src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 09 Mar 2009 23:53:41 -0700

author
tbell
date
Mon, 09 Mar 2009 23:53:41 -0700
changeset 240
8c55d5b0ed71
parent 229
03bcd66bd8e7
parent 238
86b60aa941c6
child 299
22872b24d38c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.util.*;
    30 import com.sun.tools.javac.api.Messages;
    32 import com.sun.tools.javac.util.*;
    33 import com.sun.tools.javac.util.List;
    35 import com.sun.tools.javac.jvm.ClassReader;
    36 import com.sun.tools.javac.comp.Check;
    38 import static com.sun.tools.javac.code.Type.*;
    39 import static com.sun.tools.javac.code.TypeTags.*;
    40 import static com.sun.tools.javac.code.Symbol.*;
    41 import static com.sun.tools.javac.code.Flags.*;
    42 import static com.sun.tools.javac.code.BoundKind.*;
    43 import static com.sun.tools.javac.util.ListBuffer.lb;
    45 /**
    46  * Utility class containing various operations on types.
    47  *
    48  * <p>Unless other names are more illustrative, the following naming
    49  * conventions should be observed in this file:
    50  *
    51  * <dl>
    52  * <dt>t</dt>
    53  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    54  * <dt>s</dt>
    55  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    56  * <dt>ts</dt>
    57  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    58  * <dt>ss</dt>
    59  * <dd>A second list of types should be named ss.</dd>
    60  * </dl>
    61  *
    62  * <p><b>This is NOT part of any API supported by Sun Microsystems.
    63  * If you write code that depends on this, you do so at your own risk.
    64  * This code and its internal interfaces are subject to change or
    65  * deletion without notice.</b>
    66  */
    67 public class Types {
    68     protected static final Context.Key<Types> typesKey =
    69         new Context.Key<Types>();
    71     final Symtab syms;
    72     final JavacMessages messages;
    73     final Names names;
    74     final boolean allowBoxing;
    75     final ClassReader reader;
    76     final Source source;
    77     final Check chk;
    78     List<Warner> warnStack = List.nil();
    79     final Name capturedName;
    81     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    82     public static Types instance(Context context) {
    83         Types instance = context.get(typesKey);
    84         if (instance == null)
    85             instance = new Types(context);
    86         return instance;
    87     }
    89     protected Types(Context context) {
    90         context.put(typesKey, this);
    91         syms = Symtab.instance(context);
    92         names = Names.instance(context);
    93         allowBoxing = Source.instance(context).allowBoxing();
    94         reader = ClassReader.instance(context);
    95         source = Source.instance(context);
    96         chk = Check.instance(context);
    97         capturedName = names.fromString("<captured wildcard>");
    98         messages = JavacMessages.instance(context);
    99     }
   100     // </editor-fold>
   102     // <editor-fold defaultstate="collapsed" desc="upperBound">
   103     /**
   104      * The "rvalue conversion".<br>
   105      * The upper bound of most types is the type
   106      * itself.  Wildcards, on the other hand have upper
   107      * and lower bounds.
   108      * @param t a type
   109      * @return the upper bound of the given type
   110      */
   111     public Type upperBound(Type t) {
   112         return upperBound.visit(t);
   113     }
   114     // where
   115         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   117             @Override
   118             public Type visitWildcardType(WildcardType t, Void ignored) {
   119                 if (t.isSuperBound())
   120                     return t.bound == null ? syms.objectType : t.bound.bound;
   121                 else
   122                     return visit(t.type);
   123             }
   125             @Override
   126             public Type visitCapturedType(CapturedType t, Void ignored) {
   127                 return visit(t.bound);
   128             }
   129         };
   130     // </editor-fold>
   132     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   133     /**
   134      * The "lvalue conversion".<br>
   135      * The lower bound of most types is the type
   136      * itself.  Wildcards, on the other hand have upper
   137      * and lower bounds.
   138      * @param t a type
   139      * @return the lower bound of the given type
   140      */
   141     public Type lowerBound(Type t) {
   142         return lowerBound.visit(t);
   143     }
   144     // where
   145         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   147             @Override
   148             public Type visitWildcardType(WildcardType t, Void ignored) {
   149                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   150             }
   152             @Override
   153             public Type visitCapturedType(CapturedType t, Void ignored) {
   154                 return visit(t.getLowerBound());
   155             }
   156         };
   157     // </editor-fold>
   159     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   160     /**
   161      * Checks that all the arguments to a class are unbounded
   162      * wildcards or something else that doesn't make any restrictions
   163      * on the arguments. If a class isUnbounded, a raw super- or
   164      * subclass can be cast to it without a warning.
   165      * @param t a type
   166      * @return true iff the given type is unbounded or raw
   167      */
   168     public boolean isUnbounded(Type t) {
   169         return isUnbounded.visit(t);
   170     }
   171     // where
   172         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   174             public Boolean visitType(Type t, Void ignored) {
   175                 return true;
   176             }
   178             @Override
   179             public Boolean visitClassType(ClassType t, Void ignored) {
   180                 List<Type> parms = t.tsym.type.allparams();
   181                 List<Type> args = t.allparams();
   182                 while (parms.nonEmpty()) {
   183                     WildcardType unb = new WildcardType(syms.objectType,
   184                                                         BoundKind.UNBOUND,
   185                                                         syms.boundClass,
   186                                                         (TypeVar)parms.head);
   187                     if (!containsType(args.head, unb))
   188                         return false;
   189                     parms = parms.tail;
   190                     args = args.tail;
   191                 }
   192                 return true;
   193             }
   194         };
   195     // </editor-fold>
   197     // <editor-fold defaultstate="collapsed" desc="asSub">
   198     /**
   199      * Return the least specific subtype of t that starts with symbol
   200      * sym.  If none exists, return null.  The least specific subtype
   201      * is determined as follows:
   202      *
   203      * <p>If there is exactly one parameterized instance of sym that is a
   204      * subtype of t, that parameterized instance is returned.<br>
   205      * Otherwise, if the plain type or raw type `sym' is a subtype of
   206      * type t, the type `sym' itself is returned.  Otherwise, null is
   207      * returned.
   208      */
   209     public Type asSub(Type t, Symbol sym) {
   210         return asSub.visit(t, sym);
   211     }
   212     // where
   213         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   215             public Type visitType(Type t, Symbol sym) {
   216                 return null;
   217             }
   219             @Override
   220             public Type visitClassType(ClassType t, Symbol sym) {
   221                 if (t.tsym == sym)
   222                     return t;
   223                 Type base = asSuper(sym.type, t.tsym);
   224                 if (base == null)
   225                     return null;
   226                 ListBuffer<Type> from = new ListBuffer<Type>();
   227                 ListBuffer<Type> to = new ListBuffer<Type>();
   228                 try {
   229                     adapt(base, t, from, to);
   230                 } catch (AdaptFailure ex) {
   231                     return null;
   232                 }
   233                 Type res = subst(sym.type, from.toList(), to.toList());
   234                 if (!isSubtype(res, t))
   235                     return null;
   236                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   237                 for (List<Type> l = sym.type.allparams();
   238                      l.nonEmpty(); l = l.tail)
   239                     if (res.contains(l.head) && !t.contains(l.head))
   240                         openVars.append(l.head);
   241                 if (openVars.nonEmpty()) {
   242                     if (t.isRaw()) {
   243                         // The subtype of a raw type is raw
   244                         res = erasure(res);
   245                     } else {
   246                         // Unbound type arguments default to ?
   247                         List<Type> opens = openVars.toList();
   248                         ListBuffer<Type> qs = new ListBuffer<Type>();
   249                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   250                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   251                         }
   252                         res = subst(res, opens, qs.toList());
   253                     }
   254                 }
   255                 return res;
   256             }
   258             @Override
   259             public Type visitErrorType(ErrorType t, Symbol sym) {
   260                 return t;
   261             }
   262         };
   263     // </editor-fold>
   265     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   266     /**
   267      * Is t a subtype of or convertiable via boxing/unboxing
   268      * convertions to s?
   269      */
   270     public boolean isConvertible(Type t, Type s, Warner warn) {
   271         boolean tPrimitive = t.isPrimitive();
   272         boolean sPrimitive = s.isPrimitive();
   273         if (tPrimitive == sPrimitive)
   274             return isSubtypeUnchecked(t, s, warn);
   275         if (!allowBoxing) return false;
   276         return tPrimitive
   277             ? isSubtype(boxedClass(t).type, s)
   278             : isSubtype(unboxedType(t), s);
   279     }
   281     /**
   282      * Is t a subtype of or convertiable via boxing/unboxing
   283      * convertions to s?
   284      */
   285     public boolean isConvertible(Type t, Type s) {
   286         return isConvertible(t, s, Warner.noWarnings);
   287     }
   288     // </editor-fold>
   290     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   291     /**
   292      * Is t an unchecked subtype of s?
   293      */
   294     public boolean isSubtypeUnchecked(Type t, Type s) {
   295         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   296     }
   297     /**
   298      * Is t an unchecked subtype of s?
   299      */
   300     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   301         if (t.tag == ARRAY && s.tag == ARRAY) {
   302             return (((ArrayType)t).elemtype.tag <= lastBaseTag)
   303                 ? isSameType(elemtype(t), elemtype(s))
   304                 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   305         } else if (isSubtype(t, s)) {
   306             return true;
   307         }
   308         else if (t.tag == TYPEVAR) {
   309             return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   310         }
   311         else if (s.tag == UNDETVAR) {
   312             UndetVar uv = (UndetVar)s;
   313             if (uv.inst != null)
   314                 return isSubtypeUnchecked(t, uv.inst, warn);
   315         }
   316         else if (!s.isRaw()) {
   317             Type t2 = asSuper(t, s.tsym);
   318             if (t2 != null && t2.isRaw()) {
   319                 if (isReifiable(s))
   320                     warn.silentUnchecked();
   321                 else
   322                     warn.warnUnchecked();
   323                 return true;
   324             }
   325         }
   326         return false;
   327     }
   329     /**
   330      * Is t a subtype of s?<br>
   331      * (not defined for Method and ForAll types)
   332      */
   333     final public boolean isSubtype(Type t, Type s) {
   334         return isSubtype(t, s, true);
   335     }
   336     final public boolean isSubtypeNoCapture(Type t, Type s) {
   337         return isSubtype(t, s, false);
   338     }
   339     public boolean isSubtype(Type t, Type s, boolean capture) {
   340         if (t == s)
   341             return true;
   343         if (s.tag >= firstPartialTag)
   344             return isSuperType(s, t);
   346         Type lower = lowerBound(s);
   347         if (s != lower)
   348             return isSubtype(capture ? capture(t) : t, lower, false);
   350         return isSubtype.visit(capture ? capture(t) : t, s);
   351     }
   352     // where
   353         private TypeRelation isSubtype = new TypeRelation()
   354         {
   355             public Boolean visitType(Type t, Type s) {
   356                 switch (t.tag) {
   357                 case BYTE: case CHAR:
   358                     return (t.tag == s.tag ||
   359                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   360                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   361                     return t.tag <= s.tag && s.tag <= DOUBLE;
   362                 case BOOLEAN: case VOID:
   363                     return t.tag == s.tag;
   364                 case TYPEVAR:
   365                     return isSubtypeNoCapture(t.getUpperBound(), s);
   366                 case BOT:
   367                     return
   368                         s.tag == BOT || s.tag == CLASS ||
   369                         s.tag == ARRAY || s.tag == TYPEVAR;
   370                 case NONE:
   371                     return false;
   372                 default:
   373                     throw new AssertionError("isSubtype " + t.tag);
   374                 }
   375             }
   377             private Set<TypePair> cache = new HashSet<TypePair>();
   379             private boolean containsTypeRecursive(Type t, Type s) {
   380                 TypePair pair = new TypePair(t, s);
   381                 if (cache.add(pair)) {
   382                     try {
   383                         return containsType(t.getTypeArguments(),
   384                                             s.getTypeArguments());
   385                     } finally {
   386                         cache.remove(pair);
   387                     }
   388                 } else {
   389                     return containsType(t.getTypeArguments(),
   390                                         rewriteSupers(s).getTypeArguments());
   391                 }
   392             }
   394             private Type rewriteSupers(Type t) {
   395                 if (!t.isParameterized())
   396                     return t;
   397                 ListBuffer<Type> from = lb();
   398                 ListBuffer<Type> to = lb();
   399                 adaptSelf(t, from, to);
   400                 if (from.isEmpty())
   401                     return t;
   402                 ListBuffer<Type> rewrite = lb();
   403                 boolean changed = false;
   404                 for (Type orig : to.toList()) {
   405                     Type s = rewriteSupers(orig);
   406                     if (s.isSuperBound() && !s.isExtendsBound()) {
   407                         s = new WildcardType(syms.objectType,
   408                                              BoundKind.UNBOUND,
   409                                              syms.boundClass);
   410                         changed = true;
   411                     } else if (s != orig) {
   412                         s = new WildcardType(upperBound(s),
   413                                              BoundKind.EXTENDS,
   414                                              syms.boundClass);
   415                         changed = true;
   416                     }
   417                     rewrite.append(s);
   418                 }
   419                 if (changed)
   420                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   421                 else
   422                     return t;
   423             }
   425             @Override
   426             public Boolean visitClassType(ClassType t, Type s) {
   427                 Type sup = asSuper(t, s.tsym);
   428                 return sup != null
   429                     && sup.tsym == s.tsym
   430                     // You're not allowed to write
   431                     //     Vector<Object> vec = new Vector<String>();
   432                     // But with wildcards you can write
   433                     //     Vector<? extends Object> vec = new Vector<String>();
   434                     // which means that subtype checking must be done
   435                     // here instead of same-type checking (via containsType).
