src/share/classes/com/sun/tools/javac/comp/LambdaToMethod.java

Mon, 29 Oct 2012 10:39:49 -0700

author
rfield
date
Mon, 29 Oct 2012 10:39:49 -0700
changeset 1380
a65971893c50
child 1405
e6b1abdc11ca
permissions
-rw-r--r--

8000694: Add generation of lambda implementation code: invokedynamic call, lambda method, adaptor methods
Summary: Add lambda implementation code with calling/supporting code elsewhere in the compiler
Reviewed-by: mcimadamore, jjg

     1 /*
     2  * Copyright (c) 2010, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    25 package com.sun.tools.javac.comp;
    27 import com.sun.tools.javac.tree.*;
    28 import com.sun.tools.javac.tree.JCTree;
    29 import com.sun.tools.javac.tree.JCTree.*;
    30 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    31 import com.sun.tools.javac.tree.TreeMaker;
    32 import com.sun.tools.javac.tree.TreeScanner;
    33 import com.sun.tools.javac.tree.TreeTranslator;
    34 import com.sun.tools.javac.code.Flags;
    35 import com.sun.tools.javac.code.Kinds;
    36 import com.sun.tools.javac.code.Symbol;
    37 import com.sun.tools.javac.code.Symbol.ClassSymbol;
    38 import com.sun.tools.javac.code.Symbol.DynamicMethodSymbol;
    39 import com.sun.tools.javac.code.Symbol.MethodSymbol;
    40 import com.sun.tools.javac.code.Symbol.VarSymbol;
    41 import com.sun.tools.javac.code.Symtab;
    42 import com.sun.tools.javac.code.Type;
    43 import com.sun.tools.javac.code.Type.ClassType;
    44 import com.sun.tools.javac.code.Type.MethodType;
    45 import com.sun.tools.javac.code.Types;
    46 import com.sun.tools.javac.comp.LambdaToMethod.LambdaAnalyzer.*;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.util.*;
    49 import com.sun.tools.javac.util.List;
    50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    51 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    53 import java.util.HashMap;
    54 import java.util.LinkedHashMap;
    55 import java.util.Map;
    57 import static com.sun.tools.javac.comp.LambdaToMethod.LambdaSymbolKind.*;
    58 import static com.sun.tools.javac.code.Flags.*;
    59 import static com.sun.tools.javac.code.Kinds.*;
    60 import static com.sun.tools.javac.code.TypeTag.BOT;
    61 import static com.sun.tools.javac.code.TypeTag.NONE;
    62 import static com.sun.tools.javac.code.TypeTag.VOID;
    63 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    65 /**
    66  * This pass desugars lambda expressions into static methods
    67  *
    68  *  <p><b>This is NOT part of any supported API.
    69  *  If you write code that depends on this, you do so at your own risk.
    70  *  This code and its internal interfaces are subject to change or
    71  *  deletion without notice.</b>
    72  */
    73 public class LambdaToMethod extends TreeTranslator {
    75     private Names names;
    76     private Symtab syms;
    77     private Resolve rs;
    78     private TreeMaker make;
    79     private Types types;
    80     private TransTypes transTypes;
    81     private Env<AttrContext> attrEnv;
    83     /** the analyzer scanner */
    84     private LambdaAnalyzer analyzer;
    86     /** map from lambda trees to translation contexts */
    87     private Map<JCTree, TranslationContext<?>> contextMap;
    89     /** current translation context (visitor argument) */
    90     private TranslationContext<?> context;
    92     /** list of translated methods
    93      **/
    94     private ListBuffer<JCTree> translatedMethodList;
    96     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    97     private static final Context.Key<LambdaToMethod> unlambdaKey =
    98             new Context.Key<LambdaToMethod>();
   100     public static LambdaToMethod instance(Context context) {
   101         LambdaToMethod instance = context.get(unlambdaKey);
   102         if (instance == null) {
   103             instance = new LambdaToMethod(context);
   104         }
   105         return instance;
   106     }
   108     private LambdaToMethod(Context context) {
   109         names = Names.instance(context);
   110         syms = Symtab.instance(context);
   111         rs = Resolve.instance(context);
   112         make = TreeMaker.instance(context);
   113         types = Types.instance(context);
   114         transTypes = TransTypes.instance(context);
   115         this.analyzer = makeAnalyzer();
   116     }
   118     private LambdaAnalyzer makeAnalyzer() {
   119         return new LambdaAnalyzer();
   120     }
   121     // </editor-fold>
   123     // <editor-fold defaultstate="collapsed" desc="translate methods">
   124     @Override
   125     public <T extends JCTree> T translate(T tree) {
   126         TranslationContext<?> newContext = contextMap.get(tree);
   127         return translate(tree, newContext != null ? newContext : context);
   128     }
   130     public <T extends JCTree> T translate(T tree, TranslationContext<?> newContext) {
   131         TranslationContext<?> prevContext = context;
   132         try {
   133             context = newContext;
   134             return super.translate(tree);
   135         }
   136         finally {
   137             context = prevContext;
   138         }
   139     }
   141     public <T extends JCTree> List<T> translate(List<T> trees, TranslationContext<?> newContext) {
   142         ListBuffer<T> buf = ListBuffer.lb();
   143         for (T tree : trees) {
   144             buf.append(translate(tree, newContext));
   145         }
   146         return buf.toList();
   147     }
   149     public JCTree translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
   150         this.make = make;
   151         this.attrEnv = env;
   152         this.context = null;
   153         this.contextMap = new HashMap<JCTree, TranslationContext<?>>();
   154         return translate(cdef);
   155     }
   156     // </editor-fold>
   158     // <editor-fold defaultstate="collapsed" desc="visitor methods">
   159     /**
   160      * Visit a class.
   161      * Maintain the translatedMethodList across nested classes.
   162      * Append the translatedMethodList to the class after it is translated.
   163      * @param tree
   164      */
   165     @Override
   166     public void visitClassDef(JCClassDecl tree) {
   167         if (tree.sym.owner.kind == PCK) {
   168             //analyze class
   169             analyzer.analyzeClass(tree);
   170         }
   171         ListBuffer<JCTree> prevTranslated = translatedMethodList;
   172         try {
   173             translatedMethodList = ListBuffer.lb();
   174             super.visitClassDef(tree);
   175             //add all translated instance methods here
   176             tree.defs = tree.defs.appendList(translatedMethodList.toList());
   177             for (JCTree lambda : translatedMethodList) {
   178                 tree.sym.members().enter(((JCMethodDecl)lambda).sym);
   179             }
   180             result = tree;
   181         } finally {
   182             translatedMethodList = prevTranslated;
   183         }
   184     }
   186     /**
   187      * Translate a lambda into a method to be inserted into the class.
   188      * Then replace the lambda site with an invokedynamic call of to lambda
   189      * meta-factory, which will use the lambda method.
