src/share/classes/com/sun/tools/javac/comp/Attr.java

Fri, 31 May 2013 10:04:59 +0100

author
vromero
date
Fri, 31 May 2013 10:04:59 +0100
changeset 1790
9f11c7676cd5
parent 1780
6e5076af4660
child 1802
8fb68f73d4b1
permissions
-rw-r--r--

7179353: try-with-resources fails to compile with generic exception parameters
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.lang.model.type.TypeKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.tree.*;
    49 import com.sun.tools.javac.tree.JCTree.*;
    50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTag.*;
    60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    63 /** This is the main context-dependent analysis phase in GJC. It
    64  *  encompasses name resolution, type checking and constant folding as
    65  *  subtasks. Some subtasks involve auxiliary classes.
    66  *  @see Check
    67  *  @see Resolve
    68  *  @see ConstFold
    69  *  @see Infer
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Attr extends JCTree.Visitor {
    77     protected static final Context.Key<Attr> attrKey =
    78         new Context.Key<Attr>();
    80     final Names names;
    81     final Log log;
    82     final Symtab syms;
    83     final Resolve rs;
    84     final Infer infer;
    85     final DeferredAttr deferredAttr;
    86     final Check chk;
    87     final Flow flow;
    88     final MemberEnter memberEnter;
    89     final TreeMaker make;
    90     final ConstFold cfolder;
    91     final Enter enter;
    92     final Target target;
    93     final Types types;
    94     final JCDiagnostic.Factory diags;
    95     final Annotate annotate;
    96     final DeferredLintHandler deferredLintHandler;
    98     public static Attr instance(Context context) {
    99         Attr instance = context.get(attrKey);
   100         if (instance == null)
   101             instance = new Attr(context);
   102         return instance;
   103     }
   105     protected Attr(Context context) {
   106         context.put(attrKey, this);
   108         names = Names.instance(context);
   109         log = Log.instance(context);
   110         syms = Symtab.instance(context);
   111         rs = Resolve.instance(context);
   112         chk = Check.instance(context);
   113         flow = Flow.instance(context);
   114         memberEnter = MemberEnter.instance(context);
   115         make = TreeMaker.instance(context);
   116         enter = Enter.instance(context);
   117         infer = Infer.instance(context);
   118         deferredAttr = DeferredAttr.instance(context);
   119         cfolder = ConstFold.instance(context);
   120         target = Target.instance(context);
   121         types = Types.instance(context);
   122         diags = JCDiagnostic.Factory.instance(context);
   123         annotate = Annotate.instance(context);
   124         deferredLintHandler = DeferredLintHandler.instance(context);
   126         Options options = Options.instance(context);
   128         Source source = Source.instance(context);
   129         allowGenerics = source.allowGenerics();
   130         allowVarargs = source.allowVarargs();
   131         allowEnums = source.allowEnums();
   132         allowBoxing = source.allowBoxing();
   133         allowCovariantReturns = source.allowCovariantReturns();
   134         allowAnonOuterThis = source.allowAnonOuterThis();
   135         allowStringsInSwitch = source.allowStringsInSwitch();
   136         allowPoly = source.allowPoly();
   137         allowLambda = source.allowLambda();
   138         allowDefaultMethods = source.allowDefaultMethods();
   139         sourceName = source.name;
   140         relax = (options.isSet("-retrofit") ||
   141                  options.isSet("-relax"));
   142         findDiamonds = options.get("findDiamond") != null &&
   143                  source.allowDiamond();
   144         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   145         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   147         statInfo = new ResultInfo(NIL, Type.noType);
   148         varInfo = new ResultInfo(VAR, Type.noType);
   149         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   150         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   151         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   152         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   153     }
   155     /** Switch: relax some constraints for retrofit mode.
   156      */
   157     boolean relax;
   159     /** Switch: support target-typing inference
   160      */
   161     boolean allowPoly;
   163     /** Switch: support generics?
   164      */
   165     boolean allowGenerics;
   167     /** Switch: allow variable-arity methods.
   168      */
   169     boolean allowVarargs;
   171     /** Switch: support enums?
   172      */
   173     boolean allowEnums;
   175     /** Switch: support boxing and unboxing?
   176      */
   177     boolean allowBoxing;
   179     /** Switch: support covariant result types?
   180      */
   181     boolean allowCovariantReturns;
   183     /** Switch: support lambda expressions ?
   184      */
   185     boolean allowLambda;
   187     /** Switch: support default methods ?
   188      */
   189     boolean allowDefaultMethods;
   191     /** Switch: allow references to surrounding object from anonymous
   192      * objects during constructor call?
   193      */
   194     boolean allowAnonOuterThis;
   196     /** Switch: generates a warning if diamond can be safely applied
   197      *  to a given new expression
   198      */
   199     boolean findDiamonds;
   201     /**
   202      * Internally enables/disables diamond finder feature
   203      */
   204     static final boolean allowDiamondFinder = true;
   206     /**
   207      * Switch: warn about use of variable before declaration?
   208      * RFE: 6425594
   209      */
   210     boolean useBeforeDeclarationWarning;
   212     /**
   213      * Switch: generate warnings whenever an anonymous inner class that is convertible
   214      * to a lambda expression is found
   215      */
   216     boolean identifyLambdaCandidate;
   218     /**
   219      * Switch: allow strings in switch?
   220      */
   221     boolean allowStringsInSwitch;
   223     /**
   224      * Switch: name of source level; used for error reporting.
   225      */
   226     String sourceName;
   228     /** Check kind and type of given tree against protokind and prototype.
   229      *  If check succeeds, store type in tree and return it.
   230      *  If check fails, store errType in tree and return it.
   231      *  No checks are performed if the prototype is a method type.
   232      *  It is not necessary in this case since we know that kind and type
   233      *  are correct.
   234      *
   235      *  @param tree     The tree whose kind and type is checked
   236      *  @param ownkind  The computed kind of the tree
   237      *  @param resultInfo  The expected result of the tree
   238      */
   239     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   240         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   241         Type owntype = found;
   242         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   243             if (inferenceContext.free(found)) {
   244                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   245                     @Override
   246                     public void typesInferred(InferenceContext inferenceContext) {
   247                         ResultInfo pendingResult =
   248                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   249                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   250                     }
   251                 });
   252                 return tree.type = resultInfo.pt;
   253             } else {
   254                 if ((ownkind & ~resultInfo.pkind) == 0) {
   255                     owntype = resultInfo.check(tree, owntype);
   256                 } else {
   257                     log.error(tree.pos(), "unexpected.type",
   258                             kindNames(resultInfo.pkind),
   259                             kindName(ownkind));
   260                     owntype = types.createErrorType(owntype);
   261                 }
   262             }
   263         }
   264         tree.type = owntype;
   265         return owntype;
   266     }
   268     /** Is given blank final variable assignable, i.e. in a scope where it
   269      *  may be assigned to even though it is final?
   270      *  @param v      The blank final variable.
   271      *  @param env    The current environment.
   272      */
   273     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   274         Symbol owner = owner(env);
   275            // owner refers to the innermost variable, method or
   276            // initializer block declaration at this point.
   277         return
   278             v.owner == owner
   279             ||
   280             ((owner.name == names.init ||    // i.e. we are in a constructor
   281               owner.kind == VAR ||           // i.e. we are in a variable initializer
   282               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   283              &&
   284              v.owner == owner.owner
   285              &&
   286              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   287     }
   289     /**
   290      * Return the innermost enclosing owner symbol in a given attribution context
   291      */
   292     Symbol owner(Env<AttrContext> env) {
   293         while (true) {
   294             switch (env.tree.getTag()) {
   295                 case VARDEF:
   296                     //a field can be owner
   297                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   298                     if (vsym.owner.kind == TYP) {
   299                         return vsym;
   300                     }
   301                     break;
   302                 case METHODDEF:
   303                     //method def is always an owner
   304                     return ((JCMethodDecl)env.tree).sym;
   305                 case CLASSDEF:
   306                     //class def is always an owner
   307                     return ((JCClassDecl)env.tree).sym;
   308                 case LAMBDA:
   309                     //a lambda is an owner - return a fresh synthetic method symbol
   310                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   311                 case BLOCK:
   312                     //static/instance init blocks are owner
   313                     Symbol blockSym = env.info.scope.owner;
   314                     if ((blockSym.flags() & BLOCK) != 0) {
   315                         return blockSym;
   316                     }
   317                     break;
   318                 case TOPLEVEL:
   319                     //toplevel is always an owner (for pkge decls)
   320                     return env.info.scope.owner;
   321             }
   322             Assert.checkNonNull(env.next);
   323             env = env.next;
   324         }
   325     }
   327     /** Check that variable can be assigned to.
   328      *  @param pos    The current source code position.
   329      *  @param v      The assigned varaible
   330      *  @param base   If the variable is referred to in a Select, the part
   331      *                to the left of the `.', null otherwise.
   332      *  @param env    The current environment.
   333      */
   334     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   335         if ((v.flags() & FINAL) != 0 &&
   336             ((v.flags() & HASINIT) != 0
   337              ||
   338              !((base == null ||
   339                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   340                isAssignableAsBlankFinal(v, env)))) {
   341             if (v.isResourceVariable()) { //TWR resource
   342                 log.error(pos, "try.resource.may.not.be.assigned", v);
   343             } else {
   344                 log.error(pos, "cant.assign.val.to.final.var", v);
   345             }
   346         }
   347     }
   349     /** Does tree represent a static reference to an identifier?
   350      *  It is assumed that tree is either a SELECT or an IDENT.
   351      *  We have to weed out selects from non-type names here.
   352      *  @param tree    The candidate tree.
   353      */
   354     boolean isStaticReference(JCTree tree) {
   355         if (tree.hasTag(SELECT)) {
   356             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   357             if (lsym == null || lsym.kind != TYP) {
   358                 return false;
   359             }
   360         }
   361         return true;
   362     }
   364     /** Is this symbol a type?
   365      */
   366     static boolean isType(Symbol sym) {
   367         return sym != null && sym.kind == TYP;
   368     }
   370     /** The current `this' symbol.
   371      *  @param env    The current environment.
   372      */
   373     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   374         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   375     }
   377     /** Attribute a parsed identifier.
   378      * @param tree Parsed identifier name
   379      * @param topLevel The toplevel to use
   380      */
   381     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   382         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   383         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   384                                            syms.errSymbol.name,
   385                                            null, null, null, null);
   386         localEnv.enclClass.sym = syms.errSymbol;
   387         return tree.accept(identAttributer, localEnv);
   388     }
   389     // where
   390         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   391         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   392             @Override
   393             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   394                 Symbol site = visit(node.getExpression(), env);
   395                 if (site.kind == ERR)
   396                     return site;
   397                 Name name = (Name)node.getIdentifier();
   398                 if (site.kind == PCK) {
   399                     env.toplevel.packge = (PackageSymbol)site;
   400                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   401                 } else {
   402                     env.enclClass.sym = (ClassSymbol)site;
   403                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   404                 }
   405             }
   407             @Override
   408             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   409                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   410             }
   411         }
   413     public Type coerce(Type etype, Type ttype) {
   414         return cfolder.coerce(etype, ttype);
   415     }
   417     public Type attribType(JCTree node, TypeSymbol sym) {
   418         Env<AttrContext> env = enter.typeEnvs.get(sym);
   419         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   420         return attribTree(node, localEnv, unknownTypeInfo);
   421     }
   423     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   424         // Attribute qualifying package or class.
   425         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   426         return attribTree(s.selected,
   427                        env,
   428                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   429                        Type.noType));
   430     }
   432     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   433         breakTree = tree;
   434         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   435         try {
   436             attribExpr(expr, env);
   437         } catch (BreakAttr b) {
   438             return b.env;
   439         } catch (AssertionError ae) {
   440             if (ae.getCause() instanceof BreakAttr) {
   441                 return ((BreakAttr)(ae.getCause())).env;
   442             } else {
   443                 throw ae;
   444             }
   445         } finally {
   446             breakTree = null;
   447             log.useSource(prev);
   448         }
   449         return env;
   450     }
   452     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   453         breakTree = tree;
   454         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   455         try {
   456             attribStat(stmt, env);
   457         } catch (BreakAttr b) {
   458             return b.env;
   459         } catch (AssertionError ae) {
   460             if (ae.getCause() instanceof BreakAttr) {
   461                 return ((BreakAttr)(ae.getCause())).env;
   462             } else {
   463                 throw ae;
   464             }
   465         } finally {
   466             breakTree = null;
   467             log.useSource(prev);
   468         }
   469         return env;
   470     }
   472     private JCTree breakTree = null;
   474     private static class BreakAttr extends RuntimeException {
   475         static final long serialVersionUID = -6924771130405446405L;
   476         private Env<AttrContext> env;
   477         private BreakAttr(Env<AttrContext> env) {
   478             this.env = copyEnv(env);
   479         }
   481         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
   482             Env<AttrContext> newEnv =
   483                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   484             if (newEnv.outer != null) {
   485                 newEnv.outer = copyEnv(newEnv.outer);
   486             }
   487             return newEnv;
   488         }
   490         private Scope copyScope(Scope sc) {
   491             Scope newScope = new Scope(sc.owner);
   492             List<Symbol> elemsList = List.nil();
   493             while (sc != null) {
   494                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   495                     elemsList = elemsList.prepend(e.sym);
   496                 }
   497                 sc = sc.next;
   498             }
   499             for (Symbol s : elemsList) {
   500                 newScope.enter(s);
   501             }
   502             return newScope;
   503         }
   504     }
   506     class ResultInfo {
   507         final int pkind;
   508         final Type pt;
   509         final CheckContext checkContext;
   511         ResultInfo(int pkind, Type pt) {
   512             this(pkind, pt, chk.basicHandler);
   513         }
   515         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   516             this.pkind = pkind;
   517             this.pt = pt;
   518             this.checkContext = checkContext;
   519         }
   521         protected Type check(final DiagnosticPosition pos, final Type found) {
   522             return chk.checkType(pos, found, pt, checkContext);
   523         }
   525         protected ResultInfo dup(Type newPt) {
   526             return new ResultInfo(pkind, newPt, checkContext);
   527         }
   529         protected ResultInfo dup(CheckContext newContext) {
   530             return new ResultInfo(pkind, pt, newContext);
   531         }
   532     }
   534     class RecoveryInfo extends ResultInfo {
   536         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   537             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   538                 @Override
   539                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   540                     return deferredAttrContext;
   541                 }
   542                 @Override
   543                 public boolean compatible(Type found, Type req, Warner warn) {
   544                     return true;
   545                 }
   546                 @Override
   547                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   548                     chk.basicHandler.report(pos, details);
   549                 }
   550             });
   551         }
   553         @Override
   554         protected Type check(DiagnosticPosition pos, Type found) {
   555             return chk.checkNonVoid(pos, super.check(pos, found));
   556         }
   557     }
   559     final ResultInfo statInfo;
   560     final ResultInfo varInfo;
   561     final ResultInfo unknownExprInfo;
   562     final ResultInfo unknownTypeInfo;
   563     final ResultInfo unknownTypeExprInfo;
   564     final ResultInfo recoveryInfo;
   566     Type pt() {
   567         return resultInfo.pt;
   568     }
   570     int pkind() {
   571         return resultInfo.pkind;
   572     }
   574 /* ************************************************************************
   575  * Visitor methods
   576  *************************************************************************/
   578     /** Visitor argument: the current environment.
   579      */
   580     Env<AttrContext> env;
   582     /** Visitor argument: the currently expected attribution result.
   583      */
   584     ResultInfo resultInfo;
   586     /** Visitor result: the computed type.
   587      */
   588     Type result;
   590     /** Visitor method: attribute a tree, catching any completion failure
   591      *  exceptions. Return the tree's type.
   592      *
   593      *  @param tree    The tree to be visited.
   594      *  @param env     The environment visitor argument.
   595      *  @param resultInfo   The result info visitor argument.
   596      */
   597     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   598         Env<AttrContext> prevEnv = this.env;
   599         ResultInfo prevResult = this.resultInfo;
   600         try {
   601             this.env = env;
   602             this.resultInfo = resultInfo;
   603             tree.accept(this);
   604             if (tree == breakTree &&
   605                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   606                 throw new BreakAttr(env);
   607             }
   608             return result;
   609         } catch (CompletionFailure ex) {
   610             tree.type = syms.errType;
   611             return chk.completionError(tree.pos(), ex);
   612         } finally {
   613             this.env = prevEnv;
   614             this.resultInfo = prevResult;
   615         }
   616     }
   618     /** Derived visitor method: attribute an expression tree.
   619      */
   620     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   621         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   622     }
   624     /** Derived visitor method: attribute an expression tree with
   625      *  no constraints on the computed type.
   626      */
   627     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   628         return attribTree(tree, env, unknownExprInfo);
   629     }
   631     /** Derived visitor method: attribute a type tree.
   632      */
   633     public Type attribType(JCTree tree, Env<AttrContext> env) {
   634         Type result = attribType(tree, env, Type.noType);
   635         return result;
   636     }
   638     /** Derived visitor method: attribute a type tree.
   639      */
   640     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   641         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   642         return result;
   643     }
   645     /** Derived visitor method: attribute a statement or definition tree.
   646      */
   647     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   648         return attribTree(tree, env, statInfo);
   649     }
   651     /** Attribute a list of expressions, returning a list of types.
   652      */
   653     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   654         ListBuffer<Type> ts = new ListBuffer<Type>();
   655         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   656             ts.append(attribExpr(l.head, env, pt));
   657         return ts.toList();
   658     }
   660     /** Attribute a list of statements, returning nothing.
   661      */
   662     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   663         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   664             attribStat(l.head, env);
   665     }
   667     /** Attribute the arguments in a method call, returning a list of types.
