src/share/classes/com/sun/tools/javac/comp/Check.java

Wed, 11 May 2011 13:10:57 +0200

author
mcimadamore
date
Wed, 11 May 2011 13:10:57 +0200
changeset 1006
a2d422d480cb
parent 993
4caf17560ae0
child 1015
6bb526ccf5ff
permissions
-rw-r--r--

7042566: Regression: new ambiguity between varargs method
Summary: Erroneous ambiguity error when choosing most specific varargs method
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 import static com.sun.tools.javac.main.OptionName.*;
    50 /** Type checking helper class for the attribution phase.
    51  *
    52  *  <p><b>This is NOT part of any supported API.
    53  *  If you write code that depends on this, you do so at your own risk.
    54  *  This code and its internal interfaces are subject to change or
    55  *  deletion without notice.</b>
    56  */
    57 public class Check {
    58     protected static final Context.Key<Check> checkKey =
    59         new Context.Key<Check>();
    61     private final Names names;
    62     private final Log log;
    63     private final Symtab syms;
    64     private final Enter enter;
    65     private final Infer infer;
    66     private final Types types;
    67     private final JCDiagnostic.Factory diags;
    68     private final boolean skipAnnotations;
    69     private boolean warnOnSyntheticConflicts;
    70     private boolean suppressAbortOnBadClassFile;
    71     private boolean enableSunApiLintControl;
    72     private final TreeInfo treeinfo;
    74     // The set of lint options currently in effect. It is initialized
    75     // from the context, and then is set/reset as needed by Attr as it
    76     // visits all the various parts of the trees during attribution.
    77     private Lint lint;
    79     // The method being analyzed in Attr - it is set/reset as needed by
    80     // Attr as it visits new method declarations.
    81     private MethodSymbol method;
    83     public static Check instance(Context context) {
    84         Check instance = context.get(checkKey);
    85         if (instance == null)
    86             instance = new Check(context);
    87         return instance;
    88     }
    90     protected Check(Context context) {
    91         context.put(checkKey, this);
    93         names = Names.instance(context);
    94         log = Log.instance(context);
    95         syms = Symtab.instance(context);
    96         enter = Enter.instance(context);
    97         infer = Infer.instance(context);
    98         this.types = Types.instance(context);
    99         diags = JCDiagnostic.Factory.instance(context);
   100         Options options = Options.instance(context);
   101         lint = Lint.instance(context);
   102         treeinfo = TreeInfo.instance(context);
   104         Source source = Source.instance(context);
   105         allowGenerics = source.allowGenerics();
   106         allowAnnotations = source.allowAnnotations();
   107         allowCovariantReturns = source.allowCovariantReturns();
   108         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   109         complexInference = options.isSet(COMPLEXINFERENCE);
   110         skipAnnotations = options.isSet("skipAnnotations");
   111         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   112         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   113         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   115         Target target = Target.instance(context);
   116         syntheticNameChar = target.syntheticNameChar();
   118         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   119         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   120         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   121         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   123         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   124                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   125         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   126                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   127         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   128                 enforceMandatoryWarnings, "sunapi", null);
   130         deferredLintHandler = DeferredLintHandler.immediateHandler;
   131     }
   133     /** Switch: generics enabled?
   134      */
   135     boolean allowGenerics;
   137     /** Switch: annotations enabled?
   138      */
   139     boolean allowAnnotations;
   141     /** Switch: covariant returns enabled?
   142      */
   143     boolean allowCovariantReturns;
   145     /** Switch: simplified varargs enabled?
   146      */
   147     boolean allowSimplifiedVarargs;
   149     /** Switch: -complexinference option set?
   150      */
   151     boolean complexInference;
   153     /** Character for synthetic names
   154      */
   155     char syntheticNameChar;
   157     /** A table mapping flat names of all compiled classes in this run to their
   158      *  symbols; maintained from outside.
   159      */
   160     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   162     /** A handler for messages about deprecated usage.
   163      */
   164     private MandatoryWarningHandler deprecationHandler;
   166     /** A handler for messages about unchecked or unsafe usage.
   167      */
   168     private MandatoryWarningHandler uncheckedHandler;
   170     /** A handler for messages about using proprietary API.
   171      */
   172     private MandatoryWarningHandler sunApiHandler;
   174     /** A handler for deferred lint warnings.
   175      */
   176     private DeferredLintHandler deferredLintHandler;
   178 /* *************************************************************************
   179  * Errors and Warnings
   180  **************************************************************************/
   182     Lint setLint(Lint newLint) {
   183         Lint prev = lint;
   184         lint = newLint;
   185         return prev;
   186     }
   188     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   189         DeferredLintHandler prev = deferredLintHandler;
   190         deferredLintHandler = newDeferredLintHandler;
   191         return prev;
   192     }
   194     MethodSymbol setMethod(MethodSymbol newMethod) {
   195         MethodSymbol prev = method;
   196         method = newMethod;
   197         return prev;
   198     }
   200     /** Warn about deprecated symbol.
   201      *  @param pos        Position to be used for error reporting.
   202      *  @param sym        The deprecated symbol.
   203      */
   204     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   205         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   206             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   207     }
   209     /** Warn about unchecked operation.
   210      *  @param pos        Position to be used for error reporting.
   211      *  @param msg        A string describing the problem.
   212      */
   213     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   214         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   215             uncheckedHandler.report(pos, msg, args);
   216     }
   218     /** Warn about unsafe vararg method decl.
   219      *  @param pos        Position to be used for error reporting.
   220      *  @param sym        The deprecated symbol.
   221      */
   222     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   223         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   224             log.warning(LintCategory.VARARGS, pos, key, args);
   225     }
   227     /** Warn about using proprietary API.
   228      *  @param pos        Position to be used for error reporting.
   229      *  @param msg        A string describing the problem.
   230      */
   231     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   232         if (!lint.isSuppressed(LintCategory.SUNAPI))
   233             sunApiHandler.report(pos, msg, args);
   234     }
   236     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   237         if (lint.isEnabled(LintCategory.STATIC))
   238             log.warning(LintCategory.STATIC, pos, msg, args);
   239     }
   241     /**
   242      * Report any deferred diagnostics.
   243      */
   244     public void reportDeferredDiagnostics() {
   245         deprecationHandler.reportDeferredDiagnostic();
   246         uncheckedHandler.reportDeferredDiagnostic();
   247         sunApiHandler.reportDeferredDiagnostic();
   248     }
   251     /** Report a failure to complete a class.
   252      *  @param pos        Position to be used for error reporting.
   253      *  @param ex         The failure to report.
   254      */
   255     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   256         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   257         if (ex instanceof ClassReader.BadClassFile
   258                 && !suppressAbortOnBadClassFile) throw new Abort();
   259         else return syms.errType;
   260     }
   262     /** Report a type error.
   263      *  @param pos        Position to be used for error reporting.
   264      *  @param problem    A string describing the error.
   265      *  @param found      The type that was found.
   266      *  @param req        The type that was required.
   267      */
   268     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   269         log.error(pos, "prob.found.req",
   270                   problem, found, req);
   271         return types.createErrorType(found);
   272     }
   274     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   275         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   276         return types.createErrorType(found);
   277     }
   279     /** Report an error that wrong type tag was found.
   280      *  @param pos        Position to be used for error reporting.
   281      *  @param required   An internationalized string describing the type tag
   282      *                    required.
   283      *  @param found      The type that was found.
   284      */
   285     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   286         // this error used to be raised by the parser,
   287         // but has been delayed to this point:
   288         if (found instanceof Type && ((Type)found).tag == VOID) {
   289             log.error(pos, "illegal.start.of.type");
   290             return syms.errType;
   291         }
   292         log.error(pos, "type.found.req", found, required);
   293         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   294     }
   296     /** Report an error that symbol cannot be referenced before super
   297      *  has been called.
   298      *  @param pos        Position to be used for error reporting.
   299      *  @param sym        The referenced symbol.
   300      */
   301     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   302         log.error(pos, "cant.ref.before.ctor.called", sym);
   303     }
   305     /** Report duplicate declaration error.
   306      */
   307     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   308         if (!sym.type.isErroneous()) {
   309             log.error(pos, "already.defined", sym, sym.location());
   310         }
   311     }
   313     /** Report array/varargs duplicate declaration
   314      */
   315     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   316         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   317             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   318         }
   319     }
   321 /* ************************************************************************
   322  * duplicate declaration checking
   323  *************************************************************************/
   325     /** Check that variable does not hide variable with same name in
   326      *  immediately enclosing local scope.
   327      *  @param pos           Position for error reporting.
   328      *  @param v             The symbol.
   329      *  @param s             The scope.
   330      */
   331     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   332         if (s.next != null) {
   333             for (Scope.Entry e = s.next.lookup(v.name);
   334                  e.scope != null && e.sym.owner == v.owner;
   335                  e = e.next()) {
   336                 if (e.sym.kind == VAR &&
   337                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   338                     v.name != names.error) {
   339                     duplicateError(pos, e.sym);
   340                     return;
   341                 }
   342             }
   343         }
   344     }
   346     /** Check that a class or interface does not hide a class or
   347      *  interface with same name in immediately enclosing local scope.
   348      *  @param pos           Position for error reporting.
   349      *  @param c             The symbol.
   350      *  @param s             The scope.
   351      */
   352     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   353         if (s.next != null) {
   354             for (Scope.Entry e = s.next.lookup(c.name);
   355                  e.scope != null && e.sym.owner == c.owner;
   356                  e = e.next()) {
   357                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   358                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   359                     c.name != names.error) {
   360                     duplicateError(pos, e.sym);
   361                     return;
   362                 }
   363             }
   364         }
   365     }
   367     /** Check that class does not have the same name as one of
   368      *  its enclosing classes, or as a class defined in its enclosing scope.
   369      *  return true if class is unique in its enclosing scope.
   370      *  @param pos           Position for error reporting.
   371      *  @param name          The class name.
   372      *  @param s             The enclosing scope.
   373      */
   374     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   375         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   376             if (e.sym.kind == TYP && e.sym.name != names.error) {
   377                 duplicateError(pos, e.sym);
   378                 return false;
   379             }
   380         }
   381         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   382             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   383                 duplicateError(pos, sym);
   384                 return true;
   385             }
   386         }
   387         return true;
   388     }
   390 /* *************************************************************************
   391  * Class name generation
   392  **************************************************************************/
   394     /** Return name of local class.
