env);
  4084         annotateType(tree, tree.annotations);
  4085         result = tree.type = underlyingType;
  4088     /**
  4089      * Apply the annotations to the particular type.
  4090      */
  4091     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
  4092         annotate.typeAnnotation(new Annotate.Worker() {
  4093             @Override
  4094             public String toString() {
  4095                 return "annotate " + annotations + " onto " + tree;
  4097             @Override
  4098             public void run() {
  4099                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4100                 if (annotations.size() == compounds.size()) {
  4101                     // All annotations were successfully converted into compounds
  4102                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
  4105         });
  4108     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4109         if (annotations.isEmpty()) {
  4110             return List.nil();
  4113         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4114         for (JCAnnotation anno : annotations) {
  4115             if (anno.attribute != null) {
  4116                 // TODO: this null-check is only needed for an obscure
  4117                 // ordering issue, where annotate.flush is called when
  4118                 // the attribute is not set yet. For an example failure
  4119                 // try the referenceinfos/NestedTypes.java test.
  4120                 // Any better solutions?
  4121                 buf.append((Attribute.TypeCompound) anno.attribute);
  4123             // Eventually we will want to throw an exception here, but
  4124             // we can't do that just yet, because it gets triggered
  4125             // when attempting to attach an annotation that isn't
  4126             // defined.
  4128         return buf.toList();
  4131     public void visitErroneous(JCErroneous tree) {
  4132         if (tree.errs != null)
  4133             for (JCTree err : tree.errs)
  4134                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4135         result = tree.type = syms.errType;
  4138     /** Default visitor method for all other trees.
  4139      */
  4140     public void visitTree(JCTree tree) {
  4141         throw new AssertionError();
  4144     /**
  4145      * Attribute an env for either a top level tree or class declaration.
  4146      */
  4147     public void attrib(Env<AttrContext> env) {
  4148         if (env.tree.hasTag(TOPLEVEL))
  4149             attribTopLevel(env);
  4150         else
  4151             attribClass(env.tree.pos(), env.enclClass.sym);
  4154     /**
  4155      * Attribute a top level tree. These trees are encountered when the
  4156      * package declaration has annotations.
  4157      */
  4158     public void attribTopLevel(Env<AttrContext> env) {
  4159         JCCompilationUnit toplevel = env.toplevel;
  4160         try {
  4161             annotate.flush();
  4162         } catch (CompletionFailure ex) {
  4163             chk.completionError(toplevel.pos(), ex);
  4167     /** Main method: attribute class definition associated with given class symbol.
  4168      *  reporting completion failures at the given position.
  4169      *  @param pos The source position at which completion errors are to be
  4170      *             reported.
  4171      *  @param c   The class symbol whose definition will be attributed.
  4172      */
  4173     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4174         try {
  4175             annotate.flush();
  4176             attribClass(c);
  4177         } catch (CompletionFailure ex) {
  4178             chk.completionError(pos, ex);
  4182     /** Attribute class definition associated with given class symbol.
  4183      *  @param c   The class symbol whose definition will be attributed.
  4184      */
  4185     void attribClass(ClassSymbol c) throws CompletionFailure {
  4186         if (c.type.hasTag(ERROR)) return;
  4188         // Check for cycles in the inheritance graph, which can arise from
  4189         // ill-formed class files.
  4190         chk.checkNonCyclic(null, c.type);
  4192         Type st = types.supertype(c.type);
  4193         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4194             // First, attribute superclass.
  4195             if (st.hasTag(CLASS))
  4196                 attribClass((ClassSymbol)st.tsym);
  4198             // Next attribute owner, if it is a class.
  4199             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4200                 attribClass((ClassSymbol)c.owner);
  4203         // The previous operations might have attributed the current class
  4204         // if there was a cycle. So we test first whether the class is still
  4205         // UNATTRIBUTED.
  4206         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4207             c.flags_field &= ~UNATTRIBUTED;
  4209             // Get environment current at the point of class definition.
  4210             Env<AttrContext> env = typeEnvs.get(c);
  4212             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
  4213             // because the annotations were not available at the time the env was created. Therefore,
  4214             // we look up the environment chain for the first enclosing environment for which the
  4215             // lint value is set. Typically, this is the parent env, but might be further if there
  4216             // are any envs created as a result of TypeParameter nodes.
