src/share/classes/com/sun/tools/javac/comp/Resolve.java

Wed, 17 Jul 2013 14:09:46 +0100

author
mcimadamore
date
Wed, 17 Jul 2013 14:09:46 +0100
changeset 1897
866c87c01285
parent 1875
f559ef7568ce
child 1898
a204cf7aab7e
permissions
-rw-r--r--

8016175: Add bottom-up type-checking support for unambiguous method references
Summary: Type-checking of non-overloaded method references should be independent from target-type
Reviewed-by: jjg, vromero

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
    41 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
    42 import com.sun.tools.javac.jvm.*;
    43 import com.sun.tools.javac.main.Option;
    44 import com.sun.tools.javac.tree.*;
    45 import com.sun.tools.javac.tree.JCTree.*;
    46 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    47 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    48 import com.sun.tools.javac.util.*;
    49 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    53 import java.util.Arrays;
    54 import java.util.Collection;
    55 import java.util.EnumMap;
    56 import java.util.EnumSet;
    57 import java.util.Iterator;
    58 import java.util.LinkedHashMap;
    59 import java.util.LinkedHashSet;
    60 import java.util.Map;
    62 import javax.lang.model.element.ElementVisitor;
    64 import static com.sun.tools.javac.code.Flags.*;
    65 import static com.sun.tools.javac.code.Flags.BLOCK;
    66 import static com.sun.tools.javac.code.Kinds.*;
    67 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    68 import static com.sun.tools.javac.code.TypeTag.*;
    69 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    70 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    72 /** Helper class for name resolution, used mostly by the attribution phase.
    73  *
    74  *  <p><b>This is NOT part of any supported API.
    75  *  If you write code that depends on this, you do so at your own risk.
    76  *  This code and its internal interfaces are subject to change or
    77  *  deletion without notice.</b>
    78  */
    79 public class Resolve {
    80     protected static final Context.Key<Resolve> resolveKey =
    81         new Context.Key<Resolve>();
    83     Names names;
    84     Log log;
    85     Symtab syms;
    86     Attr attr;
    87     DeferredAttr deferredAttr;
    88     Check chk;
    89     Infer infer;
    90     ClassReader reader;
    91     TreeInfo treeinfo;
    92     Types types;
    93     JCDiagnostic.Factory diags;
    94     public final boolean boxingEnabled; // = source.allowBoxing();
    95     public final boolean varargsEnabled; // = source.allowVarargs();
    96     public final boolean allowMethodHandles;
    97     public final boolean allowDefaultMethods;
    98     public final boolean allowStructuralMostSpecific;
    99     private final boolean debugResolve;
   100     private final boolean compactMethodDiags;
   101     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
   103     Scope polymorphicSignatureScope;
   105     protected Resolve(Context context) {
   106         context.put(resolveKey, this);
   107         syms = Symtab.instance(context);
   109         varNotFound = new
   110             SymbolNotFoundError(ABSENT_VAR);
   111         methodNotFound = new
   112             SymbolNotFoundError(ABSENT_MTH);
   113         typeNotFound = new
   114             SymbolNotFoundError(ABSENT_TYP);
   116         names = Names.instance(context);
   117         log = Log.instance(context);
   118         attr = Attr.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         chk = Check.instance(context);
   121         infer = Infer.instance(context);
   122         reader = ClassReader.instance(context);
   123         treeinfo = TreeInfo.instance(context);
   124         types = Types.instance(context);
   125         diags = JCDiagnostic.Factory.instance(context);
   126         Source source = Source.instance(context);
   127         boxingEnabled = source.allowBoxing();
   128         varargsEnabled = source.allowVarargs();
   129         Options options = Options.instance(context);
   130         debugResolve = options.isSet("debugresolve");
   131         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
   132                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
   133         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   134         Target target = Target.instance(context);
   135         allowMethodHandles = target.hasMethodHandles();
   136         allowDefaultMethods = source.allowDefaultMethods();
   137         allowStructuralMostSpecific = source.allowStructuralMostSpecific();
   138         polymorphicSignatureScope = new Scope(syms.noSymbol);
   140         inapplicableMethodException = new InapplicableMethodException(diags);
   141     }
   143     /** error symbols, which are returned when resolution fails
   144      */
   145     private final SymbolNotFoundError varNotFound;
   146     private final SymbolNotFoundError methodNotFound;
   147     private final SymbolNotFoundError typeNotFound;
   149     public static Resolve instance(Context context) {
   150         Resolve instance = context.get(resolveKey);
   151         if (instance == null)
   152             instance = new Resolve(context);
   153         return instance;
   154     }
   156     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   157     enum VerboseResolutionMode {
   158         SUCCESS("success"),
   159         FAILURE("failure"),
   160         APPLICABLE("applicable"),
   161         INAPPLICABLE("inapplicable"),
   162         DEFERRED_INST("deferred-inference"),
   163         PREDEF("predef"),
   164         OBJECT_INIT("object-init"),
   165         INTERNAL("internal");
   167         final String opt;
   169         private VerboseResolutionMode(String opt) {
   170             this.opt = opt;
   171         }
   173         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   174             String s = opts.get("verboseResolution");
   175             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   176             if (s == null) return res;
   177             if (s.contains("all")) {
   178                 res = EnumSet.allOf(VerboseResolutionMode.class);
   179             }
   180             Collection<String> args = Arrays.asList(s.split(","));
   181             for (VerboseResolutionMode mode : values()) {
   182                 if (args.contains(mode.opt)) {
   183                     res.add(mode);
   184                 } else if (args.contains("-" + mode.opt)) {
   185                     res.remove(mode);
   186                 }
   187             }
   188             return res;
   189         }
   190     }
   192     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   193             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   194         boolean success = bestSoFar.kind < ERRONEOUS;
   196         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   197             return;
   198         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   199             return;
   200         }
   202         if (bestSoFar.name == names.init &&
   203                 bestSoFar.owner == syms.objectType.tsym &&
   204                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   205             return; //skip diags for Object constructor resolution
   206         } else if (site == syms.predefClass.type &&
   207                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   208             return; //skip spurious diags for predef symbols (i.e. operators)
   209         } else if (currentResolutionContext.internalResolution &&
   210                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   211             return;
   212         }
   214         int pos = 0;
   215         int mostSpecificPos = -1;
   216         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   217         for (Candidate c : currentResolutionContext.candidates) {
   218             if (currentResolutionContext.step != c.step ||
   219                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   220                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   221                 continue;
   222             } else {
   223                 subDiags.append(c.isApplicable() ?
