src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 10 Oct 2013 20:12:08 -0400

author
emc
date
Thu, 10 Oct 2013 20:12:08 -0400
changeset 2103
b1b4a6dcc282
parent 2102
6dcf94e32a3a
child 2111
87b5bfef7edb
permissions
-rw-r--r--

8008762: Type annotation on inner class in anonymous class show up as regular type annotations
8015257: type annotation with TYPE_USE and FIELD attributed differently if repeated.
8013409: test failures for type annotations
Summary: Fixes to address some problems in type annotations
Reviewed-by: jfranck, jjg

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.tree.JCTree.*;
    47 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    49 import static com.sun.tools.javac.code.Flags.*;
    50 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    51 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    52 import static com.sun.tools.javac.code.Kinds.*;
    53 import static com.sun.tools.javac.code.TypeTag.*;
    54 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    56 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    58 /** Type checking helper class for the attribution phase.
    59  *
    60  *  <p><b>This is NOT part of any supported API.
    61  *  If you write code that depends on this, you do so at your own risk.
    62  *  This code and its internal interfaces are subject to change or
    63  *  deletion without notice.</b>
    64  */
    65 public class Check {
    66     protected static final Context.Key<Check> checkKey =
    67         new Context.Key<Check>();
    69     private final Names names;
    70     private final Log log;
    71     private final Resolve rs;
    72     private final Symtab syms;
    73     private final Enter enter;
    74     private final DeferredAttr deferredAttr;
    75     private final Infer infer;
    76     private final Types types;
    77     private final JCDiagnostic.Factory diags;
    78     private boolean warnOnSyntheticConflicts;
    79     private boolean suppressAbortOnBadClassFile;
    80     private boolean enableSunApiLintControl;
    81     private final TreeInfo treeinfo;
    82     private final JavaFileManager fileManager;
    83     private final Profile profile;
    85     // The set of lint options currently in effect. It is initialized
    86     // from the context, and then is set/reset as needed by Attr as it
    87     // visits all the various parts of the trees during attribution.
    88     private Lint lint;
    90     // The method being analyzed in Attr - it is set/reset as needed by
    91     // Attr as it visits new method declarations.
    92     private MethodSymbol method;
    94     public static Check instance(Context context) {
    95         Check instance = context.get(checkKey);
    96         if (instance == null)
    97             instance = new Check(context);
    98         return instance;
    99     }
   101     protected Check(Context context) {
   102         context.put(checkKey, this);
   104         names = Names.instance(context);
   105         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
   106             names.FIELD, names.METHOD, names.CONSTRUCTOR,
   107             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
   108         log = Log.instance(context);
   109         rs = Resolve.instance(context);
   110         syms = Symtab.instance(context);
   111         enter = Enter.instance(context);
   112         deferredAttr = DeferredAttr.instance(context);
   113         infer = Infer.instance(context);
   114         types = Types.instance(context);
   115         diags = JCDiagnostic.Factory.instance(context);
   116         Options options = Options.instance(context);
   117         lint = Lint.instance(context);
   118         treeinfo = TreeInfo.instance(context);
   119         fileManager = context.get(JavaFileManager.class);
   121         Source source = Source.instance(context);
   122         allowGenerics = source.allowGenerics();
   123         allowVarargs = source.allowVarargs();
   124         allowAnnotations = source.allowAnnotations();
   125         allowCovariantReturns = source.allowCovariantReturns();
   126         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   127         allowDefaultMethods = source.allowDefaultMethods();
   128         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
   129         complexInference = options.isSet("complexinference");
   130         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   131         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   132         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   134         Target target = Target.instance(context);
   135         syntheticNameChar = target.syntheticNameChar();
   137         profile = Profile.instance(context);
   139         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   140         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   141         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   142         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   144         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   145                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   146         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   147                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   148         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   149                 enforceMandatoryWarnings, "sunapi", null);
   151         deferredLintHandler = DeferredLintHandler.instance(context);
   152     }
   154     /** Switch: generics enabled?
   155      */
   156     boolean allowGenerics;
   158     /** Switch: varargs enabled?
   159      */
   160     boolean allowVarargs;
   162     /** Switch: annotations enabled?
   163      */
   164     boolean allowAnnotations;
   166     /** Switch: covariant returns enabled?
   167      */
   168     boolean allowCovariantReturns;
   170     /** Switch: simplified varargs enabled?
   171      */
   172     boolean allowSimplifiedVarargs;
   174     /** Switch: default methods enabled?
   175      */
   176     boolean allowDefaultMethods;
   178     /** Switch: should unrelated return types trigger a method clash?
   179      */
   180     boolean allowStrictMethodClashCheck;
   182     /** Switch: -complexinference option set?
   183      */
   184     boolean complexInference;
   186     /** Character for synthetic names
   187      */
   188     char syntheticNameChar;
   190     /** A table mapping flat names of all compiled classes in this run to their
   191      *  symbols; maintained from outside.
   192      */
   193     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   195     /** A handler for messages about deprecated usage.
   196      */
   197     private MandatoryWarningHandler deprecationHandler;
   199     /** A handler for messages about unchecked or unsafe usage.
   200      */
   201     private MandatoryWarningHandler uncheckedHandler;
   203     /** A handler for messages about using proprietary API.
   204      */
   205     private MandatoryWarningHandler sunApiHandler;
   207     /** A handler for deferred lint warnings.
   208      */
   209     private DeferredLintHandler deferredLintHandler;
   211 /* *************************************************************************
   212  * Errors and Warnings
   213  **************************************************************************/
   215     Lint setLint(Lint newLint) {
   216         Lint prev = lint;
   217         lint = newLint;
   218         return prev;
   219     }
   221     MethodSymbol setMethod(MethodSymbol newMethod) {
   222         MethodSymbol prev = method;
   223         method = newMethod;
   224         return prev;
   225     }
   227     /** Warn about deprecated symbol.
   228      *  @param pos        Position to be used for error reporting.
   229      *  @param sym        The deprecated symbol.
   230      */
   231     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   232         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   233             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   234     }
   236     /** Warn about unchecked operation.
   237      *  @param pos        Position to be used for error reporting.
   238      *  @param msg        A string describing the problem.
   239      */
   240     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   241         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   242             uncheckedHandler.report(pos, msg, args);
   243     }
   245     /** Warn about unsafe vararg method decl.
   246      *  @param pos        Position to be used for error reporting.
   247      */
   248     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   249         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   250             log.warning(LintCategory.VARARGS, pos, key, args);
   251     }
   253     /** Warn about using proprietary API.
   254      *  @param pos        Position to be used for error reporting.
   255      *  @param msg        A string describing the problem.
   256      */
   257     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   258         if (!lint.isSuppressed(LintCategory.SUNAPI))
   259             sunApiHandler.report(pos, msg, args);
   260     }
   262     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   263         if (lint.isEnabled(LintCategory.STATIC))
   264             log.warning(LintCategory.STATIC, pos, msg, args);
   265     }
   267     /**
   268      * Report any deferred diagnostics.
   269      */
   270     public void reportDeferredDiagnostics() {
   271         deprecationHandler.reportDeferredDiagnostic();
   272         uncheckedHandler.reportDeferredDiagnostic();
   273         sunApiHandler.reportDeferredDiagnostic();
   274     }
   277     /** Report a failure to complete a class.
   278      *  @param pos        Position to be used for error reporting.
   279      *  @param ex         The failure to report.
   280      */
   281     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   282         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
   283         if (ex instanceof ClassReader.BadClassFile
   284                 && !suppressAbortOnBadClassFile) throw new Abort();
   285         else return syms.errType;
   286     }
   288     /** Report an error that wrong type tag was found.
   289      *  @param pos        Position to be used for error reporting.
   290      *  @param required   An internationalized string describing the type tag
   291      *                    required.
   292      *  @param found      The type that was found.
   293      */
   294     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   295         // this error used to be raised by the parser,
   296         // but has been delayed to this point:
   297         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   298             log.error(pos, "illegal.start.of.type");
   299             return syms.errType;
   300         }
   301         log.error(pos, "type.found.req", found, required);
   302         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   303     }
   305     /** Report an error that symbol cannot be referenced before super
   306      *  has been called.
   307      *  @param pos        Position to be used for error reporting.
   308      *  @param sym        The referenced symbol.
   309      */
   310     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   311         log.error(pos, "cant.ref.before.ctor.called", sym);
   312     }
   314     /** Report duplicate declaration error.
   315      */
   316     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   317         if (!sym.type.isErroneous()) {
   318             Symbol location = sym.location();
   319             if (location.kind == MTH &&
   320                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   321                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   322                         kindName(sym.location()), kindName(sym.location().enclClass()),
   323                         sym.location().enclClass());
   324             } else {
   325                 log.error(pos, "already.defined", kindName(sym), sym,
   326                         kindName(sym.location()), sym.location());
   327             }
   328         }
   329     }
   331     /** Report array/varargs duplicate declaration
   332      */
   333     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   334         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   335             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   336         }
   337     }
   339 /* ************************************************************************
   340  * duplicate declaration checking
   341  *************************************************************************/
   343     /** Check that variable does not hide variable with same name in
   344      *  immediately enclosing local scope.
   345      *  @param pos           Position for error reporting.
   346      *  @param v             The symbol.
   347      *  @param s             The scope.
   348      */
   349     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   350         if (s.next != null) {
   351             for (Scope.Entry e = s.next.lookup(v.name);
   352                  e.scope != null && e.sym.owner == v.owner;
   353                  e = e.next()) {
   354                 if (e.sym.kind == VAR &&
   355                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   356                     v.name != names.error) {
   357                     duplicateError(pos, e.sym);
   358                     return;
   359                 }
   360             }
   361         }
   362     }
   364     /** Check that a class or interface does not hide a class or
   365      *  interface with same name in immediately enclosing local scope.
   366      *  @param pos           Position for error reporting.
   367      *  @param c             The symbol.
   368      *  @param s             The scope.
   369      */
   370     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   371         if (s.next != null) {
   372             for (Scope.Entry e = s.next.lookup(c.name);
   373                  e.scope != null && e.sym.owner == c.owner;
   374                  e = e.next()) {
   375                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   376                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   377                     c.name != names.error) {
   378                     duplicateError(pos, e.sym);
   379                     return;
   380                 }
   381             }
   382         }
   383     }
   385     /** Check that class does not have the same name as one of
   386      *  its enclosing classes, or as a class defined in its enclosing scope.
   387      *  return true if class is unique in its enclosing scope.
   388      *  @param pos           Position for error reporting.
   389      *  @param name          The class name.
   390      *  @param s             The enclosing scope.
   391      */
   392     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   393         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   394             if (e.sym.kind == TYP && e.sym.name != names.error) {
   395                 duplicateError(pos, e.sym);
   396                 return false;
   397             }
   398         }
   399         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   400             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   401                 duplicateError(pos, sym);
   402                 return true;
   403             }
   404         }
   405         return true;
   406     }
   408 /* *************************************************************************
   409  * Class name generation
   410  **************************************************************************/
   412     /** Return name of local class.
   413      *  This is of the form   {@code <enclClass> $ n <classname> }
   414      *  where
   415      *    enclClass is the flat name of the enclosing class,
   416      *    classname is the simple name of the local class
   417      */
   418     Name localClassName(ClassSymbol c) {
   419         for (int i=1; ; i++) {
   420             Name flatname = names.
   421                 fromString("" + c.owner.enclClass().flatname +
   422                            syntheticNameChar + i +
   423                            c.name);
   424             if (compiled.get(flatname) == null) return flatname;
   425         }
   426     }
   428 /* *************************************************************************
   429  * Type Checking
   430  **************************************************************************/
   432     /**
   433      * A check context is an object that can be used to perform compatibility
   434      * checks - depending on the check context, meaning of 'compatibility' might
   435      * vary significantly.
   436      */
   437     public interface CheckContext {
   438         /**
   439          * Is type 'found' compatible with type 'req' in given context
   440          */
   441         boolean compatible(Type found, Type req, Warner warn);
   442         /**
   443          * Report a check error
   444          */
   445         void report(DiagnosticPosition pos, JCDiagnostic details);
   446         /**
   447          * Obtain a warner for this check context
   448          */
   449         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   451         public Infer.InferenceContext inferenceContext();
   453         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   454     }
   456     /**
   457      * This class represent a check context that is nested within another check
   458      * context - useful to check sub-expressions. The default behavior simply
   459      * redirects all method calls to the enclosing check context leveraging
   460      * the forwarding pattern.
   461      */
   462     static class NestedCheckContext implements CheckContext {
   463         CheckContext enclosingContext;
   465         NestedCheckContext(CheckContext enclosingContext) {
   466             this.enclosingContext = enclosingContext;
   467         }
   469         public boolean compatible(Type found, Type req, Warner warn) {
   470             return enclosingContext.compatible(found, req, warn);
   471         }
   473         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   474             enclosingContext.report(pos, details);
   475         }
   477         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   478             return enclosingContext.checkWarner(pos, found, req);
   479         }
   481         public Infer.InferenceContext inferenceContext() {
   482             return enclosingContext.inferenceContext();
   483         }
   485         public DeferredAttrContext deferredAttrContext() {
   486             return enclosingContext.deferredAttrContext();
   487         }
   488     }
   490     /**
   491      * Check context to be used when evaluating assignment/return statements
   492      */
   493     CheckContext basicHandler = new CheckContext() {
   494         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   495             log.error(pos, "prob.found.req", details);
   496         }
   497         public boolean compatible(Type found, Type req, Warner warn) {
   498             return types.isAssignable(found, req, warn);
   499         }
   501         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   502             return convertWarner(pos, found, req);
   503         }
   505         public InferenceContext inferenceContext() {
   506             return infer.emptyContext;
   507         }
   509         public DeferredAttrContext deferredAttrContext() {
   510             return deferredAttr.emptyDeferredAttrContext;
   511         }
   512     };
   514     /** Check that a given type is assignable to a given proto-type.
