src/share/classes/com/sun/tools/javac/comp/Resolve.java

Tue, 26 Nov 2013 15:27:19 +0100

author
jlahoda
date
Tue, 26 Nov 2013 15:27:19 +0100
changeset 2206
8acb838c9b79
parent 2193
d4cbb671de1c
child 2219
5bf0af735c61
permissions
-rw-r--r--

8026374: javac accepts void as a method parameter
Summary: Changing Check.validate to reject void types.
Reviewed-by: jjg, vromero

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    29 import com.sun.tools.javac.api.Formattable.LocalizedString;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.code.Symbol.*;
    32 import com.sun.tools.javac.code.Type.*;
    33 import com.sun.tools.javac.comp.Attr.ResultInfo;
    34 import com.sun.tools.javac.comp.Check.CheckContext;
    35 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    37 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext;
    39 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    40 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    41 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
    42 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
    43 import com.sun.tools.javac.jvm.*;
    44 import com.sun.tools.javac.main.Option;
    45 import com.sun.tools.javac.tree.*;
    46 import com.sun.tools.javac.tree.JCTree.*;
    47 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    49 import com.sun.tools.javac.util.*;
    50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    54 import java.util.Arrays;
    55 import java.util.Collection;
    56 import java.util.EnumMap;
    57 import java.util.EnumSet;
    58 import java.util.Iterator;
    59 import java.util.LinkedHashMap;
    60 import java.util.LinkedHashSet;
    61 import java.util.Map;
    63 import javax.lang.model.element.ElementVisitor;
    65 import static com.sun.tools.javac.code.Flags.*;
    66 import static com.sun.tools.javac.code.Flags.BLOCK;
    67 import static com.sun.tools.javac.code.Kinds.*;
    68 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    69 import static com.sun.tools.javac.code.TypeTag.*;
    70 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    71 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    73 /** Helper class for name resolution, used mostly by the attribution phase.
    74  *
    75  *  <p><b>This is NOT part of any supported API.
    76  *  If you write code that depends on this, you do so at your own risk.
    77  *  This code and its internal interfaces are subject to change or
    78  *  deletion without notice.</b>
    79  */
    80 public class Resolve {
    81     protected static final Context.Key<Resolve> resolveKey =
    82         new Context.Key<Resolve>();
    84     Names names;
    85     Log log;
    86     Symtab syms;
    87     Attr attr;
    88     DeferredAttr deferredAttr;
    89     Check chk;
    90     Infer infer;
    91     ClassReader reader;
    92     TreeInfo treeinfo;
    93     Types types;
    94     JCDiagnostic.Factory diags;
    95     public final boolean boxingEnabled; // = source.allowBoxing();
    96     public final boolean varargsEnabled; // = source.allowVarargs();
    97     public final boolean allowMethodHandles;
    98     public final boolean allowDefaultMethods;
    99     public final boolean allowStructuralMostSpecific;
   100     private final boolean debugResolve;
   101     private final boolean compactMethodDiags;
   102     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
   104     Scope polymorphicSignatureScope;
   106     protected Resolve(Context context) {
   107         context.put(resolveKey, this);
   108         syms = Symtab.instance(context);
   110         varNotFound = new
   111             SymbolNotFoundError(ABSENT_VAR);
   112         methodNotFound = new
   113             SymbolNotFoundError(ABSENT_MTH);
   114         methodWithCorrectStaticnessNotFound = new
   115             SymbolNotFoundError(WRONG_STATICNESS,
   116                 "method found has incorrect staticness");
   117         typeNotFound = new
   118             SymbolNotFoundError(ABSENT_TYP);
   120         names = Names.instance(context);
   121         log = Log.instance(context);
   122         attr = Attr.instance(context);
   123         deferredAttr = DeferredAttr.instance(context);
   124         chk = Check.instance(context);
   125         infer = Infer.instance(context);
   126         reader = ClassReader.instance(context);
   127         treeinfo = TreeInfo.instance(context);
   128         types = Types.instance(context);
   129         diags = JCDiagnostic.Factory.instance(context);
   130         Source source = Source.instance(context);
   131         boxingEnabled = source.allowBoxing();
   132         varargsEnabled = source.allowVarargs();
   133         Options options = Options.instance(context);
   134         debugResolve = options.isSet("debugresolve");
   135         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
   136                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
   137         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   138         Target target = Target.instance(context);
   139         allowMethodHandles = target.hasMethodHandles();
   140         allowDefaultMethods = source.allowDefaultMethods();
   141         allowStructuralMostSpecific = source.allowStructuralMostSpecific();
   142         polymorphicSignatureScope = new Scope(syms.noSymbol);
   144         inapplicableMethodException = new InapplicableMethodException(diags);
   145     }
   147     /** error symbols, which are returned when resolution fails
   148      */
   149     private final SymbolNotFoundError varNotFound;
   150     private final SymbolNotFoundError methodNotFound;
   151     private final SymbolNotFoundError methodWithCorrectStaticnessNotFound;
   152     private final SymbolNotFoundError typeNotFound;
   154     public static Resolve instance(Context context) {
   155         Resolve instance = context.get(resolveKey);
   156         if (instance == null)
   157             instance = new Resolve(context);
   158         return instance;
   159     }
   161     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   162     enum VerboseResolutionMode {
   163         SUCCESS("success"),
   164         FAILURE("failure"),
   165         APPLICABLE("applicable"),
   166         INAPPLICABLE("inapplicable"),
   167         DEFERRED_INST("deferred-inference"),
   168         PREDEF("predef"),
   169         OBJECT_INIT("object-init"),
   170         INTERNAL("internal");
   172         final String opt;
   174         private VerboseResolutionMode(String opt) {
   175             this.opt = opt;
   176         }
   178         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   179             String s = opts.get("verboseResolution");
   180             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   181             if (s == null) return res;
   182             if (s.contains("all")) {
   183                 res = EnumSet.allOf(VerboseResolutionMode.class);
   184             }
   185             Collection<String> args = Arrays.asList(s.split(","));
   186             for (VerboseResolutionMode mode : values()) {
   187                 if (args.contains(mode.opt)) {
   188                     res.add(mode);
   189                 } else if (args.contains("-" + mode.opt)) {
   190                     res.remove(mode);
   191                 }
   192             }
   193             return res;
   194         }
   195     }
   197     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   198             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   199         boolean success = bestSoFar.kind < ERRONEOUS;
   201         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   202             return;
   203         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   204             return;
   205         }
   207         if (bestSoFar.name == names.init &&
   208                 bestSoFar.owner == syms.objectType.tsym &&
   209                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   210             return; //skip diags for Object constructor resolution
   211         } else if (site == syms.predefClass.type &&
   212                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   213             return; //skip spurious diags for predef symbols (i.e. operators)
   214         } else if (currentResolutionContext.internalResolution &&
   215                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   216             return;
   217         }
   219         int pos = 0;
   220         int mostSpecificPos = -1;
   221         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
   222         for (Candidate c : currentResolutionContext.candidates) {
   223             if (currentResolutionContext.step != c.step ||
   224                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   225                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   226                 continue;
   227             } else {
   228                 subDiags.append(c.isApplicable() ?
   229                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   230                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   231                 if (c.sym == bestSoFar)
   232                     mostSpecificPos = pos;
   233                 pos++;
   234             }
   235         }
   236         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   237         List<Type> argtypes2 = Type.map(argtypes,
   238                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   239         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   240                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   241                 methodArguments(argtypes2),
   242                 methodArguments(typeargtypes));
   243         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   244         log.report(d);
   245     }
   247     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   248         JCDiagnostic subDiag = null;
   249         if (sym.type.hasTag(FORALL)) {
   250             subDiag = diags.fragment("partial.inst.sig", inst);
   251         }
   253         String key = subDiag == null ?
   254                 "applicable.method.found" :
   255                 "applicable.method.found.1";
   257         return diags.fragment(key, pos, sym, subDiag);
   258     }
   260     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   261         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   262     }
   263     // </editor-fold>
   265 /* ************************************************************************
   266  * Identifier resolution
   267  *************************************************************************/
   269     /** An environment is "static" if its static level is greater than
   270      *  the one of its outer environment
   271      */
   272     protected static boolean isStatic(Env<AttrContext> env) {
   273         return env.info.staticLevel > env.outer.info.staticLevel;
   274     }
   276     /** An environment is an "initializer" if it is a constructor or
   277      *  an instance initializer.
   278      */
   279     static boolean isInitializer(Env<AttrContext> env) {
   280         Symbol owner = env.info.scope.owner;
   281         return owner.isConstructor() ||
   282             owner.owner.kind == TYP &&
   283             (owner.kind == VAR ||
   284              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   285             (owner.flags() & STATIC) == 0;
   286     }
   288     /** Is class accessible in given evironment?
   289      *  @param env    The current environment.
   290      *  @param c      The class whose accessibility is checked.
   291      */
   292     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   293         return isAccessible(env, c, false);
   294     }
   296     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   297         boolean isAccessible = false;
   298         switch ((short)(c.flags() & AccessFlags)) {
   299             case PRIVATE:
   300                 isAccessible =
   301                     env.enclClass.sym.outermostClass() ==
   302                     c.owner.outermostClass();
   303                 break;
   304             case 0:
   305                 isAccessible =
   306                     env.toplevel.packge == c.owner // fast special case
   307                     ||
   308                     env.toplevel.packge == c.packge()
   309                     ||
   310                     // Hack: this case is added since synthesized default constructors
   311                     // of anonymous classes should be allowed to access
   312                     // classes which would be inaccessible otherwise.
   313                     env.enclMethod != null &&
   314                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   315                 break;
   316             default: // error recovery
   317             case PUBLIC:
   318                 isAccessible = true;
   319                 break;
   320             case PROTECTED:
   321                 isAccessible =
   322                     env.toplevel.packge == c.owner // fast special case
   323                     ||
   324                     env.toplevel.packge == c.packge()
   325                     ||
   326                     isInnerSubClass(env.enclClass.sym, c.owner);
   327                 break;
   328         }
   329         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   330             isAccessible :
   331             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   332     }
   333     //where
   334         /** Is given class a subclass of given base class, or an inner class
   335          *  of a subclass?
   336          *  Return null if no such class exists.
   337          *  @param c     The class which is the subclass or is contained in it.
   338          *  @param base  The base class
   339          */
   340         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   341             while (c != null && !c.isSubClass(base, types)) {
   342                 c = c.owner.enclClass();
   343             }
   344             return c != null;
   345         }
   347     boolean isAccessible(Env<AttrContext> env, Type t) {
   348         return isAccessible(env, t, false);
   349     }
   351     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   352         return (t.hasTag(ARRAY))
   353             ? isAccessible(env, types.upperBound(types.elemtype(t)))
   354             : isAccessible(env, t.tsym, checkInner);
   355     }
   357     /** Is symbol accessible as a member of given type in given environment?
   358      *  @param env    The current environment.
   359      *  @param site   The type of which the tested symbol is regarded
   360      *                as a member.
   361      *  @param sym    The symbol.
   362      */
   363     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   364         return isAccessible(env, site, sym, false);
   365     }
   366     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   367         if (sym.name == names.init && sym.owner != site.tsym) return false;
   368         switch ((short)(sym.flags() & AccessFlags)) {
   369         case PRIVATE:
   370             return
   371                 (env.enclClass.sym == sym.owner // fast special case
   372                  ||
   373                  env.enclClass.sym.outermostClass() ==
   374                  sym.owner.outermostClass())
   375                 &&
   376                 sym.isInheritedIn(site.tsym, types);
   377         case 0:
   378             return
   379                 (env.toplevel.packge == sym.owner.owner // fast special case
   380                  ||
   381                  env.toplevel.packge == sym.packge())
   382                 &&
   383                 isAccessible(env, site, checkInner)
   384                 &&
   385                 sym.isInheritedIn(site.tsym, types)
   386                 &&
   387                 notOverriddenIn(site, sym);
   388         case PROTECTED:
   389             return
   390                 (env.toplevel.packge == sym.owner.owner // fast special case
   391                  ||
   392                  env.toplevel.packge == sym.packge()
   393                  ||
   394                  isProtectedAccessible(sym, env.enclClass.sym, site)
   395                  ||
   396                  // OK to select instance method or field from 'super' or type name
   397                  // (but type names should be disallowed elsewhere!)
   398                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   399                 &&
   400                 isAccessible(env, site, checkInner)
   401                 &&
   402                 notOverriddenIn(site, sym);
   403         default: // this case includes erroneous combinations as well
   404             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   405         }
   406     }
   407     //where
   408     /* `sym' is accessible only if not overridden by
   409      * another symbol which is a member of `site'
   410      * (because, if it is overridden, `sym' is not strictly
   411      * speaking a member of `site'). A polymorphic signature method
   412      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   413      */
   414     private boolean notOverriddenIn(Type site, Symbol sym) {
   415         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   416             return true;
   417         else {
   418             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   419             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   420                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   421         }
   422     }
   423     //where
   424         /** Is given protected symbol accessible if it is selected from given site
   425          *  and the selection takes place in given class?
   426          *  @param sym     The symbol with protected access
   427          *  @param c       The class where the access takes place
   428          *  @site          The type of the qualifier
   429          */
   430         private
   431         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   432             Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
   433             while (c != null &&
   434                    !(c.isSubClass(sym.owner, types) &&
   435                      (c.flags() & INTERFACE) == 0 &&
   436                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   437                      // only to instance fields and methods -- types are excluded
   438                      // regardless of whether they are declared 'static' or not.
   439                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
   440                 c = c.owner.enclClass();
   441             return c != null;
   442         }
   444     /**
   445      * Performs a recursive scan of a type looking for accessibility problems
   446      * from current attribution environment
   447      */
   448     void checkAccessibleType(Env<AttrContext> env, Type t) {
   449         accessibilityChecker.visit(t, env);
   450     }
   452     /**
   453      * Accessibility type-visitor
   454      */
   455     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   456             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   458         void visit(List<Type> ts, Env<AttrContext> env) {
   459             for (Type t : ts) {
   460                 visit(t, env);
   461             }
   462         }
   464         public Void visitType(Type t, Env<AttrContext> env) {
   465             return null;
   466         }
   468         @Override
   469         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   470             visit(t.elemtype, env);
   471             return null;
   472         }
   474         @Override
   475         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   476             visit(t.getTypeArguments(), env);
   477             if (!isAccessible(env, t, true)) {
   478                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   479             }
   480             return null;
   481         }
   483         @Override
   484         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   485             visit(t.type, env);
   486             return null;
   487         }
   489         @Override
   490         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   491             visit(t.getParameterTypes(), env);
   492             visit(t.getReturnType(), env);
   493             visit(t.getThrownTypes(), env);
   494             return null;
   495         }
   496     };
   498     /** Try to instantiate the type of a method so that it fits
   499      *  given type arguments and argument types. If successful, return
   500      *  the method's instantiated type, else return null.
   501      *  The instantiation will take into account an additional leading
   502      *  formal parameter if the method is an instance method seen as a member
   503      *  of an under determined site. In this case, we treat site as an additional
   504      *  parameter and the parameters of the class containing the method as
   505      *  additional type variables that get instantiated.
   506      *
   507      *  @param env         The current environment
   508      *  @param site        The type of which the method is a member.
   509      *  @param m           The method symbol.
   510      *  @param argtypes    The invocation's given value arguments.
   511      *  @param typeargtypes    The invocation's given type arguments.
   512      *  @param allowBoxing Allow boxing conversions of arguments.
   513      *  @param useVarargs Box trailing arguments into an array for varargs.
   514      */
   515     Type rawInstantiate(Env<AttrContext> env,
   516                         Type site,
   517                         Symbol m,
   518                         ResultInfo resultInfo,
   519                         List<Type> argtypes,
   520                         List<Type> typeargtypes,
   521                         boolean allowBoxing,
   522                         boolean useVarargs,
   523                         Warner warn) throws Infer.InferenceException {
   525         Type mt = types.memberType(site, m);
   526         // tvars is the list of formal type variables for which type arguments
   527         // need to inferred.