   668      */
   669     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   670         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   671         for (JCExpression arg : trees) {
   672             Type argtype = allowPoly && deferredAttr.isDeferred(env, arg) ?
   673                     deferredAttr.new DeferredType(arg, env) :
   674                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
   675             argtypes.append(argtype);
   676         }
   677         return argtypes.toList();
   678     }
   680     /** Attribute a type argument list, returning a list of types.
   681      *  Caller is responsible for calling checkRefTypes.
   682      */
   683     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   684         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   685         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   686             argtypes.append(attribType(l.head, env));
   687         return argtypes.toList();
   688     }
   690     /** Attribute a type argument list, returning a list of types.
   691      *  Check that all the types are references.
   692      */
   693     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   694         List<Type> types = attribAnyTypes(trees, env);
   695         return chk.checkRefTypes(trees, types);
   696     }
   698     /**
   699      * Attribute type variables (of generic classes or methods).
   700      * Compound types are attributed later in attribBounds.
   701      * @param typarams the type variables to enter
   702      * @param env      the current environment
   703      */
   704     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   705         for (JCTypeParameter tvar : typarams) {
   706             TypeVar a = (TypeVar)tvar.type;
   707             a.tsym.flags_field |= UNATTRIBUTED;
   708             a.bound = Type.noType;
   709             if (!tvar.bounds.isEmpty()) {
   710                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   711                 for (JCExpression bound : tvar.bounds.tail)
   712                     bounds = bounds.prepend(attribType(bound, env));
   713                 types.setBounds(a, bounds.reverse());
   714             } else {
   715                 // if no bounds are given, assume a single bound of
   716                 // java.lang.Object.
   717                 types.setBounds(a, List.of(syms.objectType));
   718             }
   719             a.tsym.flags_field &= ~UNATTRIBUTED;
   720         }
   721         for (JCTypeParameter tvar : typarams) {
   722             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   723         }
   724     }
   726     /**
   727      * Attribute the type references in a list of annotations.
   728      */
   729     void attribAnnotationTypes(List<JCAnnotation> annotations,
   730                                Env<AttrContext> env) {
   731         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   732             JCAnnotation a = al.head;
   733             attribType(a.annotationType, env);
   734         }
   735     }
   737     /**
   738      * Attribute a "lazy constant value".
   739      *  @param env         The env for the const value
   740      *  @param initializer The initializer for the const value
   741      *  @param type        The expected type, or null
   742      *  @see VarSymbol#setLazyConstValue
   743      */
   744     public Object attribLazyConstantValue(Env<AttrContext> env,
   745                                       JCTree.JCExpression initializer,
   746                                       Type type) {
   748         // in case no lint value has been set up for this env, scan up
   749         // env stack looking for smallest enclosing env for which it is set.
   750         Env<AttrContext> lintEnv = env;
   751         while (lintEnv.info.lint == null)
   752             lintEnv = lintEnv.next;
   754         // Having found the enclosing lint value, we can initialize the lint value for this class
   755         // ... but ...
   756         // There's a problem with evaluating annotations in the right order, such that
   757         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
   758         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
   759         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
   760         if (env.info.enclVar.annotations.pendingCompletion()) {
   761             env.info.lint = lintEnv.info.lint;
   762         } else {
   763             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
   764                                                       env.info.enclVar.flags());
   765         }
   767         Lint prevLint = chk.setLint(env.info.lint);
   768         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   770         try {
   771             // Use null as symbol to not attach the type annotation to any symbol.
   772             // The initializer will later also be visited and then we'll attach
   773             // to the symbol.
   774             // This prevents having multiple type annotations, just because of
   775             // lazy constant value evaluation.
   776             memberEnter.typeAnnotate(initializer, env, null);
   777             annotate.flush();
   778             Type itype = attribExpr(initializer, env, type);
   779             if (itype.constValue() != null)
   780                 return coerce(itype, type).constValue();
   781             else
   782                 return null;
   783         } finally {
   784             env.info.lint = prevLint;
   785             log.useSource(prevSource);
   786         }
   787     }
   789     /** Attribute type reference in an `extends' or `implements' clause.
   790      *  Supertypes of anonymous inner classes are usually already attributed.
   791      *
   792      *  @param tree              The tree making up the type reference.
   793      *  @param env               The environment current at the reference.
   794      *  @param classExpected     true if only a class is expected here.
   795      *  @param interfaceExpected true if only an interface is expected here.
   796      */
   797     Type attribBase(JCTree tree,
   798                     Env<AttrContext> env,
   799                     boolean classExpected,
   800                     boolean interfaceExpected,
   801                     boolean checkExtensible) {
   802         Type t = tree.type != null ?
   803             tree.type :
   804             attribType(tree, env);
   805         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   806     }
   807     Type checkBase(Type t,
   808                    JCTree tree,
   809                    Env<AttrContext> env,
   810                    boolean classExpected,
   811                    boolean interfaceExpected,
   812                    boolean checkExtensible) {
   813         if (t.isErroneous())
   814             return t;
   815         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   816             // check that type variable is already visible
   817             if (t.getUpperBound() == null) {
   818                 log.error(tree.pos(), "illegal.forward.ref");
   819                 return types.createErrorType(t);
   820             }
   821         } else {
   822             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   823         }
   824         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   825             log.error(tree.pos(), "intf.expected.here");
   826             // return errType is necessary since otherwise there might
   827             // be undetected cycles which cause attribution to loop
   828             return types.createErrorType(t);
   829         } else if (checkExtensible &&
   830                    classExpected &&
   831                    (t.tsym.flags() & INTERFACE) != 0) {
   832                 log.error(tree.pos(), "no.intf.expected.here");
   833             return types.createErrorType(t);
   834         }
   835         if (checkExtensible &&
   836             ((t.tsym.flags() & FINAL) != 0)) {
   837             log.error(tree.pos(),
   838                       "cant.inherit.from.final", t.tsym);
   839         }
   840         chk.checkNonCyclic(tree.pos(), t);
   841         return t;
   842     }
   844     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   845         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   846         id.type = env.info.scope.owner.type;
   847         id.sym = env.info.scope.owner;
   848         return id.type;
   849     }
   851     public void visitClassDef(JCClassDecl tree) {
   852         // Local classes have not been entered yet, so we need to do it now:
   853         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   854             enter.classEnter(tree, env);
   856         ClassSymbol c = tree.sym;
   857         if (c == null) {
   858             // exit in case something drastic went wrong during enter.
   859             result = null;
   860         } else {
   861             // make sure class has been completed:
   862             c.complete();
   864             // If this class appears as an anonymous class
   865             // in a superclass constructor call where
   866             // no explicit outer instance is given,
   867             // disable implicit outer instance from being passed.
   868             // (This would be an illegal access to "this before super").
   869             if (env.info.isSelfCall &&
   870                 env.tree.hasTag(NEWCLASS) &&
   871                 ((JCNewClass) env.tree).encl == null)
   872             {
   873                 c.flags_field |= NOOUTERTHIS;
   874             }
   875             attribClass(tree.pos(), c);
   876             result = tree.type = c.type;
   877         }
   878     }
   880     public void visitMethodDef(JCMethodDecl tree) {
   881         MethodSymbol m = tree.sym;
   882         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   884         Lint lint = env.info.lint.augment(m.annotations, m.flags());
   885         Lint prevLint = chk.setLint(lint);
   886         MethodSymbol prevMethod = chk.setMethod(m);
   887         try {
   888             deferredLintHandler.flush(tree.pos());
   889             chk.checkDeprecatedAnnotation(tree.pos(), m);
   892             // Create a new environment with local scope
   893             // for attributing the method.
   894             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   895             localEnv.info.lint = lint;
   897             attribStats(tree.typarams, localEnv);
   899             // If we override any other methods, check that we do so properly.
   900             // JLS ???
   901             if (m.isStatic()) {
   902                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   903             } else {
   904                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   905             }
   906             chk.checkOverride(tree, m);
   908             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   909                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   910             }
   912             // Enter all type parameters into the local method scope.
   913             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   914                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   916             ClassSymbol owner = env.enclClass.sym;
   917             if ((owner.flags() & ANNOTATION) != 0 &&
   918                 tree.params.nonEmpty())
   919                 log.error(tree.params.head.pos(),
   920                           "intf.annotation.members.cant.have.params");
   922             // Attribute all value parameters.
   923             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   924                 attribStat(l.head, localEnv);
   925             }
   927             chk.checkVarargsMethodDecl(localEnv, tree);
   929             // Check that type parameters are well-formed.
   930             chk.validate(tree.typarams, localEnv);
   932             // Check that result type is well-formed.
   933             chk.validate(tree.restype, localEnv);
   935             // Check that receiver type is well-formed.
   936             if (tree.recvparam != null) {
   937                 // Use a new environment to check the receiver parameter.
   938                 // Otherwise I get "might not have been initialized" errors.
   939                 // Is there a better way?
   940                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   941                 attribType(tree.recvparam, newEnv);
   942                 chk.validate(tree.recvparam, newEnv);
   943             }
   945             // annotation method checks
   946             if ((owner.flags() & ANNOTATION) != 0) {
   947                 // annotation method cannot have throws clause
   948                 if (tree.thrown.nonEmpty()) {
   949                     log.error(tree.thrown.head.pos(),
   950                             "throws.not.allowed.in.intf.annotation");
   951                 }
   952                 // annotation method cannot declare type-parameters
   953                 if (tree.typarams.nonEmpty()) {
   954                     log.error(tree.typarams.head.pos(),
   955                             "intf.annotation.members.cant.have.type.params");
   956                 }
   957                 // validate annotation method's return type (could be an annotation type)
   958                 chk.validateAnnotationType(tree.restype);
   959                 // ensure that annotation method does not clash with members of Object/Annotation
   960                 chk.validateAnnotationMethod(tree.pos(), m);
   962                 if (tree.defaultValue != null) {
   963                     // if default value is an annotation, check it is a well-formed
   964                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   965                     chk.validateAnnotationTree(tree.defaultValue);
   966                 }
   967             }
   969             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   970                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   972             if (tree.body == null) {
   973                 // Empty bodies are only allowed for
   974                 // abstract, native, or interface methods, or for methods
   975                 // in a retrofit signature class.
   976                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   977                     !relax)
   978                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   979                 if (tree.defaultValue != null) {
   980                     if ((owner.flags() & ANNOTATION) == 0)
   981                         log.error(tree.pos(),
   982                                   "default.allowed.in.intf.annotation.member");
   983                 }
   984             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   985                 if ((owner.flags() & INTERFACE) != 0) {
   986                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   987                 } else {
   988                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   989                 }
   990             } else if ((tree.mods.flags & NATIVE) != 0) {
   991                 log.error(tree.pos(), "native.meth.cant.have.body");
   992             } else {
   993                 // Add an implicit super() call unless an explicit call to
   994                 // super(...) or this(...) is given
   995                 // or we are compiling class java.lang.Object.
   996                 if (tree.name == names.init && owner.type != syms.objectType) {
   997                     JCBlock body = tree.body;
   998                     if (body.stats.isEmpty() ||
   999                         !TreeInfo.isSelfCall(body.stats.head)) {
  1000                         body.stats = body.stats.
  1001                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1002                                                           List.<Type>nil(),
  1003                                                           List.<JCVariableDecl>nil(),
  1004                                                           false));
  1005                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1006                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1007                                TreeInfo.isSuperCall(body.stats.head)) {
  1008                         // enum constructors are not allowed to call super
  1009                         // directly, so make sure there aren't any super calls
  1010                         // in enum constructors, except in the compiler
  1011                         // generated one.
  1012                         log.error(tree.body.stats.head.pos(),
  1013                                   "call.to.super.not.allowed.in.enum.ctor",
  1014                                   env.enclClass.sym);
  1018                 // Attribute all type annotations in the body
  1019                 memberEnter.typeAnnotate(tree.body, localEnv, m);
  1020                 annotate.flush();
  1022                 // Attribute method body.
  1023                 attribStat(tree.body, localEnv);
  1026             localEnv.info.scope.leave();
  1027             result = tree.type = m.type;
  1028             chk.validateAnnotations(tree.mods.annotations, m);
  1030         finally {
  1031             chk.setLint(prevLint);
  1032             chk.setMethod(prevMethod);
  1036     public void visitVarDef(JCVariableDecl tree) {
  1037         // Local variables have not been entered yet, so we need to do it now:
  1038         if (env.info.scope.owner.kind == MTH) {
  1039             if (tree.sym != null) {
  1040                 // parameters have already been entered
  1041                 env.info.scope.enter(tree.sym);
  1042             } else {
  1043                 memberEnter.memberEnter(tree, env);
  1044                 annotate.flush();
  1046         } else {
  1047             if (tree.init != null) {
  1048                 // Field initializer expression need to be entered.
  1049                 memberEnter.typeAnnotate(tree.init, env, tree.sym);
  1050                 annotate.flush();
  1054         VarSymbol v = tree.sym;
  1055         Lint lint = env.info.lint.augment(v.annotations, v.flags());
  1056         Lint prevLint = chk.setLint(lint);
  1058         // Check that the variable's declared type is well-formed.
  1059         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1060                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1061                 (tree.sym.flags() & PARAMETER) != 0;
  1062         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1063         deferredLintHandler.flush(tree.pos());
  1065         try {
  1066             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1068             if (tree.init != null) {
  1069                 if ((v.flags_field & FINAL) != 0 &&
  1070                         !tree.init.hasTag(NEWCLASS) &&
  1071                         !tree.init.hasTag(LAMBDA) &&
  1072                         !tree.init.hasTag(REFERENCE)) {
  1073                     // In this case, `v' is final.  Ensure that it's initializer is
  1074                     // evaluated.
  1075                     v.getConstValue(); // ensure initializer is evaluated
  1076                 } else {
  1077                     // Attribute initializer in a new environment
  1078                     // with the declared variable as owner.
  1079                     // Check that initializer conforms to variable's declared type.
  1080                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1081                     initEnv.info.lint = lint;
  1082                     // In order to catch self-references, we set the variable's
  1083                     // declaration position to maximal possible value, effectively
  1084                     // marking the variable as undefined.
  1085                     initEnv.info.enclVar = v;
  1086                     attribExpr(tree.init, initEnv, v.type);
  1089             result = tree.type = v.type;
  1090             chk.validateAnnotations(tree.mods.annotations, v);
  1092         finally {
  1093             chk.setLint(prevLint);
  1097     public void visitSkip(JCSkip tree) {
  1098         result = null;
  1101     public void visitBlock(JCBlock tree) {
  1102         if (env.info.scope.owner.kind == TYP) {
  1103             // Block is a static or instance initializer;
  1104             // let the owner of the environment be a freshly
  1105             // created BLOCK-method.
  1106             Env<AttrContext> localEnv =
  1107                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1108             localEnv.info.scope.owner =
  1109                 new MethodSymbol(tree.flags | BLOCK |
  1110                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1111                     env.info.scope.owner);
  1112             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1114             // Attribute all type annotations in the block
  1115             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner);
  1116             annotate.flush();
  1119                 // Store init and clinit type annotations with the ClassSymbol
  1120                 // to allow output in Gen.normalizeDefs.
  1121                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1122                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1123                 if ((tree.flags & STATIC) != 0) {
  1124                     cs.annotations.appendClassInitTypeAttributes(tas);
  1125                 } else {
  1126                     cs.annotations.appendInitTypeAttributes(tas);
  1130             attribStats(tree.stats, localEnv);
  1131         } else {
  1132             // Create a new local environment with a local scope.
  1133             Env<AttrContext> localEnv =
  1134                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1135             try {
  1136                 attribStats(tree.stats, localEnv);
  1137             } finally {
  1138                 localEnv.info.scope.leave();
  1141         result = null;
  1144     public void visitDoLoop(JCDoWhileLoop tree) {
  1145         attribStat(tree.body, env.dup(tree));
  1146         attribExpr(tree.cond, env, syms.booleanType);
  1147         result = null;
  1150     public void visitWhileLoop(JCWhileLoop tree) {
  1151         attribExpr(tree.cond, env, syms.booleanType);
  1152         attribStat(tree.body, env.dup(tree));
  1153         result = null;
  1156     public void visitForLoop(JCForLoop tree) {
  1157         Env<AttrContext> loopEnv =
  1158             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1159         try {
  1160             attribStats(tree.init, loopEnv);
  1161             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1162             loopEnv.tree = tree; // before, we were not in loop!
  1163             attribStats(tree.step, loopEnv);
  1164             attribStat(tree.body, loopEnv);
  1165             result = null;
  1167         finally {
  1168             loopEnv.info.scope.leave();
  1172     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1173         Env<AttrContext> loopEnv =
  1174             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1175         try {
  1176             attribStat(tree.var, loopEnv);
  1177             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1178             chk.checkNonVoid(tree.pos(), exprType);
  1179             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1180             if (elemtype == null) {
  1181                 // or perhaps expr implements Iterable<T>?
  1182                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1183                 if (base == null) {
  1184                     log.error(tree.expr.pos(),
  1185                             "foreach.not.applicable.to.type",
  1186                             exprType,
  1187                             diags.fragment("type.req.array.or.iterable"));
  1188                     elemtype = types.createErrorType(exprType);
  1189                 } else {
  1190                     List<Type> iterableParams = base.allparams();
  1191                     elemtype = iterableParams.isEmpty()
  1192                         ? syms.objectType
  1193                         : types.upperBound(iterableParams.head);
  1196             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1197             loopEnv.tree = tree; // before, we were not in loop!
