src/share/classes/com/sun/tools/javac/comp/Lower.java

Sun, 17 Feb 2013 16:44:55 -0500

author
dholmes
date
Sun, 17 Feb 2013 16:44:55 -0500
changeset 1571
af8417e590f4
parent 1565
d04960f05593
child 1612
69cd2bfd4a31
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.jvm.*;
    32 import com.sun.tools.javac.main.Option.PkgInfo;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.code.Symbol.*;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.jvm.Target;
    43 import com.sun.tools.javac.tree.EndPosTable;
    45 import static com.sun.tools.javac.code.Flags.*;
    46 import static com.sun.tools.javac.code.Flags.BLOCK;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTag.*;
    49 import static com.sun.tools.javac.jvm.ByteCodes.*;
    50 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    52 /** This pass translates away some syntactic sugar: inner classes,
    53  *  class literals, assertions, foreach loops, etc.
    54  *
    55  *  <p><b>This is NOT part of any supported API.
    56  *  If you write code that depends on this, you do so at your own risk.
    57  *  This code and its internal interfaces are subject to change or
    58  *  deletion without notice.</b>
    59  */
    60 public class Lower extends TreeTranslator {
    61     protected static final Context.Key<Lower> lowerKey =
    62         new Context.Key<Lower>();
    64     public static Lower instance(Context context) {
    65         Lower instance = context.get(lowerKey);
    66         if (instance == null)
    67             instance = new Lower(context);
    68         return instance;
    69     }
    71     private Names names;
    72     private Log log;
    73     private Symtab syms;
    74     private Resolve rs;
    75     private Check chk;
    76     private Attr attr;
    77     private TreeMaker make;
    78     private DiagnosticPosition make_pos;
    79     private ClassWriter writer;
    80     private ClassReader reader;
    81     private ConstFold cfolder;
    82     private Target target;
    83     private Source source;
    84     private boolean allowEnums;
    85     private final Name dollarAssertionsDisabled;
    86     private final Name classDollar;
    87     private Types types;
    88     private boolean debugLower;
    89     private PkgInfo pkginfoOpt;
    91     protected Lower(Context context) {
    92         context.put(lowerKey, this);
    93         names = Names.instance(context);
    94         log = Log.instance(context);
    95         syms = Symtab.instance(context);
    96         rs = Resolve.instance(context);
    97         chk = Check.instance(context);
    98         attr = Attr.instance(context);
    99         make = TreeMaker.instance(context);
   100         writer = ClassWriter.instance(context);
   101         reader = ClassReader.instance(context);
   102         cfolder = ConstFold.instance(context);
   103         target = Target.instance(context);
   104         source = Source.instance(context);
   105         allowEnums = source.allowEnums();
   106         dollarAssertionsDisabled = names.
   107             fromString(target.syntheticNameChar() + "assertionsDisabled");
   108         classDollar = names.
   109             fromString("class" + target.syntheticNameChar());
   111         types = Types.instance(context);
   112         Options options = Options.instance(context);
   113         debugLower = options.isSet("debuglower");
   114         pkginfoOpt = PkgInfo.get(options);
   115     }
   117     /** The currently enclosing class.
   118      */
   119     ClassSymbol currentClass;
   121     /** A queue of all translated classes.
   122      */
   123     ListBuffer<JCTree> translated;
   125     /** Environment for symbol lookup, set by translateTopLevelClass.
   126      */
   127     Env<AttrContext> attrEnv;
   129     /** A hash table mapping syntax trees to their ending source positions.
   130      */
   131     EndPosTable endPosTable;
   133 /**************************************************************************
   134  * Global mappings
   135  *************************************************************************/
   137     /** A hash table mapping local classes to their definitions.
   138      */
   139     Map<ClassSymbol, JCClassDecl> classdefs;
   141     /** A hash table mapping local classes to a list of pruned trees.
   142      */
   143     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
   145     /** A hash table mapping virtual accessed symbols in outer subclasses
   146      *  to the actually referred symbol in superclasses.
   147      */
   148     Map<Symbol,Symbol> actualSymbols;
   150     /** The current method definition.
   151      */
   152     JCMethodDecl currentMethodDef;
   154     /** The current method symbol.
   155      */
   156     MethodSymbol currentMethodSym;
   158     /** The currently enclosing outermost class definition.
   159      */
   160     JCClassDecl outermostClassDef;
   162     /** The currently enclosing outermost member definition.
   163      */
   164     JCTree outermostMemberDef;
   166     /** A navigator class for assembling a mapping from local class symbols
   167      *  to class definition trees.
   168      *  There is only one case; all other cases simply traverse down the tree.
   169      */
   170     class ClassMap extends TreeScanner {
   172         /** All encountered class defs are entered into classdefs table.
   173          */
   174         public void visitClassDef(JCClassDecl tree) {
   175             classdefs.put(tree.sym, tree);
   176             super.visitClassDef(tree);
   177         }
   178     }
   179     ClassMap classMap = new ClassMap();
   181     /** Map a class symbol to its definition.
   182      *  @param c    The class symbol of which we want to determine the definition.
   183      */
   184     JCClassDecl classDef(ClassSymbol c) {
   185         // First lookup the class in the classdefs table.
   186         JCClassDecl def = classdefs.get(c);
   187         if (def == null && outermostMemberDef != null) {
   188             // If this fails, traverse outermost member definition, entering all
   189             // local classes into classdefs, and try again.
   190             classMap.scan(outermostMemberDef);
   191             def = classdefs.get(c);
   192         }
   193         if (def == null) {
   194             // If this fails, traverse outermost class definition, entering all
   195             // local classes into classdefs, and try again.
   196             classMap.scan(outermostClassDef);
   197             def = classdefs.get(c);
   198         }
   199         return def;
   200     }
   202     /** A hash table mapping class symbols to lists of free variables.
   203      *  accessed by them. Only free variables of the method immediately containing
   204      *  a class are associated with that class.
   205      */
   206     Map<ClassSymbol,List<VarSymbol>> freevarCache;
   208     /** A navigator class for collecting the free variables accessed
   209      *  from a local class.
   210      *  There is only one case; all other cases simply traverse down the tree.
   211      */
   212     class FreeVarCollector extends TreeScanner {
   214         /** The owner of the local class.
   215          */
   216         Symbol owner;
   218         /** The local class.
   219          */
   220         ClassSymbol clazz;
   222         /** The list of owner's variables accessed from within the local class,
   223          *  without any duplicates.
   224          */
   225         List<VarSymbol> fvs;
   227         FreeVarCollector(ClassSymbol clazz) {
   228             this.clazz = clazz;
   229             this.owner = clazz.owner;
   230             this.fvs = List.nil();
   231         }
   233         /** Add free variable to fvs list unless it is already there.
   234          */
   235         private void addFreeVar(VarSymbol v) {
   236             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
   237                 if (l.head == v) return;
   238             fvs = fvs.prepend(v);
   239         }
   241         /** Add all free variables of class c to fvs list
   242          *  unless they are already there.
   243          */
   244         private void addFreeVars(ClassSymbol c) {
   245             List<VarSymbol> fvs = freevarCache.get(c);
   246             if (fvs != null) {
   247                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
   248                     addFreeVar(l.head);
   249                 }
   250             }
   251         }
   253         /** If tree refers to a variable in owner of local class, add it to
   254          *  free variables list.
   255          */
   256         public void visitIdent(JCIdent tree) {
   257             result = tree;
   258             visitSymbol(tree.sym);
   259         }
   260         // where
   261         private void visitSymbol(Symbol _sym) {
   262             Symbol sym = _sym;
   263             if (sym.kind == VAR || sym.kind == MTH) {
   264                 while (sym != null && sym.owner != owner)
   265                     sym = proxies.lookup(proxyName(sym.name)).sym;
   266                 if (sym != null && sym.owner == owner) {
   267                     VarSymbol v = (VarSymbol)sym;
   268                     if (v.getConstValue() == null) {
   269                         addFreeVar(v);
   270                     }
   271                 } else {
   272                     if (outerThisStack.head != null &&
   273                         outerThisStack.head != _sym)
   274                         visitSymbol(outerThisStack.head);
   275                 }
   276             }
   277         }
   279         /** If tree refers to a class instance creation expression
   280          *  add all free variables of the freshly created class.
   281          */
   282         public void visitNewClass(JCNewClass tree) {
   283             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   284             addFreeVars(c);
   285             if (tree.encl == null &&
   286                 c.hasOuterInstance() &&
   287                 outerThisStack.head != null)
   288                 visitSymbol(outerThisStack.head);
   289             super.visitNewClass(tree);
   290         }
   292         /** If tree refers to a qualified this or super expression
   293          *  for anything but the current class, add the outer this
   294          *  stack as a free variable.
   295          */
   296         public void visitSelect(JCFieldAccess tree) {
   297             if ((tree.name == names._this || tree.name == names._super) &&
   298                 tree.selected.type.tsym != clazz &&
   299                 outerThisStack.head != null)
   300                 visitSymbol(outerThisStack.head);
   301             super.visitSelect(tree);
   302         }
   304         /** If tree refers to a superclass constructor call,
   305          *  add all free variables of the superclass.
   306          */
   307         public void visitApply(JCMethodInvocation tree) {
   308             if (TreeInfo.name(tree.meth) == names._super) {
   309                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
   310                 Symbol constructor = TreeInfo.symbol(tree.meth);
   311                 ClassSymbol c = (ClassSymbol)constructor.owner;
   312                 if (c.hasOuterInstance() &&
   313                     !tree.meth.hasTag(SELECT) &&
   314                     outerThisStack.head != null)
   315                     visitSymbol(outerThisStack.head);
   316             }
   317             super.visitApply(tree);
   318         }
   319     }
   321     /** Return the variables accessed from within a local class, which
   322      *  are declared in the local class' owner.
   323      *  (in reverse order of first access).
   324      */
   325     List<VarSymbol> freevars(ClassSymbol c)  {
   326         if ((c.owner.kind & (VAR | MTH)) != 0) {
   327             List<VarSymbol> fvs = freevarCache.get(c);
   328             if (fvs == null) {
   329                 FreeVarCollector collector = new FreeVarCollector(c);
   330                 collector.scan(classDef(c));
   331                 fvs = collector.fvs;
   332                 freevarCache.put(c, fvs);
   333             }
   334             return fvs;
   335         } else {
   336             return List.nil();
   337         }
   338     }
   340     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
   342     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
   343         EnumMapping map = enumSwitchMap.get(enumClass);
   344         if (map == null)
   345             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
   346         return map;
   347     }
   349     /** This map gives a translation table to be used for enum
   350      *  switches.
   351      *
   352      *  <p>For each enum that appears as the type of a switch
   353      *  expression, we maintain an EnumMapping to assist in the
   354      *  translation, as exemplified by the following example:
   355      *
   356      *  <p>we translate
   357      *  <pre>
   358      *          switch(colorExpression) {
   359      *          case red: stmt1;
   360      *          case green: stmt2;
   361      *          }
   362      *  </pre>
   363      *  into
   364      *  <pre>
   365      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
   366      *          case 1: stmt1;
   367      *          case 2: stmt2
   368      *          }
   369      *  </pre>
   370      *  with the auxiliary table initialized as follows:
   371      *  <pre>
   372      *          class Outer$0 {
   373      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
   374      *              static {
   375      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
   376      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
   377      *              }
   378      *          }
   379      *  </pre>
   380      *  class EnumMapping provides mapping data and support methods for this translation.
   381      */
   382     class EnumMapping {
   383         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
   384             this.forEnum = forEnum;
   385             this.values = new LinkedHashMap<VarSymbol,Integer>();
   386             this.pos = pos;
   387             Name varName = names
   388                 .fromString(target.syntheticNameChar() +
   389                             "SwitchMap" +
   390                             target.syntheticNameChar() +
   391                             writer.xClassName(forEnum.type).toString()
   392                             .replace('/', '.')
   393                             .replace('.', target.syntheticNameChar()));
   394             ClassSymbol outerCacheClass = outerCacheClass();
   395             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
   396                                         varName,
   397                                         new ArrayType(syms.intType, syms.arrayClass),
   398                                         outerCacheClass);
   399             enterSynthetic(pos, mapVar, outerCacheClass.members());
   400         }
   402         DiagnosticPosition pos = null;
   404         // the next value to use
   405         int next = 1; // 0 (unused map elements) go to the default label
   407         // the enum for which this is a map
   408         final TypeSymbol forEnum;
   410         // the field containing the map
   411         final VarSymbol mapVar;
   413         // the mapped values
   414         final Map<VarSymbol,Integer> values;
   416         JCLiteral forConstant(VarSymbol v) {
   417             Integer result = values.get(v);
   418             if (result == null)
   419                 values.put(v, result = next++);
   420             return make.Literal(result);
   421         }
   423         // generate the field initializer for the map
   424         void translate() {
   425             make.at(pos.getStartPosition());
   426             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
   428             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
   429             MethodSymbol valuesMethod = lookupMethod(pos,
   430                                                      names.values,
   431                                                      forEnum.type,
   432                                                      List.<Type>nil());
   433             JCExpression size = make // Color.values().length
   434                 .Select(make.App(make.QualIdent(valuesMethod)),
   435                         syms.lengthVar);
   436             JCExpression mapVarInit = make
   437                 .NewArray(make.Type(syms.intType), List.of(size), null)
   438                 .setType(new ArrayType(syms.intType, syms.arrayClass));
   440             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
   441             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
   442             Symbol ordinalMethod = lookupMethod(pos,
   443                                                 names.ordinal,
   444                                                 forEnum.type,
   445                                                 List.<Type>nil());
   446             List<JCCatch> catcher = List.<JCCatch>nil()
   447                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
   448                                                               syms.noSuchFieldErrorType,
   449                                                               syms.noSymbol),
   450                                                 null),
   451                                     make.Block(0, List.<JCStatement>nil())));
   452             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
   453                 VarSymbol enumerator = e.getKey();
   454                 Integer mappedValue = e.getValue();
   455                 JCExpression assign = make
   456                     .Assign(make.Indexed(mapVar,
   457                                          make.App(make.Select(make.QualIdent(enumerator),
   458                                                               ordinalMethod))),
   459                             make.Literal(mappedValue))
   460                     .setType(syms.intType);
   461                 JCStatement exec = make.Exec(assign);
   462                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
   463                 stmts.append(_try);
   464             }
   466             owner.defs = owner.defs
   467                 .prepend(make.Block(STATIC, stmts.toList()))
   468                 .prepend(make.VarDef(mapVar, mapVarInit));
   469         }
   470     }
   473 /**************************************************************************
   474  * Tree building blocks
   475  *************************************************************************/
   477     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
   478      *  pos as make_pos, for use in diagnostics.
   479      **/
   480     TreeMaker make_at(DiagnosticPosition pos) {
   481         make_pos = pos;
   482         return make.at(pos);
   483     }
   485     /** Make an attributed tree representing a literal. This will be an
   486      *  Ident node in the case of boolean literals, a Literal node in all
   487      *  other cases.
   488      *  @param type       The literal's type.
   489      *  @param value      The literal's value.
   490      */
   491     JCExpression makeLit(Type type, Object value) {
   492         return make.Literal(type.getTag(), value).setType(type.constType(value));
   493     }
   495     /** Make an attributed tree representing null.
   496      */
   497     JCExpression makeNull() {
   498         return makeLit(syms.botType, null);
   499     }
   501     /** Make an attributed class instance creation expression.
   502      *  @param ctype    The class type.
   503      *  @param args     The constructor arguments.
   504      */
   505     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
   506         JCNewClass tree = make.NewClass(null,
   507             null, make.QualIdent(ctype.tsym), args, null);
   508         tree.constructor = rs.resolveConstructor(
   509             make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
   510         tree.type = ctype;
   511         return tree;
   512     }
   514     /** Make an attributed unary expression.
   515      *  @param optag    The operators tree tag.
   516      *  @param arg      The operator's argument.
   517      */
   518     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
   519         JCUnary tree = make.Unary(optag, arg);
   520         tree.operator = rs.resolveUnaryOperator(
   521             make_pos, optag, attrEnv, arg.type);
   522         tree.type = tree.operator.type.getReturnType();
   523         return tree;
   524     }
   526     /** Make an attributed binary expression.
   527      *  @param optag    The operators tree tag.
   528      *  @param lhs      The operator's left argument.
   529      *  @param rhs      The operator's right argument.
   530      */
   531     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
   532         JCBinary tree = make.Binary(optag, lhs, rhs);
   533         tree.operator = rs.resolveBinaryOperator(
   534             make_pos, optag, attrEnv, lhs.type, rhs.type);
   535         tree.type = tree.operator.type.getReturnType();
   536         return tree;
   537     }
   539     /** Make an attributed assignop expression.
   540      *  @param optag    The operators tree tag.
   541      *  @param lhs      The operator's left argument.
   542      *  @param rhs      The operator's right argument.