  4217             Env<AttrContext> lintEnv = env;
  4218             while (lintEnv.info.lint == null)
  4219                 lintEnv = lintEnv.next;
  4221             // Having found the enclosing lint value, we can initialize the lint value for this class
  4222             env.info.lint = lintEnv.info.lint.augment(c);
  4224             Lint prevLint = chk.setLint(env.info.lint);
  4225             JavaFileObject prev = log.useSource(c.sourcefile);
  4226             ResultInfo prevReturnRes = env.info.returnResult;
  4228             try {
  4229                 deferredLintHandler.flush(env.tree);
  4230                 env.info.returnResult = null;
  4231                 // java.lang.Enum may not be subclassed by a non-enum
  4232                 if (st.tsym == syms.enumSym &&
  4233                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4234                     log.error(env.tree.pos(), "enum.no.subclassing");
  4236                 // Enums may not be extended by source-level classes
  4237                 if (st.tsym != null &&
  4238                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4239                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4240                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4243                 if (isSerializable(c.type)) {
  4244                     env.info.isSerializable = true;
  4247                 attribClassBody(env, c);
  4249                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4250                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4251                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
  4252             } finally {
  4253                 env.info.returnResult = prevReturnRes;
  4254                 log.useSource(prev);
  4255                 chk.setLint(prevLint);
  4261     public void visitImport(JCImport tree) {
  4262         // nothing to do
  4265     /** Finish the attribution of a class. */
  4266     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4267         JCClassDecl tree = (JCClassDecl)env.tree;
  4268         Assert.check(c == tree.sym);
  4270         // Validate type parameters, supertype and interfaces.
  4271         attribStats(tree.typarams, env);
  4272         if (!c.isAnonymous()) {
  4273             //already checked if anonymous
  4274             chk.validate(tree.typarams, env);
  4275             chk.validate(tree.extending, env);
  4276             chk.validate(tree.implementing, env);
  4279         // If this is a non-abstract class, check that it has no abstract
  4280         // methods or unimplemented methods of an implemented interface.
  4281         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4282             if (!relax)
  4283                 chk.checkAllDefined(tree.pos(), c);
  4286         if ((c.flags() & ANNOTATION) != 0) {
  4287             if (tree.implementing.nonEmpty())
  4288                 log.error(tree.implementing.head.pos(),
  4289                           "cant.extend.intf.annotation");
  4290             if (tree.typarams.nonEmpty())
  4291                 log.error(tree.typarams.head.pos(),
  4292                           "intf.annotation.cant.have.type.params");
  4294             // If this annotation has a @Repeatable, validate
  4295             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4296             if (repeatable != null) {
  4297                 // get diagnostic position for error reporting
  4298                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4299                 Assert.checkNonNull(cbPos);
  4301                 chk.validateRepeatable(c, repeatable, cbPos);
  4303         } else {
  4304             // Check that all extended classes and interfaces
  4305             // are compatible (i.e. no two define methods with same arguments
  4306             // yet different return types).  (JLS 8.4.6.3)
  4307             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4308             if (allowDefaultMethods) {
  4309                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4313         // Check that class does not import the same parameterized interface
  4314         // with two different argument lists.
  4315         chk.checkClassBounds(tree.pos(), c.type);
  4317         tree.type = c.type;
  4319         for (List<JCTypeParameter> l = tree.typarams;
  4320              l.nonEmpty(); l = l.tail) {
  4321              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4324         // Check that a generic class doesn't extend Throwable
  4325         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4326             log.error(tree.extending.pos(), "generic.throwable");
  4328         // Check that all methods which implement some
  4329         // method conform to the method they implement.
  4330         chk.checkImplementations(tree);
  4332         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4333         checkAutoCloseable(tree.pos(), env, c.type);
  4335         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4336             // Attribute declaration
  4337             attribStat(l.head, env);
  4338             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4339             // Make an exception for static constants.
  4340             if (c.owner.kind != PCK &&
  4341                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4342                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4343                 Symbol sym = null;
  4344                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4345                 if (sym == null ||
  4346                     sym.kind != VAR ||
  4347                     ((VarSymbol) sym).getConstValue() == null)
  4348                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4352         // Check for cycles among non-initial constructors.
  4353         chk.checkCyclicConstructors(tree);
  4355         // Check for cycles among annotation elements.
