src/share/classes/com/sun/tools/javac/comp/Infer.java

Tue, 22 Oct 2013 13:54:49 +0100

author
vromero
date
Tue, 22 Oct 2013 13:54:49 +0100
changeset 2157
963c57175e40
parent 2047
5f915a0c9615
child 2302
f35effa10297
permissions
-rw-r--r--

8025290: javac implicit versus explicit lambda compilation error
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.tree.JCTree;
    29 import com.sun.tools.javac.tree.JCTree.JCTypeCast;
    30 import com.sun.tools.javac.tree.TreeInfo;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    33 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.code.*;
    35 import com.sun.tools.javac.code.Type.*;
    36 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    37 import com.sun.tools.javac.code.Symbol.*;
    38 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    39 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
    40 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
    41 import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
    42 import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
    43 import com.sun.tools.javac.util.GraphUtils.TarjanNode;
    45 import java.util.ArrayList;
    46 import java.util.Collections;
    47 import java.util.EnumMap;
    48 import java.util.EnumSet;
    49 import java.util.HashMap;
    50 import java.util.HashSet;
    51 import java.util.LinkedHashSet;
    52 import java.util.Map;
    53 import java.util.Set;
    55 import static com.sun.tools.javac.code.TypeTag.*;
    57 /** Helper class for type parameter inference, used by the attribution phase.
    58  *
    59  *  <p><b>This is NOT part of any supported API.
    60  *  If you write code that depends on this, you do so at your own risk.
    61  *  This code and its internal interfaces are subject to change or
    62  *  deletion without notice.</b>
    63  */
    64 public class Infer {
    65     protected static final Context.Key<Infer> inferKey =
    66         new Context.Key<Infer>();
    68     Resolve rs;
    69     Check chk;
    70     Symtab syms;
    71     Types types;
    72     JCDiagnostic.Factory diags;
    73     Log log;
    75     /** should the graph solver be used? */
    76     boolean allowGraphInference;
    78     public static Infer instance(Context context) {
    79         Infer instance = context.get(inferKey);
    80         if (instance == null)
    81             instance = new Infer(context);
    82         return instance;
    83     }
    85     protected Infer(Context context) {
    86         context.put(inferKey, this);
    88         rs = Resolve.instance(context);
    89         chk = Check.instance(context);
    90         syms = Symtab.instance(context);
    91         types = Types.instance(context);
    92         diags = JCDiagnostic.Factory.instance(context);
    93         log = Log.instance(context);
    94         inferenceException = new InferenceException(diags);
    95         Options options = Options.instance(context);
    96         allowGraphInference = Source.instance(context).allowGraphInference()
    97                 && options.isUnset("useLegacyInference");
    98     }
   100     /** A value for prototypes that admit any type, including polymorphic ones. */
   101     public static final Type anyPoly = new JCNoType();
   103    /**
   104     * This exception class is design to store a list of diagnostics corresponding
   105     * to inference errors that can arise during a method applicability check.
   106     */
   107     public static class InferenceException extends InapplicableMethodException {
   108         private static final long serialVersionUID = 0;
   110         List<JCDiagnostic> messages = List.nil();
   112         InferenceException(JCDiagnostic.Factory diags) {
   113             super(diags);
   114         }
   116         @Override
   117         InapplicableMethodException setMessage() {
   118             //no message to set
   119             return this;
   120         }
   122         @Override
   123         InapplicableMethodException setMessage(JCDiagnostic diag) {
   124             messages = messages.append(diag);
   125             return this;
   126         }
   128         @Override
   129         public JCDiagnostic getDiagnostic() {
   130             return messages.head;
   131         }
   133         void clear() {
   134             messages = List.nil();
   135         }
   136     }
   138     protected final InferenceException inferenceException;
   140     // <editor-fold defaultstate="collapsed" desc="Inference routines">
   141     /**
   142      * Main inference entry point - instantiate a generic method type
   143      * using given argument types and (possibly) an expected target-type.
   144      */
   145     public Type instantiateMethod(Env<AttrContext> env,
   146                                   List<Type> tvars,
   147                                   MethodType mt,
   148                                   Attr.ResultInfo resultInfo,
   149                                   Symbol msym,
   150                                   List<Type> argtypes,
   151                                   boolean allowBoxing,
   152                                   boolean useVarargs,
   153                                   Resolve.MethodResolutionContext resolveContext,
   154                                   Warner warn) throws InferenceException {
   155         //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
   156         final InferenceContext inferenceContext = new InferenceContext(tvars);
   157         inferenceException.clear();
   158         try {
   159             DeferredAttr.DeferredAttrContext deferredAttrContext =
   160                         resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
   162             resolveContext.methodCheck.argumentsAcceptable(env, deferredAttrContext,
   163                     argtypes, mt.getParameterTypes(), warn);
   165             if (allowGraphInference &&
   166                     resultInfo != null &&
   167                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   168                 //inject return constraints earlier
   169                 checkWithinBounds(inferenceContext, warn); //propagation
   170                 Type newRestype = generateReturnConstraints(resultInfo, mt, inferenceContext);
   171                 mt = (MethodType)types.createMethodTypeWithReturn(mt, newRestype);
   172                 //propagate outwards if needed
   173                 if (resultInfo.checkContext.inferenceContext().free(resultInfo.pt)) {
   174                     //propagate inference context outwards and exit
   175                     inferenceContext.dupTo(resultInfo.checkContext.inferenceContext());
   176                     deferredAttrContext.complete();
   177                     return mt;
   178                 }
   179             }
   181             deferredAttrContext.complete();
   183             // minimize as yet undetermined type variables
   184             if (allowGraphInference) {
   185                 inferenceContext.solve(warn);
   186             } else {
   187                 inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
   188             }
   190             mt = (MethodType)inferenceContext.asInstType(mt);
   192             if (!allowGraphInference &&
   193                     inferenceContext.restvars().nonEmpty() &&
   194                     resultInfo != null &&
   195                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   196                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   197                 inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
   198                 mt = (MethodType)inferenceContext.asInstType(mt);
   199             }
   201             if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
   202                 log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
   203             }
   205             // return instantiated version of method type
   206             return mt;
   207         } finally {
   208             if (resultInfo != null || !allowGraphInference) {
   209                 inferenceContext.notifyChange();
   210             } else {
   211                 inferenceContext.notifyChange(inferenceContext.boundedVars());
   212             }
   213         }
   214     }
   216     /**
   217      * Generate constraints from the generic method's return type. If the method
   218      * call occurs in a context where a type T is expected, use the expected
   219      * type to derive more constraints on the generic method inference variables.
   220      */
   221     Type generateReturnConstraints(Attr.ResultInfo resultInfo,
   222             MethodType mt, InferenceContext inferenceContext) {
   223         Type from = mt.getReturnType();
   224         if (mt.getReturnType().containsAny(inferenceContext.inferencevars) &&
   225                 resultInfo.checkContext.inferenceContext() != emptyContext) {
   226             from = types.capture(from);
   227             //add synthetic captured ivars
   228             for (Type t : from.getTypeArguments()) {
   229                 if (t.hasTag(TYPEVAR) && ((TypeVar)t).isCaptured()) {
   230                     inferenceContext.addVar((TypeVar)t);
   231                 }
   232             }
   233         }
   234         Type qtype1 = inferenceContext.asFree(from);
   235         Type to = returnConstraintTarget(qtype1, resultInfo.pt);
   236         Assert.check(allowGraphInference || !resultInfo.checkContext.inferenceContext().free(to),
   237                 "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
   238         //we need to skip capture?
   239         Warner retWarn = new Warner();
   240         if (!resultInfo.checkContext.compatible(qtype1, resultInfo.checkContext.inferenceContext().asFree(to), retWarn) ||
   241                 //unchecked conversion is not allowed in source 7 mode
   242                 (!allowGraphInference && retWarn.hasLint(Lint.LintCategory.UNCHECKED))) {
   243             throw inferenceException
   244                     .setMessage("infer.no.conforming.instance.exists",
   245                     inferenceContext.restvars(), mt.getReturnType(), to);
   246         }
   247         return from;
   248     }
   250     Type returnConstraintTarget(Type from, Type to) {
   251         if (from.hasTag(VOID)) {
   252             return syms.voidType;
   253         } else if (to.hasTag(NONE)) {
   254             return from.isPrimitive() ? from : syms.objectType;
   255         } else if (from.hasTag(UNDETVAR) && to.isPrimitive()) {
   256             if (!allowGraphInference) {
   257                 //if legacy, just return boxed type
   258                 return types.boxedClass(to).type;
   259             }
   260             //if graph inference we need to skip conflicting boxed bounds...
   261             UndetVar uv = (UndetVar)from;
   262             for (Type t : uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
   263                 Type boundAsPrimitive = types.unboxedType(t);
   264                 if (boundAsPrimitive == null) continue;
   265                 if (types.isConvertible(boundAsPrimitive, to)) {
   266                     //effectively skip return-type constraint generation (compatibility)
   267                     return syms.objectType;
   268                 }
   269             }
   270             return types.boxedClass(to).type;
   271         } else {
   272             return to;
   273         }
   274     }
   276     /**
   277       * Infer cyclic inference variables as described in 15.12.2.8.