   543      */
   544     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
   545         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
   546         tree.operator = rs.resolveBinaryOperator(
   547             make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
   548         tree.type = lhs.type;
   549         return tree;
   550     }
   552     /** Convert tree into string object, unless it has already a
   553      *  reference type..
   554      */
   555     JCExpression makeString(JCExpression tree) {
   556         if (!tree.type.isPrimitiveOrVoid()) {
   557             return tree;
   558         } else {
   559             Symbol valueOfSym = lookupMethod(tree.pos(),
   560                                              names.valueOf,
   561                                              syms.stringType,
   562                                              List.of(tree.type));
   563             return make.App(make.QualIdent(valueOfSym), List.of(tree));
   564         }
   565     }
   567     /** Create an empty anonymous class definition and enter and complete
   568      *  its symbol. Return the class definition's symbol.
   569      *  and create
   570      *  @param flags    The class symbol's flags
   571      *  @param owner    The class symbol's owner
   572      */
   573     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
   574         return makeEmptyClass(flags, owner, null, true);
   575     }
   577     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
   578             boolean addToDefs) {
   579         // Create class symbol.
   580         ClassSymbol c = reader.defineClass(names.empty, owner);
   581         if (flatname != null) {
   582             c.flatname = flatname;
   583         } else {
   584             c.flatname = chk.localClassName(c);
   585         }
   586         c.sourcefile = owner.sourcefile;
   587         c.completer = null;
   588         c.members_field = new Scope(c);
   589         c.flags_field = flags;
   590         ClassType ctype = (ClassType) c.type;
   591         ctype.supertype_field = syms.objectType;
   592         ctype.interfaces_field = List.nil();
   594         JCClassDecl odef = classDef(owner);
   596         // Enter class symbol in owner scope and compiled table.
   597         enterSynthetic(odef.pos(), c, owner.members());
   598         chk.compiled.put(c.flatname, c);
   600         // Create class definition tree.
   601         JCClassDecl cdef = make.ClassDef(
   602             make.Modifiers(flags), names.empty,
   603             List.<JCTypeParameter>nil(),
   604             null, List.<JCExpression>nil(), List.<JCTree>nil());
   605         cdef.sym = c;
   606         cdef.type = c.type;
   608         // Append class definition tree to owner's definitions.
   609         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
   610         return cdef;
   611     }
   613 /**************************************************************************
   614  * Symbol manipulation utilities
   615  *************************************************************************/
   617     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
   618      *  @param pos           Position for error reporting.
   619      *  @param sym           The symbol.
   620      *  @param s             The scope.
   621      */
   622     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
   623         s.enter(sym);
   624     }
   626     /** Create a fresh synthetic name within a given scope - the unique name is
   627      *  obtained by appending '$' chars at the end of the name until no match
   628      *  is found.
   629      *
   630      * @param name base name
   631      * @param s scope in which the name has to be unique
   632      * @return fresh synthetic name
   633      */
   634     private Name makeSyntheticName(Name name, Scope s) {
   635         do {
   636             name = name.append(
   637                     target.syntheticNameChar(),
   638                     names.empty);
   639         } while (lookupSynthetic(name, s) != null);
   640         return name;
   641     }
   643     /** Check whether synthetic symbols generated during lowering conflict
   644      *  with user-defined symbols.
   645      *
   646      *  @param translatedTrees lowered class trees
   647      */
   648     void checkConflicts(List<JCTree> translatedTrees) {
   649         for (JCTree t : translatedTrees) {
   650             t.accept(conflictsChecker);
   651         }
   652     }
   654     JCTree.Visitor conflictsChecker = new TreeScanner() {
   656         TypeSymbol currentClass;
   658         @Override
   659         public void visitMethodDef(JCMethodDecl that) {
   660             chk.checkConflicts(that.pos(), that.sym, currentClass);
   661             super.visitMethodDef(that);
   662         }
   664         @Override
   665         public void visitVarDef(JCVariableDecl that) {
   666             if (that.sym.owner.kind == TYP) {
   667                 chk.checkConflicts(that.pos(), that.sym, currentClass);
   668             }
   669             super.visitVarDef(that);
   670         }
   672         @Override
   673         public void visitClassDef(JCClassDecl that) {
   674             TypeSymbol prevCurrentClass = currentClass;
   675             currentClass = that.sym;
   676             try {
   677                 super.visitClassDef(that);
   678             }
   679             finally {
   680                 currentClass = prevCurrentClass;
   681             }
   682         }
   683     };
   685     /** Look up a synthetic name in a given scope.
   686      *  @param s            The scope.
   687      *  @param name         The name.
   688      */
   689     private Symbol lookupSynthetic(Name name, Scope s) {
   690         Symbol sym = s.lookup(name).sym;
   691         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
   692     }
   694     /** Look up a method in a given scope.
   695      */
   696     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
   697         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
   698     }
   700     /** Look up a constructor.
   701      */
   702     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
   703         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
   704     }
   706     /** Look up a field.
   707      */
   708     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
   709         return rs.resolveInternalField(pos, attrEnv, qual, name);
   710     }
   712     /** Anon inner classes are used as access constructor tags.
   713      * accessConstructorTag will use an existing anon class if one is available,
   714      * and synthethise a class (with makeEmptyClass) if one is not available.
   715      * However, there is a small possibility that an existing class will not
   716      * be generated as expected if it is inside a conditional with a constant
   717      * expression. If that is found to be the case, create an empty class tree here.
   718      */
   719     private void checkAccessConstructorTags() {
   720         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
   721             ClassSymbol c = l.head;
   722             if (isTranslatedClassAvailable(c))
   723                 continue;
   724             // Create class definition tree.
   725             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
   726                     c.outermostClass(), c.flatname, false);
   727             swapAccessConstructorTag(c, cdec.sym);
   728             translated.append(cdec);
   729         }
   730     }
   731     // where
   732     private boolean isTranslatedClassAvailable(ClassSymbol c) {
   733         for (JCTree tree: translated) {
   734             if (tree.hasTag(CLASSDEF)
   735                     && ((JCClassDecl) tree).sym == c) {
   736                 return true;
   737             }
   738         }
   739         return false;
   740     }
   742     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
   743         for (MethodSymbol methodSymbol : accessConstrs.values()) {
   744             Assert.check(methodSymbol.type.hasTag(METHOD));
   745             MethodType oldMethodType =
   746                     (MethodType)methodSymbol.type;
   747             if (oldMethodType.argtypes.head.tsym == oldCTag)
   748                 methodSymbol.type =
   749                     types.createMethodTypeWithParameters(oldMethodType,
   750                         oldMethodType.getParameterTypes().tail
   751                             .prepend(newCTag.erasure(types)));
   752         }
   753     }
   755 /**************************************************************************
   756  * Access methods
   757  *************************************************************************/
   759     /** Access codes for dereferencing, assignment,
   760      *  and pre/post increment/decrement.
   761      *  Access codes for assignment operations are determined by method accessCode
   762      *  below.
   763      *
   764      *  All access codes for accesses to the current class are even.
   765      *  If a member of the superclass should be accessed instead (because
   766      *  access was via a qualified super), add one to the corresponding code
   767      *  for the current class, making the number odd.
   768      *  This numbering scheme is used by the backend to decide whether
   769      *  to issue an invokevirtual or invokespecial call.
   770      *
   771      *  @see Gen#visitSelect(JCFieldAccess tree)
   772      */
   773     private static final int
   774         DEREFcode = 0,
   775         ASSIGNcode = 2,
   776         PREINCcode = 4,
   777         PREDECcode = 6,
   778         POSTINCcode = 8,
   779         POSTDECcode = 10,
   780         FIRSTASGOPcode = 12;
   782     /** Number of access codes
   783      */
   784     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
   786     /** A mapping from symbols to their access numbers.
   787      */
   788     private Map<Symbol,Integer> accessNums;
   790     /** A mapping from symbols to an array of access symbols, indexed by
   791      *  access code.
   792      */
   793     private Map<Symbol,MethodSymbol[]> accessSyms;
   795     /** A mapping from (constructor) symbols to access constructor symbols.
   796      */
   797     private Map<Symbol,MethodSymbol> accessConstrs;
   799     /** A list of all class symbols used for access constructor tags.
   800      */
   801     private List<ClassSymbol> accessConstrTags;
   803     /** A queue for all accessed symbols.
   804      */
   805     private ListBuffer<Symbol> accessed;
   807     /** Map bytecode of binary operation to access code of corresponding
   808      *  assignment operation. This is always an even number.
   809      */
   810     private static int accessCode(int bytecode) {
   811         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
   812             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
   813         else if (bytecode == ByteCodes.string_add)
   814             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
   815         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
   816             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
   817         else
   818             return -1;
   819     }
   821     /** return access code for identifier,
   822      *  @param tree     The tree representing the identifier use.
   823      *  @param enclOp   The closest enclosing operation node of tree,
   824      *                  null if tree is not a subtree of an operation.
   825      */
   826     private static int accessCode(JCTree tree, JCTree enclOp) {
   827         if (enclOp == null)
   828             return DEREFcode;
   829         else if (enclOp.hasTag(ASSIGN) &&
   830                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
   831             return ASSIGNcode;
   832         else if (enclOp.getTag().isIncOrDecUnaryOp() &&
   833                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
   834             return mapTagToUnaryOpCode(enclOp.getTag());
   835         else if (enclOp.getTag().isAssignop() &&
   836                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
   837             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
   838         else
   839             return DEREFcode;
   840     }
   842     /** Return binary operator that corresponds to given access code.
   843      */
   844     private OperatorSymbol binaryAccessOperator(int acode) {
   845         for (Scope.Entry e = syms.predefClass.members().elems;
   846              e != null;
   847              e = e.sibling) {
   848             if (e.sym instanceof OperatorSymbol) {
   849                 OperatorSymbol op = (OperatorSymbol)e.sym;
   850                 if (accessCode(op.opcode) == acode) return op;
   851             }
   852         }
   853         return null;
   854     }
   856     /** Return tree tag for assignment operation corresponding
   857      *  to given binary operator.
   858      */
   859     private static JCTree.Tag treeTag(OperatorSymbol operator) {
   860         switch (operator.opcode) {
   861         case ByteCodes.ior: case ByteCodes.lor:
   862             return BITOR_ASG;
   863         case ByteCodes.ixor: case ByteCodes.lxor:
   864             return BITXOR_ASG;
   865         case ByteCodes.iand: case ByteCodes.land:
   866             return BITAND_ASG;
   867         case ByteCodes.ishl: case ByteCodes.lshl:
   868         case ByteCodes.ishll: case ByteCodes.lshll:
   869             return SL_ASG;
   870         case ByteCodes.ishr: case ByteCodes.lshr:
   871         case ByteCodes.ishrl: case ByteCodes.lshrl:
   872             return SR_ASG;
   873         case ByteCodes.iushr: case ByteCodes.lushr:
   874         case ByteCodes.iushrl: case ByteCodes.lushrl:
   875             return USR_ASG;
   876         case ByteCodes.iadd: case ByteCodes.ladd:
   877         case ByteCodes.fadd: case ByteCodes.dadd:
   878         case ByteCodes.string_add:
   879             return PLUS_ASG;
   880         case ByteCodes.isub: case ByteCodes.lsub:
   881         case ByteCodes.fsub: case ByteCodes.dsub:
   882             return MINUS_ASG;
   883         case ByteCodes.imul: case ByteCodes.lmul:
   884         case ByteCodes.fmul: case ByteCodes.dmul:
   885             return MUL_ASG;
   886         case ByteCodes.idiv: case ByteCodes.ldiv:
   887         case ByteCodes.fdiv: case ByteCodes.ddiv:
   888             return DIV_ASG;
   889         case ByteCodes.imod: case ByteCodes.lmod:
   890         case ByteCodes.fmod: case ByteCodes.dmod:
   891             return MOD_ASG;
   892         default:
   893             throw new AssertionError();
   894         }
   895     }
   897     /** The name of the access method with number `anum' and access code `acode'.
   898      */
   899     Name accessName(int anum, int acode) {
   900         return names.fromString(
   901             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
   902     }
   904     /** Return access symbol for a private or protected symbol from an inner class.
   905      *  @param sym        The accessed private symbol.
   906      *  @param tree       The accessing tree.
   907      *  @param enclOp     The closest enclosing operation node of tree,
   908      *                    null if tree is not a subtree of an operation.
   909      *  @param protAccess Is access to a protected symbol in another
   910      *                    package?
   911      *  @param refSuper   Is access via a (qualified) C.super?
   912      */
   913     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
   914                               boolean protAccess, boolean refSuper) {
   915         ClassSymbol accOwner = refSuper && protAccess
   916             // For access via qualified super (T.super.x), place the
   917             // access symbol on T.
   918             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
   919             // Otherwise pretend that the owner of an accessed
   920             // protected symbol is the enclosing class of the current
   921             // class which is a subclass of the symbol's owner.
   922             : accessClass(sym, protAccess, tree);
   924         Symbol vsym = sym;
   925         if (sym.owner != accOwner) {
   926             vsym = sym.clone(accOwner);
   927             actualSymbols.put(vsym, sym);
   928         }
   930         Integer anum              // The access number of the access method.
   931             = accessNums.get(vsym);
   932         if (anum == null) {
   933             anum = accessed.length();
   934             accessNums.put(vsym, anum);
   935             accessSyms.put(vsym, new MethodSymbol[NCODES]);
   936             accessed.append(vsym);
   937             // System.out.println("accessing " + vsym + " in " + vsym.location());
   938         }
   940         int acode;                // The access code of the access method.
   941         List<Type> argtypes;      // The argument types of the access method.
   942         Type restype;             // The result type of the access method.
   943         List<Type> thrown;        // The thrown exceptions of the access method.
   944         switch (vsym.kind) {
   945         case VAR:
   946             acode = accessCode(tree, enclOp);
   947             if (acode >= FIRSTASGOPcode) {
   948                 OperatorSymbol operator = binaryAccessOperator(acode);
   949                 if (operator.opcode == string_add)
   950                     argtypes = List.of(syms.objectType);
   951                 else
   952                     argtypes = operator.type.getParameterTypes().tail;
   953             } else if (acode == ASSIGNcode)
   954                 argtypes = List.of(vsym.erasure(types));
   955             else
   956                 argtypes = List.nil();
   957             restype = vsym.erasure(types);
   958             thrown = List.nil();
   959             break;
   960         case MTH:
   961             acode = DEREFcode;
   962             argtypes = vsym.erasure(types).getParameterTypes();
   963             restype = vsym.erasure(types).getReturnType();
   964             thrown = vsym.type.getThrownTypes();
   965             break;
   966         default:
   967             throw new AssertionError();
   968         }
   970         // For references via qualified super, increment acode by one,
   971         // making it odd.
   972         if (protAccess && refSuper) acode++;
   974         // Instance access methods get instance as first parameter.
   975         // For protected symbols this needs to be the instance as a member
   976         // of the type containing the accessed symbol, not the class
   977         // containing the access method.
   978         if ((vsym.flags() & STATIC) == 0) {
   979             argtypes = argtypes.prepend(vsym.owner.erasure(types));
   980         }
   981         MethodSymbol[] accessors = accessSyms.get(vsym);
   982         MethodSymbol accessor = accessors[acode];
   983         if (accessor == null) {
   984             accessor = new MethodSymbol(
   985                 STATIC | SYNTHETIC,
   986                 accessName(anum.intValue(), acode),
   987                 new MethodType(argtypes, restype, thrown, syms.methodClass),
   988                 accOwner);
   989             enterSynthetic(tree.pos(), accessor, accOwner.members());
   990             accessors[acode] = accessor;
   991         }
   992         return accessor;
   993     }
   995     /** The qualifier to be used for accessing a symbol in an outer class.
   996      *  This is either C.sym or C.this.sym, depending on whether or not
   997      *  sym is static.
   998      *  @param sym   The accessed symbol.
   999      */
  1000     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
  1001         return (sym.flags() & STATIC) != 0
  1002             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
  1003             : makeOwnerThis(pos, sym, true);
  1006     /** Do we need an access method to reference private symbol?
  1007      */
  1008     boolean needsPrivateAccess(Symbol sym) {
  1009         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
  1010             return false;
  1011         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
  1012             // private constructor in local class: relax protection
  1013             sym.flags_field &= ~PRIVATE;
  1014             return false;
  1015         } else {
  1016             return true;
  1020     /** Do we need an access method to reference symbol in other package?
  1021      */
  1022     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
  1023         if ((sym.flags() & PROTECTED) == 0 ||
  1024             sym.owner.owner == currentClass.owner || // fast special case
  1025             sym.packge() == currentClass.packge())
  1026             return false;
  1027         if (!currentClass.isSubClass(sym.owner, types))
  1028             return true;
  1029         if ((sym.flags() & STATIC) != 0 ||
  1030             !tree.hasTag(SELECT) ||
  1031             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
  1032             return false;
  1033         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
  1036     /** The class in which an access method for given symbol goes.