   395      *  This is of the form    <enclClass> $ n <classname>
   396      *  where
   397      *    enclClass is the flat name of the enclosing class,
   398      *    classname is the simple name of the local class
   399      */
   400     Name localClassName(ClassSymbol c) {
   401         for (int i=1; ; i++) {
   402             Name flatname = names.
   403                 fromString("" + c.owner.enclClass().flatname +
   404                            syntheticNameChar + i +
   405                            c.name);
   406             if (compiled.get(flatname) == null) return flatname;
   407         }
   408     }
   410 /* *************************************************************************
   411  * Type Checking
   412  **************************************************************************/
   414     /** Check that a given type is assignable to a given proto-type.
   415      *  If it is, return the type, otherwise return errType.
   416      *  @param pos        Position to be used for error reporting.
   417      *  @param found      The type that was found.
   418      *  @param req        The type that was required.
   419      */
   420     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   421         return checkType(pos, found, req, "incompatible.types");
   422     }
   424     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   425         if (req.tag == ERROR)
   426             return req;
   427         if (found.tag == FORALL)
   428             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   429         if (req.tag == NONE)
   430             return found;
   431         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   432             return found;
   433         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   434             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   435         if (found.isSuperBound()) {
   436             log.error(pos, "assignment.from.super-bound", found);
   437             return types.createErrorType(found);
   438         }
   439         if (req.isExtendsBound()) {
   440             log.error(pos, "assignment.to.extends-bound", req);
   441             return types.createErrorType(found);
   442         }
   443         return typeError(pos, diags.fragment(errKey), found, req);
   444     }
   446     /** Instantiate polymorphic type to some prototype, unless
   447      *  prototype is `anyPoly' in which case polymorphic type
   448      *  is returned unchanged.
   449      */
   450     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   451         if (pt == Infer.anyPoly && complexInference) {
   452             return t;
   453         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   454             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   455             return instantiatePoly(pos, t, newpt, warn);
   456         } else if (pt.tag == ERROR) {
   457             return pt;
   458         } else {
   459             try {
   460                 return infer.instantiateExpr(t, pt, warn);
   461             } catch (Infer.NoInstanceException ex) {
   462                 if (ex.isAmbiguous) {
   463                     JCDiagnostic d = ex.getDiagnostic();
   464                     log.error(pos,
   465                               "undetermined.type" + (d!=null ? ".1" : ""),
   466                               t, d);
   467                     return types.createErrorType(pt);
   468                 } else {
   469                     JCDiagnostic d = ex.getDiagnostic();
   470                     return typeError(pos,
   471                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   472                                      t, pt);
   473                 }
   474             } catch (Infer.InvalidInstanceException ex) {
   475                 JCDiagnostic d = ex.getDiagnostic();
   476                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   477                 return types.createErrorType(pt);
   478             }
   479         }
   480     }
   482     /** Check that a given type can be cast to a given target type.
   483      *  Return the result of the cast.
   484      *  @param pos        Position to be used for error reporting.
   485      *  @param found      The type that is being cast.
   486      *  @param req        The target type of the cast.
   487      */
   488     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   489         if (found.tag == FORALL) {
   490             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   491             return req;
   492         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   493             return req;
   494         } else {
   495             return typeError(pos,
   496                              diags.fragment("inconvertible.types"),
   497                              found, req);
   498         }
   499     }
   500 //where
   501         /** Is type a type variable, or a (possibly multi-dimensional) array of
   502          *  type variables?
   503          */
   504         boolean isTypeVar(Type t) {
   505             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   506         }
   508     /** Check that a type is within some bounds.
   509      *
   510      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   511      *  type argument.
   512      *  @param pos           Position to be used for error reporting.
   513      *  @param a             The type that should be bounded by bs.
   514      *  @param bs            The bound.
   515      */
   516     private boolean checkExtends(Type a, TypeVar bs) {
   517          if (a.isUnbound()) {
   518              return true;
   519          } else if (a.tag != WILDCARD) {
   520              a = types.upperBound(a);
   521              return types.isSubtype(a, bs.bound);
   522          } else if (a.isExtendsBound()) {
   523              return types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings);
   524          } else if (a.isSuperBound()) {
   525              return !types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound());
   526          }
   527          return true;
   528      }
   530     /** Check that type is different from 'void'.
   531      *  @param pos           Position to be used for error reporting.
   532      *  @param t             The type to be checked.
   533      */
   534     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   535         if (t.tag == VOID) {
   536             log.error(pos, "void.not.allowed.here");
   537             return types.createErrorType(t);
   538         } else {
   539             return t;
   540         }
   541     }
   543     /** Check that type is a class or interface type.
   544      *  @param pos           Position to be used for error reporting.
   545      *  @param t             The type to be checked.
   546      */
   547     Type checkClassType(DiagnosticPosition pos, Type t) {
   548         if (t.tag != CLASS && t.tag != ERROR)
   549             return typeTagError(pos,
   550                                 diags.fragment("type.req.class"),
   551                                 (t.tag == TYPEVAR)
   552                                 ? diags.fragment("type.parameter", t)
   553                                 : t);
   554         else
   555             return t;
   556     }
   558     /** Check that type is a class or interface type.
   559      *  @param pos           Position to be used for error reporting.
   560      *  @param t             The type to be checked.
   561      *  @param noBounds    True if type bounds are illegal here.
   562      */
   563     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   564         t = checkClassType(pos, t);
   565         if (noBounds && t.isParameterized()) {
   566             List<Type> args = t.getTypeArguments();
   567             while (args.nonEmpty()) {
   568                 if (args.head.tag == WILDCARD)
   569                     return typeTagError(pos,
   570                                         diags.fragment("type.req.exact"),
   571                                         args.head);
   572                 args = args.tail;
   573             }
   574         }
   575         return t;
   576     }
   578     /** Check that type is a reifiable class, interface or array type.
   579      *  @param pos           Position to be used for error reporting.
   580      *  @param t             The type to be checked.
   581      */
   582     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   583         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   584             return typeTagError(pos,
   585                                 diags.fragment("type.req.class.array"),
   586                                 t);
   587         } else if (!types.isReifiable(t)) {
   588             log.error(pos, "illegal.generic.type.for.instof");
   589             return types.createErrorType(t);
   590         } else {
   591             return t;
   592         }
   593     }
   595     /** Check that type is a reference type, i.e. a class, interface or array type
   596      *  or a type variable.
   597      *  @param pos           Position to be used for error reporting.
   598      *  @param t             The type to be checked.
   599      */
   600     Type checkRefType(DiagnosticPosition pos, Type t) {
   601         switch (t.tag) {
   602         case CLASS:
   603         case ARRAY:
   604         case TYPEVAR:
   605         case WILDCARD:
   606         case ERROR:
   607             return t;
   608         default:
   609             return typeTagError(pos,
   610                                 diags.fragment("type.req.ref"),
   611                                 t);
   612         }
   613     }
   615     /** Check that each type is a reference type, i.e. a class, interface or array type
   616      *  or a type variable.
   617      *  @param trees         Original trees, used for error reporting.
   618      *  @param types         The types to be checked.
   619      */
   620     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   621         List<JCExpression> tl = trees;
   622         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   623             l.head = checkRefType(tl.head.pos(), l.head);
   624             tl = tl.tail;
   625         }
   626         return types;
   627     }
   629     /** Check that type is a null or reference type.
   630      *  @param pos           Position to be used for error reporting.
   631      *  @param t             The type to be checked.
   632      */
   633     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   634         switch (t.tag) {
   635         case CLASS:
   636         case ARRAY:
   637         case TYPEVAR:
   638         case WILDCARD:
   639         case BOT:
   640         case ERROR:
   641             return t;
   642         default:
   643             return typeTagError(pos,
   644                                 diags.fragment("type.req.ref"),
   645                                 t);
   646         }
   647     }
   649     /** Check that flag set does not contain elements of two conflicting sets. s
   650      *  Return true if it doesn't.
   651      *  @param pos           Position to be used for error reporting.
   652      *  @param flags         The set of flags to be checked.
   653      *  @param set1          Conflicting flags set #1.
   654      *  @param set2          Conflicting flags set #2.
   655      */
   656     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   657         if ((flags & set1) != 0 && (flags & set2) != 0) {
   658             log.error(pos,
   659                       "illegal.combination.of.modifiers",
   660                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   661                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   662             return false;
   663         } else
   664             return true;
   665     }
   667     /** Check that usage of diamond operator is correct (i.e. diamond should not
   668      * be used with non-generic classes or in anonymous class creation expressions)
   669      */
   670     Type checkDiamond(JCNewClass tree, Type t) {
   671         if (!TreeInfo.isDiamond(tree) ||
   672                 t.isErroneous()) {
   673             return checkClassType(tree.clazz.pos(), t, true);
   674         } else if (tree.def != null) {
   675             log.error(tree.clazz.pos(),
   676                     "cant.apply.diamond.1",
   677                     t, diags.fragment("diamond.and.anon.class", t));
   678             return types.createErrorType(t);
   679         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   680             log.error(tree.clazz.pos(),
   681                 "cant.apply.diamond.1",
   682                 t, diags.fragment("diamond.non.generic", t));
   683             return types.createErrorType(t);
   684         } else if (tree.typeargs != null &&
   685                 tree.typeargs.nonEmpty()) {
   686             log.error(tree.clazz.pos(),
   687                 "cant.apply.diamond.1",
   688                 t, diags.fragment("diamond.and.explicit.params", t));
   689             return types.createErrorType(t);
   690         } else {
   691             return t;
   692         }
   693     }
   695     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   696         MethodSymbol m = tree.sym;
   697         if (!allowSimplifiedVarargs) return;
   698         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   699         Type varargElemType = null;
   700         if (m.isVarArgs()) {
   701             varargElemType = types.elemtype(tree.params.last().type);
   702         }
   703         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   704             if (varargElemType != null) {
   705                 log.error(tree,
   706                         "varargs.invalid.trustme.anno",
   707                         syms.trustMeType.tsym,
   708                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   709             } else {
   710                 log.error(tree,
   711                             "varargs.invalid.trustme.anno",
   712                             syms.trustMeType.tsym,
   713                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   714             }
   715         } else if (hasTrustMeAnno && varargElemType != null &&
   716                             types.isReifiable(varargElemType)) {
   717             warnUnsafeVararg(tree,
   718                             "varargs.redundant.trustme.anno",
   719                             syms.trustMeType.tsym,
   720                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   721         }
   722         else if (!hasTrustMeAnno && varargElemType != null &&
   723                 !types.isReifiable(varargElemType)) {
   724             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   725         }
   726     }
   727     //where
   728         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   729             return (s.flags() & VARARGS) != 0 &&
   730                 (s.isConstructor() ||
   731                     (s.flags() & (STATIC | FINAL)) != 0);
   732         }
   734     /**
   735      * Check that vararg method call is sound
   736      * @param pos Position to be used for error reporting.