   436                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   437                     && isSubtypeNoCapture(sup.getEnclosingType(),
   438                                           s.getEnclosingType());
   439             }
   441             @Override
   442             public Boolean visitArrayType(ArrayType t, Type s) {
   443                 if (s.tag == ARRAY) {
   444                     if (t.elemtype.tag <= lastBaseTag)
   445                         return isSameType(t.elemtype, elemtype(s));
   446                     else
   447                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   448                 }
   450                 if (s.tag == CLASS) {
   451                     Name sname = s.tsym.getQualifiedName();
   452                     return sname == names.java_lang_Object
   453                         || sname == names.java_lang_Cloneable
   454                         || sname == names.java_io_Serializable;
   455                 }
   457                 return false;
   458             }
   460             @Override
   461             public Boolean visitUndetVar(UndetVar t, Type s) {
   462                 //todo: test against origin needed? or replace with substitution?
   463                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   464                     return true;
   466                 if (t.inst != null)
   467                     return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
   469                 t.hibounds = t.hibounds.prepend(s);
   470                 return true;
   471             }
   473             @Override
   474             public Boolean visitErrorType(ErrorType t, Type s) {
   475                 return true;
   476             }
   477         };
   479     /**
   480      * Is t a subtype of every type in given list `ts'?<br>
   481      * (not defined for Method and ForAll types)<br>
   482      * Allows unchecked conversions.
   483      */
   484     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   485         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   486             if (!isSubtypeUnchecked(t, l.head, warn))
   487                 return false;
   488         return true;
   489     }
   491     /**
   492      * Are corresponding elements of ts subtypes of ss?  If lists are
   493      * of different length, return false.
   494      */
   495     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   496         while (ts.tail != null && ss.tail != null
   497                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   498                isSubtype(ts.head, ss.head)) {
   499             ts = ts.tail;
   500             ss = ss.tail;
   501         }
   502         return ts.tail == null && ss.tail == null;
   503         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   504     }
   506     /**
   507      * Are corresponding elements of ts subtypes of ss, allowing
   508      * unchecked conversions?  If lists are of different length,
   509      * return false.
   510      **/
   511     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   512         while (ts.tail != null && ss.tail != null
   513                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   514                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   515             ts = ts.tail;
   516             ss = ss.tail;
   517         }
   518         return ts.tail == null && ss.tail == null;
   519         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   520     }
   521     // </editor-fold>
   523     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   524     /**
   525      * Is t a supertype of s?
   526      */
   527     public boolean isSuperType(Type t, Type s) {
   528         switch (t.tag) {
   529         case ERROR:
   530             return true;
   531         case UNDETVAR: {
   532             UndetVar undet = (UndetVar)t;
   533             if (t == s ||
   534                 undet.qtype == s ||
   535                 s.tag == ERROR ||
   536                 s.tag == BOT) return true;
   537             if (undet.inst != null)
   538                 return isSubtype(s, undet.inst);
   539             undet.lobounds = undet.lobounds.prepend(s);
   540             return true;
   541         }
   542         default:
   543             return isSubtype(s, t);
   544         }
   545     }
   546     // </editor-fold>
   548     // <editor-fold defaultstate="collapsed" desc="isSameType">
   549     /**
   550      * Are corresponding elements of the lists the same type?  If
   551      * lists are of different length, return false.
   552      */
   553     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   554         while (ts.tail != null && ss.tail != null
   555                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   556                isSameType(ts.head, ss.head)) {
   557             ts = ts.tail;
   558             ss = ss.tail;
   559         }
   560         return ts.tail == null && ss.tail == null;
   561         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   562     }
   564     /**
   565      * Is t the same type as s?
   566      */
   567     public boolean isSameType(Type t, Type s) {
   568         return isSameType.visit(t, s);
   569     }
   570     // where
   571         private TypeRelation isSameType = new TypeRelation() {
   573             public Boolean visitType(Type t, Type s) {
   574                 if (t == s)
   575                     return true;
   577                 if (s.tag >= firstPartialTag)
   578                     return visit(s, t);
   580                 switch (t.tag) {
   581                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   582                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   583                     return t.tag == s.tag;
   584                 case TYPEVAR:
   585                     return s.isSuperBound()
   586                         && !s.isExtendsBound()
   587                         && visit(t, upperBound(s));
   588                 default:
   589                     throw new AssertionError("isSameType " + t.tag);
   590                 }
   591             }
   593             @Override
   594             public Boolean visitWildcardType(WildcardType t, Type s) {
   595                 if (s.tag >= firstPartialTag)
   596                     return visit(s, t);
   597                 else
   598                     return false;
   599             }
   601             @Override
   602             public Boolean visitClassType(ClassType t, Type s) {
   603                 if (t == s)
   604                     return true;
   606                 if (s.tag >= firstPartialTag)
   607                     return visit(s, t);
   609                 if (s.isSuperBound() && !s.isExtendsBound())
   610                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   612                 if (t.isCompound() && s.isCompound()) {
   613                     if (!visit(supertype(t), supertype(s)))
   614                         return false;
   616                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   617                     for (Type x : interfaces(t))
   618                         set.add(new SingletonType(x));
   619                     for (Type x : interfaces(s)) {
   620                         if (!set.remove(new SingletonType(x)))
   621                             return false;
   622                     }
   623                     return (set.size() == 0);
   624                 }
   625                 return t.tsym == s.tsym
   626                     && visit(t.getEnclosingType(), s.getEnclosingType())
   627                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   628             }
   630             @Override
   631             public Boolean visitArrayType(ArrayType t, Type s) {
   632                 if (t == s)
   633                     return true;
   635                 if (s.tag >= firstPartialTag)
   636                     return visit(s, t);
   638                 return s.tag == ARRAY
   639                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   640             }
   642             @Override
   643             public Boolean visitMethodType(MethodType t, Type s) {
   644                 // isSameType for methods does not take thrown
   645                 // exceptions into account!
   646                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   647             }
   649             @Override
   650             public Boolean visitPackageType(PackageType t, Type s) {
   651                 return t == s;
   652             }
   654             @Override
   655             public Boolean visitForAll(ForAll t, Type s) {
   656                 if (s.tag != FORALL)
   657                     return false;
   659                 ForAll forAll = (ForAll)s;
   660                 return hasSameBounds(t, forAll)
   661                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   662             }
   664             @Override
   665             public Boolean visitUndetVar(UndetVar t, Type s) {
   666                 if (s.tag == WILDCARD)
   667                     // FIXME, this might be leftovers from before capture conversion
   668                     return false;
   670                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   671                     return true;
   673                 if (t.inst != null)
   674                     return visit(t.inst, s);
   676                 t.inst = fromUnknownFun.apply(s);
   677                 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
   678                     if (!isSubtype(l.head, t.inst))
   679                         return false;
   680                 }
   681                 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
   682                     if (!isSubtype(t.inst, l.head))
   683                         return false;
   684                 }
   685                 return true;
   686             }
   688             @Override
   689             public Boolean visitErrorType(ErrorType t, Type s) {
   690                 return true;
   691             }
   692         };
   693     // </editor-fold>
   695     // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
   696     /**
   697      * A mapping that turns all unknown types in this type to fresh
   698      * unknown variables.
   699      */
   700     public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
   701             public Type apply(Type t) {
   702                 if (t.tag == UNKNOWN) return new UndetVar(t);
   703                 else return t.map(this);
   704             }
   705         };
   706     // </editor-fold>
   708     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   709     public boolean containedBy(Type t, Type s) {
   710         switch (t.tag) {
   711         case UNDETVAR:
   712             if (s.tag == WILDCARD) {
   713                 UndetVar undetvar = (UndetVar)t;
   714                 WildcardType wt = (WildcardType)s;
   715                 switch(wt.kind) {
   716                     case UNBOUND: //similar to ? extends Object
   717                     case EXTENDS: {
   718                         Type bound = upperBound(s);
   719                         // We should check the new upper bound against any of the
   720                         // undetvar's lower bounds.
   721                         for (Type t2 : undetvar.lobounds) {
   722                             if (!isSubtype(t2, bound))
   723                                 return false;
   724                         }
   725                         undetvar.hibounds = undetvar.hibounds.prepend(bound);
   726                         break;
   727                     }
   728                     case SUPER: {
   729                         Type bound = lowerBound(s);
   730                         // We should check the new lower bound against any of the
   731                         // undetvar's lower bounds.
   732                         for (Type t2 : undetvar.hibounds) {
   733                             if (!isSubtype(bound, t2))
   734                                 return false;
   735                         }
   736                         undetvar.lobounds = undetvar.lobounds.prepend(bound);
   737                         break;
   738                     }
   739                 }
   740                 return true;
   741             } else {
   742                 return isSameType(t, s);
   743             }
   744         case ERROR:
   745             return true;
   746         default:
   747             return containsType(s, t);
   748         }
   749     }
   751     boolean containsType(List<Type> ts, List<Type> ss) {
   752         while (ts.nonEmpty() && ss.nonEmpty()
   753                && containsType(ts.head, ss.head)) {
   754             ts = ts.tail;
   755             ss = ss.tail;
   756         }
   757         return ts.isEmpty() && ss.isEmpty();
   758     }
   760     /**
   761      * Check if t contains s.
   762      *
   763      * <p>T contains S if:
   764      *
   765      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   766      *
   767      * <p>This relation is only used by ClassType.isSubtype(), that
   768      * is,
   769      *
   770      * <p>{@code C<S> <: C<T> if T contains S.}
   771      *
   772      * <p>Because of F-bounds, this relation can lead to infinite
   773      * recursion.  Thus we must somehow break that recursion.  Notice
   774      * that containsType() is only called from ClassType.isSubtype().
   775      * Since the arguments have already been checked against their
   776      * bounds, we know:
   777      *
   778      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   779      *
   780      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   781      *
   782      * @param t a type
   783      * @param s a type
   784      */
   785     public boolean containsType(Type t, Type s) {
   786         return containsType.visit(t, s);
   787     }
   788     // where
   789         private TypeRelation containsType = new TypeRelation() {
   791             private Type U(Type t) {
   792                 while (t.tag == WILDCARD) {
   793                     WildcardType w = (WildcardType)t;
   794                     if (w.isSuperBound())
   795                         return w.bound == null ? syms.objectType : w.bound.bound;
   796                     else
   797                         t = w.type;
   798                 }
   799                 return t;
   800             }
   802             private Type L(Type t) {
   803                 while (t.tag == WILDCARD) {
   804                     WildcardType w = (WildcardType)t;
   805                     if (w.isExtendsBound())
   806                         return syms.botType;
   807                     else
   808                         t = w.type;
   809                 }
   810                 return t;
   811             }
   813             public Boolean visitType(Type t, Type s) {
   814                 if (s.tag >= firstPartialTag)
   815                     return containedBy(s, t);
   816                 else
   817                     return isSameType(t, s);
   818             }
   820             void debugContainsType(WildcardType t, Type s) {
   821                 System.err.println();
   822                 System.err.format(" does %s contain %s?%n", t, s);
   823                 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   824                                   upperBound(s), s, t, U(t),
   825                                   t.isSuperBound()
   826                                   || isSubtypeNoCapture(upperBound(s), U(t)));
   827                 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   828                                   L(t), t, s, lowerBound(s),
   829                                   t.isExtendsBound()
   830                                   || isSubtypeNoCapture(L(t), lowerBound(s)));
   831                 System.err.println();
   832             }
   834             @Override
   835             public Boolean visitWildcardType(WildcardType t, Type s) {
   836                 if (s.tag >= firstPartialTag)
   837                     return containedBy(s, t);
   838                 else {
   839                     // debugContainsType(t, s);
   840                     return isSameWildcard(t, s)
   841                         || isCaptureOf(s, t)
   842                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   843                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   844                 }
   845             }
   847             @Override
   848             public Boolean visitUndetVar(UndetVar t, Type s) {
   849                 if (s.tag != WILDCARD)
   850                     return isSameType(t, s);
   851                 else
   852                     return false;
   853             }
   855             @Override
   856             public Boolean visitErrorType(ErrorType t, Type s) {
   857                 return true;
   858             }
   859         };
   861     public boolean isCaptureOf(Type s, WildcardType t) {
   862         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   863             return false;
   864         return isSameWildcard(t, ((CapturedType)s).wildcard);
   865     }
   867     public boolean isSameWildcard(WildcardType t, Type s) {
   868         if (s.tag != WILDCARD)
   869             return false;
   870         WildcardType w = (WildcardType)s;
   871         return w.kind == t.kind && w.type == t.type;
   872     }
   874     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   875         while (ts.nonEmpty() && ss.nonEmpty()
   876                && containsTypeEquivalent(ts.head, ss.head)) {
   877             ts = ts.tail;
   878             ss = ss.tail;
   879         }
   880         return ts.isEmpty() && ss.isEmpty();
   881     }
   882     // </editor-fold>
   884     // <editor-fold defaultstate="collapsed" desc="isCastable">
   885     public boolean isCastable(Type t, Type s) {
   886         return isCastable(t, s, Warner.noWarnings);
   887     }
   889     /**
   890      * Is t is castable to s?<br>
   891      * s is assumed to be an erased type.<br>
   892      * (not defined for Method and ForAll types).