  1037      *  @param sym        The access symbol
  1038      *  @param protAccess Is access to a protected symbol in another
  1039      *                    package?
  1040      */
  1041     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
  1042         if (protAccess) {
  1043             Symbol qualifier = null;
  1044             ClassSymbol c = currentClass;
  1045             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
  1046                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
  1047                 while (!qualifier.isSubClass(c, types)) {
  1048                     c = c.owner.enclClass();
  1050                 return c;
  1051             } else {
  1052                 while (!c.isSubClass(sym.owner, types)) {
  1053                     c = c.owner.enclClass();
  1056             return c;
  1057         } else {
  1058             // the symbol is private
  1059             return sym.owner.enclClass();
  1063     private void addPrunedInfo(JCTree tree) {
  1064         List<JCTree> infoList = prunedTree.get(currentClass);
  1065         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
  1066         prunedTree.put(currentClass, infoList);
  1069     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1070      *  @param sym      The accessed symbol.
  1071      *  @param tree     The tree referring to the symbol.
  1072      *  @param enclOp   The closest enclosing operation node of tree,
  1073      *                  null if tree is not a subtree of an operation.
  1074      *  @param refSuper Is access via a (qualified) C.super?
  1075      */
  1076     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
  1077         // Access a free variable via its proxy, or its proxy's proxy
  1078         while (sym.kind == VAR && sym.owner.kind == MTH &&
  1079             sym.owner.enclClass() != currentClass) {
  1080             // A constant is replaced by its constant value.
  1081             Object cv = ((VarSymbol)sym).getConstValue();
  1082             if (cv != null) {
  1083                 make.at(tree.pos);
  1084                 return makeLit(sym.type, cv);
  1086             // Otherwise replace the variable by its proxy.
  1087             sym = proxies.lookup(proxyName(sym.name)).sym;
  1088             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
  1089             tree = make.at(tree.pos).Ident(sym);
  1091         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
  1092         switch (sym.kind) {
  1093         case TYP:
  1094             if (sym.owner.kind != PCK) {
  1095                 // Convert type idents to
  1096                 // <flat name> or <package name> . <flat name>
  1097                 Name flatname = Convert.shortName(sym.flatName());
  1098                 while (base != null &&
  1099                        TreeInfo.symbol(base) != null &&
  1100                        TreeInfo.symbol(base).kind != PCK) {
  1101                     base = (base.hasTag(SELECT))
  1102                         ? ((JCFieldAccess) base).selected
  1103                         : null;
  1105                 if (tree.hasTag(IDENT)) {
  1106                     ((JCIdent) tree).name = flatname;
  1107                 } else if (base == null) {
  1108                     tree = make.at(tree.pos).Ident(sym);
  1109                     ((JCIdent) tree).name = flatname;
  1110                 } else {
  1111                     ((JCFieldAccess) tree).selected = base;
  1112                     ((JCFieldAccess) tree).name = flatname;
  1115             break;
  1116         case MTH: case VAR:
  1117             if (sym.owner.kind == TYP) {
  1119                 // Access methods are required for
  1120                 //  - private members,
  1121                 //  - protected members in a superclass of an
  1122                 //    enclosing class contained in another package.
  1123                 //  - all non-private members accessed via a qualified super.
  1124                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
  1125                     || needsProtectedAccess(sym, tree);
  1126                 boolean accReq = protAccess || needsPrivateAccess(sym);
  1128                 // A base has to be supplied for
  1129                 //  - simple identifiers accessing variables in outer classes.
  1130                 boolean baseReq =
  1131                     base == null &&
  1132                     sym.owner != syms.predefClass &&
  1133                     !sym.isMemberOf(currentClass, types);
  1135                 if (accReq || baseReq) {
  1136                     make.at(tree.pos);
  1138                     // Constants are replaced by their constant value.
  1139                     if (sym.kind == VAR) {
  1140                         Object cv = ((VarSymbol)sym).getConstValue();
  1141                         if (cv != null) {
  1142                             addPrunedInfo(tree);
  1143                             return makeLit(sym.type, cv);
  1147                     // Private variables and methods are replaced by calls
  1148                     // to their access methods.
  1149                     if (accReq) {
  1150                         List<JCExpression> args = List.nil();
  1151                         if ((sym.flags() & STATIC) == 0) {
  1152                             // Instance access methods get instance
  1153                             // as first parameter.
  1154                             if (base == null)
  1155                                 base = makeOwnerThis(tree.pos(), sym, true);
  1156                             args = args.prepend(base);
  1157                             base = null;   // so we don't duplicate code
  1159                         Symbol access = accessSymbol(sym, tree,
  1160                                                      enclOp, protAccess,
  1161                                                      refSuper);
  1162                         JCExpression receiver = make.Select(
  1163                             base != null ? base : make.QualIdent(access.owner),
  1164                             access);
  1165                         return make.App(receiver, args);
  1167                     // Other accesses to members of outer classes get a
  1168                     // qualifier.
  1169                     } else if (baseReq) {
  1170                         return make.at(tree.pos).Select(
  1171                             accessBase(tree.pos(), sym), sym).setType(tree.type);
  1176         return tree;
  1179     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1180      *  @param tree     The identifier tree.
  1181      */
  1182     JCExpression access(JCExpression tree) {
  1183         Symbol sym = TreeInfo.symbol(tree);
  1184         return sym == null ? tree : access(sym, tree, null, false);
  1187     /** Return access constructor for a private constructor,
  1188      *  or the constructor itself, if no access constructor is needed.
  1189      *  @param pos       The position to report diagnostics, if any.
  1190      *  @param constr    The private constructor.
  1191      */
  1192     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
  1193         if (needsPrivateAccess(constr)) {
  1194             ClassSymbol accOwner = constr.owner.enclClass();
  1195             MethodSymbol aconstr = accessConstrs.get(constr);
  1196             if (aconstr == null) {
  1197                 List<Type> argtypes = constr.type.getParameterTypes();
  1198                 if ((accOwner.flags_field & ENUM) != 0)
  1199                     argtypes = argtypes
  1200                         .prepend(syms.intType)
  1201                         .prepend(syms.stringType);
  1202                 aconstr = new MethodSymbol(
  1203                     SYNTHETIC,
  1204                     names.init,
  1205                     new MethodType(
  1206                         argtypes.append(
  1207                             accessConstructorTag().erasure(types)),
  1208                         constr.type.getReturnType(),
  1209                         constr.type.getThrownTypes(),
  1210                         syms.methodClass),
  1211                     accOwner);
  1212                 enterSynthetic(pos, aconstr, accOwner.members());
  1213                 accessConstrs.put(constr, aconstr);
  1214                 accessed.append(constr);
  1216             return aconstr;
  1217         } else {
  1218             return constr;
  1222     /** Return an anonymous class nested in this toplevel class.
  1223      */
  1224     ClassSymbol accessConstructorTag() {
  1225         ClassSymbol topClass = currentClass.outermostClass();
  1226         Name flatname = names.fromString("" + topClass.getQualifiedName() +
  1227                                          target.syntheticNameChar() +
  1228                                          "1");
  1229         ClassSymbol ctag = chk.compiled.get(flatname);
  1230         if (ctag == null)
  1231             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
  1232         // keep a record of all tags, to verify that all are generated as required
  1233         accessConstrTags = accessConstrTags.prepend(ctag);
  1234         return ctag;
  1237     /** Add all required access methods for a private symbol to enclosing class.
  1238      *  @param sym       The symbol.
  1239      */
  1240     void makeAccessible(Symbol sym) {
  1241         JCClassDecl cdef = classDef(sym.owner.enclClass());
  1242         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
  1243         if (sym.name == names.init) {
  1244             cdef.defs = cdef.defs.prepend(
  1245                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
  1246         } else {
  1247             MethodSymbol[] accessors = accessSyms.get(sym);
  1248             for (int i = 0; i < NCODES; i++) {
  1249                 if (accessors[i] != null)
  1250                     cdef.defs = cdef.defs.prepend(
  1251                         accessDef(cdef.pos, sym, accessors[i], i));
  1256     /** Maps unary operator integer codes to JCTree.Tag objects
  1257      *  @param unaryOpCode the unary operator code
  1258      */
  1259     private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
  1260         switch (unaryOpCode){
  1261             case PREINCcode:
  1262                 return PREINC;
  1263             case PREDECcode:
  1264                 return PREDEC;
  1265             case POSTINCcode:
  1266                 return POSTINC;
  1267             case POSTDECcode:
  1268                 return POSTDEC;
  1269             default:
  1270                 return NO_TAG;
  1274     /** Maps JCTree.Tag objects to unary operator integer codes
  1275      *  @param tag the JCTree.Tag
  1276      */
  1277     private static int mapTagToUnaryOpCode(Tag tag){
  1278         switch (tag){
  1279             case PREINC:
  1280                 return PREINCcode;
  1281             case PREDEC:
  1282                 return PREDECcode;
  1283             case POSTINC:
  1284                 return POSTINCcode;
  1285             case POSTDEC:
  1286                 return POSTDECcode;
  1287             default:
  1288                 return -1;
  1292     /** Construct definition of an access method.
  1293      *  @param pos        The source code position of the definition.
  1294      *  @param vsym       The private or protected symbol.
  1295      *  @param accessor   The access method for the symbol.
  1296      *  @param acode      The access code.
  1297      */
  1298     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
  1299 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
  1300         currentClass = vsym.owner.enclClass();
  1301         make.at(pos);
  1302         JCMethodDecl md = make.MethodDef(accessor, null);
  1304         // Find actual symbol
  1305         Symbol sym = actualSymbols.get(vsym);
  1306         if (sym == null) sym = vsym;
  1308         JCExpression ref;           // The tree referencing the private symbol.
  1309         List<JCExpression> args;    // Any additional arguments to be passed along.
  1310         if ((sym.flags() & STATIC) != 0) {
  1311             ref = make.Ident(sym);
  1312             args = make.Idents(md.params);
  1313         } else {
  1314             ref = make.Select(make.Ident(md.params.head), sym);
  1315             args = make.Idents(md.params.tail);
  1317         JCStatement stat;          // The statement accessing the private symbol.
  1318         if (sym.kind == VAR) {
  1319             // Normalize out all odd access codes by taking floor modulo 2:
  1320             int acode1 = acode - (acode & 1);
  1322             JCExpression expr;      // The access method's return value.
  1323             switch (acode1) {
  1324             case DEREFcode:
  1325                 expr = ref;
  1326                 break;
  1327             case ASSIGNcode:
  1328                 expr = make.Assign(ref, args.head);
  1329                 break;
  1330             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
  1331                 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
  1332                 break;
  1333             default:
  1334                 expr = make.Assignop(
  1335                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
  1336                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
  1338             stat = make.Return(expr.setType(sym.type));
  1339         } else {
  1340             stat = make.Call(make.App(ref, args));
  1342         md.body = make.Block(0, List.of(stat));
  1344         // Make sure all parameters, result types and thrown exceptions
  1345         // are accessible.
  1346         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
  1347             l.head.vartype = access(l.head.vartype);
  1348         md.restype = access(md.restype);
  1349         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
  1350             l.head = access(l.head);
  1352         return md;
  1355     /** Construct definition of an access constructor.
  1356      *  @param pos        The source code position of the definition.
  1357      *  @param constr     The private constructor.
  1358      *  @param accessor   The access method for the constructor.
  1359      */
  1360     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
  1361         make.at(pos);
  1362         JCMethodDecl md = make.MethodDef(accessor,
  1363                                       accessor.externalType(types),
  1364                                       null);
  1365         JCIdent callee = make.Ident(names._this);
  1366         callee.sym = constr;
  1367         callee.type = constr.type;
  1368         md.body =
  1369             make.Block(0, List.<JCStatement>of(
  1370                 make.Call(
  1371                     make.App(
  1372                         callee,
  1373                         make.Idents(md.params.reverse().tail.reverse())))));
  1374         return md;
  1377 /**************************************************************************
  1378  * Free variables proxies and this$n
  1379  *************************************************************************/
  1381     /** A scope containing all free variable proxies for currently translated
  1382      *  class, as well as its this$n symbol (if needed).
  1383      *  Proxy scopes are nested in the same way classes are.
  1384      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1385      *  in an additional innermost scope, where they represent the constructor
  1386      *  parameters.
  1387      */
  1388     Scope proxies;
  1390     /** A scope containing all unnamed resource variables/saved
  1391      *  exception variables for translated TWR blocks
  1392      */
  1393     Scope twrVars;
  1395     /** A stack containing the this$n field of the currently translated
  1396      *  classes (if needed) in innermost first order.
  1397      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1398      *  in an additional innermost scope, where they represent the constructor
  1399      *  parameters.
  1400      */
  1401     List<VarSymbol> outerThisStack;
  1403     /** The name of a free variable proxy.
  1404      */
  1405     Name proxyName(Name name) {
  1406         return names.fromString("val" + target.syntheticNameChar() + name);
  1409     /** Proxy definitions for all free variables in given list, in reverse order.
  1410      *  @param pos        The source code position of the definition.
  1411      *  @param freevars   The free variables.
  1412      *  @param owner      The class in which the definitions go.
  1413      */
  1414     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
  1415         long flags = FINAL | SYNTHETIC;
  1416         if (owner.kind == TYP &&
  1417             target.usePrivateSyntheticFields())
  1418             flags |= PRIVATE;
  1419         List<JCVariableDecl> defs = List.nil();
  1420         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
  1421             VarSymbol v = l.head;
  1422             VarSymbol proxy = new VarSymbol(
  1423                 flags, proxyName(v.name), v.erasure(types), owner);
  1424             proxies.enter(proxy);
  1425             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
  1426             vd.vartype = access(vd.vartype);
  1427             defs = defs.prepend(vd);
  1429         return defs;
  1432     /** The name of a this$n field
  1433      *  @param type   The class referenced by the this$n field
  1434      */
  1435     Name outerThisName(Type type, Symbol owner) {
  1436         Type t = type.getEnclosingType();
  1437         int nestingLevel = 0;
  1438         while (t.hasTag(CLASS)) {
  1439             t = t.getEnclosingType();
  1440             nestingLevel++;
  1442         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
  1443         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
  1444             result = names.fromString(result.toString() + target.syntheticNameChar());
  1445         return result;
  1448     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
  1449         if (owner.kind == TYP &&
  1450             target.usePrivateSyntheticFields())
  1451             flags |= PRIVATE;
  1452         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
  1453         VarSymbol outerThis =
  1454             new VarSymbol(flags, outerThisName(target, owner), target, owner);
  1455         outerThisStack = outerThisStack.prepend(outerThis);
  1456         return outerThis;
  1459     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
  1460         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
  1461         vd.vartype = access(vd.vartype);
  1462         return vd;
  1465     /** Definition for this$n field.
  1466      *  @param pos        The source code position of the definition.
  1467      *  @param owner      The method in which the definition goes.
  1468      */
  1469     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
  1470         ClassSymbol c = owner.enclClass();
  1471         boolean isMandated =
  1472             // Anonymous constructors
  1473             (owner.isConstructor() && owner.isAnonymous()) ||
  1474             // Constructors of non-private inner member classes
  1475             (owner.isConstructor() && c.isInner() &&
  1476              !c.isPrivate() && !c.isStatic());
  1477         long flags =
  1478             FINAL | (isMandated ? MANDATED : SYNTHETIC);
  1479         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
  1480         owner.extraParams = owner.extraParams.prepend(outerThis);
  1481         return makeOuterThisVarDecl(pos, outerThis);
  1484     /** Definition for this$n field.
  1485      *  @param pos        The source code position of the definition.
  1486      *  @param owner      The class in which the definition goes.
  1487      */
  1488     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
  1489         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
  1490         return makeOuterThisVarDecl(pos, outerThis);
  1493     /** Return a list of trees that load the free variables in given list,
  1494      *  in reverse order.
  1495      *  @param pos          The source code position to be used for the trees.
  1496      *  @param freevars     The list of free variables.
  1497      */
  1498     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
  1499         List<JCExpression> args = List.nil();
  1500         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
  1501             args = args.prepend(loadFreevar(pos, l.head));
  1502         return args;
  1504 //where
  1505         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
  1506             return access(v, make.at(pos).Ident(v), null, false);
  1509     /** Construct a tree simulating the expression {@code C.this}.
  1510      *  @param pos           The source code position to be used for the tree.
  1511      *  @param c             The qualifier class.