   737      * @param argtypes Actual arguments supplied to vararg method.
   738      */
   739     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym) {
   740         Type argtype = argtypes.last();
   741         if (!types.isReifiable(argtype) &&
   742                 (!allowSimplifiedVarargs ||
   743                 msym.attribute(syms.trustMeType.tsym) == null ||
   744                 !isTrustMeAllowedOnMethod(msym))) {
   745             warnUnchecked(pos,
   746                               "unchecked.generic.array.creation",
   747                               argtype);
   748         }
   749     }
   751     /**
   752      * Check that type 't' is a valid instantiation of a generic class
   753      * (see JLS 4.5)
   754      *
   755      * @param t class type to be checked
   756      * @return true if 't' is well-formed
   757      */
   758     public boolean checkValidGenericType(Type t) {
   759         return firstIncompatibleTypeArg(t) == null;
   760     }
   761     //WHERE
   762         private Type firstIncompatibleTypeArg(Type type) {
   763             List<Type> formals = type.tsym.type.allparams();
   764             List<Type> actuals = type.allparams();
   765             List<Type> args = type.getTypeArguments();
   766             List<Type> forms = type.tsym.type.getTypeArguments();
   767             ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   769             // For matching pairs of actual argument types `a' and
   770             // formal type parameters with declared bound `b' ...
   771             while (args.nonEmpty() && forms.nonEmpty()) {
   772                 // exact type arguments needs to know their
   773                 // bounds (for upper and lower bound
   774                 // calculations).  So we create new TypeVars with
   775                 // bounds substed with actuals.
   776                 tvars_buf.append(types.substBound(((TypeVar)forms.head),
   777                                                   formals,
   778                                                   actuals));
   779                 args = args.tail;
   780                 forms = forms.tail;
   781             }
   783             args = type.getTypeArguments();
   784             List<Type> tvars_cap = types.substBounds(formals,
   785                                       formals,
   786                                       types.capture(type).allparams());
   787             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   788                 // Let the actual arguments know their bound
   789                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   790                 args = args.tail;
   791                 tvars_cap = tvars_cap.tail;
   792             }
   794             args = type.getTypeArguments();
   795             List<Type> tvars = tvars_buf.toList();
   797             while (args.nonEmpty() && tvars.nonEmpty()) {
   798                 Type actual = types.subst(args.head,
   799                     type.tsym.type.getTypeArguments(),
   800                     tvars_buf.toList());
   801                 if (!isTypeArgErroneous(actual) &&
   802                         !tvars.head.getUpperBound().isErroneous() &&
   803                         !checkExtends(actual, (TypeVar)tvars.head)) {
   804                     return args.head;
   805                 }
   806                 args = args.tail;
   807                 tvars = tvars.tail;
   808             }
   810             args = type.getTypeArguments();
   811             tvars = tvars_buf.toList();
   813             for (Type arg : types.capture(type).getTypeArguments()) {
   814                 if (arg.tag == TYPEVAR &&
   815                         arg.getUpperBound().isErroneous() &&
   816                         !tvars.head.getUpperBound().isErroneous() &&
   817                         !isTypeArgErroneous(args.head)) {
   818                     return args.head;
   819                 }
   820                 tvars = tvars.tail;
   821                 args = args.tail;
   822             }
   824             return null;
   825         }
   826         //where
   827         boolean isTypeArgErroneous(Type t) {
   828             return isTypeArgErroneous.visit(t);
   829         }
   831         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   832             public Boolean visitType(Type t, Void s) {
   833                 return t.isErroneous();
   834             }
   835             @Override
   836             public Boolean visitTypeVar(TypeVar t, Void s) {
   837                 return visit(t.getUpperBound());
   838             }
   839             @Override
   840             public Boolean visitCapturedType(CapturedType t, Void s) {
   841                 return visit(t.getUpperBound()) ||
   842                         visit(t.getLowerBound());
   843             }
   844             @Override
   845             public Boolean visitWildcardType(WildcardType t, Void s) {
   846                 return visit(t.type);
   847             }
   848         };
   850     /** Check that given modifiers are legal for given symbol and
   851      *  return modifiers together with any implicit modififiers for that symbol.
   852      *  Warning: we can't use flags() here since this method
   853      *  is called during class enter, when flags() would cause a premature
   854      *  completion.
   855      *  @param pos           Position to be used for error reporting.
   856      *  @param flags         The set of modifiers given in a definition.
   857      *  @param sym           The defined symbol.
   858      */
   859     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   860         long mask;
   861         long implicit = 0;
   862         switch (sym.kind) {
   863         case VAR:
   864             if (sym.owner.kind != TYP)
   865                 mask = LocalVarFlags;
   866             else if ((sym.owner.flags_field & INTERFACE) != 0)
   867                 mask = implicit = InterfaceVarFlags;
   868             else
   869                 mask = VarFlags;
   870             break;
   871         case MTH:
   872             if (sym.name == names.init) {
   873                 if ((sym.owner.flags_field & ENUM) != 0) {
   874                     // enum constructors cannot be declared public or
   875                     // protected and must be implicitly or explicitly
   876                     // private
   877                     implicit = PRIVATE;
   878                     mask = PRIVATE;
   879                 } else
   880                     mask = ConstructorFlags;
   881             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   882                 mask = implicit = InterfaceMethodFlags;
   883             else {
   884                 mask = MethodFlags;
   885             }
   886             // Imply STRICTFP if owner has STRICTFP set.
   887             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   888               implicit |= sym.owner.flags_field & STRICTFP;
   889             break;
   890         case TYP:
   891             if (sym.isLocal()) {
   892                 mask = LocalClassFlags;
   893                 if (sym.name.isEmpty()) { // Anonymous class
   894                     // Anonymous classes in static methods are themselves static;
   895                     // that's why we admit STATIC here.
   896                     mask |= STATIC;
   897                     // JLS: Anonymous classes are final.
   898                     implicit |= FINAL;
   899                 }
   900                 if ((sym.owner.flags_field & STATIC) == 0 &&
   901                     (flags & ENUM) != 0)
   902                     log.error(pos, "enums.must.be.static");
   903             } else if (sym.owner.kind == TYP) {
   904                 mask = MemberClassFlags;
   905                 if (sym.owner.owner.kind == PCK ||
   906                     (sym.owner.flags_field & STATIC) != 0)
   907                     mask |= STATIC;
   908                 else if ((flags & ENUM) != 0)
   909                     log.error(pos, "enums.must.be.static");
   910                 // Nested interfaces and enums are always STATIC (Spec ???)
   911                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   912             } else {
   913                 mask = ClassFlags;
   914             }
   915             // Interfaces are always ABSTRACT
   916             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   918             if ((flags & ENUM) != 0) {
   919                 // enums can't be declared abstract or final
   920                 mask &= ~(ABSTRACT | FINAL);
   921                 implicit |= implicitEnumFinalFlag(tree);
   922             }
   923             // Imply STRICTFP if owner has STRICTFP set.
   924             implicit |= sym.owner.flags_field & STRICTFP;
   925             break;
   926         default:
   927             throw new AssertionError();
   928         }
   929         long illegal = flags & StandardFlags & ~mask;
   930         if (illegal != 0) {
   931             if ((illegal & INTERFACE) != 0) {
   932                 log.error(pos, "intf.not.allowed.here");
   933                 mask |= INTERFACE;
   934             }
   935             else {
   936                 log.error(pos,
   937                           "mod.not.allowed.here", asFlagSet(illegal));
   938             }
   939         }
   940         else if ((sym.kind == TYP ||
   941                   // ISSUE: Disallowing abstract&private is no longer appropriate
   942                   // in the presence of inner classes. Should it be deleted here?
   943                   checkDisjoint(pos, flags,
   944                                 ABSTRACT,
   945                                 PRIVATE | STATIC))
   946                  &&
   947                  checkDisjoint(pos, flags,
   948                                ABSTRACT | INTERFACE,
   949                                FINAL | NATIVE | SYNCHRONIZED)
   950                  &&
   951                  checkDisjoint(pos, flags,
   952                                PUBLIC,
   953                                PRIVATE | PROTECTED)
   954                  &&
   955                  checkDisjoint(pos, flags,
   956                                PRIVATE,
   957                                PUBLIC | PROTECTED)
   958                  &&
   959                  checkDisjoint(pos, flags,
   960                                FINAL,
   961                                VOLATILE)
   962                  &&
   963                  (sym.kind == TYP ||
   964                   checkDisjoint(pos, flags,
   965                                 ABSTRACT | NATIVE,
   966                                 STRICTFP))) {
   967             // skip
   968         }
   969         return flags & (mask | ~StandardFlags) | implicit;
   970     }
   973     /** Determine if this enum should be implicitly final.
   974      *
   975      *  If the enum has no specialized enum contants, it is final.
   976      *
   977      *  If the enum does have specialized enum contants, it is
   978      *  <i>not</i> final.
   979      */
   980     private long implicitEnumFinalFlag(JCTree tree) {
   981         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   982         class SpecialTreeVisitor extends JCTree.Visitor {
   983             boolean specialized;
   984             SpecialTreeVisitor() {
   985                 this.specialized = false;
   986             };
   988             @Override
   989             public void visitTree(JCTree tree) { /* no-op */ }
   991             @Override
   992             public void visitVarDef(JCVariableDecl tree) {
   993                 if ((tree.mods.flags & ENUM) != 0) {
   994                     if (tree.init instanceof JCNewClass &&
   995                         ((JCNewClass) tree.init).def != null) {
   996                         specialized = true;
   997                     }
   998                 }
   999             }
  1002         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1003         JCClassDecl cdef = (JCClassDecl) tree;
  1004         for (JCTree defs: cdef.defs) {
  1005             defs.accept(sts);
  1006             if (sts.specialized) return 0;
  1008         return FINAL;
  1011 /* *************************************************************************
  1012  * Type Validation
  1013  **************************************************************************/
  1015     /** Validate a type expression. That is,
  1016      *  check that all type arguments of a parametric type are within
  1017      *  their bounds. This must be done in a second phase after type attributon
  1018      *  since a class might have a subclass as type parameter bound. E.g:
  1020      *  class B<A extends C> { ... }
  1021      *  class C extends B<C> { ... }
  1023      *  and we can't make sure that the bound is already attributed because
  1024      *  of possible cycles.
  1026      * Visitor method: Validate a type expression, if it is not null, catching
  1027      *  and reporting any completion failures.
  1028      */
  1029     void validate(JCTree tree, Env<AttrContext> env) {
  1030         validate(tree, env, true);
  1032     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1033         new Validator(env).validateTree(tree, checkRaw, true);
  1036     /** Visitor method: Validate a list of type expressions.