   224                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   225                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   226                 if (c.sym == bestSoFar)
   227                     mostSpecificPos = pos;
   228                 pos++;
   229             }
   230         }
   231         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   232         List<Type> argtypes2 = Type.map(argtypes,
   233                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   234         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   235                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   236                 methodArguments(argtypes2),
   237                 methodArguments(typeargtypes));
   238         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   239         log.report(d);
   240     }
   242     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   243         JCDiagnostic subDiag = null;
   244         if (sym.type.hasTag(FORALL)) {
   245             subDiag = diags.fragment("partial.inst.sig", inst);
   246         }
   248         String key = subDiag == null ?
   249                 "applicable.method.found" :
   250                 "applicable.method.found.1";
   252         return diags.fragment(key, pos, sym, subDiag);
   253     }
   255     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   256         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   257     }
   258     // </editor-fold>
   260 /* ************************************************************************
   261  * Identifier resolution
   262  *************************************************************************/
   264     /** An environment is "static" if its static level is greater than
   265      *  the one of its outer environment
   266      */
   267     protected static boolean isStatic(Env<AttrContext> env) {
   268         return env.info.staticLevel > env.outer.info.staticLevel;
   269     }
   271     /** An environment is an "initializer" if it is a constructor or
   272      *  an instance initializer.
   273      */
   274     static boolean isInitializer(Env<AttrContext> env) {
   275         Symbol owner = env.info.scope.owner;
   276         return owner.isConstructor() ||
   277             owner.owner.kind == TYP &&
   278             (owner.kind == VAR ||
   279              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   280             (owner.flags() & STATIC) == 0;
   281     }
   283     /** Is class accessible in given evironment?
   284      *  @param env    The current environment.
   285      *  @param c      The class whose accessibility is checked.
   286      */
   287     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   288         return isAccessible(env, c, false);
   289     }
   291     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   292         boolean isAccessible = false;
   293         switch ((short)(c.flags() & AccessFlags)) {
   294             case PRIVATE:
   295                 isAccessible =
   296                     env.enclClass.sym.outermostClass() ==
   297                     c.owner.outermostClass();
   298                 break;
   299             case 0:
   300                 isAccessible =
   301                     env.toplevel.packge == c.owner // fast special case
   302                     ||
   303                     env.toplevel.packge == c.packge()
   304                     ||
   305                     // Hack: this case is added since synthesized default constructors
   306                     // of anonymous classes should be allowed to access
   307                     // classes which would be inaccessible otherwise.
   308                     env.enclMethod != null &&
   309                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   310                 break;
   311             default: // error recovery
   312             case PUBLIC:
   313                 isAccessible = true;
   314                 break;
   315             case PROTECTED:
   316                 isAccessible =
   317                     env.toplevel.packge == c.owner // fast special case
   318                     ||
   319                     env.toplevel.packge == c.packge()
   320                     ||
   321                     isInnerSubClass(env.enclClass.sym, c.owner);
   322                 break;
   323         }
   324         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   325             isAccessible :
   326             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   327     }
   328     //where
   329         /** Is given class a subclass of given base class, or an inner class
   330          *  of a subclass?
   331          *  Return null if no such class exists.
   332          *  @param c     The class which is the subclass or is contained in it.
   333          *  @param base  The base class
   334          */
   335         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   336             while (c != null && !c.isSubClass(base, types)) {
   337                 c = c.owner.enclClass();
   338             }
   339             return c != null;
   340         }
   342     boolean isAccessible(Env<AttrContext> env, Type t) {
   343         return isAccessible(env, t, false);
   344     }
   346     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   347         return (t.hasTag(ARRAY))
   348             ? isAccessible(env, types.elemtype(t))
   349             : isAccessible(env, t.tsym, checkInner);
   350     }
   352     /** Is symbol accessible as a member of given type in given environment?
   353      *  @param env    The current environment.
   354      *  @param site   The type of which the tested symbol is regarded
   355      *                as a member.
   356      *  @param sym    The symbol.
