src/share/classes/com/sun/tools/javac/jvm/Gen.java

Thu, 29 Nov 2012 09:41:48 +0000

author
vromero
date
Thu, 29 Nov 2012 09:41:48 +0000
changeset 1432
969c96b980b7
parent 1374
c002fdee76fd
child 1452
de1ec6fc93fe
permissions
-rw-r--r--

7153958: add constant pool reference to class containing inlined constants
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.jvm;
    27 import java.util.*;
    29 import com.sun.tools.javac.util.*;
    30 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    31 import com.sun.tools.javac.util.List;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.comp.*;
    34 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.code.Symbol.*;
    37 import com.sun.tools.javac.code.Type.*;
    38 import com.sun.tools.javac.jvm.Code.*;
    39 import com.sun.tools.javac.jvm.Items.*;
    40 import com.sun.tools.javac.tree.EndPosTable;
    41 import com.sun.tools.javac.tree.JCTree.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.Kinds.*;
    45 import static com.sun.tools.javac.code.TypeTag.*;
    46 import static com.sun.tools.javac.jvm.ByteCodes.*;
    47 import static com.sun.tools.javac.jvm.CRTFlags.*;
    48 import static com.sun.tools.javac.main.Option.*;
    49 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    50 import static com.sun.tools.javac.tree.JCTree.Tag.BLOCK;
    52 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
    53  *
    54  *  <p><b>This is NOT part of any supported API.
    55  *  If you write code that depends on this, you do so at your own risk.
    56  *  This code and its internal interfaces are subject to change or
    57  *  deletion without notice.</b>
    58  */
    59 public class Gen extends JCTree.Visitor {
    60     protected static final Context.Key<Gen> genKey =
    61         new Context.Key<Gen>();
    63     private final Log log;
    64     private final Symtab syms;
    65     private final Check chk;
    66     private final Resolve rs;
    67     private final TreeMaker make;
    68     private final Names names;
    69     private final Target target;
    70     private final Type stringBufferType;
    71     private final Map<Type,Symbol> stringBufferAppend;
    72     private Name accessDollar;
    73     private final Types types;
    74     private final Lower lower;
    76     /** Switch: GJ mode?
    77      */
    78     private final boolean allowGenerics;
    80     /** Set when Miranda method stubs are to be generated. */
    81     private final boolean generateIproxies;
    83     /** Format of stackmap tables to be generated. */
    84     private final Code.StackMapFormat stackMap;
    86     /** A type that serves as the expected type for all method expressions.
    87      */
    88     private final Type methodType;
    90     public static Gen instance(Context context) {
    91         Gen instance = context.get(genKey);
    92         if (instance == null)
    93             instance = new Gen(context);
    94         return instance;
    95     }
    97     protected Gen(Context context) {
    98         context.put(genKey, this);
   100         names = Names.instance(context);
   101         log = Log.instance(context);
   102         syms = Symtab.instance(context);
   103         chk = Check.instance(context);
   104         rs = Resolve.instance(context);
   105         make = TreeMaker.instance(context);
   106         target = Target.instance(context);
   107         types = Types.instance(context);
   108         methodType = new MethodType(null, null, null, syms.methodClass);
   109         allowGenerics = Source.instance(context).allowGenerics();
   110         stringBufferType = target.useStringBuilder()
   111             ? syms.stringBuilderType
   112             : syms.stringBufferType;
   113         stringBufferAppend = new HashMap<Type,Symbol>();
   114         accessDollar = names.
   115             fromString("access" + target.syntheticNameChar());
   116         lower = Lower.instance(context);
   118         Options options = Options.instance(context);
   119         lineDebugInfo =
   120             options.isUnset(G_CUSTOM) ||
   121             options.isSet(G_CUSTOM, "lines");
   122         varDebugInfo =
   123             options.isUnset(G_CUSTOM)
   124             ? options.isSet(G)
   125             : options.isSet(G_CUSTOM, "vars");
   126         genCrt = options.isSet(XJCOV);
   127         debugCode = options.isSet("debugcode");
   128         allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
   130         generateIproxies =
   131             target.requiresIproxy() ||
   132             options.isSet("miranda");
   134         if (target.generateStackMapTable()) {
   135             // ignore cldc because we cannot have both stackmap formats
   136             this.stackMap = StackMapFormat.JSR202;
   137         } else {
   138             if (target.generateCLDCStackmap()) {
   139                 this.stackMap = StackMapFormat.CLDC;
   140             } else {
   141                 this.stackMap = StackMapFormat.NONE;
   142             }
   143         }
   145         // by default, avoid jsr's for simple finalizers
   146         int setjsrlimit = 50;
   147         String jsrlimitString = options.get("jsrlimit");
   148         if (jsrlimitString != null) {
   149             try {
   150                 setjsrlimit = Integer.parseInt(jsrlimitString);
   151             } catch (NumberFormatException ex) {
   152                 // ignore ill-formed numbers for jsrlimit
   153             }
   154         }
   155         this.jsrlimit = setjsrlimit;
   156         this.useJsrLocally = false; // reset in visitTry
   157     }
   159     /** Switches
   160      */
   161     private final boolean lineDebugInfo;
   162     private final boolean varDebugInfo;
   163     private final boolean genCrt;
   164     private final boolean debugCode;
   165     private final boolean allowInvokedynamic;
   167     /** Default limit of (approximate) size of finalizer to inline.
   168      *  Zero means always use jsr.  100 or greater means never use
   169      *  jsr.
   170      */
   171     private final int jsrlimit;
   173     /** True if jsr is used.
   174      */
   175     private boolean useJsrLocally;
   177     /* Constant pool, reset by genClass.
   178      */
   179     private Pool pool = new Pool();
   181     /** Code buffer, set by genMethod.
   182      */
   183     private Code code;
   185     /** Items structure, set by genMethod.
   186      */
   187     private Items items;
   189     /** Environment for symbol lookup, set by genClass
   190      */
   191     private Env<AttrContext> attrEnv;
   193     /** The top level tree.
   194      */
   195     private JCCompilationUnit toplevel;
   197     /** The number of code-gen errors in this class.
   198      */
   199     private int nerrs = 0;
   201     /** An object containing mappings of syntax trees to their
   202      *  ending source positions.
   203      */
   204     EndPosTable endPosTable;
   206     /** Generate code to load an integer constant.
   207      *  @param n     The integer to be loaded.
   208      */
   209     void loadIntConst(int n) {
   210         items.makeImmediateItem(syms.intType, n).load();
   211     }
   213     /** The opcode that loads a zero constant of a given type code.
   214      *  @param tc   The given type code (@see ByteCode).
   215      */
   216     public static int zero(int tc) {
   217         switch(tc) {
   218         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
   219             return iconst_0;
   220         case LONGcode:
   221             return lconst_0;
   222         case FLOATcode:
   223             return fconst_0;
   224         case DOUBLEcode:
   225             return dconst_0;
   226         default:
   227             throw new AssertionError("zero");
   228         }
   229     }
   231     /** The opcode that loads a one constant of a given type code.
   232      *  @param tc   The given type code (@see ByteCode).
   233      */
   234     public static int one(int tc) {
   235         return zero(tc) + 1;
   236     }
   238     /** Generate code to load -1 of the given type code (either int or long).
   239      *  @param tc   The given type code (@see ByteCode).
   240      */
   241     void emitMinusOne(int tc) {
   242         if (tc == LONGcode) {
   243             items.makeImmediateItem(syms.longType, new Long(-1)).load();
   244         } else {
   245             code.emitop0(iconst_m1);
   246         }
   247     }
   249     /** Construct a symbol to reflect the qualifying type that should
   250      *  appear in the byte code as per JLS 13.1.
   251      *
   252      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
   253      *  for those cases where we need to work around VM bugs).
   254      *
   255      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
   256      *  non-accessible class, clone it with the qualifier class as owner.
   257      *
   258      *  @param sym    The accessed symbol
   259      *  @param site   The qualifier's type.
   260      */
   261     Symbol binaryQualifier(Symbol sym, Type site) {
   263         if (site.hasTag(ARRAY)) {
   264             if (sym == syms.lengthVar ||
   265                 sym.owner != syms.arrayClass)
   266                 return sym;
   267             // array clone can be qualified by the array type in later targets
   268             Symbol qualifier = target.arrayBinaryCompatibility()
   269                 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
   270                                   site, syms.noSymbol)
   271                 : syms.objectType.tsym;
   272             return sym.clone(qualifier);
   273         }
   275         if (sym.owner == site.tsym ||
   276             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
   277             return sym;
   278         }
   279         if (!target.obeyBinaryCompatibility())
   280             return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
   281                 ? sym
   282                 : sym.clone(site.tsym);
   284         if (!target.interfaceFieldsBinaryCompatibility()) {
   285             if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
   286                 return sym;
   287         }
   289         // leave alone methods inherited from Object
   290         // JLS 13.1.
   291         if (sym.owner == syms.objectType.tsym)
   292             return sym;
   294         if (!target.interfaceObjectOverridesBinaryCompatibility()) {
   295             if ((sym.owner.flags() & INTERFACE) != 0 &&
   296                 syms.objectType.tsym.members().lookup(sym.name).scope != null)
   297                 return sym;
   298         }
   300         return sym.clone(site.tsym);
   301     }
   303     /** Insert a reference to given type in the constant pool,
   304      *  checking for an array with too many dimensions;
   305      *  return the reference's index.
   306      *  @param type   The type for which a reference is inserted.
   307      */
   308     int makeRef(DiagnosticPosition pos, Type type) {
   309         checkDimension(pos, type);
   310         return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
   311     }
   313     /** Check if the given type is an array with too many dimensions.
   314      */
   315     private void checkDimension(DiagnosticPosition pos, Type t) {
   316         switch (t.getTag()) {
   317         case METHOD:
   318             checkDimension(pos, t.getReturnType());
   319             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
   320                 checkDimension(pos, args.head);
   321             break;
   322         case ARRAY:
   323             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
   324                 log.error(pos, "limit.dimensions");
   325                 nerrs++;
   326             }
   327             break;
   328         default:
   329             break;
   330         }
   331     }
   333     /** Create a tempory variable.
   334      *  @param type   The variable's type.
   335      */
   336     LocalItem makeTemp(Type type) {
   337         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
   338                                     names.empty,
   339                                     type,
   340                                     env.enclMethod.sym);
   341         code.newLocal(v);
   342         return items.makeLocalItem(v);
   343     }
   345     /** Generate code to call a non-private method or constructor.