   893      */
   894     public boolean isCastable(Type t, Type s, Warner warn) {
   895         if (t == s)
   896             return true;
   898         if (t.isPrimitive() != s.isPrimitive())
   899             return allowBoxing && isConvertible(t, s, warn);
   901         if (warn != warnStack.head) {
   902             try {
   903                 warnStack = warnStack.prepend(warn);
   904                 return isCastable.visit(t,s);
   905             } finally {
   906                 warnStack = warnStack.tail;
   907             }
   908         } else {
   909             return isCastable.visit(t,s);
   910         }
   911     }
   912     // where
   913         private TypeRelation isCastable = new TypeRelation() {
   915             public Boolean visitType(Type t, Type s) {
   916                 if (s.tag == ERROR)
   917                     return true;
   919                 switch (t.tag) {
   920                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   921                 case DOUBLE:
   922                     return s.tag <= DOUBLE;
   923                 case BOOLEAN:
   924                     return s.tag == BOOLEAN;
   925                 case VOID:
   926                     return false;
   927                 case BOT:
   928                     return isSubtype(t, s);
   929                 default:
   930                     throw new AssertionError();
   931                 }
   932             }
   934             @Override
   935             public Boolean visitWildcardType(WildcardType t, Type s) {
   936                 return isCastable(upperBound(t), s, warnStack.head);
   937             }
   939             @Override
   940             public Boolean visitClassType(ClassType t, Type s) {
   941                 if (s.tag == ERROR || s.tag == BOT)
   942                     return true;
   944                 if (s.tag == TYPEVAR) {
   945                     if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
   946                         warnStack.head.warnUnchecked();
   947                         return true;
   948                     } else {
   949                         return false;
   950                     }
   951                 }
   953                 if (t.isCompound()) {
   954                     Warner oldWarner = warnStack.head;
   955                     warnStack.head = Warner.noWarnings;
   956                     if (!visit(supertype(t), s))
   957                         return false;
   958                     for (Type intf : interfaces(t)) {
   959                         if (!visit(intf, s))
   960                             return false;
   961                     }
   962                     if (warnStack.head.unchecked == true)
   963                         oldWarner.warnUnchecked();
   964                     return true;
   965                 }
   967                 if (s.isCompound()) {
   968                     // call recursively to reuse the above code
   969                     return visitClassType((ClassType)s, t);
   970                 }
   972                 if (s.tag == CLASS || s.tag == ARRAY) {
   973                     boolean upcast;
   974                     if ((upcast = isSubtype(erasure(t), erasure(s)))
   975                         || isSubtype(erasure(s), erasure(t))) {
   976                         if (!upcast && s.tag == ARRAY) {
   977                             if (!isReifiable(s))
   978                                 warnStack.head.warnUnchecked();
   979                             return true;
   980                         } else if (s.isRaw()) {
   981                             return true;
   982                         } else if (t.isRaw()) {
   983                             if (!isUnbounded(s))
   984                                 warnStack.head.warnUnchecked();
   985                             return true;
   986                         }
   987                         // Assume |a| <: |b|
   988                         final Type a = upcast ? t : s;
   989                         final Type b = upcast ? s : t;
   990                         final boolean HIGH = true;
   991                         final boolean LOW = false;
   992                         final boolean DONT_REWRITE_TYPEVARS = false;
   993                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
   994                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
   995                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
   996                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
   997                         Type lowSub = asSub(bLow, aLow.tsym);
   998                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
   999                         if (highSub == null) {
  1000                             final boolean REWRITE_TYPEVARS = true;
  1001                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1002                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1003                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1004                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1005                             lowSub = asSub(bLow, aLow.tsym);
  1006                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1008                         if (highSub != null) {
  1009                             assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
  1010                                 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
  1011                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1012                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1013                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1014                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1015                                 if (upcast ? giveWarning(a, b) :
  1016                                     giveWarning(b, a))
  1017                                     warnStack.head.warnUnchecked();
  1018                                 return true;
  1021                         if (isReifiable(s))
  1022                             return isSubtypeUnchecked(a, b);
  1023                         else
  1024                             return isSubtypeUnchecked(a, b, warnStack.head);
  1027                     // Sidecast
  1028                     if (s.tag == CLASS) {
  1029                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1030                             return ((t.tsym.flags() & FINAL) == 0)
  1031                                 ? sideCast(t, s, warnStack.head)
  1032                                 : sideCastFinal(t, s, warnStack.head);
  1033                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1034                             return ((s.tsym.flags() & FINAL) == 0)
  1035                                 ? sideCast(t, s, warnStack.head)
  1036                                 : sideCastFinal(t, s, warnStack.head);
  1037                         } else {
  1038                             // unrelated class types
  1039                             return false;
  1043                 return false;
  1046             @Override
  1047             public Boolean visitArrayType(ArrayType t, Type s) {
  1048                 switch (s.tag) {
  1049                 case ERROR:
  1050                 case BOT:
  1051                     return true;
  1052                 case TYPEVAR:
  1053                     if (isCastable(s, t, Warner.noWarnings)) {
  1054                         warnStack.head.warnUnchecked();
  1055                         return true;
  1056                     } else {
  1057                         return false;
  1059                 case CLASS:
  1060                     return isSubtype(t, s);
  1061                 case ARRAY:
  1062                     if (elemtype(t).tag <= lastBaseTag) {
  1063                         return elemtype(t).tag == elemtype(s).tag;
  1064                     } else {
  1065                         return visit(elemtype(t), elemtype(s));
  1067                 default:
  1068                     return false;
  1072             @Override
  1073             public Boolean visitTypeVar(TypeVar t, Type s) {
  1074                 switch (s.tag) {
  1075                 case ERROR:
  1076                 case BOT:
  1077                     return true;
  1078                 case TYPEVAR:
  1079                     if (isSubtype(t, s)) {
  1080                         return true;
  1081                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1082                         warnStack.head.warnUnchecked();
  1083                         return true;
  1084                     } else {
  1085                         return false;
  1087                 default:
  1088                     return isCastable(t.bound, s, warnStack.head);
  1092             @Override
  1093             public Boolean visitErrorType(ErrorType t, Type s) {
  1094                 return true;
  1096         };
  1097     // </editor-fold>
  1099     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1100     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1101         while (ts.tail != null && ss.tail != null) {
  1102             if (disjointType(ts.head, ss.head)) return true;
  1103             ts = ts.tail;
  1104             ss = ss.tail;
  1106         return false;
  1109     /**
  1110      * Two types or wildcards are considered disjoint if it can be
  1111      * proven that no type can be contained in both. It is
  1112      * conservative in that it is allowed to say that two types are
  1113      * not disjoint, even though they actually are.
  1115      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1116      * disjoint.
  1117      */
  1118     public boolean disjointType(Type t, Type s) {
  1119         return disjointType.visit(t, s);
  1121     // where
  1122         private TypeRelation disjointType = new TypeRelation() {
  1124             private Set<TypePair> cache = new HashSet<TypePair>();
  1126             public Boolean visitType(Type t, Type s) {
  1127                 if (s.tag == WILDCARD)
  1128                     return visit(s, t);
  1129                 else
  1130                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1133             private boolean isCastableRecursive(Type t, Type s) {
  1134                 TypePair pair = new TypePair(t, s);
  1135                 if (cache.add(pair)) {
  1136                     try {
  1137                         return Types.this.isCastable(t, s);
  1138                     } finally {
  1139                         cache.remove(pair);
  1141                 } else {
  1142                     return true;
  1146             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1147                 TypePair pair = new TypePair(t, s);
  1148                 if (cache.add(pair)) {
  1149                     try {
  1150                         return Types.this.notSoftSubtype(t, s);
  1151                     } finally {
  1152                         cache.remove(pair);
  1154                 } else {
  1155                     return false;
  1159             @Override
  1160             public Boolean visitWildcardType(WildcardType t, Type s) {
  1161                 if (t.isUnbound())
  1162                     return false;
  1164                 if (s.tag != WILDCARD) {
  1165                     if (t.isExtendsBound())
  1166                         return notSoftSubtypeRecursive(s, t.type);
  1167                     else // isSuperBound()
  1168                         return notSoftSubtypeRecursive(t.type, s);
  1171                 if (s.isUnbound())
  1172                     return false;
  1174                 if (t.isExtendsBound()) {
  1175                     if (s.isExtendsBound())
  1176                         return !isCastableRecursive(t.type, upperBound(s));
  1177                     else if (s.isSuperBound())
  1178                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1179                 } else if (t.isSuperBound()) {
  1180                     if (s.isExtendsBound())
  1181                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1183                 return false;
  1185         };
  1186     // </editor-fold>
  1188     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1189     /**
  1190      * Returns the lower bounds of the formals of a method.
  1191      */
  1192     public List<Type> lowerBoundArgtypes(Type t) {
  1193         return map(t.getParameterTypes(), lowerBoundMapping);
  1195     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1196             public Type apply(Type t) {
  1197                 return lowerBound(t);
  1199         };
  1200     // </editor-fold>
  1202     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1203     /**
  1204      * This relation answers the question: is impossible that
  1205      * something of type `t' can be a subtype of `s'? This is
  1206      * different from the question "is `t' not a subtype of `s'?"
  1207      * when type variables are involved: Integer is not a subtype of T
  1208      * where <T extends Number> but it is not true that Integer cannot
  1209      * possibly be a subtype of T.
  1210      */
  1211     public boolean notSoftSubtype(Type t, Type s) {
  1212         if (t == s) return false;
  1213         if (t.tag == TYPEVAR) {
  1214             TypeVar tv = (TypeVar) t;
  1215             if (s.tag == TYPEVAR)
  1216                 s = s.getUpperBound();
  1217             return !isCastable(tv.bound,
  1218                                s,
  1219                                Warner.noWarnings);
  1221         if (s.tag != WILDCARD)
  1222             s = upperBound(s);
  1223         if (s.tag == TYPEVAR)
  1224             s = s.getUpperBound();
  1226         return !isSubtype(t, s);
  1228     // </editor-fold>
  1230     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1231     public boolean isReifiable(Type t) {
  1232         return isReifiable.visit(t);
  1234     // where
  1235         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1237             public Boolean visitType(Type t, Void ignored) {
  1238                 return true;
  1241             @Override
  1242             public Boolean visitClassType(ClassType t, Void ignored) {
  1243                 if (!t.isParameterized())
  1244                     return true;
  1246                 for (Type param : t.allparams()) {
  1247                     if (!param.isUnbound())
  1248                         return false;
  1250                 return true;
  1253             @Override
  1254             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1255                 return visit(t.elemtype);
  1258             @Override
  1259             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1260                 return false;
  1262         };
  1263     // </editor-fold>
  1265     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1266     public boolean isArray(Type t) {
  1267         while (t.tag == WILDCARD)
  1268             t = upperBound(t);
  1269         return t.tag == ARRAY;
  1272     /**
  1273      * The element type of an array.
  1274      */
  1275     public Type elemtype(Type t) {
  1276         switch (t.tag) {
  1277         case WILDCARD:
  1278             return elemtype(upperBound(t));
  1279         case ARRAY:
  1280             return ((ArrayType)t).elemtype;
  1281         case FORALL:
  1282             return elemtype(((ForAll)t).qtype);
  1283         case ERROR:
  1284             return t;
  1285         default:
  1286             return null;
  1290     /**
  1291      * Mapping to take element type of an arraytype
  1292      */
  1293     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1294         public Type apply(Type t) { return elemtype(t); }
  1295     };
  1297     /**
  1298      * The number of dimensions of an array type.
  1299      */
  1300     public int dimensions(Type t) {
  1301         int result = 0;
  1302         while (t.tag == ARRAY) {
  1303             result++;
  1304             t = elemtype(t);
  1306         return result;
  1308     // </editor-fold>
  1310     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1311     /**
  1312      * Return the (most specific) base type of t that starts with the
  1313      * given symbol.  If none exists, return null.