   515      *  If it is, return the type, otherwise return errType.
   516      *  @param pos        Position to be used for error reporting.
   517      *  @param found      The type that was found.
   518      *  @param req        The type that was required.
   519      */
   520     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   521         return checkType(pos, found, req, basicHandler);
   522     }
   524     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   525         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   526         if (inferenceContext.free(req)) {
   527             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   528                 @Override
   529                 public void typesInferred(InferenceContext inferenceContext) {
   530                     checkType(pos, found, inferenceContext.asInstType(req), checkContext);
   531                 }
   532             });
   533         }
   534         if (req.hasTag(ERROR))
   535             return req;
   536         if (req.hasTag(NONE))
   537             return found;
   538         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   539             return found;
   540         } else {
   541             if (found.isNumeric() && req.isNumeric()) {
   542                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   543                 return types.createErrorType(found);
   544             }
   545             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   546             return types.createErrorType(found);
   547         }
   548     }
   550     /** Check that a given type can be cast to a given target type.
   551      *  Return the result of the cast.
   552      *  @param pos        Position to be used for error reporting.
   553      *  @param found      The type that is being cast.
   554      *  @param req        The target type of the cast.
   555      */
   556     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   557         return checkCastable(pos, found, req, basicHandler);
   558     }
   559     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   560         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   561             return req;
   562         } else {
   563             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   564             return types.createErrorType(found);
   565         }
   566     }
   568     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   569      * The problem should only be reported for non-292 cast
   570      */
   571     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
   572         if (!tree.type.isErroneous()
   573                 && types.isSameType(tree.expr.type, tree.clazz.type)
   574                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
   575                 && !is292targetTypeCast(tree)) {
   576             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
   577                 @Override
   578                 public void report() {
   579                     if (lint.isEnabled(Lint.LintCategory.CAST))
   580                         log.warning(Lint.LintCategory.CAST,
   581                                 tree.pos(), "redundant.cast", tree.expr.type);
   582                 }
   583             });
   584         }
   585     }
   586     //where
   587         private boolean is292targetTypeCast(JCTypeCast tree) {
   588             boolean is292targetTypeCast = false;
   589             JCExpression expr = TreeInfo.skipParens(tree.expr);
   590             if (expr.hasTag(APPLY)) {
   591                 JCMethodInvocation apply = (JCMethodInvocation)expr;
   592                 Symbol sym = TreeInfo.symbol(apply.meth);
   593                 is292targetTypeCast = sym != null &&
   594                     sym.kind == MTH &&
   595                     (sym.flags() & HYPOTHETICAL) != 0;
   596             }
   597             return is292targetTypeCast;
   598         }
   600         private static final boolean ignoreAnnotatedCasts = true;
   602     /** Check that a type is within some bounds.
   603      *
   604      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   605      *  type argument.
   606      *  @param a             The type that should be bounded by bs.
   607      *  @param bound         The bound.
   608      */
   609     private boolean checkExtends(Type a, Type bound) {
   610          if (a.isUnbound()) {
   611              return true;
   612          } else if (!a.hasTag(WILDCARD)) {
   613              a = types.upperBound(a);
   614              return types.isSubtype(a, bound);
   615          } else if (a.isExtendsBound()) {
   616              return types.isCastable(bound, types.upperBound(a), types.noWarnings);
   617          } else if (a.isSuperBound()) {
   618              return !types.notSoftSubtype(types.lowerBound(a), bound);
   619          }
   620          return true;
   621      }
   623     /** Check that type is different from 'void'.
   624      *  @param pos           Position to be used for error reporting.
   625      *  @param t             The type to be checked.
   626      */
   627     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   628         if (t.hasTag(VOID)) {
   629             log.error(pos, "void.not.allowed.here");
   630             return types.createErrorType(t);
   631         } else {
   632             return t;
   633         }
   634     }
   636     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
   637         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   638             return typeTagError(pos,
   639                                 diags.fragment("type.req.class.array"),
   640                                 asTypeParam(t));
   641         } else {
   642             return t;
   643         }
   644     }
   646     /** Check that type is a class or interface type.
   647      *  @param pos           Position to be used for error reporting.
   648      *  @param t             The type to be checked.
   649      */
   650     Type checkClassType(DiagnosticPosition pos, Type t) {
   651         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
   652             return typeTagError(pos,
   653                                 diags.fragment("type.req.class"),
   654                                 asTypeParam(t));
   655         } else {
   656             return t;
   657         }
   658     }
   659     //where
   660         private Object asTypeParam(Type t) {
   661             return (t.hasTag(TYPEVAR))
   662                                     ? diags.fragment("type.parameter", t)
   663                                     : t;
   664         }
   666     /** Check that type is a valid qualifier for a constructor reference expression
   667      */
   668     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   669         t = checkClassOrArrayType(pos, t);
   670         if (t.hasTag(CLASS)) {
   671             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   672                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
   673                 t = types.createErrorType(t);
   674             } else if ((t.tsym.flags() & ENUM) != 0) {
   675                 log.error(pos, "enum.cant.be.instantiated");
   676                 t = types.createErrorType(t);
   677             } else {
   678                 t = checkClassType(pos, t, true);
   679             }
   680         } else if (t.hasTag(ARRAY)) {
   681             if (!types.isReifiable(((ArrayType)t).elemtype)) {
   682                 log.error(pos, "generic.array.creation");
   683                 t = types.createErrorType(t);
   684             }
   685         }
   686         return t;
   687     }
   689     /** Check that type is a class or interface type.
   690      *  @param pos           Position to be used for error reporting.
   691      *  @param t             The type to be checked.
   692      *  @param noBounds    True if type bounds are illegal here.
   693      */
   694     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   695         t = checkClassType(pos, t);
   696         if (noBounds && t.isParameterized()) {
   697             List<Type> args = t.getTypeArguments();
   698             while (args.nonEmpty()) {
   699                 if (args.head.hasTag(WILDCARD))
   700                     return typeTagError(pos,
   701                                         diags.fragment("type.req.exact"),
   702                                         args.head);
   703                 args = args.tail;
   704             }
   705         }
   706         return t;
   707     }
   709     // Analog of checkClassType that calls checkClassOrArrayType instead
   710     Type checkClassOrArrayType(DiagnosticPosition pos,
   711                                Type t, boolean noBounds) {
   712         t = checkClassOrArrayType(pos, t);
   713         if (noBounds && t.isParameterized()) {
   714             List<Type> args = t.getTypeArguments();
   715             while (args.nonEmpty()) {
   716                 if (args.head.hasTag(WILDCARD))
   717                     return typeTagError(pos,
   718                                         diags.fragment("type.req.exact"),
   719                                         args.head);
   720                 args = args.tail;
   721             }
   722         }
   723         return t;
   724     }
   726     /** Check that type is a reifiable class, interface or array type.
   727      *  @param pos           Position to be used for error reporting.
   728      *  @param t             The type to be checked.
   729      */
   730     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   731         t = checkClassOrArrayType(pos, t);
   732         if (!t.isErroneous() && !types.isReifiable(t)) {
   733             log.error(pos, "illegal.generic.type.for.instof");
   734             return types.createErrorType(t);
   735         } else {
   736             return t;
   737         }
   738     }
   740     /** Check that type is a reference type, i.e. a class, interface or array type
   741      *  or a type variable.
   742      *  @param pos           Position to be used for error reporting.
   743      *  @param t             The type to be checked.
   744      */
   745     Type checkRefType(DiagnosticPosition pos, Type t) {
   746         if (t.isReference())
   747             return t;
   748         else
   749             return typeTagError(pos,
   750                                 diags.fragment("type.req.ref"),
   751                                 t);
   752     }
   754     /** Check that each type is a reference type, i.e. a class, interface or array type
   755      *  or a type variable.
   756      *  @param trees         Original trees, used for error reporting.
   757      *  @param types         The types to be checked.
   758      */
   759     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   760         List<JCExpression> tl = trees;
   761         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   762             l.head = checkRefType(tl.head.pos(), l.head);
   763             tl = tl.tail;
   764         }
   765         return types;
   766     }
   768     /** Check that type is a null or reference type.
   769      *  @param pos           Position to be used for error reporting.
   770      *  @param t             The type to be checked.
   771      */
   772     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   773         if (t.isReference() || t.hasTag(BOT))
   774             return t;
   775         else
   776             return typeTagError(pos,
   777                                 diags.fragment("type.req.ref"),
   778                                 t);
   779     }
   781     /** Check that flag set does not contain elements of two conflicting sets. s
   782      *  Return true if it doesn't.
   783      *  @param pos           Position to be used for error reporting.
   784      *  @param flags         The set of flags to be checked.
   785      *  @param set1          Conflicting flags set #1.
   786      *  @param set2          Conflicting flags set #2.
   787      */
   788     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   789         if ((flags & set1) != 0 && (flags & set2) != 0) {
   790             log.error(pos,
   791                       "illegal.combination.of.modifiers",
   792                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   793                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   794             return false;
   795         } else
   796             return true;
   797     }
   799     /** Check that usage of diamond operator is correct (i.e. diamond should not
   800      * be used with non-generic classes or in anonymous class creation expressions)
   801      */
   802     Type checkDiamond(JCNewClass tree, Type t) {
   803         if (!TreeInfo.isDiamond(tree) ||
   804                 t.isErroneous()) {
   805             return checkClassType(tree.clazz.pos(), t, true);
   806         } else if (tree.def != null) {
   807             log.error(tree.clazz.pos(),
   808                     "cant.apply.diamond.1",
   809                     t, diags.fragment("diamond.and.anon.class", t));
   810             return types.createErrorType(t);
   811         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   812             log.error(tree.clazz.pos(),
   813                 "cant.apply.diamond.1",
   814                 t, diags.fragment("diamond.non.generic", t));
   815             return types.createErrorType(t);
   816         } else if (tree.typeargs != null &&
   817                 tree.typeargs.nonEmpty()) {
   818             log.error(tree.clazz.pos(),
   819                 "cant.apply.diamond.1",
   820                 t, diags.fragment("diamond.and.explicit.params", t));
   821             return types.createErrorType(t);
   822         } else {
   823             return t;
   824         }
   825     }
   827     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   828         MethodSymbol m = tree.sym;
   829         if (!allowSimplifiedVarargs) return;
   830         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   831         Type varargElemType = null;
   832         if (m.isVarArgs()) {
   833             varargElemType = types.elemtype(tree.params.last().type);
   834         }
   835         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   836             if (varargElemType != null) {
   837                 log.error(tree,
   838                         "varargs.invalid.trustme.anno",
   839                         syms.trustMeType.tsym,
   840                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   841             } else {
   842                 log.error(tree,
   843                             "varargs.invalid.trustme.anno",
   844                             syms.trustMeType.tsym,
   845                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   846             }
   847         } else if (hasTrustMeAnno && varargElemType != null &&
   848                             types.isReifiable(varargElemType)) {
   849             warnUnsafeVararg(tree,
   850                             "varargs.redundant.trustme.anno",
   851                             syms.trustMeType.tsym,
   852                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   853         }
   854         else if (!hasTrustMeAnno && varargElemType != null &&
   855                 !types.isReifiable(varargElemType)) {
   856             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   857         }
   858     }
   859     //where
   860         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   861             return (s.flags() & VARARGS) != 0 &&
   862                 (s.isConstructor() ||
   863                     (s.flags() & (STATIC | FINAL)) != 0);
   864         }
   866     Type checkMethod(final Type mtype,
   867             final Symbol sym,
   868             final Env<AttrContext> env,
   869             final List<JCExpression> argtrees,
   870             final List<Type> argtypes,
   871             final boolean useVarargs,
   872             InferenceContext inferenceContext) {
   873         // System.out.println("call   : " + env.tree);
   874         // System.out.println("method : " + owntype);
   875         // System.out.println("actuals: " + argtypes);
   876         if (inferenceContext.free(mtype)) {
   877             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
   878                 public void typesInferred(InferenceContext inferenceContext) {
   879                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
   880                 }
   881             });
   882             return mtype;
   883         }
   884         Type owntype = mtype;
   885         List<Type> formals = owntype.getParameterTypes();
   886         List<Type> nonInferred = sym.type.getParameterTypes();
   887         if (nonInferred.length() != formals.length()) nonInferred = formals;
   888         Type last = useVarargs ? formals.last() : null;
   889         if (sym.name == names.init && sym.owner == syms.enumSym) {
   890             formals = formals.tail.tail;
   891             nonInferred = nonInferred.tail.tail;
   892         }
   893         List<JCExpression> args = argtrees;
   894         if (args != null) {
   895             //this is null when type-checking a method reference
   896             while (formals.head != last) {
   897                 JCTree arg = args.head;
   898                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
   899                 assertConvertible(arg, arg.type, formals.head, warn);
   900                 args = args.tail;
   901                 formals = formals.tail;
   902                 nonInferred = nonInferred.tail;
   903             }
   904             if (useVarargs) {
   905                 Type varArg = types.elemtype(last);
   906                 while (args.tail != null) {
   907                     JCTree arg = args.head;
   908                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   909                     assertConvertible(arg, arg.type, varArg, warn);
   910                     args = args.tail;
   911                 }
   912             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
   913                     allowVarargs) {
   914                 // non-varargs call to varargs method
   915                 Type varParam = owntype.getParameterTypes().last();
   916                 Type lastArg = argtypes.last();
   917                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   918                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   919                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   920                                 types.elemtype(varParam), varParam);
   921             }
   922         }
   923         if (useVarargs) {
   924             Type argtype = owntype.getParameterTypes().last();
   925             if (!types.isReifiable(argtype) &&
   926                 (!allowSimplifiedVarargs ||
   927                  sym.attribute(syms.trustMeType.tsym) == null ||
   928                  !isTrustMeAllowedOnMethod(sym))) {
   929                 warnUnchecked(env.tree.pos(),
   930                                   "unchecked.generic.array.creation",
   931                                   argtype);
   932             }
   933             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
   934                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
   935             }
   936          }
   937          PolyKind pkind = (sym.type.hasTag(FORALL) &&
   938                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
   939                  PolyKind.POLY : PolyKind.STANDALONE;
   940          TreeInfo.setPolyKind(env.tree, pkind);
   941          return owntype;
   942     }
   943     //where
   944     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   945         if (types.isConvertible(actual, formal, warn))
   946             return;
   948         if (formal.isCompound()
   949             && types.isSubtype(actual, types.supertype(formal))
   950             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   951             return;
   952     }
   954     /**
   955      * Check that type 't' is a valid instantiation of a generic class
   956      * (see JLS 4.5)
   957      *
   958      * @param t class type to be checked
   959      * @return true if 't' is well-formed
   960      */
   961     public boolean checkValidGenericType(Type t) {
   962         return firstIncompatibleTypeArg(t) == null;
   963     }
   964     //WHERE
   965         private Type firstIncompatibleTypeArg(Type type) {
   966             List<Type> formals = type.tsym.type.allparams();
   967             List<Type> actuals = type.allparams();
   968             List<Type> args = type.getTypeArguments();
   969             List<Type> forms = type.tsym.type.getTypeArguments();
   970             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   972             // For matching pairs of actual argument types `a' and
   973             // formal type parameters with declared bound `b' ...