   278       */
   279     private void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
   280         ListBuffer<Type> todo = new ListBuffer<>();
   281         //step 1 - create fresh tvars
   282         for (Type t : vars) {
   283             UndetVar uv = (UndetVar)inferenceContext.asFree(t);
   284             List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
   285             if (Type.containsAny(upperBounds, vars)) {
   286                 TypeSymbol fresh_tvar = new TypeVariableSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
   287                 fresh_tvar.type = new TypeVar(fresh_tvar, types.makeCompoundType(uv.getBounds(InferenceBound.UPPER)), null);
   288                 todo.append(uv);
   289                 uv.inst = fresh_tvar.type;
   290             } else if (upperBounds.nonEmpty()) {
   291                 uv.inst = types.glb(upperBounds);
   292             } else {
   293                 uv.inst = syms.objectType;
   294             }
   295         }
   296         //step 2 - replace fresh tvars in their bounds
   297         List<Type> formals = vars;
   298         for (Type t : todo) {
   299             UndetVar uv = (UndetVar)t;
   300             TypeVar ct = (TypeVar)uv.inst;
   301             ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
   302             if (ct.bound.isErroneous()) {
   303                 //report inference error if glb fails
   304                 reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   305             }
   306             formals = formals.tail;
   307         }
   308     }
   310     /**
   311      * Compute a synthetic method type corresponding to the requested polymorphic
   312      * method signature. The target return type is computed from the immediately
   313      * enclosing scope surrounding the polymorphic-signature call.
   314      */
   315     Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
   316                                             MethodSymbol spMethod,  // sig. poly. method or null if none
   317                                             Resolve.MethodResolutionContext resolveContext,
   318                                             List<Type> argtypes) {
   319         final Type restype;
   321         //The return type for a polymorphic signature call is computed from
   322         //the enclosing tree E, as follows: if E is a cast, then use the
   323         //target type of the cast expression as a return type; if E is an
   324         //expression statement, the return type is 'void' - otherwise the
   325         //return type is simply 'Object'. A correctness check ensures that
   326         //env.next refers to the lexically enclosing environment in which
   327         //the polymorphic signature call environment is nested.
   329         switch (env.next.tree.getTag()) {
   330             case TYPECAST:
   331                 JCTypeCast castTree = (JCTypeCast)env.next.tree;
   332                 restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
   333                     castTree.clazz.type :
   334                     syms.objectType;
   335                 break;
   336             case EXEC:
   337                 JCTree.JCExpressionStatement execTree =
   338                         (JCTree.JCExpressionStatement)env.next.tree;
   339                 restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
   340                     syms.voidType :
   341                     syms.objectType;
   342                 break;
   343             default:
   344                 restype = syms.objectType;
   345         }
   347         List<Type> paramtypes = Type.map(argtypes, new ImplicitArgType(spMethod, resolveContext.step));
   348         List<Type> exType = spMethod != null ?
   349             spMethod.getThrownTypes() :
   350             List.of(syms.throwableType); // make it throw all exceptions
   352         MethodType mtype = new MethodType(paramtypes,
   353                                           restype,
   354                                           exType,
   355                                           syms.methodClass);
   356         return mtype;
   357     }
   358     //where
   359         class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
   361             public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
   362                 rs.deferredAttr.super(AttrMode.SPECULATIVE, msym, phase);
   363             }
   365             public Type apply(Type t) {
   366                 t = types.erasure(super.apply(t));
   367                 if (t.hasTag(BOT))
   368                     // nulls type as the marker type Null (which has no instances)
   369                     // infer as java.lang.Void for now
   370                     t = types.boxedClass(syms.voidType).type;
   371                 return t;
   372             }
   373         }
   375     /**
   376       * This method is used to infer a suitable target SAM in case the original
   377       * SAM type contains one or more wildcards. An inference process is applied
   378       * so that wildcard bounds, as well as explicit lambda/method ref parameters
   379       * (where applicable) are used to constraint the solution.
   380       */
   381     public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
   382             List<Type> paramTypes, Check.CheckContext checkContext) {
   383         if (types.capture(funcInterface) == funcInterface) {
   384             //if capture doesn't change the type then return the target unchanged
   385             //(this means the target contains no wildcards!)
   386             return funcInterface;
   387         } else {
   388             Type formalInterface = funcInterface.tsym.type;
   389             InferenceContext funcInterfaceContext =
   390                     new InferenceContext(funcInterface.tsym.type.getTypeArguments());
   392             Assert.check(paramTypes != null);
   393             //get constraints from explicit params (this is done by
   394             //checking that explicit param types are equal to the ones
   395             //in the functional interface descriptors)
   396             List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
   397             if (descParameterTypes.size() != paramTypes.size()) {
   398                 checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
   399                 return types.createErrorType(funcInterface);
   400             }
   401             for (Type p : descParameterTypes) {
   402                 if (!types.isSameType(funcInterfaceContext.asFree(p), paramTypes.head)) {
   403                     checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   404                     return types.createErrorType(funcInterface);
   405                 }
   406                 paramTypes = paramTypes.tail;
   407             }
   409             try {
   410                 funcInterfaceContext.solve(funcInterfaceContext.boundedVars(), types.noWarnings);
   411             } catch (InferenceException ex) {
   412                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   413             }
   415             List<Type> actualTypeargs = funcInterface.getTypeArguments();
   416             for (Type t : funcInterfaceContext.undetvars) {
   417                 UndetVar uv = (UndetVar)t;
   418                 if (uv.inst == null) {
   419                     uv.inst = actualTypeargs.head;
   420                 }
   421                 actualTypeargs = actualTypeargs.tail;
   422             }
   424             Type owntype = funcInterfaceContext.asInstType(formalInterface);
   425             if (!chk.checkValidGenericType(owntype)) {
   426                 //if the inferred functional interface type is not well-formed,
   427                 //or if it's not a subtype of the original target, issue an error
   428                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   429             }
   430             return owntype;
   431         }
   432     }
   433     // </editor-fold>
   435     // <editor-fold defaultstate="collapsed" desc="Bound checking">
   436     /**
   437      * Check bounds and perform incorporation
   438      */
   439     void checkWithinBounds(InferenceContext inferenceContext,
   440                              Warner warn) throws InferenceException {
   441         MultiUndetVarListener mlistener = new MultiUndetVarListener(inferenceContext.undetvars);
   442         List<Type> saved_undet = inferenceContext.save();
   443         try {
   444             while (true) {
   445                 mlistener.reset();
   446                 if (!allowGraphInference) {
   447                     //in legacy mode we lack of transitivity, so bound check
   448                     //cannot be run in parallel with other incoprporation rounds
   449                     for (Type t : inferenceContext.undetvars) {
   450                         UndetVar uv = (UndetVar)t;
   451                         IncorporationStep.CHECK_BOUNDS.apply(uv, inferenceContext, warn);
   452                     }
   453                 }
   454                 for (Type t : inferenceContext.undetvars) {
   455                     UndetVar uv = (UndetVar)t;
   456                     //bound incorporation
   457                     EnumSet<IncorporationStep> incorporationSteps = allowGraphInference ?
   458                             incorporationStepsGraph : incorporationStepsLegacy;
   459                     for (IncorporationStep is : incorporationSteps) {
   460                         if (is.accepts(uv, inferenceContext)) {
   461                             is.apply(uv, inferenceContext, warn);
   462                         }
   463                     }
   464                 }
   465                 if (!mlistener.changed || !allowGraphInference) break;
   466             }
   467         }
   468         finally {
   469             mlistener.detach();
   470             if (incorporationCache.size() == MAX_INCORPORATION_STEPS) {
   471                 inferenceContext.rollback(saved_undet);
   472             }
   473             incorporationCache.clear();
   474         }
   475     }
   476     //where
   477         /**
   478          * This listener keeps track of changes on a group of inference variable
   479          * bounds. Note: the listener must be detached (calling corresponding
   480          * method) to make sure that the underlying inference variable is
   481          * left in a clean state.
   482          */
   483         class MultiUndetVarListener implements UndetVar.UndetVarListener {
   485             boolean changed;
   486             List<Type> undetvars;
   488             public MultiUndetVarListener(List<Type> undetvars) {
   489                 this.undetvars = undetvars;
   490                 for (Type t : undetvars) {
   491                     UndetVar uv = (UndetVar)t;
   492                     uv.listener = this;
   493                 }
   494             }
   496             public void varChanged(UndetVar uv, Set<InferenceBound> ibs) {
   497                 //avoid non-termination
   498                 if (incorporationCache.size() < MAX_INCORPORATION_STEPS) {
   499                     changed = true;
   500                 }
   501             }
   503             void reset() {
   504                 changed = false;
   505             }
   507             void detach() {
   508                 for (Type t : undetvars) {
   509                     UndetVar uv = (UndetVar)t;
   510                     uv.listener = null;
   511                 }
   512             }
   513         };
   515         /** max number of incorporation rounds */
   516         static final int MAX_INCORPORATION_STEPS = 100;
   518     /**
   519      * This enumeration defines an entry point for doing inference variable
   520      * bound incorporation - it can be used to inject custom incorporation
   521      * logic into the basic bound checking routine
   522      */
   523     enum IncorporationStep {
   524         /**
   525          * Performs basic bound checking - i.e. is the instantiated type for a given
   526          * inference variable compatible with its bounds?
