src/share/classes/com/sun/tools/javac/comp/DeferredAttr.java

Tue, 22 Apr 2014 17:55:22 +0100

author
vromero
date
Tue, 22 Apr 2014 17:55:22 +0100
changeset 2370
acd64168cf8b
parent 2193
d4cbb671de1c
child 2382
14979dd5e034
permissions
-rw-r--r--

8029718: Should always use lambda body structure to disambiguate overload resolution
Reviewed-by: dlsmith, jjg, jlahoda

     1 /*
     2  * Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.source.tree.LambdaExpressionTree.BodyKind;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.tree.*;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    33 import com.sun.tools.javac.code.Symbol.*;
    34 import com.sun.tools.javac.code.Type.*;
    35 import com.sun.tools.javac.comp.Attr.ResultInfo;
    36 import com.sun.tools.javac.comp.Infer.InferenceContext;
    37 import com.sun.tools.javac.comp.Resolve.MethodResolutionPhase;
    38 import com.sun.tools.javac.tree.JCTree.*;
    40 import java.util.ArrayList;
    41 import java.util.Collections;
    42 import java.util.EnumSet;
    43 import java.util.LinkedHashMap;
    44 import java.util.LinkedHashSet;
    45 import java.util.Map;
    46 import java.util.Set;
    47 import java.util.WeakHashMap;
    49 import static com.sun.tools.javac.code.Kinds.VAL;
    50 import static com.sun.tools.javac.code.TypeTag.*;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /**
    54  * This is an helper class that is used to perform deferred type-analysis.
    55  * Each time a poly expression occurs in argument position, javac attributes it
    56  * with a temporary 'deferred type' that is checked (possibly multiple times)
    57  * against an expected formal type.
    58  *
    59  *  <p><b>This is NOT part of any supported API.
    60  *  If you write code that depends on this, you do so at your own risk.
    61  *  This code and its internal interfaces are subject to change or
    62  *  deletion without notice.</b>
    63  */
    64 public class DeferredAttr extends JCTree.Visitor {
    65     protected static final Context.Key<DeferredAttr> deferredAttrKey =
    66         new Context.Key<DeferredAttr>();
    68     final Attr attr;
    69     final Check chk;
    70     final JCDiagnostic.Factory diags;
    71     final Enter enter;
    72     final Infer infer;
    73     final Resolve rs;
    74     final Log log;
    75     final Symtab syms;
    76     final TreeMaker make;
    77     final Types types;
    78     final Flow flow;
    79     final Names names;
    81     public static DeferredAttr instance(Context context) {
    82         DeferredAttr instance = context.get(deferredAttrKey);
    83         if (instance == null)
    84             instance = new DeferredAttr(context);
    85         return instance;
    86     }
    88     protected DeferredAttr(Context context) {
    89         context.put(deferredAttrKey, this);
    90         attr = Attr.instance(context);
    91         chk = Check.instance(context);
    92         diags = JCDiagnostic.Factory.instance(context);
    93         enter = Enter.instance(context);
    94         infer = Infer.instance(context);
    95         rs = Resolve.instance(context);
    96         log = Log.instance(context);
    97         syms = Symtab.instance(context);
    98         make = TreeMaker.instance(context);
    99         types = Types.instance(context);
   100         flow = Flow.instance(context);
   101         names = Names.instance(context);
   102         stuckTree = make.Ident(names.empty).setType(Type.stuckType);
   103         emptyDeferredAttrContext =
   104             new DeferredAttrContext(AttrMode.CHECK, null, MethodResolutionPhase.BOX, infer.emptyContext, null, null) {
   105                 @Override
   106                 void addDeferredAttrNode(DeferredType dt, ResultInfo ri, DeferredStuckPolicy deferredStuckPolicy) {
   107                     Assert.error("Empty deferred context!");
   108                 }
   109                 @Override
   110                 void complete() {
   111                     Assert.error("Empty deferred context!");
   112                 }
   113             };
   114     }
   116     /** shared tree for stuck expressions */
   117     final JCTree stuckTree;
   119     /**
   120      * This type represents a deferred type. A deferred type starts off with
   121      * no information on the underlying expression type. Such info needs to be
   122      * discovered through type-checking the deferred type against a target-type.
   123      * Every deferred type keeps a pointer to the AST node from which it originated.
   124      */
   125     public class DeferredType extends Type {
   127         public JCExpression tree;
   128         Env<AttrContext> env;
   129         AttrMode mode;
   130         SpeculativeCache speculativeCache;
   132         DeferredType(JCExpression tree, Env<AttrContext> env) {
   133             super(null);
   134             this.tree = tree;
   135             this.env = attr.copyEnv(env);
   136             this.speculativeCache = new SpeculativeCache();
   137         }
   139         @Override
   140         public TypeTag getTag() {
   141             return DEFERRED;
   142         }
   144         @Override
   145         public String toString() {
   146             return "DeferredType";
   147         }
   149         /**
   150          * A speculative cache is used to keep track of all overload resolution rounds
   151          * that triggered speculative attribution on a given deferred type. Each entry
   152          * stores a pointer to the speculative tree and the resolution phase in which the entry
   153          * has been added.