  1512      */
  1513     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
  1514         if (currentClass == c) {
  1515             // in this case, `this' works fine
  1516             return make.at(pos).This(c.erasure(types));
  1517         } else {
  1518             // need to go via this$n
  1519             return makeOuterThis(pos, c);
  1523     /**
  1524      * Optionally replace a try statement with the desugaring of a
  1525      * try-with-resources statement.  The canonical desugaring of
  1527      * try ResourceSpecification
  1528      *   Block
  1530      * is
  1532      * {
  1533      *   final VariableModifiers_minus_final R #resource = Expression;
  1534      *   Throwable #primaryException = null;
  1536      *   try ResourceSpecificationtail
  1537      *     Block
  1538      *   catch (Throwable #t) {
  1539      *     #primaryException = t;
  1540      *     throw #t;
  1541      *   } finally {
  1542      *     if (#resource != null) {
  1543      *       if (#primaryException != null) {
  1544      *         try {
  1545      *           #resource.close();
  1546      *         } catch(Throwable #suppressedException) {
  1547      *           #primaryException.addSuppressed(#suppressedException);
  1548      *         }
  1549      *       } else {
  1550      *         #resource.close();
  1551      *       }
  1552      *     }
  1553      *   }
  1555      * @param tree  The try statement to inspect.
  1556      * @return A a desugared try-with-resources tree, or the original
  1557      * try block if there are no resources to manage.
  1558      */
  1559     JCTree makeTwrTry(JCTry tree) {
  1560         make_at(tree.pos());
  1561         twrVars = twrVars.dup();
  1562         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
  1563         if (tree.catchers.isEmpty() && tree.finalizer == null)
  1564             result = translate(twrBlock);
  1565         else
  1566             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
  1567         twrVars = twrVars.leave();
  1568         return result;
  1571     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
  1572         if (resources.isEmpty())
  1573             return block;
  1575         // Add resource declaration or expression to block statements
  1576         ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
  1577         JCTree resource = resources.head;
  1578         JCExpression expr = null;
  1579         if (resource instanceof JCVariableDecl) {
  1580             JCVariableDecl var = (JCVariableDecl) resource;
  1581             expr = make.Ident(var.sym).setType(resource.type);
  1582             stats.add(var);
  1583         } else {
  1584             Assert.check(resource instanceof JCExpression);
  1585             VarSymbol syntheticTwrVar =
  1586             new VarSymbol(SYNTHETIC | FINAL,
  1587                           makeSyntheticName(names.fromString("twrVar" +
  1588                                            depth), twrVars),
  1589                           (resource.type.hasTag(BOT)) ?
  1590                           syms.autoCloseableType : resource.type,
  1591                           currentMethodSym);
  1592             twrVars.enter(syntheticTwrVar);
  1593             JCVariableDecl syntheticTwrVarDecl =
  1594                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
  1595             expr = (JCExpression)make.Ident(syntheticTwrVar);
  1596             stats.add(syntheticTwrVarDecl);
  1599         // Add primaryException declaration
  1600         VarSymbol primaryException =
  1601             new VarSymbol(SYNTHETIC,
  1602                           makeSyntheticName(names.fromString("primaryException" +
  1603                           depth), twrVars),
  1604                           syms.throwableType,
  1605                           currentMethodSym);
  1606         twrVars.enter(primaryException);
  1607         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
  1608         stats.add(primaryExceptionTreeDecl);
  1610         // Create catch clause that saves exception and then rethrows it
  1611         VarSymbol param =
  1612             new VarSymbol(FINAL|SYNTHETIC,
  1613                           names.fromString("t" +
  1614                                            target.syntheticNameChar()),
  1615                           syms.throwableType,
  1616                           currentMethodSym);
  1617         JCVariableDecl paramTree = make.VarDef(param, null);
  1618         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
  1619         JCStatement rethrowStat = make.Throw(make.Ident(param));
  1620         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
  1621         JCCatch catchClause = make.Catch(paramTree, catchBlock);
  1623         int oldPos = make.pos;
  1624         make.at(TreeInfo.endPos(block));
  1625         JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
  1626         make.at(oldPos);
  1627         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
  1628                                   List.<JCCatch>of(catchClause),
  1629                                   finallyClause);
  1630         stats.add(outerTry);
  1631         return make.Block(0L, stats.toList());
  1634     private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
  1635         // primaryException.addSuppressed(catchException);
  1636         VarSymbol catchException =
  1637             new VarSymbol(0, make.paramName(2),
  1638                           syms.throwableType,
  1639                           currentMethodSym);
  1640         JCStatement addSuppressionStatement =
  1641             make.Exec(makeCall(make.Ident(primaryException),
  1642                                names.addSuppressed,
  1643                                List.<JCExpression>of(make.Ident(catchException))));
  1645         // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
  1646         JCBlock tryBlock =
  1647             make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
  1648         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
  1649         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
  1650         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
  1651         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
  1653         // if (primaryException != null) {try...} else resourceClose;
  1654         JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
  1655                                         tryTree,
  1656                                         makeResourceCloseInvocation(resource));
  1658         // if (#resource != null) { if (primaryException ...  }
  1659         return make.Block(0L,
  1660                           List.<JCStatement>of(make.If(makeNonNullCheck(resource),
  1661                                                        closeIfStatement,
  1662                                                        null)));
  1665     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
  1666         // convert to AutoCloseable if needed
  1667         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
  1668             resource = (JCExpression) convert(resource, syms.autoCloseableType);
  1671         // create resource.close() method invocation
  1672         JCExpression resourceClose = makeCall(resource,
  1673                                               names.close,
  1674                                               List.<JCExpression>nil());
  1675         return make.Exec(resourceClose);
  1678     private JCExpression makeNonNullCheck(JCExpression expression) {
  1679         return makeBinary(NE, expression, makeNull());
  1682     /** Construct a tree that represents the outer instance
  1683      *  {@code C.this}. Never pick the current `this'.
  1684      *  @param pos           The source code position to be used for the tree.
  1685      *  @param c             The qualifier class.
  1686      */
  1687     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
  1688         List<VarSymbol> ots = outerThisStack;
  1689         if (ots.isEmpty()) {
  1690             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1691             Assert.error();
  1692             return makeNull();
  1694         VarSymbol ot = ots.head;
  1695         JCExpression tree = access(make.at(pos).Ident(ot));
  1696         TypeSymbol otc = ot.type.tsym;
  1697         while (otc != c) {
  1698             do {
  1699                 ots = ots.tail;
  1700                 if (ots.isEmpty()) {
  1701                     log.error(pos,
  1702                               "no.encl.instance.of.type.in.scope",
  1703                               c);
  1704                     Assert.error(); // should have been caught in Attr
  1705                     return tree;
  1707                 ot = ots.head;
  1708             } while (ot.owner != otc);
  1709             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
  1710                 chk.earlyRefError(pos, c);
  1711                 Assert.error(); // should have been caught in Attr
  1712                 return makeNull();
  1714             tree = access(make.at(pos).Select(tree, ot));
  1715             otc = ot.type.tsym;
  1717         return tree;
  1720     /** Construct a tree that represents the closest outer instance
  1721      *  {@code C.this} such that the given symbol is a member of C.
  1722      *  @param pos           The source code position to be used for the tree.
  1723      *  @param sym           The accessed symbol.
  1724      *  @param preciseMatch  should we accept a type that is a subtype of
  1725      *                       sym's owner, even if it doesn't contain sym
  1726      *                       due to hiding, overriding, or non-inheritance
  1727      *                       due to protection?
  1728      */
  1729     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1730         Symbol c = sym.owner;
  1731         if (preciseMatch ? sym.isMemberOf(currentClass, types)
  1732                          : currentClass.isSubClass(sym.owner, types)) {
  1733             // in this case, `this' works fine
  1734             return make.at(pos).This(c.erasure(types));
  1735         } else {
  1736             // need to go via this$n
  1737             return makeOwnerThisN(pos, sym, preciseMatch);
  1741     /**
  1742      * Similar to makeOwnerThis but will never pick "this".
  1743      */
  1744     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1745         Symbol c = sym.owner;
  1746         List<VarSymbol> ots = outerThisStack;
  1747         if (ots.isEmpty()) {
  1748             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1749             Assert.error();
  1750             return makeNull();
  1752         VarSymbol ot = ots.head;
  1753         JCExpression tree = access(make.at(pos).Ident(ot));
  1754         TypeSymbol otc = ot.type.tsym;
  1755         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
  1756             do {
  1757                 ots = ots.tail;
  1758                 if (ots.isEmpty()) {
  1759                     log.error(pos,
  1760                         "no.encl.instance.of.type.in.scope",
  1761                         c);
  1762                     Assert.error();
  1763                     return tree;
  1765                 ot = ots.head;
  1766             } while (ot.owner != otc);
  1767             tree = access(make.at(pos).Select(tree, ot));
  1768             otc = ot.type.tsym;
  1770         return tree;
  1773     /** Return tree simulating the assignment {@code this.name = name}, where
  1774      *  name is the name of a free variable.
  1775      */
  1776     JCStatement initField(int pos, Name name) {
  1777         Scope.Entry e = proxies.lookup(name);
  1778         Symbol rhs = e.sym;
  1779         Assert.check(rhs.owner.kind == MTH);
  1780         Symbol lhs = e.next().sym;
  1781         Assert.check(rhs.owner.owner == lhs.owner);
  1782         make.at(pos);
  1783         return
  1784             make.Exec(
  1785                 make.Assign(
  1786                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1787                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1790     /** Return tree simulating the assignment {@code this.this$n = this$n}.
  1791      */
  1792     JCStatement initOuterThis(int pos) {
  1793         VarSymbol rhs = outerThisStack.head;
  1794         Assert.check(rhs.owner.kind == MTH);
  1795         VarSymbol lhs = outerThisStack.tail.head;
  1796         Assert.check(rhs.owner.owner == lhs.owner);
  1797         make.at(pos);
  1798         return
  1799             make.Exec(
  1800                 make.Assign(
  1801                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1802                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1805 /**************************************************************************
  1806  * Code for .class
  1807  *************************************************************************/
  1809     /** Return the symbol of a class to contain a cache of
  1810      *  compiler-generated statics such as class$ and the
  1811      *  $assertionsDisabled flag.  We create an anonymous nested class
  1812      *  (unless one already exists) and return its symbol.  However,
  1813      *  for backward compatibility in 1.4 and earlier we use the
  1814      *  top-level class itself.
  1815      */
  1816     private ClassSymbol outerCacheClass() {
  1817         ClassSymbol clazz = outermostClassDef.sym;
  1818         if ((clazz.flags() & INTERFACE) == 0 &&
  1819             !target.useInnerCacheClass()) return clazz;
  1820         Scope s = clazz.members();
  1821         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
  1822             if (e.sym.kind == TYP &&
  1823                 e.sym.name == names.empty &&
  1824                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
  1825         return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
  1828     /** Return symbol for "class$" method. If there is no method definition
  1829      *  for class$, construct one as follows:
  1831      *    class class$(String x0) {
  1832      *      try {
  1833      *        return Class.forName(x0);
  1834      *      } catch (ClassNotFoundException x1) {
  1835      *        throw new NoClassDefFoundError(x1.getMessage());
  1836      *      }
  1837      *    }
  1838      */
  1839     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
  1840         ClassSymbol outerCacheClass = outerCacheClass();
  1841         MethodSymbol classDollarSym =
  1842             (MethodSymbol)lookupSynthetic(classDollar,
  1843                                           outerCacheClass.members());
  1844         if (classDollarSym == null) {
  1845             classDollarSym = new MethodSymbol(
  1846                 STATIC | SYNTHETIC,
  1847                 classDollar,
  1848                 new MethodType(
  1849                     List.of(syms.stringType),
  1850                     types.erasure(syms.classType),
  1851                     List.<Type>nil(),
  1852                     syms.methodClass),
  1853                 outerCacheClass);
  1854             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
  1856             JCMethodDecl md = make.MethodDef(classDollarSym, null);
  1857             try {
  1858                 md.body = classDollarSymBody(pos, md);
  1859             } catch (CompletionFailure ex) {
  1860                 md.body = make.Block(0, List.<JCStatement>nil());
  1861                 chk.completionError(pos, ex);
  1863             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1864             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
  1866         return classDollarSym;
  1869     /** Generate code for class$(String name). */
  1870     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
  1871         MethodSymbol classDollarSym = md.sym;
  1872         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
  1874         JCBlock returnResult;
  1876         // in 1.4.2 and above, we use
  1877         // Class.forName(String name, boolean init, ClassLoader loader);
  1878         // which requires we cache the current loader in cl$
  1879         if (target.classLiteralsNoInit()) {
  1880             // clsym = "private static ClassLoader cl$"
  1881             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
  1882                                             names.fromString("cl" + target.syntheticNameChar()),
  1883                                             syms.classLoaderType,
  1884                                             outerCacheClass);
  1885             enterSynthetic(pos, clsym, outerCacheClass.members());
  1887             // emit "private static ClassLoader cl$;"
  1888             JCVariableDecl cldef = make.VarDef(clsym, null);
  1889             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1890             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
  1892             // newcache := "new cache$1[0]"
  1893             JCNewArray newcache = make.
  1894                 NewArray(make.Type(outerCacheClass.type),
  1895                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
  1896                          null);
  1897             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
  1898                                           syms.arrayClass);
  1900             // forNameSym := java.lang.Class.forName(
  1901             //     String s,boolean init,ClassLoader loader)
  1902             Symbol forNameSym = lookupMethod(make_pos, names.forName,
  1903                                              types.erasure(syms.classType),
  1904                                              List.of(syms.stringType,
  1905                                                      syms.booleanType,
  1906                                                      syms.classLoaderType));
  1907             // clvalue := "(cl$ == null) ?
  1908             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
  1909             JCExpression clvalue =
  1910                 make.Conditional(
  1911                     makeBinary(EQ, make.Ident(clsym), makeNull()),
  1912                     make.Assign(
  1913                         make.Ident(clsym),
  1914                         makeCall(
  1915                             makeCall(makeCall(newcache,
  1916                                               names.getClass,
  1917                                               List.<JCExpression>nil()),
  1918                                      names.getComponentType,
  1919                                      List.<JCExpression>nil()),
  1920                             names.getClassLoader,
  1921                             List.<JCExpression>nil())).setType(syms.classLoaderType),
  1922                     make.Ident(clsym)).setType(syms.classLoaderType);
  1924             // returnResult := "{ return Class.forName(param1, false, cl$); }"
  1925             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
  1926                                               makeLit(syms.booleanType, 0),
  1927                                               clvalue);
  1928             returnResult = make.
  1929                 Block(0, List.<JCStatement>of(make.
  1930                               Call(make. // return
  1931                                    App(make.
  1932                                        Ident(forNameSym), args))));
  1933         } else {
  1934             // forNameSym := java.lang.Class.forName(String s)
  1935             Symbol forNameSym = lookupMethod(make_pos,
  1936                                              names.forName,
  1937                                              types.erasure(syms.classType),
  1938                                              List.of(syms.stringType));
  1939             // returnResult := "{ return Class.forName(param1); }"
  1940             returnResult = make.
  1941                 Block(0, List.of(make.
  1942                           Call(make. // return
  1943                               App(make.
  1944                                   QualIdent(forNameSym),
  1945                                   List.<JCExpression>of(make.
  1946                                                         Ident(md.params.
  1947                                                               head.sym))))));
  1950         // catchParam := ClassNotFoundException e1
  1951         VarSymbol catchParam =
  1952             new VarSymbol(0, make.paramName(1),
  1953                           syms.classNotFoundExceptionType,
  1954                           classDollarSym);
  1956         JCStatement rethrow;
  1957         if (target.hasInitCause()) {
  1958             // rethrow = "throw new NoClassDefFoundError().initCause(e);
  1959             JCTree throwExpr =
  1960                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
  1961                                       List.<JCExpression>nil()),
  1962                          names.initCause,
  1963                          List.<JCExpression>of(make.Ident(catchParam)));
  1964             rethrow = make.Throw(throwExpr);
  1965         } else {
  1966             // getMessageSym := ClassNotFoundException.getMessage()
  1967             Symbol getMessageSym = lookupMethod(make_pos,
  1968                                                 names.getMessage,
  1969                                                 syms.classNotFoundExceptionType,
  1970                                                 List.<Type>nil());
  1971             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
  1972             rethrow = make.
  1973                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
  1974                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
  1975                                                                      getMessageSym),
  1976                                                          List.<JCExpression>nil()))));
  1979         // rethrowStmt := "( $rethrow )"
  1980         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
  1982         // catchBlock := "catch ($catchParam) $rethrowStmt"
  1983         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
  1984                                       rethrowStmt);
  1986         // tryCatch := "try $returnResult $catchBlock"
  1987         JCStatement tryCatch = make.Try(returnResult,
  1988                                         List.of(catchBlock), null);
  1990         return make.Block(0, List.of(tryCatch));
  1992     // where
  1993         /** Create an attributed tree of the form left.name(). */
  1994         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
  1995             Assert.checkNonNull(left.type);
  1996             Symbol funcsym = lookupMethod(make_pos, name, left.type,
  1997                                           TreeInfo.types(args));
  1998             return make.App(make.Select(left, funcsym), args);
  2001     /** The Name Of The variable to cache T.class values.
  2002      *  @param sig      The signature of type T.