   974             while (args.nonEmpty() && forms.nonEmpty()) {
   975                 // exact type arguments needs to know their
   976                 // bounds (for upper and lower bound
   977                 // calculations).  So we create new bounds where
   978                 // type-parameters are replaced with actuals argument types.
   979                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   980                 args = args.tail;
   981                 forms = forms.tail;
   982             }
   984             args = type.getTypeArguments();
   985             List<Type> tvars_cap = types.substBounds(formals,
   986                                       formals,
   987                                       types.capture(type).allparams());
   988             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   989                 // Let the actual arguments know their bound
   990                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   991                 args = args.tail;
   992                 tvars_cap = tvars_cap.tail;
   993             }
   995             args = type.getTypeArguments();
   996             List<Type> bounds = bounds_buf.toList();
   998             while (args.nonEmpty() && bounds.nonEmpty()) {
   999                 Type actual = args.head;
  1000                 if (!isTypeArgErroneous(actual) &&
  1001                         !bounds.head.isErroneous() &&
  1002                         !checkExtends(actual, bounds.head)) {
  1003                     return args.head;
  1005                 args = args.tail;
  1006                 bounds = bounds.tail;
  1009             args = type.getTypeArguments();
  1010             bounds = bounds_buf.toList();
  1012             for (Type arg : types.capture(type).getTypeArguments()) {
  1013                 if (arg.hasTag(TYPEVAR) &&
  1014                         arg.getUpperBound().isErroneous() &&
  1015                         !bounds.head.isErroneous() &&
  1016                         !isTypeArgErroneous(args.head)) {
  1017                     return args.head;
  1019                 bounds = bounds.tail;
  1020                 args = args.tail;
  1023             return null;
  1025         //where
  1026         boolean isTypeArgErroneous(Type t) {
  1027             return isTypeArgErroneous.visit(t);
  1030         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1031             public Boolean visitType(Type t, Void s) {
  1032                 return t.isErroneous();
  1034             @Override
  1035             public Boolean visitTypeVar(TypeVar t, Void s) {
  1036                 return visit(t.getUpperBound());
  1038             @Override
  1039             public Boolean visitCapturedType(CapturedType t, Void s) {
  1040                 return visit(t.getUpperBound()) ||
  1041                         visit(t.getLowerBound());
  1043             @Override
  1044             public Boolean visitWildcardType(WildcardType t, Void s) {
  1045                 return visit(t.type);
  1047         };
  1049     /** Check that given modifiers are legal for given symbol and
  1050      *  return modifiers together with any implicit modifiers for that symbol.
  1051      *  Warning: we can't use flags() here since this method
  1052      *  is called during class enter, when flags() would cause a premature
  1053      *  completion.
  1054      *  @param pos           Position to be used for error reporting.
  1055      *  @param flags         The set of modifiers given in a definition.
  1056      *  @param sym           The defined symbol.
  1057      */
  1058     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1059         long mask;
  1060         long implicit = 0;
  1062         switch (sym.kind) {
  1063         case VAR:
  1064             if (sym.owner.kind != TYP)
  1065                 mask = LocalVarFlags;
  1066             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1067                 mask = implicit = InterfaceVarFlags;
  1068             else
  1069                 mask = VarFlags;
  1070             break;
  1071         case MTH:
  1072             if (sym.name == names.init) {
  1073                 if ((sym.owner.flags_field & ENUM) != 0) {
  1074                     // enum constructors cannot be declared public or
  1075                     // protected and must be implicitly or explicitly
  1076                     // private
  1077                     implicit = PRIVATE;
  1078                     mask = PRIVATE;
  1079                 } else
  1080                     mask = ConstructorFlags;
  1081             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1082                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
  1083                     mask = AnnotationTypeElementMask;
  1084                     implicit = PUBLIC | ABSTRACT;
  1085                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
  1086                     mask = InterfaceMethodMask;
  1087                     implicit = PUBLIC;
  1088                     if ((flags & DEFAULT) != 0) {
  1089                         implicit |= ABSTRACT;
  1091                 } else {
  1092                     mask = implicit = InterfaceMethodFlags;
  1094             } else {
  1095                 mask = MethodFlags;
  1097             // Imply STRICTFP if owner has STRICTFP set.
  1098             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
  1099                 ((flags) & Flags.DEFAULT) != 0)
  1100                 implicit |= sym.owner.flags_field & STRICTFP;
  1101             break;
  1102         case TYP:
  1103             if (sym.isLocal()) {
  1104                 mask = LocalClassFlags;
  1105                 if (sym.name.isEmpty()) { // Anonymous class
  1106                     // Anonymous classes in static methods are themselves static;
  1107                     // that's why we admit STATIC here.
  1108                     mask |= STATIC;
  1109                     // JLS: Anonymous classes are final.
  1110                     implicit |= FINAL;
  1112                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1113                     (flags & ENUM) != 0)
  1114                     log.error(pos, "enums.must.be.static");
  1115             } else if (sym.owner.kind == TYP) {
  1116                 mask = MemberClassFlags;
  1117                 if (sym.owner.owner.kind == PCK ||
  1118                     (sym.owner.flags_field & STATIC) != 0)
  1119                     mask |= STATIC;
  1120                 else if ((flags & ENUM) != 0)
  1121                     log.error(pos, "enums.must.be.static");
  1122                 // Nested interfaces and enums are always STATIC (Spec ???)
  1123                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1124             } else {
  1125                 mask = ClassFlags;
  1127             // Interfaces are always ABSTRACT
  1128             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1130             if ((flags & ENUM) != 0) {
  1131                 // enums can't be declared abstract or final
  1132                 mask &= ~(ABSTRACT | FINAL);
  1133                 implicit |= implicitEnumFinalFlag(tree);
  1135             // Imply STRICTFP if owner has STRICTFP set.
  1136             implicit |= sym.owner.flags_field & STRICTFP;
  1137             break;
  1138         default:
  1139             throw new AssertionError();
  1141         long illegal = flags & ExtendedStandardFlags & ~mask;
  1142         if (illegal != 0) {
  1143             if ((illegal & INTERFACE) != 0) {
  1144                 log.error(pos, "intf.not.allowed.here");
  1145                 mask |= INTERFACE;
  1147             else {
  1148                 log.error(pos,
  1149                           "mod.not.allowed.here", asFlagSet(illegal));
  1152         else if ((sym.kind == TYP ||
  1153                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1154                   // in the presence of inner classes. Should it be deleted here?
  1155                   checkDisjoint(pos, flags,
  1156                                 ABSTRACT,
  1157                                 PRIVATE | STATIC | DEFAULT))
  1158                  &&
  1159                  checkDisjoint(pos, flags,
  1160                                 STATIC,
  1161                                 DEFAULT)
  1162                  &&
  1163                  checkDisjoint(pos, flags,
  1164                                ABSTRACT | INTERFACE,
  1165                                FINAL | NATIVE | SYNCHRONIZED)
  1166                  &&
  1167                  checkDisjoint(pos, flags,
  1168                                PUBLIC,
  1169                                PRIVATE | PROTECTED)
  1170                  &&
  1171                  checkDisjoint(pos, flags,
  1172                                PRIVATE,
  1173                                PUBLIC | PROTECTED)
  1174                  &&
  1175                  checkDisjoint(pos, flags,
  1176                                FINAL,
  1177                                VOLATILE)
  1178                  &&
  1179                  (sym.kind == TYP ||
  1180                   checkDisjoint(pos, flags,
  1181                                 ABSTRACT | NATIVE,
  1182                                 STRICTFP))) {
  1183             // skip
  1185         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1189     /** Determine if this enum should be implicitly final.
  1191      *  If the enum has no specialized enum contants, it is final.
  1193      *  If the enum does have specialized enum contants, it is
  1194      *  <i>not</i> final.
  1195      */
  1196     private long implicitEnumFinalFlag(JCTree tree) {
  1197         if (!tree.hasTag(CLASSDEF)) return 0;
  1198         class SpecialTreeVisitor extends JCTree.Visitor {
  1199             boolean specialized;
  1200             SpecialTreeVisitor() {
  1201                 this.specialized = false;
  1202             };
  1204             @Override
  1205             public void visitTree(JCTree tree) { /* no-op */ }
  1207             @Override
  1208             public void visitVarDef(JCVariableDecl tree) {
  1209                 if ((tree.mods.flags & ENUM) != 0) {
  1210                     if (tree.init instanceof JCNewClass &&
  1211                         ((JCNewClass) tree.init).def != null) {
  1212                         specialized = true;
  1218         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1219         JCClassDecl cdef = (JCClassDecl) tree;
  1220         for (JCTree defs: cdef.defs) {
  1221             defs.accept(sts);
  1222             if (sts.specialized) return 0;
  1224         return FINAL;
  1227 /* *************************************************************************
  1228  * Type Validation
  1229  **************************************************************************/
  1231     /** Validate a type expression. That is,
  1232      *  check that all type arguments of a parametric type are within
  1233      *  their bounds. This must be done in a second phase after type attribution
  1234      *  since a class might have a subclass as type parameter bound. E.g:
  1236      *  <pre>{@code
  1237      *  class B<A extends C> { ... }
  1238      *  class C extends B<C> { ... }
  1239      *  }</pre>
  1241      *  and we can't make sure that the bound is already attributed because
  1242      *  of possible cycles.
  1244      * Visitor method: Validate a type expression, if it is not null, catching
  1245      *  and reporting any completion failures.
  1246      */
  1247     void validate(JCTree tree, Env<AttrContext> env) {
  1248         validate(tree, env, true);
  1250     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1251         new Validator(env).validateTree(tree, checkRaw, true);
  1254     /** Visitor method: Validate a list of type expressions.
  1255      */
  1256     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1257         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1258             validate(l.head, env);
  1261     /** A visitor class for type validation.
  1262      */
  1263     class Validator extends JCTree.Visitor {
  1265         boolean checkRaw;
  1266         boolean isOuter;
  1267         Env<AttrContext> env;
  1269         Validator(Env<AttrContext> env) {
  1270             this.env = env;
  1273         @Override
  1274         public void visitTypeArray(JCArrayTypeTree tree) {
  1275             validateTree(tree.elemtype, checkRaw, isOuter);
  1278         @Override
  1279         public void visitTypeApply(JCTypeApply tree) {
  1280             if (tree.type.hasTag(CLASS)) {
  1281                 List<JCExpression> args = tree.arguments;
  1282                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1284                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1285                 if (incompatibleArg != null) {
  1286                     for (JCTree arg : tree.arguments) {
  1287                         if (arg.type == incompatibleArg) {
  1288                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1290                         forms = forms.tail;
  1294                 forms = tree.type.tsym.type.getTypeArguments();
  1296                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1298                 // For matching pairs of actual argument types `a' and
  1299                 // formal type parameters with declared bound `b' ...
