src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 10 Apr 2014 14:01:53 -0700

author
rfield
date
Thu, 10 Apr 2014 14:01:53 -0700
changeset 2359
ba7ee72d5d6b
parent 2250
66570bfdbdd7
child 2382
14979dd5e034
permissions
-rw-r--r--

8037935: Javac -- final local String var referenced in binary/unary op in lambda produces code that does not verify
Summary: Remove over-zealous Attr optimization breaking lambdas
Reviewed-by: jjg, vromero

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.code.Attribute.Compound;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.tree.JCTree.*;
    48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    50 import static com.sun.tools.javac.code.Flags.*;
    51 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    52 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    53 import static com.sun.tools.javac.code.Kinds.*;
    54 import static com.sun.tools.javac.code.TypeTag.*;
    55 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    59 /** Type checking helper class for the attribution phase.
    60  *
    61  *  <p><b>This is NOT part of any supported API.
    62  *  If you write code that depends on this, you do so at your own risk.
    63  *  This code and its internal interfaces are subject to change or
    64  *  deletion without notice.</b>
    65  */
    66 public class Check {
    67     protected static final Context.Key<Check> checkKey =
    68         new Context.Key<Check>();
    70     private final Names names;
    71     private final Log log;
    72     private final Resolve rs;
    73     private final Symtab syms;
    74     private final Enter enter;
    75     private final DeferredAttr deferredAttr;
    76     private final Infer infer;
    77     private final Types types;
    78     private final JCDiagnostic.Factory diags;
    79     private boolean warnOnSyntheticConflicts;
    80     private boolean suppressAbortOnBadClassFile;
    81     private boolean enableSunApiLintControl;
    82     private final TreeInfo treeinfo;
    83     private final JavaFileManager fileManager;
    84     private final Profile profile;
    86     // The set of lint options currently in effect. It is initialized
    87     // from the context, and then is set/reset as needed by Attr as it
    88     // visits all the various parts of the trees during attribution.
    89     private Lint lint;
    91     // The method being analyzed in Attr - it is set/reset as needed by
    92     // Attr as it visits new method declarations.
    93     private MethodSymbol method;
    95     public static Check instance(Context context) {
    96         Check instance = context.get(checkKey);
    97         if (instance == null)
    98             instance = new Check(context);
    99         return instance;
   100     }
   102     protected Check(Context context) {
   103         context.put(checkKey, this);
   105         names = Names.instance(context);
   106         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
   107             names.FIELD, names.METHOD, names.CONSTRUCTOR,
   108             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
   109         log = Log.instance(context);
   110         rs = Resolve.instance(context);
   111         syms = Symtab.instance(context);
   112         enter = Enter.instance(context);
   113         deferredAttr = DeferredAttr.instance(context);
   114         infer = Infer.instance(context);
   115         types = Types.instance(context);
   116         diags = JCDiagnostic.Factory.instance(context);
   117         Options options = Options.instance(context);
   118         lint = Lint.instance(context);
   119         treeinfo = TreeInfo.instance(context);
   120         fileManager = context.get(JavaFileManager.class);
   122         Source source = Source.instance(context);
   123         allowGenerics = source.allowGenerics();
   124         allowVarargs = source.allowVarargs();
   125         allowAnnotations = source.allowAnnotations();
   126         allowCovariantReturns = source.allowCovariantReturns();
   127         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   128         allowDefaultMethods = source.allowDefaultMethods();
   129         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
   130         complexInference = options.isSet("complexinference");
   131         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   132         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   133         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   135         Target target = Target.instance(context);
   136         syntheticNameChar = target.syntheticNameChar();
   138         profile = Profile.instance(context);
   140         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   141         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   142         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   143         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   145         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   146                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   147         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   148                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   149         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   150                 enforceMandatoryWarnings, "sunapi", null);
   152         deferredLintHandler = DeferredLintHandler.instance(context);
   153     }
   155     /** Switch: generics enabled?
   156      */
   157     boolean allowGenerics;
   159     /** Switch: varargs enabled?
   160      */
   161     boolean allowVarargs;
   163     /** Switch: annotations enabled?
   164      */
   165     boolean allowAnnotations;
   167     /** Switch: covariant returns enabled?
   168      */
   169     boolean allowCovariantReturns;
   171     /** Switch: simplified varargs enabled?
   172      */
   173     boolean allowSimplifiedVarargs;
   175     /** Switch: default methods enabled?
   176      */
   177     boolean allowDefaultMethods;
   179     /** Switch: should unrelated return types trigger a method clash?
   180      */
   181     boolean allowStrictMethodClashCheck;
   183     /** Switch: -complexinference option set?
   184      */
   185     boolean complexInference;
   187     /** Character for synthetic names
   188      */
   189     char syntheticNameChar;
   191     /** A table mapping flat names of all compiled classes in this run to their
   192      *  symbols; maintained from outside.
   193      */
   194     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   196     /** A handler for messages about deprecated usage.
   197      */
   198     private MandatoryWarningHandler deprecationHandler;
   200     /** A handler for messages about unchecked or unsafe usage.
   201      */
   202     private MandatoryWarningHandler uncheckedHandler;
   204     /** A handler for messages about using proprietary API.
   205      */
   206     private MandatoryWarningHandler sunApiHandler;
   208     /** A handler for deferred lint warnings.
   209      */
   210     private DeferredLintHandler deferredLintHandler;
   212 /* *************************************************************************
   213  * Errors and Warnings
   214  **************************************************************************/
   216     Lint setLint(Lint newLint) {
   217         Lint prev = lint;
   218         lint = newLint;
   219         return prev;
   220     }
   222     MethodSymbol setMethod(MethodSymbol newMethod) {
   223         MethodSymbol prev = method;
   224         method = newMethod;
   225         return prev;
   226     }
   228     /** Warn about deprecated symbol.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   233         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   234             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   235     }
   237     /** Warn about unchecked operation.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   243             uncheckedHandler.report(pos, msg, args);
   244     }
   246     /** Warn about unsafe vararg method decl.
   247      *  @param pos        Position to be used for error reporting.
   248      */
   249     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   250         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   251             log.warning(LintCategory.VARARGS, pos, key, args);
   252     }
   254     /** Warn about using proprietary API.
   255      *  @param pos        Position to be used for error reporting.
   256      *  @param msg        A string describing the problem.
   257      */
   258     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   259         if (!lint.isSuppressed(LintCategory.SUNAPI))
   260             sunApiHandler.report(pos, msg, args);
   261     }
   263     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   264         if (lint.isEnabled(LintCategory.STATIC))
   265             log.warning(LintCategory.STATIC, pos, msg, args);
   266     }
   268     /**
   269      * Report any deferred diagnostics.
   270      */
   271     public void reportDeferredDiagnostics() {
   272         deprecationHandler.reportDeferredDiagnostic();
   273         uncheckedHandler.reportDeferredDiagnostic();
   274         sunApiHandler.reportDeferredDiagnostic();
   275     }
   278     /** Report a failure to complete a class.
   279      *  @param pos        Position to be used for error reporting.
   280      *  @param ex         The failure to report.
   281      */
   282     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   283         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
   284         if (ex instanceof ClassReader.BadClassFile
   285                 && !suppressAbortOnBadClassFile) throw new Abort();
   286         else return syms.errType;
   287     }
   289     /** Report an error that wrong type tag was found.
   290      *  @param pos        Position to be used for error reporting.
   291      *  @param required   An internationalized string describing the type tag
   292      *                    required.
   293      *  @param found      The type that was found.
   294      */
   295     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   296         // this error used to be raised by the parser,
   297         // but has been delayed to this point:
   298         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   299             log.error(pos, "illegal.start.of.type");
   300             return syms.errType;
   301         }
   302         log.error(pos, "type.found.req", found, required);
   303         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   304     }
   306     /** Report an error that symbol cannot be referenced before super
   307      *  has been called.
   308      *  @param pos        Position to be used for error reporting.
   309      *  @param sym        The referenced symbol.
   310      */
   311     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   312         log.error(pos, "cant.ref.before.ctor.called", sym);
   313     }
   315     /** Report duplicate declaration error.
   316      */
   317     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   318         if (!sym.type.isErroneous()) {
   319             Symbol location = sym.location();
   320             if (location.kind == MTH &&
   321                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   322                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   323                         kindName(sym.location()), kindName(sym.location().enclClass()),
   324                         sym.location().enclClass());
   325             } else {
   326                 log.error(pos, "already.defined", kindName(sym), sym,
   327                         kindName(sym.location()), sym.location());
   328             }
   329         }
   330     }
   332     /** Report array/varargs duplicate declaration
   333      */
   334     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   335         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   336             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   337         }
   338     }
   340 /* ************************************************************************
   341  * duplicate declaration checking
   342  *************************************************************************/
   344     /** Check that variable does not hide variable with same name in
   345      *  immediately enclosing local scope.
   346      *  @param pos           Position for error reporting.
   347      *  @param v             The symbol.
   348      *  @param s             The scope.
   349      */
   350     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   351         if (s.next != null) {
   352             for (Scope.Entry e = s.next.lookup(v.name);
   353                  e.scope != null && e.sym.owner == v.owner;
   354                  e = e.next()) {
   355                 if (e.sym.kind == VAR &&
   356                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   357                     v.name != names.error) {
   358                     duplicateError(pos, e.sym);
   359                     return;
   360                 }
   361             }
   362         }
   363     }
   365     /** Check that a class or interface does not hide a class or
   366      *  interface with same name in immediately enclosing local scope.
   367      *  @param pos           Position for error reporting.
   368      *  @param c             The symbol.
   369      *  @param s             The scope.
   370      */
   371     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   372         if (s.next != null) {
   373             for (Scope.Entry e = s.next.lookup(c.name);
   374                  e.scope != null && e.sym.owner == c.owner;
   375                  e = e.next()) {
   376                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   377                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   378                     c.name != names.error) {
   379                     duplicateError(pos, e.sym);
   380                     return;
   381                 }
   382             }
   383         }
   384     }
   386     /** Check that class does not have the same name as one of
   387      *  its enclosing classes, or as a class defined in its enclosing scope.
   388      *  return true if class is unique in its enclosing scope.
   389      *  @param pos           Position for error reporting.
   390      *  @param name          The class name.
   391      *  @param s             The enclosing scope.
   392      */
   393     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   394         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   395             if (e.sym.kind == TYP && e.sym.name != names.error) {
   396                 duplicateError(pos, e.sym);
   397                 return false;
   398             }
   399         }
   400         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   401             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   402                 duplicateError(pos, sym);
   403                 return true;
   404             }
   405         }
   406         return true;
   407     }
   409 /* *************************************************************************
   410  * Class name generation
   411  **************************************************************************/
   413     /** Return name of local class.
   414      *  This is of the form   {@code <enclClass> $ n <classname> }
   415      *  where
   416      *    enclClass is the flat name of the enclosing class,
   417      *    classname is the simple name of the local class
   418      */
   419     Name localClassName(ClassSymbol c) {
   420         for (int i=1; ; i++) {
   421             Name flatname = names.
   422                 fromString("" + c.owner.enclClass().flatname +
   423                            syntheticNameChar + i +
   424                            c.name);
   425             if (compiled.get(flatname) == null) return flatname;
   426         }
   427     }
   429 /* *************************************************************************
   430  * Type Checking
   431  **************************************************************************/
   433     /**
   434      * A check context is an object that can be used to perform compatibility
   435      * checks - depending on the check context, meaning of 'compatibility' might
   436      * vary significantly.
   437      */
   438     public interface CheckContext {
   439         /**
   440          * Is type 'found' compatible with type 'req' in given context
   441          */
   442         boolean compatible(Type found, Type req, Warner warn);
   443         /**
   444          * Report a check error
   445          */
   446         void report(DiagnosticPosition pos, JCDiagnostic details);
   447         /**
   448          * Obtain a warner for this check context
   449          */
   450         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   452         public Infer.InferenceContext inferenceContext();
   454         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   455     }
   457     /**
   458      * This class represent a check context that is nested within another check
   459      * context - useful to check sub-expressions. The default behavior simply
   460      * redirects all method calls to the enclosing check context leveraging
   461      * the forwarding pattern.
   462      */
   463     static class NestedCheckContext implements CheckContext {
   464         CheckContext enclosingContext;
   466         NestedCheckContext(CheckContext enclosingContext) {
   467             this.enclosingContext = enclosingContext;
   468         }
   470         public boolean compatible(Type found, Type req, Warner warn) {
   471             return enclosingContext.compatible(found, req, warn);
   472         }
   474         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   475             enclosingContext.report(pos, details);
   476         }
   478         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   479             return enclosingContext.checkWarner(pos, found, req);
   480         }
   482         public Infer.InferenceContext inferenceContext() {
   483             return enclosingContext.inferenceContext();
   484         }
   486         public DeferredAttrContext deferredAttrContext() {
   487             return enclosingContext.deferredAttrContext();
   488         }
   489     }
   491     /**
   492      * Check context to be used when evaluating assignment/return statements
   493      */
   494     CheckContext basicHandler = new CheckContext() {
   495         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   496             log.error(pos, "prob.found.req", details);
   497         }
   498         public boolean compatible(Type found, Type req, Warner warn) {
   499             return types.isAssignable(found, req, warn);
   500         }
   502         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   503             return convertWarner(pos, found, req);
   504         }
   506         public InferenceContext inferenceContext() {
   507             return infer.emptyContext;
   508         }
   510         public DeferredAttrContext deferredAttrContext() {
   511             return deferredAttr.emptyDeferredAttrContext;
   512         }
   513     };
   515     /** Check that a given type is assignable to a given proto-type.