   528         List<Type> tvars = List.nil();
   529         if (typeargtypes == null) typeargtypes = List.nil();
   530         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   531             // This is not a polymorphic method, but typeargs are supplied
   532             // which is fine, see JLS 15.12.2.1
   533         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   534             ForAll pmt = (ForAll) mt;
   535             if (typeargtypes.length() != pmt.tvars.length())
   536                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   537             // Check type arguments are within bounds
   538             List<Type> formals = pmt.tvars;
   539             List<Type> actuals = typeargtypes;
   540             while (formals.nonEmpty() && actuals.nonEmpty()) {
   541                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   542                                                 pmt.tvars, typeargtypes);
   543                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   544                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   545                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   546                 formals = formals.tail;
   547                 actuals = actuals.tail;
   548             }
   549             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   550         } else if (mt.hasTag(FORALL)) {
   551             ForAll pmt = (ForAll) mt;
   552             List<Type> tvars1 = types.newInstances(pmt.tvars);
   553             tvars = tvars.appendList(tvars1);
   554             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   555         }
   557         // find out whether we need to go the slow route via infer
   558         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   559         for (List<Type> l = argtypes;
   560              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   561              l = l.tail) {
   562             if (l.head.hasTag(FORALL)) instNeeded = true;
   563         }
   565         if (instNeeded)
   566             return infer.instantiateMethod(env,
   567                                     tvars,
   568                                     (MethodType)mt,
   569                                     resultInfo,
   570                                     m,
   571                                     argtypes,
   572                                     allowBoxing,
   573                                     useVarargs,
   574                                     currentResolutionContext,
   575                                     warn);
   577         DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
   578         currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
   579                                 argtypes, mt.getParameterTypes(), warn);
   580         dc.complete();
   581         return mt;
   582     }
   584     Type checkMethod(Env<AttrContext> env,
   585                      Type site,
   586                      Symbol m,
   587                      ResultInfo resultInfo,
   588                      List<Type> argtypes,
   589                      List<Type> typeargtypes,
   590                      Warner warn) {
   591         MethodResolutionContext prevContext = currentResolutionContext;
   592         try {
   593             currentResolutionContext = new MethodResolutionContext();
   594             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   595             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
   596                 //method/constructor references need special check class
   597                 //to handle inference variables in 'argtypes' (might happen
   598                 //during an unsticking round)
   599                 currentResolutionContext.methodCheck =
   600                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
   601             }
   602             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   603             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   604                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   605         }
   606         finally {
   607             currentResolutionContext = prevContext;
   608         }
   609     }
   611     /** Same but returns null instead throwing a NoInstanceException
   612      */
   613     Type instantiate(Env<AttrContext> env,
   614                      Type site,
   615                      Symbol m,
   616                      ResultInfo resultInfo,
   617                      List<Type> argtypes,
   618                      List<Type> typeargtypes,
   619                      boolean allowBoxing,
   620                      boolean useVarargs,
   621                      Warner warn) {
   622         try {
   623             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   624                                   allowBoxing, useVarargs, warn);
   625         } catch (InapplicableMethodException ex) {
   626             return null;
   627         }
   628     }
   630     /**
   631      * This interface defines an entry point that should be used to perform a
   632      * method check. A method check usually consist in determining as to whether
   633      * a set of types (actuals) is compatible with another set of types (formals).
   634      * Since the notion of compatibility can vary depending on the circumstances,
   635      * this interfaces allows to easily add new pluggable method check routines.
   636      */
   637     interface MethodCheck {
   638         /**
   639          * Main method check routine. A method check usually consist in determining
   640          * as to whether a set of types (actuals) is compatible with another set of
   641          * types (formals). If an incompatibility is found, an unchecked exception
   642          * is assumed to be thrown.
   643          */
   644         void argumentsAcceptable(Env<AttrContext> env,
   645                                 DeferredAttrContext deferredAttrContext,
   646                                 List<Type> argtypes,
   647                                 List<Type> formals,
   648                                 Warner warn);
   650         /**
   651          * Retrieve the method check object that will be used during a
   652          * most specific check.
   653          */
   654         MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
   655     }
   657     /**
   658      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   659      */
   660     enum MethodCheckDiag {
   661         /**
   662          * Actuals and formals differs in length.
   663          */
   664         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   665         /**
   666          * An actual is incompatible with a formal.
   667          */
   668         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   669         /**
   670          * An actual is incompatible with the varargs element type.
   671          */
   672         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   673         /**
   674          * The varargs element type is inaccessible.
   675          */
   676         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   678         final String basicKey;
   679         final String inferKey;
   681         MethodCheckDiag(String basicKey, String inferKey) {
   682             this.basicKey = basicKey;
   683             this.inferKey = inferKey;
   684         }
   686         String regex() {
   687             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
   688         }
   689     }
   691     /**
   692      * Dummy method check object. All methods are deemed applicable, regardless
   693      * of their formal parameter types.
   694      */
   695     MethodCheck nilMethodCheck = new MethodCheck() {
   696         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
   697             //do nothing - method always applicable regardless of actuals
   698         }
   700         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   701             return this;
   702         }
   703     };
   705     /**
   706      * Base class for 'real' method checks. The class defines the logic for
   707      * iterating through formals and actuals and provides and entry point
   708      * that can be used by subclasses in order to define the actual check logic.
   709      */
   710     abstract class AbstractMethodCheck implements MethodCheck {
   711         @Override
   712         public void argumentsAcceptable(final Env<AttrContext> env,
   713                                     DeferredAttrContext deferredAttrContext,
   714                                     List<Type> argtypes,
   715                                     List<Type> formals,
   716                                     Warner warn) {
   717             //should we expand formals?
   718             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   719             List<JCExpression> trees = TreeInfo.args(env.tree);
   721             //inference context used during this method check
   722             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   724             Type varargsFormal = useVarargs ? formals.last() : null;
   726             if (varargsFormal == null &&
   727                     argtypes.size() != formals.size()) {
   728                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   729             }
   731             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   732                 DiagnosticPosition pos = trees != null ? trees.head : null;
   733                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
   734                 argtypes = argtypes.tail;
   735                 formals = formals.tail;
   736                 trees = trees != null ? trees.tail : trees;
   737             }
   739             if (formals.head != varargsFormal) {
   740                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   741             }
   743             if (useVarargs) {
   744                 //note: if applicability check is triggered by most specific test,
   745                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   746                 final Type elt = types.elemtype(varargsFormal);
   747                 while (argtypes.nonEmpty()) {
   748                     DiagnosticPosition pos = trees != null ? trees.head : null;
   749                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
   750                     argtypes = argtypes.tail;
   751                     trees = trees != null ? trees.tail : trees;
   752                 }
   753             }
   754         }
   756         /**
   757          * Does the actual argument conforms to the corresponding formal?
   758          */
   759         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
   761         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   762             boolean inferDiag = inferenceContext != infer.emptyContext;
   763             InapplicableMethodException ex = inferDiag ?
   764                     infer.inferenceException : inapplicableMethodException;
   765             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   766                 Object[] args2 = new Object[args.length + 1];
   767                 System.arraycopy(args, 0, args2, 1, args.length);
   768                 args2[0] = inferenceContext.inferenceVars();
   769                 args = args2;
   770             }
   771             String key = inferDiag ? diag.inferKey : diag.basicKey;
   772             throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
   773         }
   775         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   776             return nilMethodCheck;
   777         }
   778     }
   780     /**
   781      * Arity-based method check. A method is applicable if the number of actuals
   782      * supplied conforms to the method signature.
   783      */
   784     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
   785         @Override
   786         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   787             //do nothing - actual always compatible to formals
   788         }
   789     };
   791     List<Type> dummyArgs(int length) {
   792         ListBuffer<Type> buf = new ListBuffer<>();
   793         for (int i = 0 ; i < length ; i++) {
   794             buf.append(Type.noType);
   795         }
   796         return buf.toList();
   797     }
   799     /**
   800      * Main method applicability routine. Given a list of actual types A,
   801      * a list of formal types F, determines whether the types in A are
   802      * compatible (by method invocation conversion) with the types in F.
   803      *
   804      * Since this routine is shared between overload resolution and method
   805      * type-inference, a (possibly empty) inference context is used to convert
   806      * formal types to the corresponding 'undet' form ahead of a compatibility
   807      * check so that constraints can be propagated and collected.
   808      *
   809      * Moreover, if one or more types in A is a deferred type, this routine uses
   810      * DeferredAttr in order to perform deferred attribution. If one or more actual
   811      * deferred types are stuck, they are placed in a queue and revisited later
   812      * after the remainder of the arguments have been seen. If this is not sufficient
   813      * to 'unstuck' the argument, a cyclic inference error is called out.
   814      *
   815      * A method check handler (see above) is used in order to report errors.
   816      */
   817     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
   819         @Override
   820         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   821             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   822             mresult.check(pos, actual);
   823         }
   825         @Override
   826         public void argumentsAcceptable(final Env<AttrContext> env,
   827                                     DeferredAttrContext deferredAttrContext,
   828                                     List<Type> argtypes,
   829                                     List<Type> formals,
   830                                     Warner warn) {
   831             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
   832             //should we expand formals?
   833             if (deferredAttrContext.phase.isVarargsRequired()) {
   834                 //check varargs element type accessibility
   835                 varargsAccessible(env, types.elemtype(formals.last()),
   836                         deferredAttrContext.inferenceContext);
   837             }
   838         }
   840         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   841             if (inferenceContext.free(t)) {
   842                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   843                     @Override
   844                     public void typesInferred(InferenceContext inferenceContext) {
   845                         varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
   846                     }
   847                 });
   848             } else {
   849                 if (!isAccessible(env, t)) {
   850                     Symbol location = env.enclClass.sym;
   851                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   852                 }
   853             }
   854         }
   856         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   857                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   858             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   859                 MethodCheckDiag methodDiag = varargsCheck ?
   860                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   862                 @Override
   863                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   864                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   865                 }
   866             };
   867             return new MethodResultInfo(to, checkContext);
   868         }
   870         @Override
   871         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   872             return new MostSpecificCheck(strict, actuals);
   873         }
   874     };
   876     /**
   877      * This class handles method reference applicability checks; since during
   878      * these checks it's sometime possible to have inference variables on
   879      * the actual argument types list, the method applicability check must be
   880      * extended so that inference variables are 'opened' as needed.
   881      */
   882     class MethodReferenceCheck extends AbstractMethodCheck {
   884         InferenceContext pendingInferenceContext;
   886         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
   887             this.pendingInferenceContext = pendingInferenceContext;
   888         }
   890         @Override
   891         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   892             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   893             mresult.check(pos, actual);
   894         }
   896         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   897                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   898             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   899                 MethodCheckDiag methodDiag = varargsCheck ?
   900                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   902                 @Override
   903                 public boolean compatible(Type found, Type req, Warner warn) {
   904                     found = pendingInferenceContext.asFree(found);
   905                     req = infer.returnConstraintTarget(found, req);
   906                     return super.compatible(found, req, warn);
   907                 }
   909                 @Override
   910                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   911                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   912                 }
   913             };
   914             return new MethodResultInfo(to, checkContext);
   915         }
   917         @Override
   918         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   919             return new MostSpecificCheck(strict, actuals);
   920         }
   921     };
   923     /**
   924      * Check context to be used during method applicability checks. A method check
   925      * context might contain inference variables.
   926      */
   927     abstract class MethodCheckContext implements CheckContext {
   929         boolean strict;
   930         DeferredAttrContext deferredAttrContext;
   931         Warner rsWarner;
   933         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   934            this.strict = strict;
   935            this.deferredAttrContext = deferredAttrContext;
   936            this.rsWarner = rsWarner;
   937         }
   939         public boolean compatible(Type found, Type req, Warner warn) {
   940             return strict ?
   941                     types.isSubtypeUnchecked(found, deferredAttrContext.inferenceContext.asFree(req), warn) :
   942                     types.isConvertible(found, deferredAttrContext.inferenceContext.asFree(req), warn);
   943         }
   945         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   946             throw inapplicableMethodException.setMessage(details);
   947         }
   949         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   950             return rsWarner;
   951         }
   953         public InferenceContext inferenceContext() {
   954             return deferredAttrContext.inferenceContext;
   955         }
   957         public DeferredAttrContext deferredAttrContext() {
   958             return deferredAttrContext;
   959         }
   960     }
   962     /**
   963      * ResultInfo class to be used during method applicability checks. Check
   964      * for deferred types goes through special path.
   965      */
   966     class MethodResultInfo extends ResultInfo {
   968         public MethodResultInfo(Type pt, CheckContext checkContext) {
   969             attr.super(VAL, pt, checkContext);
   970         }
   972         @Override
   973         protected Type check(DiagnosticPosition pos, Type found) {
   974             if (found.hasTag(DEFERRED)) {
   975                 DeferredType dt = (DeferredType)found;
   976                 return dt.check(this);
   977             } else {
   978                 return super.check(pos, chk.checkNonVoid(pos, types.capture(U(found.baseType()))));
   979             }
   980         }
   982         /**
   983          * javac has a long-standing 'simplification' (see 6391995):
   984          * given an actual argument type, the method check is performed
   985          * on its upper bound. This leads to inconsistencies when an
   986          * argument type is checked against itself. For example, given
   987          * a type-variable T, it is not true that {@code U(T) <: T},
   988          * so we need to guard against that.
   989          */
   990         private Type U(Type found) {
   991             return found == pt ?
   992                     found : types.upperBound(found);
   993         }
   995         @Override
   996         protected MethodResultInfo dup(Type newPt) {
   997             return new MethodResultInfo(newPt, checkContext);
   998         }
  1000         @Override
  1001         protected ResultInfo dup(CheckContext newContext) {
  1002             return new MethodResultInfo(pt, newContext);
  1006     /**
  1007      * Most specific method applicability routine. Given a list of actual types A,
  1008      * a list of formal types F1, and a list of formal types F2, the routine determines
  1009      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
  1010      * argument types A.
  1011      */
  1012     class MostSpecificCheck implements MethodCheck {
  1014         boolean strict;
  1015         List<Type> actuals;
  1017         MostSpecificCheck(boolean strict, List<Type> actuals) {
  1018             this.strict = strict;
  1019             this.actuals = actuals;
  1022         @Override
  1023         public void argumentsAcceptable(final Env<AttrContext> env,
  1024                                     DeferredAttrContext deferredAttrContext,
  1025                                     List<Type> formals1,
  1026                                     List<Type> formals2,
  1027                                     Warner warn) {
  1028             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
  1029             while (formals2.nonEmpty()) {
  1030                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
  1031                 mresult.check(null, formals1.head);
  1032                 formals1 = formals1.tail;
  1033                 formals2 = formals2.tail;
  1034                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
  1038        /**
  1039         * Create a method check context to be used during the most specific applicability check
  1040         */
  1041         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
  1042                Warner rsWarner, Type actual) {
  1043            return attr.new ResultInfo(Kinds.VAL, to,
  1044                    new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
  1047         /**
  1048          * Subclass of method check context class that implements most specific
  1049          * method conversion. If the actual type under analysis is a deferred type
  1050          * a full blown structural analysis is carried out.
  1051          */
  1052         class MostSpecificCheckContext extends MethodCheckContext {
  1054             Type actual;
  1056             public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
  1057                 super(strict, deferredAttrContext, rsWarner);
  1058                 this.actual = actual;
  1061             public boolean compatible(Type found, Type req, Warner warn) {
  1062                 if (!allowStructuralMostSpecific || actual == null) {
  1063                     return super.compatible(found, req, warn);
  1064                 } else {
  1065                     switch (actual.getTag()) {
  1066                         case DEFERRED:
  1067                             DeferredType dt = (DeferredType) actual;
  1068                             DeferredType.SpeculativeCache.Entry e = dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
  1069                             return (e == null || e.speculativeTree == deferredAttr.stuckTree)
  1070                                     ? super.compatible(found, req, warn) :
  1071                                       mostSpecific(found, req, e.speculativeTree, warn);
  1072                         default:
  1073                             return standaloneMostSpecific(found, req, actual, warn);
  1078             private boolean mostSpecific(Type t, Type s, JCTree tree, Warner warn) {
  1079                 MostSpecificChecker msc = new MostSpecificChecker(t, s, warn);
  1080                 msc.scan(tree);
  1081                 return msc.result;
  1084             boolean polyMostSpecific(Type t1, Type t2, Warner warn) {
  1085                 return (!t1.isPrimitive() && t2.isPrimitive())
  1086                         ? true : super.compatible(t1, t2, warn);
  1089             boolean standaloneMostSpecific(Type t1, Type t2, Type exprType, Warner warn) {
  1090                 return (exprType.isPrimitive() == t1.isPrimitive()
  1091                         && exprType.isPrimitive() != t2.isPrimitive())
  1092                         ? true : super.compatible(t1, t2, warn);
  1095             /**
  1096              * Structural checker for most specific.