  1300                 while (args.nonEmpty() && forms.nonEmpty()) {
  1301                     validateTree(args.head,
  1302                             !(isOuter && is_java_lang_Class),
  1303                             false);
  1304                     args = args.tail;
  1305                     forms = forms.tail;
  1308                 // Check that this type is either fully parameterized, or
  1309                 // not parameterized at all.
  1310                 if (tree.type.getEnclosingType().isRaw())
  1311                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1312                 if (tree.clazz.hasTag(SELECT))
  1313                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1317         @Override
  1318         public void visitTypeParameter(JCTypeParameter tree) {
  1319             validateTrees(tree.bounds, true, isOuter);
  1320             checkClassBounds(tree.pos(), tree.type);
  1323         @Override
  1324         public void visitWildcard(JCWildcard tree) {
  1325             if (tree.inner != null)
  1326                 validateTree(tree.inner, true, isOuter);
  1329         @Override
  1330         public void visitSelect(JCFieldAccess tree) {
  1331             if (tree.type.hasTag(CLASS)) {
  1332                 visitSelectInternal(tree);
  1334                 // Check that this type is either fully parameterized, or
  1335                 // not parameterized at all.
  1336                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1337                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1341         public void visitSelectInternal(JCFieldAccess tree) {
  1342             if (tree.type.tsym.isStatic() &&
  1343                 tree.selected.type.isParameterized()) {
  1344                 // The enclosing type is not a class, so we are
  1345                 // looking at a static member type.  However, the
  1346                 // qualifying expression is parameterized.
  1347                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1348             } else {
  1349                 // otherwise validate the rest of the expression
  1350                 tree.selected.accept(this);
  1354         @Override
  1355         public void visitAnnotatedType(JCAnnotatedType tree) {
  1356             tree.underlyingType.accept(this);
  1359         /** Default visitor method: do nothing.
  1360          */
  1361         @Override
  1362         public void visitTree(JCTree tree) {
  1365         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1366             if (tree != null) {
  1367                 boolean prevCheckRaw = this.checkRaw;
  1368                 this.checkRaw = checkRaw;
  1369                 this.isOuter = isOuter;
  1371                 try {
  1372                     tree.accept(this);
  1373                     if (checkRaw)
  1374                         checkRaw(tree, env);
  1375                 } catch (CompletionFailure ex) {
  1376                     completionError(tree.pos(), ex);
  1377                 } finally {
  1378                     this.checkRaw = prevCheckRaw;
  1383         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1384             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1385                 validateTree(l.head, checkRaw, isOuter);
  1389     void checkRaw(JCTree tree, Env<AttrContext> env) {
  1390         if (lint.isEnabled(LintCategory.RAW) &&
  1391             tree.type.hasTag(CLASS) &&
  1392             !TreeInfo.isDiamond(tree) &&
  1393             !withinAnonConstr(env) &&
  1394             tree.type.isRaw()) {
  1395             log.warning(LintCategory.RAW,
  1396                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1399     //where
  1400         private boolean withinAnonConstr(Env<AttrContext> env) {
  1401             return env.enclClass.name.isEmpty() &&
  1402                     env.enclMethod != null && env.enclMethod.name == names.init;
  1405 /* *************************************************************************
  1406  * Exception checking
  1407  **************************************************************************/
  1409     /* The following methods treat classes as sets that contain
  1410      * the class itself and all their subclasses
  1411      */
  1413     /** Is given type a subtype of some of the types in given list?
  1414      */
  1415     boolean subset(Type t, List<Type> ts) {
  1416         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1417             if (types.isSubtype(t, l.head)) return true;
  1418         return false;
  1421     /** Is given type a subtype or supertype of
  1422      *  some of the types in given list?
  1423      */
  1424     boolean intersects(Type t, List<Type> ts) {
  1425         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1426             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1427         return false;
  1430     /** Add type set to given type list, unless it is a subclass of some class
  1431      *  in the list.
  1432      */
  1433     List<Type> incl(Type t, List<Type> ts) {
  1434         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1437     /** Remove type set from type set list.
  1438      */
  1439     List<Type> excl(Type t, List<Type> ts) {
  1440         if (ts.isEmpty()) {
  1441             return ts;
  1442         } else {
  1443             List<Type> ts1 = excl(t, ts.tail);
  1444             if (types.isSubtype(ts.head, t)) return ts1;
  1445             else if (ts1 == ts.tail) return ts;
  1446             else return ts1.prepend(ts.head);
  1450     /** Form the union of two type set lists.
  1451      */
  1452     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1453         List<Type> ts = ts1;
  1454         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1455             ts = incl(l.head, ts);
  1456         return ts;
  1459     /** Form the difference of two type lists.
  1460      */
  1461     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1462         List<Type> ts = ts1;
  1463         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1464             ts = excl(l.head, ts);
  1465         return ts;
  1468     /** Form the intersection of two type lists.
  1469      */
  1470     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1471         List<Type> ts = List.nil();
  1472         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1473             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1474         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1475             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1476         return ts;
  1479     /** Is exc an exception symbol that need not be declared?
  1480      */
  1481     boolean isUnchecked(ClassSymbol exc) {
  1482         return
  1483             exc.kind == ERR ||
  1484             exc.isSubClass(syms.errorType.tsym, types) ||
  1485             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1488     /** Is exc an exception type that need not be declared?
  1489      */
  1490     boolean isUnchecked(Type exc) {
  1491         return
  1492             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1493             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1494             exc.hasTag(BOT);
  1497     /** Same, but handling completion failures.
  1498      */
  1499     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1500         try {
  1501             return isUnchecked(exc);
  1502         } catch (CompletionFailure ex) {
  1503             completionError(pos, ex);
  1504             return true;
  1508     /** Is exc handled by given exception list?
  1509      */
  1510     boolean isHandled(Type exc, List<Type> handled) {
  1511         return isUnchecked(exc) || subset(exc, handled);
  1514     /** Return all exceptions in thrown list that are not in handled list.
  1515      *  @param thrown     The list of thrown exceptions.
  1516      *  @param handled    The list of handled exceptions.
  1517      */
  1518     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1519         List<Type> unhandled = List.nil();
  1520         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1521             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1522         return unhandled;
  1525 /* *************************************************************************
  1526  * Overriding/Implementation checking
  1527  **************************************************************************/
  1529     /** The level of access protection given by a flag set,
  1530      *  where PRIVATE is highest and PUBLIC is lowest.
  1531      */
  1532     static int protection(long flags) {
  1533         switch ((short)(flags & AccessFlags)) {
  1534         case PRIVATE: return 3;
  1535         case PROTECTED: return 1;
  1536         default:
  1537         case PUBLIC: return 0;
  1538         case 0: return 2;
  1542     /** A customized "cannot override" error message.
  1543      *  @param m      The overriding method.
  1544      *  @param other  The overridden method.
  1545      *  @return       An internationalized string.
  1546      */
  1547     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1548         String key;
  1549         if ((other.owner.flags() & INTERFACE) == 0)
  1550             key = "cant.override";
  1551         else if ((m.owner.flags() & INTERFACE) == 0)
  1552             key = "cant.implement";
  1553         else
  1554             key = "clashes.with";
  1555         return diags.fragment(key, m, m.location(), other, other.location());
  1558     /** A customized "override" warning message.
  1559      *  @param m      The overriding method.
  1560      *  @param other  The overridden method.
  1561      *  @return       An internationalized string.
  1562      */
  1563     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1564         String key;
  1565         if ((other.owner.flags() & INTERFACE) == 0)
  1566             key = "unchecked.override";
  1567         else if ((m.owner.flags() & INTERFACE) == 0)
  1568             key = "unchecked.implement";
  1569         else
  1570             key = "unchecked.clash.with";
  1571         return diags.fragment(key, m, m.location(), other, other.location());
  1574     /** A customized "override" warning message.
  1575      *  @param m      The overriding method.
  1576      *  @param other  The overridden method.
  1577      *  @return       An internationalized string.
  1578      */
  1579     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1580         String key;
  1581         if ((other.owner.flags() & INTERFACE) == 0)
  1582             key = "varargs.override";
  1583         else  if ((m.owner.flags() & INTERFACE) == 0)
  1584             key = "varargs.implement";
  1585         else
  1586             key = "varargs.clash.with";
  1587         return diags.fragment(key, m, m.location(), other, other.location());
  1590     /** Check that this method conforms with overridden method 'other'.
  1591      *  where `origin' is the class where checking started.
  1592      *  Complications:
  1593      *  (1) Do not check overriding of synthetic methods
  1594      *      (reason: they might be final).
  1595      *      todo: check whether this is still necessary.
  1596      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1597      *      than the method it implements. Augment the proxy methods with the
  1598      *      undeclared exceptions in this case.
  1599      *  (3) When generics are enabled, admit the case where an interface proxy
  1600      *      has a result type
  1601      *      extended by the result type of the method it implements.
  1602      *      Change the proxies result type to the smaller type in this case.
  1604      *  @param tree         The tree from which positions
  1605      *                      are extracted for errors.
  1606      *  @param m            The overriding method.
  1607      *  @param other        The overridden method.
  1608      *  @param origin       The class of which the overriding method
  1609      *                      is a member.
  1610      */
  1611     void checkOverride(JCTree tree,
  1612                        MethodSymbol m,
  1613                        MethodSymbol other,
  1614                        ClassSymbol origin) {
  1615         // Don't check overriding of synthetic methods or by bridge methods.
  1616         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1617             return;
  1620         // Error if static method overrides instance method (JLS 8.4.6.2).
  1621         if ((m.flags() & STATIC) != 0 &&
  1622                    (other.flags() & STATIC) == 0) {
  1623             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1624                       cannotOverride(m, other));
  1625             m.flags_field |= BAD_OVERRIDE;
  1626             return;
  1629         // Error if instance method overrides static or final
  1630         // method (JLS 8.4.6.1).
  1631         if ((other.flags() & FINAL) != 0 ||
  1632                  (m.flags() & STATIC) == 0 &&
  1633                  (other.flags() & STATIC) != 0) {
  1634             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1635                       cannotOverride(m, other),
  1636                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1637             m.flags_field |= BAD_OVERRIDE;
  1638             return;
  1641         if ((m.owner.flags() & ANNOTATION) != 0) {
  1642             // handled in validateAnnotationMethod
  1643             return;
  1646         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1647         if ((origin.flags() & INTERFACE) == 0 &&
  1648                  protection(m.flags()) > protection(other.flags())) {
  1649             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1650                       cannotOverride(m, other),
  1651                       other.flags() == 0 ?
  1652                           "package" :
  1653                           asFlagSet(other.flags() & AccessFlags));
  1654             m.flags_field |= BAD_OVERRIDE;
  1655             return;
  1658         Type mt = types.memberType(origin.type, m);
  1659         Type ot = types.memberType(origin.type, other);
  1660         // Error if overriding result type is different
  1661         // (or, in the case of generics mode, not a subtype) of
  1662         // overridden result type. We have to rename any type parameters
  1663         // before comparing types.
  1664         List<Type> mtvars = mt.getTypeArguments();
  1665         List<Type> otvars = ot.getTypeArguments();
  1666         Type mtres = mt.getReturnType();
  1667         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1669         overrideWarner.clear();
  1670         boolean resultTypesOK =
  1671             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1672         if (!resultTypesOK) {
  1673             if (!allowCovariantReturns &&
  1674                 m.owner != origin &&
  1675                 m.owner.isSubClass(other.owner, types)) {
  1676                 // allow limited interoperability with covariant returns
  1677             } else {
  1678                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1679                           "override.incompatible.ret",
  1680                           cannotOverride(m, other),
  1681                           mtres, otres);
  1682                 m.flags_field |= BAD_OVERRIDE;
  1683                 return;
  1685         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1686             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1687                     "override.unchecked.ret",
  1688                     uncheckedOverrides(m, other),
  1689                     mtres, otres);
  1692         // Error if overriding method throws an exception not reported
  1693         // by overridden method.
  1694         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1695         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1696         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1697         if (unhandledErased.nonEmpty()) {
  1698             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1699                       "override.meth.doesnt.throw",
  1700                       cannotOverride(m, other),
  1701                       unhandledUnerased.head);
  1702             m.flags_field |= BAD_OVERRIDE;
  1703             return;
  1705         else if (unhandledUnerased.nonEmpty()) {
  1706             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1707                           "override.unchecked.thrown",
  1708                          cannotOverride(m, other),
  1709                          unhandledUnerased.head);
  1710             return;
  1713         // Optional warning if varargs don't agree
  1714         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1715             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1716             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1717                         ((m.flags() & Flags.VARARGS) != 0)
  1718                         ? "override.varargs.missing"
  1719                         : "override.varargs.extra",
  1720                         varargsOverrides(m, other));
  1723         // Warn if instance method overrides bridge method (compiler spec ??)
  1724         if ((other.flags() & BRIDGE) != 0) {
  1725             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1726                         uncheckedOverrides(m, other));
  1729         // Warn if a deprecated method overridden by a non-deprecated one.
  1730         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1731             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1734     // where
  1735         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1736             // If the method, m, is defined in an interface, then ignore the issue if the method
  1737             // is only inherited via a supertype and also implemented in the supertype,
  1738             // because in that case, we will rediscover the issue when examining the method
  1739             // in the supertype.