   357      */
   358     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   359         return isAccessible(env, site, sym, false);
   360     }
   361     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   362         if (sym.name == names.init && sym.owner != site.tsym) return false;
   363         switch ((short)(sym.flags() & AccessFlags)) {
   364         case PRIVATE:
   365             return
   366                 (env.enclClass.sym == sym.owner // fast special case
   367                  ||
   368                  env.enclClass.sym.outermostClass() ==
   369                  sym.owner.outermostClass())
   370                 &&
   371                 sym.isInheritedIn(site.tsym, types);
   372         case 0:
   373             return
   374                 (env.toplevel.packge == sym.owner.owner // fast special case
   375                  ||
   376                  env.toplevel.packge == sym.packge())
   377                 &&
   378                 isAccessible(env, site, checkInner)
   379                 &&
   380                 sym.isInheritedIn(site.tsym, types)
   381                 &&
   382                 notOverriddenIn(site, sym);
   383         case PROTECTED:
   384             return
   385                 (env.toplevel.packge == sym.owner.owner // fast special case
   386                  ||
   387                  env.toplevel.packge == sym.packge()
   388                  ||
   389                  isProtectedAccessible(sym, env.enclClass.sym, site)
   390                  ||
   391                  // OK to select instance method or field from 'super' or type name
   392                  // (but type names should be disallowed elsewhere!)
   393                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   394                 &&
   395                 isAccessible(env, site, checkInner)
   396                 &&
   397                 notOverriddenIn(site, sym);
   398         default: // this case includes erroneous combinations as well
   399             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   400         }
   401     }
   402     //where
   403     /* `sym' is accessible only if not overridden by
   404      * another symbol which is a member of `site'
   405      * (because, if it is overridden, `sym' is not strictly
   406      * speaking a member of `site'). A polymorphic signature method
   407      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   408      */
   409     private boolean notOverriddenIn(Type site, Symbol sym) {
   410         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   411             return true;
   412         else {
   413             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   414             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   415                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   416         }
   417     }
   418     //where
   419         /** Is given protected symbol accessible if it is selected from given site
   420          *  and the selection takes place in given class?
   421          *  @param sym     The symbol with protected access
   422          *  @param c       The class where the access takes place
   423          *  @site          The type of the qualifier
   424          */
   425         private
   426         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   427             while (c != null &&
   428                    !(c.isSubClass(sym.owner, types) &&
   429                      (c.flags() & INTERFACE) == 0 &&
   430                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   431                      // only to instance fields and methods -- types are excluded
   432                      // regardless of whether they are declared 'static' or not.
   433                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   434                 c = c.owner.enclClass();
   435             return c != null;
   436         }
   438     /**
   439      * Performs a recursive scan of a type looking for accessibility problems
   440      * from current attribution environment
   441      */
   442     void checkAccessibleType(Env<AttrContext> env, Type t) {
   443         accessibilityChecker.visit(t, env);
   444     }
   446     /**
   447      * Accessibility type-visitor
   448      */
   449     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   450             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   452         void visit(List<Type> ts, Env<AttrContext> env) {
   453             for (Type t : ts) {
   454                 visit(t, env);
   455             }
   456         }
   458         public Void visitType(Type t, Env<AttrContext> env) {
   459             return null;
   460         }
   462         @Override
   463         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   464             visit(t.elemtype, env);
   465             return null;
   466         }
   468         @Override
   469         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   470             visit(t.getTypeArguments(), env);
   471             if (!isAccessible(env, t, true)) {
   472                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   473             }
   474             return null;
   475         }
   477         @Override
   478         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   479             visit(t.type, env);
   480             return null;
   481         }
   483         @Override
   484         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   485             visit(t.getParameterTypes(), env);
   486             visit(t.getReturnType(), env);
   487             visit(t.getThrownTypes(), env);
   488             return null;
   489         }
   490     };
   492     /** Try to instantiate the type of a method so that it fits
   493      *  given type arguments and argument types. If successful, return
   494      *  the method's instantiated type, else return null.
   495      *  The instantiation will take into account an additional leading
   496      *  formal parameter if the method is an instance method seen as a member
   497      *  of an under determined site. In this case, we treat site as an additional
   498      *  parameter and the parameters of the class containing the method as
   499      *  additional type variables that get instantiated.
   500      *
   501      *  @param env         The current environment
   502      *  @param site        The type of which the method is a member.
   503      *  @param m           The method symbol.
   504      *  @param argtypes    The invocation's given value arguments.
   505      *  @param typeargtypes    The invocation's given type arguments.
   506      *  @param allowBoxing Allow boxing conversions of arguments.
   507      *  @param useVarargs Box trailing arguments into an array for varargs.
   508      */
   509     Type rawInstantiate(Env<AttrContext> env,
   510                         Type site,
   511                         Symbol m,
   512                         ResultInfo resultInfo,
   513                         List<Type> argtypes,
   514                         List<Type> typeargtypes,
   515                         boolean allowBoxing,
   516                         boolean useVarargs,
   517                         Warner warn) throws Infer.InferenceException {
   519         Type mt = types.memberType(site, m);
   520         // tvars is the list of formal type variables for which type arguments
   521         // need to inferred.