  1315      * @param t a type
  1316      * @param sym a symbol
  1317      */
  1318     public Type asSuper(Type t, Symbol sym) {
  1319         return asSuper.visit(t, sym);
  1321     // where
  1322         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1324             public Type visitType(Type t, Symbol sym) {
  1325                 return null;
  1328             @Override
  1329             public Type visitClassType(ClassType t, Symbol sym) {
  1330                 if (t.tsym == sym)
  1331                     return t;
  1333                 Type st = supertype(t);
  1334                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1335                     Type x = asSuper(st, sym);
  1336                     if (x != null)
  1337                         return x;
  1339                 if ((sym.flags() & INTERFACE) != 0) {
  1340                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1341                         Type x = asSuper(l.head, sym);
  1342                         if (x != null)
  1343                             return x;
  1346                 return null;
  1349             @Override
  1350             public Type visitArrayType(ArrayType t, Symbol sym) {
  1351                 return isSubtype(t, sym.type) ? sym.type : null;
  1354             @Override
  1355             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1356                 if (t.tsym == sym)
  1357                     return t;
  1358                 else
  1359                     return asSuper(t.bound, sym);
  1362             @Override
  1363             public Type visitErrorType(ErrorType t, Symbol sym) {
  1364                 return t;
  1366         };
  1368     /**
  1369      * Return the base type of t or any of its outer types that starts
  1370      * with the given symbol.  If none exists, return null.
  1372      * @param t a type
  1373      * @param sym a symbol
  1374      */
  1375     public Type asOuterSuper(Type t, Symbol sym) {
  1376         switch (t.tag) {
  1377         case CLASS:
  1378             do {
  1379                 Type s = asSuper(t, sym);
  1380                 if (s != null) return s;
  1381                 t = t.getEnclosingType();
  1382             } while (t.tag == CLASS);
  1383             return null;
  1384         case ARRAY:
  1385             return isSubtype(t, sym.type) ? sym.type : null;
  1386         case TYPEVAR:
  1387             return asSuper(t, sym);
  1388         case ERROR:
  1389             return t;
  1390         default:
  1391             return null;
  1395     /**
  1396      * Return the base type of t or any of its enclosing types that
  1397      * starts with the given symbol.  If none exists, return null.
  1399      * @param t a type
  1400      * @param sym a symbol
  1401      */
  1402     public Type asEnclosingSuper(Type t, Symbol sym) {
  1403         switch (t.tag) {
  1404         case CLASS:
  1405             do {
  1406                 Type s = asSuper(t, sym);
  1407                 if (s != null) return s;
  1408                 Type outer = t.getEnclosingType();
  1409                 t = (outer.tag == CLASS) ? outer :
  1410                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1411                     Type.noType;
  1412             } while (t.tag == CLASS);
  1413             return null;
  1414         case ARRAY:
  1415             return isSubtype(t, sym.type) ? sym.type : null;
  1416         case TYPEVAR:
  1417             return asSuper(t, sym);
  1418         case ERROR:
  1419             return t;
  1420         default:
  1421             return null;
  1424     // </editor-fold>
  1426     // <editor-fold defaultstate="collapsed" desc="memberType">
  1427     /**
  1428      * The type of given symbol, seen as a member of t.
  1430      * @param t a type
  1431      * @param sym a symbol
  1432      */
  1433     public Type memberType(Type t, Symbol sym) {
  1434         return (sym.flags() & STATIC) != 0
  1435             ? sym.type
  1436             : memberType.visit(t, sym);
  1438     // where
  1439         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1441             public Type visitType(Type t, Symbol sym) {
  1442                 return sym.type;
  1445             @Override
  1446             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1447                 return memberType(upperBound(t), sym);
  1450             @Override
  1451             public Type visitClassType(ClassType t, Symbol sym) {
  1452                 Symbol owner = sym.owner;
  1453                 long flags = sym.flags();
  1454                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1455                     Type base = asOuterSuper(t, owner);
  1456                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1457                     //its supertypes CT, I1, ... In might contain wildcards
  1458                     //so we need to go through capture conversion
  1459                     base = t.isCompound() ? capture(base) : base;
  1460                     if (base != null) {
  1461                         List<Type> ownerParams = owner.type.allparams();
  1462                         List<Type> baseParams = base.allparams();
  1463                         if (ownerParams.nonEmpty()) {
  1464                             if (baseParams.isEmpty()) {
  1465                                 // then base is a raw type
  1466                                 return erasure(sym.type);
  1467                             } else {
  1468                                 return subst(sym.type, ownerParams, baseParams);
  1473                 return sym.type;
  1476             @Override
  1477             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1478                 return memberType(t.bound, sym);
  1481             @Override
  1482             public Type visitErrorType(ErrorType t, Symbol sym) {
  1483                 return t;
  1485         };
  1486     // </editor-fold>
  1488     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1489     public boolean isAssignable(Type t, Type s) {
  1490         return isAssignable(t, s, Warner.noWarnings);
  1493     /**
  1494      * Is t assignable to s?<br>
  1495      * Equivalent to subtype except for constant values and raw
  1496      * types.<br>
  1497      * (not defined for Method and ForAll types)
  1498      */
  1499     public boolean isAssignable(Type t, Type s, Warner warn) {
  1500         if (t.tag == ERROR)
  1501             return true;
  1502         if (t.tag <= INT && t.constValue() != null) {
  1503             int value = ((Number)t.constValue()).intValue();
  1504             switch (s.tag) {
  1505             case BYTE:
  1506                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1507                     return true;
  1508                 break;
  1509             case CHAR:
  1510                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1511                     return true;
  1512                 break;
  1513             case SHORT:
  1514                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1515                     return true;
  1516                 break;
  1517             case INT:
  1518                 return true;
  1519             case CLASS:
  1520                 switch (unboxedType(s).tag) {
  1521                 case BYTE:
  1522                 case CHAR:
  1523                 case SHORT:
  1524                     return isAssignable(t, unboxedType(s), warn);
  1526                 break;
  1529         return isConvertible(t, s, warn);
  1531     // </editor-fold>
  1533     // <editor-fold defaultstate="collapsed" desc="erasure">
  1534     /**
  1535      * The erasure of t {@code |t|} -- the type that results when all
  1536      * type parameters in t are deleted.
  1537      */
  1538     public Type erasure(Type t) {
  1539         return erasure(t, false);
  1541     //where
  1542     private Type erasure(Type t, boolean recurse) {
  1543         if (t.tag <= lastBaseTag)
  1544             return t; /* fast special case */
  1545         else
  1546             return erasure.visit(t, recurse);
  1548     // where
  1549         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1550             public Type visitType(Type t, Boolean recurse) {
  1551                 if (t.tag <= lastBaseTag)
  1552                     return t; /*fast special case*/
  1553                 else
  1554                     return t.map(recurse ? erasureRecFun : erasureFun);
  1557             @Override
  1558             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1559                 return erasure(upperBound(t), recurse);
  1562             @Override
  1563             public Type visitClassType(ClassType t, Boolean recurse) {
  1564                 Type erased = t.tsym.erasure(Types.this);
  1565                 if (recurse) {
  1566                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1568                 return erased;
  1571             @Override
  1572             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1573                 return erasure(t.bound, recurse);
  1576             @Override
  1577             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1578                 return t;
  1580         };
  1582     private Mapping erasureFun = new Mapping ("erasure") {
  1583             public Type apply(Type t) { return erasure(t); }
  1584         };
  1586     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1587         public Type apply(Type t) { return erasureRecursive(t); }
  1588     };
  1590     public List<Type> erasure(List<Type> ts) {
  1591         return Type.map(ts, erasureFun);
  1594     public Type erasureRecursive(Type t) {
  1595         return erasure(t, true);
  1598     public List<Type> erasureRecursive(List<Type> ts) {
  1599         return Type.map(ts, erasureRecFun);
  1601     // </editor-fold>
  1603     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1604     /**
  1605      * Make a compound type from non-empty list of types
  1607      * @param bounds            the types from which the compound type is formed
  1608      * @param supertype         is objectType if all bounds are interfaces,
  1609      *                          null otherwise.
  1610      */
  1611     public Type makeCompoundType(List<Type> bounds,
  1612                                  Type supertype) {
  1613         ClassSymbol bc =
  1614             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1615                             Type.moreInfo
  1616                                 ? names.fromString(bounds.toString())
  1617                                 : names.empty,
  1618                             syms.noSymbol);
  1619         if (bounds.head.tag == TYPEVAR)
  1620             // error condition, recover
  1621                 bc.erasure_field = syms.objectType;
  1622             else
  1623                 bc.erasure_field = erasure(bounds.head);
  1624             bc.members_field = new Scope(bc);
  1625         ClassType bt = (ClassType)bc.type;
  1626         bt.allparams_field = List.nil();
  1627         if (supertype != null) {
  1628             bt.supertype_field = supertype;
  1629             bt.interfaces_field = bounds;
  1630         } else {
  1631             bt.supertype_field = bounds.head;
  1632             bt.interfaces_field = bounds.tail;
  1634         assert bt.supertype_field.tsym.completer != null
  1635             || !bt.supertype_field.isInterface()
  1636             : bt.supertype_field;
  1637         return bt;
  1640     /**
  1641      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1642      * second parameter is computed directly. Note that this might
  1643      * cause a symbol completion.  Hence, this version of
  1644      * makeCompoundType may not be called during a classfile read.
  1645      */
  1646     public Type makeCompoundType(List<Type> bounds) {
  1647         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1648             supertype(bounds.head) : null;
  1649         return makeCompoundType(bounds, supertype);
  1652     /**
  1653      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1654      * arguments are converted to a list and passed to the other
  1655      * method.  Note that this might cause a symbol completion.
  1656      * Hence, this version of makeCompoundType may not be called
  1657      * during a classfile read.
  1658      */
  1659     public Type makeCompoundType(Type bound1, Type bound2) {
  1660         return makeCompoundType(List.of(bound1, bound2));
  1662     // </editor-fold>
  1664     // <editor-fold defaultstate="collapsed" desc="supertype">
  1665     public Type supertype(Type t) {
  1666         return supertype.visit(t);
  1668     // where
  1669         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1671             public Type visitType(Type t, Void ignored) {
  1672                 // A note on wildcards: there is no good way to
  1673                 // determine a supertype for a super bounded wildcard.
  1674                 return null;
  1677             @Override
  1678             public Type visitClassType(ClassType t, Void ignored) {
  1679                 if (t.supertype_field == null) {
  1680                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1681                     // An interface has no superclass; its supertype is Object.
  1682                     if (t.isInterface())
  1683                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1684                     if (t.supertype_field == null) {
  1685                         List<Type> actuals = classBound(t).allparams();
  1686                         List<Type> formals = t.tsym.type.allparams();
  1687                         if (t.hasErasedSupertypes()) {
  1688                             t.supertype_field = erasureRecursive(supertype);
  1689                         } else if (formals.nonEmpty()) {
  1690                             t.supertype_field = subst(supertype, formals, actuals);
  1692                         else {
  1693                             t.supertype_field = supertype;
  1697                 return t.supertype_field;
  1700             /**
  1701              * The supertype is always a class type. If the type
  1702              * variable's bounds start with a class type, this is also
  1703              * the supertype.  Otherwise, the supertype is
  1704              * java.lang.Object.
  1705              */
  1706             @Override
  1707             public Type visitTypeVar(TypeVar t, Void ignored) {
  1708                 if (t.bound.tag == TYPEVAR ||
  1709                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1710                     return t.bound;
  1711                 } else {
  1712                     return supertype(t.bound);
  1716             @Override
  1717             public Type visitArrayType(ArrayType t, Void ignored) {
  1718                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1719                     return arraySuperType();
  1720                 else
  1721                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1724             @Override
  1725             public Type visitErrorType(ErrorType t, Void ignored) {
  1726                 return t;
  1728         };
  1729     // </editor-fold>
  1731     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1732     /**
  1733      * Return the interfaces implemented by this class.
  1734      */
  1735     public List<Type> interfaces(Type t) {
  1736         return interfaces.visit(t);
  1738     // where
  1739         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1741             public List<Type> visitType(Type t, Void ignored) {
  1742                 return List.nil();
  1745             @Override
  1746             public List<Type> visitClassType(ClassType t, Void ignored) {
  1747                 if (t.interfaces_field == null) {
  1748                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1749                     if (t.interfaces_field == null) {
  1750                         // If t.interfaces_field is null, then t must
  1751                         // be a parameterized type (not to be confused
  1752                         // with a generic type declaration).
  1753                         // Terminology:
  1754                         //    Parameterized type: List<String>
  1755                         //    Generic type declaration: class List<E> { ... }
  1756                         // So t corresponds to List<String> and
  1757                         // t.tsym.type corresponds to List<E>.
  1758                         // The reason t must be parameterized type is
  1759                         // that completion will happen as a side
  1760                         // effect of calling
  1761                         // ClassSymbol.getInterfaces.  Since
  1762                         // t.interfaces_field is null after
  1763                         // completion, we can assume that t is not the
  1764                         // type of a class/interface declaration.