   154          */
   155         class SpeculativeCache {
   157             private Map<Symbol, List<Entry>> cache =
   158                     new WeakHashMap<Symbol, List<Entry>>();
   160             class Entry {
   161                 JCTree speculativeTree;
   162                 ResultInfo resultInfo;
   164                 public Entry(JCTree speculativeTree, ResultInfo resultInfo) {
   165                     this.speculativeTree = speculativeTree;
   166                     this.resultInfo = resultInfo;
   167                 }
   169                 boolean matches(MethodResolutionPhase phase) {
   170                     return resultInfo.checkContext.deferredAttrContext().phase == phase;
   171                 }
   172             }
   174             /**
   175              * Retrieve a speculative cache entry corresponding to given symbol
   176              * and resolution phase
   177              */
   178             Entry get(Symbol msym, MethodResolutionPhase phase) {
   179                 List<Entry> entries = cache.get(msym);
   180                 if (entries == null) return null;
   181                 for (Entry e : entries) {
   182                     if (e.matches(phase)) return e;
   183                 }
   184                 return null;
   185             }
   187             /**
   188              * Stores a speculative cache entry corresponding to given symbol
   189              * and resolution phase
   190              */
   191             void put(JCTree speculativeTree, ResultInfo resultInfo) {
   192                 Symbol msym = resultInfo.checkContext.deferredAttrContext().msym;
   193                 List<Entry> entries = cache.get(msym);
   194                 if (entries == null) {
   195                     entries = List.nil();
   196                 }
   197                 cache.put(msym, entries.prepend(new Entry(speculativeTree, resultInfo)));
   198             }
   199         }
   201         /**
   202          * Get the type that has been computed during a speculative attribution round
   203          */
   204         Type speculativeType(Symbol msym, MethodResolutionPhase phase) {
   205             SpeculativeCache.Entry e = speculativeCache.get(msym, phase);
   206             return e != null ? e.speculativeTree.type : Type.noType;
   207         }
   209         /**
   210          * Check a deferred type against a potential target-type. Depending on
   211          * the current attribution mode, a normal vs. speculative attribution
   212          * round is performed on the underlying AST node. There can be only one
   213          * speculative round for a given target method symbol; moreover, a normal
   214          * attribution round must follow one or more speculative rounds.
   215          */
   216         Type check(ResultInfo resultInfo) {
   217             DeferredStuckPolicy deferredStuckPolicy;
   218             if (resultInfo.pt.hasTag(NONE) || resultInfo.pt.isErroneous()) {
   219                 deferredStuckPolicy = dummyStuckPolicy;
   220             } else if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.SPECULATIVE) {
   221                 deferredStuckPolicy = new OverloadStuckPolicy(resultInfo, this);
   222             } else {
   223                 deferredStuckPolicy = new CheckStuckPolicy(resultInfo, this);
   224             }
   225             return check(resultInfo, deferredStuckPolicy, basicCompleter);
   226         }
   228         private Type check(ResultInfo resultInfo, DeferredStuckPolicy deferredStuckPolicy,
   229                 DeferredTypeCompleter deferredTypeCompleter) {
   230             DeferredAttrContext deferredAttrContext =
   231                     resultInfo.checkContext.deferredAttrContext();
   232             Assert.check(deferredAttrContext != emptyDeferredAttrContext);
   233             if (deferredStuckPolicy.isStuck()) {
   234                 deferredAttrContext.addDeferredAttrNode(this, resultInfo, deferredStuckPolicy);
   235                 return Type.noType;
   236             } else {
   237                 try {
   238                     return deferredTypeCompleter.complete(this, resultInfo, deferredAttrContext);
   239                 } finally {
   240                     mode = deferredAttrContext.mode;
   241                 }
   242             }
   243         }
   244     }
   246     /**
   247      * A completer for deferred types. Defines an entry point for type-checking
   248      * a deferred type.
   249      */
   250     interface DeferredTypeCompleter {
   251         /**
   252          * Entry point for type-checking a deferred type. Depending on the
   253          * circumstances, type-checking could amount to full attribution
   254          * or partial structural check (aka potential applicability).
   255          */
   256         Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext);
   257     }
   260     /**
   261      * A basic completer for deferred types. This completer type-checks a deferred type
   262      * using attribution; depending on the attribution mode, this could be either standard
   263      * or speculative attribution.
   264      */
   265     DeferredTypeCompleter basicCompleter = new DeferredTypeCompleter() {
   266         public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
   267             switch (deferredAttrContext.mode) {
   268                 case SPECULATIVE:
   269                     //Note: if a symbol is imported twice we might do two identical
   270                     //speculative rounds...
   271                     Assert.check(dt.mode == null || dt.mode == AttrMode.SPECULATIVE);
   272                     JCTree speculativeTree = attribSpeculative(dt.tree, dt.env, resultInfo);
   273                     dt.speculativeCache.put(speculativeTree, resultInfo);
   274                     return speculativeTree.type;
   275                 case CHECK:
   276                     Assert.check(dt.mode != null);
   277                     return attr.attribTree(dt.tree, dt.env, resultInfo);
   278             }
   279             Assert.error();
   280             return null;
   281         }
   282     };
   284     DeferredTypeCompleter dummyCompleter = new DeferredTypeCompleter() {
   285         public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
   286             Assert.check(deferredAttrContext.mode == AttrMode.CHECK);
   287             return dt.tree.type = Type.stuckType;
   288         }
   289     };
   291     /**
   292      * Policy for detecting stuck expressions. Different criteria might cause
   293      * an expression to be judged as stuck, depending on whether the check
   294      * is performed during overload resolution or after most specific.
   295      */
   296     interface DeferredStuckPolicy {
   297         /**
   298          * Has the policy detected that a given expression should be considered stuck?
   299          */
   300         boolean isStuck();
   301         /**
   302          * Get the set of inference variables a given expression depends upon.
   303          */
   304         Set<Type> stuckVars();
   305         /**
   306          * Get the set of inference variables which might get new constraints
   307          * if a given expression is being type-checked.
   308          */
   309         Set<Type> depVars();
   310     }
   312     /**
   313      * Basic stuck policy; an expression is never considered to be stuck.
   314      */
   315     DeferredStuckPolicy dummyStuckPolicy = new DeferredStuckPolicy() {
   316         @Override
   317         public boolean isStuck() {
   318             return false;
   319         }
   320         @Override
   321         public Set<Type> stuckVars() {
   322             return Collections.emptySet();
   323         }
   324         @Override
   325         public Set<Type> depVars() {
   326             return Collections.emptySet();
   327         }
   328     };
   330     /**
   331      * The 'mode' in which the deferred type is to be type-checked
   332      */
   333     public enum AttrMode {
   334         /**
   335          * A speculative type-checking round is used during overload resolution
   336          * mainly to generate constraints on inference variables. Side-effects
   337          * arising from type-checking the expression associated with the deferred
   338          * type are reversed after the speculative round finishes. This means the
   339          * expression tree will be left in a blank state.