   346      *  @param pos         Position to be used for error reporting.
   347      *  @param site        The type of which the method is a member.
   348      *  @param name        The method's name.
   349      *  @param argtypes    The method's argument types.
   350      *  @param isStatic    A flag that indicates whether we call a
   351      *                     static or instance method.
   352      */
   353     void callMethod(DiagnosticPosition pos,
   354                     Type site, Name name, List<Type> argtypes,
   355                     boolean isStatic) {
   356         Symbol msym = rs.
   357             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
   358         if (isStatic) items.makeStaticItem(msym).invoke();
   359         else items.makeMemberItem(msym, name == names.init).invoke();
   360     }
   362     /** Is the given method definition an access method
   363      *  resulting from a qualified super? This is signified by an odd
   364      *  access code.
   365      */
   366     private boolean isAccessSuper(JCMethodDecl enclMethod) {
   367         return
   368             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
   369             isOddAccessName(enclMethod.name);
   370     }
   372     /** Does given name start with "access$" and end in an odd digit?
   373      */
   374     private boolean isOddAccessName(Name name) {
   375         return
   376             name.startsWith(accessDollar) &&
   377             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
   378     }
   380 /* ************************************************************************
   381  * Non-local exits
   382  *************************************************************************/
   384     /** Generate code to invoke the finalizer associated with given
   385      *  environment.
   386      *  Any calls to finalizers are appended to the environments `cont' chain.
   387      *  Mark beginning of gap in catch all range for finalizer.
   388      */
   389     void genFinalizer(Env<GenContext> env) {
   390         if (code.isAlive() && env.info.finalize != null)
   391             env.info.finalize.gen();
   392     }
   394     /** Generate code to call all finalizers of structures aborted by
   395      *  a non-local
   396      *  exit.  Return target environment of the non-local exit.
   397      *  @param target      The tree representing the structure that's aborted
   398      *  @param env         The environment current at the non-local exit.
   399      */
   400     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
   401         Env<GenContext> env1 = env;
   402         while (true) {
   403             genFinalizer(env1);
   404             if (env1.tree == target) break;
   405             env1 = env1.next;
   406         }
   407         return env1;
   408     }
   410     /** Mark end of gap in catch-all range for finalizer.
   411      *  @param env   the environment which might contain the finalizer
   412      *               (if it does, env.info.gaps != null).
   413      */
   414     void endFinalizerGap(Env<GenContext> env) {
   415         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
   416             env.info.gaps.append(code.curPc());
   417     }
   419     /** Mark end of all gaps in catch-all ranges for finalizers of environments
   420      *  lying between, and including to two environments.
   421      *  @param from    the most deeply nested environment to mark
   422      *  @param to      the least deeply nested environment to mark
   423      */
   424     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
   425         Env<GenContext> last = null;
   426         while (last != to) {
   427             endFinalizerGap(from);
   428             last = from;
   429             from = from.next;
   430         }
   431     }
   433     /** Do any of the structures aborted by a non-local exit have
   434      *  finalizers that require an empty stack?
   435      *  @param target      The tree representing the structure that's aborted
   436      *  @param env         The environment current at the non-local exit.
   437      */
   438     boolean hasFinally(JCTree target, Env<GenContext> env) {
   439         while (env.tree != target) {
   440             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
   441                 return true;
   442             env = env.next;
   443         }
   444         return false;
   445     }
   447 /* ************************************************************************
   448  * Normalizing class-members.
   449  *************************************************************************/
   451     /** Distribute member initializer code into constructors and {@code <clinit>}
   452      *  method.
   453      *  @param defs         The list of class member declarations.
   454      *  @param c            The enclosing class.
   455      */
   456     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
   457         ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
   458         ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
   459         ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
   460         // Sort definitions into three listbuffers:
   461         //  - initCode for instance initializers
   462         //  - clinitCode for class initializers
   463         //  - methodDefs for method definitions
   464         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
   465             JCTree def = l.head;
   466             switch (def.getTag()) {
   467             case BLOCK:
   468                 JCBlock block = (JCBlock)def;
   469                 if ((block.flags & STATIC) != 0)
   470                     clinitCode.append(block);
   471                 else
   472                     initCode.append(block);
   473                 break;
   474             case METHODDEF:
   475                 methodDefs.append(def);
   476                 break;
   477             case VARDEF:
   478                 JCVariableDecl vdef = (JCVariableDecl) def;
   479                 VarSymbol sym = vdef.sym;
   480                 checkDimension(vdef.pos(), sym.type);
   481                 if (vdef.init != null) {
   482                     if ((sym.flags() & STATIC) == 0) {
   483                         // Always initialize instance variables.
   484                         JCStatement init = make.at(vdef.pos()).
   485                             Assignment(sym, vdef.init);
   486                         initCode.append(init);
   487                         endPosTable.replaceTree(vdef, init);
   488                     } else if (sym.getConstValue() == null) {
   489                         // Initialize class (static) variables only if
   490                         // they are not compile-time constants.
   491                         JCStatement init = make.at(vdef.pos).
   492                             Assignment(sym, vdef.init);
   493                         clinitCode.append(init);
   494                         endPosTable.replaceTree(vdef, init);
   495                     } else {
   496                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
   497                     }
   498                 }
   499                 break;
   500             default:
   501                 Assert.error();
   502             }
   503         }
   504         // Insert any instance initializers into all constructors.
   505         if (initCode.length() != 0) {
   506             List<JCStatement> inits = initCode.toList();
   507             for (JCTree t : methodDefs) {
   508                 normalizeMethod((JCMethodDecl)t, inits);
   509             }
   510         }
   511         // If there are class initializers, create a <clinit> method
   512         // that contains them as its body.
   513         if (clinitCode.length() != 0) {
   514             MethodSymbol clinit = new MethodSymbol(
   515                 STATIC, names.clinit,
   516                 new MethodType(
   517                     List.<Type>nil(), syms.voidType,
   518                     List.<Type>nil(), syms.methodClass),
   519                 c);
   520             c.members().enter(clinit);
   521             List<JCStatement> clinitStats = clinitCode.toList();
   522             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
   523             block.endpos = TreeInfo.endPos(clinitStats.last());
   524             methodDefs.append(make.MethodDef(clinit, block));
   525         }
   526         // Return all method definitions.
   527         return methodDefs.toList();
   528     }
   530     /** Check a constant value and report if it is a string that is
   531      *  too large.
   532      */
   533     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
   534         if (nerrs != 0 || // only complain about a long string once
   535             constValue == null ||
   536             !(constValue instanceof String) ||
   537             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
   538             return;
   539         log.error(pos, "limit.string");
   540         nerrs++;
   541     }
   543     /** Insert instance initializer code into initial constructor.
   544      *  @param md        The tree potentially representing a
   545      *                   constructor's definition.
   546      *  @param initCode  The list of instance initializer statements.
   547      */
   548     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode) {
   549         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
   550             // We are seeing a constructor that does not call another
   551             // constructor of the same class.
   552             List<JCStatement> stats = md.body.stats;
   553             ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
   555             if (stats.nonEmpty()) {
   556                 // Copy initializers of synthetic variables generated in
   557                 // the translation of inner classes.
   558                 while (TreeInfo.isSyntheticInit(stats.head)) {
   559                     newstats.append(stats.head);
   560                     stats = stats.tail;
   561                 }
   562                 // Copy superclass constructor call
   563                 newstats.append(stats.head);
   564                 stats = stats.tail;
   565                 // Copy remaining synthetic initializers.
   566                 while (stats.nonEmpty() &&
   567                        TreeInfo.isSyntheticInit(stats.head)) {
   568                     newstats.append(stats.head);
   569                     stats = stats.tail;
   570                 }
   571                 // Now insert the initializer code.
   572                 newstats.appendList(initCode);
   573                 // And copy all remaining statements.
   574                 while (stats.nonEmpty()) {
   575                     newstats.append(stats.head);
   576                     stats = stats.tail;
   577                 }
   578             }
   579             md.body.stats = newstats.toList();
   580             if (md.body.endpos == Position.NOPOS)
   581                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
   582         }
   583     }
   585 /* ********************************************************************
   586  * Adding miranda methods
   587  *********************************************************************/
   589     /** Add abstract methods for all methods defined in one of
   590      *  the interfaces of a given class,
   591      *  provided they are not already implemented in the class.
   592      *
   593      *  @param c      The class whose interfaces are searched for methods
   594      *                for which Miranda methods should be added.
   595      */
   596     void implementInterfaceMethods(ClassSymbol c) {
   597         implementInterfaceMethods(c, c);
   598     }
   600     /** Add abstract methods for all methods defined in one of
   601      *  the interfaces of a given class,
   602      *  provided they are not already implemented in the class.
   603      *
   604      *  @param c      The class whose interfaces are searched for methods
   605      *                for which Miranda methods should be added.
   606      *  @param site   The class in which a definition may be needed.
   607      */
   608     void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
   609         for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
   610             ClassSymbol i = (ClassSymbol)l.head.tsym;
   611             for (Scope.Entry e = i.members().elems;
   612                  e != null;
   613                  e = e.sibling)
   614             {
   615                 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
   616                 {
   617                     MethodSymbol absMeth = (MethodSymbol)e.sym;
   618                     MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
   619                     if (implMeth == null)
   620                         addAbstractMethod(site, absMeth);
   621                     else if ((implMeth.flags() & IPROXY) != 0)
   622                         adjustAbstractMethod(site, implMeth, absMeth);
   623                 }
   624             }
   625             implementInterfaceMethods(i, site);
   626         }
   627     }
   629     /** Add an abstract methods to a class
   630      *  which implicitly implements a method defined in some interface
   631      *  implemented by the class. These methods are called "Miranda methods".
   632      *  Enter the newly created method into its enclosing class scope.
   633      *  Note that it is not entered into the class tree, as the emitter
   634      *  doesn't need to see it there to emit an abstract method.
   635      *
   636      *  @param c      The class to which the Miranda method is added.
   637      *  @param m      The interface method symbol for which a Miranda method
   638      *                is added.