  2003      */
  2004     private Name cacheName(String sig) {
  2005         StringBuilder buf = new StringBuilder();
  2006         if (sig.startsWith("[")) {
  2007             buf = buf.append("array");
  2008             while (sig.startsWith("[")) {
  2009                 buf = buf.append(target.syntheticNameChar());
  2010                 sig = sig.substring(1);
  2012             if (sig.startsWith("L")) {
  2013                 sig = sig.substring(0, sig.length() - 1);
  2015         } else {
  2016             buf = buf.append("class" + target.syntheticNameChar());
  2018         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
  2019         return names.fromString(buf.toString());
  2022     /** The variable symbol that caches T.class values.
  2023      *  If none exists yet, create a definition.
  2024      *  @param sig      The signature of type T.
  2025      *  @param pos      The position to report diagnostics, if any.
  2026      */
  2027     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
  2028         ClassSymbol outerCacheClass = outerCacheClass();
  2029         Name cname = cacheName(sig);
  2030         VarSymbol cacheSym =
  2031             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
  2032         if (cacheSym == null) {
  2033             cacheSym = new VarSymbol(
  2034                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
  2035             enterSynthetic(pos, cacheSym, outerCacheClass.members());
  2037             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
  2038             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  2039             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
  2041         return cacheSym;
  2044     /** The tree simulating a T.class expression.
  2045      *  @param clazz      The tree identifying type T.
  2046      */
  2047     private JCExpression classOf(JCTree clazz) {
  2048         return classOfType(clazz.type, clazz.pos());
  2051     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
  2052         switch (type.getTag()) {
  2053         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
  2054         case DOUBLE: case BOOLEAN: case VOID:
  2055             // replace with <BoxedClass>.TYPE
  2056             ClassSymbol c = types.boxedClass(type);
  2057             Symbol typeSym =
  2058                 rs.accessBase(
  2059                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
  2060                     pos, c.type, names.TYPE, true);
  2061             if (typeSym.kind == VAR)
  2062                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
  2063             return make.QualIdent(typeSym);
  2064         case CLASS: case ARRAY:
  2065             if (target.hasClassLiterals()) {
  2066                 VarSymbol sym = new VarSymbol(
  2067                         STATIC | PUBLIC | FINAL, names._class,
  2068                         syms.classType, type.tsym);
  2069                 return make_at(pos).Select(make.Type(type), sym);
  2071             // replace with <cache == null ? cache = class$(tsig) : cache>
  2072             // where
  2073             //  - <tsig>  is the type signature of T,
  2074             //  - <cache> is the cache variable for tsig.
  2075             String sig =
  2076                 writer.xClassName(type).toString().replace('/', '.');
  2077             Symbol cs = cacheSym(pos, sig);
  2078             return make_at(pos).Conditional(
  2079                 makeBinary(EQ, make.Ident(cs), makeNull()),
  2080                 make.Assign(
  2081                     make.Ident(cs),
  2082                     make.App(
  2083                         make.Ident(classDollarSym(pos)),
  2084                         List.<JCExpression>of(make.Literal(CLASS, sig)
  2085                                               .setType(syms.stringType))))
  2086                 .setType(types.erasure(syms.classType)),
  2087                 make.Ident(cs)).setType(types.erasure(syms.classType));
  2088         default:
  2089             throw new AssertionError();
  2093 /**************************************************************************
  2094  * Code for enabling/disabling assertions.
  2095  *************************************************************************/
  2097     // This code is not particularly robust if the user has
  2098     // previously declared a member named '$assertionsDisabled'.
  2099     // The same faulty idiom also appears in the translation of
  2100     // class literals above.  We should report an error if a
  2101     // previous declaration is not synthetic.
  2103     private JCExpression assertFlagTest(DiagnosticPosition pos) {
  2104         // Outermost class may be either true class or an interface.
  2105         ClassSymbol outermostClass = outermostClassDef.sym;
  2107         // note that this is a class, as an interface can't contain a statement.
  2108         ClassSymbol container = currentClass;
  2110         VarSymbol assertDisabledSym =
  2111             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
  2112                                        container.members());
  2113         if (assertDisabledSym == null) {
  2114             assertDisabledSym =
  2115                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
  2116                               dollarAssertionsDisabled,
  2117                               syms.booleanType,
  2118                               container);
  2119             enterSynthetic(pos, assertDisabledSym, container.members());
  2120             Symbol desiredAssertionStatusSym = lookupMethod(pos,
  2121                                                             names.desiredAssertionStatus,
  2122                                                             types.erasure(syms.classType),
  2123                                                             List.<Type>nil());
  2124             JCClassDecl containerDef = classDef(container);
  2125             make_at(containerDef.pos());
  2126             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
  2127                     classOfType(types.erasure(outermostClass.type),
  2128                                 containerDef.pos()),
  2129                     desiredAssertionStatusSym)));
  2130             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
  2131                                                    notStatus);
  2132             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
  2134         make_at(pos);
  2135         return makeUnary(NOT, make.Ident(assertDisabledSym));
  2139 /**************************************************************************
  2140  * Building blocks for let expressions
  2141  *************************************************************************/
  2143     interface TreeBuilder {
  2144         JCTree build(JCTree arg);
  2147     /** Construct an expression using the builder, with the given rval
  2148      *  expression as an argument to the builder.  However, the rval
  2149      *  expression must be computed only once, even if used multiple
  2150      *  times in the result of the builder.  We do that by
  2151      *  constructing a "let" expression that saves the rvalue into a
  2152      *  temporary variable and then uses the temporary variable in
  2153      *  place of the expression built by the builder.  The complete
  2154      *  resulting expression is of the form
  2155      *  <pre>
  2156      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
  2157      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
  2158      *  </pre>
  2159      *  where <code><b>TEMP</b></code> is a newly declared variable
  2160      *  in the let expression.
  2161      */
  2162     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
  2163         rval = TreeInfo.skipParens(rval);
  2164         switch (rval.getTag()) {
  2165         case LITERAL:
  2166             return builder.build(rval);
  2167         case IDENT:
  2168             JCIdent id = (JCIdent) rval;
  2169             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
  2170                 return builder.build(rval);
  2172         VarSymbol var =
  2173             new VarSymbol(FINAL|SYNTHETIC,
  2174                           names.fromString(
  2175                                           target.syntheticNameChar()
  2176                                           + "" + rval.hashCode()),
  2177                                       type,
  2178                                       currentMethodSym);
  2179         rval = convert(rval,type);
  2180         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
  2181         JCTree built = builder.build(make.Ident(var));
  2182         JCTree res = make.LetExpr(def, built);
  2183         res.type = built.type;
  2184         return res;
  2187     // same as above, with the type of the temporary variable computed
  2188     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
  2189         return abstractRval(rval, rval.type, builder);
  2192     // same as above, but for an expression that may be used as either
  2193     // an rvalue or an lvalue.  This requires special handling for
  2194     // Select expressions, where we place the left-hand-side of the
  2195     // select in a temporary, and for Indexed expressions, where we
  2196     // place both the indexed expression and the index value in temps.
  2197     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
  2198         lval = TreeInfo.skipParens(lval);
  2199         switch (lval.getTag()) {
  2200         case IDENT:
  2201             return builder.build(lval);
  2202         case SELECT: {
  2203             final JCFieldAccess s = (JCFieldAccess)lval;
  2204             JCTree selected = TreeInfo.skipParens(s.selected);
  2205             Symbol lid = TreeInfo.symbol(s.selected);
  2206             if (lid != null && lid.kind == TYP) return builder.build(lval);
  2207             return abstractRval(s.selected, new TreeBuilder() {
  2208                     public JCTree build(final JCTree selected) {
  2209                         return builder.build(make.Select((JCExpression)selected, s.sym));
  2211                 });
  2213         case INDEXED: {
  2214             final JCArrayAccess i = (JCArrayAccess)lval;
  2215             return abstractRval(i.indexed, new TreeBuilder() {
  2216                     public JCTree build(final JCTree indexed) {
  2217                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
  2218                                 public JCTree build(final JCTree index) {
  2219                                     JCTree newLval = make.Indexed((JCExpression)indexed,
  2220                                                                 (JCExpression)index);
  2221                                     newLval.setType(i.type);
  2222                                     return builder.build(newLval);
  2224                             });
  2226                 });
  2228         case TYPECAST: {
  2229             return abstractLval(((JCTypeCast)lval).expr, builder);
  2232         throw new AssertionError(lval);
  2235     // evaluate and discard the first expression, then evaluate the second.
  2236     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
  2237         return abstractRval(expr1, new TreeBuilder() {
  2238                 public JCTree build(final JCTree discarded) {
  2239                     return expr2;
  2241             });
  2244 /**************************************************************************
  2245  * Translation methods
  2246  *************************************************************************/
  2248     /** Visitor argument: enclosing operator node.
  2249      */
  2250     private JCExpression enclOp;
  2252     /** Visitor method: Translate a single node.
  2253      *  Attach the source position from the old tree to its replacement tree.
  2254      */
  2255     public <T extends JCTree> T translate(T tree) {
  2256         if (tree == null) {
  2257             return null;
  2258         } else {
  2259             make_at(tree.pos());
  2260             T result = super.translate(tree);
  2261             if (endPosTable != null && result != tree) {
  2262                 endPosTable.replaceTree(tree, result);
  2264             return result;
  2268     /** Visitor method: Translate a single node, boxing or unboxing if needed.
  2269      */
  2270     public <T extends JCTree> T translate(T tree, Type type) {
  2271         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
  2274     /** Visitor method: Translate tree.
  2275      */
  2276     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
  2277         JCExpression prevEnclOp = this.enclOp;
  2278         this.enclOp = enclOp;
  2279         T res = translate(tree);
  2280         this.enclOp = prevEnclOp;
  2281         return res;
  2284     /** Visitor method: Translate list of trees.
  2285      */
  2286     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
  2287         JCExpression prevEnclOp = this.enclOp;
  2288         this.enclOp = enclOp;
  2289         List<T> res = translate(trees);
  2290         this.enclOp = prevEnclOp;
  2291         return res;
  2294     /** Visitor method: Translate list of trees.
  2295      */
  2296     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
  2297         if (trees == null) return null;
  2298         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
  2299             l.head = translate(l.head, type);
  2300         return trees;
  2303     public void visitTopLevel(JCCompilationUnit tree) {
  2304         if (needPackageInfoClass(tree)) {
  2305             Name name = names.package_info;
  2306             long flags = Flags.ABSTRACT | Flags.INTERFACE;
  2307             if (target.isPackageInfoSynthetic())
  2308                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
  2309                 flags = flags | Flags.SYNTHETIC;
  2310             JCClassDecl packageAnnotationsClass
  2311                 = make.ClassDef(make.Modifiers(flags,
  2312                                                tree.packageAnnotations),
  2313                                 name, List.<JCTypeParameter>nil(),
  2314                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
  2315             ClassSymbol c = tree.packge.package_info;
  2316             c.flags_field |= flags;
  2317             c.annotations.setAttributes(tree.packge.annotations);
  2318             ClassType ctype = (ClassType) c.type;
  2319             ctype.supertype_field = syms.objectType;
  2320             ctype.interfaces_field = List.nil();
  2321             packageAnnotationsClass.sym = c;
  2323             translated.append(packageAnnotationsClass);
  2326     // where
  2327     private boolean needPackageInfoClass(JCCompilationUnit tree) {
  2328         switch (pkginfoOpt) {
  2329             case ALWAYS:
  2330                 return true;
  2331             case LEGACY:
  2332                 return tree.packageAnnotations.nonEmpty();
  2333             case NONEMPTY:
  2334                 for (Attribute.Compound a :
  2335                          tree.packge.annotations.getDeclarationAttributes()) {
  2336                     Attribute.RetentionPolicy p = types.getRetention(a);
  2337                     if (p != Attribute.RetentionPolicy.SOURCE)
  2338                         return true;
  2340                 return false;
  2342         throw new AssertionError();
  2345     public void visitClassDef(JCClassDecl tree) {
  2346         ClassSymbol currentClassPrev = currentClass;
  2347         MethodSymbol currentMethodSymPrev = currentMethodSym;
  2348         currentClass = tree.sym;
  2349         currentMethodSym = null;
  2350         classdefs.put(currentClass, tree);
  2352         proxies = proxies.dup(currentClass);
  2353         List<VarSymbol> prevOuterThisStack = outerThisStack;
  2355         // If this is an enum definition
  2356         if ((tree.mods.flags & ENUM) != 0 &&
  2357             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
  2358             visitEnumDef(tree);
  2360         // If this is a nested class, define a this$n field for
  2361         // it and add to proxies.
  2362         JCVariableDecl otdef = null;
  2363         if (currentClass.hasOuterInstance())
  2364             otdef = outerThisDef(tree.pos, currentClass);
  2366         // If this is a local class, define proxies for all its free variables.
  2367         List<JCVariableDecl> fvdefs = freevarDefs(
  2368             tree.pos, freevars(currentClass), currentClass);
  2370         // Recursively translate superclass, interfaces.
  2371         tree.extending = translate(tree.extending);
  2372         tree.implementing = translate(tree.implementing);
  2374         if (currentClass.isLocal()) {
  2375             ClassSymbol encl = currentClass.owner.enclClass();
  2376             if (encl.trans_local == null) {
  2377                 encl.trans_local = List.nil();
  2379             encl.trans_local = encl.trans_local.prepend(currentClass);
  2382         // Recursively translate members, taking into account that new members
  2383         // might be created during the translation and prepended to the member
  2384         // list `tree.defs'.
  2385         List<JCTree> seen = List.nil();
  2386         while (tree.defs != seen) {
  2387             List<JCTree> unseen = tree.defs;
  2388             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
  2389                 JCTree outermostMemberDefPrev = outermostMemberDef;
  2390                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
  2391                 l.head = translate(l.head);
  2392                 outermostMemberDef = outermostMemberDefPrev;
  2394             seen = unseen;
  2397         // Convert a protected modifier to public, mask static modifier.
  2398         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
  2399         tree.mods.flags &= ClassFlags;
  2401         // Convert name to flat representation, replacing '.' by '$'.
  2402         tree.name = Convert.shortName(currentClass.flatName());
  2404         // Add this$n and free variables proxy definitions to class.
  2405         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
  2406             tree.defs = tree.defs.prepend(l.head);
  2407             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
  2409         if (currentClass.hasOuterInstance()) {
  2410             tree.defs = tree.defs.prepend(otdef);
  2411             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
  2414         proxies = proxies.leave();
  2415         outerThisStack = prevOuterThisStack;
  2417         // Append translated tree to `translated' queue.
  2418         translated.append(tree);
  2420         currentClass = currentClassPrev;
  2421         currentMethodSym = currentMethodSymPrev;
  2423         // Return empty block {} as a placeholder for an inner class.
  2424         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
  2427     /** Translate an enum class. */
  2428     private void visitEnumDef(JCClassDecl tree) {
  2429         make_at(tree.pos());
  2431         // add the supertype, if needed
  2432         if (tree.extending == null)
  2433             tree.extending = make.Type(types.supertype(tree.type));
  2435         // classOfType adds a cache field to tree.defs unless
  2436         // target.hasClassLiterals().