  1037      */
  1038     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1039         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1040             validate(l.head, env);
  1043     /** A visitor class for type validation.
  1044      */
  1045     class Validator extends JCTree.Visitor {
  1047         boolean isOuter;
  1048         Env<AttrContext> env;
  1050         Validator(Env<AttrContext> env) {
  1051             this.env = env;
  1054         @Override
  1055         public void visitTypeArray(JCArrayTypeTree tree) {
  1056             tree.elemtype.accept(this);
  1059         @Override
  1060         public void visitTypeApply(JCTypeApply tree) {
  1061             if (tree.type.tag == CLASS) {
  1062                 List<JCExpression> args = tree.arguments;
  1063                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1065                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1066                 if (incompatibleArg != null) {
  1067                     for (JCTree arg : tree.arguments) {
  1068                         if (arg.type == incompatibleArg) {
  1069                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1071                         forms = forms.tail;
  1075                 forms = tree.type.tsym.type.getTypeArguments();
  1077                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1079                 // For matching pairs of actual argument types `a' and
  1080                 // formal type parameters with declared bound `b' ...
  1081                 while (args.nonEmpty() && forms.nonEmpty()) {
  1082                     validateTree(args.head,
  1083                             !(isOuter && is_java_lang_Class),
  1084                             false);
  1085                     args = args.tail;
  1086                     forms = forms.tail;
  1089                 // Check that this type is either fully parameterized, or
  1090                 // not parameterized at all.
  1091                 if (tree.type.getEnclosingType().isRaw())
  1092                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1093                 if (tree.clazz.getTag() == JCTree.SELECT)
  1094                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1098         @Override
  1099         public void visitTypeParameter(JCTypeParameter tree) {
  1100             validateTrees(tree.bounds, true, isOuter);
  1101             checkClassBounds(tree.pos(), tree.type);
  1104         @Override
  1105         public void visitWildcard(JCWildcard tree) {
  1106             if (tree.inner != null)
  1107                 validateTree(tree.inner, true, isOuter);
  1110         @Override
  1111         public void visitSelect(JCFieldAccess tree) {
  1112             if (tree.type.tag == CLASS) {
  1113                 visitSelectInternal(tree);
  1115                 // Check that this type is either fully parameterized, or
  1116                 // not parameterized at all.
  1117                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1118                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1122         public void visitSelectInternal(JCFieldAccess tree) {
  1123             if (tree.type.tsym.isStatic() &&
  1124                 tree.selected.type.isParameterized()) {
  1125                 // The enclosing type is not a class, so we are
  1126                 // looking at a static member type.  However, the
  1127                 // qualifying expression is parameterized.
  1128                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1129             } else {
  1130                 // otherwise validate the rest of the expression
  1131                 tree.selected.accept(this);
  1135         /** Default visitor method: do nothing.
  1136          */
  1137         @Override
  1138         public void visitTree(JCTree tree) {
  1141         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1142             try {
  1143                 if (tree != null) {
  1144                     this.isOuter = isOuter;
  1145                     tree.accept(this);
  1146                     if (checkRaw)
  1147                         checkRaw(tree, env);
  1149             } catch (CompletionFailure ex) {
  1150                 completionError(tree.pos(), ex);
  1154         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1155             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1156                 validateTree(l.head, checkRaw, isOuter);
  1159         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1160             if (lint.isEnabled(LintCategory.RAW) &&
  1161                 tree.type.tag == CLASS &&
  1162                 !TreeInfo.isDiamond(tree) &&
  1163                 !env.enclClass.name.isEmpty() &&  //anonymous or intersection
  1164                 tree.type.isRaw()) {
  1165                 log.warning(LintCategory.RAW,
  1166                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1171 /* *************************************************************************
  1172  * Exception checking
  1173  **************************************************************************/
  1175     /* The following methods treat classes as sets that contain
  1176      * the class itself and all their subclasses
  1177      */
  1179     /** Is given type a subtype of some of the types in given list?
  1180      */
  1181     boolean subset(Type t, List<Type> ts) {
  1182         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1183             if (types.isSubtype(t, l.head)) return true;
  1184         return false;
  1187     /** Is given type a subtype or supertype of
  1188      *  some of the types in given list?
  1189      */
  1190     boolean intersects(Type t, List<Type> ts) {
  1191         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1192             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1193         return false;
  1196     /** Add type set to given type list, unless it is a subclass of some class
  1197      *  in the list.
  1198      */
  1199     List<Type> incl(Type t, List<Type> ts) {
  1200         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1203     /** Remove type set from type set list.
  1204      */
  1205     List<Type> excl(Type t, List<Type> ts) {
  1206         if (ts.isEmpty()) {
  1207             return ts;
  1208         } else {
  1209             List<Type> ts1 = excl(t, ts.tail);
  1210             if (types.isSubtype(ts.head, t)) return ts1;
  1211             else if (ts1 == ts.tail) return ts;
  1212             else return ts1.prepend(ts.head);
  1216     /** Form the union of two type set lists.
  1217      */
  1218     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1219         List<Type> ts = ts1;
  1220         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1221             ts = incl(l.head, ts);
  1222         return ts;
  1225     /** Form the difference of two type lists.
  1226      */
  1227     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1228         List<Type> ts = ts1;
  1229         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1230             ts = excl(l.head, ts);
  1231         return ts;
  1234     /** Form the intersection of two type lists.
  1235      */
  1236     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1237         List<Type> ts = List.nil();
  1238         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1239             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1240         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1241             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1242         return ts;
  1245     /** Is exc an exception symbol that need not be declared?
  1246      */
  1247     boolean isUnchecked(ClassSymbol exc) {
  1248         return
  1249             exc.kind == ERR ||
  1250             exc.isSubClass(syms.errorType.tsym, types) ||
  1251             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1254     /** Is exc an exception type that need not be declared?
  1255      */
  1256     boolean isUnchecked(Type exc) {
  1257         return
  1258             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1259             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1260             exc.tag == BOT;
  1263     /** Same, but handling completion failures.
  1264      */
  1265     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1266         try {
  1267             return isUnchecked(exc);
  1268         } catch (CompletionFailure ex) {
  1269             completionError(pos, ex);
  1270             return true;
  1274     /** Is exc handled by given exception list?
  1275      */
  1276     boolean isHandled(Type exc, List<Type> handled) {
  1277         return isUnchecked(exc) || subset(exc, handled);
  1280     /** Return all exceptions in thrown list that are not in handled list.
  1281      *  @param thrown     The list of thrown exceptions.
  1282      *  @param handled    The list of handled exceptions.
  1283      */
  1284     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1285         List<Type> unhandled = List.nil();
  1286         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1287             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1288         return unhandled;
  1291 /* *************************************************************************
  1292  * Overriding/Implementation checking
  1293  **************************************************************************/
  1295     /** The level of access protection given by a flag set,
  1296      *  where PRIVATE is highest and PUBLIC is lowest.
  1297      */
  1298     static int protection(long flags) {
  1299         switch ((short)(flags & AccessFlags)) {
  1300         case PRIVATE: return 3;
  1301         case PROTECTED: return 1;
  1302         default:
  1303         case PUBLIC: return 0;
  1304         case 0: return 2;
  1308     /** A customized "cannot override" error message.
  1309      *  @param m      The overriding method.
  1310      *  @param other  The overridden method.
  1311      *  @return       An internationalized string.
  1312      */
  1313     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1314         String key;
  1315         if ((other.owner.flags() & INTERFACE) == 0)
  1316             key = "cant.override";
  1317         else if ((m.owner.flags() & INTERFACE) == 0)
  1318             key = "cant.implement";
  1319         else
  1320             key = "clashes.with";
  1321         return diags.fragment(key, m, m.location(), other, other.location());
  1324     /** A customized "override" warning message.
  1325      *  @param m      The overriding method.
  1326      *  @param other  The overridden method.
  1327      *  @return       An internationalized string.
  1328      */
  1329     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1330         String key;
  1331         if ((other.owner.flags() & INTERFACE) == 0)
  1332             key = "unchecked.override";
  1333         else if ((m.owner.flags() & INTERFACE) == 0)
  1334             key = "unchecked.implement";
  1335         else
  1336             key = "unchecked.clash.with";
  1337         return diags.fragment(key, m, m.location(), other, other.location());
  1340     /** A customized "override" warning message.
  1341      *  @param m      The overriding method.
  1342      *  @param other  The overridden method.
  1343      *  @return       An internationalized string.
  1344      */
  1345     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1346         String key;
  1347         if ((other.owner.flags() & INTERFACE) == 0)
  1348             key = "varargs.override";
  1349         else  if ((m.owner.flags() & INTERFACE) == 0)
  1350             key = "varargs.implement";
  1351         else
  1352             key = "varargs.clash.with";
  1353         return diags.fragment(key, m, m.location(), other, other.location());
  1356     /** Check that this method conforms with overridden method 'other'.
  1357      *  where `origin' is the class where checking started.
  1358      *  Complications:
  1359      *  (1) Do not check overriding of synthetic methods
  1360      *      (reason: they might be final).
  1361      *      todo: check whether this is still necessary.
  1362      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1363      *      than the method it implements. Augment the proxy methods with the
  1364      *      undeclared exceptions in this case.
  1365      *  (3) When generics are enabled, admit the case where an interface proxy
  1366      *      has a result type
  1367      *      extended by the result type of the method it implements.
  1368      *      Change the proxies result type to the smaller type in this case.
  1370      *  @param tree         The tree from which positions
  1371      *                      are extracted for errors.
  1372      *  @param m            The overriding method.
  1373      *  @param other        The overridden method.
  1374      *  @param origin       The class of which the overriding method
  1375      *                      is a member.
  1376      */
  1377     void checkOverride(JCTree tree,
  1378                        MethodSymbol m,
  1379                        MethodSymbol other,
  1380                        ClassSymbol origin) {
  1381         // Don't check overriding of synthetic methods or by bridge methods.
  1382         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1383             return;
  1386         // Error if static method overrides instance method (JLS 8.4.6.2).
  1387         if ((m.flags() & STATIC) != 0 &&
  1388                    (other.flags() & STATIC) == 0) {
  1389             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1390                       cannotOverride(m, other));
  1391             return;
  1394         // Error if instance method overrides static or final
  1395         // method (JLS 8.4.6.1).