  1097              */
  1098             class MostSpecificChecker extends DeferredAttr.PolyScanner {
  1100                 final Type t;
  1101                 final Type s;
  1102                 final Warner warn;
  1103                 boolean result;
  1105                 MostSpecificChecker(Type t, Type s, Warner warn) {
  1106                     this.t = t;
  1107                     this.s = s;
  1108                     this.warn = warn;
  1109                     result = true;
  1112                 @Override
  1113                 void skip(JCTree tree) {
  1114                     result &= standaloneMostSpecific(t, s, tree.type, warn);
  1117                 @Override
  1118                 public void visitConditional(JCConditional tree) {
  1119                     if (tree.polyKind == PolyKind.STANDALONE) {
  1120                         result &= standaloneMostSpecific(t, s, tree.type, warn);
  1121                     } else {
  1122                         super.visitConditional(tree);
  1126                 @Override
  1127                 public void visitApply(JCMethodInvocation tree) {
  1128                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1129                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1130                             : polyMostSpecific(t, s, warn);
  1133                 @Override
  1134                 public void visitNewClass(JCNewClass tree) {
  1135                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1136                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1137                             : polyMostSpecific(t, s, warn);
  1140                 @Override
  1141                 public void visitReference(JCMemberReference tree) {
  1142                     if (types.isFunctionalInterface(t.tsym) &&
  1143                             types.isFunctionalInterface(s.tsym)) {
  1144                         Type desc_t = types.findDescriptorType(t);
  1145                         Type desc_s = types.findDescriptorType(s);
  1146                         if (types.isSameTypes(desc_t.getParameterTypes(),
  1147                                 inferenceContext().asFree(desc_s.getParameterTypes()))) {
  1148                             if (types.asSuper(t, s.tsym) != null ||
  1149                                 types.asSuper(s, t.tsym) != null) {
  1150                                 result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1151                             } else if (!desc_s.getReturnType().hasTag(VOID)) {
  1152                                 //perform structural comparison
  1153                                 Type ret_t = desc_t.getReturnType();
  1154                                 Type ret_s = desc_s.getReturnType();
  1155                                 result &= ((tree.refPolyKind == PolyKind.STANDALONE)
  1156                                         ? standaloneMostSpecific(ret_t, ret_s, tree.sym.type.getReturnType(), warn)
  1157                                         : polyMostSpecific(ret_t, ret_s, warn));
  1158                             } else {
  1159                                 return;
  1162                     } else {
  1163                         result &= false;
  1167                 @Override
  1168                 public void visitLambda(JCLambda tree) {
  1169                     if (types.isFunctionalInterface(t.tsym) &&
  1170                             types.isFunctionalInterface(s.tsym)) {
  1171                         Type desc_t = types.findDescriptorType(t);
  1172                         Type desc_s = types.findDescriptorType(s);
  1173                         if (types.isSameTypes(desc_t.getParameterTypes(),
  1174                                 inferenceContext().asFree(desc_s.getParameterTypes()))) {
  1175                             if (types.asSuper(t, s.tsym) != null ||
  1176                                 types.asSuper(s, t.tsym) != null) {
  1177                                 result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1178                             } else if (!desc_s.getReturnType().hasTag(VOID)) {
  1179                                 //perform structural comparison
  1180                                 Type ret_t = desc_t.getReturnType();
  1181                                 Type ret_s = desc_s.getReturnType();
  1182                                 scanLambdaBody(tree, ret_t, ret_s);
  1183                             } else {
  1184                                 return;
  1187                     } else {
  1188                         result &= false;
  1191                 //where
  1193                 void scanLambdaBody(JCLambda lambda, final Type t, final Type s) {
  1194                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
  1195                         result &= MostSpecificCheckContext.this.mostSpecific(t, s, lambda.body, warn);
  1196                     } else {
  1197                         DeferredAttr.LambdaReturnScanner lambdaScanner =
  1198                                 new DeferredAttr.LambdaReturnScanner() {
  1199                                     @Override
  1200                                     public void visitReturn(JCReturn tree) {
  1201                                         if (tree.expr != null) {
  1202                                             result &= MostSpecificCheckContext.this.mostSpecific(t, s, tree.expr, warn);
  1205                                 };
  1206                         lambdaScanner.scan(lambda.body);
  1212         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
  1213             Assert.error("Cannot get here!");
  1214             return null;
  1218     public static class InapplicableMethodException extends RuntimeException {
  1219         private static final long serialVersionUID = 0;
  1221         JCDiagnostic diagnostic;
  1222         JCDiagnostic.Factory diags;
  1224         InapplicableMethodException(JCDiagnostic.Factory diags) {
  1225             this.diagnostic = null;
  1226             this.diags = diags;
  1228         InapplicableMethodException setMessage() {
  1229             return setMessage((JCDiagnostic)null);
  1231         InapplicableMethodException setMessage(String key) {
  1232             return setMessage(key != null ? diags.fragment(key) : null);
  1234         InapplicableMethodException setMessage(String key, Object... args) {
  1235             return setMessage(key != null ? diags.fragment(key, args) : null);
  1237         InapplicableMethodException setMessage(JCDiagnostic diag) {
  1238             this.diagnostic = diag;
  1239             return this;
  1242         public JCDiagnostic getDiagnostic() {
  1243             return diagnostic;
  1246     private final InapplicableMethodException inapplicableMethodException;
  1248 /* ***************************************************************************
  1249  *  Symbol lookup
  1250  *  the following naming conventions for arguments are used
  1252  *       env      is the environment where the symbol was mentioned
  1253  *       site     is the type of which the symbol is a member
  1254  *       name     is the symbol's name
  1255  *                if no arguments are given
  1256  *       argtypes are the value arguments, if we search for a method
  1258  *  If no symbol was found, a ResolveError detailing the problem is returned.
  1259  ****************************************************************************/
  1261     /** Find field. Synthetic fields are always skipped.
  1262      *  @param env     The current environment.
  1263      *  @param site    The original type from where the selection takes place.
  1264      *  @param name    The name of the field.
  1265      *  @param c       The class to search for the field. This is always
  1266      *                 a superclass or implemented interface of site's class.
  1267      */
  1268     Symbol findField(Env<AttrContext> env,
  1269                      Type site,
  1270                      Name name,
  1271                      TypeSymbol c) {
  1272         while (c.type.hasTag(TYPEVAR))
  1273             c = c.type.getUpperBound().tsym;
  1274         Symbol bestSoFar = varNotFound;
  1275         Symbol sym;
  1276         Scope.Entry e = c.members().lookup(name);
  1277         while (e.scope != null) {
  1278             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
  1279                 return isAccessible(env, site, e.sym)
  1280                     ? e.sym : new AccessError(env, site, e.sym);
  1282             e = e.next();
  1284         Type st = types.supertype(c.type);
  1285         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
  1286             sym = findField(env, site, name, st.tsym);
  1287             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1289         for (List<Type> l = types.interfaces(c.type);
  1290              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1291              l = l.tail) {
  1292             sym = findField(env, site, name, l.head.tsym);
  1293             if (bestSoFar.exists() && sym.exists() &&
  1294                 sym.owner != bestSoFar.owner)
  1295                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1296             else if (sym.kind < bestSoFar.kind)
  1297                 bestSoFar = sym;
  1299         return bestSoFar;
  1302     /** Resolve a field identifier, throw a fatal error if not found.
  1303      *  @param pos       The position to use for error reporting.
  1304      *  @param env       The environment current at the method invocation.
  1305      *  @param site      The type of the qualifying expression, in which
  1306      *                   identifier is searched.
  1307      *  @param name      The identifier's name.
  1308      */
  1309     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
  1310                                           Type site, Name name) {
  1311         Symbol sym = findField(env, site, name, site.tsym);
  1312         if (sym.kind == VAR) return (VarSymbol)sym;
  1313         else throw new FatalError(
  1314                  diags.fragment("fatal.err.cant.locate.field",
  1315                                 name));
  1318     /** Find unqualified variable or field with given name.
  1319      *  Synthetic fields always skipped.
  1320      *  @param env     The current environment.
  1321      *  @param name    The name of the variable or field.
  1322      */
  1323     Symbol findVar(Env<AttrContext> env, Name name) {
  1324         Symbol bestSoFar = varNotFound;
  1325         Symbol sym;
  1326         Env<AttrContext> env1 = env;
  1327         boolean staticOnly = false;
  1328         while (env1.outer != null) {
  1329             if (isStatic(env1)) staticOnly = true;
  1330             Scope.Entry e = env1.info.scope.lookup(name);
  1331             while (e.scope != null &&
  1332                    (e.sym.kind != VAR ||
  1333                     (e.sym.flags_field & SYNTHETIC) != 0))
  1334                 e = e.next();
  1335             sym = (e.scope != null)
  1336                 ? e.sym
  1337                 : findField(
  1338                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
  1339             if (sym.exists()) {
  1340                 if (staticOnly &&
  1341                     sym.kind == VAR &&
  1342                     sym.owner.kind == TYP &&
  1343                     (sym.flags() & STATIC) == 0)
  1344                     return new StaticError(sym);
  1345                 else
  1346                     return sym;
  1347             } else if (sym.kind < bestSoFar.kind) {
  1348                 bestSoFar = sym;
  1351             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1352             env1 = env1.outer;
  1355         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
  1356         if (sym.exists())
  1357             return sym;
  1358         if (bestSoFar.exists())
  1359             return bestSoFar;
  1361         Symbol origin = null;
  1362         for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
  1363             Scope.Entry e = sc.lookup(name);
  1364             for (; e.scope != null; e = e.next()) {
  1365                 sym = e.sym;
  1366                 if (sym.kind != VAR)
  1367                     continue;
  1368                 // invariant: sym.kind == VAR
  1369                 if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1370                     return new AmbiguityError(bestSoFar, sym);
  1371                 else if (bestSoFar.kind >= VAR) {
  1372                     origin = e.getOrigin().owner;
  1373                     bestSoFar = isAccessible(env, origin.type, sym)
  1374                         ? sym : new AccessError(env, origin.type, sym);
  1377             if (bestSoFar.exists()) break;
  1379         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1380             return bestSoFar.clone(origin);
  1381         else
  1382             return bestSoFar;
  1385     Warner noteWarner = new Warner();
  1387     /** Select the best method for a call site among two choices.
  1388      *  @param env              The current environment.
  1389      *  @param site             The original type from where the
  1390      *                          selection takes place.
  1391      *  @param argtypes         The invocation's value arguments,
  1392      *  @param typeargtypes     The invocation's type arguments,
  1393      *  @param sym              Proposed new best match.
  1394      *  @param bestSoFar        Previously found best match.
  1395      *  @param allowBoxing Allow boxing conversions of arguments.
  1396      *  @param useVarargs Box trailing arguments into an array for varargs.
  1397      */
  1398     @SuppressWarnings("fallthrough")
  1399     Symbol selectBest(Env<AttrContext> env,
  1400                       Type site,
  1401                       List<Type> argtypes,
  1402                       List<Type> typeargtypes,
  1403                       Symbol sym,
  1404                       Symbol bestSoFar,
  1405                       boolean allowBoxing,
  1406                       boolean useVarargs,
  1407                       boolean operator) {
  1408         if (sym.kind == ERR ||
  1409                 !sym.isInheritedIn(site.tsym, types)) {
  1410             return bestSoFar;
  1411         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
  1412             return bestSoFar.kind >= ERRONEOUS ?
  1413                     new BadVarargsMethod((ResolveError)bestSoFar) :
  1414                     bestSoFar;
  1416         Assert.check(sym.kind < AMBIGUOUS);
  1417         try {
  1418             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1419                                allowBoxing, useVarargs, types.noWarnings);
  1420             if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
  1421                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1422         } catch (InapplicableMethodException ex) {
  1423             if (!operator)
  1424                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1425             switch (bestSoFar.kind) {
  1426                 case ABSENT_MTH:
  1427                     return new InapplicableSymbolError(currentResolutionContext);
  1428                 case WRONG_MTH:
  1429                     if (operator) return bestSoFar;
  1430                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1431                 default:
  1432                     return bestSoFar;
  1435         if (!isAccessible(env, site, sym)) {
  1436             return (bestSoFar.kind == ABSENT_MTH)
  1437                 ? new AccessError(env, site, sym)
  1438                 : bestSoFar;
  1440         return (bestSoFar.kind > AMBIGUOUS)
  1441             ? sym
  1442             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1443                            allowBoxing && operator, useVarargs);
  1446     /* Return the most specific of the two methods for a call,
  1447      *  given that both are accessible and applicable.
  1448      *  @param m1               A new candidate for most specific.
  1449      *  @param m2               The previous most specific candidate.
  1450      *  @param env              The current environment.
  1451      *  @param site             The original type from where the selection
  1452      *                          takes place.
  1453      *  @param allowBoxing Allow boxing conversions of arguments.
  1454      *  @param useVarargs Box trailing arguments into an array for varargs.
  1455      */
  1456     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1457                         Symbol m2,
  1458                         Env<AttrContext> env,
  1459                         final Type site,
  1460                         boolean allowBoxing,
  1461                         boolean useVarargs) {
  1462         switch (m2.kind) {
  1463         case MTH:
  1464             if (m1 == m2) return m1;
  1465             boolean m1SignatureMoreSpecific =
  1466                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1467             boolean m2SignatureMoreSpecific =
  1468                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1469             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1470                 Type mt1 = types.memberType(site, m1);
  1471                 Type mt2 = types.memberType(site, m2);
  1472                 if (!types.overrideEquivalent(mt1, mt2))
  1473                     return ambiguityError(m1, m2);
  1475                 // same signature; select (a) the non-bridge method, or
  1476                 // (b) the one that overrides the other, or (c) the concrete
  1477                 // one, or (d) merge both abstract signatures
  1478                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1479                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1481                 // if one overrides or hides the other, use it
  1482                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1483                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1484                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1485                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1486                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1487                     m1.overrides(m2, m1Owner, types, false))
  1488                     return m1;
  1489                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1490                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1491                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1492                     m2.overrides(m1, m2Owner, types, false))
  1493                     return m2;
  1494                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1495                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1496                 if (m1Abstract && !m2Abstract) return m2;
  1497                 if (m2Abstract && !m1Abstract) return m1;
  1498                 // both abstract or both concrete
  1499                 return ambiguityError(m1, m2);
  1501             if (m1SignatureMoreSpecific) return m1;
  1502             if (m2SignatureMoreSpecific) return m2;
  1503             return ambiguityError(m1, m2);
  1504         case AMBIGUOUS:
  1505             //check if m1 is more specific than all ambiguous methods in m2
  1506             AmbiguityError e = (AmbiguityError)m2;
  1507             for (Symbol s : e.ambiguousSyms) {
  1508                 if (mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs) != m1) {
  1509                     return e.addAmbiguousSymbol(m1);
  1512             return m1;
  1513         default:
  1514             throw new AssertionError();
  1517     //where
  1518     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1519         noteWarner.clear();
  1520         int maxLength = Math.max(
  1521                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
  1522                             m2.type.getParameterTypes().length());
  1523         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1524         try {
  1525             currentResolutionContext = new MethodResolutionContext();
  1526             currentResolutionContext.step = prevResolutionContext.step;
  1527             currentResolutionContext.methodCheck =
  1528                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
  1529             Type mst = instantiate(env, site, m2, null,
  1530                     adjustArgs(types.lowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
  1531                     allowBoxing, useVarargs, noteWarner);
  1532             return mst != null &&
  1533                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1534         } finally {
  1535             currentResolutionContext = prevResolutionContext;
  1539     List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
  1540         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
  1541             Type varargsElem = types.elemtype(args.last());
  1542             if (varargsElem == null) {
  1543                 Assert.error("Bad varargs = " + args.last() + " " + msym);
  1545             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
  1546             while (newArgs.length() < length) {
  1547                 newArgs = newArgs.append(newArgs.last());
  1549             return newArgs;
  1550         } else {
  1551             return args;
  1554     //where
  1555     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1556         Type rt1 = mt1.getReturnType();
  1557         Type rt2 = mt2.getReturnType();
  1559         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1560             //if both are generic methods, adjust return type ahead of subtyping check
  1561             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1563         //first use subtyping, then return type substitutability
  1564         if (types.isSubtype(rt1, rt2)) {
  1565             return mt1;
  1566         } else if (types.isSubtype(rt2, rt1)) {
  1567             return mt2;
  1568         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1569             return mt1;
  1570         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1571             return mt2;
  1572         } else {
  1573             return null;
  1576     //where
  1577     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1578         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1579             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1580         } else {
  1581             return new AmbiguityError(m1, m2);
  1585     Symbol findMethodInScope(Env<AttrContext> env,
  1586             Type site,
  1587             Name name,
  1588             List<Type> argtypes,
  1589             List<Type> typeargtypes,
  1590             Scope sc,
  1591             Symbol bestSoFar,
  1592             boolean allowBoxing,
  1593             boolean useVarargs,
  1594             boolean operator,
  1595             boolean abstractok) {
  1596         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1597             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1598                     bestSoFar, allowBoxing, useVarargs, operator);
  1600         return bestSoFar;
  1602     //where
  1603         class LookupFilter implements Filter<Symbol> {
  1605             boolean abstractOk;
  1607             LookupFilter(boolean abstractOk) {
  1608                 this.abstractOk = abstractOk;
  1611             public boolean accepts(Symbol s) {
  1612                 long flags = s.flags();
  1613                 return s.kind == MTH &&
  1614                         (flags & SYNTHETIC) == 0 &&
  1615                         (abstractOk ||
  1616                         (flags & DEFAULT) != 0 ||
  1617                         (flags & ABSTRACT) == 0);
  1619         };
  1621     /** Find best qualified method matching given name, type and value
  1622      *  arguments.