   516      *  If it is, return the type, otherwise return errType.
   517      *  @param pos        Position to be used for error reporting.
   518      *  @param found      The type that was found.
   519      *  @param req        The type that was required.
   520      */
   521     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   522         return checkType(pos, found, req, basicHandler);
   523     }
   525     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   526         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   527         if (inferenceContext.free(req)) {
   528             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   529                 @Override
   530                 public void typesInferred(InferenceContext inferenceContext) {
   531                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
   532                 }
   533             });
   534         }
   535         if (req.hasTag(ERROR))
   536             return req;
   537         if (req.hasTag(NONE))
   538             return found;
   539         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   540             return found;
   541         } else {
   542             if (found.isNumeric() && req.isNumeric()) {
   543                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   544                 return types.createErrorType(found);
   545             }
   546             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   547             return types.createErrorType(found);
   548         }
   549     }
   551     /** Check that a given type can be cast to a given target type.
   552      *  Return the result of the cast.
   553      *  @param pos        Position to be used for error reporting.
   554      *  @param found      The type that is being cast.
   555      *  @param req        The target type of the cast.
   556      */
   557     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   558         return checkCastable(pos, found, req, basicHandler);
   559     }
   560     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   561         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   562             return req;
   563         } else {
   564             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   565             return types.createErrorType(found);
   566         }
   567     }
   569     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   570      * The problem should only be reported for non-292 cast
   571      */
   572     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
   573         if (!tree.type.isErroneous()
   574                 && types.isSameType(tree.expr.type, tree.clazz.type)
   575                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
   576                 && !is292targetTypeCast(tree)) {
   577             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
   578                 @Override
   579                 public void report() {
   580                     if (lint.isEnabled(Lint.LintCategory.CAST))
   581                         log.warning(Lint.LintCategory.CAST,
   582                                 tree.pos(), "redundant.cast", tree.expr.type);
   583                 }
   584             });
   585         }
   586     }
   587     //where
   588         private boolean is292targetTypeCast(JCTypeCast tree) {
   589             boolean is292targetTypeCast = false;
   590             JCExpression expr = TreeInfo.skipParens(tree.expr);
   591             if (expr.hasTag(APPLY)) {
   592                 JCMethodInvocation apply = (JCMethodInvocation)expr;
   593                 Symbol sym = TreeInfo.symbol(apply.meth);
   594                 is292targetTypeCast = sym != null &&
   595                     sym.kind == MTH &&
   596                     (sym.flags() & HYPOTHETICAL) != 0;
   597             }
   598             return is292targetTypeCast;
   599         }
   601         private static final boolean ignoreAnnotatedCasts = true;
   603     /** Check that a type is within some bounds.
   604      *
   605      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   606      *  type argument.
   607      *  @param a             The type that should be bounded by bs.
   608      *  @param bound         The bound.
   609      */
   610     private boolean checkExtends(Type a, Type bound) {
   611          if (a.isUnbound()) {
   612              return true;
   613          } else if (!a.hasTag(WILDCARD)) {
   614              a = types.upperBound(a);
   615              return types.isSubtype(a, bound);
   616          } else if (a.isExtendsBound()) {
   617              return types.isCastable(bound, types.upperBound(a), types.noWarnings);
   618          } else if (a.isSuperBound()) {
   619              return !types.notSoftSubtype(types.lowerBound(a), bound);
   620          }
   621          return true;
   622      }
   624     /** Check that type is different from 'void'.
   625      *  @param pos           Position to be used for error reporting.
   626      *  @param t             The type to be checked.
   627      */
   628     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   629         if (t.hasTag(VOID)) {
   630             log.error(pos, "void.not.allowed.here");
   631             return types.createErrorType(t);
   632         } else {
   633             return t;
   634         }
   635     }
   637     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
   638         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   639             return typeTagError(pos,
   640                                 diags.fragment("type.req.class.array"),
   641                                 asTypeParam(t));
   642         } else {
   643             return t;
   644         }
   645     }
   647     /** Check that type is a class or interface type.
   648      *  @param pos           Position to be used for error reporting.
   649      *  @param t             The type to be checked.
   650      */
   651     Type checkClassType(DiagnosticPosition pos, Type t) {
   652         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
   653             return typeTagError(pos,
   654                                 diags.fragment("type.req.class"),
   655                                 asTypeParam(t));
   656         } else {
   657             return t;
   658         }
   659     }
   660     //where
   661         private Object asTypeParam(Type t) {
   662             return (t.hasTag(TYPEVAR))
   663                                     ? diags.fragment("type.parameter", t)
   664                                     : t;
   665         }
   667     /** Check that type is a valid qualifier for a constructor reference expression
   668      */
   669     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   670         t = checkClassOrArrayType(pos, t);
   671         if (t.hasTag(CLASS)) {
   672             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   673                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
   674                 t = types.createErrorType(t);
   675             } else if ((t.tsym.flags() & ENUM) != 0) {
   676                 log.error(pos, "enum.cant.be.instantiated");
   677                 t = types.createErrorType(t);
   678             } else {
   679                 t = checkClassType(pos, t, true);
   680             }
   681         } else if (t.hasTag(ARRAY)) {
   682             if (!types.isReifiable(((ArrayType)t).elemtype)) {
   683                 log.error(pos, "generic.array.creation");
   684                 t = types.createErrorType(t);
   685             }
   686         }
   687         return t;
   688     }
   690     /** Check that type is a class or interface type.
   691      *  @param pos           Position to be used for error reporting.
   692      *  @param t             The type to be checked.
   693      *  @param noBounds    True if type bounds are illegal here.
   694      */
   695     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   696         t = checkClassType(pos, t);
   697         if (noBounds && t.isParameterized()) {
   698             List<Type> args = t.getTypeArguments();
   699             while (args.nonEmpty()) {
   700                 if (args.head.hasTag(WILDCARD))
   701                     return typeTagError(pos,
   702                                         diags.fragment("type.req.exact"),
   703                                         args.head);
   704                 args = args.tail;
   705             }
   706         }
   707         return t;
   708     }
   710     /** Check that type is a reference type, i.e. a class, interface or array type
   711      *  or a type variable.
   712      *  @param pos           Position to be used for error reporting.
   713      *  @param t             The type to be checked.
   714      */
   715     Type checkRefType(DiagnosticPosition pos, Type t) {
   716         if (t.isReference())
   717             return t;
   718         else
   719             return typeTagError(pos,
   720                                 diags.fragment("type.req.ref"),
   721                                 t);
   722     }
   724     /** Check that each type is a reference type, i.e. a class, interface or array type
   725      *  or a type variable.
   726      *  @param trees         Original trees, used for error reporting.
   727      *  @param types         The types to be checked.
   728      */
   729     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   730         List<JCExpression> tl = trees;
   731         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   732             l.head = checkRefType(tl.head.pos(), l.head);
   733             tl = tl.tail;
   734         }
   735         return types;
   736     }
   738     /** Check that type is a null or reference type.
   739      *  @param pos           Position to be used for error reporting.
   740      *  @param t             The type to be checked.
   741      */
   742     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   743         if (t.isReference() || t.hasTag(BOT))
   744             return t;
   745         else
   746             return typeTagError(pos,
   747                                 diags.fragment("type.req.ref"),
   748                                 t);
   749     }
   751     /** Check that flag set does not contain elements of two conflicting sets. s
   752      *  Return true if it doesn't.
   753      *  @param pos           Position to be used for error reporting.
   754      *  @param flags         The set of flags to be checked.
   755      *  @param set1          Conflicting flags set #1.
   756      *  @param set2          Conflicting flags set #2.
   757      */
   758     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   759         if ((flags & set1) != 0 && (flags & set2) != 0) {
   760             log.error(pos,
   761                       "illegal.combination.of.modifiers",
   762                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   763                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   764             return false;
   765         } else
   766             return true;
   767     }
   769     /** Check that usage of diamond operator is correct (i.e. diamond should not
   770      * be used with non-generic classes or in anonymous class creation expressions)
   771      */
   772     Type checkDiamond(JCNewClass tree, Type t) {
   773         if (!TreeInfo.isDiamond(tree) ||
   774                 t.isErroneous()) {
   775             return checkClassType(tree.clazz.pos(), t, true);
   776         } else if (tree.def != null) {
   777             log.error(tree.clazz.pos(),
   778                     "cant.apply.diamond.1",
   779                     t, diags.fragment("diamond.and.anon.class", t));
   780             return types.createErrorType(t);
   781         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   782             log.error(tree.clazz.pos(),
   783                 "cant.apply.diamond.1",
   784                 t, diags.fragment("diamond.non.generic", t));
   785             return types.createErrorType(t);
   786         } else if (tree.typeargs != null &&
   787                 tree.typeargs.nonEmpty()) {
   788             log.error(tree.clazz.pos(),
   789                 "cant.apply.diamond.1",
   790                 t, diags.fragment("diamond.and.explicit.params", t));
   791             return types.createErrorType(t);
   792         } else {
   793             return t;
   794         }
   795     }
   797     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   798         MethodSymbol m = tree.sym;
   799         if (!allowSimplifiedVarargs) return;
   800         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   801         Type varargElemType = null;
   802         if (m.isVarArgs()) {
   803             varargElemType = types.elemtype(tree.params.last().type);
   804         }
   805         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   806             if (varargElemType != null) {
   807                 log.error(tree,
   808                         "varargs.invalid.trustme.anno",
   809                         syms.trustMeType.tsym,
   810                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   811             } else {
   812                 log.error(tree,
   813                             "varargs.invalid.trustme.anno",
   814                             syms.trustMeType.tsym,
   815                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   816             }
   817         } else if (hasTrustMeAnno && varargElemType != null &&
   818                             types.isReifiable(varargElemType)) {
   819             warnUnsafeVararg(tree,
   820                             "varargs.redundant.trustme.anno",
   821                             syms.trustMeType.tsym,
   822                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   823         }
   824         else if (!hasTrustMeAnno && varargElemType != null &&
   825                 !types.isReifiable(varargElemType)) {
   826             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   827         }
   828     }
   829     //where
   830         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   831             return (s.flags() & VARARGS) != 0 &&
   832                 (s.isConstructor() ||
   833                     (s.flags() & (STATIC | FINAL)) != 0);
   834         }
   836     Type checkMethod(final Type mtype,
   837             final Symbol sym,
   838             final Env<AttrContext> env,
   839             final List<JCExpression> argtrees,
   840             final List<Type> argtypes,
   841             final boolean useVarargs,
   842             InferenceContext inferenceContext) {
   843         // System.out.println("call   : " + env.tree);
   844         // System.out.println("method : " + owntype);
   845         // System.out.println("actuals: " + argtypes);
   846         if (inferenceContext.free(mtype)) {
   847             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
   848                 public void typesInferred(InferenceContext inferenceContext) {
   849                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
   850                 }
   851             });
   852             return mtype;
   853         }
   854         Type owntype = mtype;
   855         List<Type> formals = owntype.getParameterTypes();
   856         List<Type> nonInferred = sym.type.getParameterTypes();
   857         if (nonInferred.length() != formals.length()) nonInferred = formals;
   858         Type last = useVarargs ? formals.last() : null;
   859         if (sym.name == names.init && sym.owner == syms.enumSym) {
   860             formals = formals.tail.tail;
   861             nonInferred = nonInferred.tail.tail;
   862         }
   863         List<JCExpression> args = argtrees;
   864         if (args != null) {
   865             //this is null when type-checking a method reference
   866             while (formals.head != last) {
   867                 JCTree arg = args.head;
   868                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
   869                 assertConvertible(arg, arg.type, formals.head, warn);
   870                 args = args.tail;
   871                 formals = formals.tail;
   872                 nonInferred = nonInferred.tail;
   873             }
   874             if (useVarargs) {
   875                 Type varArg = types.elemtype(last);
   876                 while (args.tail != null) {
   877                     JCTree arg = args.head;
   878                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   879                     assertConvertible(arg, arg.type, varArg, warn);
   880                     args = args.tail;
   881                 }
   882             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
   883                     allowVarargs) {
   884                 // non-varargs call to varargs method
   885                 Type varParam = owntype.getParameterTypes().last();
   886                 Type lastArg = argtypes.last();
   887                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   888                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   889                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   890                                 types.elemtype(varParam), varParam);
   891             }
   892         }
   893         if (useVarargs) {
   894             Type argtype = owntype.getParameterTypes().last();
   895             if (!types.isReifiable(argtype) &&
   896                 (!allowSimplifiedVarargs ||
   897                  sym.attribute(syms.trustMeType.tsym) == null ||
   898                  !isTrustMeAllowedOnMethod(sym))) {
   899                 warnUnchecked(env.tree.pos(),
   900                                   "unchecked.generic.array.creation",
   901                                   argtype);
   902             }
   903             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
   904                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
   905             }
   906          }
   907          PolyKind pkind = (sym.type.hasTag(FORALL) &&
   908                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
   909                  PolyKind.POLY : PolyKind.STANDALONE;
   910          TreeInfo.setPolyKind(env.tree, pkind);
   911          return owntype;
   912     }
   913     //where
   914     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   915         if (types.isConvertible(actual, formal, warn))
   916             return;
   918         if (formal.isCompound()
   919             && types.isSubtype(actual, types.supertype(formal))
   920             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   921             return;
   922     }
   924     /**
   925      * Check that type 't' is a valid instantiation of a generic class
   926      * (see JLS 4.5)
   927      *
   928      * @param t class type to be checked
   929      * @return true if 't' is well-formed
   930      */
   931     public boolean checkValidGenericType(Type t) {
   932         return firstIncompatibleTypeArg(t) == null;
   933     }
   934     //WHERE
   935         private Type firstIncompatibleTypeArg(Type type) {
   936             List<Type> formals = type.tsym.type.allparams();
   937             List<Type> actuals = type.allparams();
   938             List<Type> args = type.getTypeArguments();
   939             List<Type> forms = type.tsym.type.getTypeArguments();
   940             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   942             // For matching pairs of actual argument types `a' and
   943             // formal type parameters with declared bound `b' ...