  1396         if ((other.flags() & FINAL) != 0 ||
  1397                  (m.flags() & STATIC) == 0 &&
  1398                  (other.flags() & STATIC) != 0) {
  1399             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1400                       cannotOverride(m, other),
  1401                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1402             return;
  1405         if ((m.owner.flags() & ANNOTATION) != 0) {
  1406             // handled in validateAnnotationMethod
  1407             return;
  1410         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1411         if ((origin.flags() & INTERFACE) == 0 &&
  1412                  protection(m.flags()) > protection(other.flags())) {
  1413             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1414                       cannotOverride(m, other),
  1415                       other.flags() == 0 ?
  1416                           Flag.PACKAGE :
  1417                           asFlagSet(other.flags() & AccessFlags));
  1418             return;
  1421         Type mt = types.memberType(origin.type, m);
  1422         Type ot = types.memberType(origin.type, other);
  1423         // Error if overriding result type is different
  1424         // (or, in the case of generics mode, not a subtype) of
  1425         // overridden result type. We have to rename any type parameters
  1426         // before comparing types.
  1427         List<Type> mtvars = mt.getTypeArguments();
  1428         List<Type> otvars = ot.getTypeArguments();
  1429         Type mtres = mt.getReturnType();
  1430         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1432         overrideWarner.clear();
  1433         boolean resultTypesOK =
  1434             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1435         if (!resultTypesOK) {
  1436             if (!allowCovariantReturns &&
  1437                 m.owner != origin &&
  1438                 m.owner.isSubClass(other.owner, types)) {
  1439                 // allow limited interoperability with covariant returns
  1440             } else {
  1441                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1442                           "override.incompatible.ret",
  1443                           cannotOverride(m, other),
  1444                           mtres, otres);
  1445                 return;
  1447         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1448             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1449                     "override.unchecked.ret",
  1450                     uncheckedOverrides(m, other),
  1451                     mtres, otres);
  1454         // Error if overriding method throws an exception not reported
  1455         // by overridden method.
  1456         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1457         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1458         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1459         if (unhandledErased.nonEmpty()) {
  1460             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1461                       "override.meth.doesnt.throw",
  1462                       cannotOverride(m, other),
  1463                       unhandledUnerased.head);
  1464             return;
  1466         else if (unhandledUnerased.nonEmpty()) {
  1467             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1468                           "override.unchecked.thrown",
  1469                          cannotOverride(m, other),
  1470                          unhandledUnerased.head);
  1471             return;
  1474         // Optional warning if varargs don't agree
  1475         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1476             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1477             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1478                         ((m.flags() & Flags.VARARGS) != 0)
  1479                         ? "override.varargs.missing"
  1480                         : "override.varargs.extra",
  1481                         varargsOverrides(m, other));
  1484         // Warn if instance method overrides bridge method (compiler spec ??)
  1485         if ((other.flags() & BRIDGE) != 0) {
  1486             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1487                         uncheckedOverrides(m, other));
  1490         // Warn if a deprecated method overridden by a non-deprecated one.
  1491         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1492             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1495     // where
  1496         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1497             // If the method, m, is defined in an interface, then ignore the issue if the method
  1498             // is only inherited via a supertype and also implemented in the supertype,
  1499             // because in that case, we will rediscover the issue when examining the method
  1500             // in the supertype.
  1501             // If the method, m, is not defined in an interface, then the only time we need to
  1502             // address the issue is when the method is the supertype implemementation: any other
  1503             // case, we will have dealt with when examining the supertype classes
  1504             ClassSymbol mc = m.enclClass();
  1505             Type st = types.supertype(origin.type);
  1506             if (st.tag != CLASS)
  1507                 return true;
  1508             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1510             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1511                 List<Type> intfs = types.interfaces(origin.type);
  1512                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1514             else
  1515                 return (stimpl != m);
  1519     // used to check if there were any unchecked conversions
  1520     Warner overrideWarner = new Warner();
  1522     /** Check that a class does not inherit two concrete methods
  1523      *  with the same signature.
  1524      *  @param pos          Position to be used for error reporting.
  1525      *  @param site         The class type to be checked.
  1526      */
  1527     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1528         Type sup = types.supertype(site);
  1529         if (sup.tag != CLASS) return;
  1531         for (Type t1 = sup;
  1532              t1.tsym.type.isParameterized();
  1533              t1 = types.supertype(t1)) {
  1534             for (Scope.Entry e1 = t1.tsym.members().elems;
  1535                  e1 != null;
  1536                  e1 = e1.sibling) {
  1537                 Symbol s1 = e1.sym;
  1538                 if (s1.kind != MTH ||
  1539                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1540                     !s1.isInheritedIn(site.tsym, types) ||
  1541                     ((MethodSymbol)s1).implementation(site.tsym,
  1542                                                       types,
  1543                                                       true) != s1)
  1544                     continue;
  1545                 Type st1 = types.memberType(t1, s1);
  1546                 int s1ArgsLength = st1.getParameterTypes().length();
  1547                 if (st1 == s1.type) continue;
  1549                 for (Type t2 = sup;
  1550                      t2.tag == CLASS;
  1551                      t2 = types.supertype(t2)) {
  1552                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1553                          e2.scope != null;
  1554                          e2 = e2.next()) {
  1555                         Symbol s2 = e2.sym;
  1556                         if (s2 == s1 ||
  1557                             s2.kind != MTH ||
  1558                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1559                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1560                             !s2.isInheritedIn(site.tsym, types) ||
  1561                             ((MethodSymbol)s2).implementation(site.tsym,
  1562                                                               types,
  1563                                                               true) != s2)
  1564                             continue;
  1565                         Type st2 = types.memberType(t2, s2);
  1566                         if (types.overrideEquivalent(st1, st2))
  1567                             log.error(pos, "concrete.inheritance.conflict",
  1568                                       s1, t1, s2, t2, sup);
  1575     /** Check that classes (or interfaces) do not each define an abstract
  1576      *  method with same name and arguments but incompatible return types.
  1577      *  @param pos          Position to be used for error reporting.
  1578      *  @param t1           The first argument type.
  1579      *  @param t2           The second argument type.
  1580      */
  1581     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1582                                             Type t1,
  1583                                             Type t2) {
  1584         return checkCompatibleAbstracts(pos, t1, t2,
  1585                                         types.makeCompoundType(t1, t2));
  1588     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1589                                             Type t1,
  1590                                             Type t2,
  1591                                             Type site) {
  1592         return firstIncompatibility(pos, t1, t2, site) == null;
  1595     /** Return the first method which is defined with same args
  1596      *  but different return types in two given interfaces, or null if none
  1597      *  exists.
  1598      *  @param t1     The first type.
  1599      *  @param t2     The second type.
  1600      *  @param site   The most derived type.
  1601      *  @returns symbol from t2 that conflicts with one in t1.
  1602      */
  1603     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1604         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1605         closure(t1, interfaces1);
  1606         Map<TypeSymbol,Type> interfaces2;
  1607         if (t1 == t2)
  1608             interfaces2 = interfaces1;
  1609         else
  1610             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1612         for (Type t3 : interfaces1.values()) {
  1613             for (Type t4 : interfaces2.values()) {
  1614                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1615                 if (s != null) return s;
  1618         return null;
  1621     /** Compute all the supertypes of t, indexed by type symbol. */
  1622     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1623         if (t.tag != CLASS) return;
  1624         if (typeMap.put(t.tsym, t) == null) {
  1625             closure(types.supertype(t), typeMap);
  1626             for (Type i : types.interfaces(t))
  1627                 closure(i, typeMap);
  1631     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1632     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1633         if (t.tag != CLASS) return;
  1634         if (typesSkip.get(t.tsym) != null) return;
  1635         if (typeMap.put(t.tsym, t) == null) {
  1636             closure(types.supertype(t), typesSkip, typeMap);
  1637             for (Type i : types.interfaces(t))
  1638                 closure(i, typesSkip, typeMap);
  1642     /** Return the first method in t2 that conflicts with a method from t1. */
  1643     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1644         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1645             Symbol s1 = e1.sym;
  1646             Type st1 = null;
  1647             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1648             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1649             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1650             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1651                 Symbol s2 = e2.sym;
  1652                 if (s1 == s2) continue;
  1653                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1654                 if (st1 == null) st1 = types.memberType(t1, s1);
  1655                 Type st2 = types.memberType(t2, s2);
  1656                 if (types.overrideEquivalent(st1, st2)) {
  1657                     List<Type> tvars1 = st1.getTypeArguments();
  1658                     List<Type> tvars2 = st2.getTypeArguments();
  1659                     Type rt1 = st1.getReturnType();
  1660                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1661                     boolean compat =
  1662                         types.isSameType(rt1, rt2) ||
  1663                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1664                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1665                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1666                          checkCommonOverriderIn(s1,s2,site);
  1667                     if (!compat) {
  1668                         log.error(pos, "types.incompatible.diff.ret",
  1669                             t1, t2, s2.name +
  1670                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1671                         return s2;
  1673                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1674                         !checkCommonOverriderIn(s1, s2, site)) {
  1675                     log.error(pos,
  1676                             "name.clash.same.erasure.no.override",
  1677                             s1, s1.location(),
  1678                             s2, s2.location());
  1679                     return s2;
  1683         return null;
  1685     //WHERE
  1686     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1687         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1688         Type st1 = types.memberType(site, s1);
  1689         Type st2 = types.memberType(site, s2);
  1690         closure(site, supertypes);
  1691         for (Type t : supertypes.values()) {
  1692             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1693                 Symbol s3 = e.sym;
  1694                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1695                 Type st3 = types.memberType(site,s3);
  1696                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1697                     if (s3.owner == site.tsym) {
  1698                         return true;
  1700                     List<Type> tvars1 = st1.getTypeArguments();
  1701                     List<Type> tvars2 = st2.getTypeArguments();
  1702                     List<Type> tvars3 = st3.getTypeArguments();
  1703                     Type rt1 = st1.getReturnType();
  1704                     Type rt2 = st2.getReturnType();
  1705                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1706                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1707                     boolean compat =
  1708                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1709                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1710                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1711                     if (compat)
  1712                         return true;
  1716         return false;
  1719     /** Check that a given method conforms with any method it overrides.
  1720      *  @param tree         The tree from which positions are extracted
  1721      *                      for errors.
  1722      *  @param m            The overriding method.