  1623      *  @param env       The current environment.
  1624      *  @param site      The original type from where the selection
  1625      *                   takes place.
  1626      *  @param name      The method's name.
  1627      *  @param argtypes  The method's value arguments.
  1628      *  @param typeargtypes The method's type arguments
  1629      *  @param allowBoxing Allow boxing conversions of arguments.
  1630      *  @param useVarargs Box trailing arguments into an array for varargs.
  1631      */
  1632     Symbol findMethod(Env<AttrContext> env,
  1633                       Type site,
  1634                       Name name,
  1635                       List<Type> argtypes,
  1636                       List<Type> typeargtypes,
  1637                       boolean allowBoxing,
  1638                       boolean useVarargs,
  1639                       boolean operator) {
  1640         Symbol bestSoFar = methodNotFound;
  1641         bestSoFar = findMethod(env,
  1642                           site,
  1643                           name,
  1644                           argtypes,
  1645                           typeargtypes,
  1646                           site.tsym.type,
  1647                           bestSoFar,
  1648                           allowBoxing,
  1649                           useVarargs,
  1650                           operator);
  1651         return bestSoFar;
  1653     // where
  1654     private Symbol findMethod(Env<AttrContext> env,
  1655                               Type site,
  1656                               Name name,
  1657                               List<Type> argtypes,
  1658                               List<Type> typeargtypes,
  1659                               Type intype,
  1660                               Symbol bestSoFar,
  1661                               boolean allowBoxing,
  1662                               boolean useVarargs,
  1663                               boolean operator) {
  1664         @SuppressWarnings({"unchecked","rawtypes"})
  1665         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1666         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1667         for (TypeSymbol s : superclasses(intype)) {
  1668             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1669                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1670             if (name == names.init) return bestSoFar;
  1671             iphase = (iphase == null) ? null : iphase.update(s, this);
  1672             if (iphase != null) {
  1673                 for (Type itype : types.interfaces(s.type)) {
  1674                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1679         Symbol concrete = bestSoFar.kind < ERR &&
  1680                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1681                 bestSoFar : methodNotFound;
  1683         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1684             if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && !allowDefaultMethods) break;
  1685             //keep searching for abstract methods
  1686             for (Type itype : itypes[iphase2.ordinal()]) {
  1687                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1688                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1689                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1690                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1691                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1692                 if (concrete != bestSoFar &&
  1693                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1694                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1695                     //this is an hack - as javac does not do full membership checks
  1696                     //most specific ends up comparing abstract methods that might have
  1697                     //been implemented by some concrete method in a subclass and,
  1698                     //because of raw override, it is possible for an abstract method
  1699                     //to be more specific than the concrete method - so we need
  1700                     //to explicitly call that out (see CR 6178365)
  1701                     bestSoFar = concrete;
  1705         return bestSoFar;
  1708     enum InterfaceLookupPhase {
  1709         ABSTRACT_OK() {
  1710             @Override
  1711             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1712                 //We should not look for abstract methods if receiver is a concrete class
  1713                 //(as concrete classes are expected to implement all abstracts coming
  1714                 //from superinterfaces)
  1715                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1716                     return this;
  1717                 } else if (rs.allowDefaultMethods) {
  1718                     return DEFAULT_OK;
  1719                 } else {
  1720                     return null;
  1723         },
  1724         DEFAULT_OK() {
  1725             @Override
  1726             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1727                 return this;
  1729         };
  1731         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1734     /**
  1735      * Return an Iterable object to scan the superclasses of a given type.
  1736      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1737      * access more supertypes than strictly needed (as this could trigger completion
  1738      * errors if some of the not-needed supertypes are missing/ill-formed).
  1739      */
  1740     Iterable<TypeSymbol> superclasses(final Type intype) {
  1741         return new Iterable<TypeSymbol>() {
  1742             public Iterator<TypeSymbol> iterator() {
  1743                 return new Iterator<TypeSymbol>() {
  1745                     List<TypeSymbol> seen = List.nil();
  1746                     TypeSymbol currentSym = symbolFor(intype);
  1747                     TypeSymbol prevSym = null;
  1749                     public boolean hasNext() {
  1750                         if (currentSym == syms.noSymbol) {
  1751                             currentSym = symbolFor(types.supertype(prevSym.type));
  1753                         return currentSym != null;
  1756                     public TypeSymbol next() {
  1757                         prevSym = currentSym;
  1758                         currentSym = syms.noSymbol;
  1759                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1760                         return prevSym;
  1763                     public void remove() {
  1764                         throw new UnsupportedOperationException();
  1767                     TypeSymbol symbolFor(Type t) {
  1768                         if (!t.hasTag(CLASS) &&
  1769                                 !t.hasTag(TYPEVAR)) {
  1770                             return null;
  1772                         while (t.hasTag(TYPEVAR))
  1773                             t = t.getUpperBound();
  1774                         if (seen.contains(t.tsym)) {
  1775                             //degenerate case in which we have a circular
  1776                             //class hierarchy - because of ill-formed classfiles
  1777                             return null;
  1779                         seen = seen.prepend(t.tsym);
  1780                         return t.tsym;
  1782                 };
  1784         };
  1787     /** Find unqualified method matching given name, type and value arguments.
  1788      *  @param env       The current environment.
  1789      *  @param name      The method's name.
  1790      *  @param argtypes  The method's value arguments.
  1791      *  @param typeargtypes  The method's type arguments.
  1792      *  @param allowBoxing Allow boxing conversions of arguments.
  1793      *  @param useVarargs Box trailing arguments into an array for varargs.
  1794      */
  1795     Symbol findFun(Env<AttrContext> env, Name name,
  1796                    List<Type> argtypes, List<Type> typeargtypes,
  1797                    boolean allowBoxing, boolean useVarargs) {
  1798         Symbol bestSoFar = methodNotFound;
  1799         Symbol sym;
  1800         Env<AttrContext> env1 = env;
  1801         boolean staticOnly = false;
  1802         while (env1.outer != null) {
  1803             if (isStatic(env1)) staticOnly = true;
  1804             sym = findMethod(
  1805                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1806                 allowBoxing, useVarargs, false);
  1807             if (sym.exists()) {
  1808                 if (staticOnly &&
  1809                     sym.kind == MTH &&
  1810                     sym.owner.kind == TYP &&
  1811                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1812                 else return sym;
  1813             } else if (sym.kind < bestSoFar.kind) {
  1814                 bestSoFar = sym;
  1816             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1817             env1 = env1.outer;
  1820         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1821                          typeargtypes, allowBoxing, useVarargs, false);
  1822         if (sym.exists())
  1823             return sym;
  1825         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1826         for (; e.scope != null; e = e.next()) {
  1827             sym = e.sym;
  1828             Type origin = e.getOrigin().owner.type;
  1829             if (sym.kind == MTH) {
  1830                 if (e.sym.owner.type != origin)
  1831                     sym = sym.clone(e.getOrigin().owner);
  1832                 if (!isAccessible(env, origin, sym))
  1833                     sym = new AccessError(env, origin, sym);
  1834                 bestSoFar = selectBest(env, origin,
  1835                                        argtypes, typeargtypes,
  1836                                        sym, bestSoFar,
  1837                                        allowBoxing, useVarargs, false);
  1840         if (bestSoFar.exists())
  1841             return bestSoFar;
  1843         e = env.toplevel.starImportScope.lookup(name);
  1844         for (; e.scope != null; e = e.next()) {
  1845             sym = e.sym;
  1846             Type origin = e.getOrigin().owner.type;
  1847             if (sym.kind == MTH) {
  1848                 if (e.sym.owner.type != origin)
  1849                     sym = sym.clone(e.getOrigin().owner);
  1850                 if (!isAccessible(env, origin, sym))
  1851                     sym = new AccessError(env, origin, sym);
  1852                 bestSoFar = selectBest(env, origin,
  1853                                        argtypes, typeargtypes,
  1854                                        sym, bestSoFar,
  1855                                        allowBoxing, useVarargs, false);
  1858         return bestSoFar;
  1861     /** Load toplevel or member class with given fully qualified name and
  1862      *  verify that it is accessible.
  1863      *  @param env       The current environment.
  1864      *  @param name      The fully qualified name of the class to be loaded.
  1865      */
  1866     Symbol loadClass(Env<AttrContext> env, Name name) {
  1867         try {
  1868             ClassSymbol c = reader.loadClass(name);
  1869             return isAccessible(env, c) ? c : new AccessError(c);
  1870         } catch (ClassReader.BadClassFile err) {
  1871             throw err;
  1872         } catch (CompletionFailure ex) {
  1873             return typeNotFound;
  1878     /**
  1879      * Find a type declared in a scope (not inherited).  Return null
  1880      * if none is found.
  1881      *  @param env       The current environment.
  1882      *  @param site      The original type from where the selection takes
  1883      *                   place.
  1884      *  @param name      The type's name.
  1885      *  @param c         The class to search for the member type. This is
  1886      *                   always a superclass or implemented interface of
  1887      *                   site's class.
  1888      */
  1889     Symbol findImmediateMemberType(Env<AttrContext> env,
  1890                                    Type site,
  1891                                    Name name,
  1892                                    TypeSymbol c) {
  1893         Scope.Entry e = c.members().lookup(name);
  1894         while (e.scope != null) {
  1895             if (e.sym.kind == TYP) {
  1896                 return isAccessible(env, site, e.sym)
  1897                     ? e.sym
  1898                     : new AccessError(env, site, e.sym);
  1900             e = e.next();
  1902         return typeNotFound;
  1905     /** Find a member type inherited from a superclass or interface.
  1906      *  @param env       The current environment.
  1907      *  @param site      The original type from where the selection takes
  1908      *                   place.
  1909      *  @param name      The type's name.
  1910      *  @param c         The class to search for the member type. This is
  1911      *                   always a superclass or implemented interface of
  1912      *                   site's class.
  1913      */
  1914     Symbol findInheritedMemberType(Env<AttrContext> env,
  1915                                    Type site,
  1916                                    Name name,
  1917                                    TypeSymbol c) {
  1918         Symbol bestSoFar = typeNotFound;
  1919         Symbol sym;
  1920         Type st = types.supertype(c.type);
  1921         if (st != null && st.hasTag(CLASS)) {
  1922             sym = findMemberType(env, site, name, st.tsym);
  1923             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1925         for (List<Type> l = types.interfaces(c.type);
  1926              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1927              l = l.tail) {
  1928             sym = findMemberType(env, site, name, l.head.tsym);
  1929             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1930                 sym.owner != bestSoFar.owner)
  1931                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1932             else if (sym.kind < bestSoFar.kind)
  1933                 bestSoFar = sym;
  1935         return bestSoFar;
  1938     /** Find qualified member type.
  1939      *  @param env       The current environment.
  1940      *  @param site      The original type from where the selection takes
  1941      *                   place.
  1942      *  @param name      The type's name.
  1943      *  @param c         The class to search for the member type. This is
  1944      *                   always a superclass or implemented interface of
  1945      *                   site's class.
  1946      */
  1947     Symbol findMemberType(Env<AttrContext> env,
  1948                           Type site,
  1949                           Name name,
  1950                           TypeSymbol c) {
  1951         Symbol sym = findImmediateMemberType(env, site, name, c);
  1953         if (sym != typeNotFound)
  1954             return sym;
  1956         return findInheritedMemberType(env, site, name, c);
  1960     /** Find a global type in given scope and load corresponding class.
  1961      *  @param env       The current environment.
  1962      *  @param scope     The scope in which to look for the type.
  1963      *  @param name      The type's name.
  1964      */
  1965     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1966         Symbol bestSoFar = typeNotFound;
  1967         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1968             Symbol sym = loadClass(env, e.sym.flatName());
  1969             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1970                 bestSoFar != sym)
  1971                 return new AmbiguityError(bestSoFar, sym);
  1972             else if (sym.kind < bestSoFar.kind)
  1973                 bestSoFar = sym;
  1975         return bestSoFar;
  1978     Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
  1979         for (Scope.Entry e = env.info.scope.lookup(name);
  1980              e.scope != null;
  1981              e = e.next()) {
  1982             if (e.sym.kind == TYP) {
  1983                 if (staticOnly &&
  1984                     e.sym.type.hasTag(TYPEVAR) &&
  1985                     e.sym.owner.kind == TYP)
  1986                     return new StaticError(e.sym);
  1987                 return e.sym;
  1990         return typeNotFound;
  1993     /** Find an unqualified type symbol.
  1994      *  @param env       The current environment.
  1995      *  @param name      The type's name.
  1996      */
  1997     Symbol findType(Env<AttrContext> env, Name name) {
  1998         Symbol bestSoFar = typeNotFound;
  1999         Symbol sym;
  2000         boolean staticOnly = false;
  2001         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  2002             if (isStatic(env1)) staticOnly = true;
  2003             // First, look for a type variable and the first member type
  2004             final Symbol tyvar = findTypeVar(env1, name, staticOnly);
  2005             sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
  2006                                           name, env1.enclClass.sym);
  2008             // Return the type variable if we have it, and have no
  2009             // immediate member, OR the type variable is for a method.
  2010             if (tyvar != typeNotFound) {
  2011                 if (sym == typeNotFound ||
  2012                     (tyvar.kind == TYP && tyvar.exists() &&
  2013                      tyvar.owner.kind == MTH))
  2014                     return tyvar;
  2017             // If the environment is a class def, finish up,
  2018             // otherwise, do the entire findMemberType
  2019             if (sym == typeNotFound)
  2020                 sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
  2021                                               name, env1.enclClass.sym);
  2023             if (staticOnly && sym.kind == TYP &&
  2024                 sym.type.hasTag(CLASS) &&
  2025                 sym.type.getEnclosingType().hasTag(CLASS) &&
  2026                 env1.enclClass.sym.type.isParameterized() &&
  2027                 sym.type.getEnclosingType().isParameterized())
  2028                 return new StaticError(sym);
  2029             else if (sym.exists()) return sym;
  2030             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2032             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  2033             if ((encl.sym.flags() & STATIC) != 0)
  2034                 staticOnly = true;
  2037         if (!env.tree.hasTag(IMPORT)) {
  2038             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  2039             if (sym.exists()) return sym;
  2040             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2042             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  2043             if (sym.exists()) return sym;
  2044             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2046             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  2047             if (sym.exists()) return sym;
  2048             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2051         return bestSoFar;
  2054     /** Find an unqualified identifier which matches a specified kind set.
  2055      *  @param env       The current environment.
  2056      *  @param name      The identifier's name.
  2057      *  @param kind      Indicates the possible symbol kinds
  2058      *                   (a subset of VAL, TYP, PCK).
  2059      */
  2060     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  2061         Symbol bestSoFar = typeNotFound;
  2062         Symbol sym;
  2064         if ((kind & VAR) != 0) {
  2065             sym = findVar(env, name);
  2066             if (sym.exists()) return sym;
  2067             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2070         if ((kind & TYP) != 0) {
  2071             sym = findType(env, name);
  2072             if (sym.kind==TYP) {
  2073                  reportDependence(env.enclClass.sym, sym);
  2075             if (sym.exists()) return sym;
  2076             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2079         if ((kind & PCK) != 0) return reader.enterPackage(name);
  2080         else return bestSoFar;
  2083     /** Report dependencies.
  2084      * @param from The enclosing class sym
  2085      * @param to   The found identifier that the class depends on.
  2086      */
  2087     public void reportDependence(Symbol from, Symbol to) {
  2088         // Override if you want to collect the reported dependencies.
  2091     /** Find an identifier in a package which matches a specified kind set.
  2092      *  @param env       The current environment.
  2093      *  @param name      The identifier's name.
  2094      *  @param kind      Indicates the possible symbol kinds
  2095      *                   (a nonempty subset of TYP, PCK).
  2096      */
  2097     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  2098                               Name name, int kind) {
  2099         Name fullname = TypeSymbol.formFullName(name, pck);
  2100         Symbol bestSoFar = typeNotFound;
  2101         PackageSymbol pack = null;
  2102         if ((kind & PCK) != 0) {
  2103             pack = reader.enterPackage(fullname);
  2104             if (pack.exists()) return pack;
  2106         if ((kind & TYP) != 0) {
  2107             Symbol sym = loadClass(env, fullname);
  2108             if (sym.exists()) {
  2109                 // don't allow programs to use flatnames
  2110                 if (name == sym.name) return sym;
  2112             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2114         return (pack != null) ? pack : bestSoFar;
  2117     /** Find an identifier among the members of a given type `site'.