   944             while (args.nonEmpty() && forms.nonEmpty()) {
   945                 // exact type arguments needs to know their
   946                 // bounds (for upper and lower bound
   947                 // calculations).  So we create new bounds where
   948                 // type-parameters are replaced with actuals argument types.
   949                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   950                 args = args.tail;
   951                 forms = forms.tail;
   952             }
   954             args = type.getTypeArguments();
   955             List<Type> tvars_cap = types.substBounds(formals,
   956                                       formals,
   957                                       types.capture(type).allparams());
   958             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   959                 // Let the actual arguments know their bound
   960                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   961                 args = args.tail;
   962                 tvars_cap = tvars_cap.tail;
   963             }
   965             args = type.getTypeArguments();
   966             List<Type> bounds = bounds_buf.toList();
   968             while (args.nonEmpty() && bounds.nonEmpty()) {
   969                 Type actual = args.head;
   970                 if (!isTypeArgErroneous(actual) &&
   971                         !bounds.head.isErroneous() &&
   972                         !checkExtends(actual, bounds.head)) {
   973                     return args.head;
   974                 }
   975                 args = args.tail;
   976                 bounds = bounds.tail;
   977             }
   979             args = type.getTypeArguments();
   980             bounds = bounds_buf.toList();
   982             for (Type arg : types.capture(type).getTypeArguments()) {
   983                 if (arg.hasTag(TYPEVAR) &&
   984                         arg.getUpperBound().isErroneous() &&
   985                         !bounds.head.isErroneous() &&
   986                         !isTypeArgErroneous(args.head)) {
   987                     return args.head;
   988                 }
   989                 bounds = bounds.tail;
   990                 args = args.tail;
   991             }
   993             return null;
   994         }
   995         //where
   996         boolean isTypeArgErroneous(Type t) {
   997             return isTypeArgErroneous.visit(t);
   998         }
  1000         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1001             public Boolean visitType(Type t, Void s) {
  1002                 return t.isErroneous();
  1004             @Override
  1005             public Boolean visitTypeVar(TypeVar t, Void s) {
  1006                 return visit(t.getUpperBound());
  1008             @Override
  1009             public Boolean visitCapturedType(CapturedType t, Void s) {
  1010                 return visit(t.getUpperBound()) ||
  1011                         visit(t.getLowerBound());
  1013             @Override
  1014             public Boolean visitWildcardType(WildcardType t, Void s) {
  1015                 return visit(t.type);
  1017         };
  1019     /** Check that given modifiers are legal for given symbol and
  1020      *  return modifiers together with any implicit modifiers for that symbol.
  1021      *  Warning: we can't use flags() here since this method
  1022      *  is called during class enter, when flags() would cause a premature
  1023      *  completion.
  1024      *  @param pos           Position to be used for error reporting.
  1025      *  @param flags         The set of modifiers given in a definition.
  1026      *  @param sym           The defined symbol.
  1027      */
  1028     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1029         long mask;
  1030         long implicit = 0;
  1032         switch (sym.kind) {
  1033         case VAR:
  1034             if (sym.owner.kind != TYP)
  1035                 mask = LocalVarFlags;
  1036             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1037                 mask = implicit = InterfaceVarFlags;
  1038             else
  1039                 mask = VarFlags;
  1040             break;
  1041         case MTH:
  1042             if (sym.name == names.init) {
  1043                 if ((sym.owner.flags_field & ENUM) != 0) {
  1044                     // enum constructors cannot be declared public or
  1045                     // protected and must be implicitly or explicitly
  1046                     // private
  1047                     implicit = PRIVATE;
  1048                     mask = PRIVATE;
  1049                 } else
  1050                     mask = ConstructorFlags;
  1051             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1052                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
  1053                     mask = AnnotationTypeElementMask;
  1054                     implicit = PUBLIC | ABSTRACT;
  1055                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
  1056                     mask = InterfaceMethodMask;
  1057                     implicit = PUBLIC;
  1058                     if ((flags & DEFAULT) != 0) {
  1059                         implicit |= ABSTRACT;
  1061                 } else {
  1062                     mask = implicit = InterfaceMethodFlags;
  1064             } else {
  1065                 mask = MethodFlags;
  1067             // Imply STRICTFP if owner has STRICTFP set.
  1068             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
  1069                 ((flags) & Flags.DEFAULT) != 0)
  1070                 implicit |= sym.owner.flags_field & STRICTFP;
  1071             break;
  1072         case TYP:
  1073             if (sym.isLocal()) {
  1074                 mask = LocalClassFlags;
  1075                 if (sym.name.isEmpty()) { // Anonymous class
  1076                     // Anonymous classes in static methods are themselves static;
  1077                     // that's why we admit STATIC here.
  1078                     mask |= STATIC;
  1079                     // JLS: Anonymous classes are final.
  1080                     implicit |= FINAL;
  1082                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1083                     (flags & ENUM) != 0)
  1084                     log.error(pos, "enums.must.be.static");
  1085             } else if (sym.owner.kind == TYP) {
  1086                 mask = MemberClassFlags;
  1087                 if (sym.owner.owner.kind == PCK ||
  1088                     (sym.owner.flags_field & STATIC) != 0)
  1089                     mask |= STATIC;
  1090                 else if ((flags & ENUM) != 0)
  1091                     log.error(pos, "enums.must.be.static");
  1092                 // Nested interfaces and enums are always STATIC (Spec ???)
  1093                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1094             } else {
  1095                 mask = ClassFlags;
  1097             // Interfaces are always ABSTRACT
  1098             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1100             if ((flags & ENUM) != 0) {
  1101                 // enums can't be declared abstract or final
  1102                 mask &= ~(ABSTRACT | FINAL);
  1103                 implicit |= implicitEnumFinalFlag(tree);
  1105             // Imply STRICTFP if owner has STRICTFP set.
  1106             implicit |= sym.owner.flags_field & STRICTFP;
  1107             break;
  1108         default:
  1109             throw new AssertionError();
  1111         long illegal = flags & ExtendedStandardFlags & ~mask;
  1112         if (illegal != 0) {
  1113             if ((illegal & INTERFACE) != 0) {
  1114                 log.error(pos, "intf.not.allowed.here");
  1115                 mask |= INTERFACE;
  1117             else {
  1118                 log.error(pos,
  1119                           "mod.not.allowed.here", asFlagSet(illegal));
  1122         else if ((sym.kind == TYP ||
  1123                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1124                   // in the presence of inner classes. Should it be deleted here?
  1125                   checkDisjoint(pos, flags,
  1126                                 ABSTRACT,
  1127                                 PRIVATE | STATIC | DEFAULT))
  1128                  &&
  1129                  checkDisjoint(pos, flags,
  1130                                 STATIC,
  1131                                 DEFAULT)
  1132                  &&
  1133                  checkDisjoint(pos, flags,
  1134                                ABSTRACT | INTERFACE,
  1135                                FINAL | NATIVE | SYNCHRONIZED)
  1136                  &&
  1137                  checkDisjoint(pos, flags,
  1138                                PUBLIC,
  1139                                PRIVATE | PROTECTED)
  1140                  &&
  1141                  checkDisjoint(pos, flags,
  1142                                PRIVATE,
  1143                                PUBLIC | PROTECTED)
  1144                  &&
  1145                  checkDisjoint(pos, flags,
  1146                                FINAL,
  1147                                VOLATILE)
  1148                  &&
  1149                  (sym.kind == TYP ||
  1150                   checkDisjoint(pos, flags,
  1151                                 ABSTRACT | NATIVE,
  1152                                 STRICTFP))) {
  1153             // skip
  1155         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1159     /** Determine if this enum should be implicitly final.
  1161      *  If the enum has no specialized enum contants, it is final.
  1163      *  If the enum does have specialized enum contants, it is
  1164      *  <i>not</i> final.
  1165      */
  1166     private long implicitEnumFinalFlag(JCTree tree) {
  1167         if (!tree.hasTag(CLASSDEF)) return 0;
  1168         class SpecialTreeVisitor extends JCTree.Visitor {
  1169             boolean specialized;
  1170             SpecialTreeVisitor() {
  1171                 this.specialized = false;
  1172             };
  1174             @Override
  1175             public void visitTree(JCTree tree) { /* no-op */ }
  1177             @Override
  1178             public void visitVarDef(JCVariableDecl tree) {
  1179                 if ((tree.mods.flags & ENUM) != 0) {
  1180                     if (tree.init instanceof JCNewClass &&
  1181                         ((JCNewClass) tree.init).def != null) {
  1182                         specialized = true;
  1188         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1189         JCClassDecl cdef = (JCClassDecl) tree;
  1190         for (JCTree defs: cdef.defs) {
  1191             defs.accept(sts);
  1192             if (sts.specialized) return 0;
  1194         return FINAL;
  1197 /* *************************************************************************
  1198  * Type Validation
  1199  **************************************************************************/
  1201     /** Validate a type expression. That is,
  1202      *  check that all type arguments of a parametric type are within
  1203      *  their bounds. This must be done in a second phase after type attribution
  1204      *  since a class might have a subclass as type parameter bound. E.g:
  1206      *  <pre>{@code
  1207      *  class B<A extends C> { ... }
  1208      *  class C extends B<C> { ... }
  1209      *  }</pre>
  1211      *  and we can't make sure that the bound is already attributed because
  1212      *  of possible cycles.
  1214      * Visitor method: Validate a type expression, if it is not null, catching
  1215      *  and reporting any completion failures.
  1216      */
  1217     void validate(JCTree tree, Env<AttrContext> env) {
  1218         validate(tree, env, true);
  1220     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1221         new Validator(env).validateTree(tree, checkRaw, true);
  1224     /** Visitor method: Validate a list of type expressions.
  1225      */
  1226     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1227         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1228             validate(l.head, env);
  1231     /** A visitor class for type validation.
  1232      */
  1233     class Validator extends JCTree.Visitor {
  1235         boolean checkRaw;
  1236         boolean isOuter;
  1237         Env<AttrContext> env;
  1239         Validator(Env<AttrContext> env) {
  1240             this.env = env;
  1243         @Override
  1244         public void visitTypeArray(JCArrayTypeTree tree) {
  1245             validateTree(tree.elemtype, checkRaw, isOuter);
  1248         @Override
  1249         public void visitTypeApply(JCTypeApply tree) {
  1250             if (tree.type.hasTag(CLASS)) {
  1251                 List<JCExpression> args = tree.arguments;
  1252                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1254                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1255                 if (incompatibleArg != null) {
  1256                     for (JCTree arg : tree.arguments) {
  1257                         if (arg.type == incompatibleArg) {
  1258                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1260                         forms = forms.tail;
  1264                 forms = tree.type.tsym.type.getTypeArguments();
  1266                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1268                 // For matching pairs of actual argument types `a' and
  1269                 // formal type parameters with declared bound `b' ...
  1270                 while (args.nonEmpty() && forms.nonEmpty()) {
  1271                     validateTree(args.head,
  1272                             !(isOuter && is_java_lang_Class),
  1273                             false);
  1274                     args = args.tail;
  1275                     forms = forms.tail;
  1278                 // Check that this type is either fully parameterized, or
  1279                 // not parameterized at all.
  1280                 if (tree.type.getEnclosingType().isRaw())
  1281                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1282                 if (tree.clazz.hasTag(SELECT))
  1283                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1287         @Override
  1288         public void visitTypeParameter(JCTypeParameter tree) {
  1289             validateTrees(tree.bounds, true, isOuter);
  1290             checkClassBounds(tree.pos(), tree.type);
  1293         @Override
  1294         public void visitWildcard(JCWildcard tree) {
  1295             if (tree.inner != null)
  1296                 validateTree(tree.inner, true, isOuter);
  1299         @Override
  1300         public void visitSelect(JCFieldAccess tree) {
  1301             if (tree.type.hasTag(CLASS)) {
  1302                 visitSelectInternal(tree);
  1304                 // Check that this type is either fully parameterized, or
  1305                 // not parameterized at all.
  1306                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1307                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1311         public void visitSelectInternal(JCFieldAccess tree) {
  1312             if (tree.type.tsym.isStatic() &&
  1313                 tree.selected.type.isParameterized()) {
  1314                 // The enclosing type is not a class, so we are
  1315                 // looking at a static member type.  However, the
  1316                 // qualifying expression is parameterized.