  1740             // If the method, m, is not defined in an interface, then the only time we need to
  1741             // address the issue is when the method is the supertype implemementation: any other
  1742             // case, we will have dealt with when examining the supertype classes
  1743             ClassSymbol mc = m.enclClass();
  1744             Type st = types.supertype(origin.type);
  1745             if (!st.hasTag(CLASS))
  1746                 return true;
  1747             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1749             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1750                 List<Type> intfs = types.interfaces(origin.type);
  1751                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1753             else
  1754                 return (stimpl != m);
  1758     // used to check if there were any unchecked conversions
  1759     Warner overrideWarner = new Warner();
  1761     /** Check that a class does not inherit two concrete methods
  1762      *  with the same signature.
  1763      *  @param pos          Position to be used for error reporting.
  1764      *  @param site         The class type to be checked.
  1765      */
  1766     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1767         Type sup = types.supertype(site);
  1768         if (!sup.hasTag(CLASS)) return;
  1770         for (Type t1 = sup;
  1771              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
  1772              t1 = types.supertype(t1)) {
  1773             for (Scope.Entry e1 = t1.tsym.members().elems;
  1774                  e1 != null;
  1775                  e1 = e1.sibling) {
  1776                 Symbol s1 = e1.sym;
  1777                 if (s1.kind != MTH ||
  1778                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1779                     !s1.isInheritedIn(site.tsym, types) ||
  1780                     ((MethodSymbol)s1).implementation(site.tsym,
  1781                                                       types,
  1782                                                       true) != s1)
  1783                     continue;
  1784                 Type st1 = types.memberType(t1, s1);
  1785                 int s1ArgsLength = st1.getParameterTypes().length();
  1786                 if (st1 == s1.type) continue;
  1788                 for (Type t2 = sup;
  1789                      t2.hasTag(CLASS);
  1790                      t2 = types.supertype(t2)) {
  1791                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1792                          e2.scope != null;
  1793                          e2 = e2.next()) {
  1794                         Symbol s2 = e2.sym;
  1795                         if (s2 == s1 ||
  1796                             s2.kind != MTH ||
  1797                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1798                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1799                             !s2.isInheritedIn(site.tsym, types) ||
  1800                             ((MethodSymbol)s2).implementation(site.tsym,
  1801                                                               types,
  1802                                                               true) != s2)
  1803                             continue;
  1804                         Type st2 = types.memberType(t2, s2);
  1805                         if (types.overrideEquivalent(st1, st2))
  1806                             log.error(pos, "concrete.inheritance.conflict",
  1807                                       s1, t1, s2, t2, sup);
  1814     /** Check that classes (or interfaces) do not each define an abstract
  1815      *  method with same name and arguments but incompatible return types.
  1816      *  @param pos          Position to be used for error reporting.
  1817      *  @param t1           The first argument type.
  1818      *  @param t2           The second argument type.
  1819      */
  1820     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1821                                             Type t1,
  1822                                             Type t2) {
  1823         return checkCompatibleAbstracts(pos, t1, t2,
  1824                                         types.makeCompoundType(t1, t2));
  1827     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1828                                             Type t1,
  1829                                             Type t2,
  1830                                             Type site) {
  1831         return firstIncompatibility(pos, t1, t2, site) == null;
  1834     /** Return the first method which is defined with same args
  1835      *  but different return types in two given interfaces, or null if none
  1836      *  exists.
  1837      *  @param t1     The first type.
  1838      *  @param t2     The second type.
  1839      *  @param site   The most derived type.
  1840      *  @returns symbol from t2 that conflicts with one in t1.
  1841      */
  1842     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1843         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1844         closure(t1, interfaces1);
  1845         Map<TypeSymbol,Type> interfaces2;
  1846         if (t1 == t2)
  1847             interfaces2 = interfaces1;
  1848         else
  1849             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1851         for (Type t3 : interfaces1.values()) {
  1852             for (Type t4 : interfaces2.values()) {
  1853                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1854                 if (s != null) return s;
  1857         return null;
  1860     /** Compute all the supertypes of t, indexed by type symbol. */
  1861     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1862         if (!t.hasTag(CLASS)) return;
  1863         if (typeMap.put(t.tsym, t) == null) {
  1864             closure(types.supertype(t), typeMap);
  1865             for (Type i : types.interfaces(t))
  1866                 closure(i, typeMap);
  1870     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1871     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1872         if (!t.hasTag(CLASS)) return;
  1873         if (typesSkip.get(t.tsym) != null) return;
  1874         if (typeMap.put(t.tsym, t) == null) {
  1875             closure(types.supertype(t), typesSkip, typeMap);
  1876             for (Type i : types.interfaces(t))
  1877                 closure(i, typesSkip, typeMap);
  1881     /** Return the first method in t2 that conflicts with a method from t1. */
  1882     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1883         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1884             Symbol s1 = e1.sym;
  1885             Type st1 = null;
  1886             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
  1887                     (s1.flags() & SYNTHETIC) != 0) continue;
  1888             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1889             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1890             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1891                 Symbol s2 = e2.sym;
  1892                 if (s1 == s2) continue;
  1893                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
  1894                         (s2.flags() & SYNTHETIC) != 0) continue;
  1895                 if (st1 == null) st1 = types.memberType(t1, s1);
  1896                 Type st2 = types.memberType(t2, s2);
  1897                 if (types.overrideEquivalent(st1, st2)) {
  1898                     List<Type> tvars1 = st1.getTypeArguments();
  1899                     List<Type> tvars2 = st2.getTypeArguments();
  1900                     Type rt1 = st1.getReturnType();
  1901                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1902                     boolean compat =
  1903                         types.isSameType(rt1, rt2) ||
  1904                         !rt1.isPrimitiveOrVoid() &&
  1905                         !rt2.isPrimitiveOrVoid() &&
  1906                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
  1907                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
  1908                          checkCommonOverriderIn(s1,s2,site);
  1909                     if (!compat) {
  1910                         log.error(pos, "types.incompatible.diff.ret",
  1911                             t1, t2, s2.name +
  1912                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1913                         return s2;
  1915                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1916                         !checkCommonOverriderIn(s1, s2, site)) {
  1917                     log.error(pos,
  1918                             "name.clash.same.erasure.no.override",
  1919                             s1, s1.location(),
  1920                             s2, s2.location());
  1921                     return s2;
  1925         return null;
  1927     //WHERE
  1928     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1929         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1930         Type st1 = types.memberType(site, s1);
  1931         Type st2 = types.memberType(site, s2);
  1932         closure(site, supertypes);
  1933         for (Type t : supertypes.values()) {
  1934             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1935                 Symbol s3 = e.sym;
  1936                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1937                 Type st3 = types.memberType(site,s3);
  1938                 if (types.overrideEquivalent(st3, st1) &&
  1939                         types.overrideEquivalent(st3, st2) &&
  1940                         types.returnTypeSubstitutable(st3, st1) &&
  1941                         types.returnTypeSubstitutable(st3, st2)) {
  1942                     return true;
  1946         return false;
  1949     /** Check that a given method conforms with any method it overrides.
  1950      *  @param tree         The tree from which positions are extracted
  1951      *                      for errors.
  1952      *  @param m            The overriding method.
  1953      */
  1954     void checkOverride(JCTree tree, MethodSymbol m) {
  1955         ClassSymbol origin = (ClassSymbol)m.owner;
  1956         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1957             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1958                 log.error(tree.pos(), "enum.no.finalize");
  1959                 return;
  1961         for (Type t = origin.type; t.hasTag(CLASS);
  1962              t = types.supertype(t)) {
  1963             if (t != origin.type) {
  1964                 checkOverride(tree, t, origin, m);
  1966             for (Type t2 : types.interfaces(t)) {
  1967                 checkOverride(tree, t2, origin, m);
  1972     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1973         TypeSymbol c = site.tsym;
  1974         Scope.Entry e = c.members().lookup(m.name);
  1975         while (e.scope != null) {
  1976             if (m.overrides(e.sym, origin, types, false)) {
  1977                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1978                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1981             e = e.next();
  1985     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
  1986         public boolean accepts(Symbol s) {
  1987             return MethodSymbol.implementation_filter.accepts(s) &&
  1988                     (s.flags() & BAD_OVERRIDE) == 0;
  1991     };
  1993     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
  1994             ClassSymbol someClass) {
  1995         /* At present, annotations cannot possibly have a method that is override
  1996          * equivalent with Object.equals(Object) but in any case the condition is
  1997          * fine for completeness.
  1998          */
  1999         if (someClass == (ClassSymbol)syms.objectType.tsym ||
  2000             someClass.isInterface() || someClass.isEnum() ||
  2001             (someClass.flags() & ANNOTATION) != 0 ||
  2002             (someClass.flags() & ABSTRACT) != 0) return;
  2003         //anonymous inner classes implementing interfaces need especial treatment
  2004         if (someClass.isAnonymous()) {
  2005             List<Type> interfaces =  types.interfaces(someClass.type);
  2006             if (interfaces != null && !interfaces.isEmpty() &&
  2007                 interfaces.head.tsym == syms.comparatorType.tsym) return;
  2009         checkClassOverrideEqualsAndHash(pos, someClass);
  2012     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
  2013             ClassSymbol someClass) {
  2014         if (lint.isEnabled(LintCategory.OVERRIDES)) {
  2015             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
  2016                     .tsym.members().lookup(names.equals).sym;
  2017             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
  2018                     .tsym.members().lookup(names.hashCode).sym;
  2019             boolean overridesEquals = types.implementation(equalsAtObject,
  2020                 someClass, false, equalsHasCodeFilter).owner == someClass;
  2021             boolean overridesHashCode = types.implementation(hashCodeAtObject,
  2022                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
  2024             if (overridesEquals && !overridesHashCode) {
  2025                 log.warning(LintCategory.OVERRIDES, pos,
  2026                         "override.equals.but.not.hashcode", someClass);
  2031     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2032         ClashFilter cf = new ClashFilter(origin.type);
  2033         return (cf.accepts(s1) &&
  2034                 cf.accepts(s2) &&
  2035                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2039     /** Check that all abstract members of given class have definitions.
  2040      *  @param pos          Position to be used for error reporting.
  2041      *  @param c            The class.
  2042      */
  2043     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2044         try {
  2045             MethodSymbol undef = firstUndef(c, c);
  2046             if (undef != null) {
  2047                 if ((c.flags() & ENUM) != 0 &&
  2048                     types.supertype(c.type).tsym == syms.enumSym &&
  2049                     (c.flags() & FINAL) == 0) {
  2050                     // add the ABSTRACT flag to an enum
  2051                     c.flags_field |= ABSTRACT;
  2052                 } else {
  2053                     MethodSymbol undef1 =
  2054                         new MethodSymbol(undef.flags(), undef.name,
  2055                                          types.memberType(c.type, undef), undef.owner);
  2056                     log.error(pos, "does.not.override.abstract",
  2057                               c, undef1, undef1.location());
  2060         } catch (CompletionFailure ex) {
  2061             completionError(pos, ex);
  2064 //where
  2065         /** Return first abstract member of class `c' that is not defined
  2066          *  in `impl', null if there is none.
  2067          */
  2068         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2069             MethodSymbol undef = null;
  2070             // Do not bother to search in classes that are not abstract,
  2071             // since they cannot have abstract members.
  2072             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2073                 Scope s = c.members();
  2074                 for (Scope.Entry e = s.elems;
  2075                      undef == null && e != null;
  2076                      e = e.sibling) {
  2077                     if (e.sym.kind == MTH &&
  2078                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  2079                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2080                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2081                         if (implmeth == null || implmeth == absmeth) {
  2082                             //look for default implementations
  2083                             if (allowDefaultMethods) {
  2084                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
  2085                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
  2086                                     implmeth = prov;
  2090                         if (implmeth == null || implmeth == absmeth) {
  2091                             undef = absmeth;
  2095                 if (undef == null) {
  2096                     Type st = types.supertype(c.type);
  2097                     if (st.hasTag(CLASS))
  2098                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2100                 for (List<Type> l = types.interfaces(c.type);
  2101                      undef == null && l.nonEmpty();
  2102                      l = l.tail) {
  2103                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2106             return undef;
  2109     void checkNonCyclicDecl(JCClassDecl tree) {
  2110         CycleChecker cc = new CycleChecker();
  2111         cc.scan(tree);
  2112         if (!cc.errorFound && !cc.partialCheck) {
  2113             tree.sym.flags_field |= ACYCLIC;
  2117     class CycleChecker extends TreeScanner {
  2119         List<Symbol> seenClasses = List.nil();
  2120         boolean errorFound = false;
  2121         boolean partialCheck = false;
  2123         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2124             if (sym != null && sym.kind == TYP) {
  2125                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2126                 if (classEnv != null) {
  2127                     DiagnosticSource prevSource = log.currentSource();
  2128                     try {
  2129                         log.useSource(classEnv.toplevel.sourcefile);
  2130                         scan(classEnv.tree);
  2132                     finally {
  2133                         log.useSource(prevSource.getFile());
  2135                 } else if (sym.kind == TYP) {
  2136                     checkClass(pos, sym, List.<JCTree>nil());
  2138             } else {
  2139                 //not completed yet
  2140                 partialCheck = true;
  2144         @Override
  2145         public void visitSelect(JCFieldAccess tree) {
  2146             super.visitSelect(tree);
  2147             checkSymbol(tree.pos(), tree.sym);
  2150         @Override
  2151         public void visitIdent(JCIdent tree) {
  2152             checkSymbol(tree.pos(), tree.sym);
  2155         @Override
  2156         public void visitTypeApply(JCTypeApply tree) {
  2157             scan(tree.clazz);
  2160         @Override
  2161         public void visitTypeArray(JCArrayTypeTree tree) {
  2162             scan(tree.elemtype);
  2165         @Override
  2166         public void visitClassDef(JCClassDecl tree) {
  2167             List<JCTree> supertypes = List.nil();
  2168             if (tree.getExtendsClause() != null) {
  2169                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2171             if (tree.getImplementsClause() != null) {
  2172                 for (JCTree intf : tree.getImplementsClause()) {
  2173                     supertypes = supertypes.prepend(intf);
  2176             checkClass(tree.pos(), tree.sym, supertypes);
  2179         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2180             if ((c.flags_field & ACYCLIC) != 0)
  2181                 return;
  2182             if (seenClasses.contains(c)) {
  2183                 errorFound = true;
  2184                 noteCyclic(pos, (ClassSymbol)c);
  2185             } else if (!c.type.isErroneous()) {
  2186                 try {
  2187                     seenClasses = seenClasses.prepend(c);
  2188                     if (c.type.hasTag(CLASS)) {
  2189                         if (supertypes.nonEmpty()) {
  2190                             scan(supertypes);
  2192                         else {
  2193                             ClassType ct = (ClassType)c.type;
  2194                             if (ct.supertype_field == null ||
  2195                                     ct.interfaces_field == null) {
  2196                                 //not completed yet
  2197                                 partialCheck = true;
  2198                                 return;
  2200                             checkSymbol(pos, ct.supertype_field.tsym);
  2201                             for (Type intf : ct.interfaces_field) {
  2202                                 checkSymbol(pos, intf.tsym);
  2205                         if (c.owner.kind == TYP) {
  2206                             checkSymbol(pos, c.owner);
  2209                 } finally {
  2210                     seenClasses = seenClasses.tail;
  2216     /** Check for cyclic references. Issue an error if the
  2217      *  symbol of the type referred to has a LOCKED flag set.