   190      * @param tree
   191      */
   192     @Override
   193     public void visitLambda(JCLambda tree) {
   194         LambdaTranslationContext localContext = (LambdaTranslationContext)context;
   195         MethodSymbol sym = (MethodSymbol)localContext.translatedSym;
   196         MethodType lambdaType = (MethodType) sym.type;
   198         //create the method declaration hoisting the lambda body
   199         JCMethodDecl lambdaDecl = make.MethodDef(make.Modifiers(sym.flags_field),
   200                 sym.name,
   201                 make.QualIdent(lambdaType.getReturnType().tsym),
   202                 List.<JCTypeParameter>nil(),
   203                 localContext.syntheticParams,
   204                 lambdaType.getThrownTypes() == null ?
   205                     List.<JCExpression>nil() :
   206                     make.Types(lambdaType.getThrownTypes()),
   207                 null,
   208                 null);
   209         lambdaDecl.sym = sym;
   210         lambdaDecl.type = lambdaType;
   212         //translate lambda body
   213         //As the lambda body is translated, all references to lambda locals,
   214         //captured variables, enclosing members are adjusted accordingly
   215         //to refer to the static method parameters (rather than i.e. acessing to
   216         //captured members directly).
   217         lambdaDecl.body = translate(makeLambdaBody(tree, lambdaDecl));
   219         //Add the method to the list of methods to be added to this class.
   220         translatedMethodList = translatedMethodList.prepend(lambdaDecl);
   222         //now that we have generated a method for the lambda expression,
   223         //we can translate the lambda into a method reference pointing to the newly
   224         //created method.
   225         //
   226         //Note that we need to adjust the method handle so that it will match the
   227         //signature of the SAM descriptor - this means that the method reference
   228         //should be added the following synthetic arguments:
   229         //
   230         // * the "this" argument if it is an instance method
   231         // * enclosing locals captured by the lambda expression
   233         ListBuffer<JCExpression> syntheticInits = ListBuffer.lb();
   235         if (!sym.isStatic()) {
   236             syntheticInits.append(makeThis(
   237                     sym.owner.asType(),
   238                     localContext.owner.enclClass()));
   239         }
   241         //add captured locals
   242         for (Symbol fv : localContext.getSymbolMap(CAPTURED_VAR).keySet()) {
   243             if (fv != localContext.self) {
   244                 JCTree captured_local = make.Ident(fv).setType(fv.type);
   245                 syntheticInits.append((JCExpression) captured_local);
   246             }
   247         }
   249         //then, determine the arguments to the indy call
   250         List<JCExpression> indy_args = translate(syntheticInits.toList(), localContext.prev);
   252         //build a sam instance using an indy call to the meta-factory
   253         int refKind = referenceKind(sym);
   255         //convert to an invokedynamic call
   256         result = makeMetaFactoryIndyCall(tree, tree.targetType, refKind, sym, indy_args);
   257     }
   259     private JCIdent makeThis(Type type, Symbol owner) {
   260         VarSymbol _this = new VarSymbol(PARAMETER | FINAL | SYNTHETIC,
   261                 names._this,
   262                 type,
   263                 owner);
   264         return make.Ident(_this);
   265     }
   267     /**
   268      * Translate a method reference into an invokedynamic call to the
   269      * meta-factory.
   270      * @param tree
   271      */
   272     @Override
   273     public void visitReference(JCMemberReference tree) {
   274         ReferenceTranslationContext localContext = (ReferenceTranslationContext)context;
   276         //first determine the method symbol to be used to generate the sam instance
   277         //this is either the method reference symbol, or the bridged reference symbol
   278         Symbol refSym = localContext.needsBridge() ?
   279             localContext.bridgeSym :
   280             tree.sym;
   282         //build the bridge method, if needed
   283         if (localContext.needsBridge()) {
   284             bridgeMemberReference(tree, localContext);
   285         }
   287         //the qualifying expression is treated as a special captured arg
   288         JCExpression init;
   289         switch(tree.kind) {
   291             case IMPLICIT_INNER:    /** Inner # new */
   292             case SUPER:             /** super # instMethod */
   293                 init = makeThis(
   294                     localContext.owner.owner.asType(),
   295                     localContext.owner);
   296                 break;
   298             case BOUND:             /** Expr # instMethod */
   299                 init = tree.getQualifierExpression();
   300                 break;
   302             case STATIC_EVAL:       /** Expr # staticMethod */
   303             case UNBOUND:           /** Type # instMethod */
   304             case STATIC:            /** Type # staticMethod */
   305             case TOPLEVEL:          /** Top level # new */
   306                 init = null;
   307                 break;
   309             default:
   310                 throw new InternalError("Should not have an invalid kind");
   311         }
   313         List<JCExpression> indy_args = init==null? List.<JCExpression>nil() : translate(List.of(init), localContext.prev);
   316         //build a sam instance using an indy call to the meta-factory
   317         result = makeMetaFactoryIndyCall(tree, tree.targetType, localContext.referenceKind(), refSym, indy_args);
   319         //if we had a static reference with non-static qualifier, add a let
   320         //expression to force the evaluation of the qualifier expr
   321         if (tree.hasKind(ReferenceKind.STATIC_EVAL)) {
   322             VarSymbol rec = new VarSymbol(0, names.fromString("rec$"), tree.getQualifierExpression().type, localContext.owner);
   323             JCVariableDecl recDef = make.VarDef(rec, tree.getQualifierExpression());
   324             result = make.LetExpr(recDef, result).setType(tree.type);
   325         }
   326     }
   328     /**
   329      * Translate identifiers within a lambda to the mapped identifier
   330      * @param tree
   331      */
   332     @Override
   333     public void visitIdent(JCIdent tree) {
   334         if (context == null || !analyzer.lambdaIdentSymbolFilter(tree.sym)) {
   335             super.visitIdent(tree);
   336         } else {
   337             LambdaTranslationContext lambdaContext = (LambdaTranslationContext) context;
   338             if (lambdaContext.getSymbolMap(PARAM).containsKey(tree.sym)) {
   339                 Symbol translatedSym = lambdaContext.getSymbolMap(PARAM).get(tree.sym);
   340                 result = make.Ident(translatedSym).setType(tree.type);
   341             } else if (lambdaContext.getSymbolMap(LOCAL_VAR).containsKey(tree.sym)) {
   342                 Symbol translatedSym = lambdaContext.getSymbolMap(LOCAL_VAR).get(tree.sym);
   343                 result = make.Ident(translatedSym).setType(tree.type);
   344             } else if (lambdaContext.getSymbolMap(CAPTURED_VAR).containsKey(tree.sym)) {
   345                 Symbol translatedSym = lambdaContext.getSymbolMap(CAPTURED_VAR).get(tree.sym);
   346                 result = make.Ident(translatedSym).setType(tree.type);
   347             } else {