   522         List<Type> tvars = List.nil();
   523         if (typeargtypes == null) typeargtypes = List.nil();
   524         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   525             // This is not a polymorphic method, but typeargs are supplied
   526             // which is fine, see JLS 15.12.2.1
   527         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   528             ForAll pmt = (ForAll) mt;
   529             if (typeargtypes.length() != pmt.tvars.length())
   530                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   531             // Check type arguments are within bounds
   532             List<Type> formals = pmt.tvars;
   533             List<Type> actuals = typeargtypes;
   534             while (formals.nonEmpty() && actuals.nonEmpty()) {
   535                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   536                                                 pmt.tvars, typeargtypes);
   537                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   538                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   539                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   540                 formals = formals.tail;
   541                 actuals = actuals.tail;
   542             }
   543             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   544         } else if (mt.hasTag(FORALL)) {
   545             ForAll pmt = (ForAll) mt;
   546             List<Type> tvars1 = types.newInstances(pmt.tvars);
   547             tvars = tvars.appendList(tvars1);
   548             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   549         }
   551         // find out whether we need to go the slow route via infer
   552         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   553         for (List<Type> l = argtypes;
   554              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   555              l = l.tail) {
   556             if (l.head.hasTag(FORALL)) instNeeded = true;
   557         }
   559         if (instNeeded)
   560             return infer.instantiateMethod(env,
   561                                     tvars,
   562                                     (MethodType)mt,
   563                                     resultInfo,
   564                                     m,
   565                                     argtypes,
   566                                     allowBoxing,
   567                                     useVarargs,
   568                                     currentResolutionContext,
   569                                     warn);
   571         currentResolutionContext.methodCheck.argumentsAcceptable(env, currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn),
   572                                 argtypes, mt.getParameterTypes(), warn);
   573         return mt;
   574     }
   576     Type checkMethod(Env<AttrContext> env,
   577                      Type site,
   578                      Symbol m,
   579                      ResultInfo resultInfo,
   580                      List<Type> argtypes,
   581                      List<Type> typeargtypes,
   582                      Warner warn) {
   583         MethodResolutionContext prevContext = currentResolutionContext;
   584         try {
   585             currentResolutionContext = new MethodResolutionContext();
   586             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   587             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
   588                 //method/constructor references need special check class
   589                 //to handle inference variables in 'argtypes' (might happen
   590                 //during an unsticking round)
   591                 currentResolutionContext.methodCheck =
   592                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
   593             }
   594             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   595             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   596                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   597         }
   598         finally {
   599             currentResolutionContext = prevContext;
   600         }
   601     }
   603     /** Same but returns null instead throwing a NoInstanceException
   604      */
   605     Type instantiate(Env<AttrContext> env,
   606                      Type site,
   607                      Symbol m,
   608                      ResultInfo resultInfo,
   609                      List<Type> argtypes,
   610                      List<Type> typeargtypes,
   611                      boolean allowBoxing,
   612                      boolean useVarargs,
   613                      Warner warn) {
   614         try {
   615             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   616                                   allowBoxing, useVarargs, warn);
   617         } catch (InapplicableMethodException ex) {
   618             return null;
   619         }
   620     }
   622     /**
   623      * This interface defines an entry point that should be used to perform a
   624      * method check. A method check usually consist in determining as to whether
   625      * a set of types (actuals) is compatible with another set of types (formals).
   626      * Since the notion of compatibility can vary depending on the circumstances,
   627      * this interfaces allows to easily add new pluggable method check routines.
   628      */
   629     interface MethodCheck {
   630         /**
   631          * Main method check routine. A method check usually consist in determining
   632          * as to whether a set of types (actuals) is compatible with another set of
   633          * types (formals). If an incompatibility is found, an unchecked exception
   634          * is assumed to be thrown.
   635          */
   636         void argumentsAcceptable(Env<AttrContext> env,
   637                                 DeferredAttrContext deferredAttrContext,
   638                                 List<Type> argtypes,
   639                                 List<Type> formals,
   640                                 Warner warn);
   642         /**
   643          * Retrieve the method check object that will be used during a
   644          * most specific check.
   645          */
   646         MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
   647     }
   649     /**
   650      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   651      */
   652     enum MethodCheckDiag {
   653         /**
   654          * Actuals and formals differs in length.
   655          */
   656         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   657         /**
   658          * An actual is incompatible with a formal.
   659          */
   660         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   661         /**
   662          * An actual is incompatible with the varargs element type.
   663          */
   664         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   665         /**
   666          * The varargs element type is inaccessible.
   667          */
   668         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   670         final String basicKey;
   671         final String inferKey;
   673         MethodCheckDiag(String basicKey, String inferKey) {
   674             this.basicKey = basicKey;
   675             this.inferKey = inferKey;
   676         }
   678         String regex() {
   679             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
   680         }
   681     }
   683     /**
   684      * Dummy method check object. All methods are deemed applicable, regardless
   685      * of their formal parameter types.
   686      */
   687     MethodCheck nilMethodCheck = new MethodCheck() {
   688         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
   689             //do nothing - method always applicable regardless of actuals
   690         }
   692         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   693             return this;
   694         }
   695     };
   697     /**
   698      * Base class for 'real' method checks. The class defines the logic for
   699      * iterating through formals and actuals and provides and entry point
   700      * that can be used by subclasses in order to define the actual check logic.
   701      */
   702     abstract class AbstractMethodCheck implements MethodCheck {
   703         @Override
   704         public void argumentsAcceptable(final Env<AttrContext> env,
   705                                     DeferredAttrContext deferredAttrContext,
   706                                     List<Type> argtypes,
   707                                     List<Type> formals,
   708                                     Warner warn) {
   709             //should we expand formals?