  1198             attribStat(tree.body, loopEnv);
  1199             result = null;
  1201         finally {
  1202             loopEnv.info.scope.leave();
  1206     public void visitLabelled(JCLabeledStatement tree) {
  1207         // Check that label is not used in an enclosing statement
  1208         Env<AttrContext> env1 = env;
  1209         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1210             if (env1.tree.hasTag(LABELLED) &&
  1211                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1212                 log.error(tree.pos(), "label.already.in.use",
  1213                           tree.label);
  1214                 break;
  1216             env1 = env1.next;
  1219         attribStat(tree.body, env.dup(tree));
  1220         result = null;
  1223     public void visitSwitch(JCSwitch tree) {
  1224         Type seltype = attribExpr(tree.selector, env);
  1226         Env<AttrContext> switchEnv =
  1227             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1229         try {
  1231             boolean enumSwitch =
  1232                 allowEnums &&
  1233                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1234             boolean stringSwitch = false;
  1235             if (types.isSameType(seltype, syms.stringType)) {
  1236                 if (allowStringsInSwitch) {
  1237                     stringSwitch = true;
  1238                 } else {
  1239                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1242             if (!enumSwitch && !stringSwitch)
  1243                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1245             // Attribute all cases and
  1246             // check that there are no duplicate case labels or default clauses.
  1247             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1248             boolean hasDefault = false;      // Is there a default label?
  1249             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1250                 JCCase c = l.head;
  1251                 Env<AttrContext> caseEnv =
  1252                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1253                 try {
  1254                     if (c.pat != null) {
  1255                         if (enumSwitch) {
  1256                             Symbol sym = enumConstant(c.pat, seltype);
  1257                             if (sym == null) {
  1258                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1259                             } else if (!labels.add(sym)) {
  1260                                 log.error(c.pos(), "duplicate.case.label");
  1262                         } else {
  1263                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1264                             if (!pattype.hasTag(ERROR)) {
  1265                                 if (pattype.constValue() == null) {
  1266                                     log.error(c.pat.pos(),
  1267                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1268                                 } else if (labels.contains(pattype.constValue())) {
  1269                                     log.error(c.pos(), "duplicate.case.label");
  1270                                 } else {
  1271                                     labels.add(pattype.constValue());
  1275                     } else if (hasDefault) {
  1276                         log.error(c.pos(), "duplicate.default.label");
  1277                     } else {
  1278                         hasDefault = true;
  1280                     attribStats(c.stats, caseEnv);
  1281                 } finally {
  1282                     caseEnv.info.scope.leave();
  1283                     addVars(c.stats, switchEnv.info.scope);
  1287             result = null;
  1289         finally {
  1290             switchEnv.info.scope.leave();
  1293     // where
  1294         /** Add any variables defined in stats to the switch scope. */
  1295         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1296             for (;stats.nonEmpty(); stats = stats.tail) {
  1297                 JCTree stat = stats.head;
  1298                 if (stat.hasTag(VARDEF))
  1299                     switchScope.enter(((JCVariableDecl) stat).sym);
  1302     // where
  1303     /** Return the selected enumeration constant symbol, or null. */
  1304     private Symbol enumConstant(JCTree tree, Type enumType) {
  1305         if (!tree.hasTag(IDENT)) {
  1306             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1307             return syms.errSymbol;
  1309         JCIdent ident = (JCIdent)tree;
  1310         Name name = ident.name;
  1311         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1312              e.scope != null; e = e.next()) {
  1313             if (e.sym.kind == VAR) {
  1314                 Symbol s = ident.sym = e.sym;
  1315                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1316                 ident.type = s.type;
  1317                 return ((s.flags_field & Flags.ENUM) == 0)
  1318                     ? null : s;
  1321         return null;
  1324     public void visitSynchronized(JCSynchronized tree) {
  1325         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1326         attribStat(tree.body, env);
  1327         result = null;
  1330     public void visitTry(JCTry tree) {
  1331         // Create a new local environment with a local
  1332         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1333         try {
  1334             boolean isTryWithResource = tree.resources.nonEmpty();
  1335             // Create a nested environment for attributing the try block if needed
  1336             Env<AttrContext> tryEnv = isTryWithResource ?
  1337                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1338                 localEnv;
  1339             try {
  1340                 // Attribute resource declarations
  1341                 for (JCTree resource : tree.resources) {
  1342                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1343                         @Override
  1344                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1345                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1347                     };
  1348                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1349                     if (resource.hasTag(VARDEF)) {
  1350                         attribStat(resource, tryEnv);
  1351                         twrResult.check(resource, resource.type);
  1353                         //check that resource type cannot throw InterruptedException
  1354                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1356                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1357                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1358                     } else {
  1359                         attribTree(resource, tryEnv, twrResult);
  1362                 // Attribute body
  1363                 attribStat(tree.body, tryEnv);
  1364             } finally {
  1365                 if (isTryWithResource)
  1366                     tryEnv.info.scope.leave();
  1369             // Attribute catch clauses
  1370             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1371                 JCCatch c = l.head;
  1372                 Env<AttrContext> catchEnv =
  1373                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1374                 try {
  1375                     Type ctype = attribStat(c.param, catchEnv);
  1376                     if (TreeInfo.isMultiCatch(c)) {
  1377                         //multi-catch parameter is implicitly marked as final
  1378                         c.param.sym.flags_field |= FINAL | UNION;
  1380                     if (c.param.sym.kind == Kinds.VAR) {
  1381                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1383                     chk.checkType(c.param.vartype.pos(),
  1384                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1385                                   syms.throwableType);
  1386                     attribStat(c.body, catchEnv);
  1387                 } finally {
  1388                     catchEnv.info.scope.leave();
  1392             // Attribute finalizer
  1393             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1394             result = null;
  1396         finally {
  1397             localEnv.info.scope.leave();
  1401     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1402         if (!resource.isErroneous() &&
  1403             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1404             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1405             Symbol close = syms.noSymbol;
  1406             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1407             try {
  1408                 close = rs.resolveQualifiedMethod(pos,
  1409                         env,
  1410                         resource,
  1411                         names.close,
  1412                         List.<Type>nil(),
  1413                         List.<Type>nil());
  1415             finally {
  1416                 log.popDiagnosticHandler(discardHandler);
  1418             if (close.kind == MTH &&
  1419                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1420                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1421                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1422                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1427     public void visitConditional(JCConditional tree) {
  1428         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1430         tree.polyKind = (!allowPoly ||
  1431                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1432                 isBooleanOrNumeric(env, tree)) ?
  1433                 PolyKind.STANDALONE : PolyKind.POLY;
  1435         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1436             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1437             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1438             result = tree.type = types.createErrorType(resultInfo.pt);
  1439             return;
  1442         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1443                 unknownExprInfo :
  1444                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1445                     //this will use enclosing check context to check compatibility of
  1446                     //subexpression against target type; if we are in a method check context,
  1447                     //depending on whether boxing is allowed, we could have incompatibilities
  1448                     @Override
  1449                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1450                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1452                 });
  1454         Type truetype = attribTree(tree.truepart, env, condInfo);
  1455         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1457         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1458         if (condtype.constValue() != null &&
  1459                 truetype.constValue() != null &&
  1460                 falsetype.constValue() != null &&
  1461                 !owntype.hasTag(NONE)) {
  1462             //constant folding
  1463             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1465         result = check(tree, owntype, VAL, resultInfo);
  1467     //where
  1468         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1469             switch (tree.getTag()) {
  1470                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1471                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1472                               ((JCLiteral)tree).typetag == BOT;
  1473                 case LAMBDA: case REFERENCE: return false;
  1474                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1475                 case CONDEXPR:
  1476                     JCConditional condTree = (JCConditional)tree;
  1477                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1478                             isBooleanOrNumeric(env, condTree.falsepart);
  1479                 case APPLY:
  1480                     JCMethodInvocation speculativeMethodTree =
  1481                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1482                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1483                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1484                 case NEWCLASS:
  1485                     JCExpression className =
  1486                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1487                     JCExpression speculativeNewClassTree =
  1488                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1489                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1490                 default:
  1491                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1492                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1493                     return speculativeType.isPrimitive();
  1496         //where
  1497             TreeTranslator removeClassParams = new TreeTranslator() {
  1498                 @Override
  1499                 public void visitTypeApply(JCTypeApply tree) {
  1500                     result = translate(tree.clazz);
  1502             };
  1504         /** Compute the type of a conditional expression, after
  1505          *  checking that it exists.  See JLS 15.25. Does not take into
  1506          *  account the special case where condition and both arms
  1507          *  are constants.
  1509          *  @param pos      The source position to be used for error
  1510          *                  diagnostics.
  1511          *  @param thentype The type of the expression's then-part.
  1512          *  @param elsetype The type of the expression's else-part.
  1513          */
  1514         private Type condType(DiagnosticPosition pos,
  1515                                Type thentype, Type elsetype) {
  1516             // If same type, that is the result
  1517             if (types.isSameType(thentype, elsetype))
  1518                 return thentype.baseType();
  1520             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1521                 ? thentype : types.unboxedType(thentype);
  1522             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1523                 ? elsetype : types.unboxedType(elsetype);
  1525             // Otherwise, if both arms can be converted to a numeric
  1526             // type, return the least numeric type that fits both arms
  1527             // (i.e. return larger of the two, or return int if one
  1528             // arm is short, the other is char).
  1529             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1530                 // If one arm has an integer subrange type (i.e., byte,
  1531                 // short, or char), and the other is an integer constant
  1532                 // that fits into the subrange, return the subrange type.
  1533                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
  1534                     types.isAssignable(elseUnboxed, thenUnboxed))
  1535                     return thenUnboxed.baseType();
  1536                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
  1537                     types.isAssignable(thenUnboxed, elseUnboxed))
  1538                     return elseUnboxed.baseType();
  1540                 for (TypeTag tag : TypeTag.values()) {
  1541                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
  1542                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1543                     if (candidate != null &&
  1544                         candidate.isPrimitive() &&
  1545                         types.isSubtype(thenUnboxed, candidate) &&
  1546                         types.isSubtype(elseUnboxed, candidate))
  1547                         return candidate;
  1551             // Those were all the cases that could result in a primitive
  1552             if (allowBoxing) {
  1553                 if (thentype.isPrimitive())
  1554                     thentype = types.boxedClass(thentype).type;
  1555                 if (elsetype.isPrimitive())
  1556                     elsetype = types.boxedClass(elsetype).type;
  1559             if (types.isSubtype(thentype, elsetype))
  1560                 return elsetype.baseType();
  1561             if (types.isSubtype(elsetype, thentype))
  1562                 return thentype.baseType();
  1564             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1565                 log.error(pos, "neither.conditional.subtype",
  1566                           thentype, elsetype);
  1567                 return thentype.baseType();
  1570             // both are known to be reference types.  The result is
  1571             // lub(thentype,elsetype). This cannot fail, as it will
  1572             // always be possible to infer "Object" if nothing better.
  1573             return types.lub(thentype.baseType(), elsetype.baseType());
  1576     public void visitIf(JCIf tree) {
  1577         attribExpr(tree.cond, env, syms.booleanType);
  1578         attribStat(tree.thenpart, env);
  1579         if (tree.elsepart != null)
  1580             attribStat(tree.elsepart, env);
  1581         chk.checkEmptyIf(tree);
  1582         result = null;
  1585     public void visitExec(JCExpressionStatement tree) {
  1586         //a fresh environment is required for 292 inference to work properly ---
  1587         //see Infer.instantiatePolymorphicSignatureInstance()
  1588         Env<AttrContext> localEnv = env.dup(tree);
  1589         attribExpr(tree.expr, localEnv);
  1590         result = null;
  1593     public void visitBreak(JCBreak tree) {
  1594         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1595         result = null;
  1598     public void visitContinue(JCContinue tree) {
  1599         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1600         result = null;
  1602     //where
  1603         /** Return the target of a break or continue statement, if it exists,
  1604          *  report an error if not.
  1605          *  Note: The target of a labelled break or continue is the
  1606          *  (non-labelled) statement tree referred to by the label,
  1607          *  not the tree representing the labelled statement itself.
  1609          *  @param pos     The position to be used for error diagnostics
  1610          *  @param tag     The tag of the jump statement. This is either
  1611          *                 Tree.BREAK or Tree.CONTINUE.
  1612          *  @param label   The label of the jump statement, or null if no
  1613          *                 label is given.
  1614          *  @param env     The environment current at the jump statement.
  1615          */
  1616         private JCTree findJumpTarget(DiagnosticPosition pos,
  1617                                     JCTree.Tag tag,
  1618                                     Name label,
  1619                                     Env<AttrContext> env) {
  1620             // Search environments outwards from the point of jump.
  1621             Env<AttrContext> env1 = env;
  1622             LOOP:
  1623             while (env1 != null) {
  1624                 switch (env1.tree.getTag()) {
  1625                     case LABELLED:
  1626                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1627                         if (label == labelled.label) {
  1628                             // If jump is a continue, check that target is a loop.
  1629                             if (tag == CONTINUE) {
  1630                                 if (!labelled.body.hasTag(DOLOOP) &&
  1631                                         !labelled.body.hasTag(WHILELOOP) &&
  1632                                         !labelled.body.hasTag(FORLOOP) &&
  1633                                         !labelled.body.hasTag(FOREACHLOOP))
  1634                                     log.error(pos, "not.loop.label", label);
  1635                                 // Found labelled statement target, now go inwards
  1636                                 // to next non-labelled tree.
  1637                                 return TreeInfo.referencedStatement(labelled);
  1638                             } else {
  1639                                 return labelled;
  1642                         break;
  1643                     case DOLOOP:
  1644                     case WHILELOOP:
  1645                     case FORLOOP:
  1646                     case FOREACHLOOP:
  1647                         if (label == null) return env1.tree;
  1648                         break;
  1649                     case SWITCH:
  1650                         if (label == null && tag == BREAK) return env1.tree;
  1651                         break;
  1652                     case LAMBDA:
  1653                     case METHODDEF:
  1654                     case CLASSDEF:
  1655                         break LOOP;
  1656                     default:
  1658                 env1 = env1.next;
  1660             if (label != null)
  1661                 log.error(pos, "undef.label", label);
  1662             else if (tag == CONTINUE)
  1663                 log.error(pos, "cont.outside.loop");
  1664             else
  1665                 log.error(pos, "break.outside.switch.loop");
  1666             return null;
  1669     public void visitReturn(JCReturn tree) {
  1670         // Check that there is an enclosing method which is
  1671         // nested within than the enclosing class.
  1672         if (env.info.returnResult == null) {
  1673             log.error(tree.pos(), "ret.outside.meth");
  1674         } else {
  1675             // Attribute return expression, if it exists, and check that
  1676             // it conforms to result type of enclosing method.
  1677             if (tree.expr != null) {
  1678                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1679                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1680                               diags.fragment("unexpected.ret.val"));
  1682                 attribTree(tree.expr, env, env.info.returnResult);
  1683             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
  1684                 env.info.returnResult.checkContext.report(tree.pos(),
  1685                               diags.fragment("missing.ret.val"));
  1688         result = null;
  1691     public void visitThrow(JCThrow tree) {
  1692         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1693         if (allowPoly) {
  1694             chk.checkType(tree, owntype, syms.throwableType);
  1696         result = null;
  1699     public void visitAssert(JCAssert tree) {
  1700         attribExpr(tree.cond, env, syms.booleanType);
  1701         if (tree.detail != null) {
  1702             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1704         result = null;
  1707      /** Visitor method for method invocations.
  1708      *  NOTE: The method part of an application will have in its type field
  1709      *        the return type of the method, not the method's type itself!
  1710      */
  1711     public void visitApply(JCMethodInvocation tree) {
  1712         // The local environment of a method application is
  1713         // a new environment nested in the current one.
  1714         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1716         // The types of the actual method arguments.
  1717         List<Type> argtypes;
  1719         // The types of the actual method type arguments.
  1720         List<Type> typeargtypes = null;
  1722         Name methName = TreeInfo.name(tree.meth);
  1724         boolean isConstructorCall =
  1725             methName == names._this || methName == names._super;
  1727         if (isConstructorCall) {
  1728             // We are seeing a ...this(...) or ...super(...) call.
  1729             // Check that this is the first statement in a constructor.
  1730             if (checkFirstConstructorStat(tree, env)) {
  1732                 // Record the fact
  1733                 // that this is a constructor call (using isSelfCall).
  1734                 localEnv.info.isSelfCall = true;
  1736                 // Attribute arguments, yielding list of argument types.
  1737                 argtypes = attribArgs(tree.args, localEnv);
  1738                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1740                 // Variable `site' points to the class in which the called
  1741                 // constructor is defined.
  1742                 Type site = env.enclClass.sym.type;
  1743                 if (methName == names._super) {
  1744                     if (site == syms.objectType) {
  1745                         log.error(tree.meth.pos(), "no.superclass", site);
  1746                         site = types.createErrorType(syms.objectType);
  1747                     } else {
  1748                         site = types.supertype(site);
  1752                 if (site.hasTag(CLASS)) {
  1753                     Type encl = site.getEnclosingType();
  1754                     while (encl != null && encl.hasTag(TYPEVAR))
  1755                         encl = encl.getUpperBound();
  1756                     if (encl.hasTag(CLASS)) {
  1757                         // we are calling a nested class
  1759                         if (tree.meth.hasTag(SELECT)) {
  1760                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1762                             // We are seeing a prefixed call, of the form
  1763                             //     <expr>.super(...).
  1764                             // Check that the prefix expression conforms
  1765                             // to the outer instance type of the class.
  1766                             chk.checkRefType(qualifier.pos(),
  1767                                              attribExpr(qualifier, localEnv,
  1768                                                         encl));
  1769                         } else if (methName == names._super) {
  1770                             // qualifier omitted; check for existence
  1771                             // of an appropriate implicit qualifier.