  2219      *  @param pos      Position to be used for error reporting.
  2220      *  @param t        The type referred to.
  2221      */
  2222     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2223         checkNonCyclicInternal(pos, t);
  2227     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2228         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2231     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2232         final TypeVar tv;
  2233         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2234             return;
  2235         if (seen.contains(t)) {
  2236             tv = (TypeVar)t.unannotatedType();
  2237             tv.bound = types.createErrorType(t);
  2238             log.error(pos, "cyclic.inheritance", t);
  2239         } else if (t.hasTag(TYPEVAR)) {
  2240             tv = (TypeVar)t.unannotatedType();
  2241             seen = seen.prepend(tv);
  2242             for (Type b : types.getBounds(tv))
  2243                 checkNonCyclic1(pos, b, seen);
  2244         } else if (t.hasTag(ARRAY)) {
  2245             final ArrayType at = (ArrayType)t.unannotatedType();
  2246             checkNonCyclic1(pos, at.elemtype, seen);
  2250     /** Check for cyclic references. Issue an error if the
  2251      *  symbol of the type referred to has a LOCKED flag set.
  2253      *  @param pos      Position to be used for error reporting.
  2254      *  @param t        The type referred to.
  2255      *  @returns        True if the check completed on all attributed classes
  2256      */
  2257     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2258         boolean complete = true; // was the check complete?
  2259         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2260         Symbol c = t.tsym;
  2261         if ((c.flags_field & ACYCLIC) != 0) return true;
  2263         if ((c.flags_field & LOCKED) != 0) {
  2264             noteCyclic(pos, (ClassSymbol)c);
  2265         } else if (!c.type.isErroneous()) {
  2266             try {
  2267                 c.flags_field |= LOCKED;
  2268                 if (c.type.hasTag(CLASS)) {
  2269                     ClassType clazz = (ClassType)c.type;
  2270                     if (clazz.interfaces_field != null)
  2271                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2272                             complete &= checkNonCyclicInternal(pos, l.head);
  2273                     if (clazz.supertype_field != null) {
  2274                         Type st = clazz.supertype_field;
  2275                         if (st != null && st.hasTag(CLASS))
  2276                             complete &= checkNonCyclicInternal(pos, st);
  2278                     if (c.owner.kind == TYP)
  2279                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2281             } finally {
  2282                 c.flags_field &= ~LOCKED;
  2285         if (complete)
  2286             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2287         if (complete) c.flags_field |= ACYCLIC;
  2288         return complete;
  2291     /** Note that we found an inheritance cycle. */
  2292     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2293         log.error(pos, "cyclic.inheritance", c);
  2294         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2295             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2296         Type st = types.supertype(c.type);
  2297         if (st.hasTag(CLASS))
  2298             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2299         c.type = types.createErrorType(c, c.type);
  2300         c.flags_field |= ACYCLIC;
  2303     /** Check that all methods which implement some
  2304      *  method conform to the method they implement.
  2305      *  @param tree         The class definition whose members are checked.
  2306      */
  2307     void checkImplementations(JCClassDecl tree) {
  2308         checkImplementations(tree, tree.sym, tree.sym);
  2310     //where
  2311         /** Check that all methods which implement some
  2312          *  method in `ic' conform to the method they implement.
  2313          */
  2314         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
  2315             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2316                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2317                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2318                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2319                         if (e.sym.kind == MTH &&
  2320                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2321                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2322                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2323                             if (implmeth != null && implmeth != absmeth &&
  2324                                 (implmeth.owner.flags() & INTERFACE) ==
  2325                                 (origin.flags() & INTERFACE)) {
  2326                                 // don't check if implmeth is in a class, yet
  2327                                 // origin is an interface. This case arises only
  2328                                 // if implmeth is declared in Object. The reason is
  2329                                 // that interfaces really don't inherit from
  2330                                 // Object it's just that the compiler represents
  2331                                 // things that way.
  2332                                 checkOverride(tree, implmeth, absmeth, origin);
  2340     /** Check that all abstract methods implemented by a class are
  2341      *  mutually compatible.
  2342      *  @param pos          Position to be used for error reporting.
  2343      *  @param c            The class whose interfaces are checked.
  2344      */
  2345     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2346         List<Type> supertypes = types.interfaces(c);
  2347         Type supertype = types.supertype(c);
  2348         if (supertype.hasTag(CLASS) &&
  2349             (supertype.tsym.flags() & ABSTRACT) != 0)
  2350             supertypes = supertypes.prepend(supertype);
  2351         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2352             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2353                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2354                 return;
  2355             for (List<Type> m = supertypes; m != l; m = m.tail)
  2356                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2357                     return;
  2359         checkCompatibleConcretes(pos, c);
  2362     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2363         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2364             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2365                 // VM allows methods and variables with differing types
  2366                 if (sym.kind == e.sym.kind &&
  2367                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2368                     sym != e.sym &&
  2369                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2370                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2371                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2372                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2373                     return;
  2379     /** Check that all non-override equivalent methods accessible from 'site'
  2380      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2382      *  @param pos  Position to be used for error reporting.
  2383      *  @param site The class whose methods are checked.
  2384      *  @param sym  The method symbol to be checked.
  2385      */
  2386     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2387          ClashFilter cf = new ClashFilter(site);
  2388         //for each method m1 that is overridden (directly or indirectly)
  2389         //by method 'sym' in 'site'...
  2390         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2391              if (!sym.overrides(m1, site.tsym, types, false)) {
  2392                  checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)m1);
  2393                  continue;
  2395              //...check each method m2 that is a member of 'site'
  2396              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2397                 if (m2 == m1) continue;
  2398                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2399                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2400                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2401                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2402                     sym.flags_field |= CLASH;
  2403                     String key = m1 == sym ?
  2404                             "name.clash.same.erasure.no.override" :
  2405                             "name.clash.same.erasure.no.override.1";
  2406                     log.error(pos,
  2407                             key,
  2408                             sym, sym.location(),
  2409                             m2, m2.location(),
  2410                             m1, m1.location());
  2411                     return;
  2419     /** Check that all static methods accessible from 'site' are
  2420      *  mutually compatible (JLS 8.4.8).
  2422      *  @param pos  Position to be used for error reporting.
  2423      *  @param site The class whose methods are checked.
  2424      *  @param sym  The method symbol to be checked.
  2425      */
  2426     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2427         ClashFilter cf = new ClashFilter(site);
  2428         //for each method m1 that is a member of 'site'...
  2429         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2430             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2431             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2432             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
  2433                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2434                     log.error(pos,
  2435                             "name.clash.same.erasure.no.hide",
  2436                             sym, sym.location(),
  2437                             s, s.location());
  2438                     return;
  2439                 } else {
  2440                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
  2446      //where
  2447      private class ClashFilter implements Filter<Symbol> {
  2449          Type site;
  2451          ClashFilter(Type site) {
  2452              this.site = site;
  2455          boolean shouldSkip(Symbol s) {
  2456              return (s.flags() & CLASH) != 0 &&
  2457                 s.owner == site.tsym;
  2460          public boolean accepts(Symbol s) {
  2461              return s.kind == MTH &&
  2462                      (s.flags() & SYNTHETIC) == 0 &&
  2463                      !shouldSkip(s) &&
  2464                      s.isInheritedIn(site.tsym, types) &&
  2465                      !s.isConstructor();
  2469     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2470         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2471         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2472             Assert.check(m.kind == MTH);
  2473             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2474             if (prov.size() > 1) {
  2475                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
  2476                 ListBuffer<Symbol> defaults = new ListBuffer<>();
  2477                 for (MethodSymbol provSym : prov) {
  2478                     if ((provSym.flags() & DEFAULT) != 0) {
  2479                         defaults = defaults.append(provSym);
  2480                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2481                         abstracts = abstracts.append(provSym);
  2483                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2484                         //strong semantics - issue an error if two sibling interfaces
  2485                         //have two override-equivalent defaults - or if one is abstract
  2486                         //and the other is default
  2487                         String errKey;
  2488                         Symbol s1 = defaults.first();
  2489                         Symbol s2;
  2490                         if (defaults.size() > 1) {
  2491                             errKey = "types.incompatible.unrelated.defaults";
  2492                             s2 = defaults.toList().tail.head;
  2493                         } else {
  2494                             errKey = "types.incompatible.abstract.default";
  2495                             s2 = abstracts.first();
  2497                         log.error(pos, errKey,
  2498                                 Kinds.kindName(site.tsym), site,
  2499                                 m.name, types.memberType(site, m).getParameterTypes(),
  2500                                 s1.location(), s2.location());
  2501                         break;
  2508     //where
  2509      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2511          Type site;
  2513          DefaultMethodClashFilter(Type site) {
  2514              this.site = site;
  2517          public boolean accepts(Symbol s) {
  2518              return s.kind == MTH &&
  2519                      (s.flags() & DEFAULT) != 0 &&
  2520                      s.isInheritedIn(site.tsym, types) &&
  2521                      !s.isConstructor();
  2525     /**
  2526       * Report warnings for potentially ambiguous method declarations. Two declarations
  2527       * are potentially ambiguous if they feature two unrelated functional interface
  2528       * in same argument position (in which case, a call site passing an implicit
  2529       * lambda would be ambiguous).
  2530       */
  2531     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
  2532             MethodSymbol msym1, MethodSymbol msym2) {
  2533         if (msym1 != msym2 &&
  2534                 allowDefaultMethods &&
  2535                 lint.isEnabled(LintCategory.OVERLOADS) &&
  2536                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
  2537                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
  2538             Type mt1 = types.memberType(site, msym1);
  2539             Type mt2 = types.memberType(site, msym2);
  2540             //if both generic methods, adjust type variables
  2541             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
  2542                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
  2543                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
  2545             //expand varargs methods if needed
  2546             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
  2547             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
  2548             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
  2549             //if arities don't match, exit
  2550             if (args1.length() != args2.length()) return;
  2551             boolean potentiallyAmbiguous = false;
  2552             while (args1.nonEmpty() && args2.nonEmpty()) {
  2553                 Type s = args1.head;
  2554                 Type t = args2.head;
  2555                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
  2556                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
  2557                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
  2558                             types.findDescriptorType(s).getParameterTypes().length() ==
  2559                             types.findDescriptorType(t).getParameterTypes().length()) {
  2560                         potentiallyAmbiguous = true;
  2561                     } else {
  2562                         break;
  2565                 args1 = args1.tail;
  2566                 args2 = args2.tail;
  2568             if (potentiallyAmbiguous) {
  2569                 //we found two incompatible functional interfaces with same arity
  2570                 //this means a call site passing an implicit lambda would be ambigiuous
  2571                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
  2572                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
  2573                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
  2574                             msym1, msym1.location(),
  2575                             msym2, msym2.location());
  2576                 return;
  2581     /** Report a conflict between a user symbol and a synthetic symbol.
  2582      */
  2583     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2584         if (!sym.type.isErroneous()) {
  2585             if (warnOnSyntheticConflicts) {
  2586                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2588             else {
  2589                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2594     /** Check that class c does not implement directly or indirectly
  2595      *  the same parameterized interface with two different argument lists.
  2596      *  @param pos          Position to be used for error reporting.
  2597      *  @param type         The type whose interfaces are checked.