   639      */
   640     private void addAbstractMethod(ClassSymbol c,
   641                                    MethodSymbol m) {
   642         MethodSymbol absMeth = new MethodSymbol(
   643             m.flags() | IPROXY | SYNTHETIC, m.name,
   644             m.type, // was c.type.memberType(m), but now only !generics supported
   645             c);
   646         c.members().enter(absMeth); // add to symbol table
   647     }
   649     private void adjustAbstractMethod(ClassSymbol c,
   650                                       MethodSymbol pm,
   651                                       MethodSymbol im) {
   652         MethodType pmt = (MethodType)pm.type;
   653         Type imt = types.memberType(c.type, im);
   654         pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
   655     }
   657 /* ************************************************************************
   658  * Traversal methods
   659  *************************************************************************/
   661     /** Visitor argument: The current environment.
   662      */
   663     Env<GenContext> env;
   665     /** Visitor argument: The expected type (prototype).
   666      */
   667     Type pt;
   669     /** Visitor result: The item representing the computed value.
   670      */
   671     Item result;
   673     /** Visitor method: generate code for a definition, catching and reporting
   674      *  any completion failures.
   675      *  @param tree    The definition to be visited.
   676      *  @param env     The environment current at the definition.
   677      */
   678     public void genDef(JCTree tree, Env<GenContext> env) {
   679         Env<GenContext> prevEnv = this.env;
   680         try {
   681             this.env = env;
   682             tree.accept(this);
   683         } catch (CompletionFailure ex) {
   684             chk.completionError(tree.pos(), ex);
   685         } finally {
   686             this.env = prevEnv;
   687         }
   688     }
   690     /** Derived visitor method: check whether CharacterRangeTable
   691      *  should be emitted, if so, put a new entry into CRTable
   692      *  and call method to generate bytecode.
   693      *  If not, just call method to generate bytecode.
   694      *  @see    #genStat(JCTree, Env)
   695      *
   696      *  @param  tree     The tree to be visited.
   697      *  @param  env      The environment to use.
   698      *  @param  crtFlags The CharacterRangeTable flags
   699      *                   indicating type of the entry.
   700      */
   701     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
   702         if (!genCrt) {
   703             genStat(tree, env);
   704             return;
   705         }
   706         int startpc = code.curPc();
   707         genStat(tree, env);
   708         if (tree.hasTag(BLOCK)) crtFlags |= CRT_BLOCK;
   709         code.crt.put(tree, crtFlags, startpc, code.curPc());
   710     }
   712     /** Derived visitor method: generate code for a statement.
   713      */
   714     public void genStat(JCTree tree, Env<GenContext> env) {
   715         if (code.isAlive()) {
   716             code.statBegin(tree.pos);
   717             genDef(tree, env);
   718         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
   719             // variables whose declarations are in a switch
   720             // can be used even if the decl is unreachable.
   721             code.newLocal(((JCVariableDecl) tree).sym);
   722         }
   723     }
   725     /** Derived visitor method: check whether CharacterRangeTable
   726      *  should be emitted, if so, put a new entry into CRTable
   727      *  and call method to generate bytecode.
   728      *  If not, just call method to generate bytecode.
   729      *  @see    #genStats(List, Env)
   730      *
   731      *  @param  trees    The list of trees to be visited.
   732      *  @param  env      The environment to use.
   733      *  @param  crtFlags The CharacterRangeTable flags
   734      *                   indicating type of the entry.
   735      */
   736     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
   737         if (!genCrt) {
   738             genStats(trees, env);
   739             return;
   740         }
   741         if (trees.length() == 1) {        // mark one statement with the flags
   742             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
   743         } else {
   744             int startpc = code.curPc();
   745             genStats(trees, env);
   746             code.crt.put(trees, crtFlags, startpc, code.curPc());
   747         }
   748     }
   750     /** Derived visitor method: generate code for a list of statements.
   751      */
   752     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
   753         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   754             genStat(l.head, env, CRT_STATEMENT);
   755     }
   757     /** Derived visitor method: check whether CharacterRangeTable
   758      *  should be emitted, if so, put a new entry into CRTable
   759      *  and call method to generate bytecode.
   760      *  If not, just call method to generate bytecode.
   761      *  @see    #genCond(JCTree,boolean)
   762      *
   763      *  @param  tree     The tree to be visited.
   764      *  @param  crtFlags The CharacterRangeTable flags
   765      *                   indicating type of the entry.
   766      */
   767     public CondItem genCond(JCTree tree, int crtFlags) {
   768         if (!genCrt) return genCond(tree, false);
   769         int startpc = code.curPc();
   770         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
   771         code.crt.put(tree, crtFlags, startpc, code.curPc());
   772         return item;
   773     }
   775     /** Derived visitor method: generate code for a boolean
   776      *  expression in a control-flow context.
   777      *  @param _tree         The expression to be visited.
   778      *  @param markBranches The flag to indicate that the condition is
   779      *                      a flow controller so produced conditions
   780      *                      should contain a proper tree to generate
   781      *                      CharacterRangeTable branches for them.
   782      */
   783     public CondItem genCond(JCTree _tree, boolean markBranches) {
   784         JCTree inner_tree = TreeInfo.skipParens(_tree);
   785         if (inner_tree.hasTag(CONDEXPR)) {
   786             JCConditional tree = (JCConditional)inner_tree;
   787             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
   788             if (cond.isTrue()) {
   789                 code.resolve(cond.trueJumps);
   790                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
   791                 if (markBranches) result.tree = tree.truepart;
   792                 return result;
   793             }
   794             if (cond.isFalse()) {
   795                 code.resolve(cond.falseJumps);
   796                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
   797                 if (markBranches) result.tree = tree.falsepart;
   798                 return result;
   799             }
   800             Chain secondJumps = cond.jumpFalse();
   801             code.resolve(cond.trueJumps);
   802             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
   803             if (markBranches) first.tree = tree.truepart;
   804             Chain falseJumps = first.jumpFalse();
   805             code.resolve(first.trueJumps);
   806             Chain trueJumps = code.branch(goto_);
   807             code.resolve(secondJumps);
   808             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
   809             CondItem result = items.makeCondItem(second.opcode,
   810                                       Code.mergeChains(trueJumps, second.trueJumps),
   811                                       Code.mergeChains(falseJumps, second.falseJumps));
   812             if (markBranches) result.tree = tree.falsepart;
   813             return result;
   814         } else {
   815             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
   816             if (markBranches) result.tree = _tree;
   817             return result;
   818         }
   819     }
   821     /** Visitor class for expressions which might be constant expressions.
   822      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
   823      *  Lower as long as constant expressions looking for references to any
   824      *  ClassSymbol. Any such reference will be added to the constant pool so
   825      *  automated tools can detect class dependencies better.
   826      */
   827     class ClassReferenceVisitor extends JCTree.Visitor {
   829         @Override
   830         public void visitTree(JCTree tree) {}
   832         @Override
   833         public void visitBinary(JCBinary tree) {
   834             tree.lhs.accept(this);
   835             tree.rhs.accept(this);
   836         }
   838         @Override
   839         public void visitSelect(JCFieldAccess tree) {
   840             if (tree.selected.type.hasTag(CLASS)) {
   841                 makeRef(tree.selected.pos(), tree.selected.type);
   842             }
   843         }
   845         @Override
   846         public void visitIdent(JCIdent tree) {
   847             if (tree.sym.owner instanceof ClassSymbol) {
   848                 pool.put(tree.sym.owner);
   849             }
   850         }
   852         @Override
   853         public void visitConditional(JCConditional tree) {
   854             tree.cond.accept(this);
   855             tree.truepart.accept(this);
   856             tree.falsepart.accept(this);
   857         }
   859         @Override
   860         public void visitUnary(JCUnary tree) {
   861             tree.arg.accept(this);
   862         }
   864         @Override
   865         public void visitParens(JCParens tree) {
   866             tree.expr.accept(this);
   867         }
   869         @Override
   870         public void visitTypeCast(JCTypeCast tree) {
   871             tree.expr.accept(this);
   872         }
   873     }
   875     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
   877     /** Visitor method: generate code for an expression, catching and reporting
   878      *  any completion failures.
   879      *  @param tree    The expression to be visited.
   880      *  @param pt      The expression's expected type (proto-type).
   881      */
   882     public Item genExpr(JCTree tree, Type pt) {
   883         Type prevPt = this.pt;
   884         try {
   885             if (tree.type.constValue() != null) {
   886                 // Short circuit any expressions which are constants
   887                 tree.accept(classReferenceVisitor);
   888                 checkStringConstant(tree.pos(), tree.type.constValue());
   889                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
   890             } else {
   891                 this.pt = pt;
   892                 tree.accept(this);
   893             }
   894             return result.coerce(pt);
   895         } catch (CompletionFailure ex) {
   896             chk.completionError(tree.pos(), ex);
   897             code.state.stacksize = 1;
   898             return items.makeStackItem(pt);
   899         } finally {
   900             this.pt = prevPt;
   901         }
   902     }
   904     /** Derived visitor method: generate code for a list of method arguments.
   905      *  @param trees    The argument expressions to be visited.
   906      *  @param pts      The expression's expected types (i.e. the formal parameter
   907      *                  types of the invoked method).
   908      */
   909     public void genArgs(List<JCExpression> trees, List<Type> pts) {
   910         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
   911             genExpr(l.head, pts.head).load();
   912             pts = pts.tail;
   913         }
   914         // require lists be of same length
   915         Assert.check(pts.isEmpty());
   916     }
   918 /* ************************************************************************
   919  * Visitor methods for statements and definitions
   920  *************************************************************************/
   922     /** Thrown when the byte code size exceeds limit.
   923      */
   924     public static class CodeSizeOverflow extends RuntimeException {
   925         private static final long serialVersionUID = 0;
   926         public CodeSizeOverflow() {}
   927     }
   929     public void visitMethodDef(JCMethodDecl tree) {
   930         // Create a new local environment that points pack at method
   931         // definition.
   932         Env<GenContext> localEnv = env.dup(tree);
   933         localEnv.enclMethod = tree;
   935         // The expected type of every return statement in this method
   936         // is the method's return type.
   937         this.pt = tree.sym.erasure(types).getReturnType();
   939         checkDimension(tree.pos(), tree.sym.erasure(types));
   940         genMethod(tree, localEnv, false);
   941     }
   942 //where
   943         /** Generate code for a method.
   944          *  @param tree     The tree representing the method definition.
   945          *  @param env      The environment current for the method body.
   946          *  @param fatcode  A flag that indicates whether all jumps are
   947          *                  within 32K.  We first invoke this method under
   948          *                  the assumption that fatcode == false, i.e. all
   949          *                  jumps are within 32K.  If this fails, fatcode
   950          *                  is set to true and we try again.