  1772                             rs.resolveImplicitThis(tree.meth.pos(),
  1773                                                    localEnv, site, true);
  1775                     } else if (tree.meth.hasTag(SELECT)) {
  1776                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1777                                   site.tsym);
  1780                     // if we're calling a java.lang.Enum constructor,
  1781                     // prefix the implicit String and int parameters
  1782                     if (site.tsym == syms.enumSym && allowEnums)
  1783                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1785                     // Resolve the called constructor under the assumption
  1786                     // that we are referring to a superclass instance of the
  1787                     // current instance (JLS ???).
  1788                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1789                     localEnv.info.selectSuper = true;
  1790                     localEnv.info.pendingResolutionPhase = null;
  1791                     Symbol sym = rs.resolveConstructor(
  1792                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1793                     localEnv.info.selectSuper = selectSuperPrev;
  1795                     // Set method symbol to resolved constructor...
  1796                     TreeInfo.setSymbol(tree.meth, sym);
  1798                     // ...and check that it is legal in the current context.
  1799                     // (this will also set the tree's type)
  1800                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1801                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1803                 // Otherwise, `site' is an error type and we do nothing
  1805             result = tree.type = syms.voidType;
  1806         } else {
  1807             // Otherwise, we are seeing a regular method call.
  1808             // Attribute the arguments, yielding list of argument types, ...
  1809             argtypes = attribArgs(tree.args, localEnv);
  1810             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1812             // ... and attribute the method using as a prototype a methodtype
  1813             // whose formal argument types is exactly the list of actual
  1814             // arguments (this will also set the method symbol).
  1815             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1816             localEnv.info.pendingResolutionPhase = null;
  1817             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
  1819             // Compute the result type.
  1820             Type restype = mtype.getReturnType();
  1821             if (restype.hasTag(WILDCARD))
  1822                 throw new AssertionError(mtype);
  1824             Type qualifier = (tree.meth.hasTag(SELECT))
  1825                     ? ((JCFieldAccess) tree.meth).selected.type
  1826                     : env.enclClass.sym.type;
  1827             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1829             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1831             // Check that value of resulting type is admissible in the
  1832             // current context.  Also, capture the return type
  1833             result = check(tree, capture(restype), VAL, resultInfo);
  1835             if (localEnv.info.lastResolveVarargs())
  1836                 Assert.check(result.isErroneous() || tree.varargsElement != null);
  1838         chk.validate(tree.typeargs, localEnv);
  1840     //where
  1841         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1842             if (allowCovariantReturns &&
  1843                     methodName == names.clone &&
  1844                 types.isArray(qualifierType)) {
  1845                 // as a special case, array.clone() has a result that is
  1846                 // the same as static type of the array being cloned
  1847                 return qualifierType;
  1848             } else if (allowGenerics &&
  1849                     methodName == names.getClass &&
  1850                     argtypes.isEmpty()) {
  1851                 // as a special case, x.getClass() has type Class<? extends |X|>
  1852                 return new ClassType(restype.getEnclosingType(),
  1853                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1854                                                                BoundKind.EXTENDS,
  1855                                                                syms.boundClass)),
  1856                               restype.tsym);
  1857             } else {
  1858                 return restype;
  1862         /** Check that given application node appears as first statement
  1863          *  in a constructor call.
  1864          *  @param tree   The application node
  1865          *  @param env    The environment current at the application.
  1866          */
  1867         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1868             JCMethodDecl enclMethod = env.enclMethod;
  1869             if (enclMethod != null && enclMethod.name == names.init) {
  1870                 JCBlock body = enclMethod.body;
  1871                 if (body.stats.head.hasTag(EXEC) &&
  1872                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1873                     return true;
  1875             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1876                       TreeInfo.name(tree.meth));
  1877             return false;
  1880         /** Obtain a method type with given argument types.
  1881          */
  1882         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1883             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1884             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1887     public void visitNewClass(final JCNewClass tree) {
  1888         Type owntype = types.createErrorType(tree.type);
  1890         // The local environment of a class creation is
  1891         // a new environment nested in the current one.
  1892         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1894         // The anonymous inner class definition of the new expression,
  1895         // if one is defined by it.
  1896         JCClassDecl cdef = tree.def;
  1898         // If enclosing class is given, attribute it, and
  1899         // complete class name to be fully qualified
  1900         JCExpression clazz = tree.clazz; // Class field following new
  1901         JCExpression clazzid;            // Identifier in class field
  1902         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1903         annoclazzid = null;
  1905         if (clazz.hasTag(TYPEAPPLY)) {
  1906             clazzid = ((JCTypeApply) clazz).clazz;
  1907             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1908                 annoclazzid = (JCAnnotatedType) clazzid;
  1909                 clazzid = annoclazzid.underlyingType;
  1911         } else {
  1912             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1913                 annoclazzid = (JCAnnotatedType) clazz;
  1914                 clazzid = annoclazzid.underlyingType;
  1915             } else {
  1916                 clazzid = clazz;
  1920         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1922         if (tree.encl != null) {
  1923             // We are seeing a qualified new, of the form
  1924             //    <expr>.new C <...> (...) ...
  1925             // In this case, we let clazz stand for the name of the
  1926             // allocated class C prefixed with the type of the qualifier
  1927             // expression, so that we can
  1928             // resolve it with standard techniques later. I.e., if
  1929             // <expr> has type T, then <expr>.new C <...> (...)
  1930             // yields a clazz T.C.
  1931             Type encltype = chk.checkRefType(tree.encl.pos(),
  1932                                              attribExpr(tree.encl, env));
  1933             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1934             // from expr to the combined type, or not? Yes, do this.
  1935             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1936                                                  ((JCIdent) clazzid).name);
  1938             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1939                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1940                 List<JCAnnotation> annos = annoType.annotations;
  1942                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1943                     clazzid1 = make.at(tree.pos).
  1944                         TypeApply(clazzid1,
  1945                                   ((JCTypeApply) clazz).arguments);
  1948                 clazzid1 = make.at(tree.pos).
  1949                     AnnotatedType(annos, clazzid1);
  1950             } else if (clazz.hasTag(TYPEAPPLY)) {
  1951                 clazzid1 = make.at(tree.pos).
  1952                     TypeApply(clazzid1,
  1953                               ((JCTypeApply) clazz).arguments);
  1956             clazz = clazzid1;
  1959         // Attribute clazz expression and store
  1960         // symbol + type back into the attributed tree.
  1961         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1962             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1963             attribType(clazz, env);
  1965         clazztype = chk.checkDiamond(tree, clazztype);
  1966         chk.validate(clazz, localEnv);
  1967         if (tree.encl != null) {
  1968             // We have to work in this case to store
  1969             // symbol + type back into the attributed tree.
  1970             tree.clazz.type = clazztype;
  1971             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1972             clazzid.type = ((JCIdent) clazzid).sym.type;
  1973             if (annoclazzid != null) {
  1974                 annoclazzid.type = clazzid.type;
  1976             if (!clazztype.isErroneous()) {
  1977                 if (cdef != null && clazztype.tsym.isInterface()) {
  1978                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1979                 } else if (clazztype.tsym.isStatic()) {
  1980                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1983         } else if (!clazztype.tsym.isInterface() &&
  1984                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1985             // Check for the existence of an apropos outer instance
  1986             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1989         // Attribute constructor arguments.
  1990         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1991         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1993         // If we have made no mistakes in the class type...
  1994         if (clazztype.hasTag(CLASS)) {
  1995             // Enums may not be instantiated except implicitly
  1996             if (allowEnums &&
  1997                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1998                 (!env.tree.hasTag(VARDEF) ||
  1999                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2000                  ((JCVariableDecl) env.tree).init != tree))
  2001                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2002             // Check that class is not abstract
  2003             if (cdef == null &&
  2004                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2005                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2006                           clazztype.tsym);
  2007             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2008                 // Check that no constructor arguments are given to
  2009                 // anonymous classes implementing an interface
  2010                 if (!argtypes.isEmpty())
  2011                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2013                 if (!typeargtypes.isEmpty())
  2014                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2016                 // Error recovery: pretend no arguments were supplied.
  2017                 argtypes = List.nil();
  2018                 typeargtypes = List.nil();
  2019             } else if (TreeInfo.isDiamond(tree)) {
  2020                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2021                             clazztype.tsym.type.getTypeArguments(),
  2022                             clazztype.tsym);
  2024                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2025                 diamondEnv.info.selectSuper = cdef != null;
  2026                 diamondEnv.info.pendingResolutionPhase = null;
  2028                 //if the type of the instance creation expression is a class type
  2029                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2030                 //of the resolved constructor will be a partially instantiated type
  2031                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2032                             diamondEnv,
  2033                             site,
  2034                             argtypes,
  2035                             typeargtypes);
  2036                 tree.constructor = constructor.baseSymbol();
  2038                 final TypeSymbol csym = clazztype.tsym;
  2039                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2040                     @Override
  2041                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2042                         enclosingContext.report(tree.clazz,
  2043                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2045                 });
  2046                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2047                 constructorType = checkId(tree, site,
  2048                         constructor,
  2049                         diamondEnv,
  2050                         diamondResult);
  2052                 tree.clazz.type = types.createErrorType(clazztype);
  2053                 if (!constructorType.isErroneous()) {
  2054                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2055                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2057                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2060             // Resolve the called constructor under the assumption
  2061             // that we are referring to a superclass instance of the
  2062             // current instance (JLS ???).
  2063             else {
  2064                 //the following code alters some of the fields in the current
  2065                 //AttrContext - hence, the current context must be dup'ed in
  2066                 //order to avoid downstream failures
  2067                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2068                 rsEnv.info.selectSuper = cdef != null;
  2069                 rsEnv.info.pendingResolutionPhase = null;
  2070                 tree.constructor = rs.resolveConstructor(
  2071                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2072                 if (cdef == null) { //do not check twice!
  2073                     tree.constructorType = checkId(tree,
  2074                             clazztype,
  2075                             tree.constructor,
  2076                             rsEnv,
  2077                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2078                     if (rsEnv.info.lastResolveVarargs())
  2079                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2081                 findDiamondIfNeeded(localEnv, tree, clazztype);
  2084             if (cdef != null) {
  2085                 // We are seeing an anonymous class instance creation.
  2086                 // In this case, the class instance creation
  2087                 // expression
  2088                 //
  2089                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2090                 //
  2091                 // is represented internally as
  2092                 //
  2093                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2094                 //
  2095                 // This expression is then *transformed* as follows:
  2096                 //
  2097                 // (1) add a STATIC flag to the class definition
  2098                 //     if the current environment is static
  2099                 // (2) add an extends or implements clause
  2100                 // (3) add a constructor.
  2101                 //
  2102                 // For instance, if C is a class, and ET is the type of E,
  2103                 // the expression
  2104                 //
  2105                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2106                 //
  2107                 // is translated to (where X is a fresh name and typarams is the
  2108                 // parameter list of the super constructor):
  2109                 //
  2110                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2111                 //     X extends C<typargs2> {
  2112                 //       <typarams> X(ET e, args) {
  2113                 //         e.<typeargs1>super(args)
  2114                 //       }
  2115                 //       ...
  2116                 //     }
  2117                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2119                 if (clazztype.tsym.isInterface()) {
  2120                     cdef.implementing = List.of(clazz);
  2121                 } else {
  2122                     cdef.extending = clazz;
  2125                 attribStat(cdef, localEnv);
  2127                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2129                 // If an outer instance is given,
  2130                 // prefix it to the constructor arguments
  2131                 // and delete it from the new expression
  2132                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2133                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2134                     argtypes = argtypes.prepend(tree.encl.type);
  2135                     tree.encl = null;
  2138                 // Reassign clazztype and recompute constructor.
  2139                 clazztype = cdef.sym.type;
  2140                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2141                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2142                 Assert.check(sym.kind < AMBIGUOUS);
  2143                 tree.constructor = sym;
  2144                 tree.constructorType = checkId(tree,
  2145                     clazztype,
  2146                     tree.constructor,
  2147                     localEnv,
  2148                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2149             } else {
  2150                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  2151                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  2152                             tree.clazz.type.tsym);
  2156             if (tree.constructor != null && tree.constructor.kind == MTH)
  2157                 owntype = clazztype;
  2159         result = check(tree, owntype, VAL, resultInfo);
  2160         chk.validate(tree.typeargs, localEnv);
  2162     //where
  2163         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2164             if (tree.def == null &&
  2165                     !clazztype.isErroneous() &&
  2166                     clazztype.getTypeArguments().nonEmpty() &&
  2167                     findDiamonds) {
  2168                 JCTypeApply ta = (JCTypeApply)tree.clazz;
  2169                 List<JCExpression> prevTypeargs = ta.arguments;
  2170                 try {
  2171                     //create a 'fake' diamond AST node by removing type-argument trees
  2172                     ta.arguments = List.nil();
  2173                     ResultInfo findDiamondResult = new ResultInfo(VAL,
  2174                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2175                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2176                     Type polyPt = allowPoly ?
  2177                             syms.objectType :
  2178                             clazztype;
  2179                     if (!inferred.isErroneous() &&
  2180                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings)) {
  2181                         String key = types.isSameType(clazztype, inferred) ?
  2182                             "diamond.redundant.args" :
  2183                             "diamond.redundant.args.1";
  2184                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2186                 } finally {
  2187                     ta.arguments = prevTypeargs;
  2192             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2193                 if (allowLambda &&
  2194                         identifyLambdaCandidate &&
  2195                         clazztype.hasTag(CLASS) &&
  2196                         !pt().hasTag(NONE) &&
  2197                         types.isFunctionalInterface(clazztype.tsym)) {
  2198                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2199                     int count = 0;
  2200                     boolean found = false;
  2201                     for (Symbol sym : csym.members().getElements()) {
  2202                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2203                                 sym.isConstructor()) continue;
  2204                         count++;
  2205                         if (sym.kind != MTH ||
  2206                                 !sym.name.equals(descriptor.name)) continue;
  2207                         Type mtype = types.memberType(clazztype, sym);
  2208                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2209                             found = true;
  2212                     if (found && count == 1) {
  2213                         log.note(tree.def, "potential.lambda.found");
  2218     private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  2219             Symbol sym) {
  2220         // Ensure that no declaration annotations are present.
  2221         // Note that a tree type might be an AnnotatedType with
  2222         // empty annotations, if only declaration annotations were given.
  2223         // This method will raise an error for such a type.
  2224         for (JCAnnotation ai : annotations) {
  2225             if (TypeAnnotations.annotationType(syms, names, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  2226                 log.error(ai.pos(), "annotation.type.not.applicable");
  2232     /** Make an attributed null check tree.
  2233      */
  2234     public JCExpression makeNullCheck(JCExpression arg) {
  2235         // optimization: X.this is never null; skip null check
  2236         Name name = TreeInfo.name(arg);
  2237         if (name == names._this || name == names._super) return arg;
  2239         JCTree.Tag optag = NULLCHK;
  2240         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2241         tree.operator = syms.nullcheck;
  2242         tree.type = arg.type;
  2243         return tree;
  2246     public void visitNewArray(JCNewArray tree) {
  2247         Type owntype = types.createErrorType(tree.type);
  2248         Env<AttrContext> localEnv = env.dup(tree);
  2249         Type elemtype;
  2250         if (tree.elemtype != null) {
  2251             elemtype = attribType(tree.elemtype, localEnv);
  2252             chk.validate(tree.elemtype, localEnv);
  2253             owntype = elemtype;
  2254             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2255                 attribExpr(l.head, localEnv, syms.intType);
  2256                 owntype = new ArrayType(owntype, syms.arrayClass);
  2258             if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  2259                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  2260                         tree.elemtype.type.tsym);
  2262         } else {
  2263             // we are seeing an untyped aggregate { ... }
  2264             // this is allowed only if the prototype is an array
  2265             if (pt().hasTag(ARRAY)) {
  2266                 elemtype = types.elemtype(pt());
  2267             } else {
  2268                 if (!pt().hasTag(ERROR)) {
  2269                     log.error(tree.pos(), "illegal.initializer.for.type",
  2270                               pt());
  2272                 elemtype = types.createErrorType(pt());
  2275         if (tree.elems != null) {
  2276             attribExprs(tree.elems, localEnv, elemtype);
  2277             owntype = new ArrayType(elemtype, syms.arrayClass);
  2279         if (!types.isReifiable(elemtype))
  2280             log.error(tree.pos(), "generic.array.creation");
  2281         result = check(tree, owntype, VAL, resultInfo);
  2284     /*
  2285      * A lambda expression can only be attributed when a target-type is available.
  2286      * In addition, if the target-type is that of a functional interface whose
  2287      * descriptor contains inference variables in argument position the lambda expression
  2288      * is 'stuck' (see DeferredAttr).
  2289      */
  2290     @Override
  2291     public void visitLambda(final JCLambda that) {
  2292         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2293             if (pt().hasTag(NONE)) {
  2294                 //lambda only allowed in assignment or method invocation/cast context
  2295                 log.error(that.pos(), "unexpected.lambda");
  2297             result = that.type = types.createErrorType(pt());
  2298             return;
  2300         //create an environment for attribution of the lambda expression
  2301         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2302         boolean needsRecovery =
  2303                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2304         try {
  2305             Type target = pt();
  2306             List<Type> explicitParamTypes = null;
  2307             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2308                 //attribute lambda parameters
  2309                 attribStats(that.params, localEnv);
  2310                 explicitParamTypes = TreeInfo.types(that.params);
  2311                 target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext);
  2314             Type lambdaType;
  2315             if (pt() != Type.recoveryType) {
  2316                 target = targetChecker.visit(target, that);
  2317                 lambdaType = types.findDescriptorType(target);
  2318                 chk.checkFunctionalInterface(that, target);
  2319             } else {
  2320                 target = Type.recoveryType;
  2321                 lambdaType = fallbackDescriptorType(that);
  2324             setFunctionalInfo(that, pt(), lambdaType, target, resultInfo.checkContext.inferenceContext());
  2326             if (lambdaType.hasTag(FORALL)) {
  2327                 //lambda expression target desc cannot be a generic method
  2328                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2329                         lambdaType, kindName(target.tsym), target.tsym));
  2330                 result = that.type = types.createErrorType(pt());
  2331                 return;
  2334             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2335                 //add param type info in the AST
  2336                 List<Type> actuals = lambdaType.getParameterTypes();
  2337                 List<JCVariableDecl> params = that.params;
  2339                 boolean arityMismatch = false;
  2341                 while (params.nonEmpty()) {
  2342                     if (actuals.isEmpty()) {
  2343                         //not enough actuals to perform lambda parameter inference
  2344                         arityMismatch = true;
  2346                     //reset previously set info
  2347                     Type argType = arityMismatch ?
  2348                             syms.errType :
  2349                             actuals.head;
  2350                     params.head.vartype = make.at(params.head).Type(argType);
  2351                     params.head.sym = null;
  2352                     actuals = actuals.isEmpty() ?