  2437         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
  2438             setType(types.erasure(syms.classType));
  2440         // process each enumeration constant, adding implicit constructor parameters
  2441         int nextOrdinal = 0;
  2442         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
  2443         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
  2444         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
  2445         for (List<JCTree> defs = tree.defs;
  2446              defs.nonEmpty();
  2447              defs=defs.tail) {
  2448             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
  2449                 JCVariableDecl var = (JCVariableDecl)defs.head;
  2450                 visitEnumConstantDef(var, nextOrdinal++);
  2451                 values.append(make.QualIdent(var.sym));
  2452                 enumDefs.append(var);
  2453             } else {
  2454                 otherDefs.append(defs.head);
  2458         // private static final T[] #VALUES = { a, b, c };
  2459         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
  2460         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
  2461             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
  2462         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
  2463         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
  2464                                             valuesName,
  2465                                             arrayType,
  2466                                             tree.type.tsym);
  2467         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2468                                           List.<JCExpression>nil(),
  2469                                           values.toList());
  2470         newArray.type = arrayType;
  2471         enumDefs.append(make.VarDef(valuesVar, newArray));
  2472         tree.sym.members().enter(valuesVar);
  2474         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
  2475                                         tree.type, List.<Type>nil());
  2476         List<JCStatement> valuesBody;
  2477         if (useClone()) {
  2478             // return (T[]) $VALUES.clone();
  2479             JCTypeCast valuesResult =
  2480                 make.TypeCast(valuesSym.type.getReturnType(),
  2481                               make.App(make.Select(make.Ident(valuesVar),
  2482                                                    syms.arrayCloneMethod)));
  2483             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
  2484         } else {
  2485             // template: T[] $result = new T[$values.length];
  2486             Name resultName = names.fromString(target.syntheticNameChar() + "result");
  2487             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
  2488                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
  2489             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
  2490                                                 resultName,
  2491                                                 arrayType,
  2492                                                 valuesSym);
  2493             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2494                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
  2495                                   null);
  2496             resultArray.type = arrayType;
  2497             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
  2499             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
  2500             if (systemArraycopyMethod == null) {
  2501                 systemArraycopyMethod =
  2502                     new MethodSymbol(PUBLIC | STATIC,
  2503                                      names.fromString("arraycopy"),
  2504                                      new MethodType(List.<Type>of(syms.objectType,
  2505                                                             syms.intType,
  2506                                                             syms.objectType,
  2507                                                             syms.intType,
  2508                                                             syms.intType),
  2509                                                     syms.voidType,
  2510                                                     List.<Type>nil(),
  2511                                                     syms.methodClass),
  2512                                      syms.systemType.tsym);
  2514             JCStatement copy =
  2515                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
  2516                                                systemArraycopyMethod),
  2517                           List.of(make.Ident(valuesVar), make.Literal(0),
  2518                                   make.Ident(resultVar), make.Literal(0),
  2519                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
  2521             // template: return $result;
  2522             JCStatement ret = make.Return(make.Ident(resultVar));
  2523             valuesBody = List.<JCStatement>of(decl, copy, ret);
  2526         JCMethodDecl valuesDef =
  2527              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
  2529         enumDefs.append(valuesDef);
  2531         if (debugLower)
  2532             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
  2534         /** The template for the following code is:
  2536          *     public static E valueOf(String name) {
  2537          *         return (E)Enum.valueOf(E.class, name);
  2538          *     }
  2540          *  where E is tree.sym
  2541          */
  2542         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
  2543                          names.valueOf,
  2544                          tree.sym.type,
  2545                          List.of(syms.stringType));
  2546         Assert.check((valueOfSym.flags() & STATIC) != 0);
  2547         VarSymbol nameArgSym = valueOfSym.params.head;
  2548         JCIdent nameVal = make.Ident(nameArgSym);
  2549         JCStatement enum_ValueOf =
  2550             make.Return(make.TypeCast(tree.sym.type,
  2551                                       makeCall(make.Ident(syms.enumSym),
  2552                                                names.valueOf,
  2553                                                List.of(e_class, nameVal))));
  2554         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
  2555                                            make.Block(0, List.of(enum_ValueOf)));
  2556         nameVal.sym = valueOf.params.head.sym;
  2557         if (debugLower)
  2558             System.err.println(tree.sym + ".valueOf = " + valueOf);
  2559         enumDefs.append(valueOf);
  2561         enumDefs.appendList(otherDefs.toList());
  2562         tree.defs = enumDefs.toList();
  2564         // Add the necessary members for the EnumCompatibleMode
  2565         if (target.compilerBootstrap(tree.sym)) {
  2566             addEnumCompatibleMembers(tree);
  2569         // where
  2570         private MethodSymbol systemArraycopyMethod;
  2571         private boolean useClone() {
  2572             try {
  2573                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
  2574                 return (e.sym != null);
  2576             catch (CompletionFailure e) {
  2577                 return false;
  2581     /** Translate an enumeration constant and its initializer. */
  2582     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
  2583         JCNewClass varDef = (JCNewClass)var.init;
  2584         varDef.args = varDef.args.
  2585             prepend(makeLit(syms.intType, ordinal)).
  2586             prepend(makeLit(syms.stringType, var.name.toString()));
  2589     public void visitMethodDef(JCMethodDecl tree) {
  2590         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
  2591             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
  2592             // argument list for each constructor of an enum.
  2593             JCVariableDecl nameParam = make_at(tree.pos()).
  2594                 Param(names.fromString(target.syntheticNameChar() +
  2595                                        "enum" + target.syntheticNameChar() + "name"),
  2596                       syms.stringType, tree.sym);
  2597             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
  2598             JCVariableDecl ordParam = make.
  2599                 Param(names.fromString(target.syntheticNameChar() +
  2600                                        "enum" + target.syntheticNameChar() +
  2601                                        "ordinal"),
  2602                       syms.intType, tree.sym);
  2603             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
  2605             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
  2607             MethodSymbol m = tree.sym;
  2608             m.extraParams = m.extraParams.prepend(ordParam.sym);
  2609             m.extraParams = m.extraParams.prepend(nameParam.sym);
  2610             Type olderasure = m.erasure(types);
  2611             m.erasure_field = new MethodType(
  2612                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
  2613                 olderasure.getReturnType(),
  2614                 olderasure.getThrownTypes(),
  2615                 syms.methodClass);
  2617             if (target.compilerBootstrap(m.owner)) {
  2618                 // Initialize synthetic name field
  2619                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
  2620                                                     tree.sym.owner.members());
  2621                 JCIdent nameIdent = make.Ident(nameParam.sym);
  2622                 JCIdent id1 = make.Ident(nameVarSym);
  2623                 JCAssign newAssign = make.Assign(id1, nameIdent);
  2624                 newAssign.type = id1.type;
  2625                 JCExpressionStatement nameAssign = make.Exec(newAssign);
  2626                 nameAssign.type = id1.type;
  2627                 tree.body.stats = tree.body.stats.prepend(nameAssign);
  2629                 // Initialize synthetic ordinal field
  2630                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
  2631                                                        tree.sym.owner.members());
  2632                 JCIdent ordIdent = make.Ident(ordParam.sym);
  2633                 id1 = make.Ident(ordinalVarSym);
  2634                 newAssign = make.Assign(id1, ordIdent);
  2635                 newAssign.type = id1.type;
  2636                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
  2637                 ordinalAssign.type = id1.type;
  2638                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
  2642         JCMethodDecl prevMethodDef = currentMethodDef;
  2643         MethodSymbol prevMethodSym = currentMethodSym;
  2644         try {
  2645             currentMethodDef = tree;
  2646             currentMethodSym = tree.sym;
  2647             visitMethodDefInternal(tree);
  2648         } finally {
  2649             currentMethodDef = prevMethodDef;
  2650             currentMethodSym = prevMethodSym;
  2653     //where
  2654     private void visitMethodDefInternal(JCMethodDecl tree) {
  2655         if (tree.name == names.init &&
  2656             (currentClass.isInner() ||
  2657              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
  2658             // We are seeing a constructor of an inner class.
  2659             MethodSymbol m = tree.sym;
  2661             // Push a new proxy scope for constructor parameters.
  2662             // and create definitions for any this$n and proxy parameters.
  2663             proxies = proxies.dup(m);
  2664             List<VarSymbol> prevOuterThisStack = outerThisStack;
  2665             List<VarSymbol> fvs = freevars(currentClass);
  2666             JCVariableDecl otdef = null;
  2667             if (currentClass.hasOuterInstance())
  2668                 otdef = outerThisDef(tree.pos, m);
  2669             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
  2671             // Recursively translate result type, parameters and thrown list.
  2672             tree.restype = translate(tree.restype);
  2673             tree.params = translateVarDefs(tree.params);
  2674             tree.thrown = translate(tree.thrown);
  2676             // when compiling stubs, don't process body
  2677             if (tree.body == null) {
  2678                 result = tree;
  2679                 return;
  2682             // Add this$n (if needed) in front of and free variables behind
  2683             // constructor parameter list.
  2684             tree.params = tree.params.appendList(fvdefs);
  2685             if (currentClass.hasOuterInstance())
  2686                 tree.params = tree.params.prepend(otdef);
  2688             // If this is an initial constructor, i.e., it does not start with
  2689             // this(...), insert initializers for this$n and proxies
  2690             // before (pre-1.4, after) the call to superclass constructor.
  2691             JCStatement selfCall = translate(tree.body.stats.head);
  2693             List<JCStatement> added = List.nil();
  2694             if (fvs.nonEmpty()) {
  2695                 List<Type> addedargtypes = List.nil();
  2696                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
  2697                     if (TreeInfo.isInitialConstructor(tree))
  2698                         added = added.prepend(
  2699                             initField(tree.body.pos, proxyName(l.head.name)));
  2700                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
  2702                 Type olderasure = m.erasure(types);
  2703                 m.erasure_field = new MethodType(
  2704                     olderasure.getParameterTypes().appendList(addedargtypes),
  2705                     olderasure.getReturnType(),
  2706                     olderasure.getThrownTypes(),
  2707                     syms.methodClass);
  2709             if (currentClass.hasOuterInstance() &&
  2710                 TreeInfo.isInitialConstructor(tree))
  2712                 added = added.prepend(initOuterThis(tree.body.pos));
  2715             // pop local variables from proxy stack
  2716             proxies = proxies.leave();
  2718             // recursively translate following local statements and
  2719             // combine with this- or super-call
  2720             List<JCStatement> stats = translate(tree.body.stats.tail);
  2721             if (target.initializeFieldsBeforeSuper())
  2722                 tree.body.stats = stats.prepend(selfCall).prependList(added);
  2723             else
  2724                 tree.body.stats = stats.prependList(added).prepend(selfCall);
  2726             outerThisStack = prevOuterThisStack;
  2727         } else {
  2728             super.visitMethodDef(tree);
  2730         result = tree;
  2733     public void visitAnnotatedType(JCAnnotatedType tree) {
  2734         // No need to retain type annotations any longer.
  2735         // tree.annotations = translate(tree.annotations);
  2736         tree.underlyingType = translate(tree.underlyingType);
  2737         result = tree.underlyingType;
  2740     public void visitTypeCast(JCTypeCast tree) {
  2741         tree.clazz = translate(tree.clazz);
  2742         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
  2743             tree.expr = translate(tree.expr, tree.type);
  2744         else
  2745             tree.expr = translate(tree.expr);
  2746         result = tree;
  2749     public void visitNewClass(JCNewClass tree) {
  2750         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
  2752         // Box arguments, if necessary
  2753         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
  2754         List<Type> argTypes = tree.constructor.type.getParameterTypes();
  2755         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
  2756         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
  2757         tree.varargsElement = null;
  2759         // If created class is local, add free variables after
  2760         // explicit constructor arguments.
  2761         if ((c.owner.kind & (VAR | MTH)) != 0) {
  2762             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2765         // If an access constructor is used, append null as a last argument.
  2766         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
  2767         if (constructor != tree.constructor) {
  2768             tree.args = tree.args.append(makeNull());
  2769             tree.constructor = constructor;
  2772         // If created class has an outer instance, and new is qualified, pass
  2773         // qualifier as first argument. If new is not qualified, pass the
  2774         // correct outer instance as first argument.
  2775         if (c.hasOuterInstance()) {
  2776             JCExpression thisArg;
  2777             if (tree.encl != null) {
  2778                 thisArg = attr.makeNullCheck(translate(tree.encl));
  2779                 thisArg.type = tree.encl.type;
  2780             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
  2781                 // local class
  2782                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
  2783             } else {
  2784                 // nested class
  2785                 thisArg = makeOwnerThis(tree.pos(), c, false);
  2787             tree.args = tree.args.prepend(thisArg);
  2789         tree.encl = null;
  2791         // If we have an anonymous class, create its flat version, rather
  2792         // than the class or interface following new.
  2793         if (tree.def != null) {
  2794             translate(tree.def);
  2795             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
  2796             tree.def = null;
  2797         } else {
  2798             tree.clazz = access(c, tree.clazz, enclOp, false);
  2800         result = tree;
  2803     // Simplify conditionals with known constant controlling expressions.
  2804     // This allows us to avoid generating supporting declarations for
  2805     // the dead code, which will not be eliminated during code generation.
  2806     // Note that Flow.isFalse and Flow.isTrue only return true
  2807     // for constant expressions in the sense of JLS 15.27, which
  2808     // are guaranteed to have no side-effects.  More aggressive
  2809     // constant propagation would require that we take care to
  2810     // preserve possible side-effects in the condition expression.
  2812     /** Visitor method for conditional expressions.
  2813      */
  2814     @Override
  2815     public void visitConditional(JCConditional tree) {
  2816         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2817         if (cond.type.isTrue()) {
  2818             result = convert(translate(tree.truepart, tree.type), tree.type);
  2819             addPrunedInfo(cond);
  2820         } else if (cond.type.isFalse()) {
  2821             result = convert(translate(tree.falsepart, tree.type), tree.type);
  2822             addPrunedInfo(cond);
  2823         } else {
  2824             // Condition is not a compile-time constant.
  2825             tree.truepart = translate(tree.truepart, tree.type);
  2826             tree.falsepart = translate(tree.falsepart, tree.type);
  2827             result = tree;
  2830 //where
  2831     private JCTree convert(JCTree tree, Type pt) {
  2832         if (tree.type == pt || tree.type.hasTag(BOT))
  2833             return tree;
  2834         JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
  2835         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
  2836                                                        : pt;
  2837         return result;
  2840     /** Visitor method for if statements.
  2841      */
  2842     public void visitIf(JCIf tree) {
  2843         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2844         if (cond.type.isTrue()) {
  2845             result = translate(tree.thenpart);
  2846             addPrunedInfo(cond);
  2847         } else if (cond.type.isFalse()) {
  2848             if (tree.elsepart != null) {
  2849                 result = translate(tree.elsepart);
  2850             } else {
  2851                 result = make.Skip();
  2853             addPrunedInfo(cond);
  2854         } else {
  2855             // Condition is not a compile-time constant.
  2856             tree.thenpart = translate(tree.thenpart);
  2857             tree.elsepart = translate(tree.elsepart);
  2858             result = tree;
  2862     /** Visitor method for assert statements. Translate them away.
  2863      */
  2864     public void visitAssert(JCAssert tree) {
  2865         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
  2866         tree.cond = translate(tree.cond, syms.booleanType);
  2867         if (!tree.cond.type.isTrue()) {
  2868             JCExpression cond = assertFlagTest(tree.pos());
  2869             List<JCExpression> exnArgs = (tree.detail == null) ?
  2870                 List.<JCExpression>nil() : List.of(translate(tree.detail));
  2871             if (!tree.cond.type.isFalse()) {
  2872                 cond = makeBinary
  2873                     (AND,
  2874                      cond,
  2875                      makeUnary(NOT, tree.cond));
  2877             result =
  2878                 make.If(cond,
  2879                         make_at(detailPos).
  2880                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
  2881                         null);
  2882         } else {
  2883             result = make.Skip();
  2887     public void visitApply(JCMethodInvocation tree) {
  2888         Symbol meth = TreeInfo.symbol(tree.meth);
  2889         List<Type> argtypes = meth.type.getParameterTypes();
  2890         if (allowEnums &&
  2891             meth.name==names.init &&
  2892             meth.owner == syms.enumSym)
  2893             argtypes = argtypes.tail.tail;
  2894         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
  2895         tree.varargsElement = null;
  2896         Name methName = TreeInfo.name(tree.meth);
  2897         if (meth.name==names.init) {
  2898             // We are seeing a this(...) or super(...) constructor call.
  2899             // If an access constructor is used, append null as a last argument.
  2900             Symbol constructor = accessConstructor(tree.pos(), meth);
  2901             if (constructor != meth) {
  2902                 tree.args = tree.args.append(makeNull());
  2903                 TreeInfo.setSymbol(tree.meth, constructor);
  2906             // If we are calling a constructor of a local class, add
  2907             // free variables after explicit constructor arguments.
  2908             ClassSymbol c = (ClassSymbol)constructor.owner;
  2909             if ((c.owner.kind & (VAR | MTH)) != 0) {
  2910                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2913             // If we are calling a constructor of an enum class, pass
  2914             // along the name and ordinal arguments
  2915             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
  2916                 List<JCVariableDecl> params = currentMethodDef.params;
  2917                 if (currentMethodSym.owner.hasOuterInstance())
  2918                     params = params.tail; // drop this$n
  2919                 tree.args = tree.args
  2920                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
  2921                     .prepend(make.Ident(params.head.sym)); // name
  2924             // If we are calling a constructor of a class with an outer
  2925             // instance, and the call
  2926             // is qualified, pass qualifier as first argument in front of
  2927             // the explicit constructor arguments. If the call
  2928             // is not qualified, pass the correct outer instance as
  2929             // first argument.
  2930             if (c.hasOuterInstance()) {
  2931                 JCExpression thisArg;
  2932                 if (tree.meth.hasTag(SELECT)) {
  2933                     thisArg = attr.
  2934                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
  2935                     tree.meth = make.Ident(constructor);
  2936                     ((JCIdent) tree.meth).name = methName;
  2937                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
  2938                     // local class or this() call
  2939                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
  2940                 } else {
  2941                     // super() call of nested class - never pick 'this'
  2942                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
  2944                 tree.args = tree.args.prepend(thisArg);
  2946         } else {
  2947             // We are seeing a normal method invocation; translate this as usual.
  2948             tree.meth = translate(tree.meth);
  2950             // If the translated method itself is an Apply tree, we are
  2951             // seeing an access method invocation. In this case, append
  2952             // the method arguments to the arguments of the access method.