  1765                         assert t != t.tsym.type : t.toString();
  1766                         List<Type> actuals = t.allparams();
  1767                         List<Type> formals = t.tsym.type.allparams();
  1768                         if (t.hasErasedSupertypes()) {
  1769                             t.interfaces_field = erasureRecursive(interfaces);
  1770                         } else if (formals.nonEmpty()) {
  1771                             t.interfaces_field =
  1772                                 upperBounds(subst(interfaces, formals, actuals));
  1774                         else {
  1775                             t.interfaces_field = interfaces;
  1779                 return t.interfaces_field;
  1782             @Override
  1783             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1784                 if (t.bound.isCompound())
  1785                     return interfaces(t.bound);
  1787                 if (t.bound.isInterface())
  1788                     return List.of(t.bound);
  1790                 return List.nil();
  1792         };
  1793     // </editor-fold>
  1795     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1796     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1798     public boolean isDerivedRaw(Type t) {
  1799         Boolean result = isDerivedRawCache.get(t);
  1800         if (result == null) {
  1801             result = isDerivedRawInternal(t);
  1802             isDerivedRawCache.put(t, result);
  1804         return result;
  1807     public boolean isDerivedRawInternal(Type t) {
  1808         if (t.isErroneous())
  1809             return false;
  1810         return
  1811             t.isRaw() ||
  1812             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1813             isDerivedRaw(interfaces(t));
  1816     public boolean isDerivedRaw(List<Type> ts) {
  1817         List<Type> l = ts;
  1818         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1819         return l.nonEmpty();
  1821     // </editor-fold>
  1823     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1824     /**
  1825      * Set the bounds field of the given type variable to reflect a
  1826      * (possibly multiple) list of bounds.
  1827      * @param t                 a type variable
  1828      * @param bounds            the bounds, must be nonempty
  1829      * @param supertype         is objectType if all bounds are interfaces,
  1830      *                          null otherwise.
  1831      */
  1832     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1833         if (bounds.tail.isEmpty())
  1834             t.bound = bounds.head;
  1835         else
  1836             t.bound = makeCompoundType(bounds, supertype);
  1837         t.rank_field = -1;
  1840     /**
  1841      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1842      * third parameter is computed directly.  Note that this test
  1843      * might cause a symbol completion.  Hence, this version of
  1844      * setBounds may not be called during a classfile read.
  1845      */
  1846     public void setBounds(TypeVar t, List<Type> bounds) {
  1847         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1848             supertype(bounds.head) : null;
  1849         setBounds(t, bounds, supertype);
  1850         t.rank_field = -1;
  1852     // </editor-fold>
  1854     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1855     /**
  1856      * Return list of bounds of the given type variable.
  1857      */
  1858     public List<Type> getBounds(TypeVar t) {
  1859         if (t.bound.isErroneous() || !t.bound.isCompound())
  1860             return List.of(t.bound);
  1861         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1862             return interfaces(t).prepend(supertype(t));
  1863         else
  1864             // No superclass was given in bounds.
  1865             // In this case, supertype is Object, erasure is first interface.
  1866             return interfaces(t);
  1868     // </editor-fold>
  1870     // <editor-fold defaultstate="collapsed" desc="classBound">
  1871     /**
  1872      * If the given type is a (possibly selected) type variable,
  1873      * return the bounding class of this type, otherwise return the
  1874      * type itself.
  1875      */
  1876     public Type classBound(Type t) {
  1877         return classBound.visit(t);
  1879     // where
  1880         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1882             public Type visitType(Type t, Void ignored) {
  1883                 return t;
  1886             @Override
  1887             public Type visitClassType(ClassType t, Void ignored) {
  1888                 Type outer1 = classBound(t.getEnclosingType());
  1889                 if (outer1 != t.getEnclosingType())
  1890                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1891                 else
  1892                     return t;
  1895             @Override
  1896             public Type visitTypeVar(TypeVar t, Void ignored) {
  1897                 return classBound(supertype(t));
  1900             @Override
  1901             public Type visitErrorType(ErrorType t, Void ignored) {
  1902                 return t;
  1904         };
  1905     // </editor-fold>
  1907     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1908     /**
  1909      * Returns true iff the first signature is a <em>sub
  1910      * signature</em> of the other.  This is <b>not</b> an equivalence
  1911      * relation.
  1913      * @see "The Java Language Specification, Third Ed. (8.4.2)."
  1914      * @see #overrideEquivalent(Type t, Type s)
  1915      * @param t first signature (possibly raw).
  1916      * @param s second signature (could be subjected to erasure).
  1917      * @return true if t is a sub signature of s.
  1918      */
  1919     public boolean isSubSignature(Type t, Type s) {
  1920         return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
  1923     /**
  1924      * Returns true iff these signatures are related by <em>override
  1925      * equivalence</em>.  This is the natural extension of
  1926      * isSubSignature to an equivalence relation.
  1928      * @see "The Java Language Specification, Third Ed. (8.4.2)."
  1929      * @see #isSubSignature(Type t, Type s)
  1930      * @param t a signature (possible raw, could be subjected to
  1931      * erasure).
  1932      * @param s a signature (possible raw, could be subjected to
  1933      * erasure).
  1934      * @return true if either argument is a sub signature of the other.
  1935      */
  1936     public boolean overrideEquivalent(Type t, Type s) {
  1937         return hasSameArgs(t, s) ||
  1938             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  1941     /**
  1942      * Does t have the same arguments as s?  It is assumed that both
  1943      * types are (possibly polymorphic) method types.  Monomorphic
  1944      * method types "have the same arguments", if their argument lists
  1945      * are equal.  Polymorphic method types "have the same arguments",
  1946      * if they have the same arguments after renaming all type
  1947      * variables of one to corresponding type variables in the other,
  1948      * where correspondence is by position in the type parameter list.
  1949      */
  1950     public boolean hasSameArgs(Type t, Type s) {
  1951         return hasSameArgs.visit(t, s);
  1953     // where
  1954         private TypeRelation hasSameArgs = new TypeRelation() {
  1956             public Boolean visitType(Type t, Type s) {
  1957                 throw new AssertionError();
  1960             @Override
  1961             public Boolean visitMethodType(MethodType t, Type s) {
  1962                 return s.tag == METHOD
  1963                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  1966             @Override
  1967             public Boolean visitForAll(ForAll t, Type s) {
  1968                 if (s.tag != FORALL)
  1969                     return false;
  1971                 ForAll forAll = (ForAll)s;
  1972                 return hasSameBounds(t, forAll)
  1973                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1976             @Override
  1977             public Boolean visitErrorType(ErrorType t, Type s) {
  1978                 return false;
  1980         };
  1981     // </editor-fold>
  1983     // <editor-fold defaultstate="collapsed" desc="subst">
  1984     public List<Type> subst(List<Type> ts,
  1985                             List<Type> from,
  1986                             List<Type> to) {
  1987         return new Subst(from, to).subst(ts);
  1990     /**
  1991      * Substitute all occurrences of a type in `from' with the
  1992      * corresponding type in `to' in 't'. Match lists `from' and `to'
  1993      * from the right: If lists have different length, discard leading
  1994      * elements of the longer list.
  1995      */
  1996     public Type subst(Type t, List<Type> from, List<Type> to) {
  1997         return new Subst(from, to).subst(t);
  2000     private class Subst extends UnaryVisitor<Type> {
  2001         List<Type> from;
  2002         List<Type> to;
  2004         public Subst(List<Type> from, List<Type> to) {
  2005             int fromLength = from.length();
  2006             int toLength = to.length();
  2007             while (fromLength > toLength) {
  2008                 fromLength--;
  2009                 from = from.tail;
  2011             while (fromLength < toLength) {
  2012                 toLength--;
  2013                 to = to.tail;
  2015             this.from = from;
  2016             this.to = to;
  2019         Type subst(Type t) {
  2020             if (from.tail == null)
  2021                 return t;
  2022             else
  2023                 return visit(t);
  2026         List<Type> subst(List<Type> ts) {
  2027             if (from.tail == null)
  2028                 return ts;
  2029             boolean wild = false;
  2030             if (ts.nonEmpty() && from.nonEmpty()) {
  2031                 Type head1 = subst(ts.head);
  2032                 List<Type> tail1 = subst(ts.tail);
  2033                 if (head1 != ts.head || tail1 != ts.tail)
  2034                     return tail1.prepend(head1);
  2036             return ts;
  2039         public Type visitType(Type t, Void ignored) {
  2040             return t;
  2043         @Override
  2044         public Type visitMethodType(MethodType t, Void ignored) {
  2045             List<Type> argtypes = subst(t.argtypes);
  2046             Type restype = subst(t.restype);
  2047             List<Type> thrown = subst(t.thrown);
  2048             if (argtypes == t.argtypes &&
  2049                 restype == t.restype &&
  2050                 thrown == t.thrown)
  2051                 return t;
  2052             else
  2053                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2056         @Override
  2057         public Type visitTypeVar(TypeVar t, Void ignored) {
  2058             for (List<Type> from = this.from, to = this.to;
  2059                  from.nonEmpty();
  2060                  from = from.tail, to = to.tail) {
  2061                 if (t == from.head) {
  2062                     return to.head.withTypeVar(t);
  2065             return t;
  2068         @Override
  2069         public Type visitClassType(ClassType t, Void ignored) {
  2070             if (!t.isCompound()) {
  2071                 List<Type> typarams = t.getTypeArguments();
  2072                 List<Type> typarams1 = subst(typarams);
  2073                 Type outer = t.getEnclosingType();
  2074                 Type outer1 = subst(outer);
  2075                 if (typarams1 == typarams && outer1 == outer)
  2076                     return t;
  2077                 else
  2078                     return new ClassType(outer1, typarams1, t.tsym);
  2079             } else {
  2080                 Type st = subst(supertype(t));
  2081                 List<Type> is = upperBounds(subst(interfaces(t)));
  2082                 if (st == supertype(t) && is == interfaces(t))
  2083                     return t;
  2084                 else
  2085                     return makeCompoundType(is.prepend(st));
  2089         @Override
  2090         public Type visitWildcardType(WildcardType t, Void ignored) {
  2091             Type bound = t.type;
  2092             if (t.kind != BoundKind.UNBOUND)
  2093                 bound = subst(bound);
  2094             if (bound == t.type) {
  2095                 return t;
  2096             } else {
  2097                 if (t.isExtendsBound() && bound.isExtendsBound())
  2098                     bound = upperBound(bound);
  2099                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2103         @Override
  2104         public Type visitArrayType(ArrayType t, Void ignored) {
  2105             Type elemtype = subst(t.elemtype);
  2106             if (elemtype == t.elemtype)
  2107                 return t;
  2108             else
  2109                 return new ArrayType(upperBound(elemtype), t.tsym);
  2112         @Override
  2113         public Type visitForAll(ForAll t, Void ignored) {
  2114             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2115             Type qtype1 = subst(t.qtype);
  2116             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2117                 return t;
  2118             } else if (tvars1 == t.tvars) {
  2119                 return new ForAll(tvars1, qtype1);
  2120             } else {
  2121                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2125         @Override
  2126         public Type visitErrorType(ErrorType t, Void ignored) {
  2127             return t;
  2131     public List<Type> substBounds(List<Type> tvars,
  2132                                   List<Type> from,
  2133                                   List<Type> to) {
  2134         if (tvars.isEmpty())
  2135             return tvars;
  2136         ListBuffer<Type> newBoundsBuf = lb();
  2137         boolean changed = false;
  2138         // calculate new bounds
  2139         for (Type t : tvars) {
  2140             TypeVar tv = (TypeVar) t;
  2141             Type bound = subst(tv.bound, from, to);
  2142             if (bound != tv.bound)
  2143                 changed = true;
  2144             newBoundsBuf.append(bound);
  2146         if (!changed)
  2147             return tvars;
  2148         ListBuffer<Type> newTvars = lb();
  2149         // create new type variables without bounds
  2150         for (Type t : tvars) {
  2151             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2153         // the new bounds should use the new type variables in place
  2154         // of the old
  2155         List<Type> newBounds = newBoundsBuf.toList();
  2156         from = tvars;
  2157         to = newTvars.toList();
  2158         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2159             newBounds.head = subst(newBounds.head, from, to);
  2161         newBounds = newBoundsBuf.toList();
  2162         // set the bounds of new type variables to the new bounds
  2163         for (Type t : newTvars.toList()) {
  2164             TypeVar tv = (TypeVar) t;
  2165             tv.bound = newBounds.head;
  2166             newBounds = newBounds.tail;
  2168         return newTvars.toList();
  2171     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2172         Type bound1 = subst(t.bound, from, to);
  2173         if (bound1 == t.bound)
  2174             return t;
  2175         else {
  2176             // create new type variable without bounds
  2177             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2178             // the new bound should use the new type variable in place
  2179             // of the old
  2180             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2181             return tv;
  2184     // </editor-fold>
  2186     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2187     /**
  2188      * Does t have the same bounds for quantified variables as s?