   710             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   711             List<JCExpression> trees = TreeInfo.args(env.tree);
   713             //inference context used during this method check
   714             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   716             Type varargsFormal = useVarargs ? formals.last() : null;
   718             if (varargsFormal == null &&
   719                     argtypes.size() != formals.size()) {
   720                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   721             }
   723             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   724                 DiagnosticPosition pos = trees != null ? trees.head : null;
   725                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
   726                 argtypes = argtypes.tail;
   727                 formals = formals.tail;
   728                 trees = trees != null ? trees.tail : trees;
   729             }
   731             if (formals.head != varargsFormal) {
   732                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   733             }
   735             if (useVarargs) {
   736                 //note: if applicability check is triggered by most specific test,
   737                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   738                 final Type elt = types.elemtype(varargsFormal);
   739                 while (argtypes.nonEmpty()) {
   740                     DiagnosticPosition pos = trees != null ? trees.head : null;
   741                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
   742                     argtypes = argtypes.tail;
   743                     trees = trees != null ? trees.tail : trees;
   744                 }
   745             }
   746         }
   748         /**
   749          * Does the actual argument conforms to the corresponding formal?
   750          */
   751         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
   753         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   754             boolean inferDiag = inferenceContext != infer.emptyContext;
   755             InapplicableMethodException ex = inferDiag ?
   756                     infer.inferenceException : inapplicableMethodException;
   757             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   758                 Object[] args2 = new Object[args.length + 1];
   759                 System.arraycopy(args, 0, args2, 1, args.length);
   760                 args2[0] = inferenceContext.inferenceVars();
   761                 args = args2;
   762             }
   763             String key = inferDiag ? diag.inferKey : diag.basicKey;
   764             throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
   765         }
   767         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   768             return nilMethodCheck;
   769         }
   770     }
   772     /**
   773      * Arity-based method check. A method is applicable if the number of actuals
   774      * supplied conforms to the method signature.
   775      */
   776     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
   777         @Override
   778         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   779             //do nothing - actual always compatible to formals
   780         }
   781     };
   783     List<Type> dummyArgs(int length) {
   784         ListBuffer<Type> buf = ListBuffer.lb();
   785         for (int i = 0 ; i < length ; i++) {
   786             buf.append(Type.noType);
   787         }
   788         return buf.toList();
   789     }
   791     /**
   792      * Main method applicability routine. Given a list of actual types A,
   793      * a list of formal types F, determines whether the types in A are
   794      * compatible (by method invocation conversion) with the types in F.
   795      *
   796      * Since this routine is shared between overload resolution and method
   797      * type-inference, a (possibly empty) inference context is used to convert
   798      * formal types to the corresponding 'undet' form ahead of a compatibility
   799      * check so that constraints can be propagated and collected.
   800      *
   801      * Moreover, if one or more types in A is a deferred type, this routine uses
   802      * DeferredAttr in order to perform deferred attribution. If one or more actual
   803      * deferred types are stuck, they are placed in a queue and revisited later
   804      * after the remainder of the arguments have been seen. If this is not sufficient
   805      * to 'unstuck' the argument, a cyclic inference error is called out.
   806      *
   807      * A method check handler (see above) is used in order to report errors.
   808      */
   809     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
   811         @Override
   812         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   813             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   814             mresult.check(pos, actual);
   815         }
   817         @Override
   818         public void argumentsAcceptable(final Env<AttrContext> env,
   819                                     DeferredAttrContext deferredAttrContext,
   820                                     List<Type> argtypes,
   821                                     List<Type> formals,
   822                                     Warner warn) {
   823             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
   824             //should we expand formals?
   825             if (deferredAttrContext.phase.isVarargsRequired()) {
   826                 //check varargs element type accessibility
   827                 varargsAccessible(env, types.elemtype(formals.last()),
   828                         deferredAttrContext.inferenceContext);
   829             }
   830         }
   832         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   833             if (inferenceContext.free(t)) {
   834                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   835                     @Override
   836                     public void typesInferred(InferenceContext inferenceContext) {
   837                         varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
   838                     }
   839                 });
   840             } else {
   841                 if (!isAccessible(env, t)) {
   842                     Symbol location = env.enclClass.sym;
   843                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   844                 }
   845             }
   846         }
   848         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   849                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   850             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   851                 MethodCheckDiag methodDiag = varargsCheck ?
   852                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   854                 @Override
   855                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   856                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   857                 }
   858             };
   859             return new MethodResultInfo(to, checkContext);
   860         }
   862         @Override
   863         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   864             return new MostSpecificCheck(strict, actuals);
   865         }
   866     };
   868     class MethodReferenceCheck extends AbstractMethodCheck {
   870         InferenceContext pendingInferenceContext;
   872         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
   873             this.pendingInferenceContext = pendingInferenceContext;
   874         }
   876         @Override
   877         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   878             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   879             mresult.check(pos, actual);
   880         }
   882         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   883                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   884             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   885                 MethodCheckDiag methodDiag = varargsCheck ?