   348                 if (tree.sym.owner.kind == Kinds.TYP) {
   349                     for (Map.Entry<Symbol, Symbol> encl_entry : lambdaContext.getSymbolMap(CAPTURED_THIS).entrySet()) {
   350                         if (tree.sym.isMemberOf((ClassSymbol) encl_entry.getKey(), types)) {
   351                             JCExpression enclRef = make.Ident(encl_entry.getValue());
   352                             result = tree.sym.name == names._this
   353                                     ? enclRef.setType(tree.type)
   354                                     : make.Select(enclRef, tree.sym).setType(tree.type);
   355                             result = tree;
   356                             return;
   357                         }
   358                     }
   359                 }
   360                 //access to untranslated symbols (i.e. compile-time constants,
   361                 //members defined inside the lambda body, etc.) )
   362                 super.visitIdent(tree);
   363             }
   364         }
   365     }
   367     @Override
   368     public void visitVarDef(JCVariableDecl tree) {
   369         LambdaTranslationContext lambdaContext = (LambdaTranslationContext)context;
   370         if (context != null && lambdaContext.getSymbolMap(LOCAL_VAR).containsKey(tree.sym)) {
   371             JCExpression init = translate(tree.init);
   372             result = make.VarDef((VarSymbol)lambdaContext.getSymbolMap(LOCAL_VAR).get(tree.sym), init);
   373         } else {
   374             super.visitVarDef(tree);
   375         }
   376     }
   378     // </editor-fold>
   380     // <editor-fold defaultstate="collapsed" desc="Translation helper methods">
   382     private JCBlock makeLambdaBody(JCLambda tree, JCMethodDecl lambdaMethodDecl) {
   383         return tree.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
   384                 makeLambdaExpressionBody((JCExpression)tree.body, lambdaMethodDecl) :
   385                 makeLambdaStatementBody((JCBlock)tree.body, lambdaMethodDecl, tree.canCompleteNormally);
   386     }
   388     private JCBlock makeLambdaExpressionBody(JCExpression expr, JCMethodDecl lambdaMethodDecl) {
   389         Type restype = lambdaMethodDecl.type.getReturnType();
   390         boolean isLambda_void = expr.type.hasTag(VOID);
   391         boolean isTarget_void = restype.hasTag(VOID);
   392         boolean isTarget_Void = types.isSameType(restype, types.boxedClass(syms.voidType).type);
   393         if (isTarget_void) {
   394             //target is void:
   395             // BODY;
   396             JCStatement stat = make.Exec(expr);
   397             return make.Block(0, List.<JCStatement>of(stat));
   398         } else if (isLambda_void && isTarget_Void) {
   399             //void to Void conversion:
   400             // BODY; return null;
   401             ListBuffer<JCStatement> stats = ListBuffer.lb();
   402             stats.append(make.Exec(expr));
   403             stats.append(make.Return(make.Literal(BOT, null).setType(syms.botType)));
   404             return make.Block(0, stats.toList());
   405         } else {
   406             //non-void to non-void conversion:
   407             // return (TYPE)BODY;
   408             JCExpression retExpr = transTypes.coerce(attrEnv, expr, restype);
   409             return make.Block(0, List.<JCStatement>of(make.Return(retExpr)));
   410         }
   411     }
   413     private JCBlock makeLambdaStatementBody(JCBlock block, final JCMethodDecl lambdaMethodDecl, boolean completeNormally) {
   414         final Type restype = lambdaMethodDecl.type.getReturnType();
   415         final boolean isTarget_void = restype.hasTag(VOID);
   416         boolean isTarget_Void = types.isSameType(restype, types.boxedClass(syms.voidType).type);
   418         class LambdaBodyTranslator extends TreeTranslator {
   420             @Override
   421             public void visitClassDef(JCClassDecl tree) {
   422                 //do NOT recurse on any inner classes
   423                 result = tree;
   424             }
   426             @Override
   427             public void visitLambda(JCLambda tree) {
   428                 //do NOT recurse on any nested lambdas
   429                 result = tree;
   430             }
   432             @Override
   433             public void visitReturn(JCReturn tree) {
   434                 boolean isLambda_void = tree.expr == null;
   435                 if (isTarget_void && !isLambda_void) {
   436                     //Void to void conversion:
   437                     // { TYPE $loc = RET-EXPR; return; }
   438                     VarSymbol loc = makeSyntheticVar(0, names.fromString("$loc"), tree.expr.type, lambdaMethodDecl.sym);
   439                     JCVariableDecl varDef = make.VarDef(loc, tree.expr);
   440                     result = make.Block(0, List.<JCStatement>of(varDef, make.Return(null)));
   441                 } else if (!isTarget_void || !isLambda_void) {
   442                     //non-void to non-void conversion:
   443                     // return (TYPE)RET-EXPR;
   444                     tree.expr = transTypes.coerce(attrEnv, tree.expr, restype);
   445                     result = tree;
   446                 } else {
   447                     result = tree;
   448                 }
   450             }
   451         }
   453         JCBlock trans_block = new LambdaBodyTranslator().translate(block);
   454         if (completeNormally && isTarget_Void) {
   455             //there's no return statement and the lambda (possibly inferred)
   456             //return type is java.lang.Void; emit a synthetic return statement
   457             trans_block.stats = trans_block.stats.append(make.Return(make.Literal(BOT, null).setType(syms.botType)));
   458         }
   459         return trans_block;
   460     }
   462     /**
   463      * Create new synthetic method with given flags, name, type, owner
   464      */
   465     private MethodSymbol makeSyntheticMethod(long flags, Name name, Type type, Symbol owner) {
   466         return new MethodSymbol(flags | SYNTHETIC, name, type, owner);
   467     }
   469     /**
   470      * Create new synthetic variable with given flags, name, type, owner
   471      */
   472     private VarSymbol makeSyntheticVar(long flags, String name, Type type, Symbol owner) {
   473         return makeSyntheticVar(flags, names.fromString(name), type, owner);
   474     }
   476     /**
   477      * Create new synthetic variable with given flags, name, type, owner
   478      */
   479     private VarSymbol makeSyntheticVar(long flags, Name name, Type type, Symbol owner) {
   480         return new VarSymbol(flags | SYNTHETIC, name, type, owner);
   481     }
   483     /**
   484      * Set varargsElement field on a given tree (must be either a new class tree
   485      * or a method call tree)
   486      */
   487     private void setVarargsIfNeeded(JCTree tree, Type varargsElement) {
   488         if (varargsElement != null) {
   489             switch (tree.getTag()) {
   490                 case APPLY: ((JCMethodInvocation)tree).varargsElement = varargsElement; break;
   491                 case NEWCLASS: ((JCNewClass)tree).varargsElement = varargsElement; break;
   492                 default: throw new AssertionError();
   493             }
   494         }
   495     }
   497     /**
   498      * Convert method/constructor arguments by inserting appropriate cast
   499      * as required by type-erasure - this is needed when bridging a lambda/method
   500      * reference, as the bridged signature might require downcast to be compatible
   501      * with the generated signature.