  2189      */
  2190     boolean hasSameBounds(ForAll t, ForAll s) {
  2191         List<Type> l1 = t.tvars;
  2192         List<Type> l2 = s.tvars;
  2193         while (l1.nonEmpty() && l2.nonEmpty() &&
  2194                isSameType(l1.head.getUpperBound(),
  2195                           subst(l2.head.getUpperBound(),
  2196                                 s.tvars,
  2197                                 t.tvars))) {
  2198             l1 = l1.tail;
  2199             l2 = l2.tail;
  2201         return l1.isEmpty() && l2.isEmpty();
  2203     // </editor-fold>
  2205     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2206     /** Create new vector of type variables from list of variables
  2207      *  changing all recursive bounds from old to new list.
  2208      */
  2209     public List<Type> newInstances(List<Type> tvars) {
  2210         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2211         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2212             TypeVar tv = (TypeVar) l.head;
  2213             tv.bound = subst(tv.bound, tvars, tvars1);
  2215         return tvars1;
  2217     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2218             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2219         };
  2220     // </editor-fold>
  2222     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2223     public Type createErrorType(Type originalType) {
  2224         return new ErrorType(originalType, syms.errSymbol);
  2227     public Type createErrorType(ClassSymbol c, Type originalType) {
  2228         return new ErrorType(c, originalType);
  2231     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2232         return new ErrorType(name, container, originalType);
  2234     // </editor-fold>
  2236     // <editor-fold defaultstate="collapsed" desc="rank">
  2237     /**
  2238      * The rank of a class is the length of the longest path between
  2239      * the class and java.lang.Object in the class inheritance
  2240      * graph. Undefined for all but reference types.
  2241      */
  2242     public int rank(Type t) {
  2243         switch(t.tag) {
  2244         case CLASS: {
  2245             ClassType cls = (ClassType)t;
  2246             if (cls.rank_field < 0) {
  2247                 Name fullname = cls.tsym.getQualifiedName();
  2248                 if (fullname == names.java_lang_Object)
  2249                     cls.rank_field = 0;
  2250                 else {
  2251                     int r = rank(supertype(cls));
  2252                     for (List<Type> l = interfaces(cls);
  2253                          l.nonEmpty();
  2254                          l = l.tail) {
  2255                         if (rank(l.head) > r)
  2256                             r = rank(l.head);
  2258                     cls.rank_field = r + 1;
  2261             return cls.rank_field;
  2263         case TYPEVAR: {
  2264             TypeVar tvar = (TypeVar)t;
  2265             if (tvar.rank_field < 0) {
  2266                 int r = rank(supertype(tvar));
  2267                 for (List<Type> l = interfaces(tvar);
  2268                      l.nonEmpty();
  2269                      l = l.tail) {
  2270                     if (rank(l.head) > r) r = rank(l.head);
  2272                 tvar.rank_field = r + 1;
  2274             return tvar.rank_field;
  2276         case ERROR:
  2277             return 0;
  2278         default:
  2279             throw new AssertionError();
  2282     // </editor-fold>
  2284     /**
  2285      * Helper method for generating a string representation of a given type
  2286      * accordingly to a given locale
  2287      */
  2288     public String toString(Type t, Locale locale) {
  2289         return Printer.createStandardPrinter(messages).visit(t, locale);
  2292     /**
  2293      * Helper method for generating a string representation of a given type
  2294      * accordingly to a given locale
  2295      */
  2296     public String toString(Symbol t, Locale locale) {
  2297         return Printer.createStandardPrinter(messages).visit(t, locale);
  2300     // <editor-fold defaultstate="collapsed" desc="toString">
  2301     /**
  2302      * This toString is slightly more descriptive than the one on Type.
  2304      * @deprecated Types.toString(Type t, Locale l) provides better support
  2305      * for localization
  2306      */
  2307     @Deprecated
  2308     public String toString(Type t) {
  2309         if (t.tag == FORALL) {
  2310             ForAll forAll = (ForAll)t;
  2311             return typaramsString(forAll.tvars) + forAll.qtype;
  2313         return "" + t;
  2315     // where
  2316         private String typaramsString(List<Type> tvars) {
  2317             StringBuffer s = new StringBuffer();
  2318             s.append('<');
  2319             boolean first = true;
  2320             for (Type t : tvars) {
  2321                 if (!first) s.append(", ");
  2322                 first = false;
  2323                 appendTyparamString(((TypeVar)t), s);
  2325             s.append('>');
  2326             return s.toString();
  2328         private void appendTyparamString(TypeVar t, StringBuffer buf) {
  2329             buf.append(t);
  2330             if (t.bound == null ||
  2331                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2332                 return;
  2333             buf.append(" extends "); // Java syntax; no need for i18n
  2334             Type bound = t.bound;
  2335             if (!bound.isCompound()) {
  2336                 buf.append(bound);
  2337             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2338                 buf.append(supertype(t));
  2339                 for (Type intf : interfaces(t)) {
  2340                     buf.append('&');
  2341                     buf.append(intf);
  2343             } else {
  2344                 // No superclass was given in bounds.
  2345                 // In this case, supertype is Object, erasure is first interface.
  2346                 boolean first = true;
  2347                 for (Type intf : interfaces(t)) {
  2348                     if (!first) buf.append('&');
  2349                     first = false;
  2350                     buf.append(intf);
  2354     // </editor-fold>
  2356     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2357     /**
  2358      * A cache for closures.
  2360      * <p>A closure is a list of all the supertypes and interfaces of
  2361      * a class or interface type, ordered by ClassSymbol.precedes
  2362      * (that is, subclasses come first, arbitrary but fixed
  2363      * otherwise).
  2364      */
  2365     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2367     /**
  2368      * Returns the closure of a class or interface type.
  2369      */
  2370     public List<Type> closure(Type t) {
  2371         List<Type> cl = closureCache.get(t);
  2372         if (cl == null) {
  2373             Type st = supertype(t);
  2374             if (!t.isCompound()) {
  2375                 if (st.tag == CLASS) {
  2376                     cl = insert(closure(st), t);
  2377                 } else if (st.tag == TYPEVAR) {
  2378                     cl = closure(st).prepend(t);
  2379                 } else {
  2380                     cl = List.of(t);
  2382             } else {
  2383                 cl = closure(supertype(t));
  2385             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2386                 cl = union(cl, closure(l.head));
  2387             closureCache.put(t, cl);
  2389         return cl;
  2392     /**
  2393      * Insert a type in a closure
  2394      */
  2395     public List<Type> insert(List<Type> cl, Type t) {
  2396         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2397             return cl.prepend(t);
  2398         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2399             return insert(cl.tail, t).prepend(cl.head);
  2400         } else {
  2401             return cl;
  2405     /**
  2406      * Form the union of two closures
  2407      */
  2408     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2409         if (cl1.isEmpty()) {
  2410             return cl2;
  2411         } else if (cl2.isEmpty()) {
  2412             return cl1;
  2413         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2414             return union(cl1.tail, cl2).prepend(cl1.head);
  2415         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2416             return union(cl1, cl2.tail).prepend(cl2.head);
  2417         } else {
  2418             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2422     /**
  2423      * Intersect two closures
  2424      */
  2425     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2426         if (cl1 == cl2)
  2427             return cl1;
  2428         if (cl1.isEmpty() || cl2.isEmpty())
  2429             return List.nil();
  2430         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2431             return intersect(cl1.tail, cl2);
  2432         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2433             return intersect(cl1, cl2.tail);
  2434         if (isSameType(cl1.head, cl2.head))
  2435             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2436         if (cl1.head.tsym == cl2.head.tsym &&
  2437             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2438             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2439                 Type merge = merge(cl1.head,cl2.head);
  2440                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2442             if (cl1.head.isRaw() || cl2.head.isRaw())
  2443                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2445         return intersect(cl1.tail, cl2.tail);
  2447     // where
  2448         class TypePair {
  2449             final Type t1;
  2450             final Type t2;
  2451             TypePair(Type t1, Type t2) {
  2452                 this.t1 = t1;
  2453                 this.t2 = t2;
  2455             @Override
  2456             public int hashCode() {
  2457                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  2459             @Override
  2460             public boolean equals(Object obj) {
  2461                 if (!(obj instanceof TypePair))
  2462                     return false;
  2463                 TypePair typePair = (TypePair)obj;
  2464                 return isSameType(t1, typePair.t1)
  2465                     && isSameType(t2, typePair.t2);
  2468         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2469         private Type merge(Type c1, Type c2) {
  2470             ClassType class1 = (ClassType) c1;
  2471             List<Type> act1 = class1.getTypeArguments();
  2472             ClassType class2 = (ClassType) c2;
  2473             List<Type> act2 = class2.getTypeArguments();
  2474             ListBuffer<Type> merged = new ListBuffer<Type>();
  2475             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2477             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2478                 if (containsType(act1.head, act2.head)) {
  2479                     merged.append(act1.head);
  2480                 } else if (containsType(act2.head, act1.head)) {
  2481                     merged.append(act2.head);
  2482                 } else {
  2483                     TypePair pair = new TypePair(c1, c2);
  2484                     Type m;
  2485                     if (mergeCache.add(pair)) {
  2486                         m = new WildcardType(lub(upperBound(act1.head),
  2487                                                  upperBound(act2.head)),
  2488                                              BoundKind.EXTENDS,
  2489                                              syms.boundClass);
  2490                         mergeCache.remove(pair);
  2491                     } else {
  2492                         m = new WildcardType(syms.objectType,
  2493                                              BoundKind.UNBOUND,
  2494                                              syms.boundClass);
  2496                     merged.append(m.withTypeVar(typarams.head));
  2498                 act1 = act1.tail;
  2499                 act2 = act2.tail;
  2500                 typarams = typarams.tail;
  2502             assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2503             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2506     /**
  2507      * Return the minimum type of a closure, a compound type if no
  2508      * unique minimum exists.
  2509      */
  2510     private Type compoundMin(List<Type> cl) {
  2511         if (cl.isEmpty()) return syms.objectType;
  2512         List<Type> compound = closureMin(cl);
  2513         if (compound.isEmpty())
  2514             return null;
  2515         else if (compound.tail.isEmpty())
  2516             return compound.head;
  2517         else
  2518             return makeCompoundType(compound);
  2521     /**
  2522      * Return the minimum types of a closure, suitable for computing
  2523      * compoundMin or glb.
  2524      */
  2525     private List<Type> closureMin(List<Type> cl) {
  2526         ListBuffer<Type> classes = lb();
  2527         ListBuffer<Type> interfaces = lb();
  2528         while (!cl.isEmpty()) {
  2529             Type current = cl.head;
  2530             if (current.isInterface())
  2531                 interfaces.append(current);
  2532             else
  2533                 classes.append(current);
  2534             ListBuffer<Type> candidates = lb();
  2535             for (Type t : cl.tail) {
  2536                 if (!isSubtypeNoCapture(current, t))
  2537                     candidates.append(t);
  2539             cl = candidates.toList();
  2541         return classes.appendList(interfaces).toList();
  2544     /**
  2545      * Return the least upper bound of pair of types.  if the lub does
  2546      * not exist return null.
  2547      */
  2548     public Type lub(Type t1, Type t2) {
  2549         return lub(List.of(t1, t2));
  2552     /**
  2553      * Return the least upper bound (lub) of set of types.  If the lub
  2554      * does not exist return the type of null (bottom).