  2353                             actuals :
  2354                             actuals.tail;
  2355                     params = params.tail;
  2358                 //attribute lambda parameters
  2359                 attribStats(that.params, localEnv);
  2361                 if (arityMismatch) {
  2362                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2363                         result = that.type = types.createErrorType(target);
  2364                         return;
  2368             //from this point on, no recovery is needed; if we are in assignment context
  2369             //we will be able to attribute the whole lambda body, regardless of errors;
  2370             //if we are in a 'check' method context, and the lambda is not compatible
  2371             //with the target-type, it will be recovered anyway in Attr.checkId
  2372             needsRecovery = false;
  2374             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2375                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2376                     new FunctionalReturnContext(resultInfo.checkContext);
  2378             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2379                 recoveryInfo :
  2380                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2381             localEnv.info.returnResult = bodyResultInfo;
  2383             Log.DeferredDiagnosticHandler lambdaDeferredHandler = new Log.DeferredDiagnosticHandler(log);
  2384             try {
  2385                 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2386                     attribTree(that.getBody(), localEnv, bodyResultInfo);
  2387                 } else {
  2388                     JCBlock body = (JCBlock)that.body;
  2389                     attribStats(body.stats, localEnv);
  2392                 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.SPECULATIVE) {
  2393                     //check for errors in lambda body
  2394                     for (JCDiagnostic deferredDiag : lambdaDeferredHandler.getDiagnostics()) {
  2395                         if (deferredDiag.getKind() == JCDiagnostic.Kind.ERROR) {
  2396                             resultInfo.checkContext
  2397                                     .report(that, diags.fragment("bad.arg.types.in.lambda", TreeInfo.types(that.params),
  2398                                     deferredDiag)); //hidden diag parameter
  2399                             //we mark the lambda as erroneous - this is crucial in the recovery step
  2400                             //as parameter-dependent type error won't be reported in that stage,
  2401                             //meaning that a lambda will be deemed erroeneous only if there is
  2402                             //a target-independent error (which will cause method diagnostic
  2403                             //to be skipped).
  2404                             result = that.type = types.createErrorType(target);
  2405                             return;
  2409             } finally {
  2410                 lambdaDeferredHandler.reportDeferredDiagnostics();
  2411                 log.popDiagnosticHandler(lambdaDeferredHandler);
  2414             result = check(that, target, VAL, resultInfo);
  2416             boolean isSpeculativeRound =
  2417                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2419             postAttr(that);
  2420             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2422             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
  2424             if (!isSpeculativeRound) {
  2425                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
  2427             result = check(that, target, VAL, resultInfo);
  2428         } catch (Types.FunctionDescriptorLookupError ex) {
  2429             JCDiagnostic cause = ex.getDiagnostic();
  2430             resultInfo.checkContext.report(that, cause);
  2431             result = that.type = types.createErrorType(pt());
  2432             return;
  2433         } finally {
  2434             localEnv.info.scope.leave();
  2435             if (needsRecovery) {
  2436                 attribTree(that, env, recoveryInfo);
  2440     //where
  2441         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2443             @Override
  2444             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2445                 return t.isCompound() ?
  2446                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2449             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2450                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2451                 Type target = null;
  2452                 for (Type bound : ict.getExplicitComponents()) {
  2453                     TypeSymbol boundSym = bound.tsym;
  2454                     if (types.isFunctionalInterface(boundSym) &&
  2455                             types.findDescriptorSymbol(boundSym) == desc) {
  2456                         target = bound;
  2457                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2458                         //bound must be an interface
  2459                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2462                 return target != null ?
  2463                         target :
  2464                         ict.getExplicitComponents().head; //error recovery
  2467             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2468                 ListBuffer<Type> targs = ListBuffer.lb();
  2469                 ListBuffer<Type> supertypes = ListBuffer.lb();
  2470                 for (Type i : ict.interfaces_field) {
  2471                     if (i.isParameterized()) {
  2472                         targs.appendList(i.tsym.type.allparams());
  2474                     supertypes.append(i.tsym.type);
  2476                 IntersectionClassType notionalIntf =
  2477                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2478                 notionalIntf.allparams_field = targs.toList();
  2479                 notionalIntf.tsym.flags_field |= INTERFACE;
  2480                 return notionalIntf.tsym;
  2483             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2484                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2485                         diags.fragment(key, args)));
  2487         };
  2489         private Type fallbackDescriptorType(JCExpression tree) {
  2490             switch (tree.getTag()) {
  2491                 case LAMBDA:
  2492                     JCLambda lambda = (JCLambda)tree;
  2493                     List<Type> argtypes = List.nil();
  2494                     for (JCVariableDecl param : lambda.params) {
  2495                         argtypes = param.vartype != null ?
  2496                                 argtypes.append(param.vartype.type) :
  2497                                 argtypes.append(syms.errType);
  2499                     return new MethodType(argtypes, Type.recoveryType,
  2500                             List.of(syms.throwableType), syms.methodClass);
  2501                 case REFERENCE:
  2502                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2503                             List.of(syms.throwableType), syms.methodClass);
  2504                 default:
  2505                     Assert.error("Cannot get here!");
  2507             return null;
  2510         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2511                 final InferenceContext inferenceContext, final Type... ts) {
  2512             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2515         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2516                 final InferenceContext inferenceContext, final List<Type> ts) {
  2517             if (inferenceContext.free(ts)) {
  2518                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2519                     @Override
  2520                     public void typesInferred(InferenceContext inferenceContext) {
  2521                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2523                 });
  2524             } else {
  2525                 for (Type t : ts) {
  2526                     rs.checkAccessibleType(env, t);
  2531         /**
  2532          * Lambda/method reference have a special check context that ensures
  2533          * that i.e. a lambda return type is compatible with the expected
  2534          * type according to both the inherited context and the assignment
  2535          * context.
  2536          */
  2537         class FunctionalReturnContext extends Check.NestedCheckContext {
  2539             FunctionalReturnContext(CheckContext enclosingContext) {
  2540                 super(enclosingContext);
  2543             @Override
  2544             public boolean compatible(Type found, Type req, Warner warn) {
  2545                 //return type must be compatible in both current context and assignment context
  2546                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
  2549             @Override
  2550             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2551                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2555         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2557             JCExpression expr;
  2559             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2560                 super(enclosingContext);
  2561                 this.expr = expr;
  2564             @Override
  2565             public boolean compatible(Type found, Type req, Warner warn) {
  2566                 //a void return is compatible with an expression statement lambda
  2567                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2568                         super.compatible(found, req, warn);
  2572         /**
  2573         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2574         * are compatible with the expected functional interface descriptor. This means that:
  2575         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2576         * types must be compatible with the return type of the expected descriptor;
  2577         * (iii) thrown types must be 'included' in the thrown types list of the expected
  2578         * descriptor.
  2579         */
  2580         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
  2581             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2583             //return values have already been checked - but if lambda has no return
  2584             //values, we must ensure that void/value compatibility is correct;
  2585             //this amounts at checking that, if a lambda body can complete normally,
  2586             //the descriptor's return type must be void
  2587             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2588                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2589                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2590                         diags.fragment("missing.ret.val", returnType)));
  2593             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
  2594             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2595                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2598             if (!speculativeAttr) {
  2599                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2600                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
  2601                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
  2606         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2607             Env<AttrContext> lambdaEnv;
  2608             Symbol owner = env.info.scope.owner;
  2609             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2610                 //field initializer
  2611                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2612                 lambdaEnv.info.scope.owner =
  2613                     new MethodSymbol(0, names.empty, null,
  2614                                      env.info.scope.owner);
  2615             } else {
  2616                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2618             return lambdaEnv;
  2621     @Override
  2622     public void visitReference(final JCMemberReference that) {
  2623         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2624             if (pt().hasTag(NONE)) {
  2625                 //method reference only allowed in assignment or method invocation/cast context
  2626                 log.error(that.pos(), "unexpected.mref");
  2628             result = that.type = types.createErrorType(pt());
  2629             return;
  2631         final Env<AttrContext> localEnv = env.dup(that);
  2632         try {
  2633             //attribute member reference qualifier - if this is a constructor
  2634             //reference, the expected kind must be a type
  2635             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2637             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2638                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2641             if (exprType.isErroneous()) {
  2642                 //if the qualifier expression contains problems,
  2643                 //give up attribution of method reference
  2644                 result = that.type = exprType;
  2645                 return;
  2648             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2649                 //if the qualifier is a type, validate it; raw warning check is
  2650                 //omitted as we don't know at this stage as to whether this is a
  2651                 //raw selector (because of inference)
  2652                 chk.validate(that.expr, env, false);
  2655             //attrib type-arguments
  2656             List<Type> typeargtypes = List.nil();
  2657             if (that.typeargs != null) {
  2658                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2661             Type target;
  2662             Type desc;
  2663             if (pt() != Type.recoveryType) {
  2664                 target = targetChecker.visit(pt(), that);
  2665                 desc = types.findDescriptorType(target);
  2666                 chk.checkFunctionalInterface(that, target);
  2667             } else {
  2668                 target = Type.recoveryType;
  2669                 desc = fallbackDescriptorType(that);
  2672             setFunctionalInfo(that, pt(), desc, target, resultInfo.checkContext.inferenceContext());
  2673             List<Type> argtypes = desc.getParameterTypes();
  2675             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult =
  2676                     rs.resolveMemberReference(that.pos(), localEnv, that,
  2677                         that.expr.type, that.name, argtypes, typeargtypes, true, rs.resolveMethodCheck);
  2679             Symbol refSym = refResult.fst;
  2680             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2682             if (refSym.kind != MTH) {
  2683                 boolean targetError;
  2684                 switch (refSym.kind) {
  2685                     case ABSENT_MTH:
  2686                         targetError = false;
  2687                         break;
  2688                     case WRONG_MTH:
  2689                     case WRONG_MTHS:
  2690                     case AMBIGUOUS:
  2691                     case HIDDEN:
  2692                     case STATICERR:
  2693                     case MISSING_ENCL:
  2694                         targetError = true;
  2695                         break;
  2696                     default:
  2697                         Assert.error("unexpected result kind " + refSym.kind);
  2698                         targetError = false;
  2701                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2702                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2704                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2705                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2707                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2708                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2710                 if (targetError && target == Type.recoveryType) {
  2711                     //a target error doesn't make sense during recovery stage
  2712                     //as we don't know what actual parameter types are
  2713                     result = that.type = target;
  2714                     return;
  2715                 } else {
  2716                     if (targetError) {
  2717                         resultInfo.checkContext.report(that, diag);
  2718                     } else {
  2719                         log.report(diag);
  2721                     result = that.type = types.createErrorType(target);
  2722                     return;
  2726             that.sym = refSym.baseSymbol();
  2727             that.kind = lookupHelper.referenceKind(that.sym);
  2728             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2730             if (desc.getReturnType() == Type.recoveryType) {
  2731                 // stop here
  2732                 result = that.type = target;
  2733                 return;
  2736             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2738                 if (that.getMode() == ReferenceMode.INVOKE &&
  2739                         TreeInfo.isStaticSelector(that.expr, names) &&
  2740                         that.kind.isUnbound() &&
  2741                         !desc.getParameterTypes().head.isParameterized()) {
  2742                     chk.checkRaw(that.expr, localEnv);
  2745                 if (!that.kind.isUnbound() &&
  2746                         that.getMode() == ReferenceMode.INVOKE &&
  2747                         TreeInfo.isStaticSelector(that.expr, names) &&
  2748                         !that.sym.isStatic()) {
  2749                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2750                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
  2751                     result = that.type = types.createErrorType(target);
  2752                     return;
  2755                 if (that.kind.isUnbound() &&
  2756                         that.getMode() == ReferenceMode.INVOKE &&
  2757                         TreeInfo.isStaticSelector(that.expr, names) &&
  2758                         that.sym.isStatic()) {
  2759                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2760                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
  2761                     result = that.type = types.createErrorType(target);
  2762                     return;
  2765                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2766                         exprType.getTypeArguments().nonEmpty()) {
  2767                     //static ref with class type-args
  2768                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2769                             diags.fragment("static.mref.with.targs"));
  2770                     result = that.type = types.createErrorType(target);
  2771                     return;
  2774                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2775                         !that.kind.isUnbound()) {
  2776                     //no static bound mrefs
  2777                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2778                             diags.fragment("static.bound.mref"));
  2779                     result = that.type = types.createErrorType(target);
  2780                     return;
  2783                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2784                     // Check that super-qualified symbols are not abstract (JLS)
  2785                     rs.checkNonAbstract(that.pos(), that.sym);
  2789             that.sym = refSym.baseSymbol();
  2790             that.kind = lookupHelper.referenceKind(that.sym);
  2792             ResultInfo checkInfo =
  2793                     resultInfo.dup(newMethodTemplate(
  2794                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2795                         lookupHelper.argtypes,
  2796                         typeargtypes));
  2798             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2800             if (!refType.isErroneous()) {
  2801                 refType = types.createMethodTypeWithReturn(refType,
  2802                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2805             //go ahead with standard method reference compatibility check - note that param check
  2806             //is a no-op (as this has been taken care during method applicability)
  2807             boolean isSpeculativeRound =
  2808                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2809             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2810             if (!isSpeculativeRound) {
  2811                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2813             result = check(that, target, VAL, resultInfo);
  2814         } catch (Types.FunctionDescriptorLookupError ex) {
  2815             JCDiagnostic cause = ex.getDiagnostic();
  2816             resultInfo.checkContext.report(that, cause);
  2817             result = that.type = types.createErrorType(pt());
  2818             return;
  2821     //where
  2822         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2823             //if this is a constructor reference, the expected kind must be a type
  2824             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2828     @SuppressWarnings("fallthrough")
  2829     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2830         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2832         Type resType;
  2833         switch (tree.getMode()) {
  2834             case NEW:
  2835                 if (!tree.expr.type.isRaw()) {
  2836                     resType = tree.expr.type;
  2837                     break;
  2839             default:
  2840                 resType = refType.getReturnType();
  2843         Type incompatibleReturnType = resType;
  2845         if (returnType.hasTag(VOID)) {
  2846             incompatibleReturnType = null;
  2849         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2850             if (resType.isErroneous() ||
  2851                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2852                 incompatibleReturnType = null;
  2856         if (incompatibleReturnType != null) {
  2857             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2858                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2861         if (!speculativeAttr) {
  2862             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2863             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2864                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2869     /**
  2870      * Set functional type info on the underlying AST. Note: as the target descriptor
  2871      * might contain inference variables, we might need to register an hook in the
  2872      * current inference context.
  2873      */
  2874     private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt,
  2875             final Type descriptorType, final Type primaryTarget, InferenceContext inferenceContext) {
  2876         if (inferenceContext.free(descriptorType)) {
  2877             inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2878                 public void typesInferred(InferenceContext inferenceContext) {
  2879                     setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType),
  2880                             inferenceContext.asInstType(primaryTarget), inferenceContext);
  2882             });
  2883         } else {
  2884             ListBuffer<TypeSymbol> targets = ListBuffer.lb();
  2885             if (pt.hasTag(CLASS)) {
  2886                 if (pt.isCompound()) {
  2887                     targets.append(primaryTarget.tsym); //this goes first
  2888                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2889                         if (t != primaryTarget) {
  2890                             targets.append(t.tsym);
  2893                 } else {
  2894                     targets.append(pt.tsym);
  2897             fExpr.targets = targets.toList();
  2898             fExpr.descriptorType = descriptorType;
  2902     public void visitParens(JCParens tree) {
  2903         Type owntype = attribTree(tree.expr, env, resultInfo);
  2904         result = check(tree, owntype, pkind(), resultInfo);
  2905         Symbol sym = TreeInfo.symbol(tree);
  2906         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2907             log.error(tree.pos(), "illegal.start.of.type");
  2910     public void visitAssign(JCAssign tree) {
  2911         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2912         Type capturedType = capture(owntype);
  2913         attribExpr(tree.rhs, env, owntype);
  2914         result = check(tree, capturedType, VAL, resultInfo);
  2917     public void visitAssignop(JCAssignOp tree) {
  2918         // Attribute arguments.
  2919         Type owntype = attribTree(tree.lhs, env, varInfo);
  2920         Type operand = attribExpr(tree.rhs, env);
  2921         // Find operator.
  2922         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2923             tree.pos(), tree.getTag().noAssignOp(), env,
  2924             owntype, operand);
  2926         if (operator.kind == MTH &&
  2927                 !owntype.isErroneous() &&
  2928                 !operand.isErroneous()) {
  2929             chk.checkOperator(tree.pos(),
  2930                               (OperatorSymbol)operator,
  2931                               tree.getTag().noAssignOp(),
  2932                               owntype,
  2933                               operand);
  2934             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2935             chk.checkCastable(tree.rhs.pos(),
  2936                               operator.type.getReturnType(),
  2937                               owntype);
  2939         result = check(tree, owntype, VAL, resultInfo);
  2942     public void visitUnary(JCUnary tree) {
  2943         // Attribute arguments.