   527          */
   528         CHECK_BOUNDS() {
   529             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   530                 Infer infer = inferenceContext.infer();
   531                 uv.substBounds(inferenceContext.inferenceVars(), inferenceContext.instTypes(), infer.types);
   532                 infer.checkCompatibleUpperBounds(uv, inferenceContext);
   533                 if (uv.inst != null) {
   534                     Type inst = uv.inst;
   535                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   536                         if (!isSubtype(inst, inferenceContext.asFree(u), warn, infer)) {
   537                             infer.reportBoundError(uv, BoundErrorKind.UPPER);
   538                         }
   539                     }
   540                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   541                         if (!isSubtype(inferenceContext.asFree(l), inst, warn, infer)) {
   542                             infer.reportBoundError(uv, BoundErrorKind.LOWER);
   543                         }
   544                     }
   545                     for (Type e : uv.getBounds(InferenceBound.EQ)) {
   546                         if (!isSameType(inst, inferenceContext.asFree(e), infer)) {
   547                             infer.reportBoundError(uv, BoundErrorKind.EQ);
   548                         }
   549                     }
   550                 }
   551             }
   552             @Override
   553             boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
   554                 //applies to all undetvars
   555                 return true;
   556             }
   557         },
   558         /**
   559          * Check consistency of equality constraints. This is a slightly more aggressive
   560          * inference routine that is designed as to maximize compatibility with JDK 7.
   561          * Note: this is not used in graph mode.
   562          */
   563         EQ_CHECK_LEGACY() {
   564             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   565                 Infer infer = inferenceContext.infer();
   566                 Type eq = null;
   567                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   568                     Assert.check(!inferenceContext.free(e));
   569                     if (eq != null && !isSameType(e, eq, infer)) {
   570                         infer.reportBoundError(uv, BoundErrorKind.EQ);
   571                     }
   572                     eq = e;
   573                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   574                         Assert.check(!inferenceContext.free(l));
   575                         if (!isSubtype(l, e, warn, infer)) {
   576                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   577                         }
   578                     }
   579                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   580                         if (inferenceContext.free(u)) continue;
   581                         if (!isSubtype(e, u, warn, infer)) {
   582                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   583                         }
   584                     }
   585                 }
   586             }
   587         },
   588         /**
   589          * Check consistency of equality constraints.
   590          */
   591         EQ_CHECK() {
   592             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   593                 Infer infer = inferenceContext.infer();
   594                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   595                     if (e.containsAny(inferenceContext.inferenceVars())) continue;
   596                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   597                         if (!isSubtype(e, inferenceContext.asFree(u), warn, infer)) {
   598                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   599                         }
   600                     }
   601                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   602                         if (!isSubtype(inferenceContext.asFree(l), e, warn, infer)) {
   603                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   604                         }
   605                     }
   606                 }
   607             }
   608         },
   609         /**
   610          * Given a bound set containing {@code alpha <: T} and {@code alpha :> S}
   611          * perform {@code S <: T} (which could lead to new bounds).
   612          */
   613         CROSS_UPPER_LOWER() {
   614             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   615                 Infer infer = inferenceContext.infer();
   616                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   617                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   618                         isSubtype(inferenceContext.asFree(b2), inferenceContext.asFree(b1), warn , infer);
   619                     }
   620                 }
   621             }
   622         },
   623         /**
   624          * Given a bound set containing {@code alpha <: T} and {@code alpha == S}
   625          * perform {@code S <: T} (which could lead to new bounds).
   626          */
   627         CROSS_UPPER_EQ() {
   628             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   629                 Infer infer = inferenceContext.infer();
   630                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   631                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   632                         isSubtype(inferenceContext.asFree(b2), inferenceContext.asFree(b1), warn, infer);
   633                     }
   634                 }
   635             }
   636         },
   637         /**
   638          * Given a bound set containing {@code alpha :> S} and {@code alpha == T}
   639          * perform {@code S <: T} (which could lead to new bounds).
   640          */
   641         CROSS_EQ_LOWER() {
   642             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   643                 Infer infer = inferenceContext.infer();
   644                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   645                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   646                         isSubtype(inferenceContext.asFree(b2), inferenceContext.asFree(b1), warn, infer);
   647                     }
   648                 }
   649             }
   650         },
   651         /**
   652          * Given a bound set containing {@code alpha == S} and {@code alpha == T}
   653          * perform {@code S == T} (which could lead to new bounds).
   654          */
   655         CROSS_EQ_EQ() {
   656             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   657                 Infer infer = inferenceContext.infer();
   658                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   659                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   660                         if (b1 != b2) {
   661                             isSameType(inferenceContext.asFree(b2), inferenceContext.asFree(b1), infer);
   662                         }
   663                     }
   664                 }
   665             }
   666         },
   667         /**
   668          * Given a bound set containing {@code alpha <: beta} propagate lower bounds
   669          * from alpha to beta; also propagate upper bounds from beta to alpha.
   670          */
   671         PROP_UPPER() {
   672             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   673                 Infer infer = inferenceContext.infer();
   674                 for (Type b : uv.getBounds(InferenceBound.UPPER)) {
   675                     if (inferenceContext.inferenceVars().contains(b)) {
   676                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   677                         if (uv2.isCaptured()) continue;
   678                         //alpha <: beta
   679                         //0. set beta :> alpha
   680                         addBound(InferenceBound.LOWER, uv2, inferenceContext.asInstType(uv.qtype), infer);
   681                         //1. copy alpha's lower to beta's
   682                         for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   683                             addBound(InferenceBound.LOWER, uv2, inferenceContext.asInstType(l), infer);
   684                         }
   685                         //2. copy beta's upper to alpha's
   686                         for (Type u : uv2.getBounds(InferenceBound.UPPER)) {
   687                             addBound(InferenceBound.UPPER, uv, inferenceContext.asInstType(u), infer);
   688                         }
   689                     }
   690                 }
   691             }
   692         },
   693         /**
   694          * Given a bound set containing {@code alpha :> beta} propagate lower bounds
   695          * from beta to alpha; also propagate upper bounds from alpha to beta.
   696          */
   697         PROP_LOWER() {
   698             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   699                 Infer infer = inferenceContext.infer();
   700                 for (Type b : uv.getBounds(InferenceBound.LOWER)) {
   701                     if (inferenceContext.inferenceVars().contains(b)) {
   702                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   703                         if (uv2.isCaptured()) continue;
   704                         //alpha :> beta
   705                         //0. set beta <: alpha
   706                         addBound(InferenceBound.UPPER, uv2, inferenceContext.asInstType(uv.qtype), infer);
   707                         //1. copy alpha's upper to beta's
   708                         for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   709                             addBound(InferenceBound.UPPER, uv2, inferenceContext.asInstType(u), infer);
   710                         }
   711                         //2. copy beta's lower to alpha's
   712                         for (Type l : uv2.getBounds(InferenceBound.LOWER)) {
   713                             addBound(InferenceBound.LOWER, uv, inferenceContext.asInstType(l), infer);
   714                         }
   715                     }
   716                 }
   717             }
   718         },
   719         /**
   720          * Given a bound set containing {@code alpha == beta} propagate lower/upper
   721          * bounds from alpha to beta and back.
   722          */
   723         PROP_EQ() {
   724             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   725                 Infer infer = inferenceContext.infer();
   726                 for (Type b : uv.getBounds(InferenceBound.EQ)) {
   727                     if (inferenceContext.inferenceVars().contains(b)) {
   728                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   729                         if (uv2.isCaptured()) continue;
   730                         //alpha == beta
   731                         //0. set beta == alpha
   732                         addBound(InferenceBound.EQ, uv2, inferenceContext.asInstType(uv.qtype), infer);
   733                         //1. copy all alpha's bounds to beta's
   734                         for (InferenceBound ib : InferenceBound.values()) {
   735                             for (Type b2 : uv.getBounds(ib)) {
   736                                 if (b2 != uv2) {
   737                                     addBound(ib, uv2, inferenceContext.asInstType(b2), infer);
   738                                 }
   739                             }
   740                         }
   741                         //2. copy all beta's bounds to alpha's
   742                         for (InferenceBound ib : InferenceBound.values()) {
   743                             for (Type b2 : uv2.getBounds(ib)) {
   744                                 if (b2 != uv) {
   745                                     addBound(ib, uv, inferenceContext.asInstType(b2), infer);
   746                                 }
   747                             }
   748                         }
   749                     }
   750                 }
   751             }
   752         };
   754         abstract void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn);
   756         boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
   757             return !uv.isCaptured();
   758         }
   760         boolean isSubtype(Type s, Type t, Warner warn, Infer infer) {
   761             return doIncorporationOp(IncorporationBinaryOpKind.IS_SUBTYPE, s, t, warn, infer);
   762         }
   764         boolean isSameType(Type s, Type t, Infer infer) {
   765             return doIncorporationOp(IncorporationBinaryOpKind.IS_SAME_TYPE, s, t, null, infer);
   766         }
   768         void addBound(InferenceBound ib, UndetVar uv, Type b, Infer infer) {
   769             doIncorporationOp(opFor(ib), uv, b, null, infer);
   770         }
   772         IncorporationBinaryOpKind opFor(InferenceBound boundKind) {
   773             switch (boundKind) {
   774                 case EQ:
   775                     return IncorporationBinaryOpKind.ADD_EQ_BOUND;
   776                 case LOWER:
   777                     return IncorporationBinaryOpKind.ADD_LOWER_BOUND;
   778                 case UPPER:
   779                     return IncorporationBinaryOpKind.ADD_UPPER_BOUND;
   780                 default:
   781                     Assert.error("Can't get here!");
   782                     return null;
   783             }
   784         }
   786         boolean doIncorporationOp(IncorporationBinaryOpKind opKind, Type op1, Type op2, Warner warn, Infer infer) {
   787             IncorporationBinaryOp newOp = infer.new IncorporationBinaryOp(opKind, op1, op2);
   788             Boolean res = infer.incorporationCache.get(newOp);
   789             if (res == null) {
   790                 infer.incorporationCache.put(newOp, res = newOp.apply(warn));
   791             }
   792             return res;
   793         }
   794     }
   796     /** incorporation steps to be executed when running in legacy mode */
   797     EnumSet<IncorporationStep> incorporationStepsLegacy = EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY);
   799     /** incorporation steps to be executed when running in graph mode */
   800     EnumSet<IncorporationStep> incorporationStepsGraph =
   801             EnumSet.complementOf(EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY));
   803     /**
   804      * Three kinds of basic operation are supported as part of an incorporation step:
   805      * (i) subtype check, (ii) same type check and (iii) bound addition (either
   806      * upper/lower/eq bound).
   807      */
   808     enum IncorporationBinaryOpKind {
   809         IS_SUBTYPE() {
   810             @Override
   811             boolean apply(Type op1, Type op2, Warner warn, Types types) {
   812                 return types.isSubtypeUnchecked(op1, op2, warn);
   813             }
   814         },
   815         IS_SAME_TYPE() {
   816             @Override
   817             boolean apply(Type op1, Type op2, Warner warn, Types types) {
   818                 return types.isSameType(op1, op2);
   819             }
   820         },
   821         ADD_UPPER_BOUND() {
   822             @Override
   823             boolean apply(Type op1, Type op2, Warner warn, Types types) {
   824                 UndetVar uv = (UndetVar)op1;
   825                 uv.addBound(InferenceBound.UPPER, op2, types);
   826                 return true;
   827             }
   828         },
   829         ADD_LOWER_BOUND() {
   830             @Override
   831             boolean apply(Type op1, Type op2, Warner warn, Types types) {
   832                 UndetVar uv = (UndetVar)op1;
   833                 uv.addBound(InferenceBound.LOWER, op2, types);
   834                 return true;
   835             }
   836         },
   837         ADD_EQ_BOUND() {
   838             @Override
   839             boolean apply(Type op1, Type op2, Warner warn, Types types) {
   840                 UndetVar uv = (UndetVar)op1;
   841                 uv.addBound(InferenceBound.EQ, op2, types);
   842                 return true;
   843             }
   844         };
   846         abstract boolean apply(Type op1, Type op2, Warner warn, Types types);
   847     }
   849     /**
   850      * This class encapsulates a basic incorporation operation; incorporation
   851      * operations takes two type operands and a kind. Each operation performed
   852      * during an incorporation round is stored in a cache, so that operations
   853      * are not executed unnecessarily (which would potentially lead to adding
   854      * same bounds over and over).
   855      */
   856     class IncorporationBinaryOp {
   858         IncorporationBinaryOpKind opKind;
   859         Type op1;
   860         Type op2;
   862         IncorporationBinaryOp(IncorporationBinaryOpKind opKind, Type op1, Type op2) {
   863             this.opKind = opKind;
   864             this.op1 = op1;
   865             this.op2 = op2;
   866         }
   868         @Override
   869         public boolean equals(Object o) {
   870             if (!(o instanceof IncorporationBinaryOp)) {
   871                 return false;
   872             } else {
   873                 IncorporationBinaryOp that = (IncorporationBinaryOp)o;
   874                 return opKind == that.opKind &&
   875                         types.isSameType(op1, that.op1, true) &&
   876                         types.isSameType(op2, that.op2, true);
   877             }
   878         }
   880         @Override
   881         public int hashCode() {
   882             int result = opKind.hashCode();
   883             result *= 127;
   884             result += types.hashCode(op1);
   885             result *= 127;
   886             result += types.hashCode(op2);
   887             return result;
   888         }
   890         boolean apply(Warner warn) {
   891             return opKind.apply(op1, op2, warn, types);
   892         }
   893     }
   895     /** an incorporation cache keeps track of all executed incorporation-related operations */
   896     Map<IncorporationBinaryOp, Boolean> incorporationCache =
   897             new HashMap<IncorporationBinaryOp, Boolean>();
   899     /**
   900      * Make sure that the upper bounds we got so far lead to a solvable inference
   901      * variable by making sure that a glb exists.
   902      */
   903     void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
   904         List<Type> hibounds =
   905                 Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
   906         Type hb = null;
   907         if (hibounds.isEmpty())
   908             hb = syms.objectType;
   909         else if (hibounds.tail.isEmpty())
   910             hb = hibounds.head;
   911         else
   912             hb = types.glb(hibounds);
   913         if (hb == null || hb.isErroneous())
   914             reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   915     }
   916     //where
   917         protected static class BoundFilter implements Filter<Type> {
   919             InferenceContext inferenceContext;
   921             public BoundFilter(InferenceContext inferenceContext) {
   922                 this.inferenceContext = inferenceContext;
   923             }
   925             @Override
   926             public boolean accepts(Type t) {
   927                 return !t.isErroneous() && !inferenceContext.free(t) &&
   928                         !t.hasTag(BOT);
   929             }
   930         };
   932     /**
   933      * This enumeration defines all possible bound-checking related errors.
   934      */
   935     enum BoundErrorKind {
   936         /**
   937          * The (uninstantiated) inference variable has incompatible upper bounds.
   938          */
   939         BAD_UPPER() {
   940             @Override
   941             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   942                 return ex.setMessage("incompatible.upper.bounds", uv.qtype,
   943                         uv.getBounds(InferenceBound.UPPER));
   944             }
   945         },
   946         /**
   947          * An equality constraint is not compatible with an upper bound.
   948          */
   949         BAD_EQ_UPPER() {
   950             @Override
   951             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   952                 return ex.setMessage("incompatible.eq.upper.bounds", uv.qtype,
   953                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.UPPER));
   954             }
   955         },
   956         /**
   957          * An equality constraint is not compatible with a lower bound.
   958          */
   959         BAD_EQ_LOWER() {
   960             @Override
   961             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   962                 return ex.setMessage("incompatible.eq.lower.bounds", uv.qtype,
   963                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.LOWER));
   964             }
   965         },
   966         /**
   967          * Instantiated inference variable is not compatible with an upper bound.
   968          */
   969         UPPER() {
   970             @Override
   971             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   972                 return ex.setMessage("inferred.do.not.conform.to.upper.bounds", uv.inst,
   973                         uv.getBounds(InferenceBound.UPPER));
   974             }
   975         },
   976         /**
   977          * Instantiated inference variable is not compatible with a lower bound.
   978          */
   979         LOWER() {
   980             @Override
   981             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   982                 return ex.setMessage("inferred.do.not.conform.to.lower.bounds", uv.inst,
   983                         uv.getBounds(InferenceBound.LOWER));
   984             }
   985         },
   986         /**
   987          * Instantiated inference variable is not compatible with an equality constraint.
   988          */
   989         EQ() {
   990             @Override
   991             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   992                 return ex.setMessage("inferred.do.not.conform.to.eq.bounds", uv.inst,
   993                         uv.getBounds(InferenceBound.EQ));
   994             }
   995         };
   997         abstract InapplicableMethodException setMessage(InferenceException ex, UndetVar uv);
   998     }
  1000     /**
  1001      * Report a bound-checking error of given kind
  1002      */
  1003     void reportBoundError(UndetVar uv, BoundErrorKind bk) {
  1004         throw bk.setMessage(inferenceException, uv);
  1006     // </editor-fold>
  1008     // <editor-fold defaultstate="collapsed" desc="Inference engine">
  1009     /**
  1010      * Graph inference strategy - act as an input to the inference solver; a strategy is
  1011      * composed of two ingredients: (i) find a node to solve in the inference graph,
  1012      * and (ii) tell th engine when we are done fixing inference variables
  1013      */
  1014     interface GraphStrategy {
  1016         /**
  1017          * A NodeNotFoundException is thrown whenever an inference strategy fails
  1018          * to pick the next node to solve in the inference graph.
  1019          */
  1020         public static class NodeNotFoundException extends RuntimeException {
  1021             private static final long serialVersionUID = 0;
  1023             InferenceGraph graph;
  1025             public NodeNotFoundException(InferenceGraph graph) {
  1026                 this.graph = graph;
  1029         /**
  1030          * Pick the next node (leaf) to solve in the graph
  1031          */
  1032         Node pickNode(InferenceGraph g) throws NodeNotFoundException;
  1033         /**
  1034          * Is this the last step?
  1035          */
  1036         boolean done();
  1039     /**
  1040      * Simple solver strategy class that locates all leaves inside a graph
  1041      * and picks the first leaf as the next node to solve
  1042      */
  1043     abstract class LeafSolver implements GraphStrategy {
  1044         public Node pickNode(InferenceGraph g) {
  1045             if (g.nodes.isEmpty()) {
  1046                 //should not happen
  1047                 throw new NodeNotFoundException(g);
  1048             };
  1049             return g.nodes.get(0);
  1052         boolean isSubtype(Type s, Type t, Warner warn, Infer infer) {
  1053             return doIncorporationOp(IncorporationBinaryOpKind.IS_SUBTYPE, s, t, warn, infer);
  1056         boolean isSameType(Type s, Type t, Infer infer) {
  1057             return doIncorporationOp(IncorporationBinaryOpKind.IS_SAME_TYPE, s, t, null, infer);
  1060         void addBound(InferenceBound ib, UndetVar uv, Type b, Infer infer) {
  1061             doIncorporationOp(opFor(ib), uv, b, null, infer);
  1064         IncorporationBinaryOpKind opFor(InferenceBound boundKind) {
  1065             switch (boundKind) {
  1066                 case EQ:
  1067                     return IncorporationBinaryOpKind.ADD_EQ_BOUND;
  1068                 case LOWER:
  1069                     return IncorporationBinaryOpKind.ADD_LOWER_BOUND;
  1070                 case UPPER:
  1071                     return IncorporationBinaryOpKind.ADD_UPPER_BOUND;
  1072                 default:
  1073                     Assert.error("Can't get here!");
  1074                     return null;
  1078         boolean doIncorporationOp(IncorporationBinaryOpKind opKind, Type op1, Type op2, Warner warn, Infer infer) {
  1079             IncorporationBinaryOp newOp = infer.new IncorporationBinaryOp(opKind, op1, op2);
  1080             Boolean res = infer.incorporationCache.get(newOp);
  1081             if (res == null) {
  1082                 infer.incorporationCache.put(newOp, res = newOp.apply(warn));
  1084             return res;
  1088     /**
  1089      * This solver uses an heuristic to pick the best leaf - the heuristic
  1090      * tries to select the node that has maximal probability to contain one
  1091      * or more inference variables in a given list
  1092      */
  1093     abstract class BestLeafSolver extends LeafSolver {
  1095         /** list of ivars of which at least one must be solved */
  1096         List<Type> varsToSolve;
  1098         BestLeafSolver(List<Type> varsToSolve) {
  1099             this.varsToSolve = varsToSolve;
  1102         /**
  1103          * Computes a path that goes from a given node to the leafs in the graph.
  1104          * Typically this will start from a node containing a variable in
  1105          * {@code varsToSolve}. For any given path, the cost is computed as the total
  1106          * number of type-variables that should be eagerly instantiated across that path.
  1107          */
  1108         Pair<List<Node>, Integer> computeTreeToLeafs(Node n) {
  1109             Pair<List<Node>, Integer> cachedPath = treeCache.get(n);
  1110             if (cachedPath == null) {
  1111                 //cache miss
  1112                 if (n.isLeaf()) {
  1113                     //if leaf, stop
  1114                     cachedPath = new Pair<List<Node>, Integer>(List.of(n), n.data.length());
  1115                 } else {
  1116                     //if non-leaf, proceed recursively
  1117                     Pair<List<Node>, Integer> path = new Pair<List<Node>, Integer>(List.of(n), n.data.length());
  1118                     for (Node n2 : n.getAllDependencies()) {
  1119                         if (n2 == n) continue;
  1120                         Pair<List<Node>, Integer> subpath = computeTreeToLeafs(n2);
  1121                         path = new Pair<List<Node>, Integer>(
  1122                                 path.fst.prependList(subpath.fst),
  1123                                 path.snd + subpath.snd);
  1125                     cachedPath = path;
  1127                 //save results in cache
  1128                 treeCache.put(n, cachedPath);
  1130             return cachedPath;
  1133         /** cache used to avoid redundant computation of tree costs */
  1134         final Map<Node, Pair<List<Node>, Integer>> treeCache =
  1135                 new HashMap<Node, Pair<List<Node>, Integer>>();
  1137         /** constant value used to mark non-existent paths */
  1138         final Pair<List<Node>, Integer> noPath =
  1139                 new Pair<List<Node>, Integer>(null, Integer.MAX_VALUE);
  1141         /**
  1142          * Pick the leaf that minimize cost
  1143          */
  1144         @Override
  1145         public Node pickNode(final InferenceGraph g) {
  1146             treeCache.clear(); //graph changes at every step - cache must be cleared
  1147             Pair<List<Node>, Integer> bestPath = noPath;
  1148             for (Node n : g.nodes) {
  1149                 if (!Collections.disjoint(n.data, varsToSolve)) {
  1150                     Pair<List<Node>, Integer> path = computeTreeToLeafs(n);
  1151                     //discard all paths containing at least a node in the
  1152                     //closure computed above
  1153                     if (path.snd < bestPath.snd) {
  1154                         bestPath = path;
  1158             if (bestPath == noPath) {
  1159                 //no path leads there
  1160                 throw new NodeNotFoundException(g);
  1162             return bestPath.fst.head;
  1166     /**
  1167      * The inference process can be thought of as a sequence of steps. Each step
  1168      * instantiates an inference variable using a subset of the inference variable
  1169      * bounds, if certain condition are met. Decisions such as the sequence in which
  1170      * steps are applied, or which steps are to be applied are left to the inference engine.
  1171      */
  1172     enum InferenceStep {
  1174         /**
  1175          * Instantiate an inference variables using one of its (ground) equality
  1176          * constraints
  1177          */
  1178         EQ(InferenceBound.EQ) {
  1179             @Override
  1180             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1181                 return filterBounds(uv, inferenceContext).head;
  1183         },
  1184         /**
  1185          * Instantiate an inference variables using its (ground) lower bounds. Such
  1186          * bounds are merged together using lub().
  1187          */
  1188         LOWER(InferenceBound.LOWER) {
  1189             @Override
  1190             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1191                 Infer infer = inferenceContext.infer();
  1192                 List<Type> lobounds = filterBounds(uv, inferenceContext);
  1193                 //note: lobounds should have at least one element
  1194                 Type owntype = lobounds.tail.tail == null  ? lobounds.head : infer.types.lub(lobounds);
  1195                 if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
  1196                     throw infer.inferenceException
  1197                         .setMessage("no.unique.minimal.instance.exists",
  1198                                     uv.qtype, lobounds);
  1199                 } else {
  1200                     return owntype;
  1203         },
  1204         /**
  1205          * Infer uninstantiated/unbound inference variables occurring in 'throws'
  1206          * clause as RuntimeException
  1207          */
  1208         THROWS(InferenceBound.UPPER) {
  1209             @Override
  1210             public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1211                 if ((t.qtype.tsym.flags() & Flags.THROWS) == 0) {
  1212                     //not a throws undet var
  1213                     return false;
  1215                 if (t.getBounds(InferenceBound.EQ, InferenceBound.LOWER, InferenceBound.UPPER)
  1216                             .diff(t.getDeclaredBounds()).nonEmpty()) {
  1217                     //not an unbounded undet var
  1218                     return false;
  1220                 Infer infer = inferenceContext.infer();
  1221                 for (Type db : t.getDeclaredBounds()) {
  1222                     if (t.isInterface()) continue;
  1223                     if (infer.types.asSuper(infer.syms.runtimeExceptionType, db.tsym) != null) {
  1224                         //declared bound is a supertype of RuntimeException
  1225                         return true;
  1228                 //declared bound is more specific then RuntimeException - give up
  1229                 return false;
  1232             @Override
  1233             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1234                 return inferenceContext.infer().syms.runtimeExceptionType;
  1236         },
  1237         /**
  1238          * Instantiate an inference variables using its (ground) upper bounds. Such
  1239          * bounds are merged together using glb().
  1240          */
  1241         UPPER(InferenceBound.UPPER) {
  1242             @Override
  1243             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1244                 Infer infer = inferenceContext.infer();
  1245                 List<Type> hibounds = filterBounds(uv, inferenceContext);
  1246                 //note: lobounds should have at least one element
  1247                 Type owntype = hibounds.tail.tail == null  ? hibounds.head : infer.types.glb(hibounds);
  1248                 if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
  1249                     throw infer.inferenceException
  1250                         .setMessage("no.unique.maximal.instance.exists",
  1251                                     uv.qtype, hibounds);
  1252                 } else {
  1253                     return owntype;
  1256         },
  1257         /**
  1258          * Like the former; the only difference is that this step can only be applied
  1259          * if all upper bounds are ground.
  1260          */
  1261         UPPER_LEGACY(InferenceBound.UPPER) {
  1262             @Override
  1263             public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1264                 return !inferenceContext.free(t.getBounds(ib)) && !t.isCaptured();
  1267             @Override
  1268             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1269                 return UPPER.solve(uv, inferenceContext);
  1271         },
  1272         /**
  1273          * Like the former; the only difference is that this step can only be applied
  1274          * if all upper/lower bounds are ground.
  1275          */
  1276         CAPTURED(InferenceBound.UPPER) {
  1277             @Override
  1278             public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1279                 return t.isCaptured() &&
  1280                         !inferenceContext.free(t.getBounds(InferenceBound.UPPER, InferenceBound.LOWER));
  1283             @Override
  1284             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1285                 Infer infer = inferenceContext.infer();
  1286                 Type upper = UPPER.filterBounds(uv, inferenceContext).nonEmpty() ?
  1287                         UPPER.solve(uv, inferenceContext) :
  1288                         infer.syms.objectType;
  1289                 Type lower = LOWER.filterBounds(uv, inferenceContext).nonEmpty() ?
  1290                         LOWER.solve(uv, inferenceContext) :
  1291                         infer.syms.botType;
  1292                 CapturedType prevCaptured = (CapturedType)uv.qtype;
  1293                 return new CapturedType(prevCaptured.tsym.name, prevCaptured.tsym.owner, upper, lower, prevCaptured.wildcard);
  1295         };
  1297         final InferenceBound ib;
  1299         InferenceStep(InferenceBound ib) {
  1300             this.ib = ib;
  1303         /**
  1304          * Find an instantiated type for a given inference variable within
  1305          * a given inference context
  1306          */
  1307         abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
  1309         /**
  1310          * Can the inference variable be instantiated using this step?
  1311          */
  1312         public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1313             return filterBounds(t, inferenceContext).nonEmpty() && !t.isCaptured();
  1316         /**
  1317          * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
  1318          */
  1319         List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
  1320             return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
  1324     /**
  1325      * This enumeration defines the sequence of steps to be applied when the
  1326      * solver works in legacy mode. The steps in this enumeration reflect
  1327      * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1328      */
  1329     enum LegacyInferenceSteps {
  1331         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1332         EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
  1334         final EnumSet<InferenceStep> steps;
  1336         LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
  1337             this.steps = steps;
  1341     /**
  1342      * This enumeration defines the sequence of steps to be applied when the
  1343      * graph solver is used. This order is defined so as to maximize compatibility
  1344      * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1345      */
  1346     enum GraphInferenceSteps {
  1348         EQ(EnumSet.of(InferenceStep.EQ)),
  1349         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1350         EQ_LOWER_THROWS_UPPER_CAPTURED(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER, InferenceStep.THROWS, InferenceStep.CAPTURED));
  1352         final EnumSet<InferenceStep> steps;
  1354         GraphInferenceSteps(EnumSet<InferenceStep> steps) {
  1355             this.steps = steps;
  1359     /**
  1360      * There are two kinds of dependencies between inference variables. The basic
  1361      * kind of dependency (or bound dependency) arises when a variable mention
  1362      * another variable in one of its bounds. There's also a more subtle kind
  1363      * of dependency that arises when a variable 'might' lead to better constraints
  1364      * on another variable (this is typically the case with variables holding up
  1365      * stuck expressions).
  1366      */
  1367     enum DependencyKind implements GraphUtils.DependencyKind {
  1369         /** bound dependency */
  1370         BOUND("dotted"),
  1371         /** stuck dependency */
  1372         STUCK("dashed");
  1374         final String dotSyle;
  1376         private DependencyKind(String dotSyle) {
  1377             this.dotSyle = dotSyle;
  1380         @Override
  1381         public String getDotStyle() {
  1382             return dotSyle;
  1386     /**
  1387      * This is the graph inference solver - the solver organizes all inference variables in
  1388      * a given inference context by bound dependencies - in the general case, such dependencies
  1389      * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
  1390      * an acyclic graph, where all cyclic variables are bundled together. An inference
  1391      * step corresponds to solving a node in the acyclic graph - this is done by
  1392      * relying on a given strategy (see GraphStrategy).
  1393      */
  1394     class GraphSolver {
  1396         InferenceContext inferenceContext;
  1397         Map<Type, Set<Type>> stuckDeps;
  1398         Warner warn;
  1400         GraphSolver(InferenceContext inferenceContext, Map<Type, Set<Type>> stuckDeps, Warner warn) {
  1401             this.inferenceContext = inferenceContext;
  1402             this.stuckDeps = stuckDeps;
  1403             this.warn = warn;
  1406         /**
  1407          * Solve variables in a given inference context. The amount of variables
  1408          * to be solved, and the way in which the underlying acyclic graph is explored
  1409          * depends on the selected solver strategy.
  1410          */
  1411         void solve(GraphStrategy sstrategy) {
  1412             checkWithinBounds(inferenceContext, warn); //initial propagation of bounds
  1413             InferenceGraph inferenceGraph = new InferenceGraph(stuckDeps);
  1414             while (!sstrategy.done()) {
  1415                 InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
  1416                 List<Type> varsToSolve = List.from(nodeToSolve.data);
  1417                 List<Type> saved_undet = inferenceContext.save();
  1418                 try {
  1419                     //repeat until all variables are solved
  1420                     outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
  1421                         //for each inference phase
  1422                         for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
  1423                             if (inferenceContext.solveBasic(varsToSolve, step.steps)) {
  1424                                 checkWithinBounds(inferenceContext, warn);
  1425                                 continue outer;
  1428                         //no progress
  1429                         throw inferenceException.setMessage();
  1432                 catch (InferenceException ex) {
  1433                     //did we fail because of interdependent ivars?
  1434                     inferenceContext.rollback(saved_undet);
  1435                     instantiateAsUninferredVars(varsToSolve, inferenceContext);
  1436                     checkWithinBounds(inferenceContext, warn);
  1438                 inferenceGraph.deleteNode(nodeToSolve);
  1442         /**
  1443          * The dependencies between the inference variables that need to be solved
  1444          * form a (possibly cyclic) graph. This class reduces the original dependency graph
  1445          * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
  1446          */
  1447         class InferenceGraph {
  1449             /**
  1450              * This class represents a node in the graph. Each node corresponds
  1451              * to an inference variable and has edges (dependencies) on other
  1452              * nodes. The node defines an entry point that can be used to receive
  1453              * updates on the structure of the graph this node belongs to (used to
  1454              * keep dependencies in sync).
  1455              */
  1456             class Node extends GraphUtils.TarjanNode<ListBuffer<Type>> {
  1458                 /** map listing all dependencies (grouped by kind) */
  1459                 EnumMap<DependencyKind, Set<Node>> deps;
  1461                 Node(Type ivar) {
  1462                     super(ListBuffer.of(ivar));
  1463                     this.deps = new EnumMap<DependencyKind, Set<Node>>(DependencyKind.class);
  1466                 @Override
  1467                 public GraphUtils.DependencyKind[] getSupportedDependencyKinds() {
  1468                     return DependencyKind.values();
  1471                 @Override
  1472                 public String getDependencyName(GraphUtils.Node<ListBuffer<Type>> to, GraphUtils.DependencyKind dk) {
  1473                     if (dk == DependencyKind.STUCK) return "";
  1474                     else {
  1475                         StringBuilder buf = new StringBuilder();
  1476                         String sep = "";
  1477                         for (Type from : data) {
  1478                             UndetVar uv = (UndetVar)inferenceContext.asFree(from);
  1479                             for (Type bound : uv.getBounds(InferenceBound.values())) {
  1480                                 if (bound.containsAny(List.from(to.data))) {
  1481                                     buf.append(sep);
  1482                                     buf.append(bound);
  1483                                     sep = ",";
  1487                         return buf.toString();
  1491                 @Override
  1492                 public Iterable<? extends Node> getAllDependencies() {
  1493                     return getDependencies(DependencyKind.values());
  1496                 @Override
  1497                 public Iterable<? extends TarjanNode<ListBuffer<Type>>> getDependenciesByKind(GraphUtils.DependencyKind dk) {
  1498                     return getDependencies((DependencyKind)dk);
  1501                 /**
  1502                  * Retrieves all dependencies with given kind(s).
  1503                  */
  1504                 protected Set<Node> getDependencies(DependencyKind... depKinds) {
  1505                     Set<Node> buf = new LinkedHashSet<Node>();
  1506                     for (DependencyKind dk : depKinds) {
  1507                         Set<Node> depsByKind = deps.get(dk);
  1508                         if (depsByKind != null) {
  1509                             buf.addAll(depsByKind);
  1512                     return buf;
  1515                 /**
  1516                  * Adds dependency with given kind.
  1517                  */
  1518                 protected void addDependency(DependencyKind dk, Node depToAdd) {
  1519                     Set<Node> depsByKind = deps.get(dk);
  1520                     if (depsByKind == null) {
  1521                         depsByKind = new LinkedHashSet<Node>();
  1522                         deps.put(dk, depsByKind);
  1524                     depsByKind.add(depToAdd);
  1527                 /**
  1528                  * Add multiple dependencies of same given kind.
  1529                  */
  1530                 protected void addDependencies(DependencyKind dk, Set<Node> depsToAdd) {
  1531                     for (Node n : depsToAdd) {
  1532                         addDependency(dk, n);
  1536                 /**
  1537                  * Remove a dependency, regardless of its kind.
  1538                  */
  1539                 protected Set<DependencyKind> removeDependency(Node n) {
  1540                     Set<DependencyKind> removedKinds = new HashSet<>();
  1541                     for (DependencyKind dk : DependencyKind.values()) {
  1542                         Set<Node> depsByKind = deps.get(dk);
  1543                         if (depsByKind == null) continue;
  1544                         if (depsByKind.remove(n)) {
  1545                             removedKinds.add(dk);
  1548                     return removedKinds;
  1551                 /**
  1552                  * Compute closure of a give node, by recursively walking
  1553                  * through all its dependencies (of given kinds)
  1554                  */
  1555                 protected Set<Node> closure(DependencyKind... depKinds) {
  1556                     boolean progress = true;
  1557                     Set<Node> closure = new HashSet<Node>();
  1558                     closure.add(this);
  1559                     while (progress) {
  1560                         progress = false;
  1561                         for (Node n1 : new HashSet<Node>(closure)) {
  1562                             progress = closure.addAll(n1.getDependencies(depKinds));
  1565                     return closure;
  1568                 /**
  1569                  * Is this node a leaf? This means either the node has no dependencies,
  1570                  * or it just has self-dependencies.
  1571                  */
  1572                 protected boolean isLeaf() {
  1573                     //no deps, or only one self dep
  1574                     Set<Node> allDeps = getDependencies(DependencyKind.BOUND, DependencyKind.STUCK);
  1575                     if (allDeps.isEmpty()) return true;
  1576                     for (Node n : allDeps) {
  1577                         if (n != this) {
  1578                             return false;
  1581                     return true;
  1584                 /**
  1585                  * Merge this node with another node, acquiring its dependencies.
  1586                  * This routine is used to merge all cyclic node together and
  1587                  * form an acyclic graph.
  1588                  */
  1589                 protected void mergeWith(List<? extends Node> nodes) {
  1590                     for (Node n : nodes) {
  1591                         Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
  1592                         data.appendList(n.data);
  1593                         for (DependencyKind dk : DependencyKind.values()) {
  1594                             addDependencies(dk, n.getDependencies(dk));
  1597                     //update deps
  1598                     EnumMap<DependencyKind, Set<Node>> deps2 = new EnumMap<DependencyKind, Set<Node>>(DependencyKind.class);
  1599                     for (DependencyKind dk : DependencyKind.values()) {
  1600                         for (Node d : getDependencies(dk)) {
  1601                             Set<Node> depsByKind = deps2.get(dk);
  1602                             if (depsByKind == null) {
  1603                                 depsByKind = new LinkedHashSet<Node>();
  1604                                 deps2.put(dk, depsByKind);
  1606                             if (data.contains(d.data.first())) {
  1607                                 depsByKind.add(this);
  1608                             } else {
  1609                                 depsByKind.add(d);
  1613                     deps = deps2;
  1616                 /**
  1617                  * Notify all nodes that something has changed in the graph
  1618                  * topology.
  1619                  */
  1620                 private void graphChanged(Node from, Node to) {
  1621                     for (DependencyKind dk : removeDependency(from)) {
  1622                         if (to != null) {
  1623                             addDependency(dk, to);
  1629             /** the nodes in the inference graph */
  1630             ArrayList<Node> nodes;
  1632             InferenceGraph(Map<Type, Set<Type>> optDeps) {
  1633                 initNodes(optDeps);
  1636             /**
  1637              * Basic lookup helper for retrieving a graph node given an inference
  1638              * variable type.
  1639              */
  1640             public Node findNode(Type t) {
  1641                 for (Node n : nodes) {
  1642                     if (n.data.contains(t)) {
  1643                         return n;
  1646                 return null;
  1649             /**
  1650              * Delete a node from the graph. This update the underlying structure
  1651              * of the graph (including dependencies) via listeners updates.
  1652              */
  1653             public void deleteNode(Node n) {
  1654                 Assert.check(nodes.contains(n));
  1655                 nodes.remove(n);
  1656                 notifyUpdate(n, null);
  1659             /**
  1660              * Notify all nodes of a change in the graph. If the target node is
  1661              * {@code null} the source node is assumed to be removed.
  1662              */
  1663             void notifyUpdate(Node from, Node to) {
  1664                 for (Node n : nodes) {
  1665                     n.graphChanged(from, to);
  1669             /**
  1670              * Create the graph nodes. First a simple node is created for every inference
  1671              * variables to be solved. Then Tarjan is used to found all connected components
  1672              * in the graph. For each component containing more than one node, a super node is
  1673              * created, effectively replacing the original cyclic nodes.
  1674              */
  1675             void initNodes(Map<Type, Set<Type>> stuckDeps) {
  1676                 //add nodes
  1677                 nodes = new ArrayList<Node>();
  1678                 for (Type t : inferenceContext.restvars()) {
  1679                     nodes.add(new Node(t));
  1681                 //add dependencies
  1682                 for (Node n_i : nodes) {
  1683                     Type i = n_i.data.first();
  1684                     Set<Type> optDepsByNode = stuckDeps.get(i);
  1685                     for (Node n_j : nodes) {
  1686                         Type j = n_j.data.first();
  1687                         UndetVar uv_i = (UndetVar)inferenceContext.asFree(i);
  1688                         if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
  1689                             //update i's bound dependencies
  1690                             n_i.addDependency(DependencyKind.BOUND, n_j);
  1692                         if (optDepsByNode != null && optDepsByNode.contains(j)) {
  1693                             //update i's stuck dependencies
  1694                             n_i.addDependency(DependencyKind.STUCK, n_j);
  1698                 //merge cyclic nodes
  1699                 ArrayList<Node> acyclicNodes = new ArrayList<Node>();
  1700                 for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
  1701                     if (conSubGraph.length() > 1) {
  1702                         Node root = conSubGraph.head;
  1703                         root.mergeWith(conSubGraph.tail);
  1704                         for (Node n : conSubGraph) {
  1705                             notifyUpdate(n, root);
  1708                     acyclicNodes.add(conSubGraph.head);
  1710                 nodes = acyclicNodes;
  1713             /**
  1714              * Debugging: dot representation of this graph
  1715              */
  1716             String toDot() {
  1717                 StringBuilder buf = new StringBuilder();
  1718                 for (Type t : inferenceContext.undetvars) {
  1719                     UndetVar uv = (UndetVar)t;
  1720                     buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
  1721                             uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
  1722                             uv.getBounds(InferenceBound.EQ)));
  1724                 return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
  1728     // </editor-fold>
  1730     // <editor-fold defaultstate="collapsed" desc="Inference context">
  1731     /**
  1732      * Functional interface for defining inference callbacks. Certain actions
  1733      * (i.e. subtyping checks) might need to be redone after all inference variables
  1734      * have been fixed.
  1735      */
  1736     interface FreeTypeListener {
  1737         void typesInferred(InferenceContext inferenceContext);
  1740     /**
  1741      * An inference context keeps track of the set of variables that are free
  1742      * in the current context. It provides utility methods for opening/closing
  1743      * types to their corresponding free/closed forms. It also provide hooks for
  1744      * attaching deferred post-inference action (see PendingCheck). Finally,
  1745      * it can be used as an entry point for performing upper/lower bound inference
  1746      * (see InferenceKind).
  1747      */
  1748      class InferenceContext {
  1750         /** list of inference vars as undet vars */
  1751         List<Type> undetvars;
  1753         /** list of inference vars in this context */
  1754         List<Type> inferencevars;
  1756         java.util.Map<FreeTypeListener, List<Type>> freeTypeListeners =
  1757                 new java.util.HashMap<FreeTypeListener, List<Type>>();
  1759         List<FreeTypeListener> freetypeListeners = List.nil();
  1761         public InferenceContext(List<Type> inferencevars) {
  1762             this.undetvars = Type.map(inferencevars, fromTypeVarFun);
  1763             this.inferencevars = inferencevars;
  1765         //where
  1766             Mapping fromTypeVarFun = new Mapping("fromTypeVarFunWithBounds") {
  1767                 // mapping that turns inference variables into undet vars
  1768                 public Type apply(Type t) {
  1769                     if (t.hasTag(TYPEVAR)) {
  1770                         TypeVar tv = (TypeVar)t;
  1771                         if (tv.isCaptured()) {
  1772                             return new CapturedUndetVar((CapturedType)tv, types);
  1773                         } else {
  1774                             return new UndetVar(tv, types);
  1776                     } else {
  1777                         return t.map(this);
  1780             };
  1782         /**
  1783          * add a new inference var to this inference context
  1784          */
  1785         void addVar(TypeVar t) {
  1786             this.undetvars = this.undetvars.prepend(fromTypeVarFun.apply(t));
  1787             this.inferencevars = this.inferencevars.prepend(t);
  1790         /**
  1791          * returns the list of free variables (as type-variables) in this
  1792          * inference context
  1793          */
  1794         List<Type> inferenceVars() {
  1795             return inferencevars;
  1798         /**
  1799          * returns the list of uninstantiated variables (as type-variables) in this
  1800          * inference context
  1801          */
  1802         List<Type> restvars() {
  1803             return filterVars(new Filter<UndetVar>() {
  1804                 public boolean accepts(UndetVar uv) {
  1805                     return uv.inst == null;
  1807             });
  1810         /**
  1811          * returns the list of instantiated variables (as type-variables) in this
  1812          * inference context
  1813          */
  1814         List<Type> instvars() {
  1815             return filterVars(new Filter<UndetVar>() {
  1816                 public boolean accepts(UndetVar uv) {
  1817                     return uv.inst != null;
  1819             });
  1822         /**
  1823          * Get list of bounded inference variables (where bound is other than
  1824          * declared bounds).
  1825          */
  1826         final List<Type> boundedVars() {
  1827             return filterVars(new Filter<UndetVar>() {
  1828                 public boolean accepts(UndetVar uv) {
  1829                     return uv.getBounds(InferenceBound.UPPER)
  1830                              .diff(uv.getDeclaredBounds())
  1831                              .appendList(uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)).nonEmpty();
  1833             });
  1836         private List<Type> filterVars(Filter<UndetVar> fu) {
  1837             ListBuffer<Type> res = new ListBuffer<>();
  1838             for (Type t : undetvars) {
  1839                 UndetVar uv = (UndetVar)t;
  1840                 if (fu.accepts(uv)) {
  1841                     res.append(uv.qtype);
  1844             return res.toList();
  1847         /**
  1848          * is this type free?