  2953             if (tree.meth.hasTag(APPLY)) {
  2954                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
  2955                 app.args = tree.args.prependList(app.args);
  2956                 result = app;
  2957                 return;
  2960         result = tree;
  2963     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
  2964         List<JCExpression> args = _args;
  2965         if (parameters.isEmpty()) return args;
  2966         boolean anyChanges = false;
  2967         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
  2968         while (parameters.tail.nonEmpty()) {
  2969             JCExpression arg = translate(args.head, parameters.head);
  2970             anyChanges |= (arg != args.head);
  2971             result.append(arg);
  2972             args = args.tail;
  2973             parameters = parameters.tail;
  2975         Type parameter = parameters.head;
  2976         if (varargsElement != null) {
  2977             anyChanges = true;
  2978             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
  2979             while (args.nonEmpty()) {
  2980                 JCExpression arg = translate(args.head, varargsElement);
  2981                 elems.append(arg);
  2982                 args = args.tail;
  2984             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
  2985                                                List.<JCExpression>nil(),
  2986                                                elems.toList());
  2987             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
  2988             result.append(boxedArgs);
  2989         } else {
  2990             if (args.length() != 1) throw new AssertionError(args);
  2991             JCExpression arg = translate(args.head, parameter);
  2992             anyChanges |= (arg != args.head);
  2993             result.append(arg);
  2994             if (!anyChanges) return _args;
  2996         return result.toList();
  2999     /** Expand a boxing or unboxing conversion if needed. */
  3000     @SuppressWarnings("unchecked") // XXX unchecked
  3001     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
  3002         boolean havePrimitive = tree.type.isPrimitive();
  3003         if (havePrimitive == type.isPrimitive())
  3004             return tree;
  3005         if (havePrimitive) {
  3006             Type unboxedTarget = types.unboxedType(type);
  3007             if (!unboxedTarget.hasTag(NONE)) {
  3008                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
  3009                     tree.type = unboxedTarget.constType(tree.type.constValue());
  3010                 return (T)boxPrimitive((JCExpression)tree, type);
  3011             } else {
  3012                 tree = (T)boxPrimitive((JCExpression)tree);
  3014         } else {
  3015             tree = (T)unbox((JCExpression)tree, type);
  3017         return tree;
  3020     /** Box up a single primitive expression. */
  3021     JCExpression boxPrimitive(JCExpression tree) {
  3022         return boxPrimitive(tree, types.boxedClass(tree.type).type);
  3025     /** Box up a single primitive expression. */
  3026     JCExpression boxPrimitive(JCExpression tree, Type box) {
  3027         make_at(tree.pos());
  3028         if (target.boxWithConstructors()) {
  3029             Symbol ctor = lookupConstructor(tree.pos(),
  3030                                             box,
  3031                                             List.<Type>nil()
  3032                                             .prepend(tree.type));
  3033             return make.Create(ctor, List.of(tree));
  3034         } else {
  3035             Symbol valueOfSym = lookupMethod(tree.pos(),
  3036                                              names.valueOf,
  3037                                              box,
  3038                                              List.<Type>nil()
  3039                                              .prepend(tree.type));
  3040             return make.App(make.QualIdent(valueOfSym), List.of(tree));
  3044     /** Unbox an object to a primitive value. */
  3045     JCExpression unbox(JCExpression tree, Type primitive) {
  3046         Type unboxedType = types.unboxedType(tree.type);
  3047         if (unboxedType.hasTag(NONE)) {
  3048             unboxedType = primitive;
  3049             if (!unboxedType.isPrimitive())
  3050                 throw new AssertionError(unboxedType);
  3051             make_at(tree.pos());
  3052             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
  3053         } else {
  3054             // There must be a conversion from unboxedType to primitive.
  3055             if (!types.isSubtype(unboxedType, primitive))
  3056                 throw new AssertionError(tree);
  3058         make_at(tree.pos());
  3059         Symbol valueSym = lookupMethod(tree.pos(),
  3060                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
  3061                                        tree.type,
  3062                                        List.<Type>nil());
  3063         return make.App(make.Select(tree, valueSym));
  3066     /** Visitor method for parenthesized expressions.
  3067      *  If the subexpression has changed, omit the parens.
  3068      */
  3069     public void visitParens(JCParens tree) {
  3070         JCTree expr = translate(tree.expr);
  3071         result = ((expr == tree.expr) ? tree : expr);
  3074     public void visitIndexed(JCArrayAccess tree) {
  3075         tree.indexed = translate(tree.indexed);
  3076         tree.index = translate(tree.index, syms.intType);
  3077         result = tree;
  3080     public void visitAssign(JCAssign tree) {
  3081         tree.lhs = translate(tree.lhs, tree);
  3082         tree.rhs = translate(tree.rhs, tree.lhs.type);
  3084         // If translated left hand side is an Apply, we are
  3085         // seeing an access method invocation. In this case, append
  3086         // right hand side as last argument of the access method.
  3087         if (tree.lhs.hasTag(APPLY)) {
  3088             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  3089             app.args = List.of(tree.rhs).prependList(app.args);
  3090             result = app;
  3091         } else {
  3092             result = tree;
  3096     public void visitAssignop(final JCAssignOp tree) {
  3097         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
  3098             tree.operator.type.getReturnType().isPrimitive();
  3100         // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
  3101         // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
  3102         // (but without recomputing x)
  3103         JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
  3104                 public JCTree build(final JCTree lhs) {
  3105                     JCTree.Tag newTag = tree.getTag().noAssignOp();
  3106                     // Erasure (TransTypes) can change the type of
  3107                     // tree.lhs.  However, we can still get the
  3108                     // unerased type of tree.lhs as it is stored
  3109                     // in tree.type in Attr.
  3110                     Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
  3111                                                                   newTag,
  3112                                                                   attrEnv,
  3113                                                                   tree.type,
  3114                                                                   tree.rhs.type);
  3115                     JCExpression expr = (JCExpression)lhs;
  3116                     if (expr.type != tree.type)
  3117                         expr = make.TypeCast(tree.type, expr);
  3118                     JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
  3119                     opResult.operator = newOperator;
  3120                     opResult.type = newOperator.type.getReturnType();
  3121                     JCExpression newRhs = boxingReq ?
  3122                             make.TypeCast(types.unboxedType(tree.type),
  3123                                                       opResult) :
  3124                             opResult;
  3125                     return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
  3127             });
  3128         result = translate(newTree);
  3131     /** Lower a tree of the form e++ or e-- where e is an object type */
  3132     JCTree lowerBoxedPostop(final JCUnary tree) {
  3133         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
  3134         // or
  3135         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
  3136         // where OP is += or -=
  3137         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
  3138         return abstractLval(tree.arg, new TreeBuilder() {
  3139                 public JCTree build(final JCTree tmp1) {
  3140                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
  3141                             public JCTree build(final JCTree tmp2) {
  3142                                 JCTree.Tag opcode = (tree.hasTag(POSTINC))
  3143                                     ? PLUS_ASG : MINUS_ASG;
  3144                                 JCTree lhs = cast
  3145                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
  3146                                     : tmp1;
  3147                                 JCTree update = makeAssignop(opcode,
  3148                                                              lhs,
  3149                                                              make.Literal(1));
  3150                                 return makeComma(update, tmp2);
  3152                         });
  3154             });
  3157     public void visitUnary(JCUnary tree) {
  3158         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
  3159         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
  3160             switch(tree.getTag()) {
  3161             case PREINC:            // ++ e
  3162                     // translate to e += 1
  3163             case PREDEC:            // -- e
  3164                     // translate to e -= 1
  3166                     JCTree.Tag opcode = (tree.hasTag(PREINC))
  3167                         ? PLUS_ASG : MINUS_ASG;
  3168                     JCAssignOp newTree = makeAssignop(opcode,
  3169                                                     tree.arg,
  3170                                                     make.Literal(1));
  3171                     result = translate(newTree, tree.type);
  3172                     return;
  3174             case POSTINC:           // e ++
  3175             case POSTDEC:           // e --
  3177                     result = translate(lowerBoxedPostop(tree), tree.type);
  3178                     return;
  3181             throw new AssertionError(tree);
  3184         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
  3186         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
  3187             tree.type = cfolder.fold1(bool_not, tree.arg.type);
  3190         // If translated left hand side is an Apply, we are
  3191         // seeing an access method invocation. In this case, return
  3192         // that access method invocation as result.
  3193         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
  3194             result = tree.arg;
  3195         } else {
  3196             result = tree;
  3200     public void visitBinary(JCBinary tree) {
  3201         List<Type> formals = tree.operator.type.getParameterTypes();
  3202         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
  3203         switch (tree.getTag()) {
  3204         case OR:
  3205             if (lhs.type.isTrue()) {
  3206                 result = lhs;
  3207                 return;
  3209             if (lhs.type.isFalse()) {
  3210                 result = translate(tree.rhs, formals.tail.head);
  3211                 return;
  3213             break;
  3214         case AND:
  3215             if (lhs.type.isFalse()) {
  3216                 result = lhs;
  3217                 return;
  3219             if (lhs.type.isTrue()) {
  3220                 result = translate(tree.rhs, formals.tail.head);
  3221                 return;
  3223             break;
  3225         tree.rhs = translate(tree.rhs, formals.tail.head);
  3226         result = tree;
  3229     public void visitIdent(JCIdent tree) {
  3230         result = access(tree.sym, tree, enclOp, false);
  3233     /** Translate away the foreach loop.  */
  3234     public void visitForeachLoop(JCEnhancedForLoop tree) {
  3235         if (types.elemtype(tree.expr.type) == null)
  3236             visitIterableForeachLoop(tree);
  3237         else
  3238             visitArrayForeachLoop(tree);
  3240         // where
  3241         /**
  3242          * A statement of the form
  3244          * <pre>
  3245          *     for ( T v : arrayexpr ) stmt;
  3246          * </pre>
  3248          * (where arrayexpr is of an array type) gets translated to
  3250          * <pre>{@code
  3251          *     for ( { arraytype #arr = arrayexpr;
  3252          *             int #len = array.length;
  3253          *             int #i = 0; };
  3254          *           #i < #len; i$++ ) {
  3255          *         T v = arr$[#i];
  3256          *         stmt;
  3257          *     }
  3258          * }</pre>
  3260          * where #arr, #len, and #i are freshly named synthetic local variables.
  3261          */
  3262         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
  3263             make_at(tree.expr.pos());
  3264             VarSymbol arraycache = new VarSymbol(0,
  3265                                                  names.fromString("arr" + target.syntheticNameChar()),
  3266                                                  tree.expr.type,
  3267                                                  currentMethodSym);
  3268             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
  3269             VarSymbol lencache = new VarSymbol(0,
  3270                                                names.fromString("len" + target.syntheticNameChar()),
  3271                                                syms.intType,
  3272                                                currentMethodSym);
  3273             JCStatement lencachedef = make.
  3274                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
  3275             VarSymbol index = new VarSymbol(0,
  3276                                             names.fromString("i" + target.syntheticNameChar()),
  3277                                             syms.intType,
  3278                                             currentMethodSym);
  3280             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
  3281             indexdef.init.type = indexdef.type = syms.intType.constType(0);
  3283             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
  3284             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
  3286             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
  3288             Type elemtype = types.elemtype(tree.expr.type);
  3289             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
  3290                                                     make.Ident(index)).setType(elemtype);
  3291             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3292                                                   tree.var.name,
  3293                                                   tree.var.vartype,
  3294                                                   loopvarinit).setType(tree.var.type);
  3295             loopvardef.sym = tree.var.sym;
  3296             JCBlock body = make.
  3297                 Block(0, List.of(loopvardef, tree.body));
  3299             result = translate(make.
  3300                                ForLoop(loopinit,
  3301                                        cond,
  3302                                        List.of(step),
  3303                                        body));
  3304             patchTargets(body, tree, result);
  3306         /** Patch up break and continue targets. */
  3307         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
  3308             class Patcher extends TreeScanner {
  3309                 public void visitBreak(JCBreak tree) {
  3310                     if (tree.target == src)
  3311                         tree.target = dest;
  3313                 public void visitContinue(JCContinue tree) {
  3314                     if (tree.target == src)
  3315                         tree.target = dest;
  3317                 public void visitClassDef(JCClassDecl tree) {}
  3319             new Patcher().scan(body);
  3321         /**
  3322          * A statement of the form
  3324          * <pre>
  3325          *     for ( T v : coll ) stmt ;
  3326          * </pre>
  3328          * (where coll implements {@code Iterable<? extends T>}) gets translated to
  3330          * <pre>{@code
  3331          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
  3332          *         T v = (T) #i.next();
  3333          *         stmt;
  3334          *     }
  3335          * }</pre>
  3337          * where #i is a freshly named synthetic local variable.
  3338          */
  3339         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
  3340             make_at(tree.expr.pos());
  3341             Type iteratorTarget = syms.objectType;
  3342             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
  3343                                               syms.iterableType.tsym);
  3344             if (iterableType.getTypeArguments().nonEmpty())
  3345                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
  3346             Type eType = tree.expr.type;
  3347             tree.expr.type = types.erasure(eType);
  3348             if (eType.hasTag(TYPEVAR) && eType.getUpperBound().isCompound())
  3349                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
  3350             Symbol iterator = lookupMethod(tree.expr.pos(),
  3351                                            names.iterator,
  3352                                            types.erasure(syms.iterableType),
  3353                                            List.<Type>nil());
  3354             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
  3355                                             types.erasure(iterator.type.getReturnType()),
  3356                                             currentMethodSym);
  3357             JCStatement init = make.
  3358                 VarDef(itvar,
  3359                        make.App(make.Select(tree.expr, iterator)));
  3360             Symbol hasNext = lookupMethod(tree.expr.pos(),
  3361                                           names.hasNext,
  3362                                           itvar.type,
  3363                                           List.<Type>nil());
  3364             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
  3365             Symbol next = lookupMethod(tree.expr.pos(),
  3366                                        names.next,
  3367                                        itvar.type,
  3368                                        List.<Type>nil());
  3369             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
  3370             if (tree.var.type.isPrimitive())
  3371                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
  3372             else
  3373                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
  3374             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3375                                                   tree.var.name,
  3376                                                   tree.var.vartype,
  3377                                                   vardefinit).setType(tree.var.type);
  3378             indexDef.sym = tree.var.sym;
  3379             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
  3380             body.endpos = TreeInfo.endPos(tree.body);
  3381             result = translate(make.
  3382                 ForLoop(List.of(init),
  3383                         cond,
  3384                         List.<JCExpressionStatement>nil(),
  3385                         body));
  3386             patchTargets(body, tree, result);
  3389     public void visitVarDef(JCVariableDecl tree) {
  3390         MethodSymbol oldMethodSym = currentMethodSym;
  3391         tree.mods = translate(tree.mods);
  3392         tree.vartype = translate(tree.vartype);
  3393         if (currentMethodSym == null) {
  3394             // A class or instance field initializer.
  3395             currentMethodSym =
  3396                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
  3397                                  names.empty, null,
  3398                                  currentClass);
  3400         if (tree.init != null) tree.init = translate(tree.init, tree.type);
  3401         result = tree;
  3402         currentMethodSym = oldMethodSym;
  3405     public void visitBlock(JCBlock tree) {
  3406         MethodSymbol oldMethodSym = currentMethodSym;
  3407         if (currentMethodSym == null) {
  3408             // Block is a static or instance initializer.