   951          */
   952         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
   953             MethodSymbol meth = tree.sym;
   954 //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
   955             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes())  +
   956                 (((tree.mods.flags & STATIC) == 0 || meth.isConstructor()) ? 1 : 0) >
   957                 ClassFile.MAX_PARAMETERS) {
   958                 log.error(tree.pos(), "limit.parameters");
   959                 nerrs++;
   960             }
   962             else if (tree.body != null) {
   963                 // Create a new code structure and initialize it.
   964                 int startpcCrt = initCode(tree, env, fatcode);
   966                 try {
   967                     genStat(tree.body, env);
   968                 } catch (CodeSizeOverflow e) {
   969                     // Failed due to code limit, try again with jsr/ret
   970                     startpcCrt = initCode(tree, env, fatcode);
   971                     genStat(tree.body, env);
   972                 }
   974                 if (code.state.stacksize != 0) {
   975                     log.error(tree.body.pos(), "stack.sim.error", tree);
   976                     throw new AssertionError();
   977                 }
   979                 // If last statement could complete normally, insert a
   980                 // return at the end.
   981                 if (code.isAlive()) {
   982                     code.statBegin(TreeInfo.endPos(tree.body));
   983                     if (env.enclMethod == null ||
   984                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
   985                         code.emitop0(return_);
   986                     } else {
   987                         // sometime dead code seems alive (4415991);
   988                         // generate a small loop instead
   989                         int startpc = code.entryPoint();
   990                         CondItem c = items.makeCondItem(goto_);
   991                         code.resolve(c.jumpTrue(), startpc);
   992                     }
   993                 }
   994                 if (genCrt)
   995                     code.crt.put(tree.body,
   996                                  CRT_BLOCK,
   997                                  startpcCrt,
   998                                  code.curPc());
  1000                 code.endScopes(0);
  1002                 // If we exceeded limits, panic
  1003                 if (code.checkLimits(tree.pos(), log)) {
  1004                     nerrs++;
  1005                     return;
  1008                 // If we generated short code but got a long jump, do it again
  1009                 // with fatCode = true.
  1010                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
  1012                 // Clean up
  1013                 if(stackMap == StackMapFormat.JSR202) {
  1014                     code.lastFrame = null;
  1015                     code.frameBeforeLast = null;
  1018                 //compress exception table
  1019                 code.compressCatchTable();
  1023         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
  1024             MethodSymbol meth = tree.sym;
  1026             // Create a new code structure.
  1027             meth.code = code = new Code(meth,
  1028                                         fatcode,
  1029                                         lineDebugInfo ? toplevel.lineMap : null,
  1030                                         varDebugInfo,
  1031                                         stackMap,
  1032                                         debugCode,
  1033                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
  1034                                                : null,
  1035                                         syms,
  1036                                         types,
  1037                                         pool);
  1038             items = new Items(pool, code, syms, types);
  1039             if (code.debugCode)
  1040                 System.err.println(meth + " for body " + tree);
  1042             // If method is not static, create a new local variable address
  1043             // for `this'.
  1044             if ((tree.mods.flags & STATIC) == 0) {
  1045                 Type selfType = meth.owner.type;
  1046                 if (meth.isConstructor() && selfType != syms.objectType)
  1047                     selfType = UninitializedType.uninitializedThis(selfType);
  1048                 code.setDefined(
  1049                         code.newLocal(
  1050                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
  1053             // Mark all parameters as defined from the beginning of
  1054             // the method.
  1055             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
  1056                 checkDimension(l.head.pos(), l.head.sym.type);
  1057                 code.setDefined(code.newLocal(l.head.sym));
  1060             // Get ready to generate code for method body.
  1061             int startpcCrt = genCrt ? code.curPc() : 0;
  1062             code.entryPoint();
  1064             // Suppress initial stackmap
  1065             code.pendingStackMap = false;
  1067             return startpcCrt;
  1070     public void visitVarDef(JCVariableDecl tree) {
  1071         VarSymbol v = tree.sym;
  1072         code.newLocal(v);
  1073         if (tree.init != null) {
  1074             checkStringConstant(tree.init.pos(), v.getConstValue());
  1075             if (v.getConstValue() == null || varDebugInfo) {
  1076                 genExpr(tree.init, v.erasure(types)).load();
  1077                 items.makeLocalItem(v).store();
  1080         checkDimension(tree.pos(), v.type);
  1083     public void visitSkip(JCSkip tree) {
  1086     public void visitBlock(JCBlock tree) {
  1087         int limit = code.nextreg;
  1088         Env<GenContext> localEnv = env.dup(tree, new GenContext());
  1089         genStats(tree.stats, localEnv);
  1090         // End the scope of all block-local variables in variable info.
  1091         if (!env.tree.hasTag(METHODDEF)) {
  1092             code.statBegin(tree.endpos);
  1093             code.endScopes(limit);
  1094             code.pendingStatPos = Position.NOPOS;
  1098     public void visitDoLoop(JCDoWhileLoop tree) {
  1099         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
  1102     public void visitWhileLoop(JCWhileLoop tree) {
  1103         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
  1106     public void visitForLoop(JCForLoop tree) {
  1107         int limit = code.nextreg;
  1108         genStats(tree.init, env);
  1109         genLoop(tree, tree.body, tree.cond, tree.step, true);
  1110         code.endScopes(limit);
  1112     //where
  1113         /** Generate code for a loop.
  1114          *  @param loop       The tree representing the loop.
  1115          *  @param body       The loop's body.
  1116          *  @param cond       The loop's controling condition.
  1117          *  @param step       "Step" statements to be inserted at end of
  1118          *                    each iteration.
  1119          *  @param testFirst  True if the loop test belongs before the body.
  1120          */
  1121         private void genLoop(JCStatement loop,
  1122                              JCStatement body,
  1123                              JCExpression cond,
  1124                              List<JCExpressionStatement> step,
  1125                              boolean testFirst) {
  1126             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
  1127             int startpc = code.entryPoint();
  1128             if (testFirst) {
  1129                 CondItem c;
  1130                 if (cond != null) {
  1131                     code.statBegin(cond.pos);
  1132                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
  1133                 } else {
  1134                     c = items.makeCondItem(goto_);
  1136                 Chain loopDone = c.jumpFalse();
  1137                 code.resolve(c.trueJumps);
  1138                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
  1139                 code.resolve(loopEnv.info.cont);
  1140                 genStats(step, loopEnv);
  1141                 code.resolve(code.branch(goto_), startpc);
  1142                 code.resolve(loopDone);
  1143             } else {
  1144                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
  1145                 code.resolve(loopEnv.info.cont);
  1146                 genStats(step, loopEnv);
  1147                 CondItem c;
  1148                 if (cond != null) {
  1149                     code.statBegin(cond.pos);
  1150                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
  1151                 } else {
  1152                     c = items.makeCondItem(goto_);
  1154                 code.resolve(c.jumpTrue(), startpc);
  1155                 code.resolve(c.falseJumps);
  1157             code.resolve(loopEnv.info.exit);
  1160     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1161         throw new AssertionError(); // should have been removed by Lower.
  1164     public void visitLabelled(JCLabeledStatement tree) {
  1165         Env<GenContext> localEnv = env.dup(tree, new GenContext());
  1166         genStat(tree.body, localEnv, CRT_STATEMENT);
  1167         code.resolve(localEnv.info.exit);
  1170     public void visitSwitch(JCSwitch tree) {
  1171         int limit = code.nextreg;
  1172         Assert.check(!tree.selector.type.hasTag(CLASS));
  1173         int startpcCrt = genCrt ? code.curPc() : 0;
  1174         Item sel = genExpr(tree.selector, syms.intType);
  1175         List<JCCase> cases = tree.cases;
  1176         if (cases.isEmpty()) {
  1177             // We are seeing:  switch <sel> {}
  1178             sel.load().drop();
  1179             if (genCrt)
  1180                 code.crt.put(TreeInfo.skipParens(tree.selector),
  1181                              CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
  1182         } else {
  1183             // We are seeing a nonempty switch.
  1184             sel.load();
  1185             if (genCrt)
  1186                 code.crt.put(TreeInfo.skipParens(tree.selector),
  1187                              CRT_FLOW_CONTROLLER, startpcCrt, code.curPc());
  1188             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
  1189             switchEnv.info.isSwitch = true;
  1191             // Compute number of labels and minimum and maximum label values.
  1192             // For each case, store its label in an array.
  1193             int lo = Integer.MAX_VALUE;  // minimum label.
  1194             int hi = Integer.MIN_VALUE;  // maximum label.
  1195             int nlabels = 0;               // number of labels.
  1197             int[] labels = new int[cases.length()];  // the label array.
  1198             int defaultIndex = -1;     // the index of the default clause.
  1200             List<JCCase> l = cases;
  1201             for (int i = 0; i < labels.length; i++) {
  1202                 if (l.head.pat != null) {
  1203                     int val = ((Number)l.head.pat.type.constValue()).intValue();
  1204                     labels[i] = val;
  1205                     if (val < lo) lo = val;
  1206                     if (hi < val) hi = val;
  1207                     nlabels++;
  1208                 } else {
  1209                     Assert.check(defaultIndex == -1);
  1210                     defaultIndex = i;
  1212                 l = l.tail;
  1215             // Determine whether to issue a tableswitch or a lookupswitch
  1216             // instruction.
  1217             long table_space_cost = 4 + ((long) hi - lo + 1); // words
  1218             long table_time_cost = 3; // comparisons
  1219             long lookup_space_cost = 3 + 2 * (long) nlabels;
  1220             long lookup_time_cost = nlabels;
  1221             int opcode =
  1222                 nlabels > 0 &&
  1223                 table_space_cost + 3 * table_time_cost <=
  1224                 lookup_space_cost + 3 * lookup_time_cost
  1226                 tableswitch : lookupswitch;
  1228             int startpc = code.curPc();    // the position of the selector operation
  1229             code.emitop0(opcode);
  1230             code.align(4);
  1231             int tableBase = code.curPc();  // the start of the jump table
  1232             int[] offsets = null;          // a table of offsets for a lookupswitch
  1233             code.emit4(-1);                // leave space for default offset
  1234             if (opcode == tableswitch) {
  1235                 code.emit4(lo);            // minimum label
  1236                 code.emit4(hi);            // maximum label
  1237                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
  1238                     code.emit4(-1);
  1240             } else {
  1241                 code.emit4(nlabels);    // number of labels
  1242                 for (int i = 0; i < nlabels; i++) {
  1243                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
  1245                 offsets = new int[labels.length];
  1247             Code.State stateSwitch = code.state.dup();
  1248             code.markDead();
  1250             // For each case do:
  1251             l = cases;
  1252             for (int i = 0; i < labels.length; i++) {
  1253                 JCCase c = l.head;
  1254                 l = l.tail;
  1256                 int pc = code.entryPoint(stateSwitch);
  1257                 // Insert offset directly into code or else into the
  1258                 // offsets table.