   502      */
   503     private List<JCExpression> convertArgs(Symbol meth, List<JCExpression> args, Type varargsElement) {
   504        Assert.check(meth.kind == Kinds.MTH);
   505        List<Type> formals = types.erasure(meth.type).getParameterTypes();
   506        if (varargsElement != null) {
   507            Assert.check((meth.flags() & VARARGS) != 0);
   508        }
   509        return transTypes.translateArgs(args, formals, varargsElement, attrEnv);
   510     }
   512     // </editor-fold>
   514     private MethodSymbol makeSamDescriptor(Type targetType) {
   515         return (MethodSymbol)types.findDescriptorSymbol(targetType.tsym);
   516     }
   518     private Type makeFunctionalDescriptorType(Type targetType, MethodSymbol samDescriptor, boolean erased) {
   519         Type descType = types.memberType(targetType, samDescriptor);
   520         return erased ? types.erasure(descType) : descType;
   521     }
   523     private Type makeFunctionalDescriptorType(Type targetType, boolean erased) {
   524         return makeFunctionalDescriptorType(targetType, makeSamDescriptor(targetType), erased);
   525     }
   527     /**
   528      * Generate an adapter method "bridge" for a method reference which cannot
   529      * be used directly.
   530      */
   531     private class MemberReferenceBridger {
   533         private final JCMemberReference tree;
   534         private final ReferenceTranslationContext localContext;
   535         private final ListBuffer<JCExpression> args = ListBuffer.lb();
   536         private final ListBuffer<JCVariableDecl> params = ListBuffer.lb();
   538         MemberReferenceBridger(JCMemberReference tree, ReferenceTranslationContext localContext) {
   539             this.tree = tree;
   540             this.localContext = localContext;
   541         }
   543         /**
   544          * Generate the bridge
   545          */
   546         JCMethodDecl bridge() {
   547             int prevPos = make.pos;
   548             try {
   549                 make.at(tree);
   550                 Type samDesc = localContext.bridgedRefSig();
   551                 List<Type> samPTypes = samDesc.getParameterTypes();
   553                 //an extra argument is prepended to the signature of the bridge in case
   554                 //the member reference is an instance method reference (in which case
   555                 //the receiver expression is passed to the bridge itself).
   556                 Type recType = null;
   557                 switch (tree.kind) {
   558                     case IMPLICIT_INNER:
   559                         recType = tree.sym.owner.type.getEnclosingType();
   560                         break;
   561                     case BOUND:
   562                         recType = tree.getQualifierExpression().type;
   563                         break;
   564                     case UNBOUND:
   565                         recType = samPTypes.head;
   566                         samPTypes = samPTypes.tail;
   567                         break;
   568                 }
   570                 //generate the parameter list for the bridged member reference - the
   571                 //bridge signature will match the signature of the target sam descriptor
   573                 VarSymbol rcvr = (recType == null)
   574                         ? null
   575                         : addParameter("rec$", recType, false);
   577                 List<Type> refPTypes = tree.sym.type.getParameterTypes();
   578                 int refSize = refPTypes.size();
   579                 int samSize = samPTypes.size();
   580                 int last = localContext.needsVarArgsConversion() ? refSize - 1 : refSize;   // Last parameter to copy from referenced method
   582                 List<Type> l = refPTypes;
   583                 // Use parameter types of the referenced method, excluding final var args
   584                 for (int i = 0; l.nonEmpty() && i < last; ++i) {
   585                     addParameter("x$" + i, l.head, true);
   586                     l = l.tail;
   587                 }
   588                 // Flatten out the var args
   589                 for (int i = last; i < samSize; ++i) {
   590                     addParameter("xva$" + i, tree.varargsElement, true);
   591                 }
   593                 //generate the bridge method declaration
   594                 JCMethodDecl bridgeDecl = make.MethodDef(make.Modifiers(localContext.bridgeSym.flags()),
   595                         localContext.bridgeSym.name,
   596                         make.QualIdent(samDesc.getReturnType().tsym),
   597                         List.<JCTypeParameter>nil(),
   598                         params.toList(),
   599                         tree.sym.type.getThrownTypes() == null
   600                         ? List.<JCExpression>nil()
   601                         : make.Types(tree.sym.type.getThrownTypes()),
   602                         null,
   603                         null);
   604                 bridgeDecl.sym = (MethodSymbol) localContext.bridgeSym;
   605                 bridgeDecl.type = localContext.bridgeSym.type = types.createMethodTypeWithParameters(samDesc, TreeInfo.types(params.toList()));
   607                 //bridge method body generation - this can be either a method call or a
   608                 //new instance creation expression, depending on the member reference kind
   609                 JCExpression bridgeExpr = (tree.getMode() == ReferenceMode.INVOKE)
   610                         ? bridgeExpressionInvoke(rcvr)
   611                         : bridgeExpressionNew();
   613                 //the body is either a return expression containing a method call,
   614                 //or the method call itself, depending on whether the return type of
   615                 //the bridge is non-void/void.
   616                 bridgeDecl.body = makeLambdaExpressionBody(bridgeExpr, bridgeDecl);
   618                 return bridgeDecl;
   619             } finally {
   620                 make.at(prevPos);
   621             }
   622         }
   624         /**
   625          * determine the receiver of the bridged method call - the receiver can
   626          * be either the synthetic receiver parameter or a type qualifier; the
   627          * original qualifier expression is never used here, as it might refer
   628          * to symbols not available in the static context of the bridge
   629          */
   630         private JCExpression bridgeExpressionInvoke(VarSymbol rcvr) {
   631             JCExpression qualifier =
   632                     tree.sym.isStatic() ?
   633                         make.Type(tree.sym.owner.type) :
   634                         (rcvr != null) ?