  2118      *  @param env       The current environment.
  2119      *  @param site      The type containing the symbol to be found.
  2120      *  @param name      The identifier's name.
  2121      *  @param kind      Indicates the possible symbol kinds
  2122      *                   (a subset of VAL, TYP).
  2123      */
  2124     Symbol findIdentInType(Env<AttrContext> env, Type site,
  2125                            Name name, int kind) {
  2126         Symbol bestSoFar = typeNotFound;
  2127         Symbol sym;
  2128         if ((kind & VAR) != 0) {
  2129             sym = findField(env, site, name, site.tsym);
  2130             if (sym.exists()) return sym;
  2131             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2134         if ((kind & TYP) != 0) {
  2135             sym = findMemberType(env, site, name, site.tsym);
  2136             if (sym.exists()) return sym;
  2137             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2139         return bestSoFar;
  2142 /* ***************************************************************************
  2143  *  Access checking
  2144  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  2145  *  an error message in the process
  2146  ****************************************************************************/
  2148     /** If `sym' is a bad symbol: report error and return errSymbol
  2149      *  else pass through unchanged,
  2150      *  additional arguments duplicate what has been used in trying to find the
  2151      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  2152      *  expect misses to happen frequently.
  2154      *  @param sym       The symbol that was found, or a ResolveError.
  2155      *  @param pos       The position to use for error reporting.
  2156      *  @param location  The symbol the served as a context for this lookup
  2157      *  @param site      The original type from where the selection took place.
  2158      *  @param name      The symbol's name.
  2159      *  @param qualified Did we get here through a qualified expression resolution?
  2160      *  @param argtypes  The invocation's value arguments,
  2161      *                   if we looked for a method.
  2162      *  @param typeargtypes  The invocation's type arguments,
  2163      *                   if we looked for a method.
  2164      *  @param logResolveHelper helper class used to log resolve errors
  2165      */
  2166     Symbol accessInternal(Symbol sym,
  2167                   DiagnosticPosition pos,
  2168                   Symbol location,
  2169                   Type site,
  2170                   Name name,
  2171                   boolean qualified,
  2172                   List<Type> argtypes,
  2173                   List<Type> typeargtypes,
  2174                   LogResolveHelper logResolveHelper) {
  2175         if (sym.kind >= AMBIGUOUS) {
  2176             ResolveError errSym = (ResolveError)sym;
  2177             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  2178             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  2179             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  2180                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  2183         return sym;
  2186     /**
  2187      * Variant of the generalized access routine, to be used for generating method
  2188      * resolution diagnostics
  2189      */
  2190     Symbol accessMethod(Symbol sym,
  2191                   DiagnosticPosition pos,
  2192                   Symbol location,
  2193                   Type site,
  2194                   Name name,
  2195                   boolean qualified,
  2196                   List<Type> argtypes,
  2197                   List<Type> typeargtypes) {
  2198         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  2201     /** Same as original accessMethod(), but without location.
  2202      */
  2203     Symbol accessMethod(Symbol sym,
  2204                   DiagnosticPosition pos,
  2205                   Type site,
  2206                   Name name,
  2207                   boolean qualified,
  2208                   List<Type> argtypes,
  2209                   List<Type> typeargtypes) {
  2210         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  2213     /**
  2214      * Variant of the generalized access routine, to be used for generating variable,
  2215      * type resolution diagnostics
  2216      */
  2217     Symbol accessBase(Symbol sym,
  2218                   DiagnosticPosition pos,
  2219                   Symbol location,
  2220                   Type site,
  2221                   Name name,
  2222                   boolean qualified) {
  2223         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  2226     /** Same as original accessBase(), but without location.
  2227      */
  2228     Symbol accessBase(Symbol sym,
  2229                   DiagnosticPosition pos,
  2230                   Type site,
  2231                   Name name,
  2232                   boolean qualified) {
  2233         return accessBase(sym, pos, site.tsym, site, name, qualified);
  2236     interface LogResolveHelper {
  2237         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  2238         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  2241     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  2242         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2243             return !site.isErroneous();
  2245         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2246             return argtypes;
  2248     };
  2250     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  2251         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2252             return !site.isErroneous() &&
  2253                         !Type.isErroneous(argtypes) &&
  2254                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  2256         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2257             return (syms.operatorNames.contains(name)) ?
  2258                     argtypes :
  2259                     Type.map(argtypes, new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
  2261     };
  2263     class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  2265         public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
  2266             deferredAttr.super(mode, msym, step);
  2269         @Override
  2270         protected Type typeOf(DeferredType dt) {
  2271             Type res = super.typeOf(dt);
  2272             if (!res.isErroneous()) {
  2273                 switch (TreeInfo.skipParens(dt.tree).getTag()) {
  2274                     case LAMBDA:
  2275                     case REFERENCE:
  2276                         return dt;
  2277                     case CONDEXPR:
  2278                         return res == Type.recoveryType ?
  2279                                 dt : res;
  2282             return res;
  2286     /** Check that sym is not an abstract method.
  2287      */
  2288     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  2289         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  2290             log.error(pos, "abstract.cant.be.accessed.directly",
  2291                       kindName(sym), sym, sym.location());
  2294 /* ***************************************************************************
  2295  *  Debugging
  2296  ****************************************************************************/
  2298     /** print all scopes starting with scope s and proceeding outwards.
  2299      *  used for debugging.
  2300      */
  2301     public void printscopes(Scope s) {
  2302         while (s != null) {
  2303             if (s.owner != null)
  2304                 System.err.print(s.owner + ": ");
  2305             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  2306                 if ((e.sym.flags() & ABSTRACT) != 0)
  2307                     System.err.print("abstract ");
  2308                 System.err.print(e.sym + " ");
  2310             System.err.println();
  2311             s = s.next;
  2315     void printscopes(Env<AttrContext> env) {
  2316         while (env.outer != null) {
  2317             System.err.println("------------------------------");
  2318             printscopes(env.info.scope);
  2319             env = env.outer;
  2323     public void printscopes(Type t) {
  2324         while (t.hasTag(CLASS)) {
  2325             printscopes(t.tsym.members());
  2326             t = types.supertype(t);
  2330 /* ***************************************************************************
  2331  *  Name resolution
  2332  *  Naming conventions are as for symbol lookup
  2333  *  Unlike the find... methods these methods will report access errors
  2334  ****************************************************************************/
  2336     /** Resolve an unqualified (non-method) identifier.
  2337      *  @param pos       The position to use for error reporting.
  2338      *  @param env       The environment current at the identifier use.
  2339      *  @param name      The identifier's name.
  2340      *  @param kind      The set of admissible symbol kinds for the identifier.
  2341      */
  2342     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2343                         Name name, int kind) {
  2344         return accessBase(
  2345             findIdent(env, name, kind),
  2346             pos, env.enclClass.sym.type, name, false);
  2349     /** Resolve an unqualified method identifier.
  2350      *  @param pos       The position to use for error reporting.
  2351      *  @param env       The environment current at the method invocation.
  2352      *  @param name      The identifier's name.
  2353      *  @param argtypes  The types of the invocation's value arguments.
  2354      *  @param typeargtypes  The types of the invocation's type arguments.
  2355      */
  2356     Symbol resolveMethod(DiagnosticPosition pos,
  2357                          Env<AttrContext> env,
  2358                          Name name,
  2359                          List<Type> argtypes,
  2360                          List<Type> typeargtypes) {
  2361         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
  2362                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2363                     @Override
  2364                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2365                         return findFun(env, name, argtypes, typeargtypes,
  2366                                 phase.isBoxingRequired(),
  2367                                 phase.isVarargsRequired());
  2368                     }});
  2371     /** Resolve a qualified method identifier
  2372      *  @param pos       The position to use for error reporting.
  2373      *  @param env       The environment current at the method invocation.
  2374      *  @param site      The type of the qualifying expression, in which
  2375      *                   identifier is searched.
  2376      *  @param name      The identifier's name.
  2377      *  @param argtypes  The types of the invocation's value arguments.
  2378      *  @param typeargtypes  The types of the invocation's type arguments.
  2379      */
  2380     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2381                                   Type site, Name name, List<Type> argtypes,
  2382                                   List<Type> typeargtypes) {
  2383         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2385     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2386                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2387                                   List<Type> typeargtypes) {
  2388         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2390     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2391                                   DiagnosticPosition pos, Env<AttrContext> env,
  2392                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2393                                   List<Type> typeargtypes) {
  2394         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2395             @Override
  2396             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2397                 return findMethod(env, site, name, argtypes, typeargtypes,
  2398                         phase.isBoxingRequired(),
  2399                         phase.isVarargsRequired(), false);
  2401             @Override
  2402             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2403                 if (sym.kind >= AMBIGUOUS) {
  2404                     sym = super.access(env, pos, location, sym);
  2405                 } else if (allowMethodHandles) {
  2406                     MethodSymbol msym = (MethodSymbol)sym;
  2407                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
  2408                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2411                 return sym;
  2413         });
  2416     /** Find or create an implicit method of exactly the given type (after erasure).
  2417      *  Searches in a side table, not the main scope of the site.
  2418      *  This emulates the lookup process required by JSR 292 in JVM.
  2419      *  @param env       Attribution environment
  2420      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2421      *  @param argtypes  The required argument types
  2422      */
  2423     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2424                                             final Symbol spMethod,
  2425                                             List<Type> argtypes) {
  2426         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2427                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2428         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2429             if (types.isSameType(mtype, sym.type)) {
  2430                return sym;
  2434         // create the desired method
  2435         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2436         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2437             @Override
  2438             public Symbol baseSymbol() {
  2439                 return spMethod;
  2441         };
  2442         polymorphicSignatureScope.enter(msym);
  2443         return msym;
  2446     /** Resolve a qualified method identifier, throw a fatal error if not
  2447      *  found.
  2448      *  @param pos       The position to use for error reporting.
  2449      *  @param env       The environment current at the method invocation.
  2450      *  @param site      The type of the qualifying expression, in which
  2451      *                   identifier is searched.
  2452      *  @param name      The identifier's name.
  2453      *  @param argtypes  The types of the invocation's value arguments.
  2454      *  @param typeargtypes  The types of the invocation's type arguments.
  2455      */
  2456     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2457                                         Type site, Name name,
  2458                                         List<Type> argtypes,
  2459                                         List<Type> typeargtypes) {
  2460         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2461         resolveContext.internalResolution = true;
  2462         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2463                 site, name, argtypes, typeargtypes);
  2464         if (sym.kind == MTH) return (MethodSymbol)sym;
  2465         else throw new FatalError(
  2466                  diags.fragment("fatal.err.cant.locate.meth",
  2467                                 name));
  2470     /** Resolve constructor.
  2471      *  @param pos       The position to use for error reporting.
  2472      *  @param env       The environment current at the constructor invocation.
  2473      *  @param site      The type of class for which a constructor is searched.
  2474      *  @param argtypes  The types of the constructor invocation's value
  2475      *                   arguments.
  2476      *  @param typeargtypes  The types of the constructor invocation's type
  2477      *                   arguments.
  2478      */
  2479     Symbol resolveConstructor(DiagnosticPosition pos,
  2480                               Env<AttrContext> env,
  2481                               Type site,
  2482                               List<Type> argtypes,
  2483                               List<Type> typeargtypes) {
  2484         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2487     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2488                               final DiagnosticPosition pos,
  2489                               Env<AttrContext> env,
  2490                               Type site,
  2491                               List<Type> argtypes,
  2492                               List<Type> typeargtypes) {
  2493         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2494             @Override
  2495             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2496                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2497                         phase.isBoxingRequired(),
  2498                         phase.isVarargsRequired());
  2500         });
  2503     /** Resolve a constructor, throw a fatal error if not found.
  2504      *  @param pos       The position to use for error reporting.
  2505      *  @param env       The environment current at the method invocation.
  2506      *  @param site      The type to be constructed.
  2507      *  @param argtypes  The types of the invocation's value arguments.
  2508      *  @param typeargtypes  The types of the invocation's type arguments.
  2509      */
  2510     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2511                                         Type site,
  2512                                         List<Type> argtypes,
  2513                                         List<Type> typeargtypes) {
  2514         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2515         resolveContext.internalResolution = true;
  2516         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2517         if (sym.kind == MTH) return (MethodSymbol)sym;
  2518         else throw new FatalError(
  2519                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2522     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2523                               Type site, List<Type> argtypes,
  2524                               List<Type> typeargtypes,
  2525                               boolean allowBoxing,
  2526                               boolean useVarargs) {
  2527         Symbol sym = findMethod(env, site,
  2528                                     names.init, argtypes,
  2529                                     typeargtypes, allowBoxing,
  2530                                     useVarargs, false);
  2531         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2532         return sym;
  2535     /** Resolve constructor using diamond inference.
  2536      *  @param pos       The position to use for error reporting.
  2537      *  @param env       The environment current at the constructor invocation.
  2538      *  @param site      The type of class for which a constructor is searched.
  2539      *                   The scope of this class has been touched in attribution.
  2540      *  @param argtypes  The types of the constructor invocation's value
  2541      *                   arguments.
  2542      *  @param typeargtypes  The types of the constructor invocation's type
  2543      *                   arguments.
  2544      */
  2545     Symbol resolveDiamond(DiagnosticPosition pos,
  2546                               Env<AttrContext> env,
  2547                               Type site,
  2548                               List<Type> argtypes,
  2549                               List<Type> typeargtypes) {
  2550         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
  2551                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2552                     @Override
  2553                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2554                         return findDiamond(env, site, argtypes, typeargtypes,
  2555                                 phase.isBoxingRequired(),
  2556                                 phase.isVarargsRequired());
  2558                     @Override
  2559                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2560                         if (sym.kind >= AMBIGUOUS) {
  2561                             if (sym.kind != WRONG_MTH && sym.kind != WRONG_MTHS) {
  2562                                 sym = super.access(env, pos, location, sym);
  2563                             } else {
  2564                                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2565                                                 ((InapplicableSymbolError)sym).errCandidate().snd :
  2566                                                 null;
  2567                                 sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2568                                     @Override
  2569                                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2570                                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2571                                         String key = details == null ?
  2572                                             "cant.apply.diamond" :
  2573                                             "cant.apply.diamond.1";
  2574                                         return diags.create(dkind, log.currentSource(), pos, key,
  2575                                                 diags.fragment("diamond", site.tsym), details);
  2577                                 };
  2578                                 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2579                                 env.info.pendingResolutionPhase = currentResolutionContext.step;
  2582                         return sym;
  2583                     }});
  2586     /** This method scans all the constructor symbol in a given class scope -
  2587      *  assuming that the original scope contains a constructor of the kind:
  2588      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2589      *  a method check is executed against the modified constructor type:
  2590      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2591      *  inference. The inferred return type of the synthetic constructor IS
  2592      *  the inferred type for the diamond operator.
  2593      */
  2594     private Symbol findDiamond(Env<AttrContext> env,
  2595                               Type site,
  2596                               List<Type> argtypes,
  2597                               List<Type> typeargtypes,
  2598                               boolean allowBoxing,
  2599                               boolean useVarargs) {
  2600         Symbol bestSoFar = methodNotFound;
  2601         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2602              e.scope != null;
  2603              e = e.next()) {
  2604             final Symbol sym = e.sym;
  2605             //- System.out.println(" e " + e.sym);
  2606             if (sym.kind == MTH &&
  2607                 (sym.flags_field & SYNTHETIC) == 0) {
  2608                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2609                             ((ForAll)sym.type).tvars :
  2610                             List.<Type>nil();
  2611                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2612                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2613                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2614                         @Override
  2615                         public Symbol baseSymbol() {
  2616                             return sym;
  2618                     };
  2619                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2620                             newConstr,
  2621                             bestSoFar,
  2622                             allowBoxing,
  2623                             useVarargs,
  2624                             false);
  2627         return bestSoFar;
  2632     /** Resolve operator.
  2633      *  @param pos       The position to use for error reporting.
  2634      *  @param optag     The tag of the operation tree.
  2635      *  @param env       The environment current at the operation.
  2636      *  @param argtypes  The types of the operands.
  2637      */
  2638     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2639                            Env<AttrContext> env, List<Type> argtypes) {
  2640         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2641         try {
  2642             currentResolutionContext = new MethodResolutionContext();
  2643             Name name = treeinfo.operatorName(optag);
  2644             return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
  2645                     new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
  2646                 @Override
  2647                 Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2648                     return findMethod(env, site, name, argtypes, typeargtypes,
  2649                             phase.isBoxingRequired(),
  2650                             phase.isVarargsRequired(), true);
  2652                 @Override
  2653                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2654                     return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2655                           false, argtypes, null);
  2657             });
  2658         } finally {
  2659             currentResolutionContext = prevResolutionContext;
  2663     /** Resolve operator.