  1317                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1318             } else {
  1319                 // otherwise validate the rest of the expression
  1320                 tree.selected.accept(this);
  1324         @Override
  1325         public void visitAnnotatedType(JCAnnotatedType tree) {
  1326             tree.underlyingType.accept(this);
  1329         @Override
  1330         public void visitTypeIdent(JCPrimitiveTypeTree that) {
  1331             if (that.type.hasTag(TypeTag.VOID)) {
  1332                 log.error(that.pos(), "void.not.allowed.here");
  1334             super.visitTypeIdent(that);
  1337         /** Default visitor method: do nothing.
  1338          */
  1339         @Override
  1340         public void visitTree(JCTree tree) {
  1343         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1344             if (tree != null) {
  1345                 boolean prevCheckRaw = this.checkRaw;
  1346                 this.checkRaw = checkRaw;
  1347                 this.isOuter = isOuter;
  1349                 try {
  1350                     tree.accept(this);
  1351                     if (checkRaw)
  1352                         checkRaw(tree, env);
  1353                 } catch (CompletionFailure ex) {
  1354                     completionError(tree.pos(), ex);
  1355                 } finally {
  1356                     this.checkRaw = prevCheckRaw;
  1361         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1362             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1363                 validateTree(l.head, checkRaw, isOuter);
  1367     void checkRaw(JCTree tree, Env<AttrContext> env) {
  1368         if (lint.isEnabled(LintCategory.RAW) &&
  1369             tree.type.hasTag(CLASS) &&
  1370             !TreeInfo.isDiamond(tree) &&
  1371             !withinAnonConstr(env) &&
  1372             tree.type.isRaw()) {
  1373             log.warning(LintCategory.RAW,
  1374                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1377     //where
  1378         private boolean withinAnonConstr(Env<AttrContext> env) {
  1379             return env.enclClass.name.isEmpty() &&
  1380                     env.enclMethod != null && env.enclMethod.name == names.init;
  1383 /* *************************************************************************
  1384  * Exception checking
  1385  **************************************************************************/
  1387     /* The following methods treat classes as sets that contain
  1388      * the class itself and all their subclasses
  1389      */
  1391     /** Is given type a subtype of some of the types in given list?
  1392      */
  1393     boolean subset(Type t, List<Type> ts) {
  1394         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1395             if (types.isSubtype(t, l.head)) return true;
  1396         return false;
  1399     /** Is given type a subtype or supertype of
  1400      *  some of the types in given list?
  1401      */
  1402     boolean intersects(Type t, List<Type> ts) {
  1403         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1404             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1405         return false;
  1408     /** Add type set to given type list, unless it is a subclass of some class
  1409      *  in the list.
  1410      */
  1411     List<Type> incl(Type t, List<Type> ts) {
  1412         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1415     /** Remove type set from type set list.
  1416      */
  1417     List<Type> excl(Type t, List<Type> ts) {
  1418         if (ts.isEmpty()) {
  1419             return ts;
  1420         } else {
  1421             List<Type> ts1 = excl(t, ts.tail);
  1422             if (types.isSubtype(ts.head, t)) return ts1;
  1423             else if (ts1 == ts.tail) return ts;
  1424             else return ts1.prepend(ts.head);
  1428     /** Form the union of two type set lists.
  1429      */
  1430     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1431         List<Type> ts = ts1;
  1432         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1433             ts = incl(l.head, ts);
  1434         return ts;
  1437     /** Form the difference of two type lists.
  1438      */
  1439     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1440         List<Type> ts = ts1;
  1441         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1442             ts = excl(l.head, ts);
  1443         return ts;
  1446     /** Form the intersection of two type lists.
  1447      */
  1448     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1449         List<Type> ts = List.nil();
  1450         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1451             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1452         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1453             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1454         return ts;
  1457     /** Is exc an exception symbol that need not be declared?
  1458      */
  1459     boolean isUnchecked(ClassSymbol exc) {
  1460         return
  1461             exc.kind == ERR ||
  1462             exc.isSubClass(syms.errorType.tsym, types) ||
  1463             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1466     /** Is exc an exception type that need not be declared?
  1467      */
  1468     boolean isUnchecked(Type exc) {
  1469         return
  1470             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1471             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1472             exc.hasTag(BOT);
  1475     /** Same, but handling completion failures.
  1476      */
  1477     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1478         try {
  1479             return isUnchecked(exc);
  1480         } catch (CompletionFailure ex) {
  1481             completionError(pos, ex);
  1482             return true;
  1486     /** Is exc handled by given exception list?
  1487      */
  1488     boolean isHandled(Type exc, List<Type> handled) {
  1489         return isUnchecked(exc) || subset(exc, handled);
  1492     /** Return all exceptions in thrown list that are not in handled list.
  1493      *  @param thrown     The list of thrown exceptions.
  1494      *  @param handled    The list of handled exceptions.
  1495      */
  1496     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1497         List<Type> unhandled = List.nil();
  1498         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1499             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1500         return unhandled;
  1503 /* *************************************************************************
  1504  * Overriding/Implementation checking
  1505  **************************************************************************/
  1507     /** The level of access protection given by a flag set,
  1508      *  where PRIVATE is highest and PUBLIC is lowest.
  1509      */
  1510     static int protection(long flags) {
  1511         switch ((short)(flags & AccessFlags)) {
  1512         case PRIVATE: return 3;
  1513         case PROTECTED: return 1;
  1514         default:
  1515         case PUBLIC: return 0;
  1516         case 0: return 2;
  1520     /** A customized "cannot override" error message.
  1521      *  @param m      The overriding method.
  1522      *  @param other  The overridden method.
  1523      *  @return       An internationalized string.
  1524      */
  1525     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1526         String key;
  1527         if ((other.owner.flags() & INTERFACE) == 0)
  1528             key = "cant.override";
  1529         else if ((m.owner.flags() & INTERFACE) == 0)
  1530             key = "cant.implement";
  1531         else
  1532             key = "clashes.with";
  1533         return diags.fragment(key, m, m.location(), other, other.location());
  1536     /** A customized "override" warning message.
  1537      *  @param m      The overriding method.
  1538      *  @param other  The overridden method.
  1539      *  @return       An internationalized string.
  1540      */
  1541     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1542         String key;
  1543         if ((other.owner.flags() & INTERFACE) == 0)
  1544             key = "unchecked.override";
  1545         else if ((m.owner.flags() & INTERFACE) == 0)
  1546             key = "unchecked.implement";
  1547         else
  1548             key = "unchecked.clash.with";
  1549         return diags.fragment(key, m, m.location(), other, other.location());
  1552     /** A customized "override" warning message.
  1553      *  @param m      The overriding method.
  1554      *  @param other  The overridden method.
  1555      *  @return       An internationalized string.
  1556      */
  1557     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1558         String key;
  1559         if ((other.owner.flags() & INTERFACE) == 0)
  1560             key = "varargs.override";
  1561         else  if ((m.owner.flags() & INTERFACE) == 0)
  1562             key = "varargs.implement";
  1563         else
  1564             key = "varargs.clash.with";
  1565         return diags.fragment(key, m, m.location(), other, other.location());
  1568     /** Check that this method conforms with overridden method 'other'.
  1569      *  where `origin' is the class where checking started.
  1570      *  Complications:
  1571      *  (1) Do not check overriding of synthetic methods
  1572      *      (reason: they might be final).
  1573      *      todo: check whether this is still necessary.
  1574      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1575      *      than the method it implements. Augment the proxy methods with the
  1576      *      undeclared exceptions in this case.
  1577      *  (3) When generics are enabled, admit the case where an interface proxy
  1578      *      has a result type
  1579      *      extended by the result type of the method it implements.
  1580      *      Change the proxies result type to the smaller type in this case.
  1582      *  @param tree         The tree from which positions
  1583      *                      are extracted for errors.
  1584      *  @param m            The overriding method.
  1585      *  @param other        The overridden method.
  1586      *  @param origin       The class of which the overriding method
  1587      *                      is a member.
  1588      */
  1589     void checkOverride(JCTree tree,
  1590                        MethodSymbol m,
  1591                        MethodSymbol other,
  1592                        ClassSymbol origin) {
  1593         // Don't check overriding of synthetic methods or by bridge methods.
  1594         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1595             return;
  1598         // Error if static method overrides instance method (JLS 8.4.6.2).
  1599         if ((m.flags() & STATIC) != 0 &&
  1600                    (other.flags() & STATIC) == 0) {
  1601             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1602                       cannotOverride(m, other));
  1603             m.flags_field |= BAD_OVERRIDE;
  1604             return;
  1607         // Error if instance method overrides static or final
  1608         // method (JLS 8.4.6.1).
  1609         if ((other.flags() & FINAL) != 0 ||
  1610                  (m.flags() & STATIC) == 0 &&
  1611                  (other.flags() & STATIC) != 0) {
  1612             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1613                       cannotOverride(m, other),
  1614                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1615             m.flags_field |= BAD_OVERRIDE;
  1616             return;
  1619         if ((m.owner.flags() & ANNOTATION) != 0) {
  1620             // handled in validateAnnotationMethod
  1621             return;
  1624         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1625         if ((origin.flags() & INTERFACE) == 0 &&
  1626                  protection(m.flags()) > protection(other.flags())) {
  1627             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1628                       cannotOverride(m, other),
  1629                       other.flags() == 0 ?
  1630                           "package" :
  1631                           asFlagSet(other.flags() & AccessFlags));
  1632             m.flags_field |= BAD_OVERRIDE;
  1633             return;
  1636         Type mt = types.memberType(origin.type, m);
  1637         Type ot = types.memberType(origin.type, other);
  1638         // Error if overriding result type is different
  1639         // (or, in the case of generics mode, not a subtype) of
  1640         // overridden result type. We have to rename any type parameters
  1641         // before comparing types.
  1642         List<Type> mtvars = mt.getTypeArguments();
  1643         List<Type> otvars = ot.getTypeArguments();
  1644         Type mtres = mt.getReturnType();
  1645         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1647         overrideWarner.clear();
  1648         boolean resultTypesOK =
  1649             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1650         if (!resultTypesOK) {
  1651             if (!allowCovariantReturns &&
  1652                 m.owner != origin &&
  1653                 m.owner.isSubClass(other.owner, types)) {
  1654                 // allow limited interoperability with covariant returns
  1655             } else {
  1656                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1657                           "override.incompatible.ret",
  1658                           cannotOverride(m, other),
  1659                           mtres, otres);
  1660                 m.flags_field |= BAD_OVERRIDE;
  1661                 return;
  1663         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1664             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1665                     "override.unchecked.ret",
  1666                     uncheckedOverrides(m, other),
  1667                     mtres, otres);
  1670         // Error if overriding method throws an exception not reported
  1671         // by overridden method.
  1672         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1673         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1674         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1675         if (unhandledErased.nonEmpty()) {
  1676             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1677                       "override.meth.doesnt.throw",
  1678                       cannotOverride(m, other),
  1679                       unhandledUnerased.head);
  1680             m.flags_field |= BAD_OVERRIDE;
  1681             return;
  1683         else if (unhandledUnerased.nonEmpty()) {
  1684             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1685                           "override.unchecked.thrown",
  1686                          cannotOverride(m, other),
  1687                          unhandledUnerased.head);
  1688             return;
  1691         // Optional warning if varargs don't agree
  1692         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1693             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1694             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1695                         ((m.flags() & Flags.VARARGS) != 0)
  1696                         ? "override.varargs.missing"
  1697                         : "override.varargs.extra",
  1698                         varargsOverrides(m, other));
  1701         // Warn if instance method overrides bridge method (compiler spec ??)
  1702         if ((other.flags() & BRIDGE) != 0) {
  1703             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1704                         uncheckedOverrides(m, other));
  1707         // Warn if a deprecated method overridden by a non-deprecated one.
  1708         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1709             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1712     // where
  1713         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1714             // If the method, m, is defined in an interface, then ignore the issue if the method
  1715             // is only inherited via a supertype and also implemented in the supertype,
  1716             // because in that case, we will rediscover the issue when examining the method
  1717             // in the supertype.
  1718             // If the method, m, is not defined in an interface, then the only time we need to
  1719             // address the issue is when the method is the supertype implemementation: any other
  1720             // case, we will have dealt with when examining the supertype classes
  1721             ClassSymbol mc = m.enclClass();
  1722             Type st = types.supertype(origin.type);
  1723             if (!st.hasTag(CLASS))
  1724                 return true;
  1725             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1727             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1728                 List<Type> intfs = types.interfaces(origin.type);
  1729                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1731             else
  1732                 return (stimpl != m);
  1736     // used to check if there were any unchecked conversions
  1737     Warner overrideWarner = new Warner();
  1739     /** Check that a class does not inherit two concrete methods
  1740      *  with the same signature.
  1741      *  @param pos          Position to be used for error reporting.
  1742      *  @param site         The class type to be checked.