   886                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   888                 @Override
   889                 public boolean compatible(Type found, Type req, Warner warn) {
   890                     found = pendingInferenceContext.asFree(found);
   891                     req = infer.returnConstraintTarget(found, req);
   892                     return super.compatible(found, req, warn);
   893                 }
   895                 @Override
   896                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   897                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   898                 }
   899             };
   900             return new MethodResultInfo(to, checkContext);
   901         }
   903         @Override
   904         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   905             return new MostSpecificCheck(strict, actuals);
   906         }
   907     };
   909     /**
   910      * Check context to be used during method applicability checks. A method check
   911      * context might contain inference variables.
   912      */
   913     abstract class MethodCheckContext implements CheckContext {
   915         boolean strict;
   916         DeferredAttrContext deferredAttrContext;
   917         Warner rsWarner;
   919         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   920            this.strict = strict;
   921            this.deferredAttrContext = deferredAttrContext;
   922            this.rsWarner = rsWarner;
   923         }
   925         public boolean compatible(Type found, Type req, Warner warn) {
   926             return strict ?
   927                     types.isSubtypeUnchecked(found, deferredAttrContext.inferenceContext.asFree(req), warn) :
   928                     types.isConvertible(found, deferredAttrContext.inferenceContext.asFree(req), warn);
   929         }
   931         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   932             throw inapplicableMethodException.setMessage(details);
   933         }
   935         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   936             return rsWarner;
   937         }
   939         public InferenceContext inferenceContext() {
   940             return deferredAttrContext.inferenceContext;
   941         }
   943         public DeferredAttrContext deferredAttrContext() {
   944             return deferredAttrContext;
   945         }
   946     }
   948     /**
   949      * ResultInfo class to be used during method applicability checks. Check
   950      * for deferred types goes through special path.
   951      */
   952     class MethodResultInfo extends ResultInfo {
   954         public MethodResultInfo(Type pt, CheckContext checkContext) {
   955             attr.super(VAL, pt, checkContext);
   956         }
   958         @Override
   959         protected Type check(DiagnosticPosition pos, Type found) {
   960             if (found.hasTag(DEFERRED)) {
   961                 DeferredType dt = (DeferredType)found;
   962                 return dt.check(this);
   963             } else {
   964                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   965             }
   966         }
   968         @Override
   969         protected MethodResultInfo dup(Type newPt) {
   970             return new MethodResultInfo(newPt, checkContext);
   971         }
   973         @Override
   974         protected ResultInfo dup(CheckContext newContext) {
   975             return new MethodResultInfo(pt, newContext);
   976         }
   977     }
   979     /**
   980      * Most specific method applicability routine. Given a list of actual types A,
   981      * a list of formal types F1, and a list of formal types F2, the routine determines
   982      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
   983      * argument types A.
   984      */
   985     class MostSpecificCheck implements MethodCheck {
   987         boolean strict;
   988         List<Type> actuals;
   990         MostSpecificCheck(boolean strict, List<Type> actuals) {
   991             this.strict = strict;
   992             this.actuals = actuals;
   993         }
   995         @Override
   996         public void argumentsAcceptable(final Env<AttrContext> env,
   997                                     DeferredAttrContext deferredAttrContext,
   998                                     List<Type> formals1,
   999                                     List<Type> formals2,
  1000                                     Warner warn) {
  1001             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
  1002             while (formals2.nonEmpty()) {
  1003                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
  1004                 mresult.check(null, formals1.head);
  1005                 formals1 = formals1.tail;
  1006                 formals2 = formals2.tail;
  1007                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
  1011        /**
  1012         * Create a method check context to be used during the most specific applicability check
  1013         */
  1014         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
  1015                Warner rsWarner, Type actual) {
  1016            return attr.new ResultInfo(Kinds.VAL, to,
  1017                    new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
  1020         /**
  1021          * Subclass of method check context class that implements most specific
  1022          * method conversion. If the actual type under analysis is a deferred type
  1023          * a full blown structural analysis is carried out.
  1024          */
  1025         class MostSpecificCheckContext extends MethodCheckContext {
  1027             Type actual;
  1029             public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
  1030                 super(strict, deferredAttrContext, rsWarner);
  1031                 this.actual = actual;
  1034             public boolean compatible(Type found, Type req, Warner warn) {
  1035                 if (!allowStructuralMostSpecific || actual == null) {
  1036                     return super.compatible(found, req, warn);
  1037                 } else {
  1038                     switch (actual.getTag()) {
  1039                         case DEFERRED:
  1040                             DeferredType dt = (DeferredType) actual;
  1041                             DeferredType.SpeculativeCache.Entry e = dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
  1042                             return (e == null || e.speculativeTree == deferredAttr.stuckTree)
  1043                                     ? false : mostSpecific(found, req, e.speculativeTree, warn);
  1044                         default:
  1045                             return standaloneMostSpecific(found, req, actual, warn);
  1050             private boolean mostSpecific(Type t, Type s, JCTree tree, Warner warn) {
  1051                 MostSpecificChecker msc = new MostSpecificChecker(t, s, warn);
  1052                 msc.scan(tree);
  1053                 return msc.result;
  1056             boolean polyMostSpecific(Type t1, Type t2, Warner warn) {
  1057                 return (!t1.isPrimitive() && t2.isPrimitive())
  1058                         ? true : super.compatible(t1, t2, warn);
  1061             boolean standaloneMostSpecific(Type t1, Type t2, Type exprType, Warner warn) {
  1062                 return (exprType.isPrimitive() == t1.isPrimitive()
  1063                         && exprType.isPrimitive() != t2.isPrimitive())
  1064                         ? true : super.compatible(t1, t2, warn);
  1067             /**
  1068              * Structural checker for most specific.