  2944         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2945             ? attribTree(tree.arg, env, varInfo)
  2946             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2948         // Find operator.
  2949         Symbol operator = tree.operator =
  2950             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2952         Type owntype = types.createErrorType(tree.type);
  2953         if (operator.kind == MTH &&
  2954                 !argtype.isErroneous()) {
  2955             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2956                 ? tree.arg.type
  2957                 : operator.type.getReturnType();
  2958             int opc = ((OperatorSymbol)operator).opcode;
  2960             // If the argument is constant, fold it.
  2961             if (argtype.constValue() != null) {
  2962                 Type ctype = cfolder.fold1(opc, argtype);
  2963                 if (ctype != null) {
  2964                     owntype = cfolder.coerce(ctype, owntype);
  2966                     // Remove constant types from arguments to
  2967                     // conserve space. The parser will fold concatenations
  2968                     // of string literals; the code here also
  2969                     // gets rid of intermediate results when some of the
  2970                     // operands are constant identifiers.
  2971                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2972                         tree.arg.type = syms.stringType;
  2977         result = check(tree, owntype, VAL, resultInfo);
  2980     public void visitBinary(JCBinary tree) {
  2981         // Attribute arguments.
  2982         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2983         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2985         // Find operator.
  2986         Symbol operator = tree.operator =
  2987             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2989         Type owntype = types.createErrorType(tree.type);
  2990         if (operator.kind == MTH &&
  2991                 !left.isErroneous() &&
  2992                 !right.isErroneous()) {
  2993             owntype = operator.type.getReturnType();
  2994             int opc = chk.checkOperator(tree.lhs.pos(),
  2995                                         (OperatorSymbol)operator,
  2996                                         tree.getTag(),
  2997                                         left,
  2998                                         right);
  3000             // If both arguments are constants, fold them.
  3001             if (left.constValue() != null && right.constValue() != null) {
  3002                 Type ctype = cfolder.fold2(opc, left, right);
  3003                 if (ctype != null) {
  3004                     owntype = cfolder.coerce(ctype, owntype);
  3006                     // Remove constant types from arguments to
  3007                     // conserve space. The parser will fold concatenations
  3008                     // of string literals; the code here also
  3009                     // gets rid of intermediate results when some of the
  3010                     // operands are constant identifiers.
  3011                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  3012                         tree.lhs.type = syms.stringType;
  3014                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  3015                         tree.rhs.type = syms.stringType;
  3020             // Check that argument types of a reference ==, != are
  3021             // castable to each other, (JLS???).
  3022             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3023                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  3024                     log.error(tree.pos(), "incomparable.types", left, right);
  3028             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3030         result = check(tree, owntype, VAL, resultInfo);
  3033     public void visitTypeCast(final JCTypeCast tree) {
  3034         Type clazztype = attribType(tree.clazz, env);
  3035         chk.validate(tree.clazz, env, false);
  3036         //a fresh environment is required for 292 inference to work properly ---
  3037         //see Infer.instantiatePolymorphicSignatureInstance()
  3038         Env<AttrContext> localEnv = env.dup(tree);
  3039         //should we propagate the target type?
  3040         final ResultInfo castInfo;
  3041         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3042         boolean isPoly = expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE);
  3043         if (isPoly) {
  3044             //expression is a poly - we need to propagate target type info
  3045             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3046                 @Override
  3047                 public boolean compatible(Type found, Type req, Warner warn) {
  3048                     return types.isCastable(found, req, warn);
  3050             });
  3051         } else {
  3052             //standalone cast - target-type info is not propagated
  3053             castInfo = unknownExprInfo;
  3055         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3056         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3057         if (exprtype.constValue() != null)
  3058             owntype = cfolder.coerce(exprtype, owntype);
  3059         result = check(tree, capture(owntype), VAL, resultInfo);
  3060         if (!isPoly)
  3061             chk.checkRedundantCast(localEnv, tree);
  3064     public void visitTypeTest(JCInstanceOf tree) {
  3065         Type exprtype = chk.checkNullOrRefType(
  3066             tree.expr.pos(), attribExpr(tree.expr, env));
  3067         Type clazztype = chk.checkReifiableReferenceType(
  3068             tree.clazz.pos(), attribType(tree.clazz, env));
  3069         chk.validate(tree.clazz, env, false);
  3070         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3071         result = check(tree, syms.booleanType, VAL, resultInfo);
  3074     public void visitIndexed(JCArrayAccess tree) {
  3075         Type owntype = types.createErrorType(tree.type);
  3076         Type atype = attribExpr(tree.indexed, env);
  3077         attribExpr(tree.index, env, syms.intType);
  3078         if (types.isArray(atype))
  3079             owntype = types.elemtype(atype);
  3080         else if (!atype.hasTag(ERROR))
  3081             log.error(tree.pos(), "array.req.but.found", atype);
  3082         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3083         result = check(tree, owntype, VAR, resultInfo);
  3086     public void visitIdent(JCIdent tree) {
  3087         Symbol sym;
  3089         // Find symbol
  3090         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3091             // If we are looking for a method, the prototype `pt' will be a
  3092             // method type with the type of the call's arguments as parameters.
  3093             env.info.pendingResolutionPhase = null;
  3094             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3095         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3096             sym = tree.sym;
  3097         } else {
  3098             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3100         tree.sym = sym;
  3102         // (1) Also find the environment current for the class where
  3103         //     sym is defined (`symEnv').
  3104         // Only for pre-tiger versions (1.4 and earlier):
  3105         // (2) Also determine whether we access symbol out of an anonymous
  3106         //     class in a this or super call.  This is illegal for instance
  3107         //     members since such classes don't carry a this$n link.
  3108         //     (`noOuterThisPath').
  3109         Env<AttrContext> symEnv = env;
  3110         boolean noOuterThisPath = false;
  3111         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3112             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3113             sym.owner.kind == TYP &&
  3114             tree.name != names._this && tree.name != names._super) {
  3116             // Find environment in which identifier is defined.
  3117             while (symEnv.outer != null &&
  3118                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3119                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3120                     noOuterThisPath = !allowAnonOuterThis;
  3121                 symEnv = symEnv.outer;
  3125         // If symbol is a variable, ...
  3126         if (sym.kind == VAR) {
  3127             VarSymbol v = (VarSymbol)sym;
  3129             // ..., evaluate its initializer, if it has one, and check for
  3130             // illegal forward reference.
  3131             checkInit(tree, env, v, false);
  3133             // If we are expecting a variable (as opposed to a value), check
  3134             // that the variable is assignable in the current environment.
  3135             if (pkind() == VAR)
  3136                 checkAssignable(tree.pos(), v, null, env);
  3139         // In a constructor body,
  3140         // if symbol is a field or instance method, check that it is
  3141         // not accessed before the supertype constructor is called.
  3142         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3143             (sym.kind & (VAR | MTH)) != 0 &&
  3144             sym.owner.kind == TYP &&
  3145             (sym.flags() & STATIC) == 0) {
  3146             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3148         Env<AttrContext> env1 = env;
  3149         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3150             // If the found symbol is inaccessible, then it is
  3151             // accessed through an enclosing instance.  Locate this
  3152             // enclosing instance:
  3153             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3154                 env1 = env1.outer;
  3156         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3159     public void visitSelect(JCFieldAccess tree) {
  3160         // Determine the expected kind of the qualifier expression.
  3161         int skind = 0;
  3162         if (tree.name == names._this || tree.name == names._super ||
  3163             tree.name == names._class)
  3165             skind = TYP;
  3166         } else {
  3167             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3168             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3169             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3172         // Attribute the qualifier expression, and determine its symbol (if any).
  3173         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3174         if ((pkind() & (PCK | TYP)) == 0)
  3175             site = capture(site); // Capture field access
  3177         // don't allow T.class T[].class, etc
  3178         if (skind == TYP) {
  3179             Type elt = site;
  3180             while (elt.hasTag(ARRAY))
  3181                 elt = ((ArrayType)elt).elemtype;
  3182             if (elt.hasTag(TYPEVAR)) {
  3183                 log.error(tree.pos(), "type.var.cant.be.deref");
  3184                 result = types.createErrorType(tree.type);
  3185                 return;
  3189         // If qualifier symbol is a type or `super', assert `selectSuper'
  3190         // for the selection. This is relevant for determining whether
  3191         // protected symbols are accessible.
  3192         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3193         boolean selectSuperPrev = env.info.selectSuper;
  3194         env.info.selectSuper =
  3195             sitesym != null &&
  3196             sitesym.name == names._super;
  3198         // Determine the symbol represented by the selection.
  3199         env.info.pendingResolutionPhase = null;
  3200         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3201         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3202             site = capture(site);
  3203             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3205         boolean varArgs = env.info.lastResolveVarargs();
  3206         tree.sym = sym;
  3208         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3209             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3210             site = capture(site);
  3213         // If that symbol is a variable, ...
  3214         if (sym.kind == VAR) {
  3215             VarSymbol v = (VarSymbol)sym;
  3217             // ..., evaluate its initializer, if it has one, and check for
  3218             // illegal forward reference.
  3219             checkInit(tree, env, v, true);
  3221             // If we are expecting a variable (as opposed to a value), check
  3222             // that the variable is assignable in the current environment.
  3223             if (pkind() == VAR)
  3224                 checkAssignable(tree.pos(), v, tree.selected, env);
  3227         if (sitesym != null &&
  3228                 sitesym.kind == VAR &&
  3229                 ((VarSymbol)sitesym).isResourceVariable() &&
  3230                 sym.kind == MTH &&
  3231                 sym.name.equals(names.close) &&
  3232                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3233                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3234             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3237         // Disallow selecting a type from an expression
  3238         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3239             tree.type = check(tree.selected, pt(),
  3240                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3243         if (isType(sitesym)) {
  3244             if (sym.name == names._this) {
  3245                 // If `C' is the currently compiled class, check that
  3246                 // C.this' does not appear in a call to a super(...)
  3247                 if (env.info.isSelfCall &&
  3248                     site.tsym == env.enclClass.sym) {
  3249                     chk.earlyRefError(tree.pos(), sym);
  3251             } else {
  3252                 // Check if type-qualified fields or methods are static (JLS)
  3253                 if ((sym.flags() & STATIC) == 0 &&
  3254                     !env.next.tree.hasTag(REFERENCE) &&
  3255                     sym.name != names._super &&
  3256                     (sym.kind == VAR || sym.kind == MTH)) {
  3257                     rs.accessBase(rs.new StaticError(sym),
  3258                               tree.pos(), site, sym.name, true);
  3261         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3262             // If the qualified item is not a type and the selected item is static, report
  3263             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3264             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3267         // If we are selecting an instance member via a `super', ...
  3268         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3270             // Check that super-qualified symbols are not abstract (JLS)
  3271             rs.checkNonAbstract(tree.pos(), sym);
  3273             if (site.isRaw()) {
  3274                 // Determine argument types for site.
  3275                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3276                 if (site1 != null) site = site1;
  3280         env.info.selectSuper = selectSuperPrev;
  3281         result = checkId(tree, site, sym, env, resultInfo);
  3283     //where
  3284         /** Determine symbol referenced by a Select expression,
  3286          *  @param tree   The select tree.
  3287          *  @param site   The type of the selected expression,
  3288          *  @param env    The current environment.
  3289          *  @param resultInfo The current result.
  3290          */
  3291         private Symbol selectSym(JCFieldAccess tree,
  3292                                  Symbol location,
  3293                                  Type site,
  3294                                  Env<AttrContext> env,
  3295                                  ResultInfo resultInfo) {
  3296             DiagnosticPosition pos = tree.pos();
  3297             Name name = tree.name;
  3298             switch (site.getTag()) {
  3299             case PACKAGE:
  3300                 return rs.accessBase(
  3301                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3302                     pos, location, site, name, true);
  3303             case ARRAY:
  3304             case CLASS:
  3305                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3306                     return rs.resolveQualifiedMethod(
  3307                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3308                 } else if (name == names._this || name == names._super) {
  3309                     return rs.resolveSelf(pos, env, site.tsym, name);
  3310                 } else if (name == names._class) {
  3311                     // In this case, we have already made sure in
  3312                     // visitSelect that qualifier expression is a type.
  3313                     Type t = syms.classType;
  3314                     List<Type> typeargs = allowGenerics
  3315                         ? List.of(types.erasure(site))
  3316                         : List.<Type>nil();
  3317                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3318                     return new VarSymbol(
  3319                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3320                 } else {
  3321                     // We are seeing a plain identifier as selector.
  3322                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3323                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3324                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3325                     return sym;
  3327             case WILDCARD:
  3328                 throw new AssertionError(tree);
  3329             case TYPEVAR:
  3330                 // Normally, site.getUpperBound() shouldn't be null.
  3331                 // It should only happen during memberEnter/attribBase
  3332                 // when determining the super type which *must* beac
  3333                 // done before attributing the type variables.  In
  3334                 // other words, we are seeing this illegal program:
  3335                 // class B<T> extends A<T.foo> {}
  3336                 Symbol sym = (site.getUpperBound() != null)
  3337                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3338                     : null;
  3339                 if (sym == null) {
  3340                     log.error(pos, "type.var.cant.be.deref");
  3341                     return syms.errSymbol;
  3342                 } else {
  3343                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3344                         rs.new AccessError(env, site, sym) :
  3345                                 sym;
  3346                     rs.accessBase(sym2, pos, location, site, name, true);
  3347                     return sym;
  3349             case ERROR:
  3350                 // preserve identifier names through errors
  3351                 return types.createErrorType(name, site.tsym, site).tsym;
  3352             default:
  3353                 // The qualifier expression is of a primitive type -- only
  3354                 // .class is allowed for these.
  3355                 if (name == names._class) {
  3356                     // In this case, we have already made sure in Select that
  3357                     // qualifier expression is a type.
  3358                     Type t = syms.classType;
  3359                     Type arg = types.boxedClass(site).type;
  3360                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3361                     return new VarSymbol(
  3362                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3363                 } else {
  3364                     log.error(pos, "cant.deref", site);
  3365                     return syms.errSymbol;
  3370         /** Determine type of identifier or select expression and check that
  3371          *  (1) the referenced symbol is not deprecated
  3372          *  (2) the symbol's type is safe (@see checkSafe)
  3373          *  (3) if symbol is a variable, check that its type and kind are
  3374          *      compatible with the prototype and protokind.
  3375          *  (4) if symbol is an instance field of a raw type,
  3376          *      which is being assigned to, issue an unchecked warning if its
  3377          *      type changes under erasure.
  3378          *  (5) if symbol is an instance method of a raw type, issue an
  3379          *      unchecked warning if its argument types change under erasure.
  3380          *  If checks succeed:
  3381          *    If symbol is a constant, return its constant type
  3382          *    else if symbol is a method, return its result type
  3383          *    otherwise return its type.
  3384          *  Otherwise return errType.
  3386          *  @param tree       The syntax tree representing the identifier
  3387          *  @param site       If this is a select, the type of the selected
  3388          *                    expression, otherwise the type of the current class.
  3389          *  @param sym        The symbol representing the identifier.
  3390          *  @param env        The current environment.
  3391          *  @param resultInfo    The expected result
  3392          */
  3393         Type checkId(JCTree tree,
  3394                      Type site,
  3395                      Symbol sym,
  3396                      Env<AttrContext> env,
  3397                      ResultInfo resultInfo) {
  3398             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3399                     checkMethodId(tree, site, sym, env, resultInfo) :
  3400                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3403         Type checkMethodId(JCTree tree,
  3404                      Type site,
  3405                      Symbol sym,
  3406                      Env<AttrContext> env,
  3407                      ResultInfo resultInfo) {
  3408             boolean isPolymorhicSignature =
  3409                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
  3410             return isPolymorhicSignature ?
  3411                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3412                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3415         Type checkSigPolyMethodId(JCTree tree,
  3416                      Type site,
  3417                      Symbol sym,
  3418                      Env<AttrContext> env,
  3419                      ResultInfo resultInfo) {
  3420             //recover original symbol for signature polymorphic methods
  3421             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3422             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3423             return sym.type;
  3426         Type checkMethodIdInternal(JCTree tree,
  3427                      Type site,
  3428                      Symbol sym,
  3429                      Env<AttrContext> env,
  3430                      ResultInfo resultInfo) {
  3431             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3432             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3433             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3434             return owntype;
  3437         Type checkIdInternal(JCTree tree,
  3438                      Type site,
  3439                      Symbol sym,
  3440                      Type pt,
  3441                      Env<AttrContext> env,
  3442                      ResultInfo resultInfo) {
  3443             if (pt.isErroneous()) {
  3444                 return types.createErrorType(site);
  3446             Type owntype; // The computed type of this identifier occurrence.
  3447             switch (sym.kind) {
  3448             case TYP:
  3449                 // For types, the computed type equals the symbol's type,
  3450                 // except for two situations:
  3451                 owntype = sym.type;
  3452                 if (owntype.hasTag(CLASS)) {
  3453                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3454                     Type ownOuter = owntype.getEnclosingType();
  3456                     // (a) If the symbol's type is parameterized, erase it
  3457                     // because no type parameters were given.
  3458                     // We recover generic outer type later in visitTypeApply.
  3459                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3460                         owntype = types.erasure(owntype);
  3463                     // (b) If the symbol's type is an inner class, then
  3464                     // we have to interpret its outer type as a superclass
  3465                     // of the site type. Example:
  3466                     //
  3467                     // class Tree<A> { class Visitor { ... } }
  3468                     // class PointTree extends Tree<Point> { ... }
  3469                     // ...PointTree.Visitor...