  4356         chk.checkNonCyclicElements(tree);
  4358         // Check for proper use of serialVersionUID
  4359         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4360             isSerializable(c.type) &&
  4361             (c.flags() & Flags.ENUM) == 0 &&
  4362             checkForSerial(c)) {
  4363             checkSerialVersionUID(tree, c);
  4365         if (allowTypeAnnos) {
  4366             // Correctly organize the postions of the type annotations
  4367             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4369             // Check type annotations applicability rules
  4370             validateTypeAnnotations(tree, false);
  4373         // where
  4374         boolean checkForSerial(ClassSymbol c) {
  4375             if ((c.flags() & ABSTRACT) == 0) {
  4376                 return true;
  4377             } else {
  4378                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4382         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4383             @Override
  4384             public boolean accepts(Symbol s) {
  4385                 return s.kind == Kinds.MTH &&
  4386                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4388         };
  4390         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4391         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4392             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4393                 if (types.isSameType(al.head.annotationType.type, t))
  4394                     return al.head.pos();
  4397             return null;
  4400         /** check if a type is a subtype of Serializable, if that is available. */
  4401         boolean isSerializable(Type t) {
  4402             try {
  4403                 syms.serializableType.complete();
  4405             catch (CompletionFailure e) {
  4406                 return false;
  4408             return types.isSubtype(t, syms.serializableType);
  4411         /** Check that an appropriate serialVersionUID member is defined. */
  4412         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4414             // check for presence of serialVersionUID
  4415             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4416             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4417             if (e.scope == null) {
  4418                 log.warning(LintCategory.SERIAL,
  4419                         tree.pos(), "missing.SVUID", c);
  4420                 return;
  4423             // check that it is static final
  4424             VarSymbol svuid = (VarSymbol)e.sym;
  4425             if ((svuid.flags() & (STATIC | FINAL)) !=
  4426                 (STATIC | FINAL))
  4427                 log.warning(LintCategory.SERIAL,
  4428                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4430             // check that it is long
  4431             else if (!svuid.type.hasTag(LONG))
  4432                 log.warning(LintCategory.SERIAL,
  4433                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4435             // check constant
  4436             else if (svuid.getConstValue() == null)
  4437                 log.warning(LintCategory.SERIAL,
  4438                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4441     private Type capture(Type type) {
  4442         return types.capture(type);
  4445     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
  4446         tree.accept(new TypeAnnotationsValidator(sigOnly));
  4448     //where
  4449     private final class TypeAnnotationsValidator extends TreeScanner {
  4451         private final boolean sigOnly;
  4452         public TypeAnnotationsValidator(boolean sigOnly) {
  4453             this.sigOnly = sigOnly;
  4456         public void visitAnnotation(JCAnnotation tree) {
  4457             chk.validateTypeAnnotation(tree, false);
  4458             super.visitAnnotation(tree);
  4460         public void visitAnnotatedType(JCAnnotatedType tree) {
  4461             if (!tree.underlyingType.type.isErroneous()) {
  4462                 super.visitAnnotatedType(tree);
  4465         public void visitTypeParameter(JCTypeParameter tree) {
  4466             chk.validateTypeAnnotations(tree.annotations, true);
  4467             scan(tree.bounds);
  4468             // Don't call super.
  4469             // This is needed because above we call validateTypeAnnotation with
  4470             // false, which would forbid annotations on type parameters.
  4471             // super.visitTypeParameter(tree);
  4473         public void visitMethodDef(JCMethodDecl tree) {
  4474             if (tree.recvparam != null &&
  4475                     !tree.recvparam.vartype.type.isErroneous()) {
  4476                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4477                         tree.recvparam.vartype.type.tsym);
  4479             if (tree.restype != null && tree.restype.type != null) {
  4480                 validateAnnotatedType(tree.restype, tree.restype.type);
  4482             if (sigOnly) {
  4483                 scan(tree.mods);
  4484                 scan(tree.restype);
  4485                 scan(tree.typarams);
  4486                 scan(tree.recvparam);
  4487                 scan(tree.params);
  4488                 scan(tree.thrown);
  4489             } else {
  4490                 scan(tree.defaultValue);
  4491                 scan(tree.body);
  4494         public void visitVarDef(final JCVariableDecl tree) {
  4495             if (tree.sym != null && tree.sym.type != null)
  4496                 validateAnnotatedType(tree.vartype, tree.sym.type);
  4497             scan(tree.mods);
  4498             scan(tree.vartype);
  4499             if (!sigOnly) {
  4500                 scan(tree.init);
  4503         public void visitTypeCast(JCTypeCast tree) {
  4504             if (tree.clazz != null && tree.clazz.type != null)
  4505                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4506             super.visitTypeCast(tree);
  4508         public void visitTypeTest(JCInstanceOf tree) {
  4509             if (tree.clazz != null && tree.clazz.type != null)
  4510                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4511             super.visitTypeTest(tree);
  4513         public void visitNewClass(JCNewClass tree) {
  4514             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  4515                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  4516                         tree.clazz.type.tsym);
  4518             if (tree.def != null) {
  4519                 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
  4521             if (tree.clazz.type != null) {
  4522                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4524             super.visitNewClass(tree);
  4526         public void visitNewArray(JCNewArray tree) {
  4527             if (tree.elemtype != null && tree.elemtype.type != null) {
  4528                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  4529                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  4530                             tree.elemtype.type.tsym);
  4532                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
  4534             super.visitNewArray(tree);
  4536         public void visitClassDef(JCClassDecl tree) {
  4537             if (sigOnly) {
  4538                 scan(tree.mods);
  4539                 scan(tree.typarams);
  4540                 scan(tree.extending);
  4541                 scan(tree.implementing);
  4543             for (JCTree member : tree.defs) {
  4544                 if (member.hasTag(Tag.CLASSDEF)) {
  4545                     continue;
  4547                 scan(member);
  4550         public void visitBlock(JCBlock tree) {
  4551             if (!sigOnly) {
  4552                 scan(tree.stats);
  4556         /* I would want to model this after
  4557          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4558          * and override visitSelect and visitTypeApply.