   635                             make.Ident(rcvr) :
   636                             tree.getQualifierExpression();
   638             //create the qualifier expression
   639             JCFieldAccess select = make.Select(qualifier, tree.sym.name);
   640             select.sym = tree.sym;
   641             select.type = tree.sym.erasure(types);
   643             //create the method call expression
   644             JCExpression apply = make.Apply(List.<JCExpression>nil(), select,
   645                     convertArgs(tree.sym, args.toList(), tree.varargsElement)).setType(tree.sym.erasure(types).getReturnType());
   647             apply = transTypes.coerce(apply, localContext.generatedRefSig().getReturnType());
   648             setVarargsIfNeeded(apply, tree.varargsElement);
   649             return apply;
   650         }
   652         /**
   653          * the enclosing expression is either 'null' (no enclosing type) or set
   654          * to the first bridge synthetic parameter
   655          */
   656         private JCExpression bridgeExpressionNew() {
   657             JCExpression encl = null;
   658             switch (tree.kind) {
   659                 case UNBOUND:
   660                 case IMPLICIT_INNER:
   661                     encl = make.Ident(params.first());
   662             }
   664             //create the instance creation expression
   665             JCNewClass newClass = make.NewClass(encl,
   666                     List.<JCExpression>nil(),
   667                     make.Type(tree.getQualifierExpression().type),
   668                     convertArgs(tree.sym, args.toList(), tree.varargsElement),
   669                     null);
   670             newClass.constructor = tree.sym;
   671             newClass.constructorType = tree.sym.erasure(types);
   672             newClass.type = tree.getQualifierExpression().type;
   673             setVarargsIfNeeded(newClass, tree.varargsElement);
   674             return newClass;
   675         }
   677         private VarSymbol addParameter(String name, Type p, boolean genArg) {
   678             VarSymbol vsym = new VarSymbol(0, names.fromString(name), p, localContext.bridgeSym);
   679             params.append(make.VarDef(vsym, null));
   680             if (genArg) {
   681                 args.append(make.Ident(vsym));
   682             }
   683             return vsym;
   684         }
   685     }
   687     /**
   688      * Bridges a member reference - this is needed when:
   689      * * Var args in the referenced method need to be flattened away
   690      * * super is used
   691      */
   692     private void bridgeMemberReference(JCMemberReference tree, ReferenceTranslationContext localContext) {
   693         JCMethodDecl bridgeDecl = (new MemberReferenceBridger(tree, localContext).bridge());
   694         translatedMethodList = translatedMethodList.prepend(bridgeDecl);
   695     }
   697     /**
   698      * Generate an indy method call to the meta factory
   699      */
   700     private JCExpression makeMetaFactoryIndyCall(JCExpression tree, Type targetType, int refKind, Symbol refSym, List<JCExpression> indy_args) {
   701         //determine the static bsm args
   702         Type mtype = makeFunctionalDescriptorType(targetType, true);
   703         List<Object> staticArgs = List.<Object>of(
   704                 new Pool.MethodHandle(ClassFile.REF_invokeInterface, types.findDescriptorSymbol(targetType.tsym)),
   705                 new Pool.MethodHandle(refKind, refSym),
   706                 new MethodType(mtype.getParameterTypes(),
   707                         mtype.getReturnType(),
   708                         mtype.getThrownTypes(),
   709                         syms.methodClass));
   711         //computed indy arg types
   712         ListBuffer<Type> indy_args_types = ListBuffer.lb();
   713         for (JCExpression arg : indy_args) {
   714             indy_args_types.append(arg.type);
   715         }
   717         //finally, compute the type of the indy call
   718         MethodType indyType = new MethodType(indy_args_types.toList(),
   719                 tree.type,
   720                 List.<Type>nil(),
   721                 syms.methodClass);
   723         return makeIndyCall(tree, syms.lambdaMetafactory, names.metaFactory, staticArgs, indyType, indy_args);
   724     }
   726     /**
   727      * Generate an indy method call with given name, type and static bootstrap
   728      * arguments types
   729      */
   730     private JCExpression makeIndyCall(DiagnosticPosition pos, Type site, Name bsmName, List<Object> staticArgs, MethodType indyType, List<JCExpression> indyArgs) {
   731         int prevPos = make.pos;
   732         try {
   733             make.at(pos);
   734             List<Type> bsm_staticArgs = List.of(syms.methodHandleLookupType,
   735                     syms.stringType,
   736                     syms.methodTypeType).appendList(bsmStaticArgToTypes(staticArgs));
   738             Symbol bsm = rs.resolveInternalMethod(pos, attrEnv, site,
   739                     bsmName, bsm_staticArgs, List.<Type>nil());
   741             DynamicMethodSymbol dynSym =
   742                     new DynamicMethodSymbol(names.lambda,
   743                                             syms.noSymbol,
   744                                             bsm.isStatic() ? ClassFile.REF_invokeStatic : ClassFile.REF_invokeVirtual,
   745                                             (MethodSymbol)bsm,
   746                                             indyType,
   747                                             staticArgs.toArray());
   749             JCFieldAccess qualifier = make.Select(make.QualIdent(site.tsym), bsmName);
   750             qualifier.sym = dynSym;
   751             qualifier.type = indyType.getReturnType();
   753             JCMethodInvocation proxyCall = make.Apply(List.<JCExpression>nil(), qualifier, indyArgs);
   754             proxyCall.type = indyType.getReturnType();
   755             return proxyCall;
   756         } finally {
   757             make.at(prevPos);
   758         }
   759     }
   760     //where
   761     private List<Type> bsmStaticArgToTypes(List<Object> args) {
   762         ListBuffer<Type> argtypes = ListBuffer.lb();
   763         for (Object arg : args) {
   764             argtypes.append(bsmStaticArgToType(arg));
   765         }
   766         return argtypes.toList();
   767     }
   769     private Type bsmStaticArgToType(Object arg) {
   770         Assert.checkNonNull(arg);
   771         if (arg instanceof ClassSymbol) {
   772             return syms.classType;
   773         } else if (arg instanceof Integer) {
   774             return syms.intType;
   775         } else if (arg instanceof Long) {
   776             return syms.longType;
   777         } else if (arg instanceof Float) {
   778             return syms.floatType;
   779         } else if (arg instanceof Double) {
   780             return syms.doubleType;
   781         } else if (arg instanceof String) {
   782             return syms.stringType;
   783         } else if (arg instanceof Pool.MethodHandle) {
   784             return syms.methodHandleType;
   785         } else if (arg instanceof MethodType) {
   786             return syms.methodTypeType;
   787         } else {
   788             Assert.error("bad static arg " + arg.getClass());
   789             return null;
   790         }
   791     }
   793     /**
   794      * Get the opcode associated with this method reference
   795      */
   796     private int referenceKind(Symbol refSym) {
   797         if (refSym.isConstructor()) {
   798             return ClassFile.REF_newInvokeSpecial;
   799         } else {
   800             if (refSym.isStatic()) {
   801                 return ClassFile.REF_invokeStatic;
   802             } else if (refSym.enclClass().isInterface()) {
   803                 return ClassFile.REF_invokeInterface;
   804             } else {
   805                 return ClassFile.REF_invokeVirtual;
   806             }
   807         }
   808     }
   809     // </editor-fold>
   811     // <editor-fold defaultstate="collapsed" desc="Lambda/reference analyzer">\
   812     /**
   813      * This visitor collects information about translation of a lambda expression.
   814      * More specifically, it keeps track of the enclosing contexts and captured locals
   815      * accessed by the lambda being translated (as well as other useful info).