  3470                     //
  3471                     // Then the type of the last expression above is
  3472                     // Tree<Point>.Visitor.
  3473                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3474                         Type normOuter = site;
  3475                         if (normOuter.hasTag(CLASS)) {
  3476                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3477                             if (site.isAnnotated()) {
  3478                                 // Propagate any type annotations.
  3479                                 // TODO: should asEnclosingSuper do this?
  3480                                 // Note that the type annotations in site will be updated
  3481                                 // by annotateType. Therefore, modify site instead
  3482                                 // of creating a new AnnotatedType.
  3483                                 ((AnnotatedType)site).underlyingType = normOuter;
  3484                                 normOuter = site;
  3487                         if (normOuter == null) // perhaps from an import
  3488                             normOuter = types.erasure(ownOuter);
  3489                         if (normOuter != ownOuter)
  3490                             owntype = new ClassType(
  3491                                 normOuter, List.<Type>nil(), owntype.tsym);
  3494                 break;
  3495             case VAR:
  3496                 VarSymbol v = (VarSymbol)sym;
  3497                 // Test (4): if symbol is an instance field of a raw type,
  3498                 // which is being assigned to, issue an unchecked warning if
  3499                 // its type changes under erasure.
  3500                 if (allowGenerics &&
  3501                     resultInfo.pkind == VAR &&
  3502                     v.owner.kind == TYP &&
  3503                     (v.flags() & STATIC) == 0 &&
  3504                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3505                     Type s = types.asOuterSuper(site, v.owner);
  3506                     if (s != null &&
  3507                         s.isRaw() &&
  3508                         !types.isSameType(v.type, v.erasure(types))) {
  3509                         chk.warnUnchecked(tree.pos(),
  3510                                           "unchecked.assign.to.var",
  3511                                           v, s);
  3514                 // The computed type of a variable is the type of the
  3515                 // variable symbol, taken as a member of the site type.
  3516                 owntype = (sym.owner.kind == TYP &&
  3517                            sym.name != names._this && sym.name != names._super)
  3518                     ? types.memberType(site, sym)
  3519                     : sym.type;
  3521                 // If the variable is a constant, record constant value in
  3522                 // computed type.
  3523                 if (v.getConstValue() != null && isStaticReference(tree))
  3524                     owntype = owntype.constType(v.getConstValue());
  3526                 if (resultInfo.pkind == VAL) {
  3527                     owntype = capture(owntype); // capture "names as expressions"
  3529                 break;
  3530             case MTH: {
  3531                 owntype = checkMethod(site, sym,
  3532                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3533                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3534                         resultInfo.pt.getTypeArguments());
  3535                 break;
  3537             case PCK: case ERR:
  3538                 owntype = sym.type;
  3539                 break;
  3540             default:
  3541                 throw new AssertionError("unexpected kind: " + sym.kind +
  3542                                          " in tree " + tree);
  3545             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3546             // (for constructors, the error was given when the constructor was
  3547             // resolved)
  3549             if (sym.name != names.init) {
  3550                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3551                 chk.checkSunAPI(tree.pos(), sym);
  3552                 chk.checkProfile(tree.pos(), sym);
  3555             // Test (3): if symbol is a variable, check that its type and
  3556             // kind are compatible with the prototype and protokind.
  3557             return check(tree, owntype, sym.kind, resultInfo);
  3560         /** Check that variable is initialized and evaluate the variable's
  3561          *  initializer, if not yet done. Also check that variable is not
  3562          *  referenced before it is defined.
  3563          *  @param tree    The tree making up the variable reference.
  3564          *  @param env     The current environment.
  3565          *  @param v       The variable's symbol.
  3566          */
  3567         private void checkInit(JCTree tree,
  3568                                Env<AttrContext> env,
  3569                                VarSymbol v,
  3570                                boolean onlyWarning) {
  3571 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3572 //                             tree.pos + " " + v.pos + " " +
  3573 //                             Resolve.isStatic(env));//DEBUG
  3575             // A forward reference is diagnosed if the declaration position
  3576             // of the variable is greater than the current tree position
  3577             // and the tree and variable definition occur in the same class
  3578             // definition.  Note that writes don't count as references.
  3579             // This check applies only to class and instance
  3580             // variables.  Local variables follow different scope rules,
  3581             // and are subject to definite assignment checking.
  3582             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3583                 v.owner.kind == TYP &&
  3584                 canOwnInitializer(owner(env)) &&
  3585                 v.owner == env.info.scope.owner.enclClass() &&
  3586                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3587                 (!env.tree.hasTag(ASSIGN) ||
  3588                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3589                 String suffix = (env.info.enclVar == v) ?
  3590                                 "self.ref" : "forward.ref";
  3591                 if (!onlyWarning || isStaticEnumField(v)) {
  3592                     log.error(tree.pos(), "illegal." + suffix);
  3593                 } else if (useBeforeDeclarationWarning) {
  3594                     log.warning(tree.pos(), suffix, v);
  3598             v.getConstValue(); // ensure initializer is evaluated
  3600             checkEnumInitializer(tree, env, v);
  3603         /**
  3604          * Check for illegal references to static members of enum.  In
  3605          * an enum type, constructors and initializers may not
  3606          * reference its static members unless they are constant.
  3608          * @param tree    The tree making up the variable reference.
  3609          * @param env     The current environment.
  3610          * @param v       The variable's symbol.
  3611          * @jls  section 8.9 Enums
  3612          */
  3613         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3614             // JLS:
  3615             //
  3616             // "It is a compile-time error to reference a static field
  3617             // of an enum type that is not a compile-time constant
  3618             // (15.28) from constructors, instance initializer blocks,
  3619             // or instance variable initializer expressions of that
  3620             // type. It is a compile-time error for the constructors,
  3621             // instance initializer blocks, or instance variable
  3622             // initializer expressions of an enum constant e to refer
  3623             // to itself or to an enum constant of the same type that
  3624             // is declared to the right of e."
  3625             if (isStaticEnumField(v)) {
  3626                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3628                 if (enclClass == null || enclClass.owner == null)
  3629                     return;
  3631                 // See if the enclosing class is the enum (or a
  3632                 // subclass thereof) declaring v.  If not, this
  3633                 // reference is OK.
  3634                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3635                     return;
  3637                 // If the reference isn't from an initializer, then
  3638                 // the reference is OK.
  3639                 if (!Resolve.isInitializer(env))
  3640                     return;
  3642                 log.error(tree.pos(), "illegal.enum.static.ref");
  3646         /** Is the given symbol a static, non-constant field of an Enum?
  3647          *  Note: enum literals should not be regarded as such
  3648          */
  3649         private boolean isStaticEnumField(VarSymbol v) {
  3650             return Flags.isEnum(v.owner) &&
  3651                    Flags.isStatic(v) &&
  3652                    !Flags.isConstant(v) &&
  3653                    v.name != names._class;
  3656         /** Can the given symbol be the owner of code which forms part
  3657          *  if class initialization? This is the case if the symbol is
  3658          *  a type or field, or if the symbol is the synthetic method.
  3659          *  owning a block.
  3660          */
  3661         private boolean canOwnInitializer(Symbol sym) {
  3662             return
  3663                 (sym.kind & (VAR | TYP)) != 0 ||
  3664                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3667     Warner noteWarner = new Warner();
  3669     /**
  3670      * Check that method arguments conform to its instantiation.
  3671      **/
  3672     public Type checkMethod(Type site,
  3673                             Symbol sym,
  3674                             ResultInfo resultInfo,
  3675                             Env<AttrContext> env,
  3676                             final List<JCExpression> argtrees,
  3677                             List<Type> argtypes,
  3678                             List<Type> typeargtypes) {
  3679         // Test (5): if symbol is an instance method of a raw type, issue
  3680         // an unchecked warning if its argument types change under erasure.
  3681         if (allowGenerics &&
  3682             (sym.flags() & STATIC) == 0 &&
  3683             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3684             Type s = types.asOuterSuper(site, sym.owner);
  3685             if (s != null && s.isRaw() &&
  3686                 !types.isSameTypes(sym.type.getParameterTypes(),
  3687                                    sym.erasure(types).getParameterTypes())) {
  3688                 chk.warnUnchecked(env.tree.pos(),
  3689                                   "unchecked.call.mbr.of.raw.type",
  3690                                   sym, s);
  3694         if (env.info.defaultSuperCallSite != null) {
  3695             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3696                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3697                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3698                 List<MethodSymbol> icand_sup =
  3699                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3700                 if (icand_sup.nonEmpty() &&
  3701                         icand_sup.head != sym &&
  3702                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3703                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3704                         diags.fragment("overridden.default", sym, sup));
  3705                     break;
  3708             env.info.defaultSuperCallSite = null;
  3711         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3712             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3713             if (app.meth.hasTag(SELECT) &&
  3714                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3715                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3719         // Compute the identifier's instantiated type.
  3720         // For methods, we need to compute the instance type by
  3721         // Resolve.instantiate from the symbol's type as well as
  3722         // any type arguments and value arguments.
  3723         noteWarner.clear();
  3724         try {
  3725             Type owntype = rs.checkMethod(
  3726                     env,
  3727                     site,
  3728                     sym,
  3729                     resultInfo,
  3730                     argtypes,
  3731                     typeargtypes,
  3732                     noteWarner);
  3734             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3735                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED), resultInfo.checkContext.inferenceContext());
  3736         } catch (Infer.InferenceException ex) {
  3737             //invalid target type - propagate exception outwards or report error
  3738             //depending on the current check context
  3739             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3740             return types.createErrorType(site);
  3741         } catch (Resolve.InapplicableMethodException ex) {
  3742             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
  3743             return null;
  3747     public void visitLiteral(JCLiteral tree) {
  3748         result = check(
  3749             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3751     //where
  3752     /** Return the type of a literal with given type tag.
  3753      */
  3754     Type litType(TypeTag tag) {
  3755         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3758     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3759         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3762     public void visitTypeArray(JCArrayTypeTree tree) {
  3763         Type etype = attribType(tree.elemtype, env);
  3764         Type type = new ArrayType(etype, syms.arrayClass);
  3765         result = check(tree, type, TYP, resultInfo);
  3768     /** Visitor method for parameterized types.
  3769      *  Bound checking is left until later, since types are attributed
  3770      *  before supertype structure is completely known
  3771      */
  3772     public void visitTypeApply(JCTypeApply tree) {
  3773         Type owntype = types.createErrorType(tree.type);
  3775         // Attribute functor part of application and make sure it's a class.
  3776         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3778         // Attribute type parameters
  3779         List<Type> actuals = attribTypes(tree.arguments, env);
  3781         if (clazztype.hasTag(CLASS)) {
  3782             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3783             if (actuals.isEmpty()) //diamond
  3784                 actuals = formals;
  3786             if (actuals.length() == formals.length()) {
  3787                 List<Type> a = actuals;
  3788                 List<Type> f = formals;
  3789                 while (a.nonEmpty()) {
  3790                     a.head = a.head.withTypeVar(f.head);
  3791                     a = a.tail;
  3792                     f = f.tail;
  3794                 // Compute the proper generic outer
  3795                 Type clazzOuter = clazztype.getEnclosingType();
  3796                 if (clazzOuter.hasTag(CLASS)) {
  3797                     Type site;
  3798                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3799                     if (clazz.hasTag(IDENT)) {
  3800                         site = env.enclClass.sym.type;
  3801                     } else if (clazz.hasTag(SELECT)) {
  3802                         site = ((JCFieldAccess) clazz).selected.type;
  3803                     } else throw new AssertionError(""+tree);
  3804                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3805                         if (site.hasTag(CLASS))
  3806                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3807                         if (site == null)
  3808                             site = types.erasure(clazzOuter);
  3809                         clazzOuter = site;
  3812                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3813                 if (clazztype.isAnnotated()) {
  3814                     // Use the same AnnotatedType, because it will have
  3815                     // its annotations set later.
  3816                     ((AnnotatedType)clazztype).underlyingType = owntype;
  3817                     owntype = clazztype;
  3819             } else {
  3820                 if (formals.length() != 0) {
  3821                     log.error(tree.pos(), "wrong.number.type.args",
  3822                               Integer.toString(formals.length()));
  3823                 } else {
  3824                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3826                 owntype = types.createErrorType(tree.type);
  3829         result = check(tree, owntype, TYP, resultInfo);
  3832     public void visitTypeUnion(JCTypeUnion tree) {
  3833         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  3834         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3835         for (JCExpression typeTree : tree.alternatives) {
  3836             Type ctype = attribType(typeTree, env);
  3837             ctype = chk.checkType(typeTree.pos(),
  3838                           chk.checkClassType(typeTree.pos(), ctype),
  3839                           syms.throwableType);
  3840             if (!ctype.isErroneous()) {
  3841                 //check that alternatives of a union type are pairwise
  3842                 //unrelated w.r.t. subtyping
  3843                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3844                     for (Type t : multicatchTypes) {
  3845                         boolean sub = types.isSubtype(ctype, t);
  3846                         boolean sup = types.isSubtype(t, ctype);
  3847                         if (sub || sup) {
  3848                             //assume 'a' <: 'b'
  3849                             Type a = sub ? ctype : t;
  3850                             Type b = sub ? t : ctype;
  3851                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3855                 multicatchTypes.append(ctype);
  3856                 if (all_multicatchTypes != null)
  3857                     all_multicatchTypes.append(ctype);
  3858             } else {
  3859                 if (all_multicatchTypes == null) {
  3860                     all_multicatchTypes = ListBuffer.lb();
  3861                     all_multicatchTypes.appendList(multicatchTypes);
  3863                 all_multicatchTypes.append(ctype);
  3866         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3867         if (t.hasTag(CLASS)) {
  3868             List<Type> alternatives =
  3869                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3870             t = new UnionClassType((ClassType) t, alternatives);
  3872         tree.type = result = t;
  3875     public void visitTypeIntersection(JCTypeIntersection tree) {
  3876         attribTypes(tree.bounds, env);
  3877         tree.type = result = checkIntersection(tree, tree.bounds);
  3880     public void visitTypeParameter(JCTypeParameter tree) {
  3881         TypeVar typeVar = (TypeVar) tree.type;
  3883         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3884             AnnotatedType antype = new AnnotatedType(typeVar);
  3885             annotateType(antype, tree.annotations);
  3886             tree.type = antype;
  3889         if (!typeVar.bound.isErroneous()) {
  3890             //fixup type-parameter bound computed in 'attribTypeVariables'
  3891             typeVar.bound = checkIntersection(tree, tree.bounds);
  3895     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3896         Set<Type> boundSet = new HashSet<Type>();
  3897         if (bounds.nonEmpty()) {
  3898             // accept class or interface or typevar as first bound.
  3899             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  3900             boundSet.add(types.erasure(bounds.head.type));
  3901             if (bounds.head.type.isErroneous()) {
  3902                 return bounds.head.type;
  3904             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3905                 // if first bound was a typevar, do not accept further bounds.
  3906                 if (bounds.tail.nonEmpty()) {
  3907                     log.error(bounds.tail.head.pos(),
  3908                               "type.var.may.not.be.followed.by.other.bounds");
  3909                     return bounds.head.type;
  3911             } else {
  3912                 // if first bound was a class or interface, accept only interfaces
  3913                 // as further bounds.
  3914                 for (JCExpression bound : bounds.tail) {
  3915                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  3916                     if (bound.type.isErroneous()) {
  3917                         bounds = List.of(bound);
  3919                     else if (bound.type.hasTag(CLASS)) {
  3920                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  3926         if (bounds.length() == 0) {
  3927             return syms.objectType;
  3928         } else if (bounds.length() == 1) {
  3929             return bounds.head.type;
  3930         } else {
  3931             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  3932             if (tree.hasTag(TYPEINTERSECTION)) {
  3933                 ((IntersectionClassType)owntype).intersectionKind =
  3934                         IntersectionClassType.IntersectionKind.EXPLICIT;
  3936             // ... the variable's bound is a class type flagged COMPOUND
  3937             // (see comment for TypeVar.bound).
  3938             // In this case, generate a class tree that represents the
  3939             // bound class, ...
  3940             JCExpression extending;
  3941             List<JCExpression> implementing;
  3942             if (!bounds.head.type.isInterface()) {
  3943                 extending = bounds.head;
  3944                 implementing = bounds.tail;
  3945             } else {
  3946                 extending = null;
  3947                 implementing = bounds;
  3949             JCClassDecl cd = make.at(tree).ClassDef(
  3950                 make.Modifiers(PUBLIC | ABSTRACT),
  3951                 names.empty, List.<JCTypeParameter>nil(),
  3952                 extending, implementing, List.<JCTree>nil());
  3954             ClassSymbol c = (ClassSymbol)owntype.tsym;
  3955             Assert.check((c.flags() & COMPOUND) != 0);
  3956             cd.sym = c;
  3957             c.sourcefile = env.toplevel.sourcefile;
  3959             // ... and attribute the bound class
  3960             c.flags_field |= UNATTRIBUTED;
  3961             Env<AttrContext> cenv = enter.classEnv(cd, env);
  3962             enter.typeEnvs.put(c, cenv);
  3963             attribClass(c);
  3964             return owntype;
  3968     public void visitWildcard(JCWildcard tree) {
  3969         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  3970         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  3971             ? syms.objectType
  3972             : attribType(tree.inner, env);
  3973         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  3974                                               tree.kind.kind,
  3975                                               syms.boundClass),
  3976                        TYP, resultInfo);
  3979     public void visitAnnotation(JCAnnotation tree) {
  3980         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  3981         result = tree.type = syms.errType;
  3984     public void visitAnnotatedType(JCAnnotatedType tree) {
  3985         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  3986         this.attribAnnotationTypes(tree.annotations, env);
  3987         AnnotatedType antype = new AnnotatedType(underlyingType);
  3988         annotateType(antype, tree.annotations);
  3989         result = tree.type = antype;
  3992     /**
  3993      * Apply the annotations to the particular type.