  2555      */
  2556     public Type lub(List<Type> ts) {
  2557         final int ARRAY_BOUND = 1;
  2558         final int CLASS_BOUND = 2;
  2559         int boundkind = 0;
  2560         for (Type t : ts) {
  2561             switch (t.tag) {
  2562             case CLASS:
  2563                 boundkind |= CLASS_BOUND;
  2564                 break;
  2565             case ARRAY:
  2566                 boundkind |= ARRAY_BOUND;
  2567                 break;
  2568             case  TYPEVAR:
  2569                 do {
  2570                     t = t.getUpperBound();
  2571                 } while (t.tag == TYPEVAR);
  2572                 if (t.tag == ARRAY) {
  2573                     boundkind |= ARRAY_BOUND;
  2574                 } else {
  2575                     boundkind |= CLASS_BOUND;
  2577                 break;
  2578             default:
  2579                 if (t.isPrimitive())
  2580                     return syms.errType;
  2583         switch (boundkind) {
  2584         case 0:
  2585             return syms.botType;
  2587         case ARRAY_BOUND:
  2588             // calculate lub(A[], B[])
  2589             List<Type> elements = Type.map(ts, elemTypeFun);
  2590             for (Type t : elements) {
  2591                 if (t.isPrimitive()) {
  2592                     // if a primitive type is found, then return
  2593                     // arraySuperType unless all the types are the
  2594                     // same
  2595                     Type first = ts.head;
  2596                     for (Type s : ts.tail) {
  2597                         if (!isSameType(first, s)) {
  2598                              // lub(int[], B[]) is Cloneable & Serializable
  2599                             return arraySuperType();
  2602                     // all the array types are the same, return one
  2603                     // lub(int[], int[]) is int[]
  2604                     return first;
  2607             // lub(A[], B[]) is lub(A, B)[]
  2608             return new ArrayType(lub(elements), syms.arrayClass);
  2610         case CLASS_BOUND:
  2611             // calculate lub(A, B)
  2612             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2613                 ts = ts.tail;
  2614             assert !ts.isEmpty();
  2615             List<Type> cl = closure(ts.head);
  2616             for (Type t : ts.tail) {
  2617                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2618                     cl = intersect(cl, closure(t));
  2620             return compoundMin(cl);
  2622         default:
  2623             // calculate lub(A, B[])
  2624             List<Type> classes = List.of(arraySuperType());
  2625             for (Type t : ts) {
  2626                 if (t.tag != ARRAY) // Filter out any arrays
  2627                     classes = classes.prepend(t);
  2629             // lub(A, B[]) is lub(A, arraySuperType)
  2630             return lub(classes);
  2633     // where
  2634         private Type arraySuperType = null;
  2635         private Type arraySuperType() {
  2636             // initialized lazily to avoid problems during compiler startup
  2637             if (arraySuperType == null) {
  2638                 synchronized (this) {
  2639                     if (arraySuperType == null) {
  2640                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2641                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2642                                                                   syms.cloneableType),
  2643                                                           syms.objectType);
  2647             return arraySuperType;
  2649     // </editor-fold>
  2651     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2652     public Type glb(List<Type> ts) {
  2653         Type t1 = ts.head;
  2654         for (Type t2 : ts.tail) {
  2655             if (t1.isErroneous())
  2656                 return t1;
  2657             t1 = glb(t1, t2);
  2659         return t1;
  2661     //where
  2662     public Type glb(Type t, Type s) {
  2663         if (s == null)
  2664             return t;
  2665         else if (isSubtypeNoCapture(t, s))
  2666             return t;
  2667         else if (isSubtypeNoCapture(s, t))
  2668             return s;
  2670         List<Type> closure = union(closure(t), closure(s));
  2671         List<Type> bounds = closureMin(closure);
  2673         if (bounds.isEmpty()) {             // length == 0
  2674             return syms.objectType;
  2675         } else if (bounds.tail.isEmpty()) { // length == 1
  2676             return bounds.head;
  2677         } else {                            // length > 1
  2678             int classCount = 0;
  2679             for (Type bound : bounds)
  2680                 if (!bound.isInterface())
  2681                     classCount++;
  2682             if (classCount > 1)
  2683                 return createErrorType(t);
  2685         return makeCompoundType(bounds);
  2687     // </editor-fold>
  2689     // <editor-fold defaultstate="collapsed" desc="hashCode">
  2690     /**
  2691      * Compute a hash code on a type.
  2692      */
  2693     public static int hashCode(Type t) {
  2694         return hashCode.visit(t);
  2696     // where
  2697         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  2699             public Integer visitType(Type t, Void ignored) {
  2700                 return t.tag;
  2703             @Override
  2704             public Integer visitClassType(ClassType t, Void ignored) {
  2705                 int result = visit(t.getEnclosingType());
  2706                 result *= 127;
  2707                 result += t.tsym.flatName().hashCode();
  2708                 for (Type s : t.getTypeArguments()) {
  2709                     result *= 127;
  2710                     result += visit(s);
  2712                 return result;
  2715             @Override
  2716             public Integer visitWildcardType(WildcardType t, Void ignored) {
  2717                 int result = t.kind.hashCode();
  2718                 if (t.type != null) {
  2719                     result *= 127;
  2720                     result += visit(t.type);
  2722                 return result;
  2725             @Override
  2726             public Integer visitArrayType(ArrayType t, Void ignored) {
  2727                 return visit(t.elemtype) + 12;
  2730             @Override
  2731             public Integer visitTypeVar(TypeVar t, Void ignored) {
  2732                 return System.identityHashCode(t.tsym);
  2735             @Override
  2736             public Integer visitUndetVar(UndetVar t, Void ignored) {
  2737                 return System.identityHashCode(t);
  2740             @Override
  2741             public Integer visitErrorType(ErrorType t, Void ignored) {
  2742                 return 0;
  2744         };
  2745     // </editor-fold>
  2747     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  2748     /**
  2749      * Does t have a result that is a subtype of the result type of s,
  2750      * suitable for covariant returns?  It is assumed that both types
  2751      * are (possibly polymorphic) method types.  Monomorphic method
  2752      * types are handled in the obvious way.  Polymorphic method types
  2753      * require renaming all type variables of one to corresponding
  2754      * type variables in the other, where correspondence is by
  2755      * position in the type parameter list. */
  2756     public boolean resultSubtype(Type t, Type s, Warner warner) {
  2757         List<Type> tvars = t.getTypeArguments();
  2758         List<Type> svars = s.getTypeArguments();
  2759         Type tres = t.getReturnType();
  2760         Type sres = subst(s.getReturnType(), svars, tvars);
  2761         return covariantReturnType(tres, sres, warner);
  2764     /**
  2765      * Return-Type-Substitutable.
  2766      * @see <a href="http://java.sun.com/docs/books/jls/">The Java
  2767      * Language Specification, Third Ed. (8.4.5)</a>
  2768      */
  2769     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  2770         if (hasSameArgs(r1, r2))
  2771             return resultSubtype(r1, r2, Warner.noWarnings);
  2772         else
  2773             return covariantReturnType(r1.getReturnType(),
  2774                                        erasure(r2.getReturnType()),
  2775                                        Warner.noWarnings);
  2778     public boolean returnTypeSubstitutable(Type r1,
  2779                                            Type r2, Type r2res,
  2780                                            Warner warner) {
  2781         if (isSameType(r1.getReturnType(), r2res))
  2782             return true;
  2783         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  2784             return false;
  2786         if (hasSameArgs(r1, r2))
  2787             return covariantReturnType(r1.getReturnType(), r2res, warner);
  2788         if (!source.allowCovariantReturns())
  2789             return false;
  2790         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  2791             return true;
  2792         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  2793             return false;
  2794         warner.warnUnchecked();
  2795         return true;
  2798     /**
  2799      * Is t an appropriate return type in an overrider for a
  2800      * method that returns s?
  2801      */
  2802     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  2803         return
  2804             isSameType(t, s) ||
  2805             source.allowCovariantReturns() &&
  2806             !t.isPrimitive() &&
  2807             !s.isPrimitive() &&
  2808             isAssignable(t, s, warner);
  2810     // </editor-fold>
  2812     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  2813     /**
  2814      * Return the class that boxes the given primitive.
  2815      */
  2816     public ClassSymbol boxedClass(Type t) {
  2817         return reader.enterClass(syms.boxedName[t.tag]);
  2820     /**
  2821      * Return the primitive type corresponding to a boxed type.
  2822      */
  2823     public Type unboxedType(Type t) {
  2824         if (allowBoxing) {
  2825             for (int i=0; i<syms.boxedName.length; i++) {
  2826                 Name box = syms.boxedName[i];
  2827                 if (box != null &&
  2828                     asSuper(t, reader.enterClass(box)) != null)
  2829                     return syms.typeOfTag[i];
  2832         return Type.noType;
  2834     // </editor-fold>
  2836     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  2837     /*
  2838      * JLS 3rd Ed. 5.1.10 Capture Conversion:
  2840      * Let G name a generic type declaration with n formal type
  2841      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  2842      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  2843      * where, for 1 <= i <= n:
  2845      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  2846      *   Si is a fresh type variable whose upper bound is
  2847      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  2848      *   type.
  2850      * + If Ti is a wildcard type argument of the form ? extends Bi,
  2851      *   then Si is a fresh type variable whose upper bound is
  2852      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  2853      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  2854      *   a compile-time error if for any two classes (not interfaces)
  2855      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  2857      * + If Ti is a wildcard type argument of the form ? super Bi,
  2858      *   then Si is a fresh type variable whose upper bound is
  2859      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  2861      * + Otherwise, Si = Ti.
  2863      * Capture conversion on any type other than a parameterized type
  2864      * (4.5) acts as an identity conversion (5.1.1). Capture
  2865      * conversions never require a special action at run time and
  2866      * therefore never throw an exception at run time.
  2868      * Capture conversion is not applied recursively.
  2869      */
  2870     /**
  2871      * Capture conversion as specified by JLS 3rd Ed.
  2872      */
  2873     public Type capture(Type t) {
  2874         if (t.tag != CLASS)
  2875             return t;
  2876         ClassType cls = (ClassType)t;
  2877         if (cls.isRaw() || !cls.isParameterized())
  2878             return cls;
  2880         ClassType G = (ClassType)cls.asElement().asType();
  2881         List<Type> A = G.getTypeArguments();
  2882         List<Type> T = cls.getTypeArguments();
  2883         List<Type> S = freshTypeVariables(T);
  2885         List<Type> currentA = A;
  2886         List<Type> currentT = T;
  2887         List<Type> currentS = S;
  2888         boolean captured = false;
  2889         while (!currentA.isEmpty() &&
  2890                !currentT.isEmpty() &&
  2891                !currentS.isEmpty()) {
  2892             if (currentS.head != currentT.head) {
  2893                 captured = true;
  2894                 WildcardType Ti = (WildcardType)currentT.head;
  2895                 Type Ui = currentA.head.getUpperBound();
  2896                 CapturedType Si = (CapturedType)currentS.head;
  2897                 if (Ui == null)
  2898                     Ui = syms.objectType;
  2899                 switch (Ti.kind) {
  2900                 case UNBOUND:
  2901                     Si.bound = subst(Ui, A, S);
  2902                     Si.lower = syms.botType;
  2903                     break;
  2904                 case EXTENDS:
  2905                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  2906                     Si.lower = syms.botType;
  2907                     break;
  2908                 case SUPER:
  2909                     Si.bound = subst(Ui, A, S);
  2910                     Si.lower = Ti.getSuperBound();
  2911                     break;
  2913                 if (Si.bound == Si.lower)
  2914                     currentS.head = Si.bound;
  2916             currentA = currentA.tail;
  2917             currentT = currentT.tail;
  2918             currentS = currentS.tail;
  2920         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  2921             return erasure(t); // some "rare" type involved
  2923         if (captured)
  2924             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  2925         else
  2926             return t;
  2928     // where
  2929         public List<Type> freshTypeVariables(List<Type> types) {
  2930             ListBuffer<Type> result = lb();
  2931             for (Type t : types) {
  2932                 if (t.tag == WILDCARD) {
  2933                     Type bound = ((WildcardType)t).getExtendsBound();
  2934                     if (bound == null)
  2935                         bound = syms.objectType;
  2936                     result.append(new CapturedType(capturedName,
  2937                                                    syms.noSymbol,
  2938                                                    bound,
  2939                                                    syms.botType,
  2940                                                    (WildcardType)t));
  2941                 } else {
  2942                     result.append(t);
  2945             return result.toList();
  2947     // </editor-fold>
  2949     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  2950     private List<Type> upperBounds(List<Type> ss) {
  2951         if (ss.isEmpty()) return ss;
  2952         Type head = upperBound(ss.head);
  2953         List<Type> tail = upperBounds(ss.tail);
  2954         if (head != ss.head || tail != ss.tail)
  2955             return tail.prepend(head);
  2956         else
  2957             return ss;
  2960     private boolean sideCast(Type from, Type to, Warner warn) {
  2961         // We are casting from type $from$ to type $to$, which are
  2962         // non-final unrelated types.  This method
  2963         // tries to reject a cast by transferring type parameters
  2964         // from $to$ to $from$ by common superinterfaces.
  2965         boolean reverse = false;
  2966         Type target = to;
  2967         if ((to.tsym.flags() & INTERFACE) == 0) {
  2968             assert (from.tsym.flags() & INTERFACE) != 0;
  2969             reverse = true;
  2970             to = from;
  2971             from = target;
  2973         List<Type> commonSupers = superClosure(to, erasure(from));
  2974         boolean giveWarning = commonSupers.isEmpty();
  2975         // The arguments to the supers could be unified here to
  2976         // get a more accurate analysis
  2977         while (commonSupers.nonEmpty()) {
  2978             Type t1 = asSuper(from, commonSupers.head.tsym);
  2979             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  2980             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  2981                 return false;
  2982             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  2983             commonSupers = commonSupers.tail;
  2985         if (giveWarning && !isReifiable(reverse ? from : to))
  2986             warn.warnUnchecked();
  2987         if (!source.allowCovariantReturns())
  2988             // reject if there is a common method signature with
  2989             // incompatible return types.
  2990             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  2991         return true;
  2994     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  2995         // We are casting from type $from$ to type $to$, which are
  2996         // unrelated types one of which is final and the other of
  2997         // which is an interface.  This method
  2998         // tries to reject a cast by transferring type parameters
  2999         // from the final class to the interface.
  3000         boolean reverse = false;
  3001         Type target = to;
  3002         if ((to.tsym.flags() & INTERFACE) == 0) {
  3003             assert (from.tsym.flags() & INTERFACE) != 0;
  3004             reverse = true;
  3005             to = from;
  3006             from = target;
  3008         assert (from.tsym.flags() & FINAL) != 0;
  3009         Type t1 = asSuper(from, to.tsym);
  3010         if (t1 == null) return false;
  3011         Type t2 = to;
  3012         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3013             return false;
  3014         if (!source.allowCovariantReturns())
  3015             // reject if there is a common method signature with
  3016             // incompatible return types.