  1259                 if (i != defaultIndex) {
  1260                     if (opcode == tableswitch) {
  1261                         code.put4(
  1262                             tableBase + 4 * (labels[i] - lo + 3),
  1263                             pc - startpc);
  1264                     } else {
  1265                         offsets[i] = pc - startpc;
  1267                 } else {
  1268                     code.put4(tableBase, pc - startpc);
  1271                 // Generate code for the statements in this case.
  1272                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
  1275             // Resolve all breaks.
  1276             code.resolve(switchEnv.info.exit);
  1278             // If we have not set the default offset, we do so now.
  1279             if (code.get4(tableBase) == -1) {
  1280                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
  1283             if (opcode == tableswitch) {
  1284                 // Let any unfilled slots point to the default case.
  1285                 int defaultOffset = code.get4(tableBase);
  1286                 for (long i = lo; i <= hi; i++) {
  1287                     int t = (int)(tableBase + 4 * (i - lo + 3));
  1288                     if (code.get4(t) == -1)
  1289                         code.put4(t, defaultOffset);
  1291             } else {
  1292                 // Sort non-default offsets and copy into lookup table.
  1293                 if (defaultIndex >= 0)
  1294                     for (int i = defaultIndex; i < labels.length - 1; i++) {
  1295                         labels[i] = labels[i+1];
  1296                         offsets[i] = offsets[i+1];
  1298                 if (nlabels > 0)
  1299                     qsort2(labels, offsets, 0, nlabels - 1);
  1300                 for (int i = 0; i < nlabels; i++) {
  1301                     int caseidx = tableBase + 8 * (i + 1);
  1302                     code.put4(caseidx, labels[i]);
  1303                     code.put4(caseidx + 4, offsets[i]);
  1307         code.endScopes(limit);
  1309 //where
  1310         /** Sort (int) arrays of keys and values
  1311          */
  1312        static void qsort2(int[] keys, int[] values, int lo, int hi) {
  1313             int i = lo;
  1314             int j = hi;
  1315             int pivot = keys[(i+j)/2];
  1316             do {
  1317                 while (keys[i] < pivot) i++;
  1318                 while (pivot < keys[j]) j--;
  1319                 if (i <= j) {
  1320                     int temp1 = keys[i];
  1321                     keys[i] = keys[j];
  1322                     keys[j] = temp1;
  1323                     int temp2 = values[i];
  1324                     values[i] = values[j];
  1325                     values[j] = temp2;
  1326                     i++;
  1327                     j--;
  1329             } while (i <= j);
  1330             if (lo < j) qsort2(keys, values, lo, j);
  1331             if (i < hi) qsort2(keys, values, i, hi);
  1334     public void visitSynchronized(JCSynchronized tree) {
  1335         int limit = code.nextreg;
  1336         // Generate code to evaluate lock and save in temporary variable.
  1337         final LocalItem lockVar = makeTemp(syms.objectType);
  1338         genExpr(tree.lock, tree.lock.type).load().duplicate();
  1339         lockVar.store();
  1341         // Generate code to enter monitor.
  1342         code.emitop0(monitorenter);
  1343         code.state.lock(lockVar.reg);
  1345         // Generate code for a try statement with given body, no catch clauses
  1346         // in a new environment with the "exit-monitor" operation as finalizer.
  1347         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
  1348         syncEnv.info.finalize = new GenFinalizer() {
  1349             void gen() {
  1350                 genLast();
  1351                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
  1352                 syncEnv.info.gaps.append(code.curPc());
  1354             void genLast() {
  1355                 if (code.isAlive()) {
  1356                     lockVar.load();
  1357                     code.emitop0(monitorexit);
  1358                     code.state.unlock(lockVar.reg);
  1361         };
  1362         syncEnv.info.gaps = new ListBuffer<Integer>();
  1363         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
  1364         code.endScopes(limit);
  1367     public void visitTry(final JCTry tree) {
  1368         // Generate code for a try statement with given body and catch clauses,
  1369         // in a new environment which calls the finally block if there is one.
  1370         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
  1371         final Env<GenContext> oldEnv = env;
  1372         if (!useJsrLocally) {
  1373             useJsrLocally =
  1374                 (stackMap == StackMapFormat.NONE) &&
  1375                 (jsrlimit <= 0 ||
  1376                 jsrlimit < 100 &&
  1377                 estimateCodeComplexity(tree.finalizer)>jsrlimit);
  1379         tryEnv.info.finalize = new GenFinalizer() {
  1380             void gen() {
  1381                 if (useJsrLocally) {
  1382                     if (tree.finalizer != null) {
  1383                         Code.State jsrState = code.state.dup();
  1384                         jsrState.push(Code.jsrReturnValue);
  1385                         tryEnv.info.cont =
  1386                             new Chain(code.emitJump(jsr),
  1387                                       tryEnv.info.cont,
  1388                                       jsrState);
  1390                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
  1391                     tryEnv.info.gaps.append(code.curPc());
  1392                 } else {
  1393                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
  1394                     tryEnv.info.gaps.append(code.curPc());
  1395                     genLast();
  1398             void genLast() {
  1399                 if (tree.finalizer != null)
  1400                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
  1402             boolean hasFinalizer() {
  1403                 return tree.finalizer != null;
  1405         };
  1406         tryEnv.info.gaps = new ListBuffer<Integer>();
  1407         genTry(tree.body, tree.catchers, tryEnv);
  1409     //where
  1410         /** Generate code for a try or synchronized statement
  1411          *  @param body      The body of the try or synchronized statement.
  1412          *  @param catchers  The lis of catch clauses.
  1413          *  @param env       the environment current for the body.
  1414          */
  1415         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
  1416             int limit = code.nextreg;
  1417             int startpc = code.curPc();
  1418             Code.State stateTry = code.state.dup();
  1419             genStat(body, env, CRT_BLOCK);
  1420             int endpc = code.curPc();
  1421             boolean hasFinalizer =
  1422                 env.info.finalize != null &&
  1423                 env.info.finalize.hasFinalizer();
  1424             List<Integer> gaps = env.info.gaps.toList();
  1425             code.statBegin(TreeInfo.endPos(body));
  1426             genFinalizer(env);
  1427             code.statBegin(TreeInfo.endPos(env.tree));
  1428             Chain exitChain = code.branch(goto_);
  1429             endFinalizerGap(env);
  1430             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
  1431                 // start off with exception on stack
  1432                 code.entryPoint(stateTry, l.head.param.sym.type);
  1433                 genCatch(l.head, env, startpc, endpc, gaps);
  1434                 genFinalizer(env);
  1435                 if (hasFinalizer || l.tail.nonEmpty()) {
  1436                     code.statBegin(TreeInfo.endPos(env.tree));
  1437                     exitChain = Code.mergeChains(exitChain,
  1438                                                  code.branch(goto_));
  1440                 endFinalizerGap(env);
  1442             if (hasFinalizer) {
  1443                 // Create a new register segement to avoid allocating
  1444                 // the same variables in finalizers and other statements.
  1445                 code.newRegSegment();
  1447                 // Add a catch-all clause.
  1449                 // start off with exception on stack
  1450                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
  1452                 // Register all exception ranges for catch all clause.
  1453                 // The range of the catch all clause is from the beginning
  1454                 // of the try or synchronized block until the present
  1455                 // code pointer excluding all gaps in the current
  1456                 // environment's GenContext.
  1457                 int startseg = startpc;
  1458                 while (env.info.gaps.nonEmpty()) {
  1459                     int endseg = env.info.gaps.next().intValue();
  1460                     registerCatch(body.pos(), startseg, endseg,
  1461                                   catchallpc, 0);
  1462                     startseg = env.info.gaps.next().intValue();
  1464                 code.statBegin(TreeInfo.finalizerPos(env.tree));
  1465                 code.markStatBegin();
  1467                 Item excVar = makeTemp(syms.throwableType);
  1468                 excVar.store();
  1469                 genFinalizer(env);
  1470                 excVar.load();
  1471                 registerCatch(body.pos(), startseg,
  1472                               env.info.gaps.next().intValue(),
  1473                               catchallpc, 0);
  1474                 code.emitop0(athrow);
  1475                 code.markDead();
  1477                 // If there are jsr's to this finalizer, ...
  1478                 if (env.info.cont != null) {
  1479                     // Resolve all jsr's.
  1480                     code.resolve(env.info.cont);
  1482                     // Mark statement line number
  1483                     code.statBegin(TreeInfo.finalizerPos(env.tree));
  1484                     code.markStatBegin();
  1486                     // Save return address.
  1487                     LocalItem retVar = makeTemp(syms.throwableType);
  1488                     retVar.store();
  1490                     // Generate finalizer code.
  1491                     env.info.finalize.genLast();
  1493                     // Return.
  1494                     code.emitop1w(ret, retVar.reg);
  1495                     code.markDead();
  1498             // Resolve all breaks.
  1499             code.resolve(exitChain);
  1501             code.endScopes(limit);
  1504         /** Generate code for a catch clause.
  1505          *  @param tree     The catch clause.
  1506          *  @param env      The environment current in the enclosing try.
  1507          *  @param startpc  Start pc of try-block.
  1508          *  @param endpc    End pc of try-block.