  2598      */
  2599     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2600         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2602 //where
  2603         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2604          *  with their class symbol as key and their type as value. Make
  2605          *  sure no class is entered with two different types.
  2606          */
  2607         void checkClassBounds(DiagnosticPosition pos,
  2608                               Map<TypeSymbol,Type> seensofar,
  2609                               Type type) {
  2610             if (type.isErroneous()) return;
  2611             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2612                 Type it = l.head;
  2613                 Type oldit = seensofar.put(it.tsym, it);
  2614                 if (oldit != null) {
  2615                     List<Type> oldparams = oldit.allparams();
  2616                     List<Type> newparams = it.allparams();
  2617                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2618                         log.error(pos, "cant.inherit.diff.arg",
  2619                                   it.tsym, Type.toString(oldparams),
  2620                                   Type.toString(newparams));
  2622                 checkClassBounds(pos, seensofar, it);
  2624             Type st = types.supertype(type);
  2625             if (st != null) checkClassBounds(pos, seensofar, st);
  2628     /** Enter interface into into set.
  2629      *  If it existed already, issue a "repeated interface" error.
  2630      */
  2631     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2632         if (its.contains(it))
  2633             log.error(pos, "repeated.interface");
  2634         else {
  2635             its.add(it);
  2639 /* *************************************************************************
  2640  * Check annotations
  2641  **************************************************************************/
  2643     /**
  2644      * Recursively validate annotations values
  2645      */
  2646     void validateAnnotationTree(JCTree tree) {
  2647         class AnnotationValidator extends TreeScanner {
  2648             @Override
  2649             public void visitAnnotation(JCAnnotation tree) {
  2650                 if (!tree.type.isErroneous()) {
  2651                     super.visitAnnotation(tree);
  2652                     validateAnnotation(tree);
  2656         tree.accept(new AnnotationValidator());
  2659     /**
  2660      *  {@literal
  2661      *  Annotation types are restricted to primitives, String, an
  2662      *  enum, an annotation, Class, Class<?>, Class<? extends
  2663      *  Anything>, arrays of the preceding.
  2664      *  }
  2665      */
  2666     void validateAnnotationType(JCTree restype) {
  2667         // restype may be null if an error occurred, so don't bother validating it
  2668         if (restype != null) {
  2669             validateAnnotationType(restype.pos(), restype.type);
  2673     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2674         if (type.isPrimitive()) return;
  2675         if (types.isSameType(type, syms.stringType)) return;
  2676         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2677         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2678         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2679         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2680             validateAnnotationType(pos, types.elemtype(type));
  2681             return;
  2683         log.error(pos, "invalid.annotation.member.type");
  2686     /**
  2687      * "It is also a compile-time error if any method declared in an
  2688      * annotation type has a signature that is override-equivalent to
  2689      * that of any public or protected method declared in class Object
  2690      * or in the interface annotation.Annotation."
  2692      * @jls 9.6 Annotation Types
  2693      */
  2694     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2695         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2696             Scope s = sup.tsym.members();
  2697             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2698                 if (e.sym.kind == MTH &&
  2699                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2700                     types.overrideEquivalent(m.type, e.sym.type))
  2701                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2706     /** Check the annotations of a symbol.
  2707      */
  2708     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2709         for (JCAnnotation a : annotations)
  2710             validateAnnotation(a, s);
  2713     /** Check the type annotations.
  2714      */
  2715     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
  2716         for (JCAnnotation a : annotations)
  2717             validateTypeAnnotation(a, isTypeParameter);
  2720     /** Check an annotation of a symbol.
  2721      */
  2722     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2723         validateAnnotationTree(a);
  2725         if (!annotationApplicable(a, s))
  2726             log.error(a.pos(), "annotation.type.not.applicable");
  2728         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2729             if (!isOverrider(s))
  2730                 log.error(a.pos(), "method.does.not.override.superclass");
  2733         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  2734             if (s.kind != TYP) {
  2735                 log.error(a.pos(), "bad.functional.intf.anno");
  2736             } else {
  2737                 try {
  2738                     types.findDescriptorSymbol((TypeSymbol)s);
  2739                 } catch (Types.FunctionDescriptorLookupError ex) {
  2740                     log.error(a.pos(), "bad.functional.intf.anno.1", ex.getDiagnostic());
  2746     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2747         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
  2748         validateAnnotationTree(a);
  2750         if (!isTypeAnnotation(a, isTypeParameter))
  2751             log.error(a.pos(), "annotation.type.not.applicable");
  2754     /**
  2755      * Validate the proposed container 'repeatable' on the
  2756      * annotation type symbol 's'. Report errors at position
  2757      * 'pos'.
  2759      * @param s The (annotation)type declaration annotated with a @Repeatable
  2760      * @param repeatable the @Repeatable on 's'
  2761      * @param pos where to report errors
  2762      */
  2763     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
  2764         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
  2766         Type t = null;
  2767         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
  2768         if (!l.isEmpty()) {
  2769             Assert.check(l.head.fst.name == names.value);
  2770             t = ((Attribute.Class)l.head.snd).getValue();
  2773         if (t == null) {
  2774             // errors should already have been reported during Annotate
  2775             return;
  2778         validateValue(t.tsym, s, pos);
  2779         validateRetention(t.tsym, s, pos);
  2780         validateDocumented(t.tsym, s, pos);
  2781         validateInherited(t.tsym, s, pos);
  2782         validateTarget(t.tsym, s, pos);
  2783         validateDefault(t.tsym, s, pos);
  2786     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2787         Scope.Entry e = container.members().lookup(names.value);
  2788         if (e.scope != null && e.sym.kind == MTH) {
  2789             MethodSymbol m = (MethodSymbol) e.sym;
  2790             Type ret = m.getReturnType();
  2791             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
  2792                 log.error(pos, "invalid.repeatable.annotation.value.return",
  2793                         container, ret, types.makeArrayType(contained.type));
  2795         } else {
  2796             log.error(pos, "invalid.repeatable.annotation.no.value", container);
  2800     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2801         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2802         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2804         boolean error = false;
  2805         switch (containedRetention) {
  2806         case RUNTIME:
  2807             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2808                 error = true;
  2810             break;
  2811         case CLASS:
  2812             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2813                 error = true;
  2816         if (error ) {
  2817             log.error(pos, "invalid.repeatable.annotation.retention",
  2818                       container, containerRetention,
  2819                       contained, containedRetention);
  2823     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2824         if (contained.attribute(syms.documentedType.tsym) != null) {
  2825             if (container.attribute(syms.documentedType.tsym) == null) {
  2826                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
  2831     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2832         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2833             if (container.attribute(syms.inheritedType.tsym) == null) {
  2834                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
  2839     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2840         // The set of targets the container is applicable to must be a subset
  2841         // (with respect to annotation target semantics) of the set of targets
  2842         // the contained is applicable to. The target sets may be implicit or
  2843         // explicit.
  2845         Set<Name> containerTargets;
  2846         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2847         if (containerTarget == null) {
  2848             containerTargets = getDefaultTargetSet();
  2849         } else {
  2850             containerTargets = new HashSet<Name>();
  2851         for (Attribute app : containerTarget.values) {
  2852             if (!(app instanceof Attribute.Enum)) {
  2853                 continue; // recovery
  2855             Attribute.Enum e = (Attribute.Enum)app;
  2856             containerTargets.add(e.value.name);
  2860         Set<Name> containedTargets;
  2861         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2862         if (containedTarget == null) {
  2863             containedTargets = getDefaultTargetSet();
  2864         } else {
  2865             containedTargets = new HashSet<Name>();
  2866         for (Attribute app : containedTarget.values) {
  2867             if (!(app instanceof Attribute.Enum)) {
  2868                 continue; // recovery
  2870             Attribute.Enum e = (Attribute.Enum)app;
  2871             containedTargets.add(e.value.name);
  2875         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
  2876             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
  2880     /* get a set of names for the default target */
  2881     private Set<Name> getDefaultTargetSet() {
  2882         if (defaultTargets == null) {
  2883             Set<Name> targets = new HashSet<Name>();
  2884             targets.add(names.ANNOTATION_TYPE);
  2885             targets.add(names.CONSTRUCTOR);
  2886             targets.add(names.FIELD);
  2887             targets.add(names.LOCAL_VARIABLE);
  2888             targets.add(names.METHOD);
  2889             targets.add(names.PACKAGE);
  2890             targets.add(names.PARAMETER);
  2891             targets.add(names.TYPE);
  2893             defaultTargets = java.util.Collections.unmodifiableSet(targets);
  2896         return defaultTargets;
  2898     private Set<Name> defaultTargets;
  2901     /** Checks that s is a subset of t, with respect to ElementType
  2902      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2903      */
  2904     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
  2905         // Check that all elements in s are present in t
  2906         for (Name n2 : s) {
  2907             boolean currentElementOk = false;
  2908             for (Name n1 : t) {
  2909                 if (n1 == n2) {
  2910                     currentElementOk = true;
  2911                     break;
  2912                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2913                     currentElementOk = true;
  2914                     break;
  2917             if (!currentElementOk)
  2918                 return false;
  2920         return true;
  2923     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2924         // validate that all other elements of containing type has defaults
  2925         Scope scope = container.members();
  2926         for(Symbol elm : scope.getElements()) {
  2927             if (elm.name != names.value &&
  2928                 elm.kind == Kinds.MTH &&
  2929                 ((MethodSymbol)elm).defaultValue == null) {
  2930                 log.error(pos,
  2931                           "invalid.repeatable.annotation.elem.nondefault",
  2932                           container,
  2933                           elm);
  2938     /** Is s a method symbol that overrides a method in a superclass? */
  2939     boolean isOverrider(Symbol s) {
  2940         if (s.kind != MTH || s.isStatic())
  2941             return false;
  2942         MethodSymbol m = (MethodSymbol)s;
  2943         TypeSymbol owner = (TypeSymbol)m.owner;
  2944         for (Type sup : types.closure(owner.type)) {
  2945             if (sup == owner.type)
  2946                 continue; // skip "this"
  2947             Scope scope = sup.tsym.members();
  2948             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2949                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2950                     return true;
  2953         return false;
  2956     /** Is the annotation applicable to type annotations? */
  2957     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2958         Attribute.Compound atTarget =
  2959             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2960         if (atTarget == null) {
  2961             // An annotation without @Target is not a type annotation.
  2962             return false;
  2965         Attribute atValue = atTarget.member(names.value);
  2966         if (!(atValue instanceof Attribute.Array)) {
  2967             return false; // error recovery
  2970         Attribute.Array arr = (Attribute.Array) atValue;
  2971         for (Attribute app : arr.values) {
  2972             if (!(app instanceof Attribute.Enum)) {
  2973                 return false; // recovery
  2975             Attribute.Enum e = (Attribute.Enum) app;
  2977             if (e.value.name == names.TYPE_USE)
  2978                 return true;
  2979             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2980                 return true;
  2982         return false;
  2985     /** Is the annotation applicable to the symbol? */
  2986     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2987         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2988         Name[] targets;
  2990         if (arr == null) {
  2991             targets = defaultTargetMetaInfo(a, s);
  2992         } else {
  2993             // TODO: can we optimize this?
  2994             targets = new Name[arr.values.length];
  2995             for (int i=0; i<arr.values.length; ++i) {
  2996                 Attribute app = arr.values[i];
  2997                 if (!(app instanceof Attribute.Enum)) {
  2998                     return true; // recovery
  3000                 Attribute.Enum e = (Attribute.Enum) app;
  3001                 targets[i] = e.value.name;
  3004         for (Name target : targets) {
  3005             if (target == names.TYPE)
  3006                 { if (s.kind == TYP) return true; }
  3007             else if (target == names.FIELD)
  3008                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  3009             else if (target == names.METHOD)
  3010                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  3011             else if (target == names.PARAMETER)
  3012                 { if (s.kind == VAR &&
  3013                       s.owner.kind == MTH &&
  3014                       (s.flags() & PARAMETER) != 0)
  3015                     return true;
  3017             else if (target == names.CONSTRUCTOR)
  3018                 { if (s.kind == MTH && s.isConstructor()) return true; }
  3019             else if (target == names.LOCAL_VARIABLE)
  3020                 { if (s.kind == VAR && s.owner.kind == MTH &&
  3021                       (s.flags() & PARAMETER) == 0)
  3022                     return true;
  3024             else if (target == names.ANNOTATION_TYPE)
  3025                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  3026                     return true;
  3028             else if (target == names.PACKAGE)
  3029                 { if (s.kind == PCK) return true; }
  3030             else if (target == names.TYPE_USE)
  3031                 { if (s.kind == TYP ||
  3032                       s.kind == VAR ||
  3033                       (s.kind == MTH && !s.isConstructor() &&
  3034                       !s.type.getReturnType().hasTag(VOID)) ||
  3035                       (s.kind == MTH && s.isConstructor()))
  3036                     return true;
  3038             else if (target == names.TYPE_PARAMETER)
  3039                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
  3040                     return true;
  3042             else
  3043                 return true; // recovery
  3045         return false;
  3049     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  3050         Attribute.Compound atTarget =
  3051             s.attribute(syms.annotationTargetType.tsym);
  3052         if (atTarget == null) return null; // ok, is applicable
  3053         Attribute atValue = atTarget.member(names.value);
  3054         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  3055         return (Attribute.Array) atValue;
  3058     private final Name[] dfltTargetMeta;
  3059     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
  3060         return dfltTargetMeta;
  3063     /** Check an annotation value.