  3017             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3018         if (!isReifiable(target) &&
  3019             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3020             warn.warnUnchecked();
  3021         return true;
  3024     private boolean giveWarning(Type from, Type to) {
  3025         Type subFrom = asSub(from, to.tsym);
  3026         return to.isParameterized() &&
  3027                 (!(isUnbounded(to) ||
  3028                 isSubtype(from, to) ||
  3029                 ((subFrom != null) && isSameType(subFrom, to))));
  3032     private List<Type> superClosure(Type t, Type s) {
  3033         List<Type> cl = List.nil();
  3034         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3035             if (isSubtype(s, erasure(l.head))) {
  3036                 cl = insert(cl, l.head);
  3037             } else {
  3038                 cl = union(cl, superClosure(l.head, s));
  3041         return cl;
  3044     private boolean containsTypeEquivalent(Type t, Type s) {
  3045         return
  3046             isSameType(t, s) || // shortcut
  3047             containsType(t, s) && containsType(s, t);
  3050     // <editor-fold defaultstate="collapsed" desc="adapt">
  3051     /**
  3052      * Adapt a type by computing a substitution which maps a source
  3053      * type to a target type.
  3055      * @param source    the source type
  3056      * @param target    the target type
  3057      * @param from      the type variables of the computed substitution
  3058      * @param to        the types of the computed substitution.
  3059      */
  3060     public void adapt(Type source,
  3061                        Type target,
  3062                        ListBuffer<Type> from,
  3063                        ListBuffer<Type> to) throws AdaptFailure {
  3064         new Adapter(from, to).adapt(source, target);
  3067     class Adapter extends SimpleVisitor<Void, Type> {
  3069         ListBuffer<Type> from;
  3070         ListBuffer<Type> to;
  3071         Map<Symbol,Type> mapping;
  3073         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3074             this.from = from;
  3075             this.to = to;
  3076             mapping = new HashMap<Symbol,Type>();
  3079         public void adapt(Type source, Type target) throws AdaptFailure {
  3080             visit(source, target);
  3081             List<Type> fromList = from.toList();
  3082             List<Type> toList = to.toList();
  3083             while (!fromList.isEmpty()) {
  3084                 Type val = mapping.get(fromList.head.tsym);
  3085                 if (toList.head != val)
  3086                     toList.head = val;
  3087                 fromList = fromList.tail;
  3088                 toList = toList.tail;
  3092         @Override
  3093         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3094             if (target.tag == CLASS)
  3095                 adaptRecursive(source.allparams(), target.allparams());
  3096             return null;
  3099         @Override
  3100         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3101             if (target.tag == ARRAY)
  3102                 adaptRecursive(elemtype(source), elemtype(target));
  3103             return null;
  3106         @Override
  3107         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3108             if (source.isExtendsBound())
  3109                 adaptRecursive(upperBound(source), upperBound(target));
  3110             else if (source.isSuperBound())
  3111                 adaptRecursive(lowerBound(source), lowerBound(target));
  3112             return null;
  3115         @Override
  3116         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3117             // Check to see if there is
  3118             // already a mapping for $source$, in which case
  3119             // the old mapping will be merged with the new
  3120             Type val = mapping.get(source.tsym);
  3121             if (val != null) {
  3122                 if (val.isSuperBound() && target.isSuperBound()) {
  3123                     val = isSubtype(lowerBound(val), lowerBound(target))
  3124                         ? target : val;
  3125                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3126                     val = isSubtype(upperBound(val), upperBound(target))
  3127                         ? val : target;
  3128                 } else if (!isSameType(val, target)) {
  3129                     throw new AdaptFailure();
  3131             } else {
  3132                 val = target;
  3133                 from.append(source);
  3134                 to.append(target);
  3136             mapping.put(source.tsym, val);
  3137             return null;
  3140         @Override
  3141         public Void visitType(Type source, Type target) {
  3142             return null;
  3145         private Set<TypePair> cache = new HashSet<TypePair>();
  3147         private void adaptRecursive(Type source, Type target) {
  3148             TypePair pair = new TypePair(source, target);
  3149             if (cache.add(pair)) {
  3150                 try {
  3151                     visit(source, target);
  3152                 } finally {
  3153                     cache.remove(pair);
  3158         private void adaptRecursive(List<Type> source, List<Type> target) {
  3159             if (source.length() == target.length()) {
  3160                 while (source.nonEmpty()) {
  3161                     adaptRecursive(source.head, target.head);
  3162                     source = source.tail;
  3163                     target = target.tail;
  3169     public static class AdaptFailure extends RuntimeException {
  3170         static final long serialVersionUID = -7490231548272701566L;
  3173     private void adaptSelf(Type t,
  3174                            ListBuffer<Type> from,
  3175                            ListBuffer<Type> to) {
  3176         try {
  3177             //if (t.tsym.type != t)
  3178                 adapt(t.tsym.type, t, from, to);
  3179         } catch (AdaptFailure ex) {
  3180             // Adapt should never fail calculating a mapping from
  3181             // t.tsym.type to t as there can be no merge problem.
  3182             throw new AssertionError(ex);
  3185     // </editor-fold>
  3187     /**
  3188      * Rewrite all type variables (universal quantifiers) in the given
  3189      * type to wildcards (existential quantifiers).  This is used to
  3190      * determine if a cast is allowed.  For example, if high is true
  3191      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3192      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3193      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3194      * List<Integer>} with a warning.
  3195      * @param t a type
  3196      * @param high if true return an upper bound; otherwise a lower
  3197      * bound
  3198      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3199      * otherwise rewrite all type variables
  3200      * @return the type rewritten with wildcards (existential
  3201      * quantifiers) only
  3202      */
  3203     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3204         return new Rewriter(high, rewriteTypeVars).rewrite(t);
  3207     class Rewriter extends UnaryVisitor<Type> {
  3209         boolean high;
  3210         boolean rewriteTypeVars;
  3212         Rewriter(boolean high, boolean rewriteTypeVars) {
  3213             this.high = high;
  3214             this.rewriteTypeVars = rewriteTypeVars;
  3217         Type rewrite(Type t) {
  3218             ListBuffer<Type> from = new ListBuffer<Type>();
  3219             ListBuffer<Type> to = new ListBuffer<Type>();
  3220             adaptSelf(t, from, to);
  3221             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3222             List<Type> formals = from.toList();
  3223             boolean changed = false;
  3224             for (Type arg : to.toList()) {
  3225                 Type bound = visit(arg);
  3226                 if (arg != bound) {
  3227                     changed = true;
  3228                     bound = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
  3229                               : makeSuperWildcard(bound, (TypeVar)formals.head);
  3231                 rewritten.append(bound);
  3232                 formals = formals.tail;
  3234             if (changed)
  3235                 return subst(t.tsym.type, from.toList(), rewritten.toList());
  3236             else
  3237                 return t;
  3240         public Type visitType(Type t, Void s) {
  3241             return high ? upperBound(t) : lowerBound(t);
  3244         @Override
  3245         public Type visitCapturedType(CapturedType t, Void s) {
  3246             return visitWildcardType(t.wildcard, null);
  3249         @Override
  3250         public Type visitTypeVar(TypeVar t, Void s) {
  3251             if (rewriteTypeVars)
  3252                 return high ? t.bound : syms.botType;
  3253             else
  3254                 return t;
  3257         @Override
  3258         public Type visitWildcardType(WildcardType t, Void s) {
  3259             Type bound = high ? t.getExtendsBound() :
  3260                                 t.getSuperBound();
  3261             if (bound == null)
  3262                 bound = high ? syms.objectType : syms.botType;
  3263             return bound;
  3267     /**
  3268      * Create a wildcard with the given upper (extends) bound; create
  3269      * an unbounded wildcard if bound is Object.
  3271      * @param bound the upper bound
  3272      * @param formal the formal type parameter that will be
  3273      * substituted by the wildcard
  3274      */
  3275     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3276         if (bound == syms.objectType) {
  3277             return new WildcardType(syms.objectType,
  3278                                     BoundKind.UNBOUND,
  3279                                     syms.boundClass,
  3280                                     formal);
  3281         } else {
  3282             return new WildcardType(bound,
  3283                                     BoundKind.EXTENDS,
  3284                                     syms.boundClass,
  3285                                     formal);
  3289     /**
  3290      * Create a wildcard with the given lower (super) bound; create an
  3291      * unbounded wildcard if bound is bottom (type of {@code null}).
  3293      * @param bound the lower bound
  3294      * @param formal the formal type parameter that will be
  3295      * substituted by the wildcard
  3296      */
  3297     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3298         if (bound.tag == BOT) {
  3299             return new WildcardType(syms.objectType,
  3300                                     BoundKind.UNBOUND,
  3301                                     syms.boundClass,
  3302                                     formal);
  3303         } else {
  3304             return new WildcardType(bound,
  3305                                     BoundKind.SUPER,
  3306                                     syms.boundClass,
  3307                                     formal);
  3311     /**
  3312      * A wrapper for a type that allows use in sets.
  3313      */
  3314     class SingletonType {
  3315         final Type t;
  3316         SingletonType(Type t) {
  3317             this.t = t;
  3319         public int hashCode() {
  3320             return Types.this.hashCode(t);
  3322         public boolean equals(Object obj) {
  3323             return (obj instanceof SingletonType) &&
  3324                 isSameType(t, ((SingletonType)obj).t);
  3326         public String toString() {
  3327             return t.toString();
  3330     // </editor-fold>
  3332     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3333     /**
  3334      * A default visitor for types.  All visitor methods except
  3335      * visitType are implemented by delegating to visitType.  Concrete
  3336      * subclasses must provide an implementation of visitType and can
  3337      * override other methods as needed.
  3339      * @param <R> the return type of the operation implemented by this
  3340      * visitor; use Void if no return type is needed.
  3341      * @param <S> the type of the second argument (the first being the
  3342      * type itself) of the operation implemented by this visitor; use
  3343      * Void if a second argument is not needed.
  3344      */
  3345     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3346         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3347         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3348         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3349         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3350         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3351         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3352         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3353         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3354         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3355         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3356         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3359     /**
  3360      * A default visitor for symbols.  All visitor methods except
  3361      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  3362      * subclasses must provide an implementation of visitSymbol and can
  3363      * override other methods as needed.
  3365      * @param <R> the return type of the operation implemented by this
  3366      * visitor; use Void if no return type is needed.
  3367      * @param <S> the type of the second argument (the first being the
  3368      * symbol itself) of the operation implemented by this visitor; use
  3369      * Void if a second argument is not needed.
  3370      */
  3371     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  3372         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  3373         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  3374         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  3375         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  3376         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  3377         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  3378         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  3381     /**
  3382      * A <em>simple</em> visitor for types.  This visitor is simple as
  3383      * captured wildcards, for-all types (generic methods), and
  3384      * undetermined type variables (part of inference) are hidden.
  3385      * Captured wildcards are hidden by treating them as type
  3386      * variables and the rest are hidden by visiting their qtypes.
  3388      * @param <R> the return type of the operation implemented by this
  3389      * visitor; use Void if no return type is needed.
  3390      * @param <S> the type of the second argument (the first being the
  3391      * type itself) of the operation implemented by this visitor; use
  3392      * Void if a second argument is not needed.
  3393      */
  3394     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3395         @Override
  3396         public R visitCapturedType(CapturedType t, S s) {
  3397             return visitTypeVar(t, s);
  3399         @Override
  3400         public R visitForAll(ForAll t, S s) {
  3401             return visit(t.qtype, s);
  3403         @Override
  3404         public R visitUndetVar(UndetVar t, S s) {
  3405             return visit(t.qtype, s);
  3409     /**
  3410      * A plain relation on types.  That is a 2-ary function on the
  3411      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3412      * <!-- In plain text: Type x Type -> Boolean -->
  3413      */
  3414     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3416     /**
  3417      * A convenience visitor for implementing operations that only
  3418      * require one argument (the type itself), that is, unary
  3419      * operations.
  3421      * @param <R> the return type of the operation implemented by this
  3422      * visitor; use Void if no return type is needed.
  3423      */
  3424     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3425         final public R visit(Type t) { return t.accept(this, null); }
  3428     /**
  3429      * A visitor for implementing a mapping from types to types.  The
  3430      * default behavior of this class is to implement the identity
  3431      * mapping (mapping a type to itself).  This can be overridden in
  3432      * subclasses.
  3434      * @param <S> the type of the second argument (the first being the
  3435      * type itself) of this mapping; use Void if a second argument is
  3436      * not needed.
  3437      */
  3438     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3439         final public Type visit(Type t) { return t.accept(this, null); }
  3440         public Type visitType(Type t, S s) { return t; }
  3442     // </editor-fold>

mercurial