  3994      */
  3995     public void annotateType(final AnnotatedType type, final List<JCAnnotation> annotations) {
  3996         if (annotations.isEmpty())
  3997             return;
  3998         annotate.typeAnnotation(new Annotate.Annotator() {
  3999             @Override
  4000             public String toString() {
  4001                 return "annotate " + annotations + " onto " + type;
  4003             @Override
  4004             public void enterAnnotation() {
  4005                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4006                 type.typeAnnotations = compounds;
  4008         });
  4011     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4012         if (annotations.isEmpty())
  4013             return List.nil();
  4015         ListBuffer<Attribute.TypeCompound> buf = ListBuffer.lb();
  4016         for (JCAnnotation anno : annotations) {
  4017             if (anno.attribute != null) {
  4018                 // TODO: this null-check is only needed for an obscure
  4019                 // ordering issue, where annotate.flush is called when
  4020                 // the attribute is not set yet. For an example failure
  4021                 // try the referenceinfos/NestedTypes.java test.
  4022                 // Any better solutions?
  4023                 buf.append((Attribute.TypeCompound) anno.attribute);
  4026         return buf.toList();
  4029     public void visitErroneous(JCErroneous tree) {
  4030         if (tree.errs != null)
  4031             for (JCTree err : tree.errs)
  4032                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4033         result = tree.type = syms.errType;
  4036     /** Default visitor method for all other trees.
  4037      */
  4038     public void visitTree(JCTree tree) {
  4039         throw new AssertionError();
  4042     /**
  4043      * Attribute an env for either a top level tree or class declaration.
  4044      */
  4045     public void attrib(Env<AttrContext> env) {
  4046         if (env.tree.hasTag(TOPLEVEL))
  4047             attribTopLevel(env);
  4048         else
  4049             attribClass(env.tree.pos(), env.enclClass.sym);
  4052     /**
  4053      * Attribute a top level tree. These trees are encountered when the
  4054      * package declaration has annotations.
  4055      */
  4056     public void attribTopLevel(Env<AttrContext> env) {
  4057         JCCompilationUnit toplevel = env.toplevel;
  4058         try {
  4059             annotate.flush();
  4060             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  4061         } catch (CompletionFailure ex) {
  4062             chk.completionError(toplevel.pos(), ex);
  4066     /** Main method: attribute class definition associated with given class symbol.
  4067      *  reporting completion failures at the given position.
  4068      *  @param pos The source position at which completion errors are to be
  4069      *             reported.
  4070      *  @param c   The class symbol whose definition will be attributed.
  4071      */
  4072     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4073         try {
  4074             annotate.flush();
  4075             attribClass(c);
  4076         } catch (CompletionFailure ex) {
  4077             chk.completionError(pos, ex);
  4081     /** Attribute class definition associated with given class symbol.
  4082      *  @param c   The class symbol whose definition will be attributed.
  4083      */
  4084     void attribClass(ClassSymbol c) throws CompletionFailure {
  4085         if (c.type.hasTag(ERROR)) return;
  4087         // Check for cycles in the inheritance graph, which can arise from
  4088         // ill-formed class files.
  4089         chk.checkNonCyclic(null, c.type);
  4091         Type st = types.supertype(c.type);
  4092         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4093             // First, attribute superclass.
  4094             if (st.hasTag(CLASS))
  4095                 attribClass((ClassSymbol)st.tsym);
  4097             // Next attribute owner, if it is a class.
  4098             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4099                 attribClass((ClassSymbol)c.owner);
  4102         // The previous operations might have attributed the current class
  4103         // if there was a cycle. So we test first whether the class is still
  4104         // UNATTRIBUTED.
  4105         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4106             c.flags_field &= ~UNATTRIBUTED;
  4108             // Get environment current at the point of class definition.
  4109             Env<AttrContext> env = enter.typeEnvs.get(c);
  4111             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  4112             // because the annotations were not available at the time the env was created. Therefore,
  4113             // we look up the environment chain for the first enclosing environment for which the
  4114             // lint value is set. Typically, this is the parent env, but might be further if there
  4115             // are any envs created as a result of TypeParameter nodes.
  4116             Env<AttrContext> lintEnv = env;
  4117             while (lintEnv.info.lint == null)
  4118                 lintEnv = lintEnv.next;
  4120             // Having found the enclosing lint value, we can initialize the lint value for this class
  4121             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
  4123             Lint prevLint = chk.setLint(env.info.lint);
  4124             JavaFileObject prev = log.useSource(c.sourcefile);
  4125             ResultInfo prevReturnRes = env.info.returnResult;
  4127             try {
  4128                 env.info.returnResult = null;
  4129                 // java.lang.Enum may not be subclassed by a non-enum
  4130                 if (st.tsym == syms.enumSym &&
  4131                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4132                     log.error(env.tree.pos(), "enum.no.subclassing");
  4134                 // Enums may not be extended by source-level classes
  4135                 if (st.tsym != null &&
  4136                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4137                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4138                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4140                 attribClassBody(env, c);
  4142                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4143                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4144             } finally {
  4145                 env.info.returnResult = prevReturnRes;
  4146                 log.useSource(prev);
  4147                 chk.setLint(prevLint);
  4153     public void visitImport(JCImport tree) {
  4154         // nothing to do
  4157     /** Finish the attribution of a class. */
  4158     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4159         JCClassDecl tree = (JCClassDecl)env.tree;
  4160         Assert.check(c == tree.sym);
  4162         // Validate annotations
  4163         chk.validateAnnotations(tree.mods.annotations, c);
  4165         // Validate type parameters, supertype and interfaces.
  4166         attribStats(tree.typarams, env);
  4167         if (!c.isAnonymous()) {
  4168             //already checked if anonymous
  4169             chk.validate(tree.typarams, env);
  4170             chk.validate(tree.extending, env);
  4171             chk.validate(tree.implementing, env);
  4174         // If this is a non-abstract class, check that it has no abstract
  4175         // methods or unimplemented methods of an implemented interface.
  4176         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4177             if (!relax)
  4178                 chk.checkAllDefined(tree.pos(), c);
  4181         if ((c.flags() & ANNOTATION) != 0) {
  4182             if (tree.implementing.nonEmpty())
  4183                 log.error(tree.implementing.head.pos(),
  4184                           "cant.extend.intf.annotation");
  4185             if (tree.typarams.nonEmpty())
  4186                 log.error(tree.typarams.head.pos(),
  4187                           "intf.annotation.cant.have.type.params");
  4189             // If this annotation has a @Repeatable, validate
  4190             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4191             if (repeatable != null) {
  4192                 // get diagnostic position for error reporting
  4193                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4194                 Assert.checkNonNull(cbPos);
  4196                 chk.validateRepeatable(c, repeatable, cbPos);
  4198         } else {
  4199             // Check that all extended classes and interfaces
  4200             // are compatible (i.e. no two define methods with same arguments
  4201             // yet different return types).  (JLS 8.4.6.3)
  4202             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4203             if (allowDefaultMethods) {
  4204                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4208         // Check that class does not import the same parameterized interface
  4209         // with two different argument lists.
  4210         chk.checkClassBounds(tree.pos(), c.type);
  4212         tree.type = c.type;
  4214         for (List<JCTypeParameter> l = tree.typarams;
  4215              l.nonEmpty(); l = l.tail) {
  4216              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4219         // Check that a generic class doesn't extend Throwable
  4220         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4221             log.error(tree.extending.pos(), "generic.throwable");
  4223         // Check that all methods which implement some
  4224         // method conform to the method they implement.
  4225         chk.checkImplementations(tree);
  4227         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4228         checkAutoCloseable(tree.pos(), env, c.type);
  4230         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4231             // Attribute declaration
  4232             attribStat(l.head, env);
  4233             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4234             // Make an exception for static constants.
  4235             if (c.owner.kind != PCK &&
  4236                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4237                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4238                 Symbol sym = null;
  4239                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4240                 if (sym == null ||
  4241                     sym.kind != VAR ||
  4242                     ((VarSymbol) sym).getConstValue() == null)
  4243                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4247         // Check for cycles among non-initial constructors.
  4248         chk.checkCyclicConstructors(tree);
  4250         // Check for cycles among annotation elements.
  4251         chk.checkNonCyclicElements(tree);
  4253         // Check for proper use of serialVersionUID
  4254         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4255             isSerializable(c) &&
  4256             (c.flags() & Flags.ENUM) == 0 &&
  4257             (c.flags() & ABSTRACT) == 0) {
  4258             checkSerialVersionUID(tree, c);
  4261         // Correctly organize the postions of the type annotations
  4262         TypeAnnotations.organizeTypeAnnotationsBodies(this.syms, this.names, this.log, tree);
  4264         // Check type annotations applicability rules
  4265         validateTypeAnnotations(tree);
  4267         // where
  4268         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4269         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4270             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4271                 if (types.isSameType(al.head.annotationType.type, t))
  4272                     return al.head.pos();
  4275             return null;
  4278         /** check if a class is a subtype of Serializable, if that is available. */
  4279         private boolean isSerializable(ClassSymbol c) {
  4280             try {
  4281                 syms.serializableType.complete();
  4283             catch (CompletionFailure e) {
  4284                 return false;
  4286             return types.isSubtype(c.type, syms.serializableType);
  4289         /** Check that an appropriate serialVersionUID member is defined. */
  4290         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4292             // check for presence of serialVersionUID
  4293             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4294             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4295             if (e.scope == null) {
  4296                 log.warning(LintCategory.SERIAL,
  4297                         tree.pos(), "missing.SVUID", c);
  4298                 return;
  4301             // check that it is static final
  4302             VarSymbol svuid = (VarSymbol)e.sym;
  4303             if ((svuid.flags() & (STATIC | FINAL)) !=
  4304                 (STATIC | FINAL))
  4305                 log.warning(LintCategory.SERIAL,
  4306                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4308             // check that it is long
  4309             else if (!svuid.type.hasTag(LONG))
  4310                 log.warning(LintCategory.SERIAL,
  4311                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4313             // check constant
  4314             else if (svuid.getConstValue() == null)
  4315                 log.warning(LintCategory.SERIAL,
  4316                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4319     private Type capture(Type type) {
  4320         //do not capture free types
  4321         return resultInfo.checkContext.inferenceContext().free(type) ?
  4322                 type : types.capture(type);
  4325     private void validateTypeAnnotations(JCTree tree) {
  4326         tree.accept(typeAnnotationsValidator);
  4328     //where
  4329     private final JCTree.Visitor typeAnnotationsValidator = new TreeScanner() {
  4331         private boolean checkAllAnnotations = false;
  4333         public void visitAnnotation(JCAnnotation tree) {
  4334             if (tree.hasTag(TYPE_ANNOTATION) || checkAllAnnotations) {
  4335                 chk.validateTypeAnnotation(tree, false);
  4337             super.visitAnnotation(tree);
  4339         public void visitTypeParameter(JCTypeParameter tree) {
  4340             chk.validateTypeAnnotations(tree.annotations, true);
  4341             scan(tree.bounds);
  4342             // Don't call super.
  4343             // This is needed because above we call validateTypeAnnotation with
  4344             // false, which would forbid annotations on type parameters.
  4345             // super.visitTypeParameter(tree);
  4347         public void visitMethodDef(JCMethodDecl tree) {
  4348             if (tree.recvparam != null &&
  4349                     tree.recvparam.vartype.type.getKind() != TypeKind.ERROR) {
  4350                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4351                         tree.recvparam.vartype.type.tsym);
  4353             if (tree.restype != null && tree.restype.type != null) {
  4354                 validateAnnotatedType(tree.restype, tree.restype.type);
  4356             super.visitMethodDef(tree);
  4358         public void visitVarDef(final JCVariableDecl tree) {
  4359             if (tree.sym != null && tree.sym.type != null)
  4360                 validateAnnotatedType(tree, tree.sym.type);
  4361             super.visitVarDef(tree);
  4363         public void visitTypeCast(JCTypeCast tree) {
  4364             if (tree.clazz != null && tree.clazz.type != null)
  4365                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4366             super.visitTypeCast(tree);
  4368         public void visitTypeTest(JCInstanceOf tree) {
  4369             if (tree.clazz != null && tree.clazz.type != null)
  4370                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4371             super.visitTypeTest(tree);
  4373         public void visitNewClass(JCNewClass tree) {
  4374             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  4375                 boolean prevCheck = this.checkAllAnnotations;
  4376                 try {
  4377                     this.checkAllAnnotations = true;
  4378                     scan(((JCAnnotatedType)tree.clazz).annotations);
  4379                 } finally {
  4380                     this.checkAllAnnotations = prevCheck;
  4383             super.visitNewClass(tree);
  4385         public void visitNewArray(JCNewArray tree) {
  4386             if (tree.elemtype != null && tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  4387                 boolean prevCheck = this.checkAllAnnotations;
  4388                 try {
  4389                     this.checkAllAnnotations = true;
  4390                     scan(((JCAnnotatedType)tree.elemtype).annotations);
  4391                 } finally {
  4392                     this.checkAllAnnotations = prevCheck;
  4395             super.visitNewArray(tree);
  4398         /* I would want to model this after
  4399          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4400          * and override visitSelect and visitTypeApply.
  4401          * However, we only set the annotated type in the top-level type
  4402          * of the symbol.
  4403          * Therefore, we need to override each individual location where a type
  4404          * can occur.
  4405          */
  4406         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4407             if (type.getEnclosingType() != null &&
  4408                     type != type.getEnclosingType()) {
  4409                 validateEnclosingAnnotatedType(errtree, type.getEnclosingType());
  4411             for (Type targ : type.getTypeArguments()) {
  4412                 validateAnnotatedType(errtree, targ);
  4415         private void validateEnclosingAnnotatedType(final JCTree errtree, final Type type) {
  4416             validateAnnotatedType(errtree, type);
  4417             if (type.tsym != null &&
  4418                     type.tsym.isStatic() &&
  4419                     type.getAnnotationMirrors().nonEmpty()) {
  4420                     // Enclosing static classes cannot have type annotations.
  4421                 log.error(errtree.pos(), "cant.annotate.static.class");
  4424     };
  4426     // <editor-fold desc="post-attribution visitor">
  4428     /**
  4429      * Handle missing types/symbols in an AST. This routine is useful when
  4430      * the compiler has encountered some errors (which might have ended up
  4431      * terminating attribution abruptly); if the compiler is used in fail-over
  4432      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4433      * prevents NPE to be progagated during subsequent compilation steps.
  4434      */
  4435     public void postAttr(JCTree tree) {
  4436         new PostAttrAnalyzer().scan(tree);
  4439     class PostAttrAnalyzer extends TreeScanner {
  4441         private void initTypeIfNeeded(JCTree that) {
  4442             if (that.type == null) {
  4443                 that.type = syms.unknownType;
  4447         @Override
  4448         public void scan(JCTree tree) {
  4449             if (tree == null) return;
  4450             if (tree instanceof JCExpression) {
  4451                 initTypeIfNeeded(tree);
  4453             super.scan(tree);
  4456         @Override
  4457         public void visitIdent(JCIdent that) {
  4458             if (that.sym == null) {
  4459                 that.sym = syms.unknownSymbol;
  4463         @Override
  4464         public void visitSelect(JCFieldAccess that) {
  4465             if (that.sym == null) {
  4466                 that.sym = syms.unknownSymbol;
  4468             super.visitSelect(that);
  4471         @Override
  4472         public void visitClassDef(JCClassDecl that) {
  4473             initTypeIfNeeded(that);
  4474             if (that.sym == null) {
  4475                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4477             super.visitClassDef(that);
  4480         @Override
  4481         public void visitMethodDef(JCMethodDecl that) {
  4482             initTypeIfNeeded(that);
  4483             if (that.sym == null) {
  4484                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4486             super.visitMethodDef(that);
  4489         @Override
  4490         public void visitVarDef(JCVariableDecl that) {
  4491             initTypeIfNeeded(that);
  4492             if (that.sym == null) {
  4493                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4494                 that.sym.adr = 0;
  4496             super.visitVarDef(that);
  4499         @Override
  4500         public void visitNewClass(JCNewClass that) {
  4501             if (that.constructor == null) {
  4502                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4504             if (that.constructorType == null) {
  4505                 that.constructorType = syms.unknownType;
  4507             super.visitNewClass(that);
  4510         @Override
  4511         public void visitAssignop(JCAssignOp that) {
  4512             if (that.operator == null)
  4513                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4514             super.visitAssignop(that);
  4517         @Override
  4518         public void visitBinary(JCBinary that) {
  4519             if (that.operator == null)
  4520                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4521             super.visitBinary(that);
  4524         @Override
  4525         public void visitUnary(JCUnary that) {
  4526             if (that.operator == null)
  4527                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4528             super.visitUnary(that);
  4531         @Override
  4532         public void visitLambda(JCLambda that) {
  4533             super.visitLambda(that);
  4534             if (that.descriptorType == null) {
  4535                 that.descriptorType = syms.unknownType;
  4537             if (that.targets == null) {
  4538                 that.targets = List.nil();
  4542         @Override
  4543         public void visitReference(JCMemberReference that) {
  4544             super.visitReference(that);
  4545             if (that.sym == null) {
  4546                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4548             if (that.descriptorType == null) {
  4549                 that.descriptorType = syms.unknownType;
  4551             if (that.targets == null) {
  4552                 that.targets = List.nil();
  4556     // </editor-fold>

mercurial