  1509          */
  1510         void genCatch(JCCatch tree,
  1511                       Env<GenContext> env,
  1512                       int startpc, int endpc,
  1513                       List<Integer> gaps) {
  1514             if (startpc != endpc) {
  1515                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
  1516                         ((JCTypeUnion)tree.param.vartype).alternatives :
  1517                         List.of(tree.param.vartype);
  1518                 while (gaps.nonEmpty()) {
  1519                     for (JCExpression subCatch : subClauses) {
  1520                         int catchType = makeRef(tree.pos(), subCatch.type);
  1521                         int end = gaps.head.intValue();
  1522                         registerCatch(tree.pos(),
  1523                                       startpc,  end, code.curPc(),
  1524                                       catchType);
  1526                     gaps = gaps.tail;
  1527                     startpc = gaps.head.intValue();
  1528                     gaps = gaps.tail;
  1530                 if (startpc < endpc) {
  1531                     for (JCExpression subCatch : subClauses) {
  1532                         int catchType = makeRef(tree.pos(), subCatch.type);
  1533                         registerCatch(tree.pos(),
  1534                                       startpc, endpc, code.curPc(),
  1535                                       catchType);
  1538                 VarSymbol exparam = tree.param.sym;
  1539                 code.statBegin(tree.pos);
  1540                 code.markStatBegin();
  1541                 int limit = code.nextreg;
  1542                 int exlocal = code.newLocal(exparam);
  1543                 items.makeLocalItem(exparam).store();
  1544                 code.statBegin(TreeInfo.firstStatPos(tree.body));
  1545                 genStat(tree.body, env, CRT_BLOCK);
  1546                 code.endScopes(limit);
  1547                 code.statBegin(TreeInfo.endPos(tree.body));
  1551         /** Register a catch clause in the "Exceptions" code-attribute.
  1552          */
  1553         void registerCatch(DiagnosticPosition pos,
  1554                            int startpc, int endpc,
  1555                            int handler_pc, int catch_type) {
  1556             char startpc1 = (char)startpc;
  1557             char endpc1 = (char)endpc;
  1558             char handler_pc1 = (char)handler_pc;
  1559             if (startpc1 == startpc &&
  1560                 endpc1 == endpc &&
  1561                 handler_pc1 == handler_pc) {
  1562                 code.addCatch(startpc1, endpc1, handler_pc1,
  1563                               (char)catch_type);
  1564             } else {
  1565                 if (!useJsrLocally && !target.generateStackMapTable()) {
  1566                     useJsrLocally = true;
  1567                     throw new CodeSizeOverflow();
  1568                 } else {
  1569                     log.error(pos, "limit.code.too.large.for.try.stmt");
  1570                     nerrs++;
  1575     /** Very roughly estimate the number of instructions needed for
  1576      *  the given tree.
  1577      */
  1578     int estimateCodeComplexity(JCTree tree) {
  1579         if (tree == null) return 0;
  1580         class ComplexityScanner extends TreeScanner {
  1581             int complexity = 0;
  1582             public void scan(JCTree tree) {
  1583                 if (complexity > jsrlimit) return;
  1584                 super.scan(tree);
  1586             public void visitClassDef(JCClassDecl tree) {}
  1587             public void visitDoLoop(JCDoWhileLoop tree)
  1588                 { super.visitDoLoop(tree); complexity++; }
  1589             public void visitWhileLoop(JCWhileLoop tree)
  1590                 { super.visitWhileLoop(tree); complexity++; }
  1591             public void visitForLoop(JCForLoop tree)
  1592                 { super.visitForLoop(tree); complexity++; }
  1593             public void visitSwitch(JCSwitch tree)
  1594                 { super.visitSwitch(tree); complexity+=5; }
  1595             public void visitCase(JCCase tree)
  1596                 { super.visitCase(tree); complexity++; }
  1597             public void visitSynchronized(JCSynchronized tree)
  1598                 { super.visitSynchronized(tree); complexity+=6; }
  1599             public void visitTry(JCTry tree)
  1600                 { super.visitTry(tree);
  1601                   if (tree.finalizer != null) complexity+=6; }
  1602             public void visitCatch(JCCatch tree)
  1603                 { super.visitCatch(tree); complexity+=2; }
  1604             public void visitConditional(JCConditional tree)
  1605                 { super.visitConditional(tree); complexity+=2; }
  1606             public void visitIf(JCIf tree)
  1607                 { super.visitIf(tree); complexity+=2; }
  1608             // note: for break, continue, and return we don't take unwind() into account.
  1609             public void visitBreak(JCBreak tree)
  1610                 { super.visitBreak(tree); complexity+=1; }
  1611             public void visitContinue(JCContinue tree)
  1612                 { super.visitContinue(tree); complexity+=1; }
  1613             public void visitReturn(JCReturn tree)
  1614                 { super.visitReturn(tree); complexity+=1; }
  1615             public void visitThrow(JCThrow tree)
  1616                 { super.visitThrow(tree); complexity+=1; }
  1617             public void visitAssert(JCAssert tree)
  1618                 { super.visitAssert(tree); complexity+=5; }
  1619             public void visitApply(JCMethodInvocation tree)
  1620                 { super.visitApply(tree); complexity+=2; }
  1621             public void visitNewClass(JCNewClass tree)
  1622                 { scan(tree.encl); scan(tree.args); complexity+=2; }
  1623             public void visitNewArray(JCNewArray tree)
  1624                 { super.visitNewArray(tree); complexity+=5; }
  1625             public void visitAssign(JCAssign tree)
  1626                 { super.visitAssign(tree); complexity+=1; }
  1627             public void visitAssignop(JCAssignOp tree)
  1628                 { super.visitAssignop(tree); complexity+=2; }
  1629             public void visitUnary(JCUnary tree)
  1630                 { complexity+=1;
  1631                   if (tree.type.constValue() == null) super.visitUnary(tree); }
  1632             public void visitBinary(JCBinary tree)
  1633                 { complexity+=1;
  1634                   if (tree.type.constValue() == null) super.visitBinary(tree); }
  1635             public void visitTypeTest(JCInstanceOf tree)
  1636                 { super.visitTypeTest(tree); complexity+=1; }
  1637             public void visitIndexed(JCArrayAccess tree)
  1638                 { super.visitIndexed(tree); complexity+=1; }
  1639             public void visitSelect(JCFieldAccess tree)
  1640                 { super.visitSelect(tree);
  1641                   if (tree.sym.kind == VAR) complexity+=1; }
  1642             public void visitIdent(JCIdent tree) {
  1643                 if (tree.sym.kind == VAR) {
  1644                     complexity+=1;
  1645                     if (tree.type.constValue() == null &&
  1646                         tree.sym.owner.kind == TYP)
  1647                         complexity+=1;
  1650             public void visitLiteral(JCLiteral tree)
  1651                 { complexity+=1; }
  1652             public void visitTree(JCTree tree) {}
  1653             public void visitWildcard(JCWildcard tree) {
  1654                 throw new AssertionError(this.getClass().getName());
  1657         ComplexityScanner scanner = new ComplexityScanner();
  1658         tree.accept(scanner);
  1659         return scanner.complexity;
  1662     public void visitIf(JCIf tree) {
  1663         int limit = code.nextreg;
  1664         Chain thenExit = null;
  1665         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
  1666                              CRT_FLOW_CONTROLLER);
  1667         Chain elseChain = c.jumpFalse();
  1668         if (!c.isFalse()) {
  1669             code.resolve(c.trueJumps);
  1670             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
  1671             thenExit = code.branch(goto_);
  1673         if (elseChain != null) {
  1674             code.resolve(elseChain);
  1675             if (tree.elsepart != null)
  1676                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
  1678         code.resolve(thenExit);
  1679         code.endScopes(limit);
  1682     public void visitExec(JCExpressionStatement tree) {
  1683         // Optimize x++ to ++x and x-- to --x.
  1684         JCExpression e = tree.expr;
  1685         switch (e.getTag()) {
  1686             case POSTINC:
  1687                 ((JCUnary) e).setTag(PREINC);
  1688                 break;
  1689             case POSTDEC:
  1690                 ((JCUnary) e).setTag(PREDEC);
  1691                 break;
  1693         genExpr(tree.expr, tree.expr.type).drop();
  1696     public void visitBreak(JCBreak tree) {
  1697         Env<GenContext> targetEnv = unwind(tree.target, env);
  1698         Assert.check(code.state.stacksize == 0);
  1699         targetEnv.info.addExit(code.branch(goto_));
  1700         endFinalizerGaps(env, targetEnv);
  1703     public void visitContinue(JCContinue tree) {
  1704         Env<GenContext> targetEnv = unwind(tree.target, env);
  1705         Assert.check(code.state.stacksize == 0);
  1706         targetEnv.info.addCont(code.branch(goto_));
  1707         endFinalizerGaps(env, targetEnv);
  1710     public void visitReturn(JCReturn tree) {
  1711         int limit = code.nextreg;
  1712         final Env<GenContext> targetEnv;
  1713         if (tree.expr != null) {
  1714             Item r = genExpr(tree.expr, pt).load();
  1715             if (hasFinally(env.enclMethod, env)) {
  1716                 r = makeTemp(pt);
  1717                 r.store();
  1719             targetEnv = unwind(env.enclMethod, env);
  1720             r.load();
  1721             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
  1722         } else {
  1723             targetEnv = unwind(env.enclMethod, env);
  1724             code.emitop0(return_);
  1726         endFinalizerGaps(env, targetEnv);
  1727         code.endScopes(limit);
  1730     public void visitThrow(JCThrow tree) {
  1731         genExpr(tree.expr, tree.expr.type).load();
  1732         code.emitop0(athrow);
  1735 /* ************************************************************************
  1736  * Visitor methods for expressions
  1737  *************************************************************************/
  1739     public void visitApply(JCMethodInvocation tree) {
  1740         // Generate code for method.
  1741         Item m = genExpr(tree.meth, methodType);
  1742         // Generate code for all arguments, where the expected types are
  1743         // the parameters of the method's external type (that is, any implicit
  1744         // outer instance of a super(...) call appears as first parameter).
  1745         genArgs(tree.args,
  1746                 TreeInfo.symbol(tree.meth).externalType(types).getParameterTypes());
  1747         code.statBegin(tree.pos);
  1748         code.markStatBegin();
  1749         result = m.invoke();
  1752     public void visitConditional(JCConditional tree) {
  1753         Chain thenExit = null;
  1754         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
  1755         Chain elseChain = c.jumpFalse();
  1756         if (!c.isFalse()) {
  1757             code.resolve(c.trueJumps);
  1758             int startpc = genCrt ? code.curPc() : 0;
  1759             genExpr(tree.truepart, pt).load();
  1760             code.state.forceStackTop(tree.type);
  1761             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
  1762                                      startpc, code.curPc());
  1763             thenExit = code.branch(goto_);
  1765         if (elseChain != null) {
  1766             code.resolve(elseChain);
  1767             int startpc = genCrt ? code.curPc() : 0;
  1768             genExpr(tree.falsepart, pt).load();
  1769             code.state.forceStackTop(tree.type);
  1770             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
  1771                                      startpc, code.curPc());
  1773         code.resolve(thenExit);
  1774         result = items.makeStackItem(pt);
  1777     public void visitNewClass(JCNewClass tree) {
  1778         // Enclosing instances or anonymous classes should have been eliminated
  1779         // by now.