  1069              */
  1070             class MostSpecificChecker extends DeferredAttr.PolyScanner {
  1072                 final Type t;
  1073                 final Type s;
  1074                 final Warner warn;
  1075                 boolean result;
  1077                 MostSpecificChecker(Type t, Type s, Warner warn) {
  1078                     this.t = t;
  1079                     this.s = s;
  1080                     this.warn = warn;
  1081                     result = true;
  1084                 @Override
  1085                 void skip(JCTree tree) {
  1086                     result &= standaloneMostSpecific(t, s, tree.type, warn);
  1089                 @Override
  1090                 public void visitConditional(JCConditional tree) {
  1091                     if (tree.polyKind == PolyKind.STANDALONE) {
  1092                         result &= standaloneMostSpecific(t, s, tree.type, warn);
  1093                     } else {
  1094                         super.visitConditional(tree);
  1098                 @Override
  1099                 public void visitApply(JCMethodInvocation tree) {
  1100                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1101                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1102                             : polyMostSpecific(t, s, warn);
  1105                 @Override
  1106                 public void visitNewClass(JCNewClass tree) {
  1107                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1108                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1109                             : polyMostSpecific(t, s, warn);
  1112                 @Override
  1113                 public void visitReference(JCMemberReference tree) {
  1114                     if (types.isFunctionalInterface(t.tsym) &&
  1115                             types.isFunctionalInterface(s.tsym) &&
  1116                             types.asSuper(t, s.tsym) == null &&
  1117                             types.asSuper(s, t.tsym) == null) {
  1118                         Type desc_t = types.findDescriptorType(t);
  1119                         Type desc_s = types.findDescriptorType(s);
  1120                         if (types.isSameTypes(desc_t.getParameterTypes(), desc_s.getParameterTypes())) {
  1121                             if (!desc_s.getReturnType().hasTag(VOID)) {
  1122                                 //perform structural comparison
  1123                                 Type ret_t = desc_t.getReturnType();
  1124                                 Type ret_s = desc_s.getReturnType();
  1125                                 result &= ((tree.refPolyKind == PolyKind.STANDALONE)
  1126                                         ? standaloneMostSpecific(ret_t, ret_s, tree.sym.type.getReturnType(), warn)
  1127                                         : polyMostSpecific(ret_t, ret_s, warn));
  1128                             } else {
  1129                                 return;
  1131                         } else {
  1132                             result &= false;
  1134                     } else {
  1135                         result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1139                 @Override
  1140                 public void visitLambda(JCLambda tree) {
  1141                     if (types.isFunctionalInterface(t.tsym) &&
  1142                             types.isFunctionalInterface(s.tsym) &&
  1143                             types.asSuper(t, s.tsym) == null &&
  1144                             types.asSuper(s, t.tsym) == null) {
  1145                         Type desc_t = types.findDescriptorType(t);
  1146                         Type desc_s = types.findDescriptorType(s);
  1147                         if (tree.paramKind == JCLambda.ParameterKind.EXPLICIT
  1148                                 || types.isSameTypes(desc_t.getParameterTypes(), desc_s.getParameterTypes())) {
  1149                             if (!desc_s.getReturnType().hasTag(VOID)) {
  1150                                 //perform structural comparison
  1151                                 Type ret_t = desc_t.getReturnType();
  1152                                 Type ret_s = desc_s.getReturnType();
  1153                                 scanLambdaBody(tree, ret_t, ret_s);
  1154                             } else {
  1155                                 return;
  1157                         } else {
  1158                             result &= false;
  1160                     } else {
  1161                         result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1164                 //where
  1166                 void scanLambdaBody(JCLambda lambda, final Type t, final Type s) {
  1167                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
  1168                         result &= MostSpecificCheckContext.this.mostSpecific(t, s, lambda.body, warn);
  1169                     } else {
  1170                         DeferredAttr.LambdaReturnScanner lambdaScanner =
  1171                                 new DeferredAttr.LambdaReturnScanner() {
  1172                                     @Override
  1173                                     public void visitReturn(JCReturn tree) {
  1174                                         if (tree.expr != null) {
  1175                                             result &= MostSpecificCheckContext.this.mostSpecific(t, s, tree.expr, warn);
  1178                                 };
  1179                         lambdaScanner.scan(lambda.body);
  1185         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
  1186             Assert.error("Cannot get here!");
  1187             return null;
  1191     public static class InapplicableMethodException extends RuntimeException {
  1192         private static final long serialVersionUID = 0;
  1194         JCDiagnostic diagnostic;
  1195         JCDiagnostic.Factory diags;
  1197         InapplicableMethodException(JCDiagnostic.Factory diags) {
  1198             this.diagnostic = null;
  1199             this.diags = diags;
  1201         InapplicableMethodException setMessage() {
  1202             return setMessage((JCDiagnostic)null);
  1204         InapplicableMethodException setMessage(String key) {
  1205             return setMessage(key != null ? diags.fragment(key) : null);
  1207         InapplicableMethodException setMessage(String key, Object... args) {
  1208             return setMessage(key != null ? diags.fragment(key, args) : null);
  1210         InapplicableMethodException setMessage(JCDiagnostic diag) {
  1211             this.diagnostic = diag;
  1212             return this;
  1215         public JCDiagnostic getDiagnostic() {
  1216             return diagnostic;
  1219     private final InapplicableMethodException inapplicableMethodException;
  1221 /* ***************************************************************************
  1222  *  Symbol lookup
  1223  *  the following naming conventions for arguments are used
  1225  *       env      is the environment where the symbol was mentioned
  1226  *       site     is the type of which the symbol is a member
  1227  *       name     is the symbol's name
  1228  *                if no arguments are given
  1229  *       argtypes are the value arguments, if we search for a method
  1231  *  If no symbol was found, a ResolveError detailing the problem is returned.