   340          */
   341         SPECULATIVE,
   342         /**
   343          * This is the plain type-checking mode. Produces side-effects on the underlying AST node
   344          */
   345         CHECK;
   346     }
   348     /**
   349      * Routine that performs speculative type-checking; the input AST node is
   350      * cloned (to avoid side-effects cause by Attr) and compiler state is
   351      * restored after type-checking. All diagnostics (but critical ones) are
   352      * disabled during speculative type-checking.
   353      */
   354     JCTree attribSpeculative(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   355         final JCTree newTree = new TreeCopier<Object>(make).copy(tree);
   356         Env<AttrContext> speculativeEnv = env.dup(newTree, env.info.dup(env.info.scope.dupUnshared()));
   357         speculativeEnv.info.scope.owner = env.info.scope.owner;
   358         Log.DeferredDiagnosticHandler deferredDiagnosticHandler =
   359                 new Log.DeferredDiagnosticHandler(log, new Filter<JCDiagnostic>() {
   360             public boolean accepts(final JCDiagnostic d) {
   361                 class PosScanner extends TreeScanner {
   362                     boolean found = false;
   364                     @Override
   365                     public void scan(JCTree tree) {
   366                         if (tree != null &&
   367                                 tree.pos() == d.getDiagnosticPosition()) {
   368                             found = true;
   369                         }
   370                         super.scan(tree);
   371                     }
   372                 };
   373                 PosScanner posScanner = new PosScanner();
   374                 posScanner.scan(newTree);
   375                 return posScanner.found;
   376             }
   377         });
   378         try {
   379             attr.attribTree(newTree, speculativeEnv, resultInfo);
   380             unenterScanner.scan(newTree);
   381             return newTree;
   382         } finally {
   383             unenterScanner.scan(newTree);
   384             log.popDiagnosticHandler(deferredDiagnosticHandler);
   385         }
   386     }
   387     //where
   388         protected UnenterScanner unenterScanner = new UnenterScanner();
   390         class UnenterScanner extends TreeScanner {
   391             @Override
   392             public void visitClassDef(JCClassDecl tree) {
   393                 ClassSymbol csym = tree.sym;
   394                 //if something went wrong during method applicability check
   395                 //it is possible that nested expressions inside argument expression
   396                 //are left unchecked - in such cases there's nothing to clean up.
   397                 if (csym == null) return;
   398                 enter.typeEnvs.remove(csym);
   399                 chk.compiled.remove(csym.flatname);
   400                 syms.classes.remove(csym.flatname);
   401                 super.visitClassDef(tree);
   402             }
   403         }
   405     /**
   406      * A deferred context is created on each method check. A deferred context is
   407      * used to keep track of information associated with the method check, such as
   408      * the symbol of the method being checked, the overload resolution phase,
   409      * the kind of attribution mode to be applied to deferred types and so forth.
   410      * As deferred types are processed (by the method check routine) stuck AST nodes
   411      * are added (as new deferred attribution nodes) to this context. The complete()
   412      * routine makes sure that all pending nodes are properly processed, by
   413      * progressively instantiating all inference variables on which one or more
   414      * deferred attribution node is stuck.
   415      */
   416     class DeferredAttrContext {
   418         /** attribution mode */
   419         final AttrMode mode;
   421         /** symbol of the method being checked */
   422         final Symbol msym;
   424         /** method resolution step */
   425         final Resolve.MethodResolutionPhase phase;
   427         /** inference context */
   428         final InferenceContext inferenceContext;
   430         /** parent deferred context */
   431         final DeferredAttrContext parent;
   433         /** Warner object to report warnings */
   434         final Warner warn;
   436         /** list of deferred attribution nodes to be processed */
   437         ArrayList<DeferredAttrNode> deferredAttrNodes = new ArrayList<DeferredAttrNode>();
   439         DeferredAttrContext(AttrMode mode, Symbol msym, MethodResolutionPhase phase,
   440                 InferenceContext inferenceContext, DeferredAttrContext parent, Warner warn) {
   441             this.mode = mode;
   442             this.msym = msym;
   443             this.phase = phase;
   444             this.parent = parent;
   445             this.warn = warn;
   446             this.inferenceContext = inferenceContext;
   447         }
   449         /**
   450          * Adds a node to the list of deferred attribution nodes - used by Resolve.rawCheckArgumentsApplicable
   451          * Nodes added this way act as 'roots' for the out-of-order method checking process.
   452          */
   453         void addDeferredAttrNode(final DeferredType dt, ResultInfo resultInfo,
   454                 DeferredStuckPolicy deferredStuckPolicy) {
   455             deferredAttrNodes.add(new DeferredAttrNode(dt, resultInfo, deferredStuckPolicy));
   456         }
   458         /**
   459          * Incrementally process all nodes, by skipping 'stuck' nodes and attributing
   460          * 'unstuck' ones. If at any point no progress can be made (no 'unstuck' nodes)
   461          * some inference variable might get eagerly instantiated so that all nodes
   462          * can be type-checked.
   463          */
   464         void complete() {
   465             while (!deferredAttrNodes.isEmpty()) {
   466                 Map<Type, Set<Type>> depVarsMap = new LinkedHashMap<Type, Set<Type>>();
   467                 List<Type> stuckVars = List.nil();
   468                 boolean progress = false;
   469                 //scan a defensive copy of the node list - this is because a deferred
   470                 //attribution round can add new nodes to the list
   471                 for (DeferredAttrNode deferredAttrNode : List.from(deferredAttrNodes)) {
   472                     if (!deferredAttrNode.process(this)) {
   473                         List<Type> restStuckVars =
   474                                 List.from(deferredAttrNode.deferredStuckPolicy.stuckVars())
   475                                 .intersect(inferenceContext.restvars());
   476                         stuckVars = stuckVars.prependList(restStuckVars);
   477                         //update dependency map
   478                         for (Type t : List.from(deferredAttrNode.deferredStuckPolicy.depVars())
   479                                 .intersect(inferenceContext.restvars())) {
   480                             Set<Type> prevDeps = depVarsMap.get(t);
   481                             if (prevDeps == null) {
   482                                 prevDeps = new LinkedHashSet<Type>();
   483                                 depVarsMap.put(t, prevDeps);
   484                             }
   485                             prevDeps.addAll(restStuckVars);
   486                         }
   487                     } else {
   488                         deferredAttrNodes.remove(deferredAttrNode);
   489                         progress = true;
   490                     }
   491                 }
   492                 if (!progress) {
   493                     DeferredAttrContext dac = this;
   494                     while (dac != emptyDeferredAttrContext) {
   495                         if (dac.mode == AttrMode.SPECULATIVE) {
   496                             //unsticking does not take place during overload
   497                             break;
   498                         }
   499                         dac = dac.parent;
   500                     }
   501                     //remove all variables that have already been instantiated
   502                     //from the list of stuck variables
   503                     try {
   504                         inferenceContext.solveAny(stuckVars, depVarsMap, warn);
   505                         inferenceContext.notifyChange();
   506                     } catch (Infer.GraphStrategy.NodeNotFoundException ex) {
   507                         //this means that we are in speculative mode and the
   508                         //set of contraints are too tight for progess to be made.
   509                         //Just leave the remaining expressions as stuck.
   510                         break;
   511                     }
   512                 }
   513             }
   514         }
   515     }
   517     /**
   518      * Class representing a deferred attribution node. It keeps track of
   519      * a deferred type, along with the expected target type information.
   520      */
   521     class DeferredAttrNode {
   523         /** underlying deferred type */
   524         DeferredType dt;
   526         /** underlying target type information */
   527         ResultInfo resultInfo;
   529         /** stuck policy associated with this node */
   530         DeferredStuckPolicy deferredStuckPolicy;
   532         DeferredAttrNode(DeferredType dt, ResultInfo resultInfo, DeferredStuckPolicy deferredStuckPolicy) {
   533             this.dt = dt;
   534             this.resultInfo = resultInfo;
   535             this.deferredStuckPolicy = deferredStuckPolicy;
   536         }
   538         /**
   539          * Process a deferred attribution node.
   540          * Invariant: a stuck node cannot be processed.
   541          */
   542         @SuppressWarnings("fallthrough")
   543         boolean process(final DeferredAttrContext deferredAttrContext) {
   544             switch (deferredAttrContext.mode) {
   545                 case SPECULATIVE:
   546                     if (deferredStuckPolicy.isStuck()) {
   547                         dt.check(resultInfo, dummyStuckPolicy, new StructuralStuckChecker());
   548                         return true;
   549                     } else {
   550                         Assert.error("Cannot get here");
   551                     }
   552                 case CHECK:
   553                     if (deferredStuckPolicy.isStuck()) {
   554                         //stuck expression - see if we can propagate
   555                         if (deferredAttrContext.parent != emptyDeferredAttrContext &&
   556                                 Type.containsAny(deferredAttrContext.parent.inferenceContext.inferencevars,
   557                                         List.from(deferredStuckPolicy.stuckVars()))) {
   558                             deferredAttrContext.parent.addDeferredAttrNode(dt,
   559                                     resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
   560                                 @Override
   561                                 public InferenceContext inferenceContext() {
   562                                     return deferredAttrContext.parent.inferenceContext;
   563                                 }
   564                                 @Override
   565                                 public DeferredAttrContext deferredAttrContext() {
   566                                     return deferredAttrContext.parent;
   567                                 }
   568                             }), deferredStuckPolicy);
   569                             dt.tree.type = Type.stuckType;
   570                             return true;
   571                         } else {
   572                             return false;
   573                         }
   574                     } else {
   575                         ResultInfo instResultInfo =
   576                                 resultInfo.dup(deferredAttrContext.inferenceContext.asInstType(resultInfo.pt));
   577                         dt.check(instResultInfo, dummyStuckPolicy, basicCompleter);
   578                         return true;
   579                     }
   580                 default:
   581                     throw new AssertionError("Bad mode");
   582             }
   583         }
   585         /**
   586          * Structural checker for stuck expressions
   587          */
   588         class StructuralStuckChecker extends TreeScanner implements DeferredTypeCompleter {
   590             ResultInfo resultInfo;
   591             InferenceContext inferenceContext;
   592             Env<AttrContext> env;
   594             public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
   595                 this.resultInfo = resultInfo;
   596                 this.inferenceContext = deferredAttrContext.inferenceContext;
   597                 this.env = dt.env;
   598                 dt.tree.accept(this);
   599                 dt.speculativeCache.put(stuckTree, resultInfo);
   600                 return Type.noType;
   601             }
   603             @Override
   604             public void visitLambda(JCLambda tree) {
   605                 Check.CheckContext checkContext = resultInfo.checkContext;
   606                 Type pt = resultInfo.pt;
   607                 if (!inferenceContext.inferencevars.contains(pt)) {
   608                     //must be a functional descriptor
   609                     Type descriptorType = null;
   610                     try {
   611                         descriptorType = types.findDescriptorType(pt);
   612                     } catch (Types.FunctionDescriptorLookupError ex) {
   613                         checkContext.report(null, ex.getDiagnostic());
   614                     }
   616                     if (descriptorType.getParameterTypes().length() != tree.params.length()) {
   617                         checkContext.report(tree,
   618                                 diags.fragment("incompatible.arg.types.in.lambda"));
   619                     }
   621                     Type currentReturnType = descriptorType.getReturnType();
   622                     boolean returnTypeIsVoid = currentReturnType.hasTag(VOID);
   623                     if (tree.getBodyKind() == BodyKind.EXPRESSION) {
   624                         boolean isExpressionCompatible = !returnTypeIsVoid ||
   625                             TreeInfo.isExpressionStatement((JCExpression)tree.getBody());
   626                         if (!isExpressionCompatible) {
   627                             resultInfo.checkContext.report(tree.pos(),
   628                                 diags.fragment("incompatible.ret.type.in.lambda",
   629                                     diags.fragment("missing.ret.val", currentReturnType)));
   630                         }
   631                     } else {
   632                         LambdaBodyStructChecker lambdaBodyChecker =
   633                                 new LambdaBodyStructChecker();
   635                         tree.body.accept(lambdaBodyChecker);
   636                         boolean isVoidCompatible = lambdaBodyChecker.isVoidCompatible;
   638                         if (returnTypeIsVoid) {
   639                             if (!isVoidCompatible) {
   640                                 resultInfo.checkContext.report(tree.pos(),
   641                                     diags.fragment("unexpected.ret.val"));
   642                             }
   643                         } else {
   644                             boolean isValueCompatible = lambdaBodyChecker.isPotentiallyValueCompatible
   645                                 && !canLambdaBodyCompleteNormally(tree);
   646                             if (!isValueCompatible && !isVoidCompatible) {
   647                                 log.error(tree.body.pos(),
   648                                     "lambda.body.neither.value.nor.void.compatible");
   649                             }
   651                             if (!isValueCompatible) {
   652                                 resultInfo.checkContext.report(tree.pos(),
   653                                     diags.fragment("incompatible.ret.type.in.lambda",
   654                                         diags.fragment("missing.ret.val", currentReturnType)));
   655                             }
   656                         }
   657                     }
   658                 }
   659             }
   661             boolean canLambdaBodyCompleteNormally(JCLambda tree) {
   662                 JCLambda newTree = new TreeCopier<>(make).copy(tree);
   663                 /* attr.lambdaEnv will create a meaningful env for the
   664                  * lambda expression. This is specially useful when the
   665                  * lambda is used as the init of a field. But we need to
   666                  * remove any added symbol.
   667                  */
   668                 Env<AttrContext> localEnv = attr.lambdaEnv(newTree, env);
   669                 try {
   670                     List<JCVariableDecl> tmpParams = newTree.params;
   671                     while (tmpParams.nonEmpty()) {
   672                         tmpParams.head.vartype = make.at(tmpParams.head).Type(syms.errType);
   673                         tmpParams = tmpParams.tail;
   674                     }
   676                     attr.attribStats(newTree.params, localEnv);
   678                     /* set pt to Type.noType to avoid generating any bound
   679                      * which may happen if lambda's return type is an
   680                      * inference variable
   681                      */
   682                     Attr.ResultInfo bodyResultInfo = attr.new ResultInfo(VAL, Type.noType);
   683                     localEnv.info.returnResult = bodyResultInfo;
   685                     // discard any log output
   686                     Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
   687                     try {
   688                         JCBlock body = (JCBlock)newTree.body;
   689                         /* we need to attribute the lambda body before
   690                          * doing the aliveness analysis. This is because
   691                          * constant folding occurs during attribution
   692                          * and the reachability of some statements depends
   693                          * on constant values, for example:
   694                          *
   695                          *     while (true) {...}
   696                          */
   697                         attr.attribStats(body.stats, localEnv);
   699                         attr.preFlow(newTree);
   700                         /* make an aliveness / reachability analysis of the lambda
   701                          * to determine if it can complete normally
   702                          */
   703                         flow.analyzeLambda(localEnv, newTree, make, true);
   704                     } finally {
   705                         log.popDiagnosticHandler(diagHandler);
   706                     }
   707                     return newTree.canCompleteNormally;
   708                 } finally {
   709                     JCBlock body = (JCBlock)newTree.body;
   710                     unenterScanner.scan(body.stats);
   711                     localEnv.info.scope.leave();
   712                 }
   713             }
   715             @Override
   716             public void visitNewClass(JCNewClass tree) {
   717                 //do nothing
   718             }
   720             @Override
   721             public void visitApply(JCMethodInvocation tree) {
   722                 //do nothing
   723             }
   725             @Override
   726             public void visitReference(JCMemberReference tree) {
   727                 Check.CheckContext checkContext = resultInfo.checkContext;
   728                 Type pt = resultInfo.pt;
   729                 if (!inferenceContext.inferencevars.contains(pt)) {
   730                     try {
   731                         types.findDescriptorType(pt);
   732                     } catch (Types.FunctionDescriptorLookupError ex) {
   733                         checkContext.report(null, ex.getDiagnostic());
   734                     }
   735                     Env<AttrContext> localEnv = env.dup(tree);
   736                     JCExpression exprTree = (JCExpression)attribSpeculative(tree.getQualifierExpression(), localEnv,
   737                             attr.memberReferenceQualifierResult(tree));
   738                     ListBuffer<Type> argtypes = new ListBuffer<>();
   739                     for (Type t : types.findDescriptorType(pt).getParameterTypes()) {
   740                         argtypes.append(Type.noType);
   741                     }
   742                     JCMemberReference mref2 = new TreeCopier<Void>(make).copy(tree);
   743                     mref2.expr = exprTree;
   744                     Symbol lookupSym =
   745                             rs.resolveMemberReferenceByArity(localEnv, mref2, exprTree.type,
   746                                 tree.name, argtypes.toList(), inferenceContext);
   747                     switch (lookupSym.kind) {
   748                         //note: as argtypes are erroneous types, type-errors must
   749                         //have been caused by arity mismatch
   750                         case Kinds.ABSENT_MTH:
   751                         case Kinds.WRONG_MTH:
   752                         case Kinds.WRONG_MTHS:
   753                         case Kinds.WRONG_STATICNESS:
   754                            checkContext.report(tree, diags.fragment("incompatible.arg.types.in.mref"));
   755                     }
   756                 }
   757             }
   758         }
   760         /* This visitor looks for return statements, its analysis will determine if
   761          * a lambda body is void or value compatible. We must analyze return
   762          * statements contained in the lambda body only, thus any return statement
   763          * contained in an inner class or inner lambda body, should be ignored.
   764          */
   765         class LambdaBodyStructChecker extends TreeScanner {
   766             boolean isVoidCompatible = true;
   767             boolean isPotentiallyValueCompatible = true;
   769             @Override
   770             public void visitClassDef(JCClassDecl tree) {
   771                 // do nothing
   772             }
   774             @Override
   775             public void visitLambda(JCLambda tree) {
   776                 // do nothing
   777             }
   779             @Override
   780             public void visitNewClass(JCNewClass tree) {
   781                 // do nothing
   782             }
   784             @Override
   785             public void visitReturn(JCReturn tree) {
   786                 if (tree.expr != null) {
   787                     isVoidCompatible = false;
   788                 } else {
   789                     isPotentiallyValueCompatible = false;
   790                 }
   791             }
   792         }
   793     }
   795     /** an empty deferred attribution context - all methods throw exceptions */
   796     final DeferredAttrContext emptyDeferredAttrContext;
   798     /**
   799      * Map a list of types possibly containing one or more deferred types
   800      * into a list of ordinary types. Each deferred type D is mapped into a type T,
   801      * where T is computed by retrieving the type that has already been
   802      * computed for D during a previous deferred attribution round of the given kind.
   803      */
   804     class DeferredTypeMap extends Type.Mapping {
   806         DeferredAttrContext deferredAttrContext;
   808         protected DeferredTypeMap(AttrMode mode, Symbol msym, MethodResolutionPhase phase) {
   809             super(String.format("deferredTypeMap[%s]", mode));
   810             this.deferredAttrContext = new DeferredAttrContext(mode, msym, phase,
   811                     infer.emptyContext, emptyDeferredAttrContext, types.noWarnings);
   812         }
   814         @Override
   815         public Type apply(Type t) {
   816             if (!t.hasTag(DEFERRED)) {
   817                 return t.map(this);
   818             } else {
   819                 DeferredType dt = (DeferredType)t;
   820                 return typeOf(dt);
   821             }
   822         }
   824         protected Type typeOf(DeferredType dt) {
   825             switch (deferredAttrContext.mode) {
   826                 case CHECK:
   827                     return dt.tree.type == null ? Type.noType : dt.tree.type;
   828                 case SPECULATIVE:
   829                     return dt.speculativeType(deferredAttrContext.msym, deferredAttrContext.phase);
   830             }
   831             Assert.error();
   832             return null;
   833         }
   834     }
   836     /**
   837      * Specialized recovery deferred mapping.
   838      * Each deferred type D is mapped into a type T, where T is computed either by
   839      * (i) retrieving the type that has already been computed for D during a previous
   840      * attribution round (as before), or (ii) by synthesizing a new type R for D
   841      * (the latter step is useful in a recovery scenario).
   842      */
   843     public class RecoveryDeferredTypeMap extends DeferredTypeMap {
   845         public RecoveryDeferredTypeMap(AttrMode mode, Symbol msym, MethodResolutionPhase phase) {
   846             super(mode, msym, phase != null ? phase : MethodResolutionPhase.BOX);
   847         }
   849         @Override
   850         protected Type typeOf(DeferredType dt) {
   851             Type owntype = super.typeOf(dt);
   852             return owntype == Type.noType ?
   853                         recover(dt) : owntype;
   854         }
   856         /**
   857          * Synthesize a type for a deferred type that hasn't been previously
   858          * reduced to an ordinary type. Functional deferred types and conditionals
   859          * are mapped to themselves, in order to have a richer diagnostic
   860          * representation. Remaining deferred types are attributed using
   861          * a default expected type (j.l.Object).
   862          */
   863         private Type recover(DeferredType dt) {
   864             dt.check(attr.new RecoveryInfo(deferredAttrContext) {
   865                 @Override
   866                 protected Type check(DiagnosticPosition pos, Type found) {
   867                     return chk.checkNonVoid(pos, super.check(pos, found));
   868                 }
   869             });
   870             return super.apply(dt);
   871         }
   872     }
   874     /**
   875      * A special tree scanner that would only visit portions of a given tree.
   876      * The set of nodes visited by the scanner can be customized at construction-time.
   877      */
   878     abstract static class FilterScanner extends TreeScanner {
   880         final Filter<JCTree> treeFilter;
   882         FilterScanner(final Set<JCTree.Tag> validTags) {
   883             this.treeFilter = new Filter<JCTree>() {
   884                 public boolean accepts(JCTree t) {
   885                     return validTags.contains(t.getTag());
   886                 }
   887             };
   888         }
   890         @Override
   891         public void scan(JCTree tree) {
   892             if (tree != null) {
   893                 if (treeFilter.accepts(tree)) {
   894                     super.scan(tree);
   895                 } else {
   896                     skip(tree);
   897                 }
   898             }
   899         }
   901         /**
   902          * handler that is executed when a node has been discarded
   903          */
   904         void skip(JCTree tree) {}
   905     }
   907     /**
   908      * A tree scanner suitable for visiting the target-type dependent nodes of
   909      * a given argument expression.
   910      */
   911     static class PolyScanner extends FilterScanner {
   913         PolyScanner() {
   914             super(EnumSet.of(CONDEXPR, PARENS, LAMBDA, REFERENCE));
   915         }
   916     }
   918     /**
   919      * A tree scanner suitable for visiting the target-type dependent nodes nested
   920      * within a lambda expression body.
   921      */
   922     static class LambdaReturnScanner extends FilterScanner {
   924         LambdaReturnScanner() {
   925             super(EnumSet.of(BLOCK, CASE, CATCH, DOLOOP, FOREACHLOOP,
   926                     FORLOOP, RETURN, SYNCHRONIZED, SWITCH, TRY, WHILELOOP));
   927         }
   928     }
   930     /**
   931      * This visitor is used to check that structural expressions conform
   932      * to their target - this step is required as inference could end up
   933      * inferring types that make some of the nested expressions incompatible
   934      * with their corresponding instantiated target
   935      */
   936     class CheckStuckPolicy extends PolyScanner implements DeferredStuckPolicy, Infer.FreeTypeListener {
   938         Type pt;
   939         Infer.InferenceContext inferenceContext;
   940         Set<Type> stuckVars = new LinkedHashSet<Type>();
   941         Set<Type> depVars = new LinkedHashSet<Type>();
   943         @Override
   944         public boolean isStuck() {
   945             return !stuckVars.isEmpty();
   946         }
   948         @Override
   949         public Set<Type> stuckVars() {
   950             return stuckVars;
   951         }
   953         @Override
   954         public Set<Type> depVars() {
   955             return depVars;
   956         }
   958         public CheckStuckPolicy(ResultInfo resultInfo, DeferredType dt) {
   959             this.pt = resultInfo.pt;
   960             this.inferenceContext = resultInfo.checkContext.inferenceContext();
   961             scan(dt.tree);
   962             if (!stuckVars.isEmpty()) {
   963                 resultInfo.checkContext.inferenceContext()
   964                         .addFreeTypeListener(List.from(stuckVars), this);
   965             }
   966         }
   968         @Override
   969         public void typesInferred(InferenceContext inferenceContext) {
   970             stuckVars.clear();
   971         }
   973         @Override
   974         public void visitLambda(JCLambda tree) {
   975             if (inferenceContext.inferenceVars().contains(pt)) {
   976                 stuckVars.add(pt);
   977             }
   978             if (!types.isFunctionalInterface(pt)) {
   979                 return;
   980             }
   981             Type descType = types.findDescriptorType(pt);
   982             List<Type> freeArgVars = inferenceContext.freeVarsIn(descType.getParameterTypes());
   983             if (tree.paramKind == JCLambda.ParameterKind.IMPLICIT &&
   984                     freeArgVars.nonEmpty()) {
   985                 stuckVars.addAll(freeArgVars);
   986                 depVars.addAll(inferenceContext.freeVarsIn(descType.getReturnType()));
   987             }
   988             scanLambdaBody(tree, descType.getReturnType());
   989         }
   991         @Override
   992         public void visitReference(JCMemberReference tree) {
   993             scan(tree.expr);
   994             if (inferenceContext.inferenceVars().contains(pt)) {
   995                 stuckVars.add(pt);
   996                 return;
   997             }
   998             if (!types.isFunctionalInterface(pt)) {
   999                 return;
  1002             Type descType = types.findDescriptorType(pt);
  1003             List<Type> freeArgVars = inferenceContext.freeVarsIn(descType.getParameterTypes());
  1004             if (freeArgVars.nonEmpty() &&
  1005                     tree.overloadKind == JCMemberReference.OverloadKind.OVERLOADED) {
  1006                 stuckVars.addAll(freeArgVars);
  1007                 depVars.addAll(inferenceContext.freeVarsIn(descType.getReturnType()));
  1011         void scanLambdaBody(JCLambda lambda, final Type pt) {
  1012             if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
  1013                 Type prevPt = this.pt;
  1014                 try {
  1015                     this.pt = pt;
  1016                     scan(lambda.body);
  1017                 } finally {
  1018                     this.pt = prevPt;
  1020             } else {
  1021                 LambdaReturnScanner lambdaScanner = new LambdaReturnScanner() {
  1022                     @Override
  1023                     public void visitReturn(JCReturn tree) {
  1024                         if (tree.expr != null) {
  1025                             Type prevPt = CheckStuckPolicy.this.pt;
  1026                             try {
  1027                                 CheckStuckPolicy.this.pt = pt;
  1028                                 CheckStuckPolicy.this.scan(tree.expr);
  1029                             } finally {
  1030                                 CheckStuckPolicy.this.pt = prevPt;
  1034                 };
  1035                 lambdaScanner.scan(lambda.body);
  1040     /**
  1041      * This visitor is used to check that structural expressions conform
  1042      * to their target - this step is required as inference could end up
  1043      * inferring types that make some of the nested expressions incompatible
  1044      * with their corresponding instantiated target
  1045      */
  1046     class OverloadStuckPolicy extends CheckStuckPolicy implements DeferredStuckPolicy {
  1048         boolean stuck;
  1050         @Override
  1051         public boolean isStuck() {
  1052             return super.isStuck() || stuck;
  1055         public OverloadStuckPolicy(ResultInfo resultInfo, DeferredType dt) {
  1056             super(resultInfo, dt);
  1059         @Override
  1060         public void visitLambda(JCLambda tree) {
  1061             super.visitLambda(tree);
  1062             if (tree.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  1063                 stuck = true;
  1067         @Override
  1068         public void visitReference(JCMemberReference tree) {
  1069             super.visitReference(tree);
  1070             if (tree.overloadKind == JCMemberReference.OverloadKind.OVERLOADED) {
  1071                 stuck = true;
  1076     /**
  1077      * Does the argument expression {@code expr} need speculative type-checking?
  1078      */
  1079     boolean isDeferred(Env<AttrContext> env, JCExpression expr) {
  1080         DeferredChecker dc = new DeferredChecker(env);
  1081         dc.scan(expr);
  1082         return dc.result.isPoly();
  1085     /**
  1086      * The kind of an argument expression. This is used by the analysis that
  1087      * determines as to whether speculative attribution is necessary.
  1088      */
  1089     enum ArgumentExpressionKind {
  1091         /** kind that denotes poly argument expression */
  1092         POLY,
  1093         /** kind that denotes a standalone expression */
  1094         NO_POLY,
  1095         /** kind that denotes a primitive/boxed standalone expression */
  1096         PRIMITIVE;
  1098         /**
  1099          * Does this kind denote a poly argument expression
  1100          */
  1101         public final boolean isPoly() {
  1102             return this == POLY;
  1105         /**
  1106          * Does this kind denote a primitive standalone expression
  1107          */
  1108         public final boolean isPrimitive() {
  1109             return this == PRIMITIVE;
  1112         /**
  1113          * Compute the kind of a standalone expression of a given type
  1114          */
  1115         static ArgumentExpressionKind standaloneKind(Type type, Types types) {
  1116             return types.unboxedTypeOrType(type).isPrimitive() ?
  1117                     ArgumentExpressionKind.PRIMITIVE :
  1118                     ArgumentExpressionKind.NO_POLY;
  1121         /**
  1122          * Compute the kind of a method argument expression given its symbol
  1123          */
  1124         static ArgumentExpressionKind methodKind(Symbol sym, Types types) {
  1125             Type restype = sym.type.getReturnType();
  1126             if (sym.type.hasTag(FORALL) &&
  1127                     restype.containsAny(((ForAll)sym.type).tvars)) {
  1128                 return ArgumentExpressionKind.POLY;
  1129             } else {
  1130                 return ArgumentExpressionKind.standaloneKind(restype, types);
  1135     /**
  1136      * Tree scanner used for checking as to whether an argument expression
  1137      * requires speculative attribution
  1138      */
  1139     final class DeferredChecker extends FilterScanner {
  1141         Env<AttrContext> env;
  1142         ArgumentExpressionKind result;
  1144         public DeferredChecker(Env<AttrContext> env) {
  1145             super(deferredCheckerTags);
  1146             this.env = env;
  1149         @Override
  1150         public void visitLambda(JCLambda tree) {
  1151             //a lambda is always a poly expression
  1152             result = ArgumentExpressionKind.POLY;
  1155         @Override
  1156         public void visitReference(JCMemberReference tree) {
  1157             //perform arity-based check
  1158             Env<AttrContext> localEnv = env.dup(tree);
  1159             JCExpression exprTree = (JCExpression)attribSpeculative(tree.getQualifierExpression(), localEnv,
  1160                     attr.memberReferenceQualifierResult(tree));
  1161             JCMemberReference mref2 = new TreeCopier<Void>(make).copy(tree);
  1162             mref2.expr = exprTree;
  1163             Symbol res =
  1164                     rs.getMemberReference(tree, localEnv, mref2,
  1165                         exprTree.type, tree.name);
  1166             tree.sym = res;
  1167             if (res.kind >= Kinds.ERRONEOUS ||
  1168                     res.type.hasTag(FORALL) ||
  1169                     (res.flags() & Flags.VARARGS) != 0 ||
  1170                     (TreeInfo.isStaticSelector(exprTree, tree.name.table.names) &&
  1171                     exprTree.type.isRaw())) {
  1172                 tree.overloadKind = JCMemberReference.OverloadKind.OVERLOADED;
  1173             } else {
  1174                 tree.overloadKind = JCMemberReference.OverloadKind.UNOVERLOADED;
  1176             //a method reference is always a poly expression
  1177             result = ArgumentExpressionKind.POLY;
  1180         @Override
  1181         public void visitTypeCast(JCTypeCast tree) {
  1182             //a cast is always a standalone expression
  1183             result = ArgumentExpressionKind.NO_POLY;
  1186         @Override
  1187         public void visitConditional(JCConditional tree) {
  1188             scan(tree.truepart);
  1189             if (!result.isPrimitive()) {
  1190                 result = ArgumentExpressionKind.POLY;
  1191                 return;
  1193             scan(tree.falsepart);
  1194             result = reduce(ArgumentExpressionKind.PRIMITIVE);
  1197         @Override
  1198         public void visitNewClass(JCNewClass tree) {
  1199             result = (TreeInfo.isDiamond(tree) || attr.findDiamonds) ?
  1200                     ArgumentExpressionKind.POLY : ArgumentExpressionKind.NO_POLY;
  1203         @Override
  1204         public void visitApply(JCMethodInvocation tree) {
  1205             Name name = TreeInfo.name(tree.meth);
  1207             //fast path
  1208             if (tree.typeargs.nonEmpty() ||
  1209                     name == name.table.names._this ||
  1210                     name == name.table.names._super) {
  1211                 result = ArgumentExpressionKind.NO_POLY;
  1212                 return;
  1215             //slow path
  1216             final JCExpression rec = tree.meth.hasTag(SELECT) ?
  1217                     ((JCFieldAccess)tree.meth).selected :
  1218                     null;
  1220             if (rec != null && !isSimpleReceiver(rec)) {
  1221                 //give up if receiver is too complex (to cut down analysis time)
  1222                 result = ArgumentExpressionKind.POLY;
  1223                 return;
  1226             Type site = rec != null ?
  1227                     attribSpeculative(rec, env, attr.unknownTypeExprInfo).type :
  1228                     env.enclClass.sym.type;
  1230             while (site.hasTag(TYPEVAR)) {
  1231                 site = site.getUpperBound();
  1234             List<Type> args = rs.dummyArgs(tree.args.length());
  1236             Resolve.LookupHelper lh = rs.new LookupHelper(name, site, args, List.<Type>nil(), MethodResolutionPhase.VARARITY) {
  1237                 @Override
  1238                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  1239                     return rec == null ?
  1240                         rs.findFun(env, name, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  1241                         rs.findMethod(env, site, name, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
  1243                 @Override
  1244                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  1245                     return sym;
  1247             };
  1249             Symbol sym = rs.lookupMethod(env, tree, site.tsym, rs.arityMethodCheck, lh);
  1251             if (sym.kind == Kinds.AMBIGUOUS) {
  1252                 Resolve.AmbiguityError err = (Resolve.AmbiguityError)sym.baseSymbol();
  1253                 result = ArgumentExpressionKind.PRIMITIVE;
  1254                 for (Symbol s : err.ambiguousSyms) {
  1255                     if (result.isPoly()) break;
  1256                     if (s.kind == Kinds.MTH) {
  1257                         result = reduce(ArgumentExpressionKind.methodKind(s, types));
  1260             } else {
  1261                 result = (sym.kind == Kinds.MTH) ?
  1262                     ArgumentExpressionKind.methodKind(sym, types) :
  1263                     ArgumentExpressionKind.NO_POLY;
  1266         //where
  1267             private boolean isSimpleReceiver(JCTree rec) {
  1268                 switch (rec.getTag()) {
  1269                     case IDENT:
  1270                         return true;
  1271                     case SELECT:
  1272                         return isSimpleReceiver(((JCFieldAccess)rec).selected);
  1273                     case TYPEAPPLY:
  1274                     case TYPEARRAY:
  1275                         return true;
  1276                     case ANNOTATED_TYPE:
  1277                         return isSimpleReceiver(((JCAnnotatedType)rec).underlyingType);
  1278                     default:
  1279                         return false;
  1282             private ArgumentExpressionKind reduce(ArgumentExpressionKind kind) {
  1283                 switch (result) {
  1284                     case PRIMITIVE: return kind;
  1285                     case NO_POLY: return kind.isPoly() ? kind : result;
  1286                     case POLY: return result;
  1287                     default:
  1288                         Assert.error();
  1289                         return null;
  1293         @Override
  1294         public void visitLiteral(JCLiteral tree) {
  1295             Type litType = attr.litType(tree.typetag);
  1296             result = ArgumentExpressionKind.standaloneKind(litType, types);
  1299         @Override
  1300         void skip(JCTree tree) {
  1301             result = ArgumentExpressionKind.NO_POLY;
  1304     //where
  1305     private EnumSet<JCTree.Tag> deferredCheckerTags =
  1306             EnumSet.of(LAMBDA, REFERENCE, PARENS, TYPECAST,
  1307                     CONDEXPR, NEWCLASS, APPLY, LITERAL);

mercurial