  1780         Assert.check(tree.encl == null && tree.def == null);
  1782         code.emitop2(new_, makeRef(tree.pos(), tree.type));
  1783         code.emitop0(dup);
  1785         // Generate code for all arguments, where the expected types are
  1786         // the parameters of the constructor's external type (that is,
  1787         // any implicit outer instance appears as first parameter).
  1788         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
  1790         items.makeMemberItem(tree.constructor, true).invoke();
  1791         result = items.makeStackItem(tree.type);
  1794     public void visitNewArray(JCNewArray tree) {
  1796         if (tree.elems != null) {
  1797             Type elemtype = types.elemtype(tree.type);
  1798             loadIntConst(tree.elems.length());
  1799             Item arr = makeNewArray(tree.pos(), tree.type, 1);
  1800             int i = 0;
  1801             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
  1802                 arr.duplicate();
  1803                 loadIntConst(i);
  1804                 i++;
  1805                 genExpr(l.head, elemtype).load();
  1806                 items.makeIndexedItem(elemtype).store();
  1808             result = arr;
  1809         } else {
  1810             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  1811                 genExpr(l.head, syms.intType).load();
  1813             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
  1816 //where
  1817         /** Generate code to create an array with given element type and number
  1818          *  of dimensions.
  1819          */
  1820         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
  1821             Type elemtype = types.elemtype(type);
  1822             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
  1823                 log.error(pos, "limit.dimensions");
  1824                 nerrs++;
  1826             int elemcode = Code.arraycode(elemtype);
  1827             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
  1828                 code.emitAnewarray(makeRef(pos, elemtype), type);
  1829             } else if (elemcode == 1) {
  1830                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
  1831             } else {
  1832                 code.emitNewarray(elemcode, type);
  1834             return items.makeStackItem(type);
  1837     public void visitParens(JCParens tree) {
  1838         result = genExpr(tree.expr, tree.expr.type);
  1841     public void visitAssign(JCAssign tree) {
  1842         Item l = genExpr(tree.lhs, tree.lhs.type);
  1843         genExpr(tree.rhs, tree.lhs.type).load();
  1844         result = items.makeAssignItem(l);
  1847     public void visitAssignop(JCAssignOp tree) {
  1848         OperatorSymbol operator = (OperatorSymbol) tree.operator;
  1849         Item l;
  1850         if (operator.opcode == string_add) {
  1851             // Generate code to make a string buffer
  1852             makeStringBuffer(tree.pos());
  1854             // Generate code for first string, possibly save one
  1855             // copy under buffer
  1856             l = genExpr(tree.lhs, tree.lhs.type);
  1857             if (l.width() > 0) {
  1858                 code.emitop0(dup_x1 + 3 * (l.width() - 1));
  1861             // Load first string and append to buffer.
  1862             l.load();
  1863             appendString(tree.lhs);
  1865             // Append all other strings to buffer.
  1866             appendStrings(tree.rhs);
  1868             // Convert buffer to string.
  1869             bufferToString(tree.pos());
  1870         } else {
  1871             // Generate code for first expression
  1872             l = genExpr(tree.lhs, tree.lhs.type);
  1874             // If we have an increment of -32768 to +32767 of a local
  1875             // int variable we can use an incr instruction instead of
  1876             // proceeding further.
  1877             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
  1878                 l instanceof LocalItem &&
  1879                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
  1880                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
  1881                 tree.rhs.type.constValue() != null) {
  1882                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
  1883                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
  1884                 ((LocalItem)l).incr(ival);
  1885                 result = l;
  1886                 return;
  1888             // Otherwise, duplicate expression, load one copy
  1889             // and complete binary operation.
  1890             l.duplicate();
  1891             l.coerce(operator.type.getParameterTypes().head).load();
  1892             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
  1894         result = items.makeAssignItem(l);
  1897     public void visitUnary(JCUnary tree) {
  1898         OperatorSymbol operator = (OperatorSymbol)tree.operator;
  1899         if (tree.hasTag(NOT)) {
  1900             CondItem od = genCond(tree.arg, false);
  1901             result = od.negate();
  1902         } else {
  1903             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
  1904             switch (tree.getTag()) {
  1905             case POS:
  1906                 result = od.load();
  1907                 break;
  1908             case NEG:
  1909                 result = od.load();
  1910                 code.emitop0(operator.opcode);
  1911                 break;
  1912             case COMPL:
  1913                 result = od.load();
  1914                 emitMinusOne(od.typecode);
  1915                 code.emitop0(operator.opcode);
  1916                 break;
  1917             case PREINC: case PREDEC:
  1918                 od.duplicate();
  1919                 if (od instanceof LocalItem &&
  1920                     (operator.opcode == iadd || operator.opcode == isub)) {
  1921                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
  1922                     result = od;
  1923                 } else {
  1924                     od.load();
  1925                     code.emitop0(one(od.typecode));
  1926                     code.emitop0(operator.opcode);
  1927                     // Perform narrowing primitive conversion if byte,
  1928                     // char, or short.  Fix for 4304655.
  1929                     if (od.typecode != INTcode &&
  1930                         Code.truncate(od.typecode) == INTcode)
  1931                       code.emitop0(int2byte + od.typecode - BYTEcode);
  1932                     result = items.makeAssignItem(od);
  1934                 break;
  1935             case POSTINC: case POSTDEC:
  1936                 od.duplicate();
  1937                 if (od instanceof LocalItem &&
  1938                     (operator.opcode == iadd || operator.opcode == isub)) {
  1939                     Item res = od.load();
  1940                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
  1941                     result = res;
  1942                 } else {
  1943                     Item res = od.load();
  1944                     od.stash(od.typecode);
  1945                     code.emitop0(one(od.typecode));
  1946                     code.emitop0(operator.opcode);
  1947                     // Perform narrowing primitive conversion if byte,
  1948                     // char, or short.  Fix for 4304655.
  1949                     if (od.typecode != INTcode &&
  1950                         Code.truncate(od.typecode) == INTcode)
  1951                       code.emitop0(int2byte + od.typecode - BYTEcode);
  1952                     od.store();
  1953                     result = res;
  1955                 break;
  1956             case NULLCHK:
  1957                 result = od.load();
  1958                 code.emitop0(dup);
  1959                 genNullCheck(tree.pos());
  1960                 break;
  1961             default:
  1962                 Assert.error();
  1967     /** Generate a null check from the object value at stack top. */
  1968     private void genNullCheck(DiagnosticPosition pos) {
  1969         callMethod(pos, syms.objectType, names.getClass,
  1970                    List.<Type>nil(), false);
  1971         code.emitop0(pop);
  1974     public void visitBinary(JCBinary tree) {
  1975         OperatorSymbol operator = (OperatorSymbol)tree.operator;
  1976         if (operator.opcode == string_add) {
  1977             // Create a string buffer.
  1978             makeStringBuffer(tree.pos());
  1979             // Append all strings to buffer.
  1980             appendStrings(tree);
  1981             // Convert buffer to string.
  1982             bufferToString(tree.pos());
  1983             result = items.makeStackItem(syms.stringType);
  1984         } else if (tree.hasTag(AND)) {
  1985             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
  1986             if (!lcond.isFalse()) {
  1987                 Chain falseJumps = lcond.jumpFalse();
  1988                 code.resolve(lcond.trueJumps);
  1989                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
  1990                 result = items.
  1991                     makeCondItem(rcond.opcode,
  1992                                  rcond.trueJumps,
  1993                                  Code.mergeChains(falseJumps,
  1994                                                   rcond.falseJumps));
  1995             } else {
  1996                 result = lcond;
  1998         } else if (tree.hasTag(OR)) {
  1999             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
  2000             if (!lcond.isTrue()) {
  2001                 Chain trueJumps = lcond.jumpTrue();
  2002                 code.resolve(lcond.falseJumps);
  2003                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
  2004                 result = items.
  2005                     makeCondItem(rcond.opcode,
  2006                                  Code.mergeChains(trueJumps, rcond.trueJumps),
  2007                                  rcond.falseJumps);
  2008             } else {
  2009                 result = lcond;
  2011         } else {
  2012             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
  2013             od.load();
  2014             result = completeBinop(tree.lhs, tree.rhs, operator);
  2017 //where
  2018         /** Make a new string buffer.
  2019          */
  2020         void makeStringBuffer(DiagnosticPosition pos) {
  2021             code.emitop2(new_, makeRef(pos, stringBufferType));
  2022             code.emitop0(dup);
  2023             callMethod(
  2024                 pos, stringBufferType, names.init, List.<Type>nil(), false);
  2027         /** Append value (on tos) to string buffer (on tos - 1).
  2028          */
  2029         void appendString(JCTree tree) {
  2030             Type t = tree.type.baseType();
  2031             if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
  2032                 t = syms.objectType;
  2034             items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
  2036         Symbol getStringBufferAppend(JCTree tree, Type t) {
  2037             Assert.checkNull(t.constValue());
  2038             Symbol method = stringBufferAppend.get(t);
  2039             if (method == null) {
  2040                 method = rs.resolveInternalMethod(tree.pos(),
  2041                                                   attrEnv,
  2042                                                   stringBufferType,
  2043                                                   names.append,
  2044                                                   List.of(t),
  2045                                                   null);
  2046                 stringBufferAppend.put(t, method);
  2048             return method;
  2051         /** Add all strings in tree to string buffer.
  2052          */
  2053         void appendStrings(JCTree tree) {
  2054             tree = TreeInfo.skipParens(tree);
  2055             if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
  2056                 JCBinary op = (JCBinary) tree;
  2057                 if (op.operator.kind == MTH &&
  2058                     ((OperatorSymbol) op.operator).opcode == string_add) {
  2059                     appendStrings(op.lhs);
  2060                     appendStrings(op.rhs);
  2061                     return;
  2064             genExpr(tree, tree.type).load();
  2065             appendString(tree);
  2068         /** Convert string buffer on tos to string.
  2069          */
  2070         void bufferToString(DiagnosticPosition pos) {
  2071             callMethod(
  2072                 pos,
  2073                 stringBufferType,
  2074                 names.toString,
  2075                 List.<Type>nil(),
  2076                 false);
  2079         /** Complete generating code for operation, with left operand
  2080          *  already on stack.
  2081          *  @param lhs       The tree representing the left operand.
  2082          *  @param rhs       The tree representing the right operand.
  2083          *  @param operator  The operator symbol.