   816      */
   817     class LambdaAnalyzer extends TreeScanner {
   819         /** the frame stack - used to reconstruct translation info about enclosing scopes */
   820         private List<Frame> frameStack;
   822         /**
   823          * keep the count of lambda expression (used to generate unambiguous
   824          * names)
   825          */
   826         private int lambdaCount = 0;
   828         private void analyzeClass(JCClassDecl tree) {
   829             frameStack = List.nil();
   830             scan(tree);
   831         }
   833         @Override
   834         public void visitBlock(JCBlock tree) {
   835             List<Frame> prevStack = frameStack;
   836             try {
   837                 if (frameStack.nonEmpty() && frameStack.head.tree.hasTag(CLASSDEF)) {
   838                     frameStack = frameStack.prepend(new Frame(tree));
   839                 }
   840                 super.visitBlock(tree);
   841             }
   842             finally {
   843                 frameStack = prevStack;
   844             }
   845         }
   847         @Override
   848         public void visitClassDef(JCClassDecl tree) {
   849             List<Frame> prevStack = frameStack;
   850             try {
   851                 if (frameStack.nonEmpty() && enclosingLambda() != null) {
   852                     tree.sym.owner = owner();
   853                     LambdaTranslationContext lambdaContext = (LambdaTranslationContext)contextMap.get(enclosingLambda());
   854                     Type encl = lambdaContext.enclosingType();
   855                     if (encl.hasTag(NONE)) {
   856                         //if the translated lambda body occurs in a static context,
   857                         //any class declaration within it must be made static
   858                         tree.sym.flags_field |= STATIC;
   859                         ((ClassType)tree.sym.type).setEnclosingType(Type.noType);
   860                     } else {
   861                         //if the translated lambda body is in an instance context
   862                         //the enclosing type of any class declaration within it
   863                         //must be updated to point to the new enclosing type (if any)
   864                         ((ClassType)tree.sym.type).setEnclosingType(encl);
   865                     }
   866                 }
   867                 frameStack = frameStack.prepend(new Frame(tree));
   868                 super.visitClassDef(tree);
   869             }
   870             finally {
   871                 frameStack = prevStack;
   872             }
   873             if (frameStack.nonEmpty() && enclosingLambda() != null) {
   874                 // Any class defined within a lambda is an implicit 'this' reference
   875                 // because its constructor will reference the enclosing class
   876                 ((LambdaTranslationContext) context()).addSymbol(tree.sym.type.getEnclosingType().tsym, CAPTURED_THIS);
   877             }
   878         }
   880         @Override
   881         public void visitIdent(JCIdent tree) {
   882             if (context() == null || !lambdaIdentSymbolFilter(tree.sym)) {
   883                 super.visitIdent(tree);
   884             } else {
   885                 if (tree.sym.kind == VAR &&
   886                         tree.sym.owner.kind == MTH &&
   887                         tree.type.constValue() == null) {
   888                     TranslationContext<?> localContext = context();
   889                     while (localContext != null) {
   890                         if (localContext.tree.getTag() == LAMBDA) {
   891                             JCTree block = capturedDecl(localContext.depth, tree.sym);
   892                             if (block == null) break;
   893                             ((LambdaTranslationContext)localContext).addSymbol(tree.sym, CAPTURED_VAR);
   894                         }
   895                         localContext = localContext.prev;
   896                     }
   897                 } else if (tree.sym.owner.kind == TYP) {
   898                     TranslationContext<?> localContext = context();
   899                     while (localContext != null) {
   900                         if (localContext.tree.hasTag(LAMBDA)) {
   901                             JCTree block = capturedDecl(localContext.depth, tree.sym);
   902                             if (block == null) break;
   903                             switch (block.getTag()) {
   904                                 case CLASSDEF:
   905                                     JCClassDecl cdecl = (JCClassDecl)block;
   906                                     ((LambdaTranslationContext)localContext).addSymbol(cdecl.sym, CAPTURED_THIS);
   907                                     break;
   908                                 default:
   909                                     Assert.error("bad block kind");
   910                             }
   911                         }
   912                         localContext = localContext.prev;
   913                     }
   914                 }
   915             }
   916         }
   918         @Override
   919         public void visitLambda(JCLambda tree) {
   920             List<Frame> prevStack = frameStack;
   921             try {
   922                 LambdaTranslationContext context = (LambdaTranslationContext)makeLambdaContext(tree);
   923                 frameStack = frameStack.prepend(new Frame(tree));
   924                 for (JCVariableDecl param : tree.params) {
   925                     context.addSymbol(param.sym, PARAM);
   926                     frameStack.head.addLocal(param.sym);
   927                 }
   928                 contextMap.put(tree, context);
   929                 scan(tree.body);
   930                 context.complete();
   931             }
   932             finally {
   933                 frameStack = prevStack;
   934             }
   935         }
   937         @Override
   938         public void visitMethodDef(JCMethodDecl tree) {
   939             List<Frame> prevStack = frameStack;
   940             try {
   941                 frameStack = frameStack.prepend(new Frame(tree));
   942                 super.visitMethodDef(tree);
   943             }
   944             finally {
   945                 frameStack = prevStack;
   946             }
   947         }
   949         @Override
   950         public void visitNewClass(JCNewClass tree) {
   951             if (lambdaNewClassFilter(context(), tree)) {
   952                 ((LambdaTranslationContext) context()).addSymbol(tree.type.getEnclosingType().tsym, CAPTURED_THIS);
   953             }
   954             super.visitNewClass(tree);
   955         }
   957         @Override
   958         public void visitReference(JCMemberReference tree) {
   959             scan(tree.getQualifierExpression());
   960             contextMap.put(tree, makeReferenceContext(tree));
   961         }
   963         @Override
   964         public void visitSelect(JCFieldAccess tree) {
   965             if (context() != null && lambdaSelectSymbolFilter(tree.sym)) {
   966                 TranslationContext<?> localContext = context();
   967                 while (localContext != null) {
   968                     if (localContext.tree.hasTag(LAMBDA)) {
   969                         JCClassDecl clazz = (JCClassDecl)capturedDecl(localContext.depth, tree.sym);
   970                         if (clazz == null) break;
   971                         ((LambdaTranslationContext)localContext).addSymbol(clazz.sym, CAPTURED_THIS);
   972                     }
   973                     localContext = localContext.prev;
   974                 }
   975                 scan(tree.selected);
   976             } else {
   977                 super.visitSelect(tree);
   978             }
   979         }
   981         @Override
   982         public void visitVarDef(JCVariableDecl tree) {
   983             if (frameStack.head.tree.hasTag(LAMBDA)) {
   984                 ((LambdaTranslationContext)context()).addSymbol(tree.sym, LOCAL_VAR);
   985             }
   986             List<Frame> prevStack = frameStack;
   987             try {
   988                 if (tree.sym.owner.kind == MTH) {
   989                     frameStack.head.addLocal(tree.sym);
   990                 }
   991                 frameStack = frameStack.prepend(new Frame(tree));
   992                 super.visitVarDef(tree);
   993             }
   994             finally {
   995                 frameStack = prevStack;
   996             }
   997         }
   999         private Name lambdaName() {
  1000             return names.lambda.append(names.fromString("$" + lambdaCount++));
  1003         /**
  1004          * Return a valid owner given the current declaration stack
  1005          * (required to skip synthetic lambda symbols)
  1006          */
  1007         private Symbol owner() {
  1008             List<Frame> frameStack2 = frameStack;
  1009             while (frameStack2.nonEmpty()) {
  1010                 switch (frameStack2.head.tree.getTag()) {
  1011                     case VARDEF:
  1012                         if (((JCVariableDecl)frameStack2.head.tree).sym.isLocal()) {
  1013                             frameStack2 = frameStack2.tail;
  1014                             break;
  1016                         JCClassDecl cdecl = (JCClassDecl)frameStack2.tail.head.tree;
  1017                         return makeSyntheticMethod(((JCVariableDecl)frameStack2.head.tree).sym.flags() & STATIC, names.empty, null, cdecl.sym);
  1018                     case BLOCK:
  1019                         JCClassDecl cdecl2 = (JCClassDecl)frameStack2.tail.head.tree;
  1020                         return makeSyntheticMethod(((JCBlock)frameStack2.head.tree).flags & STATIC | Flags.BLOCK, names.empty, null, cdecl2.sym);
  1021                     case CLASSDEF:
  1022                         return ((JCClassDecl)frameStack2.head.tree).sym;
  1023                     case METHODDEF:
  1024                         return ((JCMethodDecl)frameStack2.head.tree).sym;
  1025                     case LAMBDA:
  1026                         return ((LambdaTranslationContext)contextMap.get(frameStack2.head.tree)).translatedSym;
  1027                     default:
  1028                         frameStack2 = frameStack2.tail;
  1031             Assert.error();
  1032             return null;
  1035         private JCTree enclosingLambda() {
  1036             List<Frame> frameStack2 = frameStack;
  1037             while (frameStack2.nonEmpty()) {
  1038                 switch (frameStack2.head.tree.getTag()) {
  1039                     case CLASSDEF:
  1040                     case METHODDEF:
  1041                         return null;
  1042                     case LAMBDA:
  1043                         return frameStack2.head.tree;
  1044                     default:
  1045                         frameStack2 = frameStack2.tail;
  1048             Assert.error();
  1049             return null;
  1052         /**
  1053          * Return the declaration corresponding to a symbol in the enclosing
  1054          * scope; the depth parameter is used to filter out symbols defined
  1055          * in nested scopes (which do not need to undergo capture).