  3065      * @param a The annotation tree to check
  3066      * @return true if this annotation tree is valid, otherwise false
  3067      */
  3068     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
  3069         boolean res = false;
  3070         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
  3071         try {
  3072             res = validateAnnotation(a);
  3073         } finally {
  3074             log.popDiagnosticHandler(diagHandler);
  3076         return res;
  3079     private boolean validateAnnotation(JCAnnotation a) {
  3080         boolean isValid = true;
  3081         // collect an inventory of the annotation elements
  3082         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
  3083         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  3084                 e != null;
  3085                 e = e.sibling)
  3086             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
  3087                     (e.sym.flags() & SYNTHETIC) == 0)
  3088                 members.add((MethodSymbol) e.sym);
  3090         // remove the ones that are assigned values
  3091         for (JCTree arg : a.args) {
  3092             if (!arg.hasTag(ASSIGN)) continue; // recovery
  3093             JCAssign assign = (JCAssign) arg;
  3094             Symbol m = TreeInfo.symbol(assign.lhs);
  3095             if (m == null || m.type.isErroneous()) continue;
  3096             if (!members.remove(m)) {
  3097                 isValid = false;
  3098                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  3099                           m.name, a.type);
  3103         // all the remaining ones better have default values
  3104         List<Name> missingDefaults = List.nil();
  3105         for (MethodSymbol m : members) {
  3106             if (m.defaultValue == null && !m.type.isErroneous()) {
  3107                 missingDefaults = missingDefaults.append(m.name);
  3110         missingDefaults = missingDefaults.reverse();
  3111         if (missingDefaults.nonEmpty()) {
  3112             isValid = false;
  3113             String key = (missingDefaults.size() > 1)
  3114                     ? "annotation.missing.default.value.1"
  3115                     : "annotation.missing.default.value";
  3116             log.error(a.pos(), key, a.type, missingDefaults);
  3119         // special case: java.lang.annotation.Target must not have
  3120         // repeated values in its value member
  3121         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  3122             a.args.tail == null)
  3123             return isValid;
  3125         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
  3126         JCAssign assign = (JCAssign) a.args.head;
  3127         Symbol m = TreeInfo.symbol(assign.lhs);
  3128         if (m.name != names.value) return false;
  3129         JCTree rhs = assign.rhs;
  3130         if (!rhs.hasTag(NEWARRAY)) return false;
  3131         JCNewArray na = (JCNewArray) rhs;
  3132         Set<Symbol> targets = new HashSet<Symbol>();
  3133         for (JCTree elem : na.elems) {
  3134             if (!targets.add(TreeInfo.symbol(elem))) {
  3135                 isValid = false;
  3136                 log.error(elem.pos(), "repeated.annotation.target");
  3139         return isValid;
  3142     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  3143         if (allowAnnotations &&
  3144             lint.isEnabled(LintCategory.DEP_ANN) &&
  3145             (s.flags() & DEPRECATED) != 0 &&
  3146             !syms.deprecatedType.isErroneous() &&
  3147             s.attribute(syms.deprecatedType.tsym) == null) {
  3148             log.warning(LintCategory.DEP_ANN,
  3149                     pos, "missing.deprecated.annotation");
  3153     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  3154         if ((s.flags() & DEPRECATED) != 0 &&
  3155                 (other.flags() & DEPRECATED) == 0 &&
  3156                 s.outermostClass() != other.outermostClass()) {
  3157             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3158                 @Override
  3159                 public void report() {
  3160                     warnDeprecated(pos, s);
  3162             });
  3166     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  3167         if ((s.flags() & PROPRIETARY) != 0) {
  3168             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3169                 public void report() {
  3170                     if (enableSunApiLintControl)
  3171                       warnSunApi(pos, "sun.proprietary", s);
  3172                     else
  3173                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3175             });
  3179     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
  3180         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
  3181             log.error(pos, "not.in.profile", s, profile);
  3185 /* *************************************************************************
  3186  * Check for recursive annotation elements.
  3187  **************************************************************************/
  3189     /** Check for cycles in the graph of annotation elements.
  3190      */
  3191     void checkNonCyclicElements(JCClassDecl tree) {
  3192         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3193         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3194         try {
  3195             tree.sym.flags_field |= LOCKED;
  3196             for (JCTree def : tree.defs) {
  3197                 if (!def.hasTag(METHODDEF)) continue;
  3198                 JCMethodDecl meth = (JCMethodDecl)def;
  3199                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3201         } finally {
  3202             tree.sym.flags_field &= ~LOCKED;
  3203             tree.sym.flags_field |= ACYCLIC_ANN;
  3207     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3208         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3209             return;
  3210         if ((tsym.flags_field & LOCKED) != 0) {
  3211             log.error(pos, "cyclic.annotation.element");
  3212             return;
  3214         try {
  3215             tsym.flags_field |= LOCKED;
  3216             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3217                 Symbol s = e.sym;
  3218                 if (s.kind != Kinds.MTH)
  3219                     continue;
  3220                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3222         } finally {
  3223             tsym.flags_field &= ~LOCKED;
  3224             tsym.flags_field |= ACYCLIC_ANN;
  3228     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3229         switch (type.getTag()) {
  3230         case CLASS:
  3231             if ((type.tsym.flags() & ANNOTATION) != 0)
  3232                 checkNonCyclicElementsInternal(pos, type.tsym);
  3233             break;
  3234         case ARRAY:
  3235             checkAnnotationResType(pos, types.elemtype(type));
  3236             break;
  3237         default:
  3238             break; // int etc
  3242 /* *************************************************************************
  3243  * Check for cycles in the constructor call graph.
  3244  **************************************************************************/
  3246     /** Check for cycles in the graph of constructors calling other
  3247      *  constructors.
  3248      */
  3249     void checkCyclicConstructors(JCClassDecl tree) {
  3250         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3252         // enter each constructor this-call into the map
  3253         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3254             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3255             if (app == null) continue;
  3256             JCMethodDecl meth = (JCMethodDecl) l.head;
  3257             if (TreeInfo.name(app.meth) == names._this) {
  3258                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3259             } else {
  3260                 meth.sym.flags_field |= ACYCLIC;
  3264         // Check for cycles in the map
  3265         Symbol[] ctors = new Symbol[0];
  3266         ctors = callMap.keySet().toArray(ctors);
  3267         for (Symbol caller : ctors) {
  3268             checkCyclicConstructor(tree, caller, callMap);
  3272     /** Look in the map to see if the given constructor is part of a
  3273      *  call cycle.
  3274      */
  3275     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3276                                         Map<Symbol,Symbol> callMap) {
  3277         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3278             if ((ctor.flags_field & LOCKED) != 0) {
  3279                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3280                           "recursive.ctor.invocation");
  3281             } else {
  3282                 ctor.flags_field |= LOCKED;
  3283                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3284                 ctor.flags_field &= ~LOCKED;
  3286             ctor.flags_field |= ACYCLIC;
  3290 /* *************************************************************************
  3291  * Miscellaneous
  3292  **************************************************************************/
  3294     /**
  3295      * Return the opcode of the operator but emit an error if it is an
  3296      * error.
  3297      * @param pos        position for error reporting.
  3298      * @param operator   an operator
  3299      * @param tag        a tree tag
  3300      * @param left       type of left hand side
  3301      * @param right      type of right hand side
  3302      */
  3303     int checkOperator(DiagnosticPosition pos,
  3304                        OperatorSymbol operator,
  3305                        JCTree.Tag tag,
  3306                        Type left,
  3307                        Type right) {
  3308         if (operator.opcode == ByteCodes.error) {
  3309             log.error(pos,
  3310                       "operator.cant.be.applied.1",
  3311                       treeinfo.operatorName(tag),
  3312                       left, right);
  3314         return operator.opcode;
  3318     /**
  3319      *  Check for division by integer constant zero
  3320      *  @param pos           Position for error reporting.
  3321      *  @param operator      The operator for the expression
  3322      *  @param operand       The right hand operand for the expression
  3323      */
  3324     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3325         if (operand.constValue() != null
  3326             && lint.isEnabled(LintCategory.DIVZERO)
  3327             && operand.getTag().isSubRangeOf(LONG)
  3328             && ((Number) (operand.constValue())).longValue() == 0) {
  3329             int opc = ((OperatorSymbol)operator).opcode;
  3330             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3331                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3332                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3337     /**
  3338      * Check for empty statements after if
  3339      */
  3340     void checkEmptyIf(JCIf tree) {
  3341         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3342                 lint.isEnabled(LintCategory.EMPTY))
  3343             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3346     /** Check that symbol is unique in given scope.
  3347      *  @param pos           Position for error reporting.
  3348      *  @param sym           The symbol.
  3349      *  @param s             The scope.
  3350      */
  3351     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3352         if (sym.type.isErroneous())
  3353             return true;
  3354         if (sym.owner.name == names.any) return false;
  3355         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3356             if (sym != e.sym &&
  3357                     (e.sym.flags() & CLASH) == 0 &&
  3358                     sym.kind == e.sym.kind &&
  3359                     sym.name != names.error &&
  3360                     (sym.kind != MTH ||
  3361                      types.hasSameArgs(sym.type, e.sym.type) ||
  3362                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3363                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3364                     varargsDuplicateError(pos, sym, e.sym);
  3365                     return true;
  3366                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3367                     duplicateErasureError(pos, sym, e.sym);
  3368                     sym.flags_field |= CLASH;
  3369                     return true;
  3370                 } else {
  3371                     duplicateError(pos, e.sym);
  3372                     return false;
  3376         return true;
  3379     /** Report duplicate declaration error.
  3380      */
  3381     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3382         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3383             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3387     /** Check that single-type import is not already imported or top-level defined,
  3388      *  but make an exception for two single-type imports which denote the same type.
  3389      *  @param pos           Position for error reporting.
  3390      *  @param sym           The symbol.
  3391      *  @param s             The scope
  3392      */
  3393     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3394         return checkUniqueImport(pos, sym, s, false);
  3397     /** Check that static single-type import is not already imported or top-level defined,
  3398      *  but make an exception for two single-type imports which denote the same type.
  3399      *  @param pos           Position for error reporting.
  3400      *  @param sym           The symbol.
  3401      *  @param s             The scope
  3402      */
  3403     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3404         return checkUniqueImport(pos, sym, s, true);
  3407     /** Check that single-type import is not already imported or top-level defined,
  3408      *  but make an exception for two single-type imports which denote the same type.
  3409      *  @param pos           Position for error reporting.
  3410      *  @param sym           The symbol.
  3411      *  @param s             The scope.
  3412      *  @param staticImport  Whether or not this was a static import
  3413      */
  3414     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3415         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3416             // is encountered class entered via a class declaration?
  3417             boolean isClassDecl = e.scope == s;
  3418             if ((isClassDecl || sym != e.sym) &&
  3419                 sym.kind == e.sym.kind &&
  3420                 sym.name != names.error &&
  3421                 (!staticImport || !e.isStaticallyImported())) {
  3422                 if (!e.sym.type.isErroneous()) {
  3423                     if (!isClassDecl) {
  3424                         if (staticImport)
  3425                             log.error(pos, "already.defined.static.single.import", e.sym);
  3426                         else
  3427                         log.error(pos, "already.defined.single.import", e.sym);
  3429                     else if (sym != e.sym)
  3430                         log.error(pos, "already.defined.this.unit", e.sym);
  3432                 return false;
  3435         return true;
  3438     /** Check that a qualified name is in canonical form (for import decls).
  3439      */
  3440     public void checkCanonical(JCTree tree) {
  3441         if (!isCanonical(tree))
  3442             log.error(tree.pos(), "import.requires.canonical",
  3443                       TreeInfo.symbol(tree));
  3445         // where
  3446         private boolean isCanonical(JCTree tree) {
  3447             while (tree.hasTag(SELECT)) {
  3448                 JCFieldAccess s = (JCFieldAccess) tree;
  3449                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3450                     return false;
  3451                 tree = s.selected;
  3453             return true;
  3456     /** Check that an auxiliary class is not accessed from any other file than its own.
  3457      */
  3458     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3459         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3460             (c.flags() & AUXILIARY) != 0 &&
  3461             rs.isAccessible(env, c) &&
  3462             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3464             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3465                         c, c.sourcefile);
  3469     private class ConversionWarner extends Warner {
  3470         final String uncheckedKey;
  3471         final Type found;
  3472         final Type expected;
  3473         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3474             super(pos);
  3475             this.uncheckedKey = uncheckedKey;
  3476             this.found = found;
  3477             this.expected = expected;
  3480         @Override
  3481         public void warn(LintCategory lint) {
  3482             boolean warned = this.warned;
  3483             super.warn(lint);
  3484             if (warned) return; // suppress redundant diagnostics
  3485             switch (lint) {
  3486                 case UNCHECKED:
  3487                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3488                     break;
  3489                 case VARARGS:
  3490                     if (method != null &&
  3491                             method.attribute(syms.trustMeType.tsym) != null &&
  3492                             isTrustMeAllowedOnMethod(method) &&
  3493                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3494                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3496                     break;
  3497                 default:
  3498                     throw new AssertionError("Unexpected lint: " + lint);
  3503     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3504         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3507     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3508         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial