src/share/classes/com/sun/tools/javac/comp/Attr.java

Wed, 27 Apr 2016 01:34:52 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:34:52 +0800
changeset 0
959103a6100f
child 2525
2eb010b6cb22
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/langtools/
changeset: 2573:53ca196be1ae
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.source.tree.IdentifierTree;
    34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    35 import com.sun.source.tree.MemberSelectTree;
    36 import com.sun.source.tree.TreeVisitor;
    37 import com.sun.source.util.SimpleTreeVisitor;
    38 import com.sun.tools.javac.code.*;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Symbol.*;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.comp.Check.CheckContext;
    43 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.jvm.*;
    47 import com.sun.tools.javac.tree.*;
    48 import com.sun.tools.javac.tree.JCTree.*;
    49 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    50 import com.sun.tools.javac.util.*;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.List;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    55 import static com.sun.tools.javac.code.Flags.BLOCK;
    56 import static com.sun.tools.javac.code.Kinds.*;
    57 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    58 import static com.sun.tools.javac.code.TypeTag.*;
    59 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    60 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    62 /** This is the main context-dependent analysis phase in GJC. It
    63  *  encompasses name resolution, type checking and constant folding as
    64  *  subtasks. Some subtasks involve auxiliary classes.
    65  *  @see Check
    66  *  @see Resolve
    67  *  @see ConstFold
    68  *  @see Infer
    69  *
    70  *  <p><b>This is NOT part of any supported API.
    71  *  If you write code that depends on this, you do so at your own risk.
    72  *  This code and its internal interfaces are subject to change or
    73  *  deletion without notice.</b>
    74  */
    75 public class Attr extends JCTree.Visitor {
    76     protected static final Context.Key<Attr> attrKey =
    77         new Context.Key<Attr>();
    79     final Names names;
    80     final Log log;
    81     final Symtab syms;
    82     final Resolve rs;
    83     final Infer infer;
    84     final DeferredAttr deferredAttr;
    85     final Check chk;
    86     final Flow flow;
    87     final MemberEnter memberEnter;
    88     final TreeMaker make;
    89     final ConstFold cfolder;
    90     final Enter enter;
    91     final Target target;
    92     final Types types;
    93     final JCDiagnostic.Factory diags;
    94     final Annotate annotate;
    95     final TypeAnnotations typeAnnotations;
    96     final DeferredLintHandler deferredLintHandler;
    97     final TypeEnvs typeEnvs;
    99     public static Attr instance(Context context) {
   100         Attr instance = context.get(attrKey);
   101         if (instance == null)
   102             instance = new Attr(context);
   103         return instance;
   104     }
   106     protected Attr(Context context) {
   107         context.put(attrKey, this);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         syms = Symtab.instance(context);
   112         rs = Resolve.instance(context);
   113         chk = Check.instance(context);
   114         flow = Flow.instance(context);
   115         memberEnter = MemberEnter.instance(context);
   116         make = TreeMaker.instance(context);
   117         enter = Enter.instance(context);
   118         infer = Infer.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         cfolder = ConstFold.instance(context);
   121         target = Target.instance(context);
   122         types = Types.instance(context);
   123         diags = JCDiagnostic.Factory.instance(context);
   124         annotate = Annotate.instance(context);
   125         typeAnnotations = TypeAnnotations.instance(context);
   126         deferredLintHandler = DeferredLintHandler.instance(context);
   127         typeEnvs = TypeEnvs.instance(context);
   129         Options options = Options.instance(context);
   131         Source source = Source.instance(context);
   132         allowGenerics = source.allowGenerics();
   133         allowVarargs = source.allowVarargs();
   134         allowEnums = source.allowEnums();
   135         allowBoxing = source.allowBoxing();
   136         allowCovariantReturns = source.allowCovariantReturns();
   137         allowAnonOuterThis = source.allowAnonOuterThis();
   138         allowStringsInSwitch = source.allowStringsInSwitch();
   139         allowPoly = source.allowPoly();
   140         allowTypeAnnos = source.allowTypeAnnotations();
   141         allowLambda = source.allowLambda();
   142         allowDefaultMethods = source.allowDefaultMethods();
   143         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
   144         sourceName = source.name;
   145         relax = (options.isSet("-retrofit") ||
   146                  options.isSet("-relax"));
   147         findDiamonds = options.get("findDiamond") != null &&
   148                  source.allowDiamond();
   149         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   150         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   152         statInfo = new ResultInfo(NIL, Type.noType);
   153         varInfo = new ResultInfo(VAR, Type.noType);
   154         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   155         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   156         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   157         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   158         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   159     }
   161     /** Switch: relax some constraints for retrofit mode.
   162      */
   163     boolean relax;
   165     /** Switch: support target-typing inference
   166      */
   167     boolean allowPoly;
   169     /** Switch: support type annotations.
   170      */
   171     boolean allowTypeAnnos;
   173     /** Switch: support generics?
   174      */
   175     boolean allowGenerics;
   177     /** Switch: allow variable-arity methods.
   178      */
   179     boolean allowVarargs;
   181     /** Switch: support enums?
   182      */
   183     boolean allowEnums;
   185     /** Switch: support boxing and unboxing?
   186      */
   187     boolean allowBoxing;
   189     /** Switch: support covariant result types?
   190      */
   191     boolean allowCovariantReturns;
   193     /** Switch: support lambda expressions ?
   194      */
   195     boolean allowLambda;
   197     /** Switch: support default methods ?
   198      */
   199     boolean allowDefaultMethods;
   201     /** Switch: static interface methods enabled?
   202      */
   203     boolean allowStaticInterfaceMethods;
   205     /** Switch: allow references to surrounding object from anonymous
   206      * objects during constructor call?
   207      */
   208     boolean allowAnonOuterThis;
   210     /** Switch: generates a warning if diamond can be safely applied
   211      *  to a given new expression
   212      */
   213     boolean findDiamonds;
   215     /**
   216      * Internally enables/disables diamond finder feature
   217      */
   218     static final boolean allowDiamondFinder = true;
   220     /**
   221      * Switch: warn about use of variable before declaration?
   222      * RFE: 6425594
   223      */
   224     boolean useBeforeDeclarationWarning;
   226     /**
   227      * Switch: generate warnings whenever an anonymous inner class that is convertible
   228      * to a lambda expression is found
   229      */
   230     boolean identifyLambdaCandidate;
   232     /**
   233      * Switch: allow strings in switch?
   234      */
   235     boolean allowStringsInSwitch;
   237     /**
   238      * Switch: name of source level; used for error reporting.
   239      */
   240     String sourceName;
   242     /** Check kind and type of given tree against protokind and prototype.
   243      *  If check succeeds, store type in tree and return it.
   244      *  If check fails, store errType in tree and return it.
   245      *  No checks are performed if the prototype is a method type.
   246      *  It is not necessary in this case since we know that kind and type
   247      *  are correct.
   248      *
   249      *  @param tree     The tree whose kind and type is checked
   250      *  @param ownkind  The computed kind of the tree
   251      *  @param resultInfo  The expected result of the tree
   252      */
   253     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   254         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   255         Type owntype = found;
   256         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   257             if (allowPoly && inferenceContext.free(found)) {
   258                 if ((ownkind & ~resultInfo.pkind) == 0) {
   259                     owntype = resultInfo.check(tree, inferenceContext.asUndetVar(owntype));
   260                 } else {
   261                     log.error(tree.pos(), "unexpected.type",
   262                             kindNames(resultInfo.pkind),
   263                             kindName(ownkind));
   264                     owntype = types.createErrorType(owntype);
   265                 }
   266                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   267                     @Override
   268                     public void typesInferred(InferenceContext inferenceContext) {
   269                         ResultInfo pendingResult =
   270                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   271                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   272                     }
   273                 });
   274                 return tree.type = resultInfo.pt;
   275             } else {
   276                 if ((ownkind & ~resultInfo.pkind) == 0) {
   277                     owntype = resultInfo.check(tree, owntype);
   278                 } else {
   279                     log.error(tree.pos(), "unexpected.type",
   280                             kindNames(resultInfo.pkind),
   281                             kindName(ownkind));
   282                     owntype = types.createErrorType(owntype);
   283                 }
   284             }
   285         }
   286         tree.type = owntype;
   287         return owntype;
   288     }
   290     /** Is given blank final variable assignable, i.e. in a scope where it
   291      *  may be assigned to even though it is final?
   292      *  @param v      The blank final variable.
   293      *  @param env    The current environment.
   294      */
   295     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   296         Symbol owner = owner(env);
   297            // owner refers to the innermost variable, method or
   298            // initializer block declaration at this point.
   299         return
   300             v.owner == owner
   301             ||
   302             ((owner.name == names.init ||    // i.e. we are in a constructor
   303               owner.kind == VAR ||           // i.e. we are in a variable initializer
   304               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   305              &&
   306              v.owner == owner.owner
   307              &&
   308              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   309     }
   311     /**
   312      * Return the innermost enclosing owner symbol in a given attribution context
   313      */
   314     Symbol owner(Env<AttrContext> env) {
   315         while (true) {
   316             switch (env.tree.getTag()) {
   317                 case VARDEF:
   318                     //a field can be owner
   319                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   320                     if (vsym.owner.kind == TYP) {
   321                         return vsym;
   322                     }
   323                     break;
   324                 case METHODDEF:
   325                     //method def is always an owner
   326                     return ((JCMethodDecl)env.tree).sym;
   327                 case CLASSDEF:
   328                     //class def is always an owner
   329                     return ((JCClassDecl)env.tree).sym;
   330                 case BLOCK:
   331                     //static/instance init blocks are owner
   332                     Symbol blockSym = env.info.scope.owner;
   333                     if ((blockSym.flags() & BLOCK) != 0) {
   334                         return blockSym;
   335                     }
   336                     break;
   337                 case TOPLEVEL:
   338                     //toplevel is always an owner (for pkge decls)
   339                     return env.info.scope.owner;
   340             }
   341             Assert.checkNonNull(env.next);
   342             env = env.next;
   343         }
   344     }
   346     /** Check that variable can be assigned to.
   347      *  @param pos    The current source code position.
   348      *  @param v      The assigned varaible
   349      *  @param base   If the variable is referred to in a Select, the part
   350      *                to the left of the `.', null otherwise.
   351      *  @param env    The current environment.
   352      */
   353     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   354         if ((v.flags() & FINAL) != 0 &&
   355             ((v.flags() & HASINIT) != 0
   356              ||
   357              !((base == null ||
   358                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   359                isAssignableAsBlankFinal(v, env)))) {
   360             if (v.isResourceVariable()) { //TWR resource
   361                 log.error(pos, "try.resource.may.not.be.assigned", v);
   362             } else {
   363                 log.error(pos, "cant.assign.val.to.final.var", v);
   364             }
   365         }
   366     }
   368     /** Does tree represent a static reference to an identifier?
   369      *  It is assumed that tree is either a SELECT or an IDENT.
   370      *  We have to weed out selects from non-type names here.
   371      *  @param tree    The candidate tree.
   372      */
   373     boolean isStaticReference(JCTree tree) {
   374         if (tree.hasTag(SELECT)) {
   375             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   376             if (lsym == null || lsym.kind != TYP) {
   377                 return false;
   378             }
   379         }
   380         return true;
   381     }
   383     /** Is this symbol a type?
   384      */
   385     static boolean isType(Symbol sym) {
   386         return sym != null && sym.kind == TYP;
   387     }
   389     /** The current `this' symbol.
   390      *  @param env    The current environment.
   391      */
   392     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   393         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   394     }
   396     /** Attribute a parsed identifier.
   397      * @param tree Parsed identifier name
   398      * @param topLevel The toplevel to use
   399      */
   400     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   401         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   402         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   403                                            syms.errSymbol.name,
   404                                            null, null, null, null);
   405         localEnv.enclClass.sym = syms.errSymbol;
   406         return tree.accept(identAttributer, localEnv);
   407     }
   408     // where
   409         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   410         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   411             @Override
   412             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   413                 Symbol site = visit(node.getExpression(), env);
   414                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   415                     return site;
   416                 Name name = (Name)node.getIdentifier();
   417                 if (site.kind == PCK) {
   418                     env.toplevel.packge = (PackageSymbol)site;
   419                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   420                 } else {
   421                     env.enclClass.sym = (ClassSymbol)site;
   422                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   423                 }
   424             }
   426             @Override
   427             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   428                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   429             }
   430         }
   432     public Type coerce(Type etype, Type ttype) {
   433         return cfolder.coerce(etype, ttype);
   434     }
   436     public Type attribType(JCTree node, TypeSymbol sym) {
   437         Env<AttrContext> env = typeEnvs.get(sym);
   438         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   439         return attribTree(node, localEnv, unknownTypeInfo);
   440     }
   442     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   443         // Attribute qualifying package or class.
   444         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   445         return attribTree(s.selected,
   446                        env,
   447                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   448                        Type.noType));
   449     }
   451     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   452         breakTree = tree;
   453         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   454         try {
   455             attribExpr(expr, env);
   456         } catch (BreakAttr b) {
   457             return b.env;
   458         } catch (AssertionError ae) {
   459             if (ae.getCause() instanceof BreakAttr) {
   460                 return ((BreakAttr)(ae.getCause())).env;
   461             } else {
   462                 throw ae;
   463             }
   464         } finally {
   465             breakTree = null;
   466             log.useSource(prev);
   467         }
   468         return env;
   469     }
   471     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   472         breakTree = tree;
   473         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   474         try {
   475             attribStat(stmt, env);
   476         } catch (BreakAttr b) {
   477             return b.env;
   478         } catch (AssertionError ae) {
   479             if (ae.getCause() instanceof BreakAttr) {
   480                 return ((BreakAttr)(ae.getCause())).env;
   481             } else {
   482                 throw ae;
   483             }
   484         } finally {
   485             breakTree = null;
   486             log.useSource(prev);
   487         }
   488         return env;
   489     }
   491     private JCTree breakTree = null;
   493     private static class BreakAttr extends RuntimeException {
   494         static final long serialVersionUID = -6924771130405446405L;
   495         private Env<AttrContext> env;
   496         private BreakAttr(Env<AttrContext> env) {
   497             this.env = env;
   498         }
   499     }
   501     class ResultInfo {
   502         final int pkind;
   503         final Type pt;
   504         final CheckContext checkContext;
   506         ResultInfo(int pkind, Type pt) {
   507             this(pkind, pt, chk.basicHandler);
   508         }
   510         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   511             this.pkind = pkind;
   512             this.pt = pt;
   513             this.checkContext = checkContext;
   514         }
   516         protected Type check(final DiagnosticPosition pos, final Type found) {
   517             return chk.checkType(pos, found, pt, checkContext);
   518         }
   520         protected ResultInfo dup(Type newPt) {
   521             return new ResultInfo(pkind, newPt, checkContext);
   522         }
   524         protected ResultInfo dup(CheckContext newContext) {
   525             return new ResultInfo(pkind, pt, newContext);
   526         }
   528         protected ResultInfo dup(Type newPt, CheckContext newContext) {
   529             return new ResultInfo(pkind, newPt, newContext);
   530         }
   532         @Override
   533         public String toString() {
   534             if (pt != null) {
   535                 return pt.toString();
   536             } else {
   537                 return "";
   538             }
   539         }
   540     }
   542     class RecoveryInfo extends ResultInfo {
   544         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   545             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   546                 @Override
   547                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   548                     return deferredAttrContext;
   549                 }
   550                 @Override
   551                 public boolean compatible(Type found, Type req, Warner warn) {
   552                     return true;
   553                 }
   554                 @Override
   555                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   556                     chk.basicHandler.report(pos, details);
   557                 }
   558             });
   559         }
   560     }
   562     final ResultInfo statInfo;
   563     final ResultInfo varInfo;
   564     final ResultInfo unknownAnyPolyInfo;
   565     final ResultInfo unknownExprInfo;
   566     final ResultInfo unknownTypeInfo;
   567     final ResultInfo unknownTypeExprInfo;
   568     final ResultInfo recoveryInfo;
   570     Type pt() {
   571         return resultInfo.pt;
   572     }
   574     int pkind() {
   575         return resultInfo.pkind;
   576     }
   578 /* ************************************************************************
   579  * Visitor methods
   580  *************************************************************************/
   582     /** Visitor argument: the current environment.
   583      */
   584     Env<AttrContext> env;
   586     /** Visitor argument: the currently expected attribution result.
   587      */
   588     ResultInfo resultInfo;
   590     /** Visitor result: the computed type.
   591      */
   592     Type result;
   594     /** Visitor method: attribute a tree, catching any completion failure
   595      *  exceptions. Return the tree's type.
   596      *
   597      *  @param tree    The tree to be visited.
   598      *  @param env     The environment visitor argument.
   599      *  @param resultInfo   The result info visitor argument.
   600      */
   601     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   602         Env<AttrContext> prevEnv = this.env;
   603         ResultInfo prevResult = this.resultInfo;
   604         try {
   605             this.env = env;
   606             this.resultInfo = resultInfo;
   607             tree.accept(this);
   608             if (tree == breakTree &&
   609                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   610                 throw new BreakAttr(copyEnv(env));
   611             }
   612             return result;
   613         } catch (CompletionFailure ex) {
   614             tree.type = syms.errType;
   615             return chk.completionError(tree.pos(), ex);
   616         } finally {
   617             this.env = prevEnv;
   618             this.resultInfo = prevResult;
   619         }
   620     }
   622     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   623         Env<AttrContext> newEnv =
   624                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   625         if (newEnv.outer != null) {
   626             newEnv.outer = copyEnv(newEnv.outer);
   627         }
   628         return newEnv;
   629     }
   631     Scope copyScope(Scope sc) {
   632         Scope newScope = new Scope(sc.owner);
   633         List<Symbol> elemsList = List.nil();
   634         while (sc != null) {
   635             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   636                 elemsList = elemsList.prepend(e.sym);
   637             }
   638             sc = sc.next;
   639         }
   640         for (Symbol s : elemsList) {
   641             newScope.enter(s);
   642         }
   643         return newScope;
   644     }
   646     /** Derived visitor method: attribute an expression tree.
   647      */
   648     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   649         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   650     }
   652     /** Derived visitor method: attribute an expression tree with
   653      *  no constraints on the computed type.
   654      */
   655     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   656         return attribTree(tree, env, unknownExprInfo);
   657     }
   659     /** Derived visitor method: attribute a type tree.
   660      */
   661     public Type attribType(JCTree tree, Env<AttrContext> env) {
   662         Type result = attribType(tree, env, Type.noType);
   663         return result;
   664     }
   666     /** Derived visitor method: attribute a type tree.
   667      */
   668     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   669         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   670         return result;
   671     }
   673     /** Derived visitor method: attribute a statement or definition tree.
   674      */
   675     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   676         return attribTree(tree, env, statInfo);
   677     }
   679     /** Attribute a list of expressions, returning a list of types.
   680      */
   681     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   682         ListBuffer<Type> ts = new ListBuffer<Type>();
   683         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   684             ts.append(attribExpr(l.head, env, pt));
   685         return ts.toList();
   686     }
   688     /** Attribute a list of statements, returning nothing.
   689      */
   690     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   691         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   692             attribStat(l.head, env);
   693     }
   695     /** Attribute the arguments in a method call, returning the method kind.
   696      */
   697     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   698         int kind = VAL;
   699         for (JCExpression arg : trees) {
   700             Type argtype;
   701             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   702                 argtype = deferredAttr.new DeferredType(arg, env);
   703                 kind |= POLY;
   704             } else {
   705                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   706             }
   707             argtypes.append(argtype);
   708         }
   709         return kind;
   710     }
   712     /** Attribute a type argument list, returning a list of types.
   713      *  Caller is responsible for calling checkRefTypes.
   714      */
   715     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   716         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   717         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   718             argtypes.append(attribType(l.head, env));
   719         return argtypes.toList();
   720     }
   722     /** Attribute a type argument list, returning a list of types.
   723      *  Check that all the types are references.
   724      */
   725     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   726         List<Type> types = attribAnyTypes(trees, env);
   727         return chk.checkRefTypes(trees, types);
   728     }
   730     /**
   731      * Attribute type variables (of generic classes or methods).
   732      * Compound types are attributed later in attribBounds.
   733      * @param typarams the type variables to enter
   734      * @param env      the current environment
   735      */
   736     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   737         for (JCTypeParameter tvar : typarams) {
   738             TypeVar a = (TypeVar)tvar.type;
   739             a.tsym.flags_field |= UNATTRIBUTED;
   740             a.bound = Type.noType;
   741             if (!tvar.bounds.isEmpty()) {
   742                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   743                 for (JCExpression bound : tvar.bounds.tail)
   744                     bounds = bounds.prepend(attribType(bound, env));
   745                 types.setBounds(a, bounds.reverse());
   746             } else {
   747                 // if no bounds are given, assume a single bound of
   748                 // java.lang.Object.
   749                 types.setBounds(a, List.of(syms.objectType));
   750             }
   751             a.tsym.flags_field &= ~UNATTRIBUTED;
   752         }
   753         for (JCTypeParameter tvar : typarams) {
   754             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   755         }
   756     }
   758     /**
   759      * Attribute the type references in a list of annotations.
   760      */
   761     void attribAnnotationTypes(List<JCAnnotation> annotations,
   762                                Env<AttrContext> env) {
   763         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   764             JCAnnotation a = al.head;
   765             attribType(a.annotationType, env);
   766         }
   767     }
   769     /**
   770      * Attribute a "lazy constant value".
   771      *  @param env         The env for the const value
   772      *  @param initializer The initializer for the const value
   773      *  @param type        The expected type, or null
   774      *  @see VarSymbol#setLazyConstValue
   775      */
   776     public Object attribLazyConstantValue(Env<AttrContext> env,
   777                                       JCVariableDecl variable,
   778                                       Type type) {
   780         DiagnosticPosition prevLintPos
   781                 = deferredLintHandler.setPos(variable.pos());
   783         try {
   784             // Use null as symbol to not attach the type annotation to any symbol.
   785             // The initializer will later also be visited and then we'll attach
   786             // to the symbol.
   787             // This prevents having multiple type annotations, just because of
   788             // lazy constant value evaluation.
   789             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   790             annotate.flush();
   791             Type itype = attribExpr(variable.init, env, type);
   792             if (itype.constValue() != null) {
   793                 return coerce(itype, type).constValue();
   794             } else {
   795                 return null;
   796             }
   797         } finally {
   798             deferredLintHandler.setPos(prevLintPos);
   799         }
   800     }
   802     /** Attribute type reference in an `extends' or `implements' clause.
   803      *  Supertypes of anonymous inner classes are usually already attributed.
   804      *
   805      *  @param tree              The tree making up the type reference.
   806      *  @param env               The environment current at the reference.
   807      *  @param classExpected     true if only a class is expected here.
   808      *  @param interfaceExpected true if only an interface is expected here.
   809      */
   810     Type attribBase(JCTree tree,
   811                     Env<AttrContext> env,
   812                     boolean classExpected,
   813                     boolean interfaceExpected,
   814                     boolean checkExtensible) {
   815         Type t = tree.type != null ?
   816             tree.type :
   817             attribType(tree, env);
   818         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   819     }
   820     Type checkBase(Type t,
   821                    JCTree tree,
   822                    Env<AttrContext> env,
   823                    boolean classExpected,
   824                    boolean interfaceExpected,
   825                    boolean checkExtensible) {
   826         if (t.tsym.isAnonymous()) {
   827             log.error(tree.pos(), "cant.inherit.from.anon");
   828             return types.createErrorType(t);
   829         }
   830         if (t.isErroneous())
   831             return t;
   832         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   833             // check that type variable is already visible
   834             if (t.getUpperBound() == null) {
   835                 log.error(tree.pos(), "illegal.forward.ref");
   836                 return types.createErrorType(t);
   837             }
   838         } else {
   839             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   840         }
   841         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   842             log.error(tree.pos(), "intf.expected.here");
   843             // return errType is necessary since otherwise there might
   844             // be undetected cycles which cause attribution to loop
   845             return types.createErrorType(t);
   846         } else if (checkExtensible &&
   847                    classExpected &&
   848                    (t.tsym.flags() & INTERFACE) != 0) {
   849             log.error(tree.pos(), "no.intf.expected.here");
   850             return types.createErrorType(t);
   851         }
   852         if (checkExtensible &&
   853             ((t.tsym.flags() & FINAL) != 0)) {
   854             log.error(tree.pos(),
   855                       "cant.inherit.from.final", t.tsym);
   856         }
   857         chk.checkNonCyclic(tree.pos(), t);
   858         return t;
   859     }
   861     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   862         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   863         id.type = env.info.scope.owner.type;
   864         id.sym = env.info.scope.owner;
   865         return id.type;
   866     }
   868     public void visitClassDef(JCClassDecl tree) {
   869         // Local classes have not been entered yet, so we need to do it now:
   870         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   871             enter.classEnter(tree, env);
   873         ClassSymbol c = tree.sym;
   874         if (c == null) {
   875             // exit in case something drastic went wrong during enter.
   876             result = null;
   877         } else {
   878             // make sure class has been completed:
   879             c.complete();
   881             // If this class appears as an anonymous class
   882             // in a superclass constructor call where
   883             // no explicit outer instance is given,
   884             // disable implicit outer instance from being passed.
   885             // (This would be an illegal access to "this before super").
   886             if (env.info.isSelfCall &&
   887                 env.tree.hasTag(NEWCLASS) &&
   888                 ((JCNewClass) env.tree).encl == null)
   889             {
   890                 c.flags_field |= NOOUTERTHIS;
   891             }
   892             attribClass(tree.pos(), c);
   893             result = tree.type = c.type;
   894         }
   895     }
   897     public void visitMethodDef(JCMethodDecl tree) {
   898         MethodSymbol m = tree.sym;
   899         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   901         Lint lint = env.info.lint.augment(m);
   902         Lint prevLint = chk.setLint(lint);
   903         MethodSymbol prevMethod = chk.setMethod(m);
   904         try {
   905             deferredLintHandler.flush(tree.pos());
   906             chk.checkDeprecatedAnnotation(tree.pos(), m);
   909             // Create a new environment with local scope
   910             // for attributing the method.
   911             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   912             localEnv.info.lint = lint;
   914             attribStats(tree.typarams, localEnv);
   916             // If we override any other methods, check that we do so properly.
   917             // JLS ???
   918             if (m.isStatic()) {
   919                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   920             } else {
   921                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   922             }
   923             chk.checkOverride(tree, m);
   925             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   926                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   927             }
   929             // Enter all type parameters into the local method scope.
   930             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   931                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   933             ClassSymbol owner = env.enclClass.sym;
   934             if ((owner.flags() & ANNOTATION) != 0 &&
   935                 tree.params.nonEmpty())
   936                 log.error(tree.params.head.pos(),
   937                           "intf.annotation.members.cant.have.params");
   939             // Attribute all value parameters.
   940             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   941                 attribStat(l.head, localEnv);
   942             }
   944             chk.checkVarargsMethodDecl(localEnv, tree);
   946             // Check that type parameters are well-formed.
   947             chk.validate(tree.typarams, localEnv);
   949             // Check that result type is well-formed.
   950             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
   951                 chk.validate(tree.restype, localEnv);
   953             // Check that receiver type is well-formed.
   954             if (tree.recvparam != null) {
   955                 // Use a new environment to check the receiver parameter.
   956                 // Otherwise I get "might not have been initialized" errors.
   957                 // Is there a better way?
   958                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   959                 attribType(tree.recvparam, newEnv);
   960                 chk.validate(tree.recvparam, newEnv);
   961             }
   963             // annotation method checks
   964             if ((owner.flags() & ANNOTATION) != 0) {
   965                 // annotation method cannot have throws clause
   966                 if (tree.thrown.nonEmpty()) {
   967                     log.error(tree.thrown.head.pos(),
   968                             "throws.not.allowed.in.intf.annotation");
   969                 }
   970                 // annotation method cannot declare type-parameters
   971                 if (tree.typarams.nonEmpty()) {
   972                     log.error(tree.typarams.head.pos(),
   973                             "intf.annotation.members.cant.have.type.params");
   974                 }
   975                 // validate annotation method's return type (could be an annotation type)
   976                 chk.validateAnnotationType(tree.restype);
   977                 // ensure that annotation method does not clash with members of Object/Annotation
   978                 chk.validateAnnotationMethod(tree.pos(), m);
   979             }
   981             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   982                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   984             if (tree.body == null) {
   985                 // Empty bodies are only allowed for
   986                 // abstract, native, or interface methods, or for methods
   987                 // in a retrofit signature class.
   988                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   989                     !relax)
   990                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   991                 if (tree.defaultValue != null) {
   992                     if ((owner.flags() & ANNOTATION) == 0)
   993                         log.error(tree.pos(),
   994                                   "default.allowed.in.intf.annotation.member");
   995                 }
   996             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   997                 if ((owner.flags() & INTERFACE) != 0) {
   998                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   999                 } else {
  1000                     log.error(tree.pos(), "abstract.meth.cant.have.body");
  1002             } else if ((tree.mods.flags & NATIVE) != 0) {
  1003                 log.error(tree.pos(), "native.meth.cant.have.body");
  1004             } else {
  1005                 // Add an implicit super() call unless an explicit call to
  1006                 // super(...) or this(...) is given
  1007                 // or we are compiling class java.lang.Object.
  1008                 if (tree.name == names.init && owner.type != syms.objectType) {
  1009                     JCBlock body = tree.body;
  1010                     if (body.stats.isEmpty() ||
  1011                         !TreeInfo.isSelfCall(body.stats.head)) {
  1012                         body.stats = body.stats.
  1013                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1014                                                           List.<Type>nil(),
  1015                                                           List.<JCVariableDecl>nil(),
  1016                                                           false));
  1017                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1018                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1019                                TreeInfo.isSuperCall(body.stats.head)) {
  1020                         // enum constructors are not allowed to call super
  1021                         // directly, so make sure there aren't any super calls
  1022                         // in enum constructors, except in the compiler
  1023                         // generated one.
  1024                         log.error(tree.body.stats.head.pos(),
  1025                                   "call.to.super.not.allowed.in.enum.ctor",
  1026                                   env.enclClass.sym);
  1030                 // Attribute all type annotations in the body
  1031                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1032                 annotate.flush();
  1034                 // Attribute method body.
  1035                 attribStat(tree.body, localEnv);
  1038             localEnv.info.scope.leave();
  1039             result = tree.type = m.type;
  1041         finally {
  1042             chk.setLint(prevLint);
  1043             chk.setMethod(prevMethod);
  1047     public void visitVarDef(JCVariableDecl tree) {
  1048         // Local variables have not been entered yet, so we need to do it now:
  1049         if (env.info.scope.owner.kind == MTH) {
  1050             if (tree.sym != null) {
  1051                 // parameters have already been entered
  1052                 env.info.scope.enter(tree.sym);
  1053             } else {
  1054                 memberEnter.memberEnter(tree, env);
  1055                 annotate.flush();
  1057         } else {
  1058             if (tree.init != null) {
  1059                 // Field initializer expression need to be entered.
  1060                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1061                 annotate.flush();
  1065         VarSymbol v = tree.sym;
  1066         Lint lint = env.info.lint.augment(v);
  1067         Lint prevLint = chk.setLint(lint);
  1069         // Check that the variable's declared type is well-formed.
  1070         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1071                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1072                 (tree.sym.flags() & PARAMETER) != 0;
  1073         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1075         try {
  1076             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1077             deferredLintHandler.flush(tree.pos());
  1078             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1080             if (tree.init != null) {
  1081                 if ((v.flags_field & FINAL) == 0 ||
  1082                     !memberEnter.needsLazyConstValue(tree.init)) {
  1083                     // Not a compile-time constant
  1084                     // Attribute initializer in a new environment
  1085                     // with the declared variable as owner.
  1086                     // Check that initializer conforms to variable's declared type.
  1087                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1088                     initEnv.info.lint = lint;
  1089                     // In order to catch self-references, we set the variable's
  1090                     // declaration position to maximal possible value, effectively
  1091                     // marking the variable as undefined.
  1092                     initEnv.info.enclVar = v;
  1093                     attribExpr(tree.init, initEnv, v.type);
  1096             result = tree.type = v.type;
  1098         finally {
  1099             chk.setLint(prevLint);
  1103     public void visitSkip(JCSkip tree) {
  1104         result = null;
  1107     public void visitBlock(JCBlock tree) {
  1108         if (env.info.scope.owner.kind == TYP) {
  1109             // Block is a static or instance initializer;
  1110             // let the owner of the environment be a freshly
  1111             // created BLOCK-method.
  1112             Env<AttrContext> localEnv =
  1113                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1114             localEnv.info.scope.owner =
  1115                 new MethodSymbol(tree.flags | BLOCK |
  1116                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1117                     env.info.scope.owner);
  1118             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1120             // Attribute all type annotations in the block
  1121             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1122             annotate.flush();
  1125                 // Store init and clinit type annotations with the ClassSymbol
  1126                 // to allow output in Gen.normalizeDefs.
  1127                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1128                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1129                 if ((tree.flags & STATIC) != 0) {
  1130                     cs.appendClassInitTypeAttributes(tas);
  1131                 } else {
  1132                     cs.appendInitTypeAttributes(tas);
  1136             attribStats(tree.stats, localEnv);
  1137         } else {
  1138             // Create a new local environment with a local scope.
  1139             Env<AttrContext> localEnv =
  1140                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1141             try {
  1142                 attribStats(tree.stats, localEnv);
  1143             } finally {
  1144                 localEnv.info.scope.leave();
  1147         result = null;
  1150     public void visitDoLoop(JCDoWhileLoop tree) {
  1151         attribStat(tree.body, env.dup(tree));
  1152         attribExpr(tree.cond, env, syms.booleanType);
  1153         result = null;
  1156     public void visitWhileLoop(JCWhileLoop tree) {
  1157         attribExpr(tree.cond, env, syms.booleanType);
  1158         attribStat(tree.body, env.dup(tree));
  1159         result = null;
  1162     public void visitForLoop(JCForLoop tree) {
  1163         Env<AttrContext> loopEnv =
  1164             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1165         try {
  1166             attribStats(tree.init, loopEnv);
  1167             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1168             loopEnv.tree = tree; // before, we were not in loop!
  1169             attribStats(tree.step, loopEnv);
  1170             attribStat(tree.body, loopEnv);
  1171             result = null;
  1173         finally {
  1174             loopEnv.info.scope.leave();
  1178     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1179         Env<AttrContext> loopEnv =
  1180             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1181         try {
  1182             //the Formal Parameter of a for-each loop is not in the scope when
  1183             //attributing the for-each expression; we mimick this by attributing
  1184             //the for-each expression first (against original scope).
  1185             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
  1186             attribStat(tree.var, loopEnv);
  1187             chk.checkNonVoid(tree.pos(), exprType);
  1188             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1189             if (elemtype == null) {
  1190                 // or perhaps expr implements Iterable<T>?
  1191                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1192                 if (base == null) {
  1193                     log.error(tree.expr.pos(),
  1194                             "foreach.not.applicable.to.type",
  1195                             exprType,
  1196                             diags.fragment("type.req.array.or.iterable"));
  1197                     elemtype = types.createErrorType(exprType);
  1198                 } else {
  1199                     List<Type> iterableParams = base.allparams();
  1200                     elemtype = iterableParams.isEmpty()
  1201                         ? syms.objectType
  1202                         : types.wildUpperBound(iterableParams.head);
  1205             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1206             loopEnv.tree = tree; // before, we were not in loop!
  1207             attribStat(tree.body, loopEnv);
  1208             result = null;
  1210         finally {
  1211             loopEnv.info.scope.leave();
  1215     public void visitLabelled(JCLabeledStatement tree) {
  1216         // Check that label is not used in an enclosing statement
  1217         Env<AttrContext> env1 = env;
  1218         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1219             if (env1.tree.hasTag(LABELLED) &&
  1220                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1221                 log.error(tree.pos(), "label.already.in.use",
  1222                           tree.label);
  1223                 break;
  1225             env1 = env1.next;
  1228         attribStat(tree.body, env.dup(tree));
  1229         result = null;
  1232     public void visitSwitch(JCSwitch tree) {
  1233         Type seltype = attribExpr(tree.selector, env);
  1235         Env<AttrContext> switchEnv =
  1236             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1238         try {
  1240             boolean enumSwitch =
  1241                 allowEnums &&
  1242                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1243             boolean stringSwitch = false;
  1244             if (types.isSameType(seltype, syms.stringType)) {
  1245                 if (allowStringsInSwitch) {
  1246                     stringSwitch = true;
  1247                 } else {
  1248                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1251             if (!enumSwitch && !stringSwitch)
  1252                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1254             // Attribute all cases and
  1255             // check that there are no duplicate case labels or default clauses.
  1256             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1257             boolean hasDefault = false;      // Is there a default label?
  1258             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1259                 JCCase c = l.head;
  1260                 Env<AttrContext> caseEnv =
  1261                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1262                 try {
  1263                     if (c.pat != null) {
  1264                         if (enumSwitch) {
  1265                             Symbol sym = enumConstant(c.pat, seltype);
  1266                             if (sym == null) {
  1267                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1268                             } else if (!labels.add(sym)) {
  1269                                 log.error(c.pos(), "duplicate.case.label");
  1271                         } else {
  1272                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1273                             if (!pattype.hasTag(ERROR)) {
  1274                                 if (pattype.constValue() == null) {
  1275                                     log.error(c.pat.pos(),
  1276                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1277                                 } else if (labels.contains(pattype.constValue())) {
  1278                                     log.error(c.pos(), "duplicate.case.label");
  1279                                 } else {
  1280                                     labels.add(pattype.constValue());
  1284                     } else if (hasDefault) {
  1285                         log.error(c.pos(), "duplicate.default.label");
  1286                     } else {
  1287                         hasDefault = true;
  1289                     attribStats(c.stats, caseEnv);
  1290                 } finally {
  1291                     caseEnv.info.scope.leave();
  1292                     addVars(c.stats, switchEnv.info.scope);
  1296             result = null;
  1298         finally {
  1299             switchEnv.info.scope.leave();
  1302     // where
  1303         /** Add any variables defined in stats to the switch scope. */
  1304         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1305             for (;stats.nonEmpty(); stats = stats.tail) {
  1306                 JCTree stat = stats.head;
  1307                 if (stat.hasTag(VARDEF))
  1308                     switchScope.enter(((JCVariableDecl) stat).sym);
  1311     // where
  1312     /** Return the selected enumeration constant symbol, or null. */
  1313     private Symbol enumConstant(JCTree tree, Type enumType) {
  1314         if (!tree.hasTag(IDENT)) {
  1315             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1316             return syms.errSymbol;
  1318         JCIdent ident = (JCIdent)tree;
  1319         Name name = ident.name;
  1320         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1321              e.scope != null; e = e.next()) {
  1322             if (e.sym.kind == VAR) {
  1323                 Symbol s = ident.sym = e.sym;
  1324                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1325                 ident.type = s.type;
  1326                 return ((s.flags_field & Flags.ENUM) == 0)
  1327                     ? null : s;
  1330         return null;
  1333     public void visitSynchronized(JCSynchronized tree) {
  1334         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1335         attribStat(tree.body, env);
  1336         result = null;
  1339     public void visitTry(JCTry tree) {
  1340         // Create a new local environment with a local
  1341         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1342         try {
  1343             boolean isTryWithResource = tree.resources.nonEmpty();
  1344             // Create a nested environment for attributing the try block if needed
  1345             Env<AttrContext> tryEnv = isTryWithResource ?
  1346                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1347                 localEnv;
  1348             try {
  1349                 // Attribute resource declarations
  1350                 for (JCTree resource : tree.resources) {
  1351                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1352                         @Override
  1353                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1354                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1356                     };
  1357                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1358                     if (resource.hasTag(VARDEF)) {
  1359                         attribStat(resource, tryEnv);
  1360                         twrResult.check(resource, resource.type);
  1362                         //check that resource type cannot throw InterruptedException
  1363                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1365                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1366                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1367                     } else {
  1368                         attribTree(resource, tryEnv, twrResult);
  1371                 // Attribute body
  1372                 attribStat(tree.body, tryEnv);
  1373             } finally {
  1374                 if (isTryWithResource)
  1375                     tryEnv.info.scope.leave();
  1378             // Attribute catch clauses
  1379             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1380                 JCCatch c = l.head;
  1381                 Env<AttrContext> catchEnv =
  1382                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1383                 try {
  1384                     Type ctype = attribStat(c.param, catchEnv);
  1385                     if (TreeInfo.isMultiCatch(c)) {
  1386                         //multi-catch parameter is implicitly marked as final
  1387                         c.param.sym.flags_field |= FINAL | UNION;
  1389                     if (c.param.sym.kind == Kinds.VAR) {
  1390                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1392                     chk.checkType(c.param.vartype.pos(),
  1393                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1394                                   syms.throwableType);
  1395                     attribStat(c.body, catchEnv);
  1396                 } finally {
  1397                     catchEnv.info.scope.leave();
  1401             // Attribute finalizer
  1402             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1403             result = null;
  1405         finally {
  1406             localEnv.info.scope.leave();
  1410     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1411         if (!resource.isErroneous() &&
  1412             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1413             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1414             Symbol close = syms.noSymbol;
  1415             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1416             try {
  1417                 close = rs.resolveQualifiedMethod(pos,
  1418                         env,
  1419                         resource,
  1420                         names.close,
  1421                         List.<Type>nil(),
  1422                         List.<Type>nil());
  1424             finally {
  1425                 log.popDiagnosticHandler(discardHandler);
  1427             if (close.kind == MTH &&
  1428                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1429                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1430                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1431                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1436     public void visitConditional(JCConditional tree) {
  1437         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1439         tree.polyKind = (!allowPoly ||
  1440                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1441                 isBooleanOrNumeric(env, tree)) ?
  1442                 PolyKind.STANDALONE : PolyKind.POLY;
  1444         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1445             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1446             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1447             result = tree.type = types.createErrorType(resultInfo.pt);
  1448             return;
  1451         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1452                 unknownExprInfo :
  1453                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1454                     //this will use enclosing check context to check compatibility of
  1455                     //subexpression against target type; if we are in a method check context,
  1456                     //depending on whether boxing is allowed, we could have incompatibilities
  1457                     @Override
  1458                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1459                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1461                 });
  1463         Type truetype = attribTree(tree.truepart, env, condInfo);
  1464         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1466         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1467         if (condtype.constValue() != null &&
  1468                 truetype.constValue() != null &&
  1469                 falsetype.constValue() != null &&
  1470                 !owntype.hasTag(NONE)) {
  1471             //constant folding
  1472             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1474         result = check(tree, owntype, VAL, resultInfo);
  1476     //where
  1477         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1478             switch (tree.getTag()) {
  1479                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1480                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1481                               ((JCLiteral)tree).typetag == BOT;
  1482                 case LAMBDA: case REFERENCE: return false;
  1483                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1484                 case CONDEXPR:
  1485                     JCConditional condTree = (JCConditional)tree;
  1486                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1487                             isBooleanOrNumeric(env, condTree.falsepart);
  1488                 case APPLY:
  1489                     JCMethodInvocation speculativeMethodTree =
  1490                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1491                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1492                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1493                 case NEWCLASS:
  1494                     JCExpression className =
  1495                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1496                     JCExpression speculativeNewClassTree =
  1497                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1498                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1499                 default:
  1500                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1501                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1502                     return speculativeType.isPrimitive();
  1505         //where
  1506             TreeTranslator removeClassParams = new TreeTranslator() {
  1507                 @Override
  1508                 public void visitTypeApply(JCTypeApply tree) {
  1509                     result = translate(tree.clazz);
  1511             };
  1513         /** Compute the type of a conditional expression, after
  1514          *  checking that it exists.  See JLS 15.25. Does not take into
  1515          *  account the special case where condition and both arms
  1516          *  are constants.
  1518          *  @param pos      The source position to be used for error
  1519          *                  diagnostics.
  1520          *  @param thentype The type of the expression's then-part.
  1521          *  @param elsetype The type of the expression's else-part.
  1522          */
  1523         private Type condType(DiagnosticPosition pos,
  1524                                Type thentype, Type elsetype) {
  1525             // If same type, that is the result
  1526             if (types.isSameType(thentype, elsetype))
  1527                 return thentype.baseType();
  1529             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1530                 ? thentype : types.unboxedType(thentype);
  1531             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1532                 ? elsetype : types.unboxedType(elsetype);
  1534             // Otherwise, if both arms can be converted to a numeric
  1535             // type, return the least numeric type that fits both arms
  1536             // (i.e. return larger of the two, or return int if one
  1537             // arm is short, the other is char).
  1538             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1539                 // If one arm has an integer subrange type (i.e., byte,
  1540                 // short, or char), and the other is an integer constant
  1541                 // that fits into the subrange, return the subrange type.
  1542                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1543                     elseUnboxed.hasTag(INT) &&
  1544                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1545                     return thenUnboxed.baseType();
  1547                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1548                     thenUnboxed.hasTag(INT) &&
  1549                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1550                     return elseUnboxed.baseType();
  1553                 for (TypeTag tag : primitiveTags) {
  1554                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1555                     if (types.isSubtype(thenUnboxed, candidate) &&
  1556                         types.isSubtype(elseUnboxed, candidate)) {
  1557                         return candidate;
  1562             // Those were all the cases that could result in a primitive
  1563             if (allowBoxing) {
  1564                 if (thentype.isPrimitive())
  1565                     thentype = types.boxedClass(thentype).type;
  1566                 if (elsetype.isPrimitive())
  1567                     elsetype = types.boxedClass(elsetype).type;
  1570             if (types.isSubtype(thentype, elsetype))
  1571                 return elsetype.baseType();
  1572             if (types.isSubtype(elsetype, thentype))
  1573                 return thentype.baseType();
  1575             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1576                 log.error(pos, "neither.conditional.subtype",
  1577                           thentype, elsetype);
  1578                 return thentype.baseType();
  1581             // both are known to be reference types.  The result is
  1582             // lub(thentype,elsetype). This cannot fail, as it will
  1583             // always be possible to infer "Object" if nothing better.
  1584             return types.lub(thentype.baseType(), elsetype.baseType());
  1587     final static TypeTag[] primitiveTags = new TypeTag[]{
  1588         BYTE,
  1589         CHAR,
  1590         SHORT,
  1591         INT,
  1592         LONG,
  1593         FLOAT,
  1594         DOUBLE,
  1595         BOOLEAN,
  1596     };
  1598     public void visitIf(JCIf tree) {
  1599         attribExpr(tree.cond, env, syms.booleanType);
  1600         attribStat(tree.thenpart, env);
  1601         if (tree.elsepart != null)
  1602             attribStat(tree.elsepart, env);
  1603         chk.checkEmptyIf(tree);
  1604         result = null;
  1607     public void visitExec(JCExpressionStatement tree) {
  1608         //a fresh environment is required for 292 inference to work properly ---
  1609         //see Infer.instantiatePolymorphicSignatureInstance()
  1610         Env<AttrContext> localEnv = env.dup(tree);
  1611         attribExpr(tree.expr, localEnv);
  1612         result = null;
  1615     public void visitBreak(JCBreak tree) {
  1616         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1617         result = null;
  1620     public void visitContinue(JCContinue tree) {
  1621         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1622         result = null;
  1624     //where
  1625         /** Return the target of a break or continue statement, if it exists,
  1626          *  report an error if not.
  1627          *  Note: The target of a labelled break or continue is the
  1628          *  (non-labelled) statement tree referred to by the label,
  1629          *  not the tree representing the labelled statement itself.
  1631          *  @param pos     The position to be used for error diagnostics
  1632          *  @param tag     The tag of the jump statement. This is either
  1633          *                 Tree.BREAK or Tree.CONTINUE.
  1634          *  @param label   The label of the jump statement, or null if no
  1635          *                 label is given.
  1636          *  @param env     The environment current at the jump statement.
  1637          */
  1638         private JCTree findJumpTarget(DiagnosticPosition pos,
  1639                                     JCTree.Tag tag,
  1640                                     Name label,
  1641                                     Env<AttrContext> env) {
  1642             // Search environments outwards from the point of jump.
  1643             Env<AttrContext> env1 = env;
  1644             LOOP:
  1645             while (env1 != null) {
  1646                 switch (env1.tree.getTag()) {
  1647                     case LABELLED:
  1648                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1649                         if (label == labelled.label) {
  1650                             // If jump is a continue, check that target is a loop.
  1651                             if (tag == CONTINUE) {
  1652                                 if (!labelled.body.hasTag(DOLOOP) &&
  1653                                         !labelled.body.hasTag(WHILELOOP) &&
  1654                                         !labelled.body.hasTag(FORLOOP) &&
  1655                                         !labelled.body.hasTag(FOREACHLOOP))
  1656                                     log.error(pos, "not.loop.label", label);
  1657                                 // Found labelled statement target, now go inwards
  1658                                 // to next non-labelled tree.
  1659                                 return TreeInfo.referencedStatement(labelled);
  1660                             } else {
  1661                                 return labelled;
  1664                         break;
  1665                     case DOLOOP:
  1666                     case WHILELOOP:
  1667                     case FORLOOP:
  1668                     case FOREACHLOOP:
  1669                         if (label == null) return env1.tree;
  1670                         break;
  1671                     case SWITCH:
  1672                         if (label == null && tag == BREAK) return env1.tree;
  1673                         break;
  1674                     case LAMBDA:
  1675                     case METHODDEF:
  1676                     case CLASSDEF:
  1677                         break LOOP;
  1678                     default:
  1680                 env1 = env1.next;
  1682             if (label != null)
  1683                 log.error(pos, "undef.label", label);
  1684             else if (tag == CONTINUE)
  1685                 log.error(pos, "cont.outside.loop");
  1686             else
  1687                 log.error(pos, "break.outside.switch.loop");
  1688             return null;
  1691     public void visitReturn(JCReturn tree) {
  1692         // Check that there is an enclosing method which is
  1693         // nested within than the enclosing class.
  1694         if (env.info.returnResult == null) {
  1695             log.error(tree.pos(), "ret.outside.meth");
  1696         } else {
  1697             // Attribute return expression, if it exists, and check that
  1698             // it conforms to result type of enclosing method.
  1699             if (tree.expr != null) {
  1700                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1701                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1702                               diags.fragment("unexpected.ret.val"));
  1704                 attribTree(tree.expr, env, env.info.returnResult);
  1705             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1706                     !env.info.returnResult.pt.hasTag(NONE)) {
  1707                 env.info.returnResult.checkContext.report(tree.pos(),
  1708                               diags.fragment("missing.ret.val"));
  1711         result = null;
  1714     public void visitThrow(JCThrow tree) {
  1715         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1716         if (allowPoly) {
  1717             chk.checkType(tree, owntype, syms.throwableType);
  1719         result = null;
  1722     public void visitAssert(JCAssert tree) {
  1723         attribExpr(tree.cond, env, syms.booleanType);
  1724         if (tree.detail != null) {
  1725             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1727         result = null;
  1730      /** Visitor method for method invocations.
  1731      *  NOTE: The method part of an application will have in its type field
  1732      *        the return type of the method, not the method's type itself!
  1733      */
  1734     public void visitApply(JCMethodInvocation tree) {
  1735         // The local environment of a method application is
  1736         // a new environment nested in the current one.
  1737         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1739         // The types of the actual method arguments.
  1740         List<Type> argtypes;
  1742         // The types of the actual method type arguments.
  1743         List<Type> typeargtypes = null;
  1745         Name methName = TreeInfo.name(tree.meth);
  1747         boolean isConstructorCall =
  1748             methName == names._this || methName == names._super;
  1750         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1751         if (isConstructorCall) {
  1752             // We are seeing a ...this(...) or ...super(...) call.
  1753             // Check that this is the first statement in a constructor.
  1754             if (checkFirstConstructorStat(tree, env)) {
  1756                 // Record the fact
  1757                 // that this is a constructor call (using isSelfCall).
  1758                 localEnv.info.isSelfCall = true;
  1760                 // Attribute arguments, yielding list of argument types.
  1761                 attribArgs(tree.args, localEnv, argtypesBuf);
  1762                 argtypes = argtypesBuf.toList();
  1763                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1765                 // Variable `site' points to the class in which the called
  1766                 // constructor is defined.
  1767                 Type site = env.enclClass.sym.type;
  1768                 if (methName == names._super) {
  1769                     if (site == syms.objectType) {
  1770                         log.error(tree.meth.pos(), "no.superclass", site);
  1771                         site = types.createErrorType(syms.objectType);
  1772                     } else {
  1773                         site = types.supertype(site);
  1777                 if (site.hasTag(CLASS)) {
  1778                     Type encl = site.getEnclosingType();
  1779                     while (encl != null && encl.hasTag(TYPEVAR))
  1780                         encl = encl.getUpperBound();
  1781                     if (encl.hasTag(CLASS)) {
  1782                         // we are calling a nested class
  1784                         if (tree.meth.hasTag(SELECT)) {
  1785                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1787                             // We are seeing a prefixed call, of the form
  1788                             //     <expr>.super(...).
  1789                             // Check that the prefix expression conforms
  1790                             // to the outer instance type of the class.
  1791                             chk.checkRefType(qualifier.pos(),
  1792                                              attribExpr(qualifier, localEnv,
  1793                                                         encl));
  1794                         } else if (methName == names._super) {
  1795                             // qualifier omitted; check for existence
  1796                             // of an appropriate implicit qualifier.
  1797                             rs.resolveImplicitThis(tree.meth.pos(),
  1798                                                    localEnv, site, true);
  1800                     } else if (tree.meth.hasTag(SELECT)) {
  1801                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1802                                   site.tsym);
  1805                     // if we're calling a java.lang.Enum constructor,
  1806                     // prefix the implicit String and int parameters
  1807                     if (site.tsym == syms.enumSym && allowEnums)
  1808                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1810                     // Resolve the called constructor under the assumption
  1811                     // that we are referring to a superclass instance of the
  1812                     // current instance (JLS ???).
  1813                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1814                     localEnv.info.selectSuper = true;
  1815                     localEnv.info.pendingResolutionPhase = null;
  1816                     Symbol sym = rs.resolveConstructor(
  1817                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1818                     localEnv.info.selectSuper = selectSuperPrev;
  1820                     // Set method symbol to resolved constructor...
  1821                     TreeInfo.setSymbol(tree.meth, sym);
  1823                     // ...and check that it is legal in the current context.
  1824                     // (this will also set the tree's type)
  1825                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1826                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1828                 // Otherwise, `site' is an error type and we do nothing
  1830             result = tree.type = syms.voidType;
  1831         } else {
  1832             // Otherwise, we are seeing a regular method call.
  1833             // Attribute the arguments, yielding list of argument types, ...
  1834             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
  1835             argtypes = argtypesBuf.toList();
  1836             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1838             // ... and attribute the method using as a prototype a methodtype
  1839             // whose formal argument types is exactly the list of actual
  1840             // arguments (this will also set the method symbol).
  1841             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1842             localEnv.info.pendingResolutionPhase = null;
  1843             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1845             // Compute the result type.
  1846             Type restype = mtype.getReturnType();
  1847             if (restype.hasTag(WILDCARD))
  1848                 throw new AssertionError(mtype);
  1850             Type qualifier = (tree.meth.hasTag(SELECT))
  1851                     ? ((JCFieldAccess) tree.meth).selected.type
  1852                     : env.enclClass.sym.type;
  1853             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1855             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1857             // Check that value of resulting type is admissible in the
  1858             // current context.  Also, capture the return type
  1859             result = check(tree, capture(restype), VAL, resultInfo);
  1861         chk.validate(tree.typeargs, localEnv);
  1863     //where
  1864         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1865             if (allowCovariantReturns &&
  1866                     methodName == names.clone &&
  1867                 types.isArray(qualifierType)) {
  1868                 // as a special case, array.clone() has a result that is
  1869                 // the same as static type of the array being cloned
  1870                 return qualifierType;
  1871             } else if (allowGenerics &&
  1872                     methodName == names.getClass &&
  1873                     argtypes.isEmpty()) {
  1874                 // as a special case, x.getClass() has type Class<? extends |X|>
  1875                 return new ClassType(restype.getEnclosingType(),
  1876                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1877                                                                BoundKind.EXTENDS,
  1878                                                                syms.boundClass)),
  1879                               restype.tsym);
  1880             } else {
  1881                 return restype;
  1885         /** Check that given application node appears as first statement
  1886          *  in a constructor call.
  1887          *  @param tree   The application node
  1888          *  @param env    The environment current at the application.
  1889          */
  1890         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1891             JCMethodDecl enclMethod = env.enclMethod;
  1892             if (enclMethod != null && enclMethod.name == names.init) {
  1893                 JCBlock body = enclMethod.body;
  1894                 if (body.stats.head.hasTag(EXEC) &&
  1895                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1896                     return true;
  1898             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1899                       TreeInfo.name(tree.meth));
  1900             return false;
  1903         /** Obtain a method type with given argument types.
  1904          */
  1905         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1906             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1907             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1910     public void visitNewClass(final JCNewClass tree) {
  1911         Type owntype = types.createErrorType(tree.type);
  1913         // The local environment of a class creation is
  1914         // a new environment nested in the current one.
  1915         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1917         // The anonymous inner class definition of the new expression,
  1918         // if one is defined by it.
  1919         JCClassDecl cdef = tree.def;
  1921         // If enclosing class is given, attribute it, and
  1922         // complete class name to be fully qualified
  1923         JCExpression clazz = tree.clazz; // Class field following new
  1924         JCExpression clazzid;            // Identifier in class field
  1925         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1926         annoclazzid = null;
  1928         if (clazz.hasTag(TYPEAPPLY)) {
  1929             clazzid = ((JCTypeApply) clazz).clazz;
  1930             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1931                 annoclazzid = (JCAnnotatedType) clazzid;
  1932                 clazzid = annoclazzid.underlyingType;
  1934         } else {
  1935             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1936                 annoclazzid = (JCAnnotatedType) clazz;
  1937                 clazzid = annoclazzid.underlyingType;
  1938             } else {
  1939                 clazzid = clazz;
  1943         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1945         if (tree.encl != null) {
  1946             // We are seeing a qualified new, of the form
  1947             //    <expr>.new C <...> (...) ...
  1948             // In this case, we let clazz stand for the name of the
  1949             // allocated class C prefixed with the type of the qualifier
  1950             // expression, so that we can
  1951             // resolve it with standard techniques later. I.e., if
  1952             // <expr> has type T, then <expr>.new C <...> (...)
  1953             // yields a clazz T.C.
  1954             Type encltype = chk.checkRefType(tree.encl.pos(),
  1955                                              attribExpr(tree.encl, env));
  1956             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1957             // from expr to the combined type, or not? Yes, do this.
  1958             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1959                                                  ((JCIdent) clazzid).name);
  1961             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1962             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1963             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1964                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1965                 List<JCAnnotation> annos = annoType.annotations;
  1967                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1968                     clazzid1 = make.at(tree.pos).
  1969                         TypeApply(clazzid1,
  1970                                   ((JCTypeApply) clazz).arguments);
  1973                 clazzid1 = make.at(tree.pos).
  1974                     AnnotatedType(annos, clazzid1);
  1975             } else if (clazz.hasTag(TYPEAPPLY)) {
  1976                 clazzid1 = make.at(tree.pos).
  1977                     TypeApply(clazzid1,
  1978                               ((JCTypeApply) clazz).arguments);
  1981             clazz = clazzid1;
  1984         // Attribute clazz expression and store
  1985         // symbol + type back into the attributed tree.
  1986         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1987             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1988             attribType(clazz, env);
  1990         clazztype = chk.checkDiamond(tree, clazztype);
  1991         chk.validate(clazz, localEnv);
  1992         if (tree.encl != null) {
  1993             // We have to work in this case to store
  1994             // symbol + type back into the attributed tree.
  1995             tree.clazz.type = clazztype;
  1996             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1997             clazzid.type = ((JCIdent) clazzid).sym.type;
  1998             if (annoclazzid != null) {
  1999                 annoclazzid.type = clazzid.type;
  2001             if (!clazztype.isErroneous()) {
  2002                 if (cdef != null && clazztype.tsym.isInterface()) {
  2003                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  2004                 } else if (clazztype.tsym.isStatic()) {
  2005                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  2008         } else if (!clazztype.tsym.isInterface() &&
  2009                    clazztype.getEnclosingType().hasTag(CLASS)) {
  2010             // Check for the existence of an apropos outer instance
  2011             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  2014         // Attribute constructor arguments.
  2015         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  2016         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
  2017         List<Type> argtypes = argtypesBuf.toList();
  2018         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  2020         // If we have made no mistakes in the class type...
  2021         if (clazztype.hasTag(CLASS)) {
  2022             // Enums may not be instantiated except implicitly
  2023             if (allowEnums &&
  2024                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2025                 (!env.tree.hasTag(VARDEF) ||
  2026                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2027                  ((JCVariableDecl) env.tree).init != tree))
  2028                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2029             // Check that class is not abstract
  2030             if (cdef == null &&
  2031                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2032                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2033                           clazztype.tsym);
  2034             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2035                 // Check that no constructor arguments are given to
  2036                 // anonymous classes implementing an interface
  2037                 if (!argtypes.isEmpty())
  2038                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2040                 if (!typeargtypes.isEmpty())
  2041                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2043                 // Error recovery: pretend no arguments were supplied.
  2044                 argtypes = List.nil();
  2045                 typeargtypes = List.nil();
  2046             } else if (TreeInfo.isDiamond(tree)) {
  2047                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2048                             clazztype.tsym.type.getTypeArguments(),
  2049                             clazztype.tsym);
  2051                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2052                 diamondEnv.info.selectSuper = cdef != null;
  2053                 diamondEnv.info.pendingResolutionPhase = null;
  2055                 //if the type of the instance creation expression is a class type
  2056                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2057                 //of the resolved constructor will be a partially instantiated type
  2058                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2059                             diamondEnv,
  2060                             site,
  2061                             argtypes,
  2062                             typeargtypes);
  2063                 tree.constructor = constructor.baseSymbol();
  2065                 final TypeSymbol csym = clazztype.tsym;
  2066                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2067                     @Override
  2068                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2069                         enclosingContext.report(tree.clazz,
  2070                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2072                 });
  2073                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2074                 constructorType = checkId(tree, site,
  2075                         constructor,
  2076                         diamondEnv,
  2077                         diamondResult);
  2079                 tree.clazz.type = types.createErrorType(clazztype);
  2080                 if (!constructorType.isErroneous()) {
  2081                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2082                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2084                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2087             // Resolve the called constructor under the assumption
  2088             // that we are referring to a superclass instance of the
  2089             // current instance (JLS ???).
  2090             else {
  2091                 //the following code alters some of the fields in the current
  2092                 //AttrContext - hence, the current context must be dup'ed in
  2093                 //order to avoid downstream failures
  2094                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2095                 rsEnv.info.selectSuper = cdef != null;
  2096                 rsEnv.info.pendingResolutionPhase = null;
  2097                 tree.constructor = rs.resolveConstructor(
  2098                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2099                 if (cdef == null) { //do not check twice!
  2100                     tree.constructorType = checkId(tree,
  2101                             clazztype,
  2102                             tree.constructor,
  2103                             rsEnv,
  2104                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2105                     if (rsEnv.info.lastResolveVarargs())
  2106                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2108                 if (cdef == null &&
  2109                         !clazztype.isErroneous() &&
  2110                         clazztype.getTypeArguments().nonEmpty() &&
  2111                         findDiamonds) {
  2112                     findDiamond(localEnv, tree, clazztype);
  2116             if (cdef != null) {
  2117                 // We are seeing an anonymous class instance creation.
  2118                 // In this case, the class instance creation
  2119                 // expression
  2120                 //
  2121                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2122                 //
  2123                 // is represented internally as
  2124                 //
  2125                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2126                 //
  2127                 // This expression is then *transformed* as follows:
  2128                 //
  2129                 // (1) add a STATIC flag to the class definition
  2130                 //     if the current environment is static
  2131                 // (2) add an extends or implements clause
  2132                 // (3) add a constructor.
  2133                 //
  2134                 // For instance, if C is a class, and ET is the type of E,
  2135                 // the expression
  2136                 //
  2137                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2138                 //
  2139                 // is translated to (where X is a fresh name and typarams is the
  2140                 // parameter list of the super constructor):
  2141                 //
  2142                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2143                 //     X extends C<typargs2> {
  2144                 //       <typarams> X(ET e, args) {
  2145                 //         e.<typeargs1>super(args)
  2146                 //       }
  2147                 //       ...
  2148                 //     }
  2149                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2151                 if (clazztype.tsym.isInterface()) {
  2152                     cdef.implementing = List.of(clazz);
  2153                 } else {
  2154                     cdef.extending = clazz;
  2157                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2158                     isSerializable(clazztype)) {
  2159                     localEnv.info.isSerializable = true;
  2162                 attribStat(cdef, localEnv);
  2164                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2166                 // If an outer instance is given,
  2167                 // prefix it to the constructor arguments
  2168                 // and delete it from the new expression
  2169                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2170                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2171                     argtypes = argtypes.prepend(tree.encl.type);
  2172                     tree.encl = null;
  2175                 // Reassign clazztype and recompute constructor.
  2176                 clazztype = cdef.sym.type;
  2177                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2178                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2179                 Assert.check(sym.kind < AMBIGUOUS);
  2180                 tree.constructor = sym;
  2181                 tree.constructorType = checkId(tree,
  2182                     clazztype,
  2183                     tree.constructor,
  2184                     localEnv,
  2185                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2188             if (tree.constructor != null && tree.constructor.kind == MTH)
  2189                 owntype = clazztype;
  2191         result = check(tree, owntype, VAL, resultInfo);
  2192         chk.validate(tree.typeargs, localEnv);
  2194     //where
  2195         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2196             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2197             List<JCExpression> prevTypeargs = ta.arguments;
  2198             try {
  2199                 //create a 'fake' diamond AST node by removing type-argument trees
  2200                 ta.arguments = List.nil();
  2201                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2202                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2203                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2204                 Type polyPt = allowPoly ?
  2205                         syms.objectType :
  2206                         clazztype;
  2207                 if (!inferred.isErroneous() &&
  2208                     (allowPoly && pt() == Infer.anyPoly ?
  2209                         types.isSameType(inferred, clazztype) :
  2210                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2211                     String key = types.isSameType(clazztype, inferred) ?
  2212                         "diamond.redundant.args" :
  2213                         "diamond.redundant.args.1";
  2214                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2216             } finally {
  2217                 ta.arguments = prevTypeargs;
  2221             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2222                 if (allowLambda &&
  2223                         identifyLambdaCandidate &&
  2224                         clazztype.hasTag(CLASS) &&
  2225                         !pt().hasTag(NONE) &&
  2226                         types.isFunctionalInterface(clazztype.tsym)) {
  2227                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2228                     int count = 0;
  2229                     boolean found = false;
  2230                     for (Symbol sym : csym.members().getElements()) {
  2231                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2232                                 sym.isConstructor()) continue;
  2233                         count++;
  2234                         if (sym.kind != MTH ||
  2235                                 !sym.name.equals(descriptor.name)) continue;
  2236                         Type mtype = types.memberType(clazztype, sym);
  2237                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2238                             found = true;
  2241                     if (found && count == 1) {
  2242                         log.note(tree.def, "potential.lambda.found");
  2247     /** Make an attributed null check tree.
  2248      */
  2249     public JCExpression makeNullCheck(JCExpression arg) {
  2250         // optimization: X.this is never null; skip null check
  2251         Name name = TreeInfo.name(arg);
  2252         if (name == names._this || name == names._super) return arg;
  2254         JCTree.Tag optag = NULLCHK;
  2255         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2256         tree.operator = syms.nullcheck;
  2257         tree.type = arg.type;
  2258         return tree;
  2261     public void visitNewArray(JCNewArray tree) {
  2262         Type owntype = types.createErrorType(tree.type);
  2263         Env<AttrContext> localEnv = env.dup(tree);
  2264         Type elemtype;
  2265         if (tree.elemtype != null) {
  2266             elemtype = attribType(tree.elemtype, localEnv);
  2267             chk.validate(tree.elemtype, localEnv);
  2268             owntype = elemtype;
  2269             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2270                 attribExpr(l.head, localEnv, syms.intType);
  2271                 owntype = new ArrayType(owntype, syms.arrayClass);
  2273         } else {
  2274             // we are seeing an untyped aggregate { ... }
  2275             // this is allowed only if the prototype is an array
  2276             if (pt().hasTag(ARRAY)) {
  2277                 elemtype = types.elemtype(pt());
  2278             } else {
  2279                 if (!pt().hasTag(ERROR)) {
  2280                     log.error(tree.pos(), "illegal.initializer.for.type",
  2281                               pt());
  2283                 elemtype = types.createErrorType(pt());
  2286         if (tree.elems != null) {
  2287             attribExprs(tree.elems, localEnv, elemtype);
  2288             owntype = new ArrayType(elemtype, syms.arrayClass);
  2290         if (!types.isReifiable(elemtype))
  2291             log.error(tree.pos(), "generic.array.creation");
  2292         result = check(tree, owntype, VAL, resultInfo);
  2295     /*
  2296      * A lambda expression can only be attributed when a target-type is available.
  2297      * In addition, if the target-type is that of a functional interface whose
  2298      * descriptor contains inference variables in argument position the lambda expression
  2299      * is 'stuck' (see DeferredAttr).
  2300      */
  2301     @Override
  2302     public void visitLambda(final JCLambda that) {
  2303         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2304             if (pt().hasTag(NONE)) {
  2305                 //lambda only allowed in assignment or method invocation/cast context
  2306                 log.error(that.pos(), "unexpected.lambda");
  2308             result = that.type = types.createErrorType(pt());
  2309             return;
  2311         //create an environment for attribution of the lambda expression
  2312         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2313         boolean needsRecovery =
  2314                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2315         try {
  2316             Type currentTarget = pt();
  2317             if (needsRecovery && isSerializable(currentTarget)) {
  2318                 localEnv.info.isSerializable = true;
  2320             List<Type> explicitParamTypes = null;
  2321             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2322                 //attribute lambda parameters
  2323                 attribStats(that.params, localEnv);
  2324                 explicitParamTypes = TreeInfo.types(that.params);
  2327             Type lambdaType;
  2328             if (pt() != Type.recoveryType) {
  2329                 /* We need to adjust the target. If the target is an
  2330                  * intersection type, for example: SAM & I1 & I2 ...
  2331                  * the target will be updated to SAM
  2332                  */
  2333                 currentTarget = targetChecker.visit(currentTarget, that);
  2334                 if (explicitParamTypes != null) {
  2335                     currentTarget = infer.instantiateFunctionalInterface(that,
  2336                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2338                 lambdaType = types.findDescriptorType(currentTarget);
  2339             } else {
  2340                 currentTarget = Type.recoveryType;
  2341                 lambdaType = fallbackDescriptorType(that);
  2344             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2346             if (lambdaType.hasTag(FORALL)) {
  2347                 //lambda expression target desc cannot be a generic method
  2348                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2349                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2350                 result = that.type = types.createErrorType(pt());
  2351                 return;
  2354             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2355                 //add param type info in the AST
  2356                 List<Type> actuals = lambdaType.getParameterTypes();
  2357                 List<JCVariableDecl> params = that.params;
  2359                 boolean arityMismatch = false;
  2361                 while (params.nonEmpty()) {
  2362                     if (actuals.isEmpty()) {
  2363                         //not enough actuals to perform lambda parameter inference
  2364                         arityMismatch = true;
  2366                     //reset previously set info
  2367                     Type argType = arityMismatch ?
  2368                             syms.errType :
  2369                             actuals.head;
  2370                     params.head.vartype = make.at(params.head).Type(argType);
  2371                     params.head.sym = null;
  2372                     actuals = actuals.isEmpty() ?
  2373                             actuals :
  2374                             actuals.tail;
  2375                     params = params.tail;
  2378                 //attribute lambda parameters
  2379                 attribStats(that.params, localEnv);
  2381                 if (arityMismatch) {
  2382                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2383                         result = that.type = types.createErrorType(currentTarget);
  2384                         return;
  2388             //from this point on, no recovery is needed; if we are in assignment context
  2389             //we will be able to attribute the whole lambda body, regardless of errors;
  2390             //if we are in a 'check' method context, and the lambda is not compatible
  2391             //with the target-type, it will be recovered anyway in Attr.checkId
  2392             needsRecovery = false;
  2394             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2395                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2396                     new FunctionalReturnContext(resultInfo.checkContext);
  2398             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2399                 recoveryInfo :
  2400                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2401             localEnv.info.returnResult = bodyResultInfo;
  2403             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2404                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2405             } else {
  2406                 JCBlock body = (JCBlock)that.body;
  2407                 attribStats(body.stats, localEnv);
  2410             result = check(that, currentTarget, VAL, resultInfo);
  2412             boolean isSpeculativeRound =
  2413                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2415             preFlow(that);
  2416             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2418             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2420             if (!isSpeculativeRound) {
  2421                 //add thrown types as bounds to the thrown types free variables if needed:
  2422                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2423                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2424                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
  2426                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2429                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2431             result = check(that, currentTarget, VAL, resultInfo);
  2432         } catch (Types.FunctionDescriptorLookupError ex) {
  2433             JCDiagnostic cause = ex.getDiagnostic();
  2434             resultInfo.checkContext.report(that, cause);
  2435             result = that.type = types.createErrorType(pt());
  2436             return;
  2437         } finally {
  2438             localEnv.info.scope.leave();
  2439             if (needsRecovery) {
  2440                 attribTree(that, env, recoveryInfo);
  2444     //where
  2445         void preFlow(JCLambda tree) {
  2446             new PostAttrAnalyzer() {
  2447                 @Override
  2448                 public void scan(JCTree tree) {
  2449                     if (tree == null ||
  2450                             (tree.type != null &&
  2451                             tree.type == Type.stuckType)) {
  2452                         //don't touch stuck expressions!
  2453                         return;
  2455                     super.scan(tree);
  2457             }.scan(tree);
  2460         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2462             @Override
  2463             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2464                 return t.isCompound() ?
  2465                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2468             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2469                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2470                 Type target = null;
  2471                 for (Type bound : ict.getExplicitComponents()) {
  2472                     TypeSymbol boundSym = bound.tsym;
  2473                     if (types.isFunctionalInterface(boundSym) &&
  2474                             types.findDescriptorSymbol(boundSym) == desc) {
  2475                         target = bound;
  2476                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2477                         //bound must be an interface
  2478                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2481                 return target != null ?
  2482                         target :
  2483                         ict.getExplicitComponents().head; //error recovery
  2486             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2487                 ListBuffer<Type> targs = new ListBuffer<>();
  2488                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2489                 for (Type i : ict.interfaces_field) {
  2490                     if (i.isParameterized()) {
  2491                         targs.appendList(i.tsym.type.allparams());
  2493                     supertypes.append(i.tsym.type);
  2495                 IntersectionClassType notionalIntf =
  2496                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2497                 notionalIntf.allparams_field = targs.toList();
  2498                 notionalIntf.tsym.flags_field |= INTERFACE;
  2499                 return notionalIntf.tsym;
  2502             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2503                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2504                         diags.fragment(key, args)));
  2506         };
  2508         private Type fallbackDescriptorType(JCExpression tree) {
  2509             switch (tree.getTag()) {
  2510                 case LAMBDA:
  2511                     JCLambda lambda = (JCLambda)tree;
  2512                     List<Type> argtypes = List.nil();
  2513                     for (JCVariableDecl param : lambda.params) {
  2514                         argtypes = param.vartype != null ?
  2515                                 argtypes.append(param.vartype.type) :
  2516                                 argtypes.append(syms.errType);
  2518                     return new MethodType(argtypes, Type.recoveryType,
  2519                             List.of(syms.throwableType), syms.methodClass);
  2520                 case REFERENCE:
  2521                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2522                             List.of(syms.throwableType), syms.methodClass);
  2523                 default:
  2524                     Assert.error("Cannot get here!");
  2526             return null;
  2529         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2530                 final InferenceContext inferenceContext, final Type... ts) {
  2531             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2534         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2535                 final InferenceContext inferenceContext, final List<Type> ts) {
  2536             if (inferenceContext.free(ts)) {
  2537                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2538                     @Override
  2539                     public void typesInferred(InferenceContext inferenceContext) {
  2540                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2542                 });
  2543             } else {
  2544                 for (Type t : ts) {
  2545                     rs.checkAccessibleType(env, t);
  2550         /**
  2551          * Lambda/method reference have a special check context that ensures
  2552          * that i.e. a lambda return type is compatible with the expected
  2553          * type according to both the inherited context and the assignment
  2554          * context.
  2555          */
  2556         class FunctionalReturnContext extends Check.NestedCheckContext {
  2558             FunctionalReturnContext(CheckContext enclosingContext) {
  2559                 super(enclosingContext);
  2562             @Override
  2563             public boolean compatible(Type found, Type req, Warner warn) {
  2564                 //return type must be compatible in both current context and assignment context
  2565                 return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
  2568             @Override
  2569             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2570                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2574         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2576             JCExpression expr;
  2578             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2579                 super(enclosingContext);
  2580                 this.expr = expr;
  2583             @Override
  2584             public boolean compatible(Type found, Type req, Warner warn) {
  2585                 //a void return is compatible with an expression statement lambda
  2586                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2587                         super.compatible(found, req, warn);
  2591         /**
  2592         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2593         * are compatible with the expected functional interface descriptor. This means that:
  2594         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2595         * types must be compatible with the return type of the expected descriptor.
  2596         */
  2597         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2598             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2600             //return values have already been checked - but if lambda has no return
  2601             //values, we must ensure that void/value compatibility is correct;
  2602             //this amounts at checking that, if a lambda body can complete normally,
  2603             //the descriptor's return type must be void
  2604             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2605                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2606                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2607                         diags.fragment("missing.ret.val", returnType)));
  2610             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
  2611             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2612                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2616         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
  2617          * static field and that lambda has type annotations, these annotations will
  2618          * also be stored at these fake clinit methods.
  2620          * LambdaToMethod also use fake clinit methods so they can be reused.
  2621          * Also as LTM is a phase subsequent to attribution, the methods from
  2622          * clinits can be safely removed by LTM to save memory.
  2623          */
  2624         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
  2626         public MethodSymbol removeClinit(ClassSymbol sym) {
  2627             return clinits.remove(sym);
  2630         /* This method returns an environment to be used to attribute a lambda
  2631          * expression.
  2633          * The owner of this environment is a method symbol. If the current owner
  2634          * is not a method, for example if the lambda is used to initialize
  2635          * a field, then if the field is:
  2637          * - an instance field, we use the first constructor.
  2638          * - a static field, we create a fake clinit method.
  2639          */
  2640         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2641             Env<AttrContext> lambdaEnv;
  2642             Symbol owner = env.info.scope.owner;
  2643             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2644                 //field initializer
  2645                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2646                 ClassSymbol enclClass = owner.enclClass();
  2647                 /* if the field isn't static, then we can get the first constructor
  2648                  * and use it as the owner of the environment. This is what
  2649                  * LTM code is doing to look for type annotations so we are fine.
  2650                  */
  2651                 if ((owner.flags() & STATIC) == 0) {
  2652                     for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
  2653                         lambdaEnv.info.scope.owner = s;
  2654                         break;
  2656                 } else {
  2657                     /* if the field is static then we need to create a fake clinit
  2658                      * method, this method can later be reused by LTM.
  2659                      */
  2660                     MethodSymbol clinit = clinits.get(enclClass);
  2661                     if (clinit == null) {
  2662                         Type clinitType = new MethodType(List.<Type>nil(),
  2663                                 syms.voidType, List.<Type>nil(), syms.methodClass);
  2664                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
  2665                                 names.clinit, clinitType, enclClass);
  2666                         clinit.params = List.<VarSymbol>nil();
  2667                         clinits.put(enclClass, clinit);
  2669                     lambdaEnv.info.scope.owner = clinit;
  2671             } else {
  2672                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2674             return lambdaEnv;
  2677     @Override
  2678     public void visitReference(final JCMemberReference that) {
  2679         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2680             if (pt().hasTag(NONE)) {
  2681                 //method reference only allowed in assignment or method invocation/cast context
  2682                 log.error(that.pos(), "unexpected.mref");
  2684             result = that.type = types.createErrorType(pt());
  2685             return;
  2687         final Env<AttrContext> localEnv = env.dup(that);
  2688         try {
  2689             //attribute member reference qualifier - if this is a constructor
  2690             //reference, the expected kind must be a type
  2691             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2693             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2694                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2695                 if (!exprType.isErroneous() &&
  2696                     exprType.isRaw() &&
  2697                     that.typeargs != null) {
  2698                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2699                         diags.fragment("mref.infer.and.explicit.params"));
  2700                     exprType = types.createErrorType(exprType);
  2704             if (exprType.isErroneous()) {
  2705                 //if the qualifier expression contains problems,
  2706                 //give up attribution of method reference
  2707                 result = that.type = exprType;
  2708                 return;
  2711             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2712                 //if the qualifier is a type, validate it; raw warning check is
  2713                 //omitted as we don't know at this stage as to whether this is a
  2714                 //raw selector (because of inference)
  2715                 chk.validate(that.expr, env, false);
  2718             //attrib type-arguments
  2719             List<Type> typeargtypes = List.nil();
  2720             if (that.typeargs != null) {
  2721                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2724             Type desc;
  2725             Type currentTarget = pt();
  2726             boolean isTargetSerializable =
  2727                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2728                     isSerializable(currentTarget);
  2729             if (currentTarget != Type.recoveryType) {
  2730                 currentTarget = targetChecker.visit(currentTarget, that);
  2731                 desc = types.findDescriptorType(currentTarget);
  2732             } else {
  2733                 currentTarget = Type.recoveryType;
  2734                 desc = fallbackDescriptorType(that);
  2737             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
  2738             List<Type> argtypes = desc.getParameterTypes();
  2739             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2741             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2742                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2745             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2746             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2747             try {
  2748                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
  2749                         that.name, argtypes, typeargtypes, referenceCheck,
  2750                         resultInfo.checkContext.inferenceContext(),
  2751                         resultInfo.checkContext.deferredAttrContext().mode);
  2752             } finally {
  2753                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2756             Symbol refSym = refResult.fst;
  2757             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2759             if (refSym.kind != MTH) {
  2760                 boolean targetError;
  2761                 switch (refSym.kind) {
  2762                     case ABSENT_MTH:
  2763                         targetError = false;
  2764                         break;
  2765                     case WRONG_MTH:
  2766                     case WRONG_MTHS:
  2767                     case AMBIGUOUS:
  2768                     case HIDDEN:
  2769                     case STATICERR:
  2770                     case MISSING_ENCL:
  2771                     case WRONG_STATICNESS:
  2772                         targetError = true;
  2773                         break;
  2774                     default:
  2775                         Assert.error("unexpected result kind " + refSym.kind);
  2776                         targetError = false;
  2779                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2780                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2782                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2783                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2785                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2786                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2788                 if (targetError && currentTarget == Type.recoveryType) {
  2789                     //a target error doesn't make sense during recovery stage
  2790                     //as we don't know what actual parameter types are
  2791                     result = that.type = currentTarget;
  2792                     return;
  2793                 } else {
  2794                     if (targetError) {
  2795                         resultInfo.checkContext.report(that, diag);
  2796                     } else {
  2797                         log.report(diag);
  2799                     result = that.type = types.createErrorType(currentTarget);
  2800                     return;
  2804             that.sym = refSym.baseSymbol();
  2805             that.kind = lookupHelper.referenceKind(that.sym);
  2806             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2808             if (desc.getReturnType() == Type.recoveryType) {
  2809                 // stop here
  2810                 result = that.type = currentTarget;
  2811                 return;
  2814             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2816                 if (that.getMode() == ReferenceMode.INVOKE &&
  2817                         TreeInfo.isStaticSelector(that.expr, names) &&
  2818                         that.kind.isUnbound() &&
  2819                         !desc.getParameterTypes().head.isParameterized()) {
  2820                     chk.checkRaw(that.expr, localEnv);
  2823                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2824                         exprType.getTypeArguments().nonEmpty()) {
  2825                     //static ref with class type-args
  2826                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2827                             diags.fragment("static.mref.with.targs"));
  2828                     result = that.type = types.createErrorType(currentTarget);
  2829                     return;
  2832                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2833                         !that.kind.isUnbound()) {
  2834                     //no static bound mrefs
  2835                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2836                             diags.fragment("static.bound.mref"));
  2837                     result = that.type = types.createErrorType(currentTarget);
  2838                     return;
  2841                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2842                     // Check that super-qualified symbols are not abstract (JLS)
  2843                     rs.checkNonAbstract(that.pos(), that.sym);
  2846                 if (isTargetSerializable) {
  2847                     chk.checkElemAccessFromSerializableLambda(that);
  2851             ResultInfo checkInfo =
  2852                     resultInfo.dup(newMethodTemplate(
  2853                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2854                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
  2855                         new FunctionalReturnContext(resultInfo.checkContext));
  2857             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2859             if (that.kind.isUnbound() &&
  2860                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2861                 //re-generate inference constraints for unbound receiver
  2862                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
  2863                     //cannot happen as this has already been checked - we just need
  2864                     //to regenerate the inference constraints, as that has been lost
  2865                     //as a result of the call to inferenceContext.save()
  2866                     Assert.error("Can't get here");
  2870             if (!refType.isErroneous()) {
  2871                 refType = types.createMethodTypeWithReturn(refType,
  2872                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2875             //go ahead with standard method reference compatibility check - note that param check
  2876             //is a no-op (as this has been taken care during method applicability)
  2877             boolean isSpeculativeRound =
  2878                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2879             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2880             if (!isSpeculativeRound) {
  2881                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
  2883             result = check(that, currentTarget, VAL, resultInfo);
  2884         } catch (Types.FunctionDescriptorLookupError ex) {
  2885             JCDiagnostic cause = ex.getDiagnostic();
  2886             resultInfo.checkContext.report(that, cause);
  2887             result = that.type = types.createErrorType(pt());
  2888             return;
  2891     //where
  2892         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2893             //if this is a constructor reference, the expected kind must be a type
  2894             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2898     @SuppressWarnings("fallthrough")
  2899     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2900         Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2902         Type resType;
  2903         switch (tree.getMode()) {
  2904             case NEW:
  2905                 if (!tree.expr.type.isRaw()) {
  2906                     resType = tree.expr.type;
  2907                     break;
  2909             default:
  2910                 resType = refType.getReturnType();
  2913         Type incompatibleReturnType = resType;
  2915         if (returnType.hasTag(VOID)) {
  2916             incompatibleReturnType = null;
  2919         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2920             if (resType.isErroneous() ||
  2921                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2922                 incompatibleReturnType = null;
  2926         if (incompatibleReturnType != null) {
  2927             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2928                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2931         if (!speculativeAttr) {
  2932             List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
  2933             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2934                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2939     /**
  2940      * Set functional type info on the underlying AST. Note: as the target descriptor
  2941      * might contain inference variables, we might need to register an hook in the
  2942      * current inference context.
  2943      */
  2944     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2945             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2946         if (checkContext.inferenceContext().free(descriptorType)) {
  2947             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2948                 public void typesInferred(InferenceContext inferenceContext) {
  2949                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2950                             inferenceContext.asInstType(primaryTarget), checkContext);
  2952             });
  2953         } else {
  2954             ListBuffer<Type> targets = new ListBuffer<>();
  2955             if (pt.hasTag(CLASS)) {
  2956                 if (pt.isCompound()) {
  2957                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2958                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2959                         if (t != primaryTarget) {
  2960                             targets.append(types.removeWildcards(t));
  2963                 } else {
  2964                     targets.append(types.removeWildcards(primaryTarget));
  2967             fExpr.targets = targets.toList();
  2968             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2969                     pt != Type.recoveryType) {
  2970                 //check that functional interface class is well-formed
  2971                 try {
  2972                     /* Types.makeFunctionalInterfaceClass() may throw an exception
  2973                      * when it's executed post-inference. See the listener code
  2974                      * above.
  2975                      */
  2976                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2977                             names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2978                     if (csym != null) {
  2979                         chk.checkImplementations(env.tree, csym, csym);
  2981                 } catch (Types.FunctionDescriptorLookupError ex) {
  2982                     JCDiagnostic cause = ex.getDiagnostic();
  2983                     resultInfo.checkContext.report(env.tree, cause);
  2989     public void visitParens(JCParens tree) {
  2990         Type owntype = attribTree(tree.expr, env, resultInfo);
  2991         result = check(tree, owntype, pkind(), resultInfo);
  2992         Symbol sym = TreeInfo.symbol(tree);
  2993         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2994             log.error(tree.pos(), "illegal.start.of.type");
  2997     public void visitAssign(JCAssign tree) {
  2998         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2999         Type capturedType = capture(owntype);
  3000         attribExpr(tree.rhs, env, owntype);
  3001         result = check(tree, capturedType, VAL, resultInfo);
  3004     public void visitAssignop(JCAssignOp tree) {
  3005         // Attribute arguments.
  3006         Type owntype = attribTree(tree.lhs, env, varInfo);
  3007         Type operand = attribExpr(tree.rhs, env);
  3008         // Find operator.
  3009         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  3010             tree.pos(), tree.getTag().noAssignOp(), env,
  3011             owntype, operand);
  3013         if (operator.kind == MTH &&
  3014                 !owntype.isErroneous() &&
  3015                 !operand.isErroneous()) {
  3016             chk.checkOperator(tree.pos(),
  3017                               (OperatorSymbol)operator,
  3018                               tree.getTag().noAssignOp(),
  3019                               owntype,
  3020                               operand);
  3021             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  3022             chk.checkCastable(tree.rhs.pos(),
  3023                               operator.type.getReturnType(),
  3024                               owntype);
  3026         result = check(tree, owntype, VAL, resultInfo);
  3029     public void visitUnary(JCUnary tree) {
  3030         // Attribute arguments.
  3031         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  3032             ? attribTree(tree.arg, env, varInfo)
  3033             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  3035         // Find operator.
  3036         Symbol operator = tree.operator =
  3037             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  3039         Type owntype = types.createErrorType(tree.type);
  3040         if (operator.kind == MTH &&
  3041                 !argtype.isErroneous()) {
  3042             owntype = (tree.getTag().isIncOrDecUnaryOp())
  3043                 ? tree.arg.type
  3044                 : operator.type.getReturnType();
  3045             int opc = ((OperatorSymbol)operator).opcode;
  3047             // If the argument is constant, fold it.
  3048             if (argtype.constValue() != null) {
  3049                 Type ctype = cfolder.fold1(opc, argtype);
  3050                 if (ctype != null) {
  3051                     owntype = cfolder.coerce(ctype, owntype);
  3055         result = check(tree, owntype, VAL, resultInfo);
  3058     public void visitBinary(JCBinary tree) {
  3059         // Attribute arguments.
  3060         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3061         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3063         // Find operator.
  3064         Symbol operator = tree.operator =
  3065             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3067         Type owntype = types.createErrorType(tree.type);
  3068         if (operator.kind == MTH &&
  3069                 !left.isErroneous() &&
  3070                 !right.isErroneous()) {
  3071             owntype = operator.type.getReturnType();
  3072             // This will figure out when unboxing can happen and
  3073             // choose the right comparison operator.
  3074             int opc = chk.checkOperator(tree.lhs.pos(),
  3075                                         (OperatorSymbol)operator,
  3076                                         tree.getTag(),
  3077                                         left,
  3078                                         right);
  3080             // If both arguments are constants, fold them.
  3081             if (left.constValue() != null && right.constValue() != null) {
  3082                 Type ctype = cfolder.fold2(opc, left, right);
  3083                 if (ctype != null) {
  3084                     owntype = cfolder.coerce(ctype, owntype);
  3088             // Check that argument types of a reference ==, != are
  3089             // castable to each other, (JLS 15.21).  Note: unboxing
  3090             // comparisons will not have an acmp* opc at this point.
  3091             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3092                 if (!types.isEqualityComparable(left, right,
  3093                                                 new Warner(tree.pos()))) {
  3094                     log.error(tree.pos(), "incomparable.types", left, right);
  3098             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3100         result = check(tree, owntype, VAL, resultInfo);
  3103     public void visitTypeCast(final JCTypeCast tree) {
  3104         Type clazztype = attribType(tree.clazz, env);
  3105         chk.validate(tree.clazz, env, false);
  3106         //a fresh environment is required for 292 inference to work properly ---
  3107         //see Infer.instantiatePolymorphicSignatureInstance()
  3108         Env<AttrContext> localEnv = env.dup(tree);
  3109         //should we propagate the target type?
  3110         final ResultInfo castInfo;
  3111         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3112         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3113         if (isPoly) {
  3114             //expression is a poly - we need to propagate target type info
  3115             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3116                 @Override
  3117                 public boolean compatible(Type found, Type req, Warner warn) {
  3118                     return types.isCastable(found, req, warn);
  3120             });
  3121         } else {
  3122             //standalone cast - target-type info is not propagated
  3123             castInfo = unknownExprInfo;
  3125         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3126         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3127         if (exprtype.constValue() != null)
  3128             owntype = cfolder.coerce(exprtype, owntype);
  3129         result = check(tree, capture(owntype), VAL, resultInfo);
  3130         if (!isPoly)
  3131             chk.checkRedundantCast(localEnv, tree);
  3134     public void visitTypeTest(JCInstanceOf tree) {
  3135         Type exprtype = chk.checkNullOrRefType(
  3136             tree.expr.pos(), attribExpr(tree.expr, env));
  3137         Type clazztype = attribType(tree.clazz, env);
  3138         if (!clazztype.hasTag(TYPEVAR)) {
  3139             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3141         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3142             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3143             clazztype = types.createErrorType(clazztype);
  3145         chk.validate(tree.clazz, env, false);
  3146         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3147         result = check(tree, syms.booleanType, VAL, resultInfo);
  3150     public void visitIndexed(JCArrayAccess tree) {
  3151         Type owntype = types.createErrorType(tree.type);
  3152         Type atype = attribExpr(tree.indexed, env);
  3153         attribExpr(tree.index, env, syms.intType);
  3154         if (types.isArray(atype))
  3155             owntype = types.elemtype(atype);
  3156         else if (!atype.hasTag(ERROR))
  3157             log.error(tree.pos(), "array.req.but.found", atype);
  3158         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3159         result = check(tree, owntype, VAR, resultInfo);
  3162     public void visitIdent(JCIdent tree) {
  3163         Symbol sym;
  3165         // Find symbol
  3166         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3167             // If we are looking for a method, the prototype `pt' will be a
  3168             // method type with the type of the call's arguments as parameters.
  3169             env.info.pendingResolutionPhase = null;
  3170             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3171         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3172             sym = tree.sym;
  3173         } else {
  3174             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3176         tree.sym = sym;
  3178         // (1) Also find the environment current for the class where
  3179         //     sym is defined (`symEnv').
  3180         // Only for pre-tiger versions (1.4 and earlier):
  3181         // (2) Also determine whether we access symbol out of an anonymous
  3182         //     class in a this or super call.  This is illegal for instance
  3183         //     members since such classes don't carry a this$n link.
  3184         //     (`noOuterThisPath').
  3185         Env<AttrContext> symEnv = env;
  3186         boolean noOuterThisPath = false;
  3187         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3188             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3189             sym.owner.kind == TYP &&
  3190             tree.name != names._this && tree.name != names._super) {
  3192             // Find environment in which identifier is defined.
  3193             while (symEnv.outer != null &&
  3194                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3195                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3196                     noOuterThisPath = !allowAnonOuterThis;
  3197                 symEnv = symEnv.outer;
  3201         // If symbol is a variable, ...
  3202         if (sym.kind == VAR) {
  3203             VarSymbol v = (VarSymbol)sym;
  3205             // ..., evaluate its initializer, if it has one, and check for
  3206             // illegal forward reference.
  3207             checkInit(tree, env, v, false);
  3209             // If we are expecting a variable (as opposed to a value), check
  3210             // that the variable is assignable in the current environment.
  3211             if (pkind() == VAR)
  3212                 checkAssignable(tree.pos(), v, null, env);
  3215         // In a constructor body,
  3216         // if symbol is a field or instance method, check that it is
  3217         // not accessed before the supertype constructor is called.
  3218         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3219             (sym.kind & (VAR | MTH)) != 0 &&
  3220             sym.owner.kind == TYP &&
  3221             (sym.flags() & STATIC) == 0) {
  3222             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3224         Env<AttrContext> env1 = env;
  3225         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3226             // If the found symbol is inaccessible, then it is
  3227             // accessed through an enclosing instance.  Locate this
  3228             // enclosing instance:
  3229             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3230                 env1 = env1.outer;
  3233         if (env.info.isSerializable) {
  3234             chk.checkElemAccessFromSerializableLambda(tree);
  3237         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3240     public void visitSelect(JCFieldAccess tree) {
  3241         // Determine the expected kind of the qualifier expression.
  3242         int skind = 0;
  3243         if (tree.name == names._this || tree.name == names._super ||
  3244             tree.name == names._class)
  3246             skind = TYP;
  3247         } else {
  3248             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3249             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3250             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3253         // Attribute the qualifier expression, and determine its symbol (if any).
  3254         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3255         if ((pkind() & (PCK | TYP)) == 0)
  3256             site = capture(site); // Capture field access
  3258         // don't allow T.class T[].class, etc
  3259         if (skind == TYP) {
  3260             Type elt = site;
  3261             while (elt.hasTag(ARRAY))
  3262                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3263             if (elt.hasTag(TYPEVAR)) {
  3264                 log.error(tree.pos(), "type.var.cant.be.deref");
  3265                 result = types.createErrorType(tree.type);
  3266                 return;
  3270         // If qualifier symbol is a type or `super', assert `selectSuper'
  3271         // for the selection. This is relevant for determining whether
  3272         // protected symbols are accessible.
  3273         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3274         boolean selectSuperPrev = env.info.selectSuper;
  3275         env.info.selectSuper =
  3276             sitesym != null &&
  3277             sitesym.name == names._super;
  3279         // Determine the symbol represented by the selection.
  3280         env.info.pendingResolutionPhase = null;
  3281         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3282         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3283             site = capture(site);
  3284             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3286         boolean varArgs = env.info.lastResolveVarargs();
  3287         tree.sym = sym;
  3289         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3290             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3291             site = capture(site);
  3294         // If that symbol is a variable, ...
  3295         if (sym.kind == VAR) {
  3296             VarSymbol v = (VarSymbol)sym;
  3298             // ..., evaluate its initializer, if it has one, and check for
  3299             // illegal forward reference.
  3300             checkInit(tree, env, v, true);
  3302             // If we are expecting a variable (as opposed to a value), check
  3303             // that the variable is assignable in the current environment.
  3304             if (pkind() == VAR)
  3305                 checkAssignable(tree.pos(), v, tree.selected, env);
  3308         if (sitesym != null &&
  3309                 sitesym.kind == VAR &&
  3310                 ((VarSymbol)sitesym).isResourceVariable() &&
  3311                 sym.kind == MTH &&
  3312                 sym.name.equals(names.close) &&
  3313                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3314                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3315             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3318         // Disallow selecting a type from an expression
  3319         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3320             tree.type = check(tree.selected, pt(),
  3321                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3324         if (isType(sitesym)) {
  3325             if (sym.name == names._this) {
  3326                 // If `C' is the currently compiled class, check that
  3327                 // C.this' does not appear in a call to a super(...)
  3328                 if (env.info.isSelfCall &&
  3329                     site.tsym == env.enclClass.sym) {
  3330                     chk.earlyRefError(tree.pos(), sym);
  3332             } else {
  3333                 // Check if type-qualified fields or methods are static (JLS)
  3334                 if ((sym.flags() & STATIC) == 0 &&
  3335                     !env.next.tree.hasTag(REFERENCE) &&
  3336                     sym.name != names._super &&
  3337                     (sym.kind == VAR || sym.kind == MTH)) {
  3338                     rs.accessBase(rs.new StaticError(sym),
  3339                               tree.pos(), site, sym.name, true);
  3342             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
  3343                     sym.isStatic() && sym.kind == MTH) {
  3344                 log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
  3346         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3347             // If the qualified item is not a type and the selected item is static, report
  3348             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3349             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3352         // If we are selecting an instance member via a `super', ...
  3353         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3355             // Check that super-qualified symbols are not abstract (JLS)
  3356             rs.checkNonAbstract(tree.pos(), sym);
  3358             if (site.isRaw()) {
  3359                 // Determine argument types for site.
  3360                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3361                 if (site1 != null) site = site1;
  3365         if (env.info.isSerializable) {
  3366             chk.checkElemAccessFromSerializableLambda(tree);
  3369         env.info.selectSuper = selectSuperPrev;
  3370         result = checkId(tree, site, sym, env, resultInfo);
  3372     //where
  3373         /** Determine symbol referenced by a Select expression,
  3375          *  @param tree   The select tree.
  3376          *  @param site   The type of the selected expression,
  3377          *  @param env    The current environment.
  3378          *  @param resultInfo The current result.
  3379          */
  3380         private Symbol selectSym(JCFieldAccess tree,
  3381                                  Symbol location,
  3382                                  Type site,
  3383                                  Env<AttrContext> env,
  3384                                  ResultInfo resultInfo) {
  3385             DiagnosticPosition pos = tree.pos();
  3386             Name name = tree.name;
  3387             switch (site.getTag()) {
  3388             case PACKAGE:
  3389                 return rs.accessBase(
  3390                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3391                     pos, location, site, name, true);
  3392             case ARRAY:
  3393             case CLASS:
  3394                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3395                     return rs.resolveQualifiedMethod(
  3396                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3397                 } else if (name == names._this || name == names._super) {
  3398                     return rs.resolveSelf(pos, env, site.tsym, name);
  3399                 } else if (name == names._class) {
  3400                     // In this case, we have already made sure in
  3401                     // visitSelect that qualifier expression is a type.
  3402                     Type t = syms.classType;
  3403                     List<Type> typeargs = allowGenerics
  3404                         ? List.of(types.erasure(site))
  3405                         : List.<Type>nil();
  3406                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3407                     return new VarSymbol(
  3408                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3409                 } else {
  3410                     // We are seeing a plain identifier as selector.
  3411                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3412                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3413                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3414                     return sym;
  3416             case WILDCARD:
  3417                 throw new AssertionError(tree);
  3418             case TYPEVAR:
  3419                 // Normally, site.getUpperBound() shouldn't be null.
  3420                 // It should only happen during memberEnter/attribBase
  3421                 // when determining the super type which *must* beac
  3422                 // done before attributing the type variables.  In
  3423                 // other words, we are seeing this illegal program:
  3424                 // class B<T> extends A<T.foo> {}
  3425                 Symbol sym = (site.getUpperBound() != null)
  3426                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3427                     : null;
  3428                 if (sym == null) {
  3429                     log.error(pos, "type.var.cant.be.deref");
  3430                     return syms.errSymbol;
  3431                 } else {
  3432                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3433                         rs.new AccessError(env, site, sym) :
  3434                                 sym;
  3435                     rs.accessBase(sym2, pos, location, site, name, true);
  3436                     return sym;
  3438             case ERROR:
  3439                 // preserve identifier names through errors
  3440                 return types.createErrorType(name, site.tsym, site).tsym;
  3441             default:
  3442                 // The qualifier expression is of a primitive type -- only
  3443                 // .class is allowed for these.
  3444                 if (name == names._class) {
  3445                     // In this case, we have already made sure in Select that
  3446                     // qualifier expression is a type.
  3447                     Type t = syms.classType;
  3448                     Type arg = types.boxedClass(site).type;
  3449                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3450                     return new VarSymbol(
  3451                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3452                 } else {
  3453                     log.error(pos, "cant.deref", site);
  3454                     return syms.errSymbol;
  3459         /** Determine type of identifier or select expression and check that
  3460          *  (1) the referenced symbol is not deprecated
  3461          *  (2) the symbol's type is safe (@see checkSafe)
  3462          *  (3) if symbol is a variable, check that its type and kind are
  3463          *      compatible with the prototype and protokind.
  3464          *  (4) if symbol is an instance field of a raw type,
  3465          *      which is being assigned to, issue an unchecked warning if its
  3466          *      type changes under erasure.
  3467          *  (5) if symbol is an instance method of a raw type, issue an
  3468          *      unchecked warning if its argument types change under erasure.
  3469          *  If checks succeed:
  3470          *    If symbol is a constant, return its constant type
  3471          *    else if symbol is a method, return its result type
  3472          *    otherwise return its type.
  3473          *  Otherwise return errType.
  3475          *  @param tree       The syntax tree representing the identifier
  3476          *  @param site       If this is a select, the type of the selected
  3477          *                    expression, otherwise the type of the current class.
  3478          *  @param sym        The symbol representing the identifier.
  3479          *  @param env        The current environment.
  3480          *  @param resultInfo    The expected result
  3481          */
  3482         Type checkId(JCTree tree,
  3483                      Type site,
  3484                      Symbol sym,
  3485                      Env<AttrContext> env,
  3486                      ResultInfo resultInfo) {
  3487             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3488                     checkMethodId(tree, site, sym, env, resultInfo) :
  3489                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3492         Type checkMethodId(JCTree tree,
  3493                      Type site,
  3494                      Symbol sym,
  3495                      Env<AttrContext> env,
  3496                      ResultInfo resultInfo) {
  3497             boolean isPolymorhicSignature =
  3498                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3499             return isPolymorhicSignature ?
  3500                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3501                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3504         Type checkSigPolyMethodId(JCTree tree,
  3505                      Type site,
  3506                      Symbol sym,
  3507                      Env<AttrContext> env,
  3508                      ResultInfo resultInfo) {
  3509             //recover original symbol for signature polymorphic methods
  3510             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3511             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3512             return sym.type;
  3515         Type checkMethodIdInternal(JCTree tree,
  3516                      Type site,
  3517                      Symbol sym,
  3518                      Env<AttrContext> env,
  3519                      ResultInfo resultInfo) {
  3520             if ((resultInfo.pkind & POLY) != 0) {
  3521                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3522                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3523                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3524                 return owntype;
  3525             } else {
  3526                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3530         Type checkIdInternal(JCTree tree,
  3531                      Type site,
  3532                      Symbol sym,
  3533                      Type pt,
  3534                      Env<AttrContext> env,
  3535                      ResultInfo resultInfo) {
  3536             if (pt.isErroneous()) {
  3537                 return types.createErrorType(site);
  3539             Type owntype; // The computed type of this identifier occurrence.
  3540             switch (sym.kind) {
  3541             case TYP:
  3542                 // For types, the computed type equals the symbol's type,
  3543                 // except for two situations:
  3544                 owntype = sym.type;
  3545                 if (owntype.hasTag(CLASS)) {
  3546                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3547                     Type ownOuter = owntype.getEnclosingType();
  3549                     // (a) If the symbol's type is parameterized, erase it
  3550                     // because no type parameters were given.
  3551                     // We recover generic outer type later in visitTypeApply.
  3552                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3553                         owntype = types.erasure(owntype);
  3556                     // (b) If the symbol's type is an inner class, then
  3557                     // we have to interpret its outer type as a superclass
  3558                     // of the site type. Example:
  3559                     //
  3560                     // class Tree<A> { class Visitor { ... } }
  3561                     // class PointTree extends Tree<Point> { ... }
  3562                     // ...PointTree.Visitor...
  3563                     //
  3564                     // Then the type of the last expression above is
  3565                     // Tree<Point>.Visitor.
  3566                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3567                         Type normOuter = site;
  3568                         if (normOuter.hasTag(CLASS)) {
  3569                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3571                         if (normOuter == null) // perhaps from an import
  3572                             normOuter = types.erasure(ownOuter);
  3573                         if (normOuter != ownOuter)
  3574                             owntype = new ClassType(
  3575                                 normOuter, List.<Type>nil(), owntype.tsym);
  3578                 break;
  3579             case VAR:
  3580                 VarSymbol v = (VarSymbol)sym;
  3581                 // Test (4): if symbol is an instance field of a raw type,
  3582                 // which is being assigned to, issue an unchecked warning if
  3583                 // its type changes under erasure.
  3584                 if (allowGenerics &&
  3585                     resultInfo.pkind == VAR &&
  3586                     v.owner.kind == TYP &&
  3587                     (v.flags() & STATIC) == 0 &&
  3588                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3589                     Type s = types.asOuterSuper(site, v.owner);
  3590                     if (s != null &&
  3591                         s.isRaw() &&
  3592                         !types.isSameType(v.type, v.erasure(types))) {
  3593                         chk.warnUnchecked(tree.pos(),
  3594                                           "unchecked.assign.to.var",
  3595                                           v, s);
  3598                 // The computed type of a variable is the type of the
  3599                 // variable symbol, taken as a member of the site type.
  3600                 owntype = (sym.owner.kind == TYP &&
  3601                            sym.name != names._this && sym.name != names._super)
  3602                     ? types.memberType(site, sym)
  3603                     : sym.type;
  3605                 // If the variable is a constant, record constant value in
  3606                 // computed type.
  3607                 if (v.getConstValue() != null && isStaticReference(tree))
  3608                     owntype = owntype.constType(v.getConstValue());
  3610                 if (resultInfo.pkind == VAL) {
  3611                     owntype = capture(owntype); // capture "names as expressions"
  3613                 break;
  3614             case MTH: {
  3615                 owntype = checkMethod(site, sym,
  3616                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3617                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3618                         resultInfo.pt.getTypeArguments());
  3619                 break;
  3621             case PCK: case ERR:
  3622                 owntype = sym.type;
  3623                 break;
  3624             default:
  3625                 throw new AssertionError("unexpected kind: " + sym.kind +
  3626                                          " in tree " + tree);
  3629             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3630             // (for constructors, the error was given when the constructor was
  3631             // resolved)
  3633             if (sym.name != names.init) {
  3634                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3635                 chk.checkSunAPI(tree.pos(), sym);
  3636                 chk.checkProfile(tree.pos(), sym);
  3639             // Test (3): if symbol is a variable, check that its type and
  3640             // kind are compatible with the prototype and protokind.
  3641             return check(tree, owntype, sym.kind, resultInfo);
  3644         /** Check that variable is initialized and evaluate the variable's
  3645          *  initializer, if not yet done. Also check that variable is not
  3646          *  referenced before it is defined.
  3647          *  @param tree    The tree making up the variable reference.
  3648          *  @param env     The current environment.
  3649          *  @param v       The variable's symbol.
  3650          */
  3651         private void checkInit(JCTree tree,
  3652                                Env<AttrContext> env,
  3653                                VarSymbol v,
  3654                                boolean onlyWarning) {
  3655 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3656 //                             tree.pos + " " + v.pos + " " +
  3657 //                             Resolve.isStatic(env));//DEBUG
  3659             // A forward reference is diagnosed if the declaration position
  3660             // of the variable is greater than the current tree position
  3661             // and the tree and variable definition occur in the same class
  3662             // definition.  Note that writes don't count as references.
  3663             // This check applies only to class and instance
  3664             // variables.  Local variables follow different scope rules,
  3665             // and are subject to definite assignment checking.
  3666             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3667                 v.owner.kind == TYP &&
  3668                 canOwnInitializer(owner(env)) &&
  3669                 v.owner == env.info.scope.owner.enclClass() &&
  3670                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3671                 (!env.tree.hasTag(ASSIGN) ||
  3672                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3673                 String suffix = (env.info.enclVar == v) ?
  3674                                 "self.ref" : "forward.ref";
  3675                 if (!onlyWarning || isStaticEnumField(v)) {
  3676                     log.error(tree.pos(), "illegal." + suffix);
  3677                 } else if (useBeforeDeclarationWarning) {
  3678                     log.warning(tree.pos(), suffix, v);
  3682             v.getConstValue(); // ensure initializer is evaluated
  3684             checkEnumInitializer(tree, env, v);
  3687         /**
  3688          * Check for illegal references to static members of enum.  In
  3689          * an enum type, constructors and initializers may not
  3690          * reference its static members unless they are constant.
  3692          * @param tree    The tree making up the variable reference.
  3693          * @param env     The current environment.
  3694          * @param v       The variable's symbol.
  3695          * @jls  section 8.9 Enums
  3696          */
  3697         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3698             // JLS:
  3699             //
  3700             // "It is a compile-time error to reference a static field
  3701             // of an enum type that is not a compile-time constant
  3702             // (15.28) from constructors, instance initializer blocks,
  3703             // or instance variable initializer expressions of that
  3704             // type. It is a compile-time error for the constructors,
  3705             // instance initializer blocks, or instance variable
  3706             // initializer expressions of an enum constant e to refer
  3707             // to itself or to an enum constant of the same type that
  3708             // is declared to the right of e."
  3709             if (isStaticEnumField(v)) {
  3710                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3712                 if (enclClass == null || enclClass.owner == null)
  3713                     return;
  3715                 // See if the enclosing class is the enum (or a
  3716                 // subclass thereof) declaring v.  If not, this
  3717                 // reference is OK.
  3718                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3719                     return;
  3721                 // If the reference isn't from an initializer, then
  3722                 // the reference is OK.
  3723                 if (!Resolve.isInitializer(env))
  3724                     return;
  3726                 log.error(tree.pos(), "illegal.enum.static.ref");
  3730         /** Is the given symbol a static, non-constant field of an Enum?
  3731          *  Note: enum literals should not be regarded as such
  3732          */
  3733         private boolean isStaticEnumField(VarSymbol v) {
  3734             return Flags.isEnum(v.owner) &&
  3735                    Flags.isStatic(v) &&
  3736                    !Flags.isConstant(v) &&
  3737                    v.name != names._class;
  3740         /** Can the given symbol be the owner of code which forms part
  3741          *  if class initialization? This is the case if the symbol is
  3742          *  a type or field, or if the symbol is the synthetic method.
  3743          *  owning a block.
  3744          */
  3745         private boolean canOwnInitializer(Symbol sym) {
  3746             return
  3747                 (sym.kind & (VAR | TYP)) != 0 ||
  3748                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3751     Warner noteWarner = new Warner();
  3753     /**
  3754      * Check that method arguments conform to its instantiation.
  3755      **/
  3756     public Type checkMethod(Type site,
  3757                             final Symbol sym,
  3758                             ResultInfo resultInfo,
  3759                             Env<AttrContext> env,
  3760                             final List<JCExpression> argtrees,
  3761                             List<Type> argtypes,
  3762                             List<Type> typeargtypes) {
  3763         // Test (5): if symbol is an instance method of a raw type, issue
  3764         // an unchecked warning if its argument types change under erasure.
  3765         if (allowGenerics &&
  3766             (sym.flags() & STATIC) == 0 &&
  3767             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3768             Type s = types.asOuterSuper(site, sym.owner);
  3769             if (s != null && s.isRaw() &&
  3770                 !types.isSameTypes(sym.type.getParameterTypes(),
  3771                                    sym.erasure(types).getParameterTypes())) {
  3772                 chk.warnUnchecked(env.tree.pos(),
  3773                                   "unchecked.call.mbr.of.raw.type",
  3774                                   sym, s);
  3778         if (env.info.defaultSuperCallSite != null) {
  3779             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3780                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3781                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3782                 List<MethodSymbol> icand_sup =
  3783                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3784                 if (icand_sup.nonEmpty() &&
  3785                         icand_sup.head != sym &&
  3786                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3787                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3788                         diags.fragment("overridden.default", sym, sup));
  3789                     break;
  3792             env.info.defaultSuperCallSite = null;
  3795         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3796             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3797             if (app.meth.hasTag(SELECT) &&
  3798                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3799                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3803         // Compute the identifier's instantiated type.
  3804         // For methods, we need to compute the instance type by
  3805         // Resolve.instantiate from the symbol's type as well as
  3806         // any type arguments and value arguments.
  3807         noteWarner.clear();
  3808         try {
  3809             Type owntype = rs.checkMethod(
  3810                     env,
  3811                     site,
  3812                     sym,
  3813                     resultInfo,
  3814                     argtypes,
  3815                     typeargtypes,
  3816                     noteWarner);
  3818             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3819                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3821             argtypes = Type.map(argtypes, checkDeferredMap);
  3823             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3824                 chk.warnUnchecked(env.tree.pos(),
  3825                         "unchecked.meth.invocation.applied",
  3826                         kindName(sym),
  3827                         sym.name,
  3828                         rs.methodArguments(sym.type.getParameterTypes()),
  3829                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3830                         kindName(sym.location()),
  3831                         sym.location());
  3832                owntype = new MethodType(owntype.getParameterTypes(),
  3833                        types.erasure(owntype.getReturnType()),
  3834                        types.erasure(owntype.getThrownTypes()),
  3835                        syms.methodClass);
  3838             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3839                     resultInfo.checkContext.inferenceContext());
  3840         } catch (Infer.InferenceException ex) {
  3841             //invalid target type - propagate exception outwards or report error
  3842             //depending on the current check context
  3843             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3844             return types.createErrorType(site);
  3845         } catch (Resolve.InapplicableMethodException ex) {
  3846             final JCDiagnostic diag = ex.getDiagnostic();
  3847             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3848                 @Override
  3849                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3850                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3852             };
  3853             List<Type> argtypes2 = Type.map(argtypes,
  3854                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3855             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3856                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3857             log.report(errDiag);
  3858             return types.createErrorType(site);
  3862     public void visitLiteral(JCLiteral tree) {
  3863         result = check(
  3864             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3866     //where
  3867     /** Return the type of a literal with given type tag.
  3868      */
  3869     Type litType(TypeTag tag) {
  3870         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3873     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3874         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3877     public void visitTypeArray(JCArrayTypeTree tree) {
  3878         Type etype = attribType(tree.elemtype, env);
  3879         Type type = new ArrayType(etype, syms.arrayClass);
  3880         result = check(tree, type, TYP, resultInfo);
  3883     /** Visitor method for parameterized types.
  3884      *  Bound checking is left until later, since types are attributed
  3885      *  before supertype structure is completely known
  3886      */
  3887     public void visitTypeApply(JCTypeApply tree) {
  3888         Type owntype = types.createErrorType(tree.type);
  3890         // Attribute functor part of application and make sure it's a class.
  3891         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3893         // Attribute type parameters
  3894         List<Type> actuals = attribTypes(tree.arguments, env);
  3896         if (clazztype.hasTag(CLASS)) {
  3897             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3898             if (actuals.isEmpty()) //diamond
  3899                 actuals = formals;
  3901             if (actuals.length() == formals.length()) {
  3902                 List<Type> a = actuals;
  3903                 List<Type> f = formals;
  3904                 while (a.nonEmpty()) {
  3905                     a.head = a.head.withTypeVar(f.head);
  3906                     a = a.tail;
  3907                     f = f.tail;
  3909                 // Compute the proper generic outer
  3910                 Type clazzOuter = clazztype.getEnclosingType();
  3911                 if (clazzOuter.hasTag(CLASS)) {
  3912                     Type site;
  3913                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3914                     if (clazz.hasTag(IDENT)) {
  3915                         site = env.enclClass.sym.type;
  3916                     } else if (clazz.hasTag(SELECT)) {
  3917                         site = ((JCFieldAccess) clazz).selected.type;
  3918                     } else throw new AssertionError(""+tree);
  3919                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3920                         if (site.hasTag(CLASS))
  3921                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3922                         if (site == null)
  3923                             site = types.erasure(clazzOuter);
  3924                         clazzOuter = site;
  3927                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3928             } else {
  3929                 if (formals.length() != 0) {
  3930                     log.error(tree.pos(), "wrong.number.type.args",
  3931                               Integer.toString(formals.length()));
  3932                 } else {
  3933                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3935                 owntype = types.createErrorType(tree.type);
  3938         result = check(tree, owntype, TYP, resultInfo);
  3941     public void visitTypeUnion(JCTypeUnion tree) {
  3942         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3943         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3944         for (JCExpression typeTree : tree.alternatives) {
  3945             Type ctype = attribType(typeTree, env);
  3946             ctype = chk.checkType(typeTree.pos(),
  3947                           chk.checkClassType(typeTree.pos(), ctype),
  3948                           syms.throwableType);
  3949             if (!ctype.isErroneous()) {
  3950                 //check that alternatives of a union type are pairwise
  3951                 //unrelated w.r.t. subtyping
  3952                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3953                     for (Type t : multicatchTypes) {
  3954                         boolean sub = types.isSubtype(ctype, t);
  3955                         boolean sup = types.isSubtype(t, ctype);
  3956                         if (sub || sup) {
  3957                             //assume 'a' <: 'b'
  3958                             Type a = sub ? ctype : t;
  3959                             Type b = sub ? t : ctype;
  3960                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3964                 multicatchTypes.append(ctype);
  3965                 if (all_multicatchTypes != null)
  3966                     all_multicatchTypes.append(ctype);
  3967             } else {
  3968                 if (all_multicatchTypes == null) {
  3969                     all_multicatchTypes = new ListBuffer<>();
  3970                     all_multicatchTypes.appendList(multicatchTypes);
  3972                 all_multicatchTypes.append(ctype);
  3975         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3976         if (t.hasTag(CLASS)) {
  3977             List<Type> alternatives =
  3978                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3979             t = new UnionClassType((ClassType) t, alternatives);
  3981         tree.type = result = t;
  3984     public void visitTypeIntersection(JCTypeIntersection tree) {
  3985         attribTypes(tree.bounds, env);
  3986         tree.type = result = checkIntersection(tree, tree.bounds);
  3989     public void visitTypeParameter(JCTypeParameter tree) {
  3990         TypeVar typeVar = (TypeVar) tree.type;
  3992         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3993             annotateType(tree, tree.annotations);
  3996         if (!typeVar.bound.isErroneous()) {
  3997             //fixup type-parameter bound computed in 'attribTypeVariables'
  3998             typeVar.bound = checkIntersection(tree, tree.bounds);
  4002     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  4003         Set<Type> boundSet = new HashSet<Type>();
  4004         if (bounds.nonEmpty()) {
  4005             // accept class or interface or typevar as first bound.
  4006             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  4007             boundSet.add(types.erasure(bounds.head.type));
  4008             if (bounds.head.type.isErroneous()) {
  4009                 return bounds.head.type;
  4011             else if (bounds.head.type.hasTag(TYPEVAR)) {
  4012                 // if first bound was a typevar, do not accept further bounds.
  4013                 if (bounds.tail.nonEmpty()) {
  4014                     log.error(bounds.tail.head.pos(),
  4015                               "type.var.may.not.be.followed.by.other.bounds");
  4016                     return bounds.head.type;
  4018             } else {
  4019                 // if first bound was a class or interface, accept only interfaces
  4020                 // as further bounds.
  4021                 for (JCExpression bound : bounds.tail) {
  4022                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  4023                     if (bound.type.isErroneous()) {
  4024                         bounds = List.of(bound);
  4026                     else if (bound.type.hasTag(CLASS)) {
  4027                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  4033         if (bounds.length() == 0) {
  4034             return syms.objectType;
  4035         } else if (bounds.length() == 1) {
  4036             return bounds.head.type;
  4037         } else {
  4038             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  4039             // ... the variable's bound is a class type flagged COMPOUND
  4040             // (see comment for TypeVar.bound).
  4041             // In this case, generate a class tree that represents the
  4042             // bound class, ...
  4043             JCExpression extending;
  4044             List<JCExpression> implementing;
  4045             if (!bounds.head.type.isInterface()) {
  4046                 extending = bounds.head;
  4047                 implementing = bounds.tail;
  4048             } else {
  4049                 extending = null;
  4050                 implementing = bounds;
  4052             JCClassDecl cd = make.at(tree).ClassDef(
  4053                 make.Modifiers(PUBLIC | ABSTRACT),
  4054                 names.empty, List.<JCTypeParameter>nil(),
  4055                 extending, implementing, List.<JCTree>nil());
  4057             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4058             Assert.check((c.flags() & COMPOUND) != 0);
  4059             cd.sym = c;
  4060             c.sourcefile = env.toplevel.sourcefile;
  4062             // ... and attribute the bound class
  4063             c.flags_field |= UNATTRIBUTED;
  4064             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4065             typeEnvs.put(c, cenv);
  4066             attribClass(c);
  4067             return owntype;
  4071     public void visitWildcard(JCWildcard tree) {
  4072         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4073         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4074             ? syms.objectType
  4075             : attribType(tree.inner, env);
  4076         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4077                                               tree.kind.kind,
  4078                                               syms.boundClass),
  4079                        TYP, resultInfo);
  4082     public void visitAnnotation(JCAnnotation tree) {
  4083         Assert.error("should be handled in Annotate");
  4086     public void visitAnnotatedType(JCAnnotatedType tree) {
  4087         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4088         this.attribAnnotationTypes(tree.annotations, env);
  4089         annotateType(tree, tree.annotations);
  4090         result = tree.type = underlyingType;
  4093     /**
  4094      * Apply the annotations to the particular type.
  4095      */
  4096     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
  4097         annotate.typeAnnotation(new Annotate.Worker() {
  4098             @Override
  4099             public String toString() {
  4100                 return "annotate " + annotations + " onto " + tree;
  4102             @Override
  4103             public void run() {
  4104                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4105                 if (annotations.size() == compounds.size()) {
  4106                     // All annotations were successfully converted into compounds
  4107                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
  4110         });
  4113     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4114         if (annotations.isEmpty()) {
  4115             return List.nil();
  4118         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4119         for (JCAnnotation anno : annotations) {
  4120             if (anno.attribute != null) {
  4121                 // TODO: this null-check is only needed for an obscure
  4122                 // ordering issue, where annotate.flush is called when
  4123                 // the attribute is not set yet. For an example failure
  4124                 // try the referenceinfos/NestedTypes.java test.
  4125                 // Any better solutions?
  4126                 buf.append((Attribute.TypeCompound) anno.attribute);
  4128             // Eventually we will want to throw an exception here, but
  4129             // we can't do that just yet, because it gets triggered
  4130             // when attempting to attach an annotation that isn't
  4131             // defined.
  4133         return buf.toList();
  4136     public void visitErroneous(JCErroneous tree) {
  4137         if (tree.errs != null)
  4138             for (JCTree err : tree.errs)
  4139                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4140         result = tree.type = syms.errType;
  4143     /** Default visitor method for all other trees.
  4144      */
  4145     public void visitTree(JCTree tree) {
  4146         throw new AssertionError();
  4149     /**
  4150      * Attribute an env for either a top level tree or class declaration.
  4151      */
  4152     public void attrib(Env<AttrContext> env) {
  4153         if (env.tree.hasTag(TOPLEVEL))
  4154             attribTopLevel(env);
  4155         else
  4156             attribClass(env.tree.pos(), env.enclClass.sym);
  4159     /**
  4160      * Attribute a top level tree. These trees are encountered when the
  4161      * package declaration has annotations.
  4162      */
  4163     public void attribTopLevel(Env<AttrContext> env) {
  4164         JCCompilationUnit toplevel = env.toplevel;
  4165         try {
  4166             annotate.flush();
  4167         } catch (CompletionFailure ex) {
  4168             chk.completionError(toplevel.pos(), ex);
  4172     /** Main method: attribute class definition associated with given class symbol.
  4173      *  reporting completion failures at the given position.
  4174      *  @param pos The source position at which completion errors are to be
  4175      *             reported.
  4176      *  @param c   The class symbol whose definition will be attributed.
  4177      */
  4178     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4179         try {
  4180             annotate.flush();
  4181             attribClass(c);
  4182         } catch (CompletionFailure ex) {
  4183             chk.completionError(pos, ex);
  4187     /** Attribute class definition associated with given class symbol.
  4188      *  @param c   The class symbol whose definition will be attributed.
  4189      */
  4190     void attribClass(ClassSymbol c) throws CompletionFailure {
  4191         if (c.type.hasTag(ERROR)) return;
  4193         // Check for cycles in the inheritance graph, which can arise from
  4194         // ill-formed class files.
  4195         chk.checkNonCyclic(null, c.type);
  4197         Type st = types.supertype(c.type);
  4198         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4199             // First, attribute superclass.
  4200             if (st.hasTag(CLASS))
  4201                 attribClass((ClassSymbol)st.tsym);
  4203             // Next attribute owner, if it is a class.
  4204             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4205                 attribClass((ClassSymbol)c.owner);
  4208         // The previous operations might have attributed the current class
  4209         // if there was a cycle. So we test first whether the class is still
  4210         // UNATTRIBUTED.
  4211         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4212             c.flags_field &= ~UNATTRIBUTED;
  4214             // Get environment current at the point of class definition.
  4215             Env<AttrContext> env = typeEnvs.get(c);
  4217             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
  4218             // because the annotations were not available at the time the env was created. Therefore,
  4219             // we look up the environment chain for the first enclosing environment for which the
  4220             // lint value is set. Typically, this is the parent env, but might be further if there
  4221             // are any envs created as a result of TypeParameter nodes.
  4222             Env<AttrContext> lintEnv = env;
  4223             while (lintEnv.info.lint == null)
  4224                 lintEnv = lintEnv.next;
  4226             // Having found the enclosing lint value, we can initialize the lint value for this class
  4227             env.info.lint = lintEnv.info.lint.augment(c);
  4229             Lint prevLint = chk.setLint(env.info.lint);
  4230             JavaFileObject prev = log.useSource(c.sourcefile);
  4231             ResultInfo prevReturnRes = env.info.returnResult;
  4233             try {
  4234                 deferredLintHandler.flush(env.tree);
  4235                 env.info.returnResult = null;
  4236                 // java.lang.Enum may not be subclassed by a non-enum
  4237                 if (st.tsym == syms.enumSym &&
  4238                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4239                     log.error(env.tree.pos(), "enum.no.subclassing");
  4241                 // Enums may not be extended by source-level classes
  4242                 if (st.tsym != null &&
  4243                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4244                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4245                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4248                 if (isSerializable(c.type)) {
  4249                     env.info.isSerializable = true;
  4252                 attribClassBody(env, c);
  4254                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4255                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4256                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
  4257             } finally {
  4258                 env.info.returnResult = prevReturnRes;
  4259                 log.useSource(prev);
  4260                 chk.setLint(prevLint);
  4266     public void visitImport(JCImport tree) {
  4267         // nothing to do
  4270     /** Finish the attribution of a class. */
  4271     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4272         JCClassDecl tree = (JCClassDecl)env.tree;
  4273         Assert.check(c == tree.sym);
  4275         // Validate type parameters, supertype and interfaces.
  4276         attribStats(tree.typarams, env);
  4277         if (!c.isAnonymous()) {
  4278             //already checked if anonymous
  4279             chk.validate(tree.typarams, env);
  4280             chk.validate(tree.extending, env);
  4281             chk.validate(tree.implementing, env);
  4284         // If this is a non-abstract class, check that it has no abstract
  4285         // methods or unimplemented methods of an implemented interface.
  4286         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4287             if (!relax)
  4288                 chk.checkAllDefined(tree.pos(), c);
  4291         if ((c.flags() & ANNOTATION) != 0) {
  4292             if (tree.implementing.nonEmpty())
  4293                 log.error(tree.implementing.head.pos(),
  4294                           "cant.extend.intf.annotation");
  4295             if (tree.typarams.nonEmpty())
  4296                 log.error(tree.typarams.head.pos(),
  4297                           "intf.annotation.cant.have.type.params");
  4299             // If this annotation has a @Repeatable, validate
  4300             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4301             if (repeatable != null) {
  4302                 // get diagnostic position for error reporting
  4303                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4304                 Assert.checkNonNull(cbPos);
  4306                 chk.validateRepeatable(c, repeatable, cbPos);
  4308         } else {
  4309             // Check that all extended classes and interfaces
  4310             // are compatible (i.e. no two define methods with same arguments
  4311             // yet different return types).  (JLS 8.4.6.3)
  4312             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4313             if (allowDefaultMethods) {
  4314                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4318         // Check that class does not import the same parameterized interface
  4319         // with two different argument lists.
  4320         chk.checkClassBounds(tree.pos(), c.type);
  4322         tree.type = c.type;
  4324         for (List<JCTypeParameter> l = tree.typarams;
  4325              l.nonEmpty(); l = l.tail) {
  4326              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4329         // Check that a generic class doesn't extend Throwable
  4330         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4331             log.error(tree.extending.pos(), "generic.throwable");
  4333         // Check that all methods which implement some
  4334         // method conform to the method they implement.
  4335         chk.checkImplementations(tree);
  4337         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4338         checkAutoCloseable(tree.pos(), env, c.type);
  4340         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4341             // Attribute declaration
  4342             attribStat(l.head, env);
  4343             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4344             // Make an exception for static constants.
  4345             if (c.owner.kind != PCK &&
  4346                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4347                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4348                 Symbol sym = null;
  4349                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4350                 if (sym == null ||
  4351                     sym.kind != VAR ||
  4352                     ((VarSymbol) sym).getConstValue() == null)
  4353                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4357         // Check for cycles among non-initial constructors.
  4358         chk.checkCyclicConstructors(tree);
  4360         // Check for cycles among annotation elements.
  4361         chk.checkNonCyclicElements(tree);
  4363         // Check for proper use of serialVersionUID
  4364         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4365             isSerializable(c.type) &&
  4366             (c.flags() & Flags.ENUM) == 0 &&
  4367             checkForSerial(c)) {
  4368             checkSerialVersionUID(tree, c);
  4370         if (allowTypeAnnos) {
  4371             // Correctly organize the postions of the type annotations
  4372             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4374             // Check type annotations applicability rules
  4375             validateTypeAnnotations(tree, false);
  4378         // where
  4379         boolean checkForSerial(ClassSymbol c) {
  4380             if ((c.flags() & ABSTRACT) == 0) {
  4381                 return true;
  4382             } else {
  4383                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4387         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4388             @Override
  4389             public boolean accepts(Symbol s) {
  4390                 return s.kind == Kinds.MTH &&
  4391                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4393         };
  4395         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4396         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4397             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4398                 if (types.isSameType(al.head.annotationType.type, t))
  4399                     return al.head.pos();
  4402             return null;
  4405         /** check if a type is a subtype of Serializable, if that is available. */
  4406         boolean isSerializable(Type t) {
  4407             try {
  4408                 syms.serializableType.complete();
  4410             catch (CompletionFailure e) {
  4411                 return false;
  4413             return types.isSubtype(t, syms.serializableType);
  4416         /** Check that an appropriate serialVersionUID member is defined. */
  4417         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4419             // check for presence of serialVersionUID
  4420             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4421             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4422             if (e.scope == null) {
  4423                 log.warning(LintCategory.SERIAL,
  4424                         tree.pos(), "missing.SVUID", c);
  4425                 return;
  4428             // check that it is static final
  4429             VarSymbol svuid = (VarSymbol)e.sym;
  4430             if ((svuid.flags() & (STATIC | FINAL)) !=
  4431                 (STATIC | FINAL))
  4432                 log.warning(LintCategory.SERIAL,
  4433                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4435             // check that it is long
  4436             else if (!svuid.type.hasTag(LONG))
  4437                 log.warning(LintCategory.SERIAL,
  4438                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4440             // check constant
  4441             else if (svuid.getConstValue() == null)
  4442                 log.warning(LintCategory.SERIAL,
  4443                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4446     private Type capture(Type type) {
  4447         return types.capture(type);
  4450     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
  4451         tree.accept(new TypeAnnotationsValidator(sigOnly));
  4453     //where
  4454     private final class TypeAnnotationsValidator extends TreeScanner {
  4456         private final boolean sigOnly;
  4457         public TypeAnnotationsValidator(boolean sigOnly) {
  4458             this.sigOnly = sigOnly;
  4461         public void visitAnnotation(JCAnnotation tree) {
  4462             chk.validateTypeAnnotation(tree, false);
  4463             super.visitAnnotation(tree);
  4465         public void visitAnnotatedType(JCAnnotatedType tree) {
  4466             if (!tree.underlyingType.type.isErroneous()) {
  4467                 super.visitAnnotatedType(tree);
  4470         public void visitTypeParameter(JCTypeParameter tree) {
  4471             chk.validateTypeAnnotations(tree.annotations, true);
  4472             scan(tree.bounds);
  4473             // Don't call super.
  4474             // This is needed because above we call validateTypeAnnotation with
  4475             // false, which would forbid annotations on type parameters.
  4476             // super.visitTypeParameter(tree);
  4478         public void visitMethodDef(JCMethodDecl tree) {
  4479             if (tree.recvparam != null &&
  4480                     !tree.recvparam.vartype.type.isErroneous()) {
  4481                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4482                         tree.recvparam.vartype.type.tsym);
  4484             if (tree.restype != null && tree.restype.type != null) {
  4485                 validateAnnotatedType(tree.restype, tree.restype.type);
  4487             if (sigOnly) {
  4488                 scan(tree.mods);
  4489                 scan(tree.restype);
  4490                 scan(tree.typarams);
  4491                 scan(tree.recvparam);
  4492                 scan(tree.params);
  4493                 scan(tree.thrown);
  4494             } else {
  4495                 scan(tree.defaultValue);
  4496                 scan(tree.body);
  4499         public void visitVarDef(final JCVariableDecl tree) {
  4500             if (tree.sym != null && tree.sym.type != null)
  4501                 validateAnnotatedType(tree.vartype, tree.sym.type);
  4502             scan(tree.mods);
  4503             scan(tree.vartype);
  4504             if (!sigOnly) {
  4505                 scan(tree.init);
  4508         public void visitTypeCast(JCTypeCast tree) {
  4509             if (tree.clazz != null && tree.clazz.type != null)
  4510                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4511             super.visitTypeCast(tree);
  4513         public void visitTypeTest(JCInstanceOf tree) {
  4514             if (tree.clazz != null && tree.clazz.type != null)
  4515                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4516             super.visitTypeTest(tree);
  4518         public void visitNewClass(JCNewClass tree) {
  4519             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  4520                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  4521                         tree.clazz.type.tsym);
  4523             if (tree.def != null) {
  4524                 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
  4526             if (tree.clazz.type != null) {
  4527                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4529             super.visitNewClass(tree);
  4531         public void visitNewArray(JCNewArray tree) {
  4532             if (tree.elemtype != null && tree.elemtype.type != null) {
  4533                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  4534                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  4535                             tree.elemtype.type.tsym);
  4537                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
  4539             super.visitNewArray(tree);
  4541         public void visitClassDef(JCClassDecl tree) {
  4542             if (sigOnly) {
  4543                 scan(tree.mods);
  4544                 scan(tree.typarams);
  4545                 scan(tree.extending);
  4546                 scan(tree.implementing);
  4548             for (JCTree member : tree.defs) {
  4549                 if (member.hasTag(Tag.CLASSDEF)) {
  4550                     continue;
  4552                 scan(member);
  4555         public void visitBlock(JCBlock tree) {
  4556             if (!sigOnly) {
  4557                 scan(tree.stats);
  4561         /* I would want to model this after
  4562          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4563          * and override visitSelect and visitTypeApply.
  4564          * However, we only set the annotated type in the top-level type
  4565          * of the symbol.
  4566          * Therefore, we need to override each individual location where a type
  4567          * can occur.
  4568          */
  4569         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4570             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
  4572             if (type.isPrimitiveOrVoid()) {
  4573                 return;
  4576             JCTree enclTr = errtree;
  4577             Type enclTy = type;
  4579             boolean repeat = true;
  4580             while (repeat) {
  4581                 if (enclTr.hasTag(TYPEAPPLY)) {
  4582                     List<Type> tyargs = enclTy.getTypeArguments();
  4583                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
  4584                     if (trargs.length() > 0) {
  4585                         // Nothing to do for diamonds
  4586                         if (tyargs.length() == trargs.length()) {
  4587                             for (int i = 0; i < tyargs.length(); ++i) {
  4588                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
  4591                         // If the lengths don't match, it's either a diamond
  4592                         // or some nested type that redundantly provides
  4593                         // type arguments in the tree.
  4596                     // Look at the clazz part of a generic type
  4597                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
  4600                 if (enclTr.hasTag(SELECT)) {
  4601                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
  4602                     if (enclTy != null &&
  4603                             !enclTy.hasTag(NONE)) {
  4604                         enclTy = enclTy.getEnclosingType();
  4606                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
  4607                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
  4608                     if (enclTy == null ||
  4609                             enclTy.hasTag(NONE)) {
  4610                         if (at.getAnnotations().size() == 1) {
  4611                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
  4612                         } else {
  4613                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
  4614                             for (JCAnnotation an : at.getAnnotations()) {
  4615                                 comps.add(an.attribute);
  4617                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
  4619                         repeat = false;
  4621                     enclTr = at.underlyingType;
  4622                     // enclTy doesn't need to be changed
  4623                 } else if (enclTr.hasTag(IDENT)) {
  4624                     repeat = false;
  4625                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
  4626                     JCWildcard wc = (JCWildcard) enclTr;
  4627                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
  4628                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
  4629                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
  4630                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
  4631                     } else {
  4632                         // Nothing to do for UNBOUND
  4634                     repeat = false;
  4635                 } else if (enclTr.hasTag(TYPEARRAY)) {
  4636                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
  4637                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
  4638                     repeat = false;
  4639                 } else if (enclTr.hasTag(TYPEUNION)) {
  4640                     JCTypeUnion ut = (JCTypeUnion) enclTr;
  4641                     for (JCTree t : ut.getTypeAlternatives()) {
  4642                         validateAnnotatedType(t, t.type);
  4644                     repeat = false;
  4645                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
  4646                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
  4647                     for (JCTree t : it.getBounds()) {
  4648                         validateAnnotatedType(t, t.type);
  4650                     repeat = false;
  4651                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
  4652                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
  4653                     repeat = false;
  4654                 } else {
  4655                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
  4656                             " within: "+ errtree + " with kind: " + errtree.getKind());
  4661         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  4662                 Symbol sym) {
  4663             // Ensure that no declaration annotations are present.
  4664             // Note that a tree type might be an AnnotatedType with
  4665             // empty annotations, if only declaration annotations were given.
  4666             // This method will raise an error for such a type.
  4667             for (JCAnnotation ai : annotations) {
  4668                 if (!ai.type.isErroneous() &&
  4669                         typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  4670                     log.error(ai.pos(), "annotation.type.not.applicable");
  4674     };
  4676     // <editor-fold desc="post-attribution visitor">
  4678     /**
  4679      * Handle missing types/symbols in an AST. This routine is useful when
  4680      * the compiler has encountered some errors (which might have ended up
  4681      * terminating attribution abruptly); if the compiler is used in fail-over
  4682      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4683      * prevents NPE to be progagated during subsequent compilation steps.
  4684      */
  4685     public void postAttr(JCTree tree) {
  4686         new PostAttrAnalyzer().scan(tree);
  4689     class PostAttrAnalyzer extends TreeScanner {
  4691         private void initTypeIfNeeded(JCTree that) {
  4692             if (that.type == null) {
  4693                 if (that.hasTag(METHODDEF)) {
  4694                     that.type = dummyMethodType((JCMethodDecl)that);
  4695                 } else {
  4696                     that.type = syms.unknownType;
  4701         /* Construct a dummy method type. If we have a method declaration,
  4702          * and the declared return type is void, then use that return type
  4703          * instead of UNKNOWN to avoid spurious error messages in lambda
  4704          * bodies (see:JDK-8041704).
  4705          */
  4706         private Type dummyMethodType(JCMethodDecl md) {
  4707             Type restype = syms.unknownType;
  4708             if (md != null && md.restype.hasTag(TYPEIDENT)) {
  4709                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
  4710                 if (prim.typetag == VOID)
  4711                     restype = syms.voidType;
  4713             return new MethodType(List.<Type>nil(), restype,
  4714                                   List.<Type>nil(), syms.methodClass);
  4716         private Type dummyMethodType() {
  4717             return dummyMethodType(null);
  4720         @Override
  4721         public void scan(JCTree tree) {
  4722             if (tree == null) return;
  4723             if (tree instanceof JCExpression) {
  4724                 initTypeIfNeeded(tree);
  4726             super.scan(tree);
  4729         @Override
  4730         public void visitIdent(JCIdent that) {
  4731             if (that.sym == null) {
  4732                 that.sym = syms.unknownSymbol;
  4736         @Override
  4737         public void visitSelect(JCFieldAccess that) {
  4738             if (that.sym == null) {
  4739                 that.sym = syms.unknownSymbol;
  4741             super.visitSelect(that);
  4744         @Override
  4745         public void visitClassDef(JCClassDecl that) {
  4746             initTypeIfNeeded(that);
  4747             if (that.sym == null) {
  4748                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4750             super.visitClassDef(that);
  4753         @Override
  4754         public void visitMethodDef(JCMethodDecl that) {
  4755             initTypeIfNeeded(that);
  4756             if (that.sym == null) {
  4757                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4759             super.visitMethodDef(that);
  4762         @Override
  4763         public void visitVarDef(JCVariableDecl that) {
  4764             initTypeIfNeeded(that);
  4765             if (that.sym == null) {
  4766                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4767                 that.sym.adr = 0;
  4769             super.visitVarDef(that);
  4772         @Override
  4773         public void visitNewClass(JCNewClass that) {
  4774             if (that.constructor == null) {
  4775                 that.constructor = new MethodSymbol(0, names.init,
  4776                         dummyMethodType(), syms.noSymbol);
  4778             if (that.constructorType == null) {
  4779                 that.constructorType = syms.unknownType;
  4781             super.visitNewClass(that);
  4784         @Override
  4785         public void visitAssignop(JCAssignOp that) {
  4786             if (that.operator == null) {
  4787                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4788                         -1, syms.noSymbol);
  4790             super.visitAssignop(that);
  4793         @Override
  4794         public void visitBinary(JCBinary that) {
  4795             if (that.operator == null) {
  4796                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4797                         -1, syms.noSymbol);
  4799             super.visitBinary(that);
  4802         @Override
  4803         public void visitUnary(JCUnary that) {
  4804             if (that.operator == null) {
  4805                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4806                         -1, syms.noSymbol);
  4808             super.visitUnary(that);
  4811         @Override
  4812         public void visitLambda(JCLambda that) {
  4813             super.visitLambda(that);
  4814             if (that.targets == null) {
  4815                 that.targets = List.nil();
  4819         @Override
  4820         public void visitReference(JCMemberReference that) {
  4821             super.visitReference(that);
  4822             if (that.sym == null) {
  4823                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
  4824                         syms.noSymbol);
  4826             if (that.targets == null) {
  4827                 that.targets = List.nil();
  4831     // </editor-fold>

mercurial