  1056          */
  1057         private JCTree capturedDecl(int depth, Symbol sym) {
  1058             int currentDepth = frameStack.size() - 1;
  1059             for (Frame block : frameStack) {
  1060                 switch (block.tree.getTag()) {
  1061                     case CLASSDEF:
  1062                         ClassSymbol clazz = ((JCClassDecl)block.tree).sym;
  1063                         if (sym.isMemberOf(clazz, types)) {
  1064                             return currentDepth > depth ? null : block.tree;
  1066                         break;
  1067                     case VARDEF:
  1068                         if (((JCVariableDecl)block.tree).sym == sym &&
  1069                                 sym.owner.kind == MTH) { //only locals are captured
  1070                             return currentDepth > depth ? null : block.tree;
  1072                         break;
  1073                     case BLOCK:
  1074                     case METHODDEF:
  1075                     case LAMBDA:
  1076                         if (block.locals != null && block.locals.contains(sym)) {
  1077                             return currentDepth > depth ? null : block.tree;
  1079                         break;
  1080                     default:
  1081                         Assert.error("bad decl kind " + block.tree.getTag());
  1083                 currentDepth--;
  1085             return null;
  1088         private TranslationContext<?> context() {
  1089             for (Frame frame : frameStack) {
  1090                 TranslationContext<?> context = contextMap.get(frame.tree);
  1091                 if (context != null) {
  1092                     return context;
  1095             return null;
  1098         /**
  1099          *  This is used to filter out those identifiers that needs to be adjusted
  1100          *  when translating away lambda expressions
  1101          */
  1102         private boolean lambdaIdentSymbolFilter(Symbol sym) {
  1103             return (sym.kind == VAR || sym.kind == MTH)
  1104                     && !sym.isStatic()
  1105                     && sym.name != names.init;
  1108         private boolean lambdaSelectSymbolFilter(Symbol sym) {
  1109             return (sym.kind == VAR || sym.kind == MTH) &&
  1110                         !sym.isStatic() &&
  1111                         (sym.name == names._this ||
  1112                         sym.name == names._super);
  1115         /**
  1116          * This is used to filter out those new class expressions that need to
  1117          * be qualified with an enclosing tree
  1118          */
  1119         private boolean lambdaNewClassFilter(TranslationContext<?> context, JCNewClass tree) {
  1120             if (context != null
  1121                     && tree.encl == null
  1122                     && tree.def == null
  1123                     && tree.type.getEnclosingType().hasTag(NONE)) {
  1124                 Type encl = tree.type.getEnclosingType();
  1125                 Type current = context.owner.enclClass().type;
  1126                 while (current.hasTag(NONE)) {
  1127                     if (current.tsym.isSubClass(encl.tsym, types)) {
  1128                         return true;
  1130                     current = current.getEnclosingType();
  1132                 return false;
  1133             } else {
  1134                 return false;
  1138         private TranslationContext<JCLambda> makeLambdaContext(JCLambda tree) {
  1139             return new LambdaTranslationContext(tree);
  1142         private TranslationContext<JCMemberReference> makeReferenceContext(JCMemberReference tree) {
  1143             return new ReferenceTranslationContext(tree);
  1146         private class Frame {
  1147             final JCTree tree;
  1148             List<Symbol> locals;
  1150             public Frame(JCTree tree) {
  1151                 this.tree = tree;
  1154             void addLocal(Symbol sym) {
  1155                 if (locals == null) {
  1156                     locals = List.nil();
  1158                 locals = locals.prepend(sym);
  1162         /**
  1163          * This class is used to store important information regarding translation of
  1164          * lambda expression/method references (see subclasses).
  1165          */
  1166         private abstract class TranslationContext<T extends JCTree> {
  1168             /** the underlying (untranslated) tree */
  1169             T tree;
  1171             /** points to the adjusted enclosing scope in which this lambda/mref expression occurs */
  1172             Symbol owner;
  1174             /** the depth of this lambda expression in the frame stack */
  1175             int depth;
  1177             /** the enclosing translation context (set for nested lambdas/mref) */
  1178             TranslationContext<?> prev;
  1180             TranslationContext(T tree) {
  1181                 this.tree = tree;
  1182                 this.owner = owner();
  1183                 this.depth = frameStack.size() - 1;
  1184                 this.prev = context();
  1188         /**
  1189          * This class retains all the useful information about a lambda expression;
  1190          * the contents of this class are filled by the LambdaAnalyzer visitor,
  1191          * and the used by the main translation routines in order to adjust references
  1192          * to captured locals/members, etc.