  2664      *  @param pos       The position to use for error reporting.
  2665      *  @param optag     The tag of the operation tree.
  2666      *  @param env       The environment current at the operation.
  2667      *  @param arg       The type of the operand.
  2668      */
  2669     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2670         return resolveOperator(pos, optag, env, List.of(arg));
  2673     /** Resolve binary operator.
  2674      *  @param pos       The position to use for error reporting.
  2675      *  @param optag     The tag of the operation tree.
  2676      *  @param env       The environment current at the operation.
  2677      *  @param left      The types of the left operand.
  2678      *  @param right     The types of the right operand.
  2679      */
  2680     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2681                                  JCTree.Tag optag,
  2682                                  Env<AttrContext> env,
  2683                                  Type left,
  2684                                  Type right) {
  2685         return resolveOperator(pos, optag, env, List.of(left, right));
  2688     Symbol getMemberReference(DiagnosticPosition pos,
  2689             Env<AttrContext> env,
  2690             JCMemberReference referenceTree,
  2691             Type site,
  2692             Name name) {
  2694         site = types.capture(site);
  2696         ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
  2697                 referenceTree, site, name, List.<Type>nil(), null, VARARITY);
  2699         Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
  2700         Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
  2701                 nilMethodCheck, lookupHelper);
  2703         env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
  2705         return sym;
  2708     ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
  2709                                   Type site,
  2710                                   Name name,
  2711                                   List<Type> argtypes,
  2712                                   List<Type> typeargtypes,
  2713                                   MethodResolutionPhase maxPhase) {
  2714         ReferenceLookupHelper result;
  2715         if (!name.equals(names.init)) {
  2716             //method reference
  2717             result =
  2718                     new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2719         } else {
  2720             if (site.hasTag(ARRAY)) {
  2721                 //array constructor reference
  2722                 result =
  2723                         new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2724             } else {
  2725                 //class constructor reference
  2726                 result =
  2727                         new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2730         return result;
  2733     Symbol resolveMemberReferenceByArity(Env<AttrContext> env,
  2734                                   JCMemberReference referenceTree,
  2735                                   Type site,
  2736                                   Name name,
  2737                                   List<Type> argtypes,
  2738                                   InferenceContext inferenceContext) {
  2740         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
  2741         site = types.capture(site);
  2743         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
  2744                 referenceTree, site, name, argtypes, null, VARARITY);
  2745         //step 1 - bound lookup
  2746         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2747         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym,
  2748                 arityMethodCheck, boundLookupHelper);
  2749         if (isStaticSelector &&
  2750             !name.equals(names.init) &&
  2751             !boundSym.isStatic() &&
  2752             boundSym.kind < ERRONEOUS) {
  2753             boundSym = methodNotFound;
  2756         //step 2 - unbound lookup
  2757         Symbol unboundSym = methodNotFound;
  2758         ReferenceLookupHelper unboundLookupHelper = null;
  2759         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2760         if (isStaticSelector) {
  2761             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2762             unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym,
  2763                     arityMethodCheck, unboundLookupHelper);
  2764             if (unboundSym.isStatic() &&
  2765                 unboundSym.kind < ERRONEOUS) {
  2766                 unboundSym = methodNotFound;
  2770         //merge results
  2771         Symbol bestSym = choose(boundSym, unboundSym);
  2772         env.info.pendingResolutionPhase = bestSym == unboundSym ?
  2773                 unboundEnv.info.pendingResolutionPhase :
  2774                 boundEnv.info.pendingResolutionPhase;
  2776         return bestSym;
  2779     /**
  2780      * Resolution of member references is typically done as a single
  2781      * overload resolution step, where the argument types A are inferred from
  2782      * the target functional descriptor.
  2784      * If the member reference is a method reference with a type qualifier,
  2785      * a two-step lookup process is performed. The first step uses the
  2786      * expected argument list A, while the second step discards the first
  2787      * type from A (which is treated as a receiver type).
  2789      * There are two cases in which inference is performed: (i) if the member
  2790      * reference is a constructor reference and the qualifier type is raw - in
  2791      * which case diamond inference is used to infer a parameterization for the
  2792      * type qualifier; (ii) if the member reference is an unbound reference
  2793      * where the type qualifier is raw - in that case, during the unbound lookup
  2794      * the receiver argument type is used to infer an instantiation for the raw
  2795      * qualifier type.
  2797      * When a multi-step resolution process is exploited, it is an error
  2798      * if two candidates are found (ambiguity).
  2800      * This routine returns a pair (T,S), where S is the member reference symbol,
  2801      * and T is the type of the class in which S is defined. This is necessary as
  2802      * the type T might be dynamically inferred (i.e. if constructor reference
  2803      * has a raw qualifier).
  2804      */
  2805     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
  2806                                   JCMemberReference referenceTree,
  2807                                   Type site,
  2808                                   Name name,
  2809                                   List<Type> argtypes,
  2810                                   List<Type> typeargtypes,
  2811                                   MethodCheck methodCheck,
  2812                                   InferenceContext inferenceContext,
  2813                                   AttrMode mode) {
  2815         site = types.capture(site);
  2816         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
  2817                 referenceTree, site, name, argtypes, typeargtypes, VARARITY);
  2819         //step 1 - bound lookup
  2820         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2821         Symbol origBoundSym;
  2822         boolean staticErrorForBound = false;
  2823         MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
  2824         boundSearchResolveContext.methodCheck = methodCheck;
  2825         Symbol boundSym = origBoundSym = lookupMethod(boundEnv, env.tree.pos(),
  2826                 site.tsym, boundSearchResolveContext, boundLookupHelper);
  2827         SearchResultKind boundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
  2828         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
  2829         boolean shouldCheckForStaticness = isStaticSelector &&
  2830                 referenceTree.getMode() == ReferenceMode.INVOKE;
  2831         if (boundSym.kind != WRONG_MTHS && boundSym.kind != WRONG_MTH) {
  2832             if (shouldCheckForStaticness) {
  2833                 if (!boundSym.isStatic()) {
  2834                     staticErrorForBound = true;
  2835                     if (hasAnotherApplicableMethod(
  2836                             boundSearchResolveContext, boundSym, true)) {
  2837                         boundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
  2838                     } else {
  2839                         boundSearchResultKind = SearchResultKind.BAD_MATCH;
  2840                         if (boundSym.kind < ERRONEOUS) {
  2841                             boundSym = methodWithCorrectStaticnessNotFound;
  2844                 } else if (boundSym.kind < ERRONEOUS) {
  2845                     boundSearchResultKind = SearchResultKind.GOOD_MATCH;
  2850         //step 2 - unbound lookup
  2851         Symbol origUnboundSym = null;
  2852         Symbol unboundSym = methodNotFound;
  2853         ReferenceLookupHelper unboundLookupHelper = null;
  2854         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2855         SearchResultKind unboundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
  2856         boolean staticErrorForUnbound = false;
  2857         if (isStaticSelector) {
  2858             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2859             MethodResolutionContext unboundSearchResolveContext =
  2860                     new MethodResolutionContext();
  2861             unboundSearchResolveContext.methodCheck = methodCheck;
  2862             unboundSym = origUnboundSym = lookupMethod(unboundEnv, env.tree.pos(),
  2863                     site.tsym, unboundSearchResolveContext, unboundLookupHelper);
  2865             if (unboundSym.kind != WRONG_MTH && unboundSym.kind != WRONG_MTHS) {
  2866                 if (shouldCheckForStaticness) {
  2867                     if (unboundSym.isStatic()) {
  2868                         staticErrorForUnbound = true;
  2869                         if (hasAnotherApplicableMethod(
  2870                                 unboundSearchResolveContext, unboundSym, false)) {
  2871                             unboundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
  2872                         } else {
  2873                             unboundSearchResultKind = SearchResultKind.BAD_MATCH;
  2874                             if (unboundSym.kind < ERRONEOUS) {
  2875                                 unboundSym = methodWithCorrectStaticnessNotFound;
  2878                     } else if (unboundSym.kind < ERRONEOUS) {
  2879                         unboundSearchResultKind = SearchResultKind.GOOD_MATCH;
  2885         //merge results
  2886         Pair<Symbol, ReferenceLookupHelper> res;
  2887         Symbol bestSym = choose(boundSym, unboundSym);
  2888         if (bestSym.kind < ERRONEOUS && (staticErrorForBound || staticErrorForUnbound)) {
  2889             if (staticErrorForBound) {
  2890                 boundSym = methodWithCorrectStaticnessNotFound;
  2892             if (staticErrorForUnbound) {
  2893                 unboundSym = methodWithCorrectStaticnessNotFound;
  2895             bestSym = choose(boundSym, unboundSym);
  2897         if (bestSym == methodWithCorrectStaticnessNotFound && mode == AttrMode.CHECK) {
  2898             Symbol symToPrint = origBoundSym;
  2899             String errorFragmentToPrint = "non-static.cant.be.ref";
  2900             if (staticErrorForBound && staticErrorForUnbound) {
  2901                 if (unboundSearchResultKind == SearchResultKind.BAD_MATCH_MORE_SPECIFIC) {
  2902                     symToPrint = origUnboundSym;
  2903                     errorFragmentToPrint = "static.method.in.unbound.lookup";
  2905             } else {
  2906                 if (!staticErrorForBound) {
  2907                     symToPrint = origUnboundSym;
  2908                     errorFragmentToPrint = "static.method.in.unbound.lookup";
  2911             log.error(referenceTree.expr.pos(), "invalid.mref",
  2912                 Kinds.kindName(referenceTree.getMode()),
  2913                 diags.fragment(errorFragmentToPrint,
  2914                 Kinds.kindName(symToPrint), symToPrint));
  2916         res = new Pair<>(bestSym,
  2917                 bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
  2918         env.info.pendingResolutionPhase = bestSym == unboundSym ?
  2919                 unboundEnv.info.pendingResolutionPhase :
  2920                 boundEnv.info.pendingResolutionPhase;
  2922         return res;
  2925     enum SearchResultKind {
  2926         GOOD_MATCH,                 //type I
  2927         BAD_MATCH_MORE_SPECIFIC,    //type II
  2928         BAD_MATCH,                  //type III
  2929         NOT_APPLICABLE_MATCH        //type IV
  2932     boolean hasAnotherApplicableMethod(MethodResolutionContext resolutionContext,
  2933             Symbol bestSoFar, boolean staticMth) {
  2934         for (Candidate c : resolutionContext.candidates) {
  2935             if (resolutionContext.step != c.step ||
  2936                 !c.isApplicable() ||
  2937                 c.sym == bestSoFar) {
  2938                 continue;
  2939             } else {
  2940                 if (c.sym.isStatic() == staticMth) {
  2941                     return true;
  2945         return false;
  2948     //where
  2949         private Symbol choose(Symbol boundSym, Symbol unboundSym) {
  2950             if (lookupSuccess(boundSym) && lookupSuccess(unboundSym)) {
  2951                 return ambiguityError(boundSym, unboundSym);
  2952             } else if (lookupSuccess(boundSym) ||
  2953                     (canIgnore(unboundSym) && !canIgnore(boundSym))) {
  2954                 return boundSym;
  2955             } else if (lookupSuccess(unboundSym) ||
  2956                     (canIgnore(boundSym) && !canIgnore(unboundSym))) {
  2957                 return unboundSym;
  2958             } else {
  2959                 return boundSym;
  2963         private boolean lookupSuccess(Symbol s) {
  2964             return s.kind == MTH || s.kind == AMBIGUOUS;
  2967         private boolean canIgnore(Symbol s) {
  2968             switch (s.kind) {
  2969                 case ABSENT_MTH:
  2970                     return true;
  2971                 case WRONG_MTH:
  2972                     InapplicableSymbolError errSym =
  2973                             (InapplicableSymbolError)s;
  2974                     return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
  2975                             .matches(errSym.errCandidate().snd);
  2976                 case WRONG_MTHS:
  2977                     InapplicableSymbolsError errSyms =
  2978                             (InapplicableSymbolsError)s;
  2979                     return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
  2980                 case WRONG_STATICNESS:
  2981                     return false;
  2982                 default:
  2983                     return false;
  2987     /**
  2988      * Helper for defining custom method-like lookup logic; a lookup helper
  2989      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2990      * lookup result (this step might result in compiler diagnostics to be generated)
  2991      */
  2992     abstract class LookupHelper {
  2994         /** name of the symbol to lookup */
  2995         Name name;
  2997         /** location in which the lookup takes place */
  2998         Type site;
  3000         /** actual types used during the lookup */
  3001         List<Type> argtypes;
  3003         /** type arguments used during the lookup */
  3004         List<Type> typeargtypes;
  3006         /** Max overload resolution phase handled by this helper */
  3007         MethodResolutionPhase maxPhase;
  3009         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3010             this.name = name;
  3011             this.site = site;
  3012             this.argtypes = argtypes;
  3013             this.typeargtypes = typeargtypes;
  3014             this.maxPhase = maxPhase;
  3017         /**
  3018          * Should lookup stop at given phase with given result
  3019          */
  3020         protected boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  3021             return phase.ordinal() > maxPhase.ordinal() ||
  3022                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  3025         /**
  3026          * Search for a symbol under a given overload resolution phase - this method
  3027          * is usually called several times, once per each overload resolution phase
  3028          */
  3029         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  3031         /**
  3032          * Dump overload resolution info
  3033          */
  3034         void debug(DiagnosticPosition pos, Symbol sym) {
  3035             //do nothing
  3038         /**
  3039          * Validate the result of the lookup
  3040          */
  3041         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  3044     abstract class BasicLookupHelper extends LookupHelper {
  3046         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  3047             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  3050         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3051             super(name, site, argtypes, typeargtypes, maxPhase);
  3054         @Override
  3055         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3056             Symbol sym = doLookup(env, phase);
  3057             if (sym.kind == AMBIGUOUS) {
  3058                 AmbiguityError a_err = (AmbiguityError)sym;
  3059                 sym = a_err.mergeAbstracts(site);
  3061             return sym;
  3064         abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
  3066         @Override
  3067         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  3068             if (sym.kind >= AMBIGUOUS) {
  3069                 //if nothing is found return the 'first' error
  3070                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  3072             return sym;
  3075         @Override
  3076         void debug(DiagnosticPosition pos, Symbol sym) {
  3077             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
  3081     /**
  3082      * Helper class for member reference lookup. A reference lookup helper
  3083      * defines the basic logic for member reference lookup; a method gives
  3084      * access to an 'unbound' helper used to perform an unbound member
  3085      * reference lookup.
  3086      */
  3087     abstract class ReferenceLookupHelper extends LookupHelper {
  3089         /** The member reference tree */
  3090         JCMemberReference referenceTree;
  3092         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3093                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3094             super(name, site, argtypes, typeargtypes, maxPhase);
  3095             this.referenceTree = referenceTree;
  3098         /**
  3099          * Returns an unbound version of this lookup helper. By default, this
  3100          * method returns an dummy lookup helper.
  3101          */
  3102         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3103             //dummy loopkup helper that always return 'methodNotFound'
  3104             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  3105                 @Override
  3106                 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3107                     return this;
  3109                 @Override
  3110                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3111                     return methodNotFound;
  3113                 @Override
  3114                 ReferenceKind referenceKind(Symbol sym) {
  3115                     Assert.error();
  3116                     return null;
  3118             };
  3121         /**
  3122          * Get the kind of the member reference
  3123          */
  3124         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  3126         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  3127             if (sym.kind == AMBIGUOUS) {
  3128                 AmbiguityError a_err = (AmbiguityError)sym;
  3129                 sym = a_err.mergeAbstracts(site);
  3131             //skip error reporting
  3132             return sym;
  3136     /**
  3137      * Helper class for method reference lookup. The lookup logic is based
  3138      * upon Resolve.findMethod; in certain cases, this helper class has a
  3139      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  3140      * In such cases, non-static lookup results are thrown away.
  3141      */
  3142     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  3144         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3145                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3146             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  3149         @Override
  3150         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3151             return findMethod(env, site, name, argtypes, typeargtypes,
  3152                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  3155         @Override
  3156         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3157             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  3158                     argtypes.nonEmpty() &&
  3159                     (argtypes.head.hasTag(NONE) ||
  3160                     types.isSubtypeUnchecked(inferenceContext.asFree(argtypes.head), site))) {
  3161                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  3162                         site, argtypes, typeargtypes, maxPhase);
  3163             } else {
  3164                 return super.unboundLookup(inferenceContext);
  3168         @Override
  3169         ReferenceKind referenceKind(Symbol sym) {
  3170             if (sym.isStatic()) {
  3171                 return ReferenceKind.STATIC;
  3172             } else {
  3173                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  3174                 return selName != null && selName == names._super ?