  1723      */
  1724     void checkOverride(JCTree tree, MethodSymbol m) {
  1725         ClassSymbol origin = (ClassSymbol)m.owner;
  1726         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1727             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1728                 log.error(tree.pos(), "enum.no.finalize");
  1729                 return;
  1731         for (Type t = origin.type; t.tag == CLASS;
  1732              t = types.supertype(t)) {
  1733             if (t != origin.type) {
  1734                 checkOverride(tree, t, origin, m);
  1736             for (Type t2 : types.interfaces(t)) {
  1737                 checkOverride(tree, t2, origin, m);
  1742     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1743         TypeSymbol c = site.tsym;
  1744         Scope.Entry e = c.members().lookup(m.name);
  1745         while (e.scope != null) {
  1746             if (m.overrides(e.sym, origin, types, false)) {
  1747                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1748                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1751             e = e.next();
  1755     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1756         ClashFilter cf = new ClashFilter(origin.type);
  1757         return (cf.accepts(s1) &&
  1758                 cf.accepts(s2) &&
  1759                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1763     /** Check that all abstract members of given class have definitions.
  1764      *  @param pos          Position to be used for error reporting.
  1765      *  @param c            The class.
  1766      */
  1767     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1768         try {
  1769             MethodSymbol undef = firstUndef(c, c);
  1770             if (undef != null) {
  1771                 if ((c.flags() & ENUM) != 0 &&
  1772                     types.supertype(c.type).tsym == syms.enumSym &&
  1773                     (c.flags() & FINAL) == 0) {
  1774                     // add the ABSTRACT flag to an enum
  1775                     c.flags_field |= ABSTRACT;
  1776                 } else {
  1777                     MethodSymbol undef1 =
  1778                         new MethodSymbol(undef.flags(), undef.name,
  1779                                          types.memberType(c.type, undef), undef.owner);
  1780                     log.error(pos, "does.not.override.abstract",
  1781                               c, undef1, undef1.location());
  1784         } catch (CompletionFailure ex) {
  1785             completionError(pos, ex);
  1788 //where
  1789         /** Return first abstract member of class `c' that is not defined
  1790          *  in `impl', null if there is none.
  1791          */
  1792         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1793             MethodSymbol undef = null;
  1794             // Do not bother to search in classes that are not abstract,
  1795             // since they cannot have abstract members.
  1796             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1797                 Scope s = c.members();
  1798                 for (Scope.Entry e = s.elems;
  1799                      undef == null && e != null;
  1800                      e = e.sibling) {
  1801                     if (e.sym.kind == MTH &&
  1802                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1803                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1804                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1805                         if (implmeth == null || implmeth == absmeth)
  1806                             undef = absmeth;
  1809                 if (undef == null) {
  1810                     Type st = types.supertype(c.type);
  1811                     if (st.tag == CLASS)
  1812                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1814                 for (List<Type> l = types.interfaces(c.type);
  1815                      undef == null && l.nonEmpty();
  1816                      l = l.tail) {
  1817                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1820             return undef;
  1823     void checkNonCyclicDecl(JCClassDecl tree) {
  1824         CycleChecker cc = new CycleChecker();
  1825         cc.scan(tree);
  1826         if (!cc.errorFound && !cc.partialCheck) {
  1827             tree.sym.flags_field |= ACYCLIC;
  1831     class CycleChecker extends TreeScanner {
  1833         List<Symbol> seenClasses = List.nil();
  1834         boolean errorFound = false;
  1835         boolean partialCheck = false;
  1837         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1838             if (sym != null && sym.kind == TYP) {
  1839                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1840                 if (classEnv != null) {
  1841                     DiagnosticSource prevSource = log.currentSource();
  1842                     try {
  1843                         log.useSource(classEnv.toplevel.sourcefile);
  1844                         scan(classEnv.tree);
  1846                     finally {
  1847                         log.useSource(prevSource.getFile());
  1849                 } else if (sym.kind == TYP) {
  1850                     checkClass(pos, sym, List.<JCTree>nil());
  1852             } else {
  1853                 //not completed yet
  1854                 partialCheck = true;
  1858         @Override
  1859         public void visitSelect(JCFieldAccess tree) {
  1860             super.visitSelect(tree);
  1861             checkSymbol(tree.pos(), tree.sym);
  1864         @Override
  1865         public void visitIdent(JCIdent tree) {
  1866             checkSymbol(tree.pos(), tree.sym);
  1869         @Override
  1870         public void visitTypeApply(JCTypeApply tree) {
  1871             scan(tree.clazz);
  1874         @Override
  1875         public void visitTypeArray(JCArrayTypeTree tree) {
  1876             scan(tree.elemtype);
  1879         @Override
  1880         public void visitClassDef(JCClassDecl tree) {
  1881             List<JCTree> supertypes = List.nil();
  1882             if (tree.getExtendsClause() != null) {
  1883                 supertypes = supertypes.prepend(tree.getExtendsClause());
  1885             if (tree.getImplementsClause() != null) {
  1886                 for (JCTree intf : tree.getImplementsClause()) {
  1887                     supertypes = supertypes.prepend(intf);
  1890             checkClass(tree.pos(), tree.sym, supertypes);
  1893         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  1894             if ((c.flags_field & ACYCLIC) != 0)
  1895                 return;
  1896             if (seenClasses.contains(c)) {
  1897                 errorFound = true;
  1898                 noteCyclic(pos, (ClassSymbol)c);
  1899             } else if (!c.type.isErroneous()) {
  1900                 try {
  1901                     seenClasses = seenClasses.prepend(c);
  1902                     if (c.type.tag == CLASS) {
  1903                         if (supertypes.nonEmpty()) {
  1904                             scan(supertypes);
  1906                         else {
  1907                             ClassType ct = (ClassType)c.type;
  1908                             if (ct.supertype_field == null ||
  1909                                     ct.interfaces_field == null) {
  1910                                 //not completed yet
  1911                                 partialCheck = true;
  1912                                 return;
  1914                             checkSymbol(pos, ct.supertype_field.tsym);
  1915                             for (Type intf : ct.interfaces_field) {
  1916                                 checkSymbol(pos, intf.tsym);
  1919                         if (c.owner.kind == TYP) {
  1920                             checkSymbol(pos, c.owner);
  1923                 } finally {
  1924                     seenClasses = seenClasses.tail;
  1930     /** Check for cyclic references. Issue an error if the
  1931      *  symbol of the type referred to has a LOCKED flag set.
  1933      *  @param pos      Position to be used for error reporting.
  1934      *  @param t        The type referred to.
  1935      */
  1936     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1937         checkNonCyclicInternal(pos, t);
  1941     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1942         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1945     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1946         final TypeVar tv;
  1947         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1948             return;
  1949         if (seen.contains(t)) {
  1950             tv = (TypeVar)t;
  1951             tv.bound = types.createErrorType(t);
  1952             log.error(pos, "cyclic.inheritance", t);
  1953         } else if (t.tag == TYPEVAR) {
  1954             tv = (TypeVar)t;
  1955             seen = seen.prepend(tv);
  1956             for (Type b : types.getBounds(tv))
  1957                 checkNonCyclic1(pos, b, seen);
  1961     /** Check for cyclic references. Issue an error if the
  1962      *  symbol of the type referred to has a LOCKED flag set.
  1964      *  @param pos      Position to be used for error reporting.
  1965      *  @param t        The type referred to.
  1966      *  @returns        True if the check completed on all attributed classes
  1967      */
  1968     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1969         boolean complete = true; // was the check complete?
  1970         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1971         Symbol c = t.tsym;
  1972         if ((c.flags_field & ACYCLIC) != 0) return true;
  1974         if ((c.flags_field & LOCKED) != 0) {
  1975             noteCyclic(pos, (ClassSymbol)c);
  1976         } else if (!c.type.isErroneous()) {
  1977             try {
  1978                 c.flags_field |= LOCKED;
  1979                 if (c.type.tag == CLASS) {
  1980                     ClassType clazz = (ClassType)c.type;
  1981                     if (clazz.interfaces_field != null)
  1982                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1983                             complete &= checkNonCyclicInternal(pos, l.head);
  1984                     if (clazz.supertype_field != null) {
  1985                         Type st = clazz.supertype_field;
  1986                         if (st != null && st.tag == CLASS)
  1987                             complete &= checkNonCyclicInternal(pos, st);
  1989                     if (c.owner.kind == TYP)
  1990                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1992             } finally {
  1993                 c.flags_field &= ~LOCKED;
  1996         if (complete)
  1997             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1998         if (complete) c.flags_field |= ACYCLIC;
  1999         return complete;
  2002     /** Note that we found an inheritance cycle. */
  2003     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2004         log.error(pos, "cyclic.inheritance", c);
  2005         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2006             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2007         Type st = types.supertype(c.type);
  2008         if (st.tag == CLASS)
  2009             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2010         c.type = types.createErrorType(c, c.type);
  2011         c.flags_field |= ACYCLIC;
  2014     /** Check that all methods which implement some
  2015      *  method conform to the method they implement.
  2016      *  @param tree         The class definition whose members are checked.
  2017      */
  2018     void checkImplementations(JCClassDecl tree) {
  2019         checkImplementations(tree, tree.sym);
  2021 //where
  2022         /** Check that all methods which implement some
  2023          *  method in `ic' conform to the method they implement.
  2024          */
  2025         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2026             ClassSymbol origin = tree.sym;
  2027             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2028                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2029                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2030                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2031                         if (e.sym.kind == MTH &&
  2032                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2033                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2034                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2035                             if (implmeth != null && implmeth != absmeth &&
  2036                                 (implmeth.owner.flags() & INTERFACE) ==
  2037                                 (origin.flags() & INTERFACE)) {
  2038                                 // don't check if implmeth is in a class, yet
  2039                                 // origin is an interface. This case arises only
  2040                                 // if implmeth is declared in Object. The reason is
  2041                                 // that interfaces really don't inherit from
  2042                                 // Object it's just that the compiler represents
  2043                                 // things that way.
  2044                                 checkOverride(tree, implmeth, absmeth, origin);
  2052     /** Check that all abstract methods implemented by a class are
  2053      *  mutually compatible.
  2054      *  @param pos          Position to be used for error reporting.
  2055      *  @param c            The class whose interfaces are checked.
  2056      */
  2057     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2058         List<Type> supertypes = types.interfaces(c);
  2059         Type supertype = types.supertype(c);
  2060         if (supertype.tag == CLASS &&
  2061             (supertype.tsym.flags() & ABSTRACT) != 0)
  2062             supertypes = supertypes.prepend(supertype);
  2063         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2064             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2065                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2066                 return;
  2067             for (List<Type> m = supertypes; m != l; m = m.tail)
  2068                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2069                     return;
  2071         checkCompatibleConcretes(pos, c);
  2074     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2075         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2076             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2077                 // VM allows methods and variables with differing types
  2078                 if (sym.kind == e.sym.kind &&
  2079                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2080                     sym != e.sym &&
  2081                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2082                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2083                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2084                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2085                     return;
  2091     /** Check that all non-override equivalent methods accessible from 'site'
  2092      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2094      *  @param pos  Position to be used for error reporting.