  1743      */
  1744     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1745         Type sup = types.supertype(site);
  1746         if (!sup.hasTag(CLASS)) return;
  1748         for (Type t1 = sup;
  1749              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
  1750              t1 = types.supertype(t1)) {
  1751             for (Scope.Entry e1 = t1.tsym.members().elems;
  1752                  e1 != null;
  1753                  e1 = e1.sibling) {
  1754                 Symbol s1 = e1.sym;
  1755                 if (s1.kind != MTH ||
  1756                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1757                     !s1.isInheritedIn(site.tsym, types) ||
  1758                     ((MethodSymbol)s1).implementation(site.tsym,
  1759                                                       types,
  1760                                                       true) != s1)
  1761                     continue;
  1762                 Type st1 = types.memberType(t1, s1);
  1763                 int s1ArgsLength = st1.getParameterTypes().length();
  1764                 if (st1 == s1.type) continue;
  1766                 for (Type t2 = sup;
  1767                      t2.hasTag(CLASS);
  1768                      t2 = types.supertype(t2)) {
  1769                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1770                          e2.scope != null;
  1771                          e2 = e2.next()) {
  1772                         Symbol s2 = e2.sym;
  1773                         if (s2 == s1 ||
  1774                             s2.kind != MTH ||
  1775                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1776                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1777                             !s2.isInheritedIn(site.tsym, types) ||
  1778                             ((MethodSymbol)s2).implementation(site.tsym,
  1779                                                               types,
  1780                                                               true) != s2)
  1781                             continue;
  1782                         Type st2 = types.memberType(t2, s2);
  1783                         if (types.overrideEquivalent(st1, st2))
  1784                             log.error(pos, "concrete.inheritance.conflict",
  1785                                       s1, t1, s2, t2, sup);
  1792     /** Check that classes (or interfaces) do not each define an abstract
  1793      *  method with same name and arguments but incompatible return types.
  1794      *  @param pos          Position to be used for error reporting.
  1795      *  @param t1           The first argument type.
  1796      *  @param t2           The second argument type.
  1797      */
  1798     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1799                                             Type t1,
  1800                                             Type t2) {
  1801         return checkCompatibleAbstracts(pos, t1, t2,
  1802                                         types.makeCompoundType(t1, t2));
  1805     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1806                                             Type t1,
  1807                                             Type t2,
  1808                                             Type site) {
  1809         return firstIncompatibility(pos, t1, t2, site) == null;
  1812     /** Return the first method which is defined with same args
  1813      *  but different return types in two given interfaces, or null if none
  1814      *  exists.
  1815      *  @param t1     The first type.
  1816      *  @param t2     The second type.
  1817      *  @param site   The most derived type.
  1818      *  @returns symbol from t2 that conflicts with one in t1.
  1819      */
  1820     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1821         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1822         closure(t1, interfaces1);
  1823         Map<TypeSymbol,Type> interfaces2;
  1824         if (t1 == t2)
  1825             interfaces2 = interfaces1;
  1826         else
  1827             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1829         for (Type t3 : interfaces1.values()) {
  1830             for (Type t4 : interfaces2.values()) {
  1831                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1832                 if (s != null) return s;
  1835         return null;
  1838     /** Compute all the supertypes of t, indexed by type symbol. */
  1839     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1840         if (!t.hasTag(CLASS)) return;
  1841         if (typeMap.put(t.tsym, t) == null) {
  1842             closure(types.supertype(t), typeMap);
  1843             for (Type i : types.interfaces(t))
  1844                 closure(i, typeMap);
  1848     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1849     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1850         if (!t.hasTag(CLASS)) return;
  1851         if (typesSkip.get(t.tsym) != null) return;
  1852         if (typeMap.put(t.tsym, t) == null) {
  1853             closure(types.supertype(t), typesSkip, typeMap);
  1854             for (Type i : types.interfaces(t))
  1855                 closure(i, typesSkip, typeMap);
  1859     /** Return the first method in t2 that conflicts with a method from t1. */
  1860     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1861         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1862             Symbol s1 = e1.sym;
  1863             Type st1 = null;
  1864             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
  1865                     (s1.flags() & SYNTHETIC) != 0) continue;
  1866             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1867             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1868             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1869                 Symbol s2 = e2.sym;
  1870                 if (s1 == s2) continue;
  1871                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
  1872                         (s2.flags() & SYNTHETIC) != 0) continue;
  1873                 if (st1 == null) st1 = types.memberType(t1, s1);
  1874                 Type st2 = types.memberType(t2, s2);
  1875                 if (types.overrideEquivalent(st1, st2)) {
  1876                     List<Type> tvars1 = st1.getTypeArguments();
  1877                     List<Type> tvars2 = st2.getTypeArguments();
  1878                     Type rt1 = st1.getReturnType();
  1879                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1880                     boolean compat =
  1881                         types.isSameType(rt1, rt2) ||
  1882                         !rt1.isPrimitiveOrVoid() &&
  1883                         !rt2.isPrimitiveOrVoid() &&
  1884                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
  1885                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
  1886                          checkCommonOverriderIn(s1,s2,site);
  1887                     if (!compat) {
  1888                         log.error(pos, "types.incompatible.diff.ret",
  1889                             t1, t2, s2.name +
  1890                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1891                         return s2;
  1893                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1894                         !checkCommonOverriderIn(s1, s2, site)) {
  1895                     log.error(pos,
  1896                             "name.clash.same.erasure.no.override",
  1897                             s1, s1.location(),
  1898                             s2, s2.location());
  1899                     return s2;
  1903         return null;
  1905     //WHERE
  1906     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1907         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1908         Type st1 = types.memberType(site, s1);
  1909         Type st2 = types.memberType(site, s2);
  1910         closure(site, supertypes);
  1911         for (Type t : supertypes.values()) {
  1912             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1913                 Symbol s3 = e.sym;
  1914                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1915                 Type st3 = types.memberType(site,s3);
  1916                 if (types.overrideEquivalent(st3, st1) &&
  1917                         types.overrideEquivalent(st3, st2) &&
  1918                         types.returnTypeSubstitutable(st3, st1) &&
  1919                         types.returnTypeSubstitutable(st3, st2)) {
  1920                     return true;
  1924         return false;
  1927     /** Check that a given method conforms with any method it overrides.
  1928      *  @param tree         The tree from which positions are extracted
  1929      *                      for errors.
  1930      *  @param m            The overriding method.
  1931      */
  1932     void checkOverride(JCMethodDecl tree, MethodSymbol m) {
  1933         ClassSymbol origin = (ClassSymbol)m.owner;
  1934         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1935             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1936                 log.error(tree.pos(), "enum.no.finalize");
  1937                 return;
  1939         for (Type t = origin.type; t.hasTag(CLASS);
  1940              t = types.supertype(t)) {
  1941             if (t != origin.type) {
  1942                 checkOverride(tree, t, origin, m);
  1944             for (Type t2 : types.interfaces(t)) {
  1945                 checkOverride(tree, t2, origin, m);
  1949         if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
  1950             DiagnosticPosition pos = tree.pos();
  1951             for (JCAnnotation a : tree.getModifiers().annotations) {
  1952                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1953                     pos = a.pos();
  1954                     break;
  1957             log.error(pos, "method.does.not.override.superclass");
  1961     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1962         TypeSymbol c = site.tsym;
  1963         Scope.Entry e = c.members().lookup(m.name);
  1964         while (e.scope != null) {
  1965             if (m.overrides(e.sym, origin, types, false)) {
  1966                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1967                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1970             e = e.next();
  1974     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
  1975         public boolean accepts(Symbol s) {
  1976             return MethodSymbol.implementation_filter.accepts(s) &&
  1977                     (s.flags() & BAD_OVERRIDE) == 0;
  1980     };
  1982     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
  1983             ClassSymbol someClass) {
  1984         /* At present, annotations cannot possibly have a method that is override
  1985          * equivalent with Object.equals(Object) but in any case the condition is
  1986          * fine for completeness.
  1987          */
  1988         if (someClass == (ClassSymbol)syms.objectType.tsym ||
  1989             someClass.isInterface() || someClass.isEnum() ||
  1990             (someClass.flags() & ANNOTATION) != 0 ||
  1991             (someClass.flags() & ABSTRACT) != 0) return;
  1992         //anonymous inner classes implementing interfaces need especial treatment
  1993         if (someClass.isAnonymous()) {
  1994             List<Type> interfaces =  types.interfaces(someClass.type);
  1995             if (interfaces != null && !interfaces.isEmpty() &&
  1996                 interfaces.head.tsym == syms.comparatorType.tsym) return;
  1998         checkClassOverrideEqualsAndHash(pos, someClass);
  2001     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
  2002             ClassSymbol someClass) {
  2003         if (lint.isEnabled(LintCategory.OVERRIDES)) {
  2004             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
  2005                     .tsym.members().lookup(names.equals).sym;
  2006             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
  2007                     .tsym.members().lookup(names.hashCode).sym;
  2008             boolean overridesEquals = types.implementation(equalsAtObject,
  2009                 someClass, false, equalsHasCodeFilter).owner == someClass;
  2010             boolean overridesHashCode = types.implementation(hashCodeAtObject,
  2011                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
  2013             if (overridesEquals && !overridesHashCode) {
  2014                 log.warning(LintCategory.OVERRIDES, pos,
  2015                         "override.equals.but.not.hashcode", someClass);
  2020     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2021         ClashFilter cf = new ClashFilter(origin.type);
  2022         return (cf.accepts(s1) &&
  2023                 cf.accepts(s2) &&
  2024                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2028     /** Check that all abstract members of given class have definitions.
  2029      *  @param pos          Position to be used for error reporting.
  2030      *  @param c            The class.
  2031      */
  2032     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2033         try {
  2034             MethodSymbol undef = firstUndef(c, c);
  2035             if (undef != null) {
  2036                 if ((c.flags() & ENUM) != 0 &&
  2037                     types.supertype(c.type).tsym == syms.enumSym &&
  2038                     (c.flags() & FINAL) == 0) {
  2039                     // add the ABSTRACT flag to an enum
  2040                     c.flags_field |= ABSTRACT;
  2041                 } else {
  2042                     MethodSymbol undef1 =
  2043                         new MethodSymbol(undef.flags(), undef.name,
  2044                                          types.memberType(c.type, undef), undef.owner);
  2045                     log.error(pos, "does.not.override.abstract",
  2046                               c, undef1, undef1.location());
  2049         } catch (CompletionFailure ex) {
  2050             completionError(pos, ex);
  2053 //where
  2054         /** Return first abstract member of class `c' that is not defined
  2055          *  in `impl', null if there is none.
  2056          */
  2057         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2058             MethodSymbol undef = null;
  2059             // Do not bother to search in classes that are not abstract,
  2060             // since they cannot have abstract members.
  2061             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2062                 Scope s = c.members();
  2063                 for (Scope.Entry e = s.elems;
  2064                      undef == null && e != null;
  2065                      e = e.sibling) {
  2066                     if (e.sym.kind == MTH &&
  2067                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  2068                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2069                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2070                         if (implmeth == null || implmeth == absmeth) {
  2071                             //look for default implementations
  2072                             if (allowDefaultMethods) {
  2073                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
  2074                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
  2075                                     implmeth = prov;
  2079                         if (implmeth == null || implmeth == absmeth) {
  2080                             undef = absmeth;
  2084                 if (undef == null) {
  2085                     Type st = types.supertype(c.type);
  2086                     if (st.hasTag(CLASS))
  2087                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2089                 for (List<Type> l = types.interfaces(c.type);
  2090                      undef == null && l.nonEmpty();
  2091                      l = l.tail) {
  2092                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2095             return undef;
  2098     void checkNonCyclicDecl(JCClassDecl tree) {
  2099         CycleChecker cc = new CycleChecker();
  2100         cc.scan(tree);
  2101         if (!cc.errorFound && !cc.partialCheck) {
  2102             tree.sym.flags_field |= ACYCLIC;
  2106     class CycleChecker extends TreeScanner {
  2108         List<Symbol> seenClasses = List.nil();
  2109         boolean errorFound = false;
  2110         boolean partialCheck = false;
  2112         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2113             if (sym != null && sym.kind == TYP) {
  2114                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2115                 if (classEnv != null) {
  2116                     DiagnosticSource prevSource = log.currentSource();
  2117                     try {
  2118                         log.useSource(classEnv.toplevel.sourcefile);
  2119                         scan(classEnv.tree);
  2121                     finally {
  2122                         log.useSource(prevSource.getFile());
  2124                 } else if (sym.kind == TYP) {
  2125                     checkClass(pos, sym, List.<JCTree>nil());
  2127             } else {
  2128                 //not completed yet
  2129                 partialCheck = true;
  2133         @Override
  2134         public void visitSelect(JCFieldAccess tree) {
  2135             super.visitSelect(tree);
  2136             checkSymbol(tree.pos(), tree.sym);
  2139         @Override
  2140         public void visitIdent(JCIdent tree) {
  2141             checkSymbol(tree.pos(), tree.sym);
  2144         @Override
  2145         public void visitTypeApply(JCTypeApply tree) {
  2146             scan(tree.clazz);
  2149         @Override
  2150         public void visitTypeArray(JCArrayTypeTree tree) {
  2151             scan(tree.elemtype);
  2154         @Override
  2155         public void visitClassDef(JCClassDecl tree) {
  2156             List<JCTree> supertypes = List.nil();
  2157             if (tree.getExtendsClause() != null) {
  2158                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2160             if (tree.getImplementsClause() != null) {
  2161                 for (JCTree intf : tree.getImplementsClause()) {
  2162                     supertypes = supertypes.prepend(intf);
  2165             checkClass(tree.pos(), tree.sym, supertypes);
  2168         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2169             if ((c.flags_field & ACYCLIC) != 0)
  2170                 return;
  2171             if (seenClasses.contains(c)) {
  2172                 errorFound = true;
  2173                 noteCyclic(pos, (ClassSymbol)c);
  2174             } else if (!c.type.isErroneous()) {
  2175                 try {
  2176                     seenClasses = seenClasses.prepend(c);
  2177                     if (c.type.hasTag(CLASS)) {
  2178                         if (supertypes.nonEmpty()) {
  2179                             scan(supertypes);
  2181                         else {
  2182                             ClassType ct = (ClassType)c.type;
  2183                             if (ct.supertype_field == null ||
  2184                                     ct.interfaces_field == null) {
  2185                                 //not completed yet
  2186                                 partialCheck = true;
  2187                                 return;
  2189                             checkSymbol(pos, ct.supertype_field.tsym);
  2190                             for (Type intf : ct.interfaces_field) {
  2191                                 checkSymbol(pos, intf.tsym);
  2194                         if (c.owner.kind == TYP) {
  2195                             checkSymbol(pos, c.owner);
  2198                 } finally {
  2199                     seenClasses = seenClasses.tail;
  2205     /** Check for cyclic references. Issue an error if the
  2206      *  symbol of the type referred to has a LOCKED flag set.