  3175                         ReferenceKind.SUPER :
  3176                         ReferenceKind.BOUND;
  3181     /**
  3182      * Helper class for unbound method reference lookup. Essentially the same
  3183      * as the basic method reference lookup helper; main difference is that static
  3184      * lookup results are thrown away. If qualifier type is raw, an attempt to
  3185      * infer a parameterized type is made using the first actual argument (that
  3186      * would otherwise be ignored during the lookup).
  3187      */
  3188     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  3190         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3191                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3192             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
  3193             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
  3194                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
  3195                 this.site = asSuperSite;
  3199         @Override
  3200         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3201             return this;
  3204         @Override
  3205         ReferenceKind referenceKind(Symbol sym) {
  3206             return ReferenceKind.UNBOUND;
  3210     /**
  3211      * Helper class for array constructor lookup; an array constructor lookup
  3212      * is simulated by looking up a method that returns the array type specified
  3213      * as qualifier, and that accepts a single int parameter (size of the array).
  3214      */
  3215     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  3217         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  3218                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3219             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  3222         @Override
  3223         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3224             Scope sc = new Scope(syms.arrayClass);
  3225             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
  3226             arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
  3227             sc.enter(arrayConstr);
  3228             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
  3231         @Override
  3232         ReferenceKind referenceKind(Symbol sym) {
  3233             return ReferenceKind.ARRAY_CTOR;
  3237     /**
  3238      * Helper class for constructor reference lookup. The lookup logic is based
  3239      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  3240      * whether the constructor reference needs diamond inference (this is the case
  3241      * if the qualifier type is raw). A special erroneous symbol is returned
  3242      * if the lookup returns the constructor of an inner class and there's no
  3243      * enclosing instance in scope.
  3244      */
  3245     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  3247         boolean needsInference;
  3249         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  3250                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3251             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  3252             if (site.isRaw()) {
  3253                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  3254                 needsInference = true;
  3258         @Override
  3259         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3260             Symbol sym = needsInference ?
  3261                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  3262                 findMethod(env, site, name, argtypes, typeargtypes,
  3263                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  3264             return sym.kind != MTH ||
  3265                           site.getEnclosingType().hasTag(NONE) ||
  3266                           hasEnclosingInstance(env, site) ?
  3267                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  3268                     @Override
  3269                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  3270                        return diags.create(dkind, log.currentSource(), pos,
  3271                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  3273                 };
  3276         @Override
  3277         ReferenceKind referenceKind(Symbol sym) {
  3278             return site.getEnclosingType().hasTag(NONE) ?
  3279                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  3283     /**
  3284      * Main overload resolution routine. On each overload resolution step, a
  3285      * lookup helper class is used to perform the method/constructor lookup;
  3286      * at the end of the lookup, the helper is used to validate the results
  3287      * (this last step might trigger overload resolution diagnostics).
  3288      */
  3289     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
  3290         MethodResolutionContext resolveContext = new MethodResolutionContext();
  3291         resolveContext.methodCheck = methodCheck;
  3292         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
  3295     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  3296             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  3297         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  3298         try {
  3299             Symbol bestSoFar = methodNotFound;
  3300             currentResolutionContext = resolveContext;
  3301             for (MethodResolutionPhase phase : methodResolutionSteps) {
  3302                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  3303                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  3304                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  3305                 Symbol prevBest = bestSoFar;
  3306                 currentResolutionContext.step = phase;
  3307                 Symbol sym = lookupHelper.lookup(env, phase);
  3308                 lookupHelper.debug(pos, sym);
  3309                 bestSoFar = phase.mergeResults(bestSoFar, sym);
  3310                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  3312             return lookupHelper.access(env, pos, location, bestSoFar);
  3313         } finally {
  3314             currentResolutionContext = prevResolutionContext;
  3318     /**
  3319      * Resolve `c.name' where name == this or name == super.
  3320      * @param pos           The position to use for error reporting.
  3321      * @param env           The environment current at the expression.
  3322      * @param c             The qualifier.
  3323      * @param name          The identifier's name.
  3324      */
  3325     Symbol resolveSelf(DiagnosticPosition pos,
  3326                        Env<AttrContext> env,
  3327                        TypeSymbol c,
  3328                        Name name) {
  3329         Env<AttrContext> env1 = env;
  3330         boolean staticOnly = false;
  3331         while (env1.outer != null) {
  3332             if (isStatic(env1)) staticOnly = true;
  3333             if (env1.enclClass.sym == c) {
  3334                 Symbol sym = env1.info.scope.lookup(name).sym;
  3335                 if (sym != null) {
  3336                     if (staticOnly) sym = new StaticError(sym);
  3337                     return accessBase(sym, pos, env.enclClass.sym.type,
  3338                                   name, true);
  3341             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  3342             env1 = env1.outer;
  3344         if (allowDefaultMethods && c.isInterface() &&
  3345                 name == names._super && !isStatic(env) &&
  3346                 types.isDirectSuperInterface(c, env.enclClass.sym)) {
  3347             //this might be a default super call if one of the superinterfaces is 'c'
  3348             for (Type t : pruneInterfaces(env.enclClass.type)) {
  3349                 if (t.tsym == c) {
  3350                     env.info.defaultSuperCallSite = t;
  3351                     return new VarSymbol(0, names._super,
  3352                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  3355             //find a direct superinterface that is a subtype of 'c'
  3356             for (Type i : types.interfaces(env.enclClass.type)) {
  3357                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  3358                     log.error(pos, "illegal.default.super.call", c,
  3359                             diags.fragment("redundant.supertype", c, i));
  3360                     return syms.errSymbol;
  3363             Assert.error();
  3365         log.error(pos, "not.encl.class", c);
  3366         return syms.errSymbol;
  3368     //where
  3369     private List<Type> pruneInterfaces(Type t) {
  3370         ListBuffer<Type> result = new ListBuffer<>();
  3371         for (Type t1 : types.interfaces(t)) {
  3372             boolean shouldAdd = true;
  3373             for (Type t2 : types.interfaces(t)) {
  3374                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  3375                     shouldAdd = false;
  3378             if (shouldAdd) {
  3379                 result.append(t1);
  3382         return result.toList();
  3386     /**
  3387      * Resolve `c.this' for an enclosing class c that contains the
  3388      * named member.
  3389      * @param pos           The position to use for error reporting.
  3390      * @param env           The environment current at the expression.
  3391      * @param member        The member that must be contained in the result.
  3392      */
  3393     Symbol resolveSelfContaining(DiagnosticPosition pos,
  3394                                  Env<AttrContext> env,
  3395                                  Symbol member,
  3396                                  boolean isSuperCall) {
  3397         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  3398         if (sym == null) {
  3399             log.error(pos, "encl.class.required", member);
  3400             return syms.errSymbol;
  3401         } else {
  3402             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  3406     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  3407         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  3408         return encl != null && encl.kind < ERRONEOUS;
  3411     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  3412                                  Symbol member,
  3413                                  boolean isSuperCall) {
  3414         Name name = names._this;
  3415         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  3416         boolean staticOnly = false;
  3417         if (env1 != null) {
  3418             while (env1 != null && env1.outer != null) {
  3419                 if (isStatic(env1)) staticOnly = true;
  3420                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  3421                     Symbol sym = env1.info.scope.lookup(name).sym;
  3422                     if (sym != null) {
  3423                         if (staticOnly) sym = new StaticError(sym);
  3424                         return sym;
  3427                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  3428                     staticOnly = true;
  3429                 env1 = env1.outer;
  3432         return null;
  3435     /**
  3436      * Resolve an appropriate implicit this instance for t's container.
  3437      * JLS 8.8.5.1 and 15.9.2
  3438      */
  3439     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  3440         return resolveImplicitThis(pos, env, t, false);
  3443     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  3444         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  3445                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  3446                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  3447         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  3448             log.error(pos, "cant.ref.before.ctor.called", "this");
  3449         return thisType;
  3452 /* ***************************************************************************
  3453  *  ResolveError classes, indicating error situations when accessing symbols
  3454  ****************************************************************************/
  3456     //used by TransTypes when checking target type of synthetic cast
  3457     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  3458         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  3459         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  3461     //where
  3462     private void logResolveError(ResolveError error,
  3463             DiagnosticPosition pos,
  3464             Symbol location,
  3465             Type site,
  3466             Name name,
  3467             List<Type> argtypes,
  3468             List<Type> typeargtypes) {
  3469         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3470                 pos, location, site, name, argtypes, typeargtypes);
  3471         if (d != null) {
  3472             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  3473             log.report(d);
  3477     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  3479     public Object methodArguments(List<Type> argtypes) {
  3480         if (argtypes == null || argtypes.isEmpty()) {
  3481             return noArgs;
  3482         } else {
  3483             ListBuffer<Object> diagArgs = new ListBuffer<>();
  3484             for (Type t : argtypes) {
  3485                 if (t.hasTag(DEFERRED)) {
  3486                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  3487                 } else {
  3488                     diagArgs.append(t);
  3491             return diagArgs;
  3495     /**
  3496      * Root class for resolution errors. Subclass of ResolveError
  3497      * represent a different kinds of resolution error - as such they must
  3498      * specify how they map into concrete compiler diagnostics.
  3499      */
  3500     abstract class ResolveError extends Symbol {
  3502         /** The name of the kind of error, for debugging only. */
  3503         final String debugName;
  3505         ResolveError(int kind, String debugName) {
  3506             super(kind, 0, null, null, null);
  3507             this.debugName = debugName;
  3510         @Override
  3511         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  3512             throw new AssertionError();
  3515         @Override
  3516         public String toString() {
  3517             return debugName;
  3520         @Override
  3521         public boolean exists() {
  3522             return false;
  3525         @Override
  3526         public boolean isStatic() {
  3527             return false;
  3530         /**
  3531          * Create an external representation for this erroneous symbol to be
  3532          * used during attribution - by default this returns the symbol of a
  3533          * brand new error type which stores the original type found
  3534          * during resolution.
  3536          * @param name     the name used during resolution
  3537          * @param location the location from which the symbol is accessed
  3538          */
  3539         protected Symbol access(Name name, TypeSymbol location) {
  3540             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3543         /**
  3544          * Create a diagnostic representing this resolution error.
  3546          * @param dkind     The kind of the diagnostic to be created (e.g error).
  3547          * @param pos       The position to be used for error reporting.
  3548          * @param site      The original type from where the selection took place.
  3549          * @param name      The name of the symbol to be resolved.
  3550          * @param argtypes  The invocation's value arguments,
  3551          *                  if we looked for a method.
  3552          * @param typeargtypes  The invocation's type arguments,
  3553          *                      if we looked for a method.
  3554          */
  3555         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3556                 DiagnosticPosition pos,
  3557                 Symbol location,
  3558                 Type site,
  3559                 Name name,
  3560                 List<Type> argtypes,
  3561                 List<Type> typeargtypes);
  3564     /**
  3565      * This class is the root class of all resolution errors caused by
  3566      * an invalid symbol being found during resolution.
  3567      */
  3568     abstract class InvalidSymbolError extends ResolveError {
  3570         /** The invalid symbol found during resolution */
  3571         Symbol sym;
  3573         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  3574             super(kind, debugName);
  3575             this.sym = sym;
  3578         @Override
  3579         public boolean exists() {
  3580             return true;
  3583         @Override
  3584         public String toString() {
  3585              return super.toString() + " wrongSym=" + sym;
  3588         @Override
  3589         public Symbol access(Name name, TypeSymbol location) {
  3590             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3591                 return types.createErrorType(name, location, sym.type).tsym;
  3592             else
  3593                 return sym;
  3597     /**
  3598      * InvalidSymbolError error class indicating that a symbol matching a
  3599      * given name does not exists in a given site.
  3600      */
  3601     class SymbolNotFoundError extends ResolveError {
  3603         SymbolNotFoundError(int kind) {
  3604             this(kind, "symbol not found error");
  3607         SymbolNotFoundError(int kind, String debugName) {
  3608             super(kind, debugName);
  3611         @Override
  3612         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3613                 DiagnosticPosition pos,
  3614                 Symbol location,
  3615                 Type site,
  3616                 Name name,
  3617                 List<Type> argtypes,
  3618                 List<Type> typeargtypes) {
  3619             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3620             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3621             if (name == names.error)
  3622                 return null;
  3624             if (syms.operatorNames.contains(name)) {
  3625                 boolean isUnaryOp = argtypes.size() == 1;
  3626                 String key = argtypes.size() == 1 ?
  3627                     "operator.cant.be.applied" :
  3628                     "operator.cant.be.applied.1";
  3629                 Type first = argtypes.head;
  3630                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3631                 return diags.create(dkind, log.currentSource(), pos,
  3632                         key, name, first, second);
  3634             boolean hasLocation = false;
  3635             if (location == null) {
  3636                 location = site.tsym;
  3638             if (!location.name.isEmpty()) {
  3639                 if (location.kind == PCK && !site.tsym.exists()) {
  3640                     return diags.create(dkind, log.currentSource(), pos,
  3641                         "doesnt.exist", location);
  3643                 hasLocation = !location.name.equals(names._this) &&
  3644                         !location.name.equals(names._super);
  3646             boolean isConstructor = (kind == ABSENT_MTH || kind == WRONG_STATICNESS) &&
  3647                     name == names.init;
  3648             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3649             Name idname = isConstructor ? site.tsym.name : name;
  3650             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3651             if (hasLocation) {
  3652                 return diags.create(dkind, log.currentSource(), pos,
  3653                         errKey, kindname, idname, //symbol kindname, name
  3654                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3655                         getLocationDiag(location, site)); //location kindname, type
  3657             else {
  3658                 return diags.create(dkind, log.currentSource(), pos,
  3659                         errKey, kindname, idname, //symbol kindname, name
  3660                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3663         //where
  3664         private Object args(List<Type> args) {
  3665             return args.isEmpty() ? args : methodArguments(args);
  3668         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3669             String key = "cant.resolve";
  3670             String suffix = hasLocation ? ".location" : "";
  3671             switch (kindname) {
  3672                 case METHOD:
  3673                 case CONSTRUCTOR: {
  3674                     suffix += ".args";
  3675                     suffix += hasTypeArgs ? ".params" : "";
  3678             return key + suffix;
  3680         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3681             if (location.kind == VAR) {
  3682                 return diags.fragment("location.1",
  3683                     kindName(location),
  3684                     location,
  3685                     location.type);
  3686             } else {
  3687                 return diags.fragment("location",
  3688                     typeKindName(site),
  3689                     site,
  3690                     null);
  3695     /**
  3696      * InvalidSymbolError error class indicating that a given symbol
  3697      * (either a method, a constructor or an operand) is not applicable
  3698      * given an actual arguments/type argument list.
  3699      */
  3700     class InapplicableSymbolError extends ResolveError {
  3702         protected MethodResolutionContext resolveContext;
  3704         InapplicableSymbolError(MethodResolutionContext context) {
  3705             this(WRONG_MTH, "inapplicable symbol error", context);
  3708         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3709             super(kind, debugName);
  3710             this.resolveContext = context;
  3713         @Override
  3714         public String toString() {
  3715             return super.toString();
  3718         @Override
  3719         public boolean exists() {
  3720             return true;
  3723         @Override
  3724         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3725                 DiagnosticPosition pos,
  3726                 Symbol location,
  3727                 Type site,
  3728                 Name name,
  3729                 List<Type> argtypes,
  3730                 List<Type> typeargtypes) {
  3731             if (name == names.error)
  3732                 return null;
  3734             if (syms.operatorNames.contains(name)) {
  3735                 boolean isUnaryOp = argtypes.size() == 1;
  3736                 String key = argtypes.size() == 1 ?
  3737                     "operator.cant.be.applied" :
  3738                     "operator.cant.be.applied.1";
  3739                 Type first = argtypes.head;
  3740                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3741                 return diags.create(dkind, log.currentSource(), pos,
  3742                         key, name, first, second);
  3744             else {
  3745                 Pair<Symbol, JCDiagnostic> c = errCandidate();
  3746                 if (compactMethodDiags) {
  3747                     for (Map.Entry<Template, DiagnosticRewriter> _entry :
  3748                             MethodResolutionDiagHelper.rewriters.entrySet()) {
  3749                         if (_entry.getKey().matches(c.snd)) {
  3750                             JCDiagnostic simpleDiag =
  3751                                     _entry.getValue().rewriteDiagnostic(diags, pos,
  3752                                         log.currentSource(), dkind, c.snd);
  3753                             simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
  3754                             return simpleDiag;
  3758                 Symbol ws = c.fst.asMemberOf(site, types);
  3759                 return diags.create(dkind, log.currentSource(), pos,
  3760                           "cant.apply.symbol",
  3761                           kindName(ws),
  3762                           ws.name == names.init ? ws.owner.name : ws.name,
  3763                           methodArguments(ws.type.getParameterTypes()),
  3764                           methodArguments(argtypes),
  3765                           kindName(ws.owner),
  3766                           ws.owner.type,
  3767                           c.snd);
  3771         @Override
  3772         public Symbol access(Name name, TypeSymbol location) {
  3773             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3776         protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3777             Candidate bestSoFar = null;
  3778             for (Candidate c : resolveContext.candidates) {
  3779                 if (c.isApplicable()) continue;
  3780                 bestSoFar = c;
  3782             Assert.checkNonNull(bestSoFar);
  3783             return new Pair<Symbol, JCDiagnostic>(bestSoFar.sym, bestSoFar.details);
  3787     /**
  3788      * ResolveError error class indicating that a set of symbols
  3789      * (either methods, constructors or operands) is not applicable
  3790      * given an actual arguments/type argument list.