  2095      *  @param site The class whose methods are checked.
  2096      *  @param sym  The method symbol to be checked.
  2097      */
  2098     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2099          ClashFilter cf = new ClashFilter(site);
  2100          //for each method m1 that is a member of 'site'...
  2101          for (Symbol s1 : types.membersClosure(site).getElementsByName(sym.name, cf)) {
  2102             //...find another method m2 that is overridden (directly or indirectly)
  2103             //by method 'sym' in 'site'
  2104             for (Symbol s2 : types.membersClosure(site).getElementsByName(sym.name, cf)) {
  2105                 if (s1 == s2 || !sym.overrides(s2, site.tsym, types, false)) continue;
  2106                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2107                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2108                 if (!types.isSubSignature(sym.type, types.memberType(site, s1), false) &&
  2109                         types.hasSameArgs(s1.erasure(types), s2.erasure(types))) {
  2110                     sym.flags_field |= CLASH;
  2111                     String key = s2 == sym ?
  2112                             "name.clash.same.erasure.no.override" :
  2113                             "name.clash.same.erasure.no.override.1";
  2114                     log.error(pos,
  2115                             key,
  2116                             sym, sym.location(),
  2117                             s1, s1.location(),
  2118                             s2, s2.location());
  2119                     return;
  2127     /** Check that all static methods accessible from 'site' are
  2128      *  mutually compatible (JLS 8.4.8).
  2130      *  @param pos  Position to be used for error reporting.
  2131      *  @param site The class whose methods are checked.
  2132      *  @param sym  The method symbol to be checked.
  2133      */
  2134     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2135         ClashFilter cf = new ClashFilter(site);
  2136         //for each method m1 that is a member of 'site'...
  2137         for (Symbol s : types.membersClosure(site).getElementsByName(sym.name, cf)) {
  2138             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2139             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2140             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2141                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2142                 log.error(pos,
  2143                         "name.clash.same.erasure.no.hide",
  2144                         sym, sym.location(),
  2145                         s, s.location());
  2146                 return;
  2151      //where
  2152      private class ClashFilter implements Filter<Symbol> {
  2154          Type site;
  2156          ClashFilter(Type site) {
  2157              this.site = site;
  2160          boolean shouldSkip(Symbol s) {
  2161              return (s.flags() & CLASH) != 0 &&
  2162                 s.owner == site.tsym;
  2165          public boolean accepts(Symbol s) {
  2166              return s.kind == MTH &&
  2167                      (s.flags() & SYNTHETIC) == 0 &&
  2168                      !shouldSkip(s) &&
  2169                      s.isInheritedIn(site.tsym, types) &&
  2170                      !s.isConstructor();
  2174     /** Report a conflict between a user symbol and a synthetic symbol.
  2175      */
  2176     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2177         if (!sym.type.isErroneous()) {
  2178             if (warnOnSyntheticConflicts) {
  2179                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2181             else {
  2182                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2187     /** Check that class c does not implement directly or indirectly
  2188      *  the same parameterized interface with two different argument lists.
  2189      *  @param pos          Position to be used for error reporting.
  2190      *  @param type         The type whose interfaces are checked.
  2191      */
  2192     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2193         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2195 //where
  2196         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2197          *  with their class symbol as key and their type as value. Make
  2198          *  sure no class is entered with two different types.
  2199          */
  2200         void checkClassBounds(DiagnosticPosition pos,
  2201                               Map<TypeSymbol,Type> seensofar,
  2202                               Type type) {
  2203             if (type.isErroneous()) return;
  2204             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2205                 Type it = l.head;
  2206                 Type oldit = seensofar.put(it.tsym, it);
  2207                 if (oldit != null) {
  2208                     List<Type> oldparams = oldit.allparams();
  2209                     List<Type> newparams = it.allparams();
  2210                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2211                         log.error(pos, "cant.inherit.diff.arg",
  2212                                   it.tsym, Type.toString(oldparams),
  2213                                   Type.toString(newparams));
  2215                 checkClassBounds(pos, seensofar, it);
  2217             Type st = types.supertype(type);
  2218             if (st != null) checkClassBounds(pos, seensofar, st);
  2221     /** Enter interface into into set.
  2222      *  If it existed already, issue a "repeated interface" error.
  2223      */
  2224     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2225         if (its.contains(it))
  2226             log.error(pos, "repeated.interface");
  2227         else {
  2228             its.add(it);
  2232 /* *************************************************************************
  2233  * Check annotations
  2234  **************************************************************************/
  2236     /**
  2237      * Recursively validate annotations values
  2238      */
  2239     void validateAnnotationTree(JCTree tree) {
  2240         class AnnotationValidator extends TreeScanner {
  2241             @Override
  2242             public void visitAnnotation(JCAnnotation tree) {
  2243                 super.visitAnnotation(tree);
  2244                 validateAnnotation(tree);
  2247         tree.accept(new AnnotationValidator());
  2250     /** Annotation types are restricted to primitives, String, an
  2251      *  enum, an annotation, Class, Class<?>, Class<? extends
  2252      *  Anything>, arrays of the preceding.
  2253      */
  2254     void validateAnnotationType(JCTree restype) {
  2255         // restype may be null if an error occurred, so don't bother validating it
  2256         if (restype != null) {
  2257             validateAnnotationType(restype.pos(), restype.type);
  2261     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2262         if (type.isPrimitive()) return;
  2263         if (types.isSameType(type, syms.stringType)) return;
  2264         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2265         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2266         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2267         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2268             validateAnnotationType(pos, types.elemtype(type));
  2269             return;
  2271         log.error(pos, "invalid.annotation.member.type");
  2274     /**
  2275      * "It is also a compile-time error if any method declared in an
  2276      * annotation type has a signature that is override-equivalent to
  2277      * that of any public or protected method declared in class Object
  2278      * or in the interface annotation.Annotation."
  2280      * @jls 9.6 Annotation Types
  2281      */
  2282     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2283         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2284             Scope s = sup.tsym.members();
  2285             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2286                 if (e.sym.kind == MTH &&
  2287                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2288                     types.overrideEquivalent(m.type, e.sym.type))
  2289                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2294     /** Check the annotations of a symbol.
  2295      */
  2296     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2297         if (skipAnnotations) return;
  2298         for (JCAnnotation a : annotations)
  2299             validateAnnotation(a, s);
  2302     /** Check an annotation of a symbol.
  2303      */
  2304     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2305         validateAnnotationTree(a);
  2307         if (!annotationApplicable(a, s))
  2308             log.error(a.pos(), "annotation.type.not.applicable");
  2310         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2311             if (!isOverrider(s))
  2312                 log.error(a.pos(), "method.does.not.override.superclass");
  2316     /** Is s a method symbol that overrides a method in a superclass? */
  2317     boolean isOverrider(Symbol s) {
  2318         if (s.kind != MTH || s.isStatic())
  2319             return false;
  2320         MethodSymbol m = (MethodSymbol)s;
  2321         TypeSymbol owner = (TypeSymbol)m.owner;
  2322         for (Type sup : types.closure(owner.type)) {
  2323             if (sup == owner.type)
  2324                 continue; // skip "this"
  2325             Scope scope = sup.tsym.members();
  2326             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2327                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2328                     return true;
  2331         return false;
  2334     /** Is the annotation applicable to the symbol? */
  2335     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2336         Attribute.Compound atTarget =
  2337             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2338         if (atTarget == null) return true;
  2339         Attribute atValue = atTarget.member(names.value);
  2340         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2341         Attribute.Array arr = (Attribute.Array) atValue;
  2342         for (Attribute app : arr.values) {
  2343             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2344             Attribute.Enum e = (Attribute.Enum) app;
  2345             if (e.value.name == names.TYPE)
  2346                 { if (s.kind == TYP) return true; }
  2347             else if (e.value.name == names.FIELD)
  2348                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2349             else if (e.value.name == names.METHOD)
  2350                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2351             else if (e.value.name == names.PARAMETER)
  2352                 { if (s.kind == VAR &&
  2353                       s.owner.kind == MTH &&
  2354                       (s.flags() & PARAMETER) != 0)
  2355                     return true;
  2357             else if (e.value.name == names.CONSTRUCTOR)
  2358                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2359             else if (e.value.name == names.LOCAL_VARIABLE)
  2360                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2361                       (s.flags() & PARAMETER) == 0)
  2362                     return true;
  2364             else if (e.value.name == names.ANNOTATION_TYPE)
  2365                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2366                     return true;
  2368             else if (e.value.name == names.PACKAGE)
  2369                 { if (s.kind == PCK) return true; }
  2370             else if (e.value.name == names.TYPE_USE)
  2371                 { if (s.kind == TYP ||
  2372                       s.kind == VAR ||
  2373                       (s.kind == MTH && !s.isConstructor() &&
  2374                        s.type.getReturnType().tag != VOID))
  2375                     return true;
  2377             else
  2378                 return true; // recovery
  2380         return false;
  2383     /** Check an annotation value.
  2384      */
  2385     public void validateAnnotation(JCAnnotation a) {
  2386         if (a.type.isErroneous()) return;
  2388         // collect an inventory of the members (sorted alphabetically)
  2389         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2390             public int compare(Symbol t, Symbol t1) {
  2391                 return t.name.compareTo(t1.name);
  2393         });
  2394         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2395              e != null;
  2396              e = e.sibling)
  2397             if (e.sym.kind == MTH)
  2398                 members.add((MethodSymbol) e.sym);
  2400         // count them off as they're annotated
  2401         for (JCTree arg : a.args) {
  2402             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2403             JCAssign assign = (JCAssign) arg;
  2404             Symbol m = TreeInfo.symbol(assign.lhs);
  2405             if (m == null || m.type.isErroneous()) continue;
  2406             if (!members.remove(m))
  2407                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2408                           m.name, a.type);
  2411         // all the remaining ones better have default values
  2412         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2413         for (MethodSymbol m : members) {
  2414             if (m.defaultValue == null && !m.type.isErroneous()) {
  2415                 missingDefaults.append(m.name);
  2418         if (missingDefaults.nonEmpty()) {
  2419             String key = (missingDefaults.size() > 1)
  2420                     ? "annotation.missing.default.value.1"
  2421                     : "annotation.missing.default.value";
  2422             log.error(a.pos(), key, a.type, missingDefaults);
  2425         // special case: java.lang.annotation.Target must not have
  2426         // repeated values in its value member
  2427         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2428             a.args.tail == null)
  2429             return;
  2431         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2432         JCAssign assign = (JCAssign) a.args.head;
  2433         Symbol m = TreeInfo.symbol(assign.lhs);
  2434         if (m.name != names.value) return;
  2435         JCTree rhs = assign.rhs;
  2436         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2437         JCNewArray na = (JCNewArray) rhs;
  2438         Set<Symbol> targets = new HashSet<Symbol>();
  2439         for (JCTree elem : na.elems) {
  2440             if (!targets.add(TreeInfo.symbol(elem))) {
  2441                 log.error(elem.pos(), "repeated.annotation.target");
  2446     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2447         if (allowAnnotations &&
  2448             lint.isEnabled(LintCategory.DEP_ANN) &&
  2449             (s.flags() & DEPRECATED) != 0 &&
  2450             !syms.deprecatedType.isErroneous() &&
  2451             s.attribute(syms.deprecatedType.tsym) == null) {
  2452             log.warning(LintCategory.DEP_ANN,
  2453                     pos, "missing.deprecated.annotation");
  2457     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2458         if ((s.flags() & DEPRECATED) != 0 &&
  2459                 (other.flags() & DEPRECATED) == 0 &&
  2460                 s.outermostClass() != other.outermostClass()) {
  2461             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2462                 @Override
  2463                 public void report() {
  2464                     warnDeprecated(pos, s);
  2466             });
  2467         };
  2470     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2471         if ((s.flags() & PROPRIETARY) != 0) {
  2472             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2473                 public void report() {
  2474                     if (enableSunApiLintControl)
  2475                       warnSunApi(pos, "sun.proprietary", s);
  2476                     else
  2477                       log.strictWarning(pos, "sun.proprietary", s);
  2479             });
  2483 /* *************************************************************************
  2484  * Check for recursive annotation elements.