  3409             currentMethodSym =
  3410                 new MethodSymbol(tree.flags | BLOCK,
  3411                                  names.empty, null,
  3412                                  currentClass);
  3414         super.visitBlock(tree);
  3415         currentMethodSym = oldMethodSym;
  3418     public void visitDoLoop(JCDoWhileLoop tree) {
  3419         tree.body = translate(tree.body);
  3420         tree.cond = translate(tree.cond, syms.booleanType);
  3421         result = tree;
  3424     public void visitWhileLoop(JCWhileLoop tree) {
  3425         tree.cond = translate(tree.cond, syms.booleanType);
  3426         tree.body = translate(tree.body);
  3427         result = tree;
  3430     public void visitForLoop(JCForLoop tree) {
  3431         tree.init = translate(tree.init);
  3432         if (tree.cond != null)
  3433             tree.cond = translate(tree.cond, syms.booleanType);
  3434         tree.step = translate(tree.step);
  3435         tree.body = translate(tree.body);
  3436         result = tree;
  3439     public void visitReturn(JCReturn tree) {
  3440         if (tree.expr != null)
  3441             tree.expr = translate(tree.expr,
  3442                                   types.erasure(currentMethodDef
  3443                                                 .restype.type));
  3444         result = tree;
  3447     public void visitSwitch(JCSwitch tree) {
  3448         Type selsuper = types.supertype(tree.selector.type);
  3449         boolean enumSwitch = selsuper != null &&
  3450             (tree.selector.type.tsym.flags() & ENUM) != 0;
  3451         boolean stringSwitch = selsuper != null &&
  3452             types.isSameType(tree.selector.type, syms.stringType);
  3453         Type target = enumSwitch ? tree.selector.type :
  3454             (stringSwitch? syms.stringType : syms.intType);
  3455         tree.selector = translate(tree.selector, target);
  3456         tree.cases = translateCases(tree.cases);
  3457         if (enumSwitch) {
  3458             result = visitEnumSwitch(tree);
  3459         } else if (stringSwitch) {
  3460             result = visitStringSwitch(tree);
  3461         } else {
  3462             result = tree;
  3466     public JCTree visitEnumSwitch(JCSwitch tree) {
  3467         TypeSymbol enumSym = tree.selector.type.tsym;
  3468         EnumMapping map = mapForEnum(tree.pos(), enumSym);
  3469         make_at(tree.pos());
  3470         Symbol ordinalMethod = lookupMethod(tree.pos(),
  3471                                             names.ordinal,
  3472                                             tree.selector.type,
  3473                                             List.<Type>nil());
  3474         JCArrayAccess selector = make.Indexed(map.mapVar,
  3475                                         make.App(make.Select(tree.selector,
  3476                                                              ordinalMethod)));
  3477         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
  3478         for (JCCase c : tree.cases) {
  3479             if (c.pat != null) {
  3480                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
  3481                 JCLiteral pat = map.forConstant(label);
  3482                 cases.append(make.Case(pat, c.stats));
  3483             } else {
  3484                 cases.append(c);
  3487         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
  3488         patchTargets(enumSwitch, tree, enumSwitch);
  3489         return enumSwitch;
  3492     public JCTree visitStringSwitch(JCSwitch tree) {
  3493         List<JCCase> caseList = tree.getCases();
  3494         int alternatives = caseList.size();
  3496         if (alternatives == 0) { // Strange but legal possibility
  3497             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
  3498         } else {
  3499             /*
  3500              * The general approach used is to translate a single
  3501              * string switch statement into a series of two chained
  3502              * switch statements: the first a synthesized statement
  3503              * switching on the argument string's hash value and
  3504              * computing a string's position in the list of original
  3505              * case labels, if any, followed by a second switch on the
  3506              * computed integer value.  The second switch has the same
  3507              * code structure as the original string switch statement
  3508              * except that the string case labels are replaced with
  3509              * positional integer constants starting at 0.
  3511              * The first switch statement can be thought of as an
  3512              * inlined map from strings to their position in the case
  3513              * label list.  An alternate implementation would use an
  3514              * actual Map for this purpose, as done for enum switches.
  3516              * With some additional effort, it would be possible to
  3517              * use a single switch statement on the hash code of the
  3518              * argument, but care would need to be taken to preserve
  3519              * the proper control flow in the presence of hash
  3520              * collisions and other complications, such as
  3521              * fallthroughs.  Switch statements with one or two
  3522              * alternatives could also be specially translated into
  3523              * if-then statements to omit the computation of the hash
  3524              * code.
  3526              * The generated code assumes that the hashing algorithm
  3527              * of String is the same in the compilation environment as
  3528              * in the environment the code will run in.  The string
  3529              * hashing algorithm in the SE JDK has been unchanged
  3530              * since at least JDK 1.2.  Since the algorithm has been
  3531              * specified since that release as well, it is very
  3532              * unlikely to be changed in the future.
  3534              * Different hashing algorithms, such as the length of the
  3535              * strings or a perfect hashing algorithm over the
  3536              * particular set of case labels, could potentially be
  3537              * used instead of String.hashCode.
  3538              */
  3540             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
  3542             // Map from String case labels to their original position in
  3543             // the list of case labels.
  3544             Map<String, Integer> caseLabelToPosition =
  3545                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
  3547             // Map of hash codes to the string case labels having that hashCode.
  3548             Map<Integer, Set<String>> hashToString =
  3549                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
  3551             int casePosition = 0;
  3552             for(JCCase oneCase : caseList) {
  3553                 JCExpression expression = oneCase.getExpression();
  3555                 if (expression != null) { // expression for a "default" case is null
  3556                     String labelExpr = (String) expression.type.constValue();
  3557                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
  3558                     Assert.checkNull(mapping);
  3559                     int hashCode = labelExpr.hashCode();
  3561                     Set<String> stringSet = hashToString.get(hashCode);
  3562                     if (stringSet == null) {
  3563                         stringSet = new LinkedHashSet<String>(1, 1.0f);
  3564                         stringSet.add(labelExpr);
  3565                         hashToString.put(hashCode, stringSet);
  3566                     } else {
  3567                         boolean added = stringSet.add(labelExpr);
  3568                         Assert.check(added);
  3571                 casePosition++;
  3574             // Synthesize a switch statement that has the effect of
  3575             // mapping from a string to the integer position of that
  3576             // string in the list of case labels.  This is done by
  3577             // switching on the hashCode of the string followed by an
  3578             // if-then-else chain comparing the input for equality
  3579             // with all the case labels having that hash value.
  3581             /*
  3582              * s$ = top of stack;
  3583              * tmp$ = -1;
  3584              * switch($s.hashCode()) {
  3585              *     case caseLabel.hashCode:
  3586              *         if (s$.equals("caseLabel_1")
  3587              *           tmp$ = caseLabelToPosition("caseLabel_1");
  3588              *         else if (s$.equals("caseLabel_2"))
  3589              *           tmp$ = caseLabelToPosition("caseLabel_2");
  3590              *         ...
  3591              *         break;
  3592              * ...
  3593              * }
  3594              */
  3596             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
  3597                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
  3598                                                syms.stringType,
  3599                                                currentMethodSym);
  3600             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
  3602             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
  3603                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
  3604                                                  syms.intType,
  3605                                                  currentMethodSym);
  3606             JCVariableDecl dollar_tmp_def =
  3607                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
  3608             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
  3609             stmtList.append(dollar_tmp_def);
  3610             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
  3611             // hashCode will trigger nullcheck on original switch expression
  3612             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
  3613                                                        names.hashCode,
  3614                                                        List.<JCExpression>nil()).setType(syms.intType);
  3615             JCSwitch switch1 = make.Switch(hashCodeCall,
  3616                                         caseBuffer.toList());
  3617             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
  3618                 int hashCode = entry.getKey();
  3619                 Set<String> stringsWithHashCode = entry.getValue();
  3620                 Assert.check(stringsWithHashCode.size() >= 1);
  3622                 JCStatement elsepart = null;
  3623                 for(String caseLabel : stringsWithHashCode ) {
  3624                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
  3625                                                                    names.equals,
  3626                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
  3627                     elsepart = make.If(stringEqualsCall,
  3628                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
  3629                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
  3630                                                  setType(dollar_tmp.type)),
  3631                                        elsepart);
  3634                 ListBuffer<JCStatement> lb = ListBuffer.lb();
  3635                 JCBreak breakStmt = make.Break(null);
  3636                 breakStmt.target = switch1;
  3637                 lb.append(elsepart).append(breakStmt);
  3639                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
  3642             switch1.cases = caseBuffer.toList();
  3643             stmtList.append(switch1);
  3645             // Make isomorphic switch tree replacing string labels
  3646             // with corresponding integer ones from the label to
  3647             // position map.
  3649             ListBuffer<JCCase> lb = ListBuffer.lb();
  3650             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
  3651             for(JCCase oneCase : caseList ) {
  3652                 // Rewire up old unlabeled break statements to the
  3653                 // replacement switch being created.
  3654                 patchTargets(oneCase, tree, switch2);
  3656                 boolean isDefault = (oneCase.getExpression() == null);
  3657                 JCExpression caseExpr;
  3658                 if (isDefault)
  3659                     caseExpr = null;
  3660                 else {
  3661                     caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
  3662                                                                                                 getExpression()).
  3663                                                                     type.constValue()));
  3666                 lb.append(make.Case(caseExpr,
  3667                                     oneCase.getStatements()));
  3670             switch2.cases = lb.toList();
  3671             stmtList.append(switch2);
  3673             return make.Block(0L, stmtList.toList());
  3677     public void visitNewArray(JCNewArray tree) {
  3678         tree.elemtype = translate(tree.elemtype);
  3679         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
  3680             if (t.head != null) t.head = translate(t.head, syms.intType);
  3681         tree.elems = translate(tree.elems, types.elemtype(tree.type));
  3682         result = tree;
  3685     public void visitSelect(JCFieldAccess tree) {
  3686         // need to special case-access of the form C.super.x
  3687         // these will always need an access method, unless C
  3688         // is a default interface subclassed by the current class.
  3689         boolean qualifiedSuperAccess =
  3690             tree.selected.hasTag(SELECT) &&
  3691             TreeInfo.name(tree.selected) == names._super &&
  3692             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
  3693         tree.selected = translate(tree.selected);
  3694         if (tree.name == names._class) {
  3695             result = classOf(tree.selected);
  3697         else if (tree.name == names._super &&
  3698                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
  3699             //default super call!! Not a classic qualified super call
  3700             TypeSymbol supSym = tree.selected.type.tsym;
  3701             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
  3702             result = tree;
  3704         else if (tree.name == names._this || tree.name == names._super) {
  3705             result = makeThis(tree.pos(), tree.selected.type.tsym);
  3707         else
  3708             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
  3711     public void visitLetExpr(LetExpr tree) {
  3712         tree.defs = translateVarDefs(tree.defs);
  3713         tree.expr = translate(tree.expr, tree.type);
  3714         result = tree;
  3717     // There ought to be nothing to rewrite here;
  3718     // we don't generate code.
  3719     public void visitAnnotation(JCAnnotation tree) {
  3720         result = tree;
  3723     @Override
  3724     public void visitTry(JCTry tree) {
  3725         if (tree.resources.isEmpty()) {
  3726             super.visitTry(tree);
  3727         } else {
  3728             result = makeTwrTry(tree);
  3732 /**************************************************************************
  3733  * main method
  3734  *************************************************************************/
  3736     /** Translate a toplevel class and return a list consisting of
  3737      *  the translated class and translated versions of all inner classes.
  3738      *  @param env   The attribution environment current at the class definition.
  3739      *               We need this for resolving some additional symbols.
  3740      *  @param cdef  The tree representing the class definition.
  3741      */
  3742     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
  3743         ListBuffer<JCTree> translated = null;
  3744         try {
  3745             attrEnv = env;
  3746             this.make = make;
  3747             endPosTable = env.toplevel.endPositions;
  3748             currentClass = null;
  3749             currentMethodDef = null;
  3750             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
  3751             outermostMemberDef = null;
  3752             this.translated = new ListBuffer<JCTree>();
  3753             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
  3754             actualSymbols = new HashMap<Symbol,Symbol>();
  3755             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
  3756             proxies = new Scope(syms.noSymbol);
  3757             twrVars = new Scope(syms.noSymbol);
  3758             outerThisStack = List.nil();
  3759             accessNums = new HashMap<Symbol,Integer>();
  3760             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
  3761             accessConstrs = new HashMap<Symbol,MethodSymbol>();
  3762             accessConstrTags = List.nil();
  3763             accessed = new ListBuffer<Symbol>();
  3764             translate(cdef, (JCExpression)null);
  3765             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
  3766                 makeAccessible(l.head);
  3767             for (EnumMapping map : enumSwitchMap.values())
  3768                 map.translate();
  3769             checkConflicts(this.translated.toList());
  3770             checkAccessConstructorTags();
  3771             translated = this.translated;
  3772         } finally {
  3773             // note that recursive invocations of this method fail hard
  3774             attrEnv = null;
  3775             this.make = null;
  3776             endPosTable = null;
  3777             currentClass = null;
  3778             currentMethodDef = null;
  3779             outermostClassDef = null;
  3780             outermostMemberDef = null;
  3781             this.translated = null;
  3782             classdefs = null;
  3783             actualSymbols = null;
  3784             freevarCache = null;
  3785             proxies = null;
  3786             outerThisStack = null;
  3787             accessNums = null;
  3788             accessSyms = null;
  3789             accessConstrs = null;
  3790             accessConstrTags = null;
  3791             accessed = null;
  3792             enumSwitchMap.clear();
  3794         return translated.toList();
  3797     //////////////////////////////////////////////////////////////
  3798     // The following contributed by Borland for bootstrapping purposes
  3799     //////////////////////////////////////////////////////////////
  3800     private void addEnumCompatibleMembers(JCClassDecl cdef) {
  3801         make_at(null);
  3803         // Add the special enum fields
  3804         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
  3805         VarSymbol nameFieldSym = addEnumNameField(cdef);
  3807         // Add the accessor methods for name and ordinal
  3808         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
  3809         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
  3811         // Add the toString method
  3812         addEnumToString(cdef, nameFieldSym);
  3814         // Add the compareTo method
  3815         addEnumCompareTo(cdef, ordinalFieldSym);
  3818     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
  3819         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
  3820                                           names.fromString("$ordinal"),
  3821                                           syms.intType,
  3822                                           cdef.sym);
  3823         cdef.sym.members().enter(ordinal);
  3824         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
  3825         return ordinal;
  3828     private VarSymbol addEnumNameField(JCClassDecl cdef) {
  3829         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
  3830                                           names.fromString("$name"),
  3831                                           syms.stringType,
  3832                                           cdef.sym);
  3833         cdef.sym.members().enter(name);
  3834         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
  3835         return name;
  3838     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
  3839         // Add the accessor methods for ordinal
  3840         Symbol ordinalSym = lookupMethod(cdef.pos(),
  3841                                          names.ordinal,
  3842                                          cdef.type,
  3843                                          List.<Type>nil());
  3845         Assert.check(ordinalSym instanceof MethodSymbol);
  3847         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
  3848         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
  3849                                                     make.Block(0L, List.of(ret))));
  3851         return (MethodSymbol)ordinalSym;
  3854     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
  3855         // Add the accessor methods for name
  3856         Symbol nameSym = lookupMethod(cdef.pos(),
  3857                                    names._name,
  3858                                    cdef.type,
  3859                                    List.<Type>nil());
  3861         Assert.check(nameSym instanceof MethodSymbol);
  3863         JCStatement ret = make.Return(make.Ident(nameSymbol));
  3865         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
  3866                                                     make.Block(0L, List.of(ret))));
  3868         return (MethodSymbol)nameSym;
  3871     private MethodSymbol addEnumToString(JCClassDecl cdef,
  3872                                          VarSymbol nameSymbol) {
  3873         Symbol toStringSym = lookupMethod(cdef.pos(),
  3874                                           names.toString,
  3875                                           cdef.type,
  3876                                           List.<Type>nil());
  3878         JCTree toStringDecl = null;
  3879         if (toStringSym != null)
  3880             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
  3882         if (toStringDecl != null)
  3883             return (MethodSymbol)toStringSym;
  3885         JCStatement ret = make.Return(make.Ident(nameSymbol));
  3887         JCTree resTypeTree = make.Type(syms.stringType);
  3889         MethodType toStringType = new MethodType(List.<Type>nil(),
  3890                                                  syms.stringType,
  3891                                                  List.<Type>nil(),
  3892                                                  cdef.sym);
  3893         toStringSym = new MethodSymbol(PUBLIC,
  3894                                        names.toString,
  3895                                        toStringType,
  3896                                        cdef.type.tsym);
  3897         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
  3898                                       make.Block(0L, List.of(ret)));
  3900         cdef.defs = cdef.defs.prepend(toStringDecl);
  3901         cdef.sym.members().enter(toStringSym);
  3903         return (MethodSymbol)toStringSym;
  3906     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
  3907         Symbol compareToSym = lookupMethod(cdef.pos(),
  3908                                    names.compareTo,
  3909                                    cdef.type,
  3910                                    List.of(cdef.sym.type));
  3912         Assert.check(compareToSym instanceof MethodSymbol);
  3914         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
  3916         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
  3918         JCModifiers mod1 = make.Modifiers(0L);
  3919         Name oName = names.fromString("o");
  3920         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
  3922         JCIdent paramId1 = make.Ident(names.java_lang_Object);
  3923         paramId1.type = cdef.type;
  3924         paramId1.sym = par1.sym;
  3926         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
  3928         JCIdent par1UsageId = make.Ident(par1.sym);
  3929         JCIdent castTargetIdent = make.Ident(cdef.sym);
  3930         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
  3931         cast.setType(castTargetIdent.type);
  3933         Name otherName = names.fromString("other");
  3935         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
  3936                                               otherName,
  3937                                               cdef.type,
  3938                                               compareToSym);
  3939         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
  3940         blockStatements.append(otherVar);
  3942         JCIdent id1 = make.Ident(ordinalSymbol);
  3944         JCIdent fLocUsageId = make.Ident(otherVarSym);
  3945         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
  3946         JCBinary bin = makeBinary(MINUS, id1, sel);
  3947         JCReturn ret = make.Return(bin);
  3948         blockStatements.append(ret);
  3949         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
  3950                                                    make.Block(0L,
  3951                                                               blockStatements.toList()));
  3952         compareToMethod.params = List.of(par1);
  3953         cdef.defs = cdef.defs.append(compareToMethod);
  3955         return (MethodSymbol)compareToSym;
  3957     //////////////////////////////////////////////////////////////
  3958     // The above contributed by Borland for bootstrapping purposes
  3959     //////////////////////////////////////////////////////////////

mercurial