  3791      */
  3792     class InapplicableSymbolsError extends InapplicableSymbolError {
  3794         InapplicableSymbolsError(MethodResolutionContext context) {
  3795             super(WRONG_MTHS, "inapplicable symbols", context);
  3798         @Override
  3799         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3800                 DiagnosticPosition pos,
  3801                 Symbol location,
  3802                 Type site,
  3803                 Name name,
  3804                 List<Type> argtypes,
  3805                 List<Type> typeargtypes) {
  3806             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
  3807             Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
  3808                     filterCandidates(candidatesMap) :
  3809                     mapCandidates();
  3810             if (filteredCandidates.isEmpty()) {
  3811                 filteredCandidates = candidatesMap;
  3813             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
  3814             if (filteredCandidates.size() > 1) {
  3815                 JCDiagnostic err = diags.create(dkind,
  3816                         null,
  3817                         truncatedDiag ?
  3818                             EnumSet.of(DiagnosticFlag.COMPRESSED) :
  3819                             EnumSet.noneOf(DiagnosticFlag.class),
  3820                         log.currentSource(),
  3821                         pos,
  3822                         "cant.apply.symbols",
  3823                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3824                         name == names.init ? site.tsym.name : name,
  3825                         methodArguments(argtypes));
  3826                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
  3827             } else if (filteredCandidates.size() == 1) {
  3828                 Map.Entry<Symbol, JCDiagnostic> _e =
  3829                                 filteredCandidates.entrySet().iterator().next();
  3830                 final Pair<Symbol, JCDiagnostic> p = new Pair<Symbol, JCDiagnostic>(_e.getKey(), _e.getValue());
  3831                 JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
  3832                     @Override
  3833                     protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3834                         return p;
  3836                 }.getDiagnostic(dkind, pos,
  3837                     location, site, name, argtypes, typeargtypes);
  3838                 if (truncatedDiag) {
  3839                     d.setFlag(DiagnosticFlag.COMPRESSED);
  3841                 return d;
  3842             } else {
  3843                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3844                     location, site, name, argtypes, typeargtypes);
  3847         //where
  3848             private Map<Symbol, JCDiagnostic> mapCandidates() {
  3849                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3850                 for (Candidate c : resolveContext.candidates) {
  3851                     if (c.isApplicable()) continue;
  3852                     candidates.put(c.sym, c.details);
  3854                 return candidates;
  3857             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
  3858                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3859                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3860                     JCDiagnostic d = _entry.getValue();
  3861                     if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
  3862                         candidates.put(_entry.getKey(), d);
  3865                 return candidates;
  3868             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
  3869                 List<JCDiagnostic> details = List.nil();
  3870                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3871                     Symbol sym = _entry.getKey();
  3872                     JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3873                             Kinds.kindName(sym),
  3874                             sym.location(site, types),
  3875                             sym.asMemberOf(site, types),
  3876                             _entry.getValue());
  3877                     details = details.prepend(detailDiag);
  3879                 //typically members are visited in reverse order (see Scope)
  3880                 //so we need to reverse the candidate list so that candidates
  3881                 //conform to source order
  3882                 return details;
  3886     /**
  3887      * An InvalidSymbolError error class indicating that a symbol is not
  3888      * accessible from a given site
  3889      */
  3890     class AccessError extends InvalidSymbolError {
  3892         private Env<AttrContext> env;
  3893         private Type site;
  3895         AccessError(Symbol sym) {
  3896             this(null, null, sym);
  3899         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3900             super(HIDDEN, sym, "access error");
  3901             this.env = env;
  3902             this.site = site;
  3903             if (debugResolve)
  3904                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3907         @Override
  3908         public boolean exists() {
  3909             return false;
  3912         @Override
  3913         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3914                 DiagnosticPosition pos,
  3915                 Symbol location,
  3916                 Type site,
  3917                 Name name,
  3918                 List<Type> argtypes,
  3919                 List<Type> typeargtypes) {
  3920             if (sym.owner.type.hasTag(ERROR))
  3921                 return null;
  3923             if (sym.name == names.init && sym.owner != site.tsym) {
  3924                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3925                         pos, location, site, name, argtypes, typeargtypes);
  3927             else if ((sym.flags() & PUBLIC) != 0
  3928                 || (env != null && this.site != null
  3929                     && !isAccessible(env, this.site))) {
  3930                 return diags.create(dkind, log.currentSource(),
  3931                         pos, "not.def.access.class.intf.cant.access",
  3932                     sym, sym.location());
  3934             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3935                 return diags.create(dkind, log.currentSource(),
  3936                         pos, "report.access", sym,
  3937                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3938                         sym.location());
  3940             else {
  3941                 return diags.create(dkind, log.currentSource(),
  3942                         pos, "not.def.public.cant.access", sym, sym.location());
  3947     /**
  3948      * InvalidSymbolError error class indicating that an instance member
  3949      * has erroneously been accessed from a static context.
  3950      */
  3951     class StaticError extends InvalidSymbolError {
  3953         StaticError(Symbol sym) {
  3954             super(STATICERR, sym, "static error");
  3957         @Override
  3958         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3959                 DiagnosticPosition pos,
  3960                 Symbol location,
  3961                 Type site,
  3962                 Name name,
  3963                 List<Type> argtypes,
  3964                 List<Type> typeargtypes) {
  3965             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3966                 ? types.erasure(sym.type).tsym
  3967                 : sym);
  3968             return diags.create(dkind, log.currentSource(), pos,
  3969                     "non-static.cant.be.ref", kindName(sym), errSym);
  3973     /**
  3974      * InvalidSymbolError error class indicating that a pair of symbols
  3975      * (either methods, constructors or operands) are ambiguous
  3976      * given an actual arguments/type argument list.
  3977      */
  3978     class AmbiguityError extends ResolveError {
  3980         /** The other maximally specific symbol */
  3981         List<Symbol> ambiguousSyms = List.nil();
  3983         @Override
  3984         public boolean exists() {
  3985             return true;
  3988         AmbiguityError(Symbol sym1, Symbol sym2) {
  3989             super(AMBIGUOUS, "ambiguity error");
  3990             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
  3993         private List<Symbol> flatten(Symbol sym) {
  3994             if (sym.kind == AMBIGUOUS) {
  3995                 return ((AmbiguityError)sym).ambiguousSyms;
  3996             } else {
  3997                 return List.of(sym);
  4001         AmbiguityError addAmbiguousSymbol(Symbol s) {
  4002             ambiguousSyms = ambiguousSyms.prepend(s);
  4003             return this;
  4006         @Override
  4007         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  4008                 DiagnosticPosition pos,
  4009                 Symbol location,
  4010                 Type site,
  4011                 Name name,
  4012                 List<Type> argtypes,
  4013                 List<Type> typeargtypes) {
  4014             List<Symbol> diagSyms = ambiguousSyms.reverse();
  4015             Symbol s1 = diagSyms.head;
  4016             Symbol s2 = diagSyms.tail.head;
  4017             Name sname = s1.name;
  4018             if (sname == names.init) sname = s1.owner.name;
  4019             return diags.create(dkind, log.currentSource(),
  4020                       pos, "ref.ambiguous", sname,
  4021                       kindName(s1),
  4022                       s1,
  4023                       s1.location(site, types),
  4024                       kindName(s2),
  4025                       s2,
  4026                       s2.location(site, types));
  4029         /**
  4030          * If multiple applicable methods are found during overload and none of them
  4031          * is more specific than the others, attempt to merge their signatures.
  4032          */
  4033         Symbol mergeAbstracts(Type site) {
  4034             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
  4035             for (Symbol s : ambiguousInOrder) {
  4036                 Type mt = types.memberType(site, s);
  4037                 boolean found = true;
  4038                 List<Type> allThrown = mt.getThrownTypes();
  4039                 for (Symbol s2 : ambiguousInOrder) {
  4040                     Type mt2 = types.memberType(site, s2);
  4041                     if ((s2.flags() & ABSTRACT) == 0 ||
  4042                         !types.overrideEquivalent(mt, mt2) ||
  4043                         !types.isSameTypes(s.erasure(types).getParameterTypes(),
  4044                                        s2.erasure(types).getParameterTypes())) {
  4045                         //ambiguity cannot be resolved
  4046                         return this;
  4048                     Type mst = mostSpecificReturnType(mt, mt2);
  4049                     if (mst == null || mst != mt) {
  4050                         found = false;
  4051                         break;
  4053                     allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
  4055                 if (found) {
  4056                     //all ambiguous methods were abstract and one method had
  4057                     //most specific return type then others
  4058                     return (allThrown == mt.getThrownTypes()) ?
  4059                             s : new MethodSymbol(
  4060                                 s.flags(),
  4061                                 s.name,
  4062                                 types.createMethodTypeWithThrown(mt, allThrown),
  4063                                 s.owner);
  4066             return this;
  4069         @Override
  4070         protected Symbol access(Name name, TypeSymbol location) {
  4071             Symbol firstAmbiguity = ambiguousSyms.last();
  4072             return firstAmbiguity.kind == TYP ?
  4073                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
  4074                     firstAmbiguity;
  4078     class BadVarargsMethod extends ResolveError {
  4080         ResolveError delegatedError;
  4082         BadVarargsMethod(ResolveError delegatedError) {
  4083             super(delegatedError.kind, "badVarargs");
  4084             this.delegatedError = delegatedError;
  4087         @Override
  4088         public Symbol baseSymbol() {
  4089             return delegatedError.baseSymbol();
  4092         @Override
  4093         protected Symbol access(Name name, TypeSymbol location) {
  4094             return delegatedError.access(name, location);
  4097         @Override
  4098         public boolean exists() {
  4099             return true;
  4102         @Override
  4103         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  4104             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
  4108     /**
  4109      * Helper class for method resolution diagnostic simplification.
  4110      * Certain resolution diagnostic are rewritten as simpler diagnostic
  4111      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
  4112      * is stripped away, as it doesn't carry additional info. The logic
  4113      * for matching a given diagnostic is given in terms of a template
  4114      * hierarchy: a diagnostic template can be specified programmatically,
  4115      * so that only certain diagnostics are matched. Each templete is then
  4116      * associated with a rewriter object that carries out the task of rewtiting
  4117      * the diagnostic to a simpler one.
  4118      */
  4119     static class MethodResolutionDiagHelper {
  4121         /**
  4122          * A diagnostic rewriter transforms a method resolution diagnostic
  4123          * into a simpler one
  4124          */
  4125         interface DiagnosticRewriter {
  4126             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  4127                     DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  4128                     DiagnosticType preferredKind, JCDiagnostic d);
  4131         /**
  4132          * A diagnostic template is made up of two ingredients: (i) a regular
  4133          * expression for matching a diagnostic key and (ii) a list of sub-templates
  4134          * for matching diagnostic arguments.
  4135          */
  4136         static class Template {
  4138             /** regex used to match diag key */
  4139             String regex;
  4141             /** templates used to match diagnostic args */
  4142             Template[] subTemplates;
  4144             Template(String key, Template... subTemplates) {
  4145                 this.regex = key;
  4146                 this.subTemplates = subTemplates;
  4149             /**
  4150              * Returns true if the regex matches the diagnostic key and if
  4151              * all diagnostic arguments are matches by corresponding sub-templates.
  4152              */
  4153             boolean matches(Object o) {
  4154                 JCDiagnostic d = (JCDiagnostic)o;
  4155                 Object[] args = d.getArgs();
  4156                 if (!d.getCode().matches(regex) ||
  4157                         subTemplates.length != d.getArgs().length) {
  4158                     return false;
  4160                 for (int i = 0; i < args.length ; i++) {
  4161                     if (!subTemplates[i].matches(args[i])) {
  4162                         return false;
  4165                 return true;
  4169         /** a dummy template that match any diagnostic argument */
  4170         static final Template skip = new Template("") {
  4171             @Override
  4172             boolean matches(Object d) {
  4173                 return true;
  4175         };
  4177         /** rewriter map used for method resolution simplification */
  4178         static final Map<Template, DiagnosticRewriter> rewriters =
  4179                 new LinkedHashMap<Template, DiagnosticRewriter>();
  4181         static {
  4182             String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
  4183             rewriters.put(new Template(argMismatchRegex, skip),
  4184                     new DiagnosticRewriter() {
  4185                 @Override
  4186                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  4187                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  4188                         DiagnosticType preferredKind, JCDiagnostic d) {
  4189                     JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
  4190                     return diags.create(preferredKind, preferredSource, d.getDiagnosticPosition(),
  4191                             "prob.found.req", cause);
  4193             });
  4197     enum MethodResolutionPhase {
  4198         BASIC(false, false),
  4199         BOX(true, false),
  4200         VARARITY(true, true) {
  4201             @Override
  4202             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  4203                 switch (sym.kind) {
  4204                     case WRONG_MTH:
  4205                         return (bestSoFar.kind == WRONG_MTH || bestSoFar.kind == WRONG_MTHS) ?
  4206                             bestSoFar :
  4207                             sym;
  4208                     case ABSENT_MTH:
  4209                         return bestSoFar;
  4210                     default:
  4211                         return sym;
  4214         };
  4216         final boolean isBoxingRequired;
  4217         final boolean isVarargsRequired;
  4219         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  4220            this.isBoxingRequired = isBoxingRequired;
  4221            this.isVarargsRequired = isVarargsRequired;
  4224         public boolean isBoxingRequired() {
  4225             return isBoxingRequired;
  4228         public boolean isVarargsRequired() {
  4229             return isVarargsRequired;
  4232         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  4233             return (varargsEnabled || !isVarargsRequired) &&
  4234                    (boxingEnabled || !isBoxingRequired);
  4237         public Symbol mergeResults(Symbol prev, Symbol sym) {
  4238             return sym;
  4242     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  4244     /**
  4245      * A resolution context is used to keep track of intermediate results of
  4246      * overload resolution, such as list of method that are not applicable
  4247      * (used to generate more precise diagnostics) and so on. Resolution contexts
  4248      * can be nested - this means that when each overload resolution routine should
  4249      * work within the resolution context it created.
  4250      */
  4251     class MethodResolutionContext {
  4253         private List<Candidate> candidates = List.nil();
  4255         MethodResolutionPhase step = null;
  4257         MethodCheck methodCheck = resolveMethodCheck;
  4259         private boolean internalResolution = false;
  4260         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  4262         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  4263             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  4264             candidates = candidates.append(c);
  4267         void addApplicableCandidate(Symbol sym, Type mtype) {
  4268             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  4269             candidates = candidates.append(c);
  4272         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
  4273             return deferredAttr.new DeferredAttrContext(attrMode, sym, step, inferenceContext, pendingResult != null ? pendingResult.checkContext.deferredAttrContext() : deferredAttr.emptyDeferredAttrContext, warn);
  4276         /**
  4277          * This class represents an overload resolution candidate. There are two
  4278          * kinds of candidates: applicable methods and inapplicable methods;
  4279          * applicable methods have a pointer to the instantiated method type,
  4280          * while inapplicable candidates contain further details about the
  4281          * reason why the method has been considered inapplicable.
  4282          */
  4283         @SuppressWarnings("overrides")
  4284         class Candidate {
  4286             final MethodResolutionPhase step;
  4287             final Symbol sym;
  4288             final JCDiagnostic details;
  4289             final Type mtype;
  4291             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  4292                 this.step = step;
  4293                 this.sym = sym;
  4294                 this.details = details;
  4295                 this.mtype = mtype;
  4298             @Override
  4299             public boolean equals(Object o) {
  4300                 if (o instanceof Candidate) {
  4301                     Symbol s1 = this.sym;
  4302                     Symbol s2 = ((Candidate)o).sym;
  4303                     if  ((s1 != s2 &&
  4304                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  4305                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  4306                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  4307                         return true;
  4309                 return false;
  4312             boolean isApplicable() {
  4313                 return mtype != null;
  4317         DeferredAttr.AttrMode attrMode() {
  4318             return attrMode;
  4321         boolean internal() {
  4322             return internalResolution;
  4326     MethodResolutionContext currentResolutionContext = null;

mercurial