  2208      *  @param pos      Position to be used for error reporting.
  2209      *  @param t        The type referred to.
  2210      */
  2211     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2212         checkNonCyclicInternal(pos, t);
  2216     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2217         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2220     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2221         final TypeVar tv;
  2222         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2223             return;
  2224         if (seen.contains(t)) {
  2225             tv = (TypeVar)t.unannotatedType();
  2226             tv.bound = types.createErrorType(t);
  2227             log.error(pos, "cyclic.inheritance", t);
  2228         } else if (t.hasTag(TYPEVAR)) {
  2229             tv = (TypeVar)t.unannotatedType();
  2230             seen = seen.prepend(tv);
  2231             for (Type b : types.getBounds(tv))
  2232                 checkNonCyclic1(pos, b, seen);
  2236     /** Check for cyclic references. Issue an error if the
  2237      *  symbol of the type referred to has a LOCKED flag set.
  2239      *  @param pos      Position to be used for error reporting.
  2240      *  @param t        The type referred to.
  2241      *  @returns        True if the check completed on all attributed classes
  2242      */
  2243     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2244         boolean complete = true; // was the check complete?
  2245         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2246         Symbol c = t.tsym;
  2247         if ((c.flags_field & ACYCLIC) != 0) return true;
  2249         if ((c.flags_field & LOCKED) != 0) {
  2250             noteCyclic(pos, (ClassSymbol)c);
  2251         } else if (!c.type.isErroneous()) {
  2252             try {
  2253                 c.flags_field |= LOCKED;
  2254                 if (c.type.hasTag(CLASS)) {
  2255                     ClassType clazz = (ClassType)c.type;
  2256                     if (clazz.interfaces_field != null)
  2257                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2258                             complete &= checkNonCyclicInternal(pos, l.head);
  2259                     if (clazz.supertype_field != null) {
  2260                         Type st = clazz.supertype_field;
  2261                         if (st != null && st.hasTag(CLASS))
  2262                             complete &= checkNonCyclicInternal(pos, st);
  2264                     if (c.owner.kind == TYP)
  2265                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2267             } finally {
  2268                 c.flags_field &= ~LOCKED;
  2271         if (complete)
  2272             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2273         if (complete) c.flags_field |= ACYCLIC;
  2274         return complete;
  2277     /** Note that we found an inheritance cycle. */
  2278     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2279         log.error(pos, "cyclic.inheritance", c);
  2280         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2281             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2282         Type st = types.supertype(c.type);
  2283         if (st.hasTag(CLASS))
  2284             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2285         c.type = types.createErrorType(c, c.type);
  2286         c.flags_field |= ACYCLIC;
  2289     /** Check that all methods which implement some
  2290      *  method conform to the method they implement.
  2291      *  @param tree         The class definition whose members are checked.
  2292      */
  2293     void checkImplementations(JCClassDecl tree) {
  2294         checkImplementations(tree, tree.sym, tree.sym);
  2296     //where
  2297         /** Check that all methods which implement some
  2298          *  method in `ic' conform to the method they implement.
  2299          */
  2300         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
  2301             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2302                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2303                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2304                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2305                         if (e.sym.kind == MTH &&
  2306                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2307                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2308                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2309                             if (implmeth != null && implmeth != absmeth &&
  2310                                 (implmeth.owner.flags() & INTERFACE) ==
  2311                                 (origin.flags() & INTERFACE)) {
  2312                                 // don't check if implmeth is in a class, yet
  2313                                 // origin is an interface. This case arises only
  2314                                 // if implmeth is declared in Object. The reason is
  2315                                 // that interfaces really don't inherit from
  2316                                 // Object it's just that the compiler represents
  2317                                 // things that way.
  2318                                 checkOverride(tree, implmeth, absmeth, origin);
  2326     /** Check that all abstract methods implemented by a class are
  2327      *  mutually compatible.
  2328      *  @param pos          Position to be used for error reporting.
  2329      *  @param c            The class whose interfaces are checked.
  2330      */
  2331     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2332         List<Type> supertypes = types.interfaces(c);
  2333         Type supertype = types.supertype(c);
  2334         if (supertype.hasTag(CLASS) &&
  2335             (supertype.tsym.flags() & ABSTRACT) != 0)
  2336             supertypes = supertypes.prepend(supertype);
  2337         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2338             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2339                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2340                 return;
  2341             for (List<Type> m = supertypes; m != l; m = m.tail)
  2342                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2343                     return;
  2345         checkCompatibleConcretes(pos, c);
  2348     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2349         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2350             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2351                 // VM allows methods and variables with differing types
  2352                 if (sym.kind == e.sym.kind &&
  2353                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2354                     sym != e.sym &&
  2355                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2356                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2357                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2358                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2359                     return;
  2365     /** Check that all non-override equivalent methods accessible from 'site'
  2366      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2368      *  @param pos  Position to be used for error reporting.
  2369      *  @param site The class whose methods are checked.
  2370      *  @param sym  The method symbol to be checked.
  2371      */
  2372     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2373          ClashFilter cf = new ClashFilter(site);
  2374         //for each method m1 that is overridden (directly or indirectly)
  2375         //by method 'sym' in 'site'...
  2377         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
  2378         boolean overridesAny = false;
  2379         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2380             if (!sym.overrides(m1, site.tsym, types, false)) {
  2381                 if (m1 == sym) {
  2382                     continue;
  2385                 if (!overridesAny) {
  2386                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
  2388                 continue;
  2391             if (m1 != sym) {
  2392                 overridesAny = true;
  2393                 potentiallyAmbiguousList = List.nil();
  2396             //...check each method m2 that is a member of 'site'
  2397             for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2398                 if (m2 == m1) continue;
  2399                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2400                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2401                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2402                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2403                     sym.flags_field |= CLASH;
  2404                     String key = m1 == sym ?
  2405                             "name.clash.same.erasure.no.override" :
  2406                             "name.clash.same.erasure.no.override.1";
  2407                     log.error(pos,
  2408                             key,
  2409                             sym, sym.location(),
  2410                             m2, m2.location(),
  2411                             m1, m1.location());
  2412                     return;
  2417         if (!overridesAny) {
  2418             for (MethodSymbol m: potentiallyAmbiguousList) {
  2419                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
  2424     /** Check that all static methods accessible from 'site' are
  2425      *  mutually compatible (JLS 8.4.8).
  2427      *  @param pos  Position to be used for error reporting.
  2428      *  @param site The class whose methods are checked.
  2429      *  @param sym  The method symbol to be checked.
  2430      */
  2431     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2432         ClashFilter cf = new ClashFilter(site);
  2433         //for each method m1 that is a member of 'site'...
  2434         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2435             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2436             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2437             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
  2438                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2439                     log.error(pos,
  2440                             "name.clash.same.erasure.no.hide",
  2441                             sym, sym.location(),
  2442                             s, s.location());
  2443                     return;
  2444                 } else {
  2445                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
  2451      //where
  2452      private class ClashFilter implements Filter<Symbol> {
  2454          Type site;
  2456          ClashFilter(Type site) {
  2457              this.site = site;
  2460          boolean shouldSkip(Symbol s) {
  2461              return (s.flags() & CLASH) != 0 &&
  2462                 s.owner == site.tsym;
  2465          public boolean accepts(Symbol s) {
  2466              return s.kind == MTH &&
  2467                      (s.flags() & SYNTHETIC) == 0 &&
  2468                      !shouldSkip(s) &&
  2469                      s.isInheritedIn(site.tsym, types) &&
  2470                      !s.isConstructor();
  2474     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2475         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2476         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2477             Assert.check(m.kind == MTH);
  2478             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2479             if (prov.size() > 1) {
  2480                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
  2481                 ListBuffer<Symbol> defaults = new ListBuffer<>();
  2482                 for (MethodSymbol provSym : prov) {
  2483                     if ((provSym.flags() & DEFAULT) != 0) {
  2484                         defaults = defaults.append(provSym);
  2485                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2486                         abstracts = abstracts.append(provSym);
  2488                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2489                         //strong semantics - issue an error if two sibling interfaces
  2490                         //have two override-equivalent defaults - or if one is abstract
  2491                         //and the other is default
  2492                         String errKey;
  2493                         Symbol s1 = defaults.first();
  2494                         Symbol s2;
  2495                         if (defaults.size() > 1) {
  2496                             errKey = "types.incompatible.unrelated.defaults";
  2497                             s2 = defaults.toList().tail.head;
  2498                         } else {
  2499                             errKey = "types.incompatible.abstract.default";
  2500                             s2 = abstracts.first();
  2502                         log.error(pos, errKey,
  2503                                 Kinds.kindName(site.tsym), site,
  2504                                 m.name, types.memberType(site, m).getParameterTypes(),
  2505                                 s1.location(), s2.location());
  2506                         break;
  2513     //where
  2514      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2516          Type site;
  2518          DefaultMethodClashFilter(Type site) {
  2519              this.site = site;
  2522          public boolean accepts(Symbol s) {
  2523              return s.kind == MTH &&
  2524                      (s.flags() & DEFAULT) != 0 &&
  2525                      s.isInheritedIn(site.tsym, types) &&
  2526                      !s.isConstructor();
  2530     /**
  2531       * Report warnings for potentially ambiguous method declarations. Two declarations
  2532       * are potentially ambiguous if they feature two unrelated functional interface
  2533       * in same argument position (in which case, a call site passing an implicit
  2534       * lambda would be ambiguous).
  2535       */
  2536     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
  2537             MethodSymbol msym1, MethodSymbol msym2) {
  2538         if (msym1 != msym2 &&
  2539                 allowDefaultMethods &&
  2540                 lint.isEnabled(LintCategory.OVERLOADS) &&
  2541                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
  2542                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
  2543             Type mt1 = types.memberType(site, msym1);
  2544             Type mt2 = types.memberType(site, msym2);
  2545             //if both generic methods, adjust type variables
  2546             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
  2547                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
  2548                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
  2550             //expand varargs methods if needed
  2551             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
  2552             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
  2553             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
  2554             //if arities don't match, exit
  2555             if (args1.length() != args2.length()) return;
  2556             boolean potentiallyAmbiguous = false;
  2557             while (args1.nonEmpty() && args2.nonEmpty()) {
  2558                 Type s = args1.head;
  2559                 Type t = args2.head;
  2560                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
  2561                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
  2562                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
  2563                             types.findDescriptorType(s).getParameterTypes().length() ==
  2564                             types.findDescriptorType(t).getParameterTypes().length()) {
  2565                         potentiallyAmbiguous = true;
  2566                     } else {
  2567                         break;
  2570                 args1 = args1.tail;
  2571                 args2 = args2.tail;
  2573             if (potentiallyAmbiguous) {
  2574                 //we found two incompatible functional interfaces with same arity
  2575                 //this means a call site passing an implicit lambda would be ambigiuous
  2576                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
  2577                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
  2578                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
  2579                             msym1, msym1.location(),
  2580                             msym2, msym2.location());
  2581                 return;
  2586     /** Report a conflict between a user symbol and a synthetic symbol.
  2587      */
  2588     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2589         if (!sym.type.isErroneous()) {
  2590             if (warnOnSyntheticConflicts) {
  2591                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2593             else {
  2594                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2599     /** Check that class c does not implement directly or indirectly
  2600      *  the same parameterized interface with two different argument lists.
  2601      *  @param pos          Position to be used for error reporting.
  2602      *  @param type         The type whose interfaces are checked.
  2603      */
  2604     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2605         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2607 //where
  2608         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2609          *  with their class symbol as key and their type as value. Make
  2610          *  sure no class is entered with two different types.
  2611          */
  2612         void checkClassBounds(DiagnosticPosition pos,
  2613                               Map<TypeSymbol,Type> seensofar,
  2614                               Type type) {
  2615             if (type.isErroneous()) return;
  2616             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2617                 Type it = l.head;
  2618                 Type oldit = seensofar.put(it.tsym, it);
  2619                 if (oldit != null) {
  2620                     List<Type> oldparams = oldit.allparams();
  2621                     List<Type> newparams = it.allparams();
  2622                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2623                         log.error(pos, "cant.inherit.diff.arg",
  2624                                   it.tsym, Type.toString(oldparams),
  2625                                   Type.toString(newparams));
  2627                 checkClassBounds(pos, seensofar, it);
  2629             Type st = types.supertype(type);
  2630             if (st != null) checkClassBounds(pos, seensofar, st);
  2633     /** Enter interface into into set.
  2634      *  If it existed already, issue a "repeated interface" error.
  2635      */
  2636     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2637         if (its.contains(it))
  2638             log.error(pos, "repeated.interface");
  2639         else {
  2640             its.add(it);
  2644 /* *************************************************************************
  2645  * Check annotations
  2646  **************************************************************************/
  2648     /**
  2649      * Recursively validate annotations values
  2650      */
  2651     void validateAnnotationTree(JCTree tree) {
  2652         class AnnotationValidator extends TreeScanner {
  2653             @Override
  2654             public void visitAnnotation(JCAnnotation tree) {
  2655                 if (!tree.type.isErroneous()) {
  2656                     super.visitAnnotation(tree);
  2657                     validateAnnotation(tree);
  2661         tree.accept(new AnnotationValidator());
  2664     /**
  2665      *  {@literal
  2666      *  Annotation types are restricted to primitives, String, an
  2667      *  enum, an annotation, Class, Class<?>, Class<? extends
  2668      *  Anything>, arrays of the preceding.
  2669      *  }
  2670      */
  2671     void validateAnnotationType(JCTree restype) {
  2672         // restype may be null if an error occurred, so don't bother validating it
  2673         if (restype != null) {
  2674             validateAnnotationType(restype.pos(), restype.type);
  2678     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2679         if (type.isPrimitive()) return;
  2680         if (types.isSameType(type, syms.stringType)) return;
  2681         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2682         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2683         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2684         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2685             validateAnnotationType(pos, types.elemtype(type));
  2686             return;
  2688         log.error(pos, "invalid.annotation.member.type");
  2691     /**
  2692      * "It is also a compile-time error if any method declared in an
  2693      * annotation type has a signature that is override-equivalent to
  2694      * that of any public or protected method declared in class Object
  2695      * or in the interface annotation.Annotation."
  2697      * @jls 9.6 Annotation Types
  2698      */
  2699     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2700         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2701             Scope s = sup.tsym.members();
  2702             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2703                 if (e.sym.kind == MTH &&
  2704                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2705                     types.overrideEquivalent(m.type, e.sym.type))
  2706                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2711     /** Check the annotations of a symbol.
  2712      */
  2713     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2714         for (JCAnnotation a : annotations)
  2715             validateAnnotation(a, s);
  2718     /** Check the type annotations.
  2719      */
  2720     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
  2721         for (JCAnnotation a : annotations)
  2722             validateTypeAnnotation(a, isTypeParameter);
  2725     /** Check an annotation of a symbol.
  2726      */
  2727     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2728         validateAnnotationTree(a);
  2730         if (!annotationApplicable(a, s))
  2731             log.error(a.pos(), "annotation.type.not.applicable");
  2733         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  2734             if (s.kind != TYP) {
  2735                 log.error(a.pos(), "bad.functional.intf.anno");
  2736             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
  2737                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
  2742     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2743         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
  2744         validateAnnotationTree(a);
  2746         if (a.hasTag(TYPE_ANNOTATION) &&
  2747                 !a.annotationType.type.isErroneous() &&
  2748                 !isTypeAnnotation(a, isTypeParameter)) {
  2749             log.error(a.pos(), "annotation.type.not.applicable");
  2753     /**
  2754      * Validate the proposed container 'repeatable' on the
  2755      * annotation type symbol 's'. Report errors at position
  2756      * 'pos'.
  2758      * @param s The (annotation)type declaration annotated with a @Repeatable
  2759      * @param repeatable the @Repeatable on 's'
  2760      * @param pos where to report errors
  2761      */
  2762     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
  2763         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
  2765         Type t = null;
  2766         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
  2767         if (!l.isEmpty()) {
  2768             Assert.check(l.head.fst.name == names.value);
  2769             t = ((Attribute.Class)l.head.snd).getValue();
  2772         if (t == null) {
  2773             // errors should already have been reported during Annotate
  2774             return;
  2777         validateValue(t.tsym, s, pos);
  2778         validateRetention(t.tsym, s, pos);
  2779         validateDocumented(t.tsym, s, pos);
  2780         validateInherited(t.tsym, s, pos);
  2781         validateTarget(t.tsym, s, pos);
  2782         validateDefault(t.tsym, pos);
  2785     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2786         Scope.Entry e = container.members().lookup(names.value);
  2787         if (e.scope != null && e.sym.kind == MTH) {
  2788             MethodSymbol m = (MethodSymbol) e.sym;
  2789             Type ret = m.getReturnType();
  2790             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
  2791                 log.error(pos, "invalid.repeatable.annotation.value.return",
  2792                         container, ret, types.makeArrayType(contained.type));
  2794         } else {
  2795             log.error(pos, "invalid.repeatable.annotation.no.value", container);
  2799     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2800         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2801         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2803         boolean error = false;
  2804         switch (containedRetention) {
  2805         case RUNTIME:
  2806             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2807                 error = true;
  2809             break;
  2810         case CLASS:
  2811             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2812                 error = true;
  2815         if (error ) {
  2816             log.error(pos, "invalid.repeatable.annotation.retention",
  2817                       container, containerRetention,
  2818                       contained, containedRetention);
  2822     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2823         if (contained.attribute(syms.documentedType.tsym) != null) {
  2824             if (container.attribute(syms.documentedType.tsym) == null) {
  2825                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
  2830     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2831         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2832             if (container.attribute(syms.inheritedType.tsym) == null) {
  2833                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
  2838     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2839         // The set of targets the container is applicable to must be a subset
  2840         // (with respect to annotation target semantics) of the set of targets
  2841         // the contained is applicable to. The target sets may be implicit or
  2842         // explicit.
  2844         Set<Name> containerTargets;
  2845         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2846         if (containerTarget == null) {
  2847             containerTargets = getDefaultTargetSet();
  2848         } else {
  2849             containerTargets = new HashSet<Name>();
  2850         for (Attribute app : containerTarget.values) {
  2851             if (!(app instanceof Attribute.Enum)) {
  2852                 continue; // recovery
  2854             Attribute.Enum e = (Attribute.Enum)app;
  2855             containerTargets.add(e.value.name);
  2859         Set<Name> containedTargets;
  2860         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2861         if (containedTarget == null) {
  2862             containedTargets = getDefaultTargetSet();
  2863         } else {
  2864             containedTargets = new HashSet<Name>();
  2865         for (Attribute app : containedTarget.values) {
  2866             if (!(app instanceof Attribute.Enum)) {
  2867                 continue; // recovery
  2869             Attribute.Enum e = (Attribute.Enum)app;
  2870             containedTargets.add(e.value.name);
  2874         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
  2875             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
  2879     /* get a set of names for the default target */
  2880     private Set<Name> getDefaultTargetSet() {
  2881         if (defaultTargets == null) {
  2882             Set<Name> targets = new HashSet<Name>();
  2883             targets.add(names.ANNOTATION_TYPE);
  2884             targets.add(names.CONSTRUCTOR);
  2885             targets.add(names.FIELD);
  2886             targets.add(names.LOCAL_VARIABLE);
  2887             targets.add(names.METHOD);
  2888             targets.add(names.PACKAGE);
  2889             targets.add(names.PARAMETER);
  2890             targets.add(names.TYPE);
  2892             defaultTargets = java.util.Collections.unmodifiableSet(targets);
  2895         return defaultTargets;
  2897     private Set<Name> defaultTargets;
  2900     /** Checks that s is a subset of t, with respect to ElementType
  2901      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
  2902      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
  2903      * TYPE_PARAMETER}.
  2904      */
  2905     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
  2906         // Check that all elements in s are present in t
  2907         for (Name n2 : s) {
  2908             boolean currentElementOk = false;
  2909             for (Name n1 : t) {
  2910                 if (n1 == n2) {
  2911                     currentElementOk = true;
  2912                     break;
  2913                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2914                     currentElementOk = true;
  2915                     break;
  2916                 } else if (n1 == names.TYPE_USE &&
  2917                         (n2 == names.TYPE ||
  2918                          n2 == names.ANNOTATION_TYPE ||
  2919                          n2 == names.TYPE_PARAMETER)) {
  2920                     currentElementOk = true;
  2921                     break;
  2924             if (!currentElementOk)
  2925                 return false;
  2927         return true;
  2930     private void validateDefault(Symbol container, DiagnosticPosition pos) {
  2931         // validate that all other elements of containing type has defaults
  2932         Scope scope = container.members();
  2933         for(Symbol elm : scope.getElements()) {
  2934             if (elm.name != names.value &&
  2935                 elm.kind == Kinds.MTH &&
  2936                 ((MethodSymbol)elm).defaultValue == null) {
  2937                 log.error(pos,
  2938                           "invalid.repeatable.annotation.elem.nondefault",
  2939                           container,
  2940                           elm);
  2945     /** Is s a method symbol that overrides a method in a superclass? */
  2946     boolean isOverrider(Symbol s) {
  2947         if (s.kind != MTH || s.isStatic())
  2948             return false;
  2949         MethodSymbol m = (MethodSymbol)s;
  2950         TypeSymbol owner = (TypeSymbol)m.owner;
  2951         for (Type sup : types.closure(owner.type)) {
  2952             if (sup == owner.type)
  2953                 continue; // skip "this"
  2954             Scope scope = sup.tsym.members();
  2955             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2956                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2957                     return true;
  2960         return false;
  2963     /** Is the annotation applicable to types? */
  2964     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2965         Attribute.Compound atTarget =
  2966             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2967         if (atTarget == null) {
  2968             // An annotation without @Target is not a type annotation.
  2969             return false;
  2972         Attribute atValue = atTarget.member(names.value);
  2973         if (!(atValue instanceof Attribute.Array)) {
  2974             return false; // error recovery
  2977         Attribute.Array arr = (Attribute.Array) atValue;
  2978         for (Attribute app : arr.values) {
  2979             if (!(app instanceof Attribute.Enum)) {
  2980                 return false; // recovery
  2982             Attribute.Enum e = (Attribute.Enum) app;
  2984             if (e.value.name == names.TYPE_USE)
  2985                 return true;
  2986             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2987                 return true;
  2989         return false;
  2992     /** Is the annotation applicable to the symbol? */
  2993     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2994         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2995         Name[] targets;
  2997         if (arr == null) {
  2998             targets = defaultTargetMetaInfo(a, s);
  2999         } else {
  3000             // TODO: can we optimize this?
  3001             targets = new Name[arr.values.length];
  3002             for (int i=0; i<arr.values.length; ++i) {
  3003                 Attribute app = arr.values[i];
  3004                 if (!(app instanceof Attribute.Enum)) {
  3005                     return true; // recovery
  3007                 Attribute.Enum e = (Attribute.Enum) app;
  3008                 targets[i] = e.value.name;
  3011         for (Name target : targets) {
  3012             if (target == names.TYPE)
  3013                 { if (s.kind == TYP) return true; }
  3014             else if (target == names.FIELD)
  3015                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  3016             else if (target == names.METHOD)
  3017                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  3018             else if (target == names.PARAMETER)
  3019                 { if (s.kind == VAR &&
  3020                       s.owner.kind == MTH &&
  3021                       (s.flags() & PARAMETER) != 0)
  3022                     return true;
  3024             else if (target == names.CONSTRUCTOR)
  3025                 { if (s.kind == MTH && s.isConstructor()) return true; }
  3026             else if (target == names.LOCAL_VARIABLE)
  3027                 { if (s.kind == VAR && s.owner.kind == MTH &&
  3028                       (s.flags() & PARAMETER) == 0)
  3029                     return true;
  3031             else if (target == names.ANNOTATION_TYPE)
  3032                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  3033                     return true;
  3035             else if (target == names.PACKAGE)
  3036                 { if (s.kind == PCK) return true; }
  3037             else if (target == names.TYPE_USE)
  3038                 { if (s.kind == TYP ||
  3039                       s.kind == VAR ||
  3040                       (s.kind == MTH && !s.isConstructor() &&
  3041                       !s.type.getReturnType().hasTag(VOID)) ||
  3042                       (s.kind == MTH && s.isConstructor()))
  3043                     return true;
  3045             else if (target == names.TYPE_PARAMETER)
  3046                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
  3047                     return true;
  3049             else
  3050                 return true; // recovery
  3052         return false;
  3056     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  3057         Attribute.Compound atTarget =
  3058             s.attribute(syms.annotationTargetType.tsym);
  3059         if (atTarget == null) return null; // ok, is applicable
  3060         Attribute atValue = atTarget.member(names.value);
  3061         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  3062         return (Attribute.Array) atValue;
  3065     private final Name[] dfltTargetMeta;
  3066     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
  3067         return dfltTargetMeta;
  3070     /** Check an annotation value.