  1193          */
  1194         private class LambdaTranslationContext extends TranslationContext<JCLambda> {
  1196             /** variable in the enclosing context to which this lambda is assigned */
  1197             Symbol self;
  1199             /** map from original to translated lambda parameters */
  1200             Map<Symbol, Symbol> lambdaParams = new LinkedHashMap<Symbol, Symbol>();
  1202             /** map from original to translated lambda locals */
  1203             Map<Symbol, Symbol> lambdaLocals = new LinkedHashMap<Symbol, Symbol>();
  1205             /** map from variables in enclosing scope to translated synthetic parameters */
  1206             Map<Symbol, Symbol> capturedLocals  = new LinkedHashMap<Symbol, Symbol>();
  1208             /** map from class symbols to translated synthetic parameters (for captured member access) */
  1209             Map<Symbol, Symbol> capturedThis = new LinkedHashMap<Symbol, Symbol>();
  1211             /** the synthetic symbol for the method hoisting the translated lambda */
  1212             Symbol translatedSym;
  1214             List<JCVariableDecl> syntheticParams;
  1216             LambdaTranslationContext(JCLambda tree) {
  1217                 super(tree);
  1218                 Frame frame = frameStack.head;
  1219                 if (frame.tree.hasTag(VARDEF)) {
  1220                     self = ((JCVariableDecl)frame.tree).sym;
  1222                 this.translatedSym = makeSyntheticMethod(0, lambdaName(), null, owner.enclClass());
  1225             /**
  1226              * Translate a symbol of a given kind into something suitable for the
  1227              * synthetic lambda body
  1228              */
  1229             Symbol translate(String name, Symbol sym, LambdaSymbolKind skind) {
  1230                 if (skind == CAPTURED_THIS) {
  1231                     return sym;  // self represented
  1232                 } else {
  1233                     return makeSyntheticVar(FINAL, name, types.erasure(sym.type), translatedSym);
  1237             void addSymbol(Symbol sym, LambdaSymbolKind skind) {
  1238                 Map<Symbol, Symbol> transMap = null;
  1239                 String preferredName;
  1240                 switch (skind) {
  1241                     case CAPTURED_THIS:
  1242                         transMap = capturedThis;
  1243                         preferredName = "encl$" + capturedThis.size();
  1244                         break;
  1245                     case CAPTURED_VAR:
  1246                         transMap = capturedLocals;
  1247                         preferredName = "cap$" + capturedLocals.size();
  1248                         break;
  1249                     case LOCAL_VAR:
  1250                         transMap = lambdaLocals;
  1251                         preferredName = sym.name.toString();
  1252                         break;
  1253                     case PARAM:
  1254                         transMap = lambdaParams;
  1255                         preferredName = sym.name.toString();
  1256                         break;
  1257                     default: throw new AssertionError();
  1259                 if (!transMap.containsKey(sym)) {
  1260                     transMap.put(sym, translate(preferredName, sym, skind));
  1264             Map<Symbol, Symbol> getSymbolMap(LambdaSymbolKind... skinds) {
  1265                 LinkedHashMap<Symbol, Symbol> translationMap = new LinkedHashMap<Symbol, Symbol>();
  1266                 for (LambdaSymbolKind skind : skinds) {
  1267                     switch (skind) {
  1268                         case CAPTURED_THIS:
  1269                             translationMap.putAll(capturedThis);
  1270                             break;
  1271                         case CAPTURED_VAR:
  1272                             translationMap.putAll(capturedLocals);
  1273                             break;
  1274                         case LOCAL_VAR:
  1275                             translationMap.putAll(lambdaLocals);
  1276                             break;
  1277                         case PARAM:
  1278                             translationMap.putAll(lambdaParams);
  1279                             break;
  1280                         default: throw new AssertionError();
  1283                 return translationMap;
  1286             /**
  1287              * The translatedSym is not complete/accurate until the analysis is
  1288              * finished.  Once the analysis is finished, the translatedSym is
  1289              * "completed" -- updated with type information, access modifiers,
  1290              * and full parameter list.
  1291              */
  1292             void complete() {
  1293                 if (syntheticParams != null) {
  1294                     return;
  1296                 boolean inInterface = translatedSym.owner.isInterface();
  1297                 boolean thisReferenced = !getSymbolMap(CAPTURED_THIS).isEmpty();
  1298                 boolean needInstance = thisReferenced || inInterface;
  1300                 // If instance access isn't needed, make it static
  1301                 // Interface methods much be public default methods, otherwise make it private
  1302                 translatedSym.flags_field = SYNTHETIC | (needInstance? 0 : STATIC) | (inInterface? PUBLIC | DEFAULT : PRIVATE);
  1304                 //compute synthetic params
  1305                 ListBuffer<JCVariableDecl> params = ListBuffer.lb();
  1307                 // The signature of the method is augmented with the following
  1308                 // synthetic parameters:
  1309                 //
  1310                 // 1) reference to enclosing contexts captured by the lambda expression
  1311                 // 2) enclosing locals captured by the lambda expression
  1312                 for (Symbol thisSym : getSymbolMap(CAPTURED_VAR, PARAM).values()) {
  1313                     params.append(make.VarDef((VarSymbol) thisSym, null));
  1316                 syntheticParams = params.toList();
  1318                 //prepend synthetic args to translated lambda method signature
  1319                 translatedSym.type = (MethodType) types.createMethodTypeWithParameters(
  1320                         (MethodType) generatedLambdaSig(),
  1321                         TreeInfo.types(syntheticParams));
  1324             Type enclosingType() {
  1325                 //local inner classes defined inside a lambda are always non-static
  1326                 return owner.enclClass().type;
  1329             Type generatedLambdaSig() {
  1330                 return types.erasure(types.findDescriptorType(tree.targetType));
  1334         /**
  1335          * This class retains all the useful information about a method reference;
  1336          * the contents of this class are filled by the LambdaAnalyzer visitor,
  1337          * and the used by the main translation routines in order to adjust method
  1338          * references (i.e. in case a bridge is needed)
  1339          */
  1340         private class ReferenceTranslationContext extends TranslationContext<JCMemberReference> {
  1342             final boolean isSuper;
  1343             final Symbol bridgeSym;
  1345             ReferenceTranslationContext(JCMemberReference tree) {
  1346                 super(tree);
  1347                 this.isSuper = tree.hasKind(ReferenceKind.SUPER);
  1348                 this.bridgeSym = needsBridge()
  1349                         ? makeSyntheticMethod(isSuper ? 0 : STATIC,
  1350                                               lambdaName().append(names.fromString("$bridge")), null,
  1351                                               owner.enclClass())
  1352                         : null;
  1355             /**
  1356              * Get the opcode associated with this method reference
  1357              */
  1358             int referenceKind() {
  1359                 return LambdaToMethod.this.referenceKind(needsBridge() ? bridgeSym : tree.sym);
  1362             boolean needsVarArgsConversion() {
  1363                 return tree.varargsElement != null;
  1366             /**
  1367              * @return Is this an array operation like clone()
  1368              */
  1369             boolean isArrayOp() {
  1370                 return tree.sym.owner == syms.arrayClass;
  1373             /**
  1374              * Does this reference needs a bridge (i.e. var args need to be
  1375              * expanded or "super" is used)
  1376              */
  1377             final boolean needsBridge() {
  1378                 return isSuper || needsVarArgsConversion() || isArrayOp();
  1381             Type generatedRefSig() {
  1382                 return types.erasure(tree.sym.type);
  1385             Type bridgedRefSig() {
  1386                 return types.erasure(types.findDescriptorSymbol(tree.targetType.tsym).type);
  1390     // </editor-fold>
  1392     enum LambdaSymbolKind {
  1393         CAPTURED_VAR,
  1394         CAPTURED_THIS,
  1395         LOCAL_VAR,
  1396         PARAM;

mercurial