  2084          */
  2085         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
  2086             MethodType optype = (MethodType)operator.type;
  2087             int opcode = operator.opcode;
  2088             if (opcode >= if_icmpeq && opcode <= if_icmple &&
  2089                 rhs.type.constValue() instanceof Number &&
  2090                 ((Number) rhs.type.constValue()).intValue() == 0) {
  2091                 opcode = opcode + (ifeq - if_icmpeq);
  2092             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
  2093                        TreeInfo.isNull(rhs)) {
  2094                 opcode = opcode + (if_acmp_null - if_acmpeq);
  2095             } else {
  2096                 // The expected type of the right operand is
  2097                 // the second parameter type of the operator, except for
  2098                 // shifts with long shiftcount, where we convert the opcode
  2099                 // to a short shift and the expected type to int.
  2100                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
  2101                 if (opcode >= ishll && opcode <= lushrl) {
  2102                     opcode = opcode + (ishl - ishll);
  2103                     rtype = syms.intType;
  2105                 // Generate code for right operand and load.
  2106                 genExpr(rhs, rtype).load();
  2107                 // If there are two consecutive opcode instructions,
  2108                 // emit the first now.
  2109                 if (opcode >= (1 << preShift)) {
  2110                     code.emitop0(opcode >> preShift);
  2111                     opcode = opcode & 0xFF;
  2114             if (opcode >= ifeq && opcode <= if_acmpne ||
  2115                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
  2116                 return items.makeCondItem(opcode);
  2117             } else {
  2118                 code.emitop0(opcode);
  2119                 return items.makeStackItem(optype.restype);
  2123     public void visitTypeCast(JCTypeCast tree) {
  2124         result = genExpr(tree.expr, tree.clazz.type).load();
  2125         // Additional code is only needed if we cast to a reference type
  2126         // which is not statically a supertype of the expression's type.
  2127         // For basic types, the coerce(...) in genExpr(...) will do
  2128         // the conversion.
  2129         if (!tree.clazz.type.isPrimitive() &&
  2130             types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
  2131             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
  2135     public void visitWildcard(JCWildcard tree) {
  2136         throw new AssertionError(this.getClass().getName());
  2139     public void visitTypeTest(JCInstanceOf tree) {
  2140         genExpr(tree.expr, tree.expr.type).load();
  2141         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
  2142         result = items.makeStackItem(syms.booleanType);
  2145     public void visitIndexed(JCArrayAccess tree) {
  2146         genExpr(tree.indexed, tree.indexed.type).load();
  2147         genExpr(tree.index, syms.intType).load();
  2148         result = items.makeIndexedItem(tree.type);
  2151     public void visitIdent(JCIdent tree) {
  2152         Symbol sym = tree.sym;
  2153         if (tree.name == names._this || tree.name == names._super) {
  2154             Item res = tree.name == names._this
  2155                 ? items.makeThisItem()
  2156                 : items.makeSuperItem();
  2157             if (sym.kind == MTH) {
  2158                 // Generate code to address the constructor.
  2159                 res.load();
  2160                 res = items.makeMemberItem(sym, true);
  2162             result = res;
  2163         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
  2164             result = items.makeLocalItem((VarSymbol)sym);
  2165         } else if (isInvokeDynamic(sym)) {
  2166             result = items.makeDynamicItem(sym);
  2167         } else if ((sym.flags() & STATIC) != 0) {
  2168             if (!isAccessSuper(env.enclMethod))
  2169                 sym = binaryQualifier(sym, env.enclClass.type);
  2170             result = items.makeStaticItem(sym);
  2171         } else {
  2172             items.makeThisItem().load();
  2173             sym = binaryQualifier(sym, env.enclClass.type);
  2174             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
  2178     public void visitSelect(JCFieldAccess tree) {
  2179         Symbol sym = tree.sym;
  2181         if (tree.name == names._class) {
  2182             Assert.check(target.hasClassLiterals());
  2183             code.emitop2(ldc2, makeRef(tree.pos(), tree.selected.type));
  2184             result = items.makeStackItem(pt);
  2185             return;
  2188         Symbol ssym = TreeInfo.symbol(tree.selected);
  2190         // Are we selecting via super?
  2191         boolean selectSuper =
  2192             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
  2194         // Are we accessing a member of the superclass in an access method
  2195         // resulting from a qualified super?
  2196         boolean accessSuper = isAccessSuper(env.enclMethod);
  2198         Item base = (selectSuper)
  2199             ? items.makeSuperItem()
  2200             : genExpr(tree.selected, tree.selected.type);
  2202         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
  2203             // We are seeing a variable that is constant but its selecting
  2204             // expression is not.
  2205             if ((sym.flags() & STATIC) != 0) {
  2206                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
  2207                     base = base.load();
  2208                 base.drop();
  2209             } else {
  2210                 base.load();
  2211                 genNullCheck(tree.selected.pos());
  2213             result = items.
  2214                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
  2215         } else {
  2216             if (isInvokeDynamic(sym)) {
  2217                 result = items.makeDynamicItem(sym);
  2218                 return;
  2219             } else if (!accessSuper) {
  2220                 sym = binaryQualifier(sym, tree.selected.type);
  2222             if ((sym.flags() & STATIC) != 0) {
  2223                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
  2224                     base = base.load();
  2225                 base.drop();
  2226                 result = items.makeStaticItem(sym);
  2227             } else {
  2228                 base.load();
  2229                 if (sym == syms.lengthVar) {
  2230                     code.emitop0(arraylength);
  2231                     result = items.makeStackItem(syms.intType);
  2232                 } else {
  2233                     result = items.
  2234                         makeMemberItem(sym,
  2235                                        (sym.flags() & PRIVATE) != 0 ||
  2236                                        selectSuper || accessSuper);
  2242     public boolean isInvokeDynamic(Symbol sym) {
  2243         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
  2246     public void visitLiteral(JCLiteral tree) {
  2247         if (tree.type.hasTag(BOT)) {
  2248             code.emitop0(aconst_null);
  2249             if (types.dimensions(pt) > 1) {
  2250                 code.emitop2(checkcast, makeRef(tree.pos(), pt));
  2251                 result = items.makeStackItem(pt);
  2252             } else {
  2253                 result = items.makeStackItem(tree.type);
  2256         else
  2257             result = items.makeImmediateItem(tree.type, tree.value);
  2260     public void visitLetExpr(LetExpr tree) {
  2261         int limit = code.nextreg;
  2262         genStats(tree.defs, env);
  2263         result = genExpr(tree.expr, tree.expr.type).load();
  2264         code.endScopes(limit);
  2267     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
  2268         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
  2269         if (prunedInfo != null) {
  2270             for (JCTree prunedTree: prunedInfo) {
  2271                 prunedTree.accept(classReferenceVisitor);
  2276 /* ************************************************************************
  2277  * main method
  2278  *************************************************************************/
  2280     /** Generate code for a class definition.
  2281      *  @param env   The attribution environment that belongs to the
  2282      *               outermost class containing this class definition.
  2283      *               We need this for resolving some additional symbols.
  2284      *  @param cdef  The tree representing the class definition.
  2285      *  @return      True if code is generated with no errors.
  2286      */
  2287     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
  2288         try {
  2289             attrEnv = env;
  2290             ClassSymbol c = cdef.sym;
  2291             this.toplevel = env.toplevel;
  2292             this.endPosTable = toplevel.endPositions;
  2293             // If this is a class definition requiring Miranda methods,
  2294             // add them.
  2295             if (generateIproxies &&
  2296                 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
  2297                 && !allowGenerics // no Miranda methods available with generics
  2299                 implementInterfaceMethods(c);
  2300             cdef.defs = normalizeDefs(cdef.defs, c);
  2301             c.pool = pool;
  2302             pool.reset();
  2303             generateReferencesToPrunedTree(c, pool);
  2304             Env<GenContext> localEnv =
  2305                 new Env<GenContext>(cdef, new GenContext());
  2306             localEnv.toplevel = env.toplevel;
  2307             localEnv.enclClass = cdef;
  2308             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
  2309                 genDef(l.head, localEnv);
  2311             if (pool.numEntries() > Pool.MAX_ENTRIES) {
  2312                 log.error(cdef.pos(), "limit.pool");
  2313                 nerrs++;
  2315             if (nerrs != 0) {
  2316                 // if errors, discard code
  2317                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
  2318                     if (l.head.hasTag(METHODDEF))
  2319                         ((JCMethodDecl) l.head).sym.code = null;
  2322             cdef.defs = List.nil(); // discard trees
  2323             return nerrs == 0;
  2324         } finally {
  2325             // note: this method does NOT support recursion.
  2326             attrEnv = null;
  2327             this.env = null;
  2328             toplevel = null;
  2329             endPosTable = null;
  2330             nerrs = 0;
  2334 /* ************************************************************************
  2335  * Auxiliary classes
  2336  *************************************************************************/
  2338     /** An abstract class for finalizer generation.
  2339      */
  2340     abstract class GenFinalizer {
  2341         /** Generate code to clean up when unwinding. */
  2342         abstract void gen();
  2344         /** Generate code to clean up at last. */
  2345         abstract void genLast();
  2347         /** Does this finalizer have some nontrivial cleanup to perform? */
  2348         boolean hasFinalizer() { return true; }
  2351     /** code generation contexts,
  2352      *  to be used as type parameter for environments.
  2353      */
  2354     static class GenContext {
  2356         /** A chain for all unresolved jumps that exit the current environment.
  2357          */
  2358         Chain exit = null;
  2360         /** A chain for all unresolved jumps that continue in the
  2361          *  current environment.
  2362          */
  2363         Chain cont = null;
  2365         /** A closure that generates the finalizer of the current environment.
  2366          *  Only set for Synchronized and Try contexts.
  2367          */
  2368         GenFinalizer finalize = null;
  2370         /** Is this a switch statement?  If so, allocate registers
  2371          * even when the variable declaration is unreachable.
  2372          */
  2373         boolean isSwitch = false;
  2375         /** A list buffer containing all gaps in the finalizer range,
  2376          *  where a catch all exception should not apply.
  2377          */
  2378         ListBuffer<Integer> gaps = null;
  2380         /** Add given chain to exit chain.
  2381          */
  2382         void addExit(Chain c)  {
  2383             exit = Code.mergeChains(c, exit);
  2386         /** Add given chain to cont chain.
  2387          */
  2388         void addCont(Chain c) {
  2389             cont = Code.mergeChains(c, cont);

mercurial