  4559          * However, we only set the annotated type in the top-level type
  4560          * of the symbol.
  4561          * Therefore, we need to override each individual location where a type
  4562          * can occur.
  4563          */
  4564         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4565             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
  4567             if (type.isPrimitiveOrVoid()) {
  4568                 return;
  4571             JCTree enclTr = errtree;
  4572             Type enclTy = type;
  4574             boolean repeat = true;
  4575             while (repeat) {
  4576                 if (enclTr.hasTag(TYPEAPPLY)) {
  4577                     List<Type> tyargs = enclTy.getTypeArguments();
  4578                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
  4579                     if (trargs.length() > 0) {
  4580                         // Nothing to do for diamonds
  4581                         if (tyargs.length() == trargs.length()) {
  4582                             for (int i = 0; i < tyargs.length(); ++i) {
  4583                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
  4586                         // If the lengths don't match, it's either a diamond
  4587                         // or some nested type that redundantly provides
  4588                         // type arguments in the tree.
  4591                     // Look at the clazz part of a generic type
  4592                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
  4595                 if (enclTr.hasTag(SELECT)) {
  4596                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
  4597                     if (enclTy != null &&
  4598                             !enclTy.hasTag(NONE)) {
  4599                         enclTy = enclTy.getEnclosingType();
  4601                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
  4602                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
  4603                     if (enclTy == null ||
  4604                             enclTy.hasTag(NONE)) {
  4605                         if (at.getAnnotations().size() == 1) {
  4606                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
  4607                         } else {
  4608                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
  4609                             for (JCAnnotation an : at.getAnnotations()) {
  4610                                 comps.add(an.attribute);
  4612                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
  4614                         repeat = false;
  4616                     enclTr = at.underlyingType;
  4617                     // enclTy doesn't need to be changed
  4618                 } else if (enclTr.hasTag(IDENT)) {
  4619                     repeat = false;
  4620                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
  4621                     JCWildcard wc = (JCWildcard) enclTr;
  4622                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
  4623                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
  4624                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
  4625                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
  4626                     } else {
  4627                         // Nothing to do for UNBOUND
  4629                     repeat = false;
  4630                 } else if (enclTr.hasTag(TYPEARRAY)) {
  4631                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
  4632                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
  4633                     repeat = false;
  4634                 } else if (enclTr.hasTag(TYPEUNION)) {
  4635                     JCTypeUnion ut = (JCTypeUnion) enclTr;
  4636                     for (JCTree t : ut.getTypeAlternatives()) {
  4637                         validateAnnotatedType(t, t.type);
  4639                     repeat = false;
  4640                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
  4641                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
  4642                     for (JCTree t : it.getBounds()) {
  4643                         validateAnnotatedType(t, t.type);
  4645                     repeat = false;
  4646                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
  4647                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
  4648                     repeat = false;
  4649                 } else {
  4650                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
  4651                             " within: "+ errtree + " with kind: " + errtree.getKind());
  4656         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  4657                 Symbol sym) {
  4658             // Ensure that no declaration annotations are present.
  4659             // Note that a tree type might be an AnnotatedType with
  4660             // empty annotations, if only declaration annotations were given.
  4661             // This method will raise an error for such a type.