  3072      * @param a The annotation tree to check
  3073      * @return true if this annotation tree is valid, otherwise false
  3074      */
  3075     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
  3076         boolean res = false;
  3077         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
  3078         try {
  3079             res = validateAnnotation(a);
  3080         } finally {
  3081             log.popDiagnosticHandler(diagHandler);
  3083         return res;
  3086     private boolean validateAnnotation(JCAnnotation a) {
  3087         boolean isValid = true;
  3088         // collect an inventory of the annotation elements
  3089         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
  3090         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  3091                 e != null;
  3092                 e = e.sibling)
  3093             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
  3094                     (e.sym.flags() & SYNTHETIC) == 0)
  3095                 members.add((MethodSymbol) e.sym);
  3097         // remove the ones that are assigned values
  3098         for (JCTree arg : a.args) {
  3099             if (!arg.hasTag(ASSIGN)) continue; // recovery
  3100             JCAssign assign = (JCAssign) arg;
  3101             Symbol m = TreeInfo.symbol(assign.lhs);
  3102             if (m == null || m.type.isErroneous()) continue;
  3103             if (!members.remove(m)) {
  3104                 isValid = false;
  3105                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  3106                           m.name, a.type);
  3110         // all the remaining ones better have default values
  3111         List<Name> missingDefaults = List.nil();
  3112         for (MethodSymbol m : members) {
  3113             if (m.defaultValue == null && !m.type.isErroneous()) {
  3114                 missingDefaults = missingDefaults.append(m.name);
  3117         missingDefaults = missingDefaults.reverse();
  3118         if (missingDefaults.nonEmpty()) {
  3119             isValid = false;
  3120             String key = (missingDefaults.size() > 1)
  3121                     ? "annotation.missing.default.value.1"
  3122                     : "annotation.missing.default.value";
  3123             log.error(a.pos(), key, a.type, missingDefaults);
  3126         // special case: java.lang.annotation.Target must not have
  3127         // repeated values in its value member
  3128         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  3129             a.args.tail == null)
  3130             return isValid;
  3132         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
  3133         JCAssign assign = (JCAssign) a.args.head;
  3134         Symbol m = TreeInfo.symbol(assign.lhs);
  3135         if (m.name != names.value) return false;
  3136         JCTree rhs = assign.rhs;
  3137         if (!rhs.hasTag(NEWARRAY)) return false;
  3138         JCNewArray na = (JCNewArray) rhs;
  3139         Set<Symbol> targets = new HashSet<Symbol>();
  3140         for (JCTree elem : na.elems) {
  3141             if (!targets.add(TreeInfo.symbol(elem))) {
  3142                 isValid = false;
  3143                 log.error(elem.pos(), "repeated.annotation.target");
  3146         return isValid;
  3149     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  3150         if (allowAnnotations &&
  3151             lint.isEnabled(LintCategory.DEP_ANN) &&
  3152             (s.flags() & DEPRECATED) != 0 &&
  3153             !syms.deprecatedType.isErroneous() &&
  3154             s.attribute(syms.deprecatedType.tsym) == null) {
  3155             log.warning(LintCategory.DEP_ANN,
  3156                     pos, "missing.deprecated.annotation");
  3160     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  3161         if ((s.flags() & DEPRECATED) != 0 &&
  3162                 (other.flags() & DEPRECATED) == 0 &&
  3163                 s.outermostClass() != other.outermostClass()) {
  3164             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3165                 @Override
  3166                 public void report() {
  3167                     warnDeprecated(pos, s);
  3169             });
  3173     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  3174         if ((s.flags() & PROPRIETARY) != 0) {
  3175             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3176                 public void report() {
  3177                     if (enableSunApiLintControl)
  3178                       warnSunApi(pos, "sun.proprietary", s);
  3179                     else
  3180                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3182             });
  3186     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
  3187         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
  3188             log.error(pos, "not.in.profile", s, profile);
  3192 /* *************************************************************************
  3193  * Check for recursive annotation elements.
  3194  **************************************************************************/
  3196     /** Check for cycles in the graph of annotation elements.
  3197      */
  3198     void checkNonCyclicElements(JCClassDecl tree) {
  3199         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3200         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3201         try {
  3202             tree.sym.flags_field |= LOCKED;
  3203             for (JCTree def : tree.defs) {
  3204                 if (!def.hasTag(METHODDEF)) continue;
  3205                 JCMethodDecl meth = (JCMethodDecl)def;
  3206                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3208         } finally {
  3209             tree.sym.flags_field &= ~LOCKED;
  3210             tree.sym.flags_field |= ACYCLIC_ANN;
  3214     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3215         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3216             return;
  3217         if ((tsym.flags_field & LOCKED) != 0) {
  3218             log.error(pos, "cyclic.annotation.element");
  3219             return;
  3221         try {
  3222             tsym.flags_field |= LOCKED;
  3223             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3224                 Symbol s = e.sym;
  3225                 if (s.kind != Kinds.MTH)
  3226                     continue;
  3227                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3229         } finally {
  3230             tsym.flags_field &= ~LOCKED;
  3231             tsym.flags_field |= ACYCLIC_ANN;
  3235     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3236         switch (type.getTag()) {
  3237         case CLASS:
  3238             if ((type.tsym.flags() & ANNOTATION) != 0)
  3239                 checkNonCyclicElementsInternal(pos, type.tsym);
  3240             break;
  3241         case ARRAY:
  3242             checkAnnotationResType(pos, types.elemtype(type));
  3243             break;
  3244         default:
  3245             break; // int etc
  3249 /* *************************************************************************
  3250  * Check for cycles in the constructor call graph.
  3251  **************************************************************************/
  3253     /** Check for cycles in the graph of constructors calling other
  3254      *  constructors.
  3255      */
  3256     void checkCyclicConstructors(JCClassDecl tree) {
  3257         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3259         // enter each constructor this-call into the map
  3260         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3261             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3262             if (app == null) continue;
  3263             JCMethodDecl meth = (JCMethodDecl) l.head;
  3264             if (TreeInfo.name(app.meth) == names._this) {
  3265                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3266             } else {
  3267                 meth.sym.flags_field |= ACYCLIC;
  3271         // Check for cycles in the map
  3272         Symbol[] ctors = new Symbol[0];
  3273         ctors = callMap.keySet().toArray(ctors);
  3274         for (Symbol caller : ctors) {
  3275             checkCyclicConstructor(tree, caller, callMap);
  3279     /** Look in the map to see if the given constructor is part of a
  3280      *  call cycle.
  3281      */
  3282     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3283                                         Map<Symbol,Symbol> callMap) {
  3284         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3285             if ((ctor.flags_field & LOCKED) != 0) {
  3286                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3287                           "recursive.ctor.invocation");
  3288             } else {
  3289                 ctor.flags_field |= LOCKED;
  3290                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3291                 ctor.flags_field &= ~LOCKED;
  3293             ctor.flags_field |= ACYCLIC;
  3297 /* *************************************************************************
  3298  * Miscellaneous
  3299  **************************************************************************/
  3301     /**
  3302      * Return the opcode of the operator but emit an error if it is an
  3303      * error.
  3304      * @param pos        position for error reporting.
  3305      * @param operator   an operator
  3306      * @param tag        a tree tag
  3307      * @param left       type of left hand side
  3308      * @param right      type of right hand side
  3309      */
  3310     int checkOperator(DiagnosticPosition pos,
  3311                        OperatorSymbol operator,
  3312                        JCTree.Tag tag,
  3313                        Type left,
  3314                        Type right) {
  3315         if (operator.opcode == ByteCodes.error) {
  3316             log.error(pos,
  3317                       "operator.cant.be.applied.1",
  3318                       treeinfo.operatorName(tag),
  3319                       left, right);
  3321         return operator.opcode;
  3325     /**
  3326      *  Check for division by integer constant zero
  3327      *  @param pos           Position for error reporting.
  3328      *  @param operator      The operator for the expression
  3329      *  @param operand       The right hand operand for the expression
  3330      */
  3331     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3332         if (operand.constValue() != null
  3333             && lint.isEnabled(LintCategory.DIVZERO)
  3334             && operand.getTag().isSubRangeOf(LONG)
  3335             && ((Number) (operand.constValue())).longValue() == 0) {
  3336             int opc = ((OperatorSymbol)operator).opcode;
  3337             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3338                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3339                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3344     /**
  3345      * Check for empty statements after if
  3346      */
  3347     void checkEmptyIf(JCIf tree) {
  3348         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3349                 lint.isEnabled(LintCategory.EMPTY))
  3350             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3353     /** Check that symbol is unique in given scope.
  3354      *  @param pos           Position for error reporting.
  3355      *  @param sym           The symbol.
  3356      *  @param s             The scope.
  3357      */
  3358     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3359         if (sym.type.isErroneous())
  3360             return true;
  3361         if (sym.owner.name == names.any) return false;
  3362         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3363             if (sym != e.sym &&
  3364                     (e.sym.flags() & CLASH) == 0 &&
  3365                     sym.kind == e.sym.kind &&
  3366                     sym.name != names.error &&
  3367                     (sym.kind != MTH ||
  3368                      types.hasSameArgs(sym.type, e.sym.type) ||
  3369                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3370                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3371                     varargsDuplicateError(pos, sym, e.sym);
  3372                     return true;
  3373                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3374                     duplicateErasureError(pos, sym, e.sym);
  3375                     sym.flags_field |= CLASH;
  3376                     return true;
  3377                 } else {
  3378                     duplicateError(pos, e.sym);
  3379                     return false;
  3383         return true;
  3386     /** Report duplicate declaration error.
  3387      */
  3388     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3389         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3390             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3394     /** Check that single-type import is not already imported or top-level defined,
  3395      *  but make an exception for two single-type imports which denote the same type.
  3396      *  @param pos           Position for error reporting.
  3397      *  @param sym           The symbol.
  3398      *  @param s             The scope
  3399      */
  3400     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3401         return checkUniqueImport(pos, sym, s, false);
  3404     /** Check that static single-type import is not already imported or top-level defined,
  3405      *  but make an exception for two single-type imports which denote the same type.
  3406      *  @param pos           Position for error reporting.
  3407      *  @param sym           The symbol.
  3408      *  @param s             The scope
  3409      */
  3410     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3411         return checkUniqueImport(pos, sym, s, true);
  3414     /** Check that single-type import is not already imported or top-level defined,
  3415      *  but make an exception for two single-type imports which denote the same type.
  3416      *  @param pos           Position for error reporting.
  3417      *  @param sym           The symbol.
  3418      *  @param s             The scope.
  3419      *  @param staticImport  Whether or not this was a static import
  3420      */
  3421     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3422         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3423             // is encountered class entered via a class declaration?
  3424             boolean isClassDecl = e.scope == s;
  3425             if ((isClassDecl || sym != e.sym) &&
  3426                 sym.kind == e.sym.kind &&
  3427                 sym.name != names.error &&
  3428                 (!staticImport || !e.isStaticallyImported())) {
  3429                 if (!e.sym.type.isErroneous()) {
  3430                     if (!isClassDecl) {
  3431                         if (staticImport)
  3432                             log.error(pos, "already.defined.static.single.import", e.sym);
  3433                         else
  3434                         log.error(pos, "already.defined.single.import", e.sym);
  3436                     else if (sym != e.sym)
  3437                         log.error(pos, "already.defined.this.unit", e.sym);
  3439                 return false;
  3442         return true;
  3445     /** Check that a qualified name is in canonical form (for import decls).
  3446      */
  3447     public void checkCanonical(JCTree tree) {
  3448         if (!isCanonical(tree))
  3449             log.error(tree.pos(), "import.requires.canonical",
  3450                       TreeInfo.symbol(tree));
  3452         // where
  3453         private boolean isCanonical(JCTree tree) {
  3454             while (tree.hasTag(SELECT)) {
  3455                 JCFieldAccess s = (JCFieldAccess) tree;
  3456                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3457                     return false;
  3458                 tree = s.selected;
  3460             return true;
  3463     /** Check that an auxiliary class is not accessed from any other file than its own.
  3464      */
  3465     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3466         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3467             (c.flags() & AUXILIARY) != 0 &&
  3468             rs.isAccessible(env, c) &&
  3469             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3471             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3472                         c, c.sourcefile);
  3476     private class ConversionWarner extends Warner {
  3477         final String uncheckedKey;
  3478         final Type found;
  3479         final Type expected;
  3480         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3481             super(pos);
  3482             this.uncheckedKey = uncheckedKey;
  3483             this.found = found;
  3484             this.expected = expected;
  3487         @Override
  3488         public void warn(LintCategory lint) {
  3489             boolean warned = this.warned;
  3490             super.warn(lint);
  3491             if (warned) return; // suppress redundant diagnostics
  3492             switch (lint) {
  3493                 case UNCHECKED:
  3494                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3495                     break;
  3496                 case VARARGS:
  3497                     if (method != null &&
  3498                             method.attribute(syms.trustMeType.tsym) != null &&
  3499                             isTrustMeAllowedOnMethod(method) &&
  3500                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3501                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3503                     break;
  3504                 default:
  3505                     throw new AssertionError("Unexpected lint: " + lint);
  3510     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3511         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3514     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3515         return new ConversionWarner(pos, "unchecked.assign", found, expected);
  3518     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
  3519         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
  3521         if (functionalType != null) {
  3522             try {
  3523                 types.findDescriptorSymbol((TypeSymbol)cs);
  3524             } catch (Types.FunctionDescriptorLookupError ex) {
  3525                 DiagnosticPosition pos = tree.pos();
  3526                 for (JCAnnotation a : tree.getModifiers().annotations) {
  3527                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  3528                         pos = a.pos();
  3529                         break;
  3532                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());

mercurial