  1849          */
  1850         final boolean free(Type t) {
  1851             return t.containsAny(inferencevars);
  1854         final boolean free(List<Type> ts) {
  1855             for (Type t : ts) {
  1856                 if (free(t)) return true;
  1858             return false;
  1861         /**
  1862          * Returns a list of free variables in a given type
  1863          */
  1864         final List<Type> freeVarsIn(Type t) {
  1865             ListBuffer<Type> buf = new ListBuffer<>();
  1866             for (Type iv : inferenceVars()) {
  1867                 if (t.contains(iv)) {
  1868                     buf.add(iv);
  1871             return buf.toList();
  1874         final List<Type> freeVarsIn(List<Type> ts) {
  1875             ListBuffer<Type> buf = new ListBuffer<>();
  1876             for (Type t : ts) {
  1877                 buf.appendList(freeVarsIn(t));
  1879             ListBuffer<Type> buf2 = new ListBuffer<>();
  1880             for (Type t : buf) {
  1881                 if (!buf2.contains(t)) {
  1882                     buf2.add(t);
  1885             return buf2.toList();
  1888         /**
  1889          * Replace all free variables in a given type with corresponding
  1890          * undet vars (used ahead of subtyping/compatibility checks to allow propagation
  1891          * of inference constraints).
  1892          */
  1893         final Type asFree(Type t) {
  1894             return types.subst(t, inferencevars, undetvars);
  1897         final List<Type> asFree(List<Type> ts) {
  1898             ListBuffer<Type> buf = new ListBuffer<>();
  1899             for (Type t : ts) {
  1900                 buf.append(asFree(t));
  1902             return buf.toList();
  1905         List<Type> instTypes() {
  1906             ListBuffer<Type> buf = new ListBuffer<>();
  1907             for (Type t : undetvars) {
  1908                 UndetVar uv = (UndetVar)t;
  1909                 buf.append(uv.inst != null ? uv.inst : uv.qtype);
  1911             return buf.toList();
  1914         /**
  1915          * Replace all free variables in a given type with corresponding
  1916          * instantiated types - if one or more free variable has not been
  1917          * fully instantiated, it will still be available in the resulting type.
  1918          */
  1919         Type asInstType(Type t) {
  1920             return types.subst(t, inferencevars, instTypes());
  1923         List<Type> asInstTypes(List<Type> ts) {
  1924             ListBuffer<Type> buf = new ListBuffer<>();
  1925             for (Type t : ts) {
  1926                 buf.append(asInstType(t));
  1928             return buf.toList();
  1931         /**
  1932          * Add custom hook for performing post-inference action
  1933          */
  1934         void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
  1935             freeTypeListeners.put(ftl, freeVarsIn(types));
  1938         /**
  1939          * Mark the inference context as complete and trigger evaluation
  1940          * of all deferred checks.
  1941          */
  1942         void notifyChange() {
  1943             notifyChange(inferencevars.diff(restvars()));
  1946         void notifyChange(List<Type> inferredVars) {
  1947             InferenceException thrownEx = null;
  1948             for (Map.Entry<FreeTypeListener, List<Type>> entry :
  1949                     new HashMap<FreeTypeListener, List<Type>>(freeTypeListeners).entrySet()) {
  1950                 if (!Type.containsAny(entry.getValue(), inferencevars.diff(inferredVars))) {
  1951                     try {
  1952                         entry.getKey().typesInferred(this);
  1953                         freeTypeListeners.remove(entry.getKey());
  1954                     } catch (InferenceException ex) {
  1955                         if (thrownEx == null) {
  1956                             thrownEx = ex;
  1961             //inference exception multiplexing - present any inference exception
  1962             //thrown when processing listeners as a single one
  1963             if (thrownEx != null) {
  1964                 throw thrownEx;
  1968         /**
  1969          * Save the state of this inference context
  1970          */
  1971         List<Type> save() {
  1972             ListBuffer<Type> buf = new ListBuffer<>();
  1973             for (Type t : undetvars) {
  1974                 UndetVar uv = (UndetVar)t;
  1975                 UndetVar uv2 = new UndetVar((TypeVar)uv.qtype, types);
  1976                 for (InferenceBound ib : InferenceBound.values()) {
  1977                     for (Type b : uv.getBounds(ib)) {
  1978                         uv2.addBound(ib, b, types);
  1981                 uv2.inst = uv.inst;
  1982                 buf.add(uv2);
  1984             return buf.toList();
  1987         /**
  1988          * Restore the state of this inference context to the previous known checkpoint
  1989          */
  1990         void rollback(List<Type> saved_undet) {
  1991              Assert.check(saved_undet != null && saved_undet.length() == undetvars.length());
  1992             //restore bounds (note: we need to preserve the old instances)
  1993             for (Type t : undetvars) {
  1994                 UndetVar uv = (UndetVar)t;
  1995                 UndetVar uv_saved = (UndetVar)saved_undet.head;
  1996                 for (InferenceBound ib : InferenceBound.values()) {
  1997                     uv.setBounds(ib, uv_saved.getBounds(ib));
  1999                 uv.inst = uv_saved.inst;
  2000                 saved_undet = saved_undet.tail;
  2004         /**
  2005          * Copy variable in this inference context to the given context
  2006          */
  2007         void dupTo(final InferenceContext that) {
  2008             that.inferencevars = that.inferencevars.appendList(inferencevars);
  2009             that.undetvars = that.undetvars.appendList(undetvars);
  2010             //set up listeners to notify original inference contexts as
  2011             //propagated vars are inferred in new context
  2012             for (Type t : inferencevars) {
  2013                 that.freeTypeListeners.put(new FreeTypeListener() {
  2014                     public void typesInferred(InferenceContext inferenceContext) {
  2015                         InferenceContext.this.notifyChange();
  2017                 }, List.of(t));
  2021         private void solve(GraphStrategy ss, Warner warn) {
  2022             solve(ss, new HashMap<Type, Set<Type>>(), warn);
  2025         /**
  2026          * Solve with given graph strategy.
  2027          */
  2028         private void solve(GraphStrategy ss, Map<Type, Set<Type>> stuckDeps, Warner warn) {
  2029             GraphSolver s = new GraphSolver(this, stuckDeps, warn);
  2030             s.solve(ss);
  2033         /**
  2034          * Solve all variables in this context.
  2035          */
  2036         public void solve(Warner warn) {
  2037             solve(new LeafSolver() {
  2038                 public boolean done() {
  2039                     return restvars().isEmpty();
  2041             }, warn);
  2044         /**
  2045          * Solve all variables in the given list.
  2046          */
  2047         public void solve(final List<Type> vars, Warner warn) {
  2048             solve(new BestLeafSolver(vars) {
  2049                 public boolean done() {
  2050                     return !free(asInstTypes(vars));
  2052             }, warn);
  2055         /**
  2056          * Solve at least one variable in given list.
  2057          */
  2058         public void solveAny(List<Type> varsToSolve, Map<Type, Set<Type>> optDeps, Warner warn) {
  2059             solve(new BestLeafSolver(varsToSolve.intersect(restvars())) {
  2060                 public boolean done() {
  2061                     return instvars().intersect(varsToSolve).nonEmpty();
  2063             }, optDeps, warn);
  2066         /**
  2067          * Apply a set of inference steps
  2068          */
  2069         private boolean solveBasic(EnumSet<InferenceStep> steps) {
  2070             return solveBasic(inferencevars, steps);
  2073         private boolean solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps) {
  2074             boolean changed = false;
  2075             for (Type t : varsToSolve.intersect(restvars())) {
  2076                 UndetVar uv = (UndetVar)asFree(t);
  2077                 for (InferenceStep step : steps) {
  2078                     if (step.accepts(uv, this)) {
  2079                         uv.inst = step.solve(uv, this);
  2080                         changed = true;
  2081                         break;
  2085             return changed;
  2088         /**
  2089          * Instantiate inference variables in legacy mode (JLS 15.12.2.7, 15.12.2.8).
  2090          * During overload resolution, instantiation is done by doing a partial
  2091          * inference process using eq/lower bound instantiation. During check,
  2092          * we also instantiate any remaining vars by repeatedly using eq/upper
  2093          * instantiation, until all variables are solved.
  2094          */
  2095         public void solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps) {
  2096             while (true) {
  2097                 boolean stuck = !solveBasic(steps);
  2098                 if (restvars().isEmpty() || partial) {
  2099                     //all variables have been instantiated - exit
  2100                     break;
  2101                 } else if (stuck) {
  2102                     //some variables could not be instantiated because of cycles in
  2103                     //upper bounds - provide a (possibly recursive) default instantiation
  2104                     instantiateAsUninferredVars(restvars(), this);
  2105                     break;
  2106                 } else {
  2107                     //some variables have been instantiated - replace newly instantiated
  2108                     //variables in remaining upper bounds and continue
  2109                     for (Type t : undetvars) {
  2110                         UndetVar uv = (UndetVar)t;
  2111                         uv.substBounds(inferenceVars(), instTypes(), types);
  2115             checkWithinBounds(this, warn);
  2118         private Infer infer() {
  2119             //back-door to infer
  2120             return Infer.this;
  2124     final InferenceContext emptyContext = new InferenceContext(List.<Type>nil());
  2125     // </editor-fold>

mercurial