  4662             for (JCAnnotation ai : annotations) {
  4663                 if (!ai.type.isErroneous() &&
  4664                         typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  4665                     log.error(ai.pos(), "annotation.type.not.applicable");
  4669     };
  4671     // <editor-fold desc="post-attribution visitor">
  4673     /**
  4674      * Handle missing types/symbols in an AST. This routine is useful when
  4675      * the compiler has encountered some errors (which might have ended up
  4676      * terminating attribution abruptly); if the compiler is used in fail-over
  4677      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4678      * prevents NPE to be progagated during subsequent compilation steps.
  4679      */
  4680     public void postAttr(JCTree tree) {
  4681         new PostAttrAnalyzer().scan(tree);
  4684     class PostAttrAnalyzer extends TreeScanner {
  4686         private void initTypeIfNeeded(JCTree that) {
  4687             if (that.type == null) {
  4688                 if (that.hasTag(METHODDEF)) {
  4689                     that.type = dummyMethodType((JCMethodDecl)that);
  4690                 } else {
  4691                     that.type = syms.unknownType;
  4696         /* Construct a dummy method type. If we have a method declaration,
  4697          * and the declared return type is void, then use that return type
  4698          * instead of UNKNOWN to avoid spurious error messages in lambda
  4699          * bodies (see:JDK-8041704).
  4700          */
  4701         private Type dummyMethodType(JCMethodDecl md) {
  4702             Type restype = syms.unknownType;
  4703             if (md != null && md.restype.hasTag(TYPEIDENT)) {
  4704                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
  4705                 if (prim.typetag == VOID)
  4706                     restype = syms.voidType;
  4708             return new MethodType(List.<Type>nil(), restype,
  4709                                   List.<Type>nil(), syms.methodClass);
  4711         private Type dummyMethodType() {
  4712             return dummyMethodType(null);
  4715         @Override
  4716         public void scan(JCTree tree) {
  4717             if (tree == null) return;
  4718             if (tree instanceof JCExpression) {
  4719                 initTypeIfNeeded(tree);
  4721             super.scan(tree);
  4724         @Override
  4725         public void visitIdent(JCIdent that) {
  4726             if (that.sym == null) {
  4727                 that.sym = syms.unknownSymbol;
  4731         @Override
  4732         public void visitSelect(JCFieldAccess that) {
  4733             if (that.sym == null) {
  4734                 that.sym = syms.unknownSymbol;
  4736             super.visitSelect(that);
  4739         @Override
  4740         public void visitClassDef(JCClassDecl that) {
  4741             initTypeIfNeeded(that);
  4742             if (that.sym == null) {
  4743                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4745             super.visitClassDef(that);
  4748         @Override
  4749         public void visitMethodDef(JCMethodDecl that) {
  4750             initTypeIfNeeded(that);
  4751             if (that.sym == null) {
  4752                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4754             super.visitMethodDef(that);
  4757         @Override
  4758         public void visitVarDef(JCVariableDecl that) {
  4759             initTypeIfNeeded(that);
  4760             if (that.sym == null) {
  4761                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4762                 that.sym.adr = 0;
  4764             super.visitVarDef(that);
  4767         @Override
  4768         public void visitNewClass(JCNewClass that) {
  4769             if (that.constructor == null) {
  4770                 that.constructor = new MethodSymbol(0, names.init,
  4771                         dummyMethodType(), syms.noSymbol);
  4773             if (that.constructorType == null) {
  4774                 that.constructorType = syms.unknownType;
  4776             super.visitNewClass(that);
  4779         @Override
  4780         public void visitAssignop(JCAssignOp that) {
  4781             if (that.operator == null) {
  4782                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4783                         -1, syms.noSymbol);
  4785             super.visitAssignop(that);
  4788         @Override
  4789         public void visitBinary(JCBinary that) {
  4790             if (that.operator == null) {
  4791                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4792                         -1, syms.noSymbol);
  4794             super.visitBinary(that);
  4797         @Override
  4798         public void visitUnary(JCUnary that) {
  4799             if (that.operator == null) {
  4800                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4801                         -1, syms.noSymbol);
  4803             super.visitUnary(that);
  4806         @Override
  4807         public void visitLambda(JCLambda that) {
  4808             super.visitLambda(that);
  4809             if (that.targets == null) {
  4810                 that.targets = List.nil();
  4814         @Override
  4815         public void visitReference(JCMemberReference that) {
  4816             super.visitReference(that);
  4817             if (that.sym == null) {
  4818                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
  4819                         syms.noSymbol);
  4821             if (that.targets == null) {
  4822                 that.targets = List.nil();
  4826     // </editor-fold>

mercurial