  1232  ****************************************************************************/
  1234     /** Find field. Synthetic fields are always skipped.
  1235      *  @param env     The current environment.
  1236      *  @param site    The original type from where the selection takes place.
  1237      *  @param name    The name of the field.
  1238      *  @param c       The class to search for the field. This is always
  1239      *                 a superclass or implemented interface of site's class.
  1240      */
  1241     Symbol findField(Env<AttrContext> env,
  1242                      Type site,
  1243                      Name name,
  1244                      TypeSymbol c) {
  1245         while (c.type.hasTag(TYPEVAR))
  1246             c = c.type.getUpperBound().tsym;
  1247         Symbol bestSoFar = varNotFound;
  1248         Symbol sym;
  1249         Scope.Entry e = c.members().lookup(name);
  1250         while (e.scope != null) {
  1251             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
  1252                 return isAccessible(env, site, e.sym)
  1253                     ? e.sym : new AccessError(env, site, e.sym);
  1255             e = e.next();
  1257         Type st = types.supertype(c.type);
  1258         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
  1259             sym = findField(env, site, name, st.tsym);
  1260             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1262         for (List<Type> l = types.interfaces(c.type);
  1263              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1264              l = l.tail) {
  1265             sym = findField(env, site, name, l.head.tsym);
  1266             if (bestSoFar.exists() && sym.exists() &&
  1267                 sym.owner != bestSoFar.owner)
  1268                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1269             else if (sym.kind < bestSoFar.kind)
  1270                 bestSoFar = sym;
  1272         return bestSoFar;
  1275     /** Resolve a field identifier, throw a fatal error if not found.
  1276      *  @param pos       The position to use for error reporting.
  1277      *  @param env       The environment current at the method invocation.
  1278      *  @param site      The type of the qualifying expression, in which
  1279      *                   identifier is searched.
  1280      *  @param name      The identifier's name.
  1281      */
  1282     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
  1283                                           Type site, Name name) {
  1284         Symbol sym = findField(env, site, name, site.tsym);
  1285         if (sym.kind == VAR) return (VarSymbol)sym;
  1286         else throw new FatalError(
  1287                  diags.fragment("fatal.err.cant.locate.field",
  1288                                 name));
  1291     /** Find unqualified variable or field with given name.
  1292      *  Synthetic fields always skipped.
  1293      *  @param env     The current environment.
  1294      *  @param name    The name of the variable or field.
  1295      */
  1296     Symbol findVar(Env<AttrContext> env, Name name) {
  1297         Symbol bestSoFar = varNotFound;
  1298         Symbol sym;
  1299         Env<AttrContext> env1 = env;
  1300         boolean staticOnly = false;
  1301         while (env1.outer != null) {
  1302             if (isStatic(env1)) staticOnly = true;
  1303             Scope.Entry e = env1.info.scope.lookup(name);
  1304             while (e.scope != null &&
  1305                    (e.sym.kind != VAR ||
  1306                     (e.sym.flags_field & SYNTHETIC) != 0))
  1307                 e = e.next();
  1308             sym = (e.scope != null)
  1309                 ? e.sym
  1310                 : findField(
  1311                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
  1312             if (sym.exists()) {
  1313                 if (staticOnly &&
  1314                     sym.kind == VAR &&
  1315                     sym.owner.kind == TYP &&
  1316                     (sym.flags() & STATIC) == 0)
  1317                     return new StaticError(sym);
  1318                 else
  1319                     return sym;
  1320             } else if (sym.kind < bestSoFar.kind) {
  1321                 bestSoFar = sym;
  1324             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1325             env1 = env1.outer;
  1328         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
  1329         if (sym.exists())
  1330             return sym;
  1331         if (bestSoFar.exists())
  1332             return bestSoFar;
  1334         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1335         for (; e.scope != null; e = e.next()) {
  1336             sym = e.sym;
  1337             Type origin = e.getOrigin().owner.type;
  1338             if (sym.kind == VAR) {
  1339                 if (e.sym.owner.type != origin)
  1340                     sym = sym.clone(e.getOrigin().owner);
  1341                 return isAccessible(env, origin, sym)
  1342                     ? sym : new AccessError(env, origin, sym);
  1346         Symbol origin = null;
  1347         e = env.toplevel.starImportScope.lookup(name);
  1348         for (; e.scope != null; e = e.next()) {
  1349             sym = e.sym;
  1350             if (sym.kind != VAR)
  1351                 continue;
  1352             // invariant: sym.kind == VAR
  1353             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1354                 return new AmbiguityError(bestSoFar, sym);
  1355             else if (bestSoFar.kind >= VAR) {
  1356                 origin = e.getOrigin().owner;
  1357                