  2485  **************************************************************************/
  2487     /** Check for cycles in the graph of annotation elements.
  2488      */
  2489     void checkNonCyclicElements(JCClassDecl tree) {
  2490         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2491         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2492         try {
  2493             tree.sym.flags_field |= LOCKED;
  2494             for (JCTree def : tree.defs) {
  2495                 if (def.getTag() != JCTree.METHODDEF) continue;
  2496                 JCMethodDecl meth = (JCMethodDecl)def;
  2497                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2499         } finally {
  2500             tree.sym.flags_field &= ~LOCKED;
  2501             tree.sym.flags_field |= ACYCLIC_ANN;
  2505     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2506         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2507             return;
  2508         if ((tsym.flags_field & LOCKED) != 0) {
  2509             log.error(pos, "cyclic.annotation.element");
  2510             return;
  2512         try {
  2513             tsym.flags_field |= LOCKED;
  2514             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2515                 Symbol s = e.sym;
  2516                 if (s.kind != Kinds.MTH)
  2517                     continue;
  2518                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2520         } finally {
  2521             tsym.flags_field &= ~LOCKED;
  2522             tsym.flags_field |= ACYCLIC_ANN;
  2526     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2527         switch (type.tag) {
  2528         case TypeTags.CLASS:
  2529             if ((type.tsym.flags() & ANNOTATION) != 0)
  2530                 checkNonCyclicElementsInternal(pos, type.tsym);
  2531             break;
  2532         case TypeTags.ARRAY:
  2533             checkAnnotationResType(pos, types.elemtype(type));
  2534             break;
  2535         default:
  2536             break; // int etc
  2540 /* *************************************************************************
  2541  * Check for cycles in the constructor call graph.
  2542  **************************************************************************/
  2544     /** Check for cycles in the graph of constructors calling other
  2545      *  constructors.
  2546      */
  2547     void checkCyclicConstructors(JCClassDecl tree) {
  2548         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2550         // enter each constructor this-call into the map
  2551         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2552             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2553             if (app == null) continue;
  2554             JCMethodDecl meth = (JCMethodDecl) l.head;
  2555             if (TreeInfo.name(app.meth) == names._this) {
  2556                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2557             } else {
  2558                 meth.sym.flags_field |= ACYCLIC;
  2562         // Check for cycles in the map
  2563         Symbol[] ctors = new Symbol[0];
  2564         ctors = callMap.keySet().toArray(ctors);
  2565         for (Symbol caller : ctors) {
  2566             checkCyclicConstructor(tree, caller, callMap);
  2570     /** Look in the map to see if the given constructor is part of a
  2571      *  call cycle.
  2572      */
  2573     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2574                                         Map<Symbol,Symbol> callMap) {
  2575         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2576             if ((ctor.flags_field & LOCKED) != 0) {
  2577                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2578                           "recursive.ctor.invocation");
  2579             } else {
  2580                 ctor.flags_field |= LOCKED;
  2581                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2582                 ctor.flags_field &= ~LOCKED;
  2584             ctor.flags_field |= ACYCLIC;
  2588 /* *************************************************************************
  2589  * Miscellaneous
  2590  **************************************************************************/
  2592     /**
  2593      * Return the opcode of the operator but emit an error if it is an
  2594      * error.
  2595      * @param pos        position for error reporting.
  2596      * @param operator   an operator
  2597      * @param tag        a tree tag
  2598      * @param left       type of left hand side
  2599      * @param right      type of right hand side
  2600      */
  2601     int checkOperator(DiagnosticPosition pos,
  2602                        OperatorSymbol operator,
  2603                        int tag,
  2604                        Type left,
  2605                        Type right) {
  2606         if (operator.opcode == ByteCodes.error) {
  2607             log.error(pos,
  2608                       "operator.cant.be.applied.1",
  2609                       treeinfo.operatorName(tag),
  2610                       left, right);
  2612         return operator.opcode;
  2616     /**
  2617      *  Check for division by integer constant zero
  2618      *  @param pos           Position for error reporting.
  2619      *  @param operator      The operator for the expression
  2620      *  @param operand       The right hand operand for the expression
  2621      */
  2622     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2623         if (operand.constValue() != null
  2624             && lint.isEnabled(LintCategory.DIVZERO)
  2625             && operand.tag <= LONG
  2626             && ((Number) (operand.constValue())).longValue() == 0) {
  2627             int opc = ((OperatorSymbol)operator).opcode;
  2628             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2629                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2630                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  2635     /**
  2636      * Check for empty statements after if
  2637      */
  2638     void checkEmptyIf(JCIf tree) {
  2639         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(LintCategory.EMPTY))
  2640             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2643     /** Check that symbol is unique in given scope.
  2644      *  @param pos           Position for error reporting.
  2645      *  @param sym           The symbol.
  2646      *  @param s             The scope.
  2647      */
  2648     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2649         if (sym.type.isErroneous())
  2650             return true;
  2651         if (sym.owner.name == names.any) return false;
  2652         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2653             if (sym != e.sym &&
  2654                     (e.sym.flags() & CLASH) == 0 &&
  2655                     sym.kind == e.sym.kind &&
  2656                     sym.name != names.error &&
  2657                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2658                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  2659                     varargsDuplicateError(pos, sym, e.sym);
  2660                     return true;
  2661                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  2662                     duplicateErasureError(pos, sym, e.sym);
  2663                     sym.flags_field |= CLASH;
  2664                     return true;
  2665                 } else {
  2666                     duplicateError(pos, e.sym);
  2667                     return false;
  2671         return true;
  2674     /** Report duplicate declaration error.
  2675      */
  2676     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2677         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2678             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2682     /** Check that single-type import is not already imported or top-level defined,
  2683      *  but make an exception for two single-type imports which denote the same type.
  2684      *  @param pos           Position for error reporting.
  2685      *  @param sym           The symbol.
  2686      *  @param s             The scope
  2687      */
  2688     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2689         return checkUniqueImport(pos, sym, s, false);
  2692     /** Check that static single-type import is not already imported or top-level defined,
  2693      *  but make an exception for two single-type imports which denote the same type.
  2694      *  @param pos           Position for error reporting.
  2695      *  @param sym           The symbol.
  2696      *  @param s             The scope
  2697      *  @param staticImport  Whether or not this was a static import
  2698      */
  2699     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2700         return checkUniqueImport(pos, sym, s, true);
  2703     /** Check that single-type import is not already imported or top-level defined,
  2704      *  but make an exception for two single-type imports which denote the same type.
  2705      *  @param pos           Position for error reporting.
  2706      *  @param sym           The symbol.
  2707      *  @param s             The scope.
  2708      *  @param staticImport  Whether or not this was a static import
  2709      */
  2710     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2711         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2712             // is encountered class entered via a class declaration?
  2713             boolean isClassDecl = e.scope == s;
  2714             if ((isClassDecl || sym != e.sym) &&
  2715                 sym.kind == e.sym.kind &&
  2716                 sym.name != names.error) {
  2717                 if (!e.sym.type.isErroneous()) {
  2718                     String what = e.sym.toString();
  2719                     if (!isClassDecl) {
  2720                         if (staticImport)
  2721                             log.error(pos, "already.defined.static.single.import", what);
  2722                         else
  2723                             log.error(pos, "already.defined.single.import", what);
  2725                     else if (sym != e.sym)
  2726                         log.error(pos, "already.defined.this.unit", what);
  2728                 return false;
  2731         return true;
  2734     /** Check that a qualified name is in canonical form (for import decls).
  2735      */
  2736     public void checkCanonical(JCTree tree) {
  2737         if (!isCanonical(tree))
  2738             log.error(tree.pos(), "import.requires.canonical",
  2739                       TreeInfo.symbol(tree));
  2741         // where
  2742         private boolean isCanonical(JCTree tree) {
  2743             while (tree.getTag() == JCTree.SELECT) {
  2744                 JCFieldAccess s = (JCFieldAccess) tree;
  2745                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2746                     return false;
  2747                 tree = s.selected;
  2749             return true;
  2752     private class ConversionWarner extends Warner {
  2753         final String uncheckedKey;
  2754         final Type found;
  2755         final Type expected;
  2756         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  2757             super(pos);
  2758             this.uncheckedKey = uncheckedKey;
  2759             this.found = found;
  2760             this.expected = expected;
  2763         @Override
  2764         public void warn(LintCategory lint) {
  2765             boolean warned = this.warned;
  2766             super.warn(lint);
  2767             if (warned) return; // suppress redundant diagnostics
  2768             switch (lint) {
  2769                 case UNCHECKED:
  2770                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  2771                     break;
  2772                 case VARARGS:
  2773                     if (method != null &&
  2774                             method.attribute(syms.trustMeType.tsym) != null &&
  2775                             isTrustMeAllowedOnMethod(method) &&
  2776                             !types.isReifiable(method.type.getParameterTypes().last())) {
  2777                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  2779                     break;
  2780                 default:
  2781                     throw new AssertionError("Unexpected lint: " + lint);
  2786     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2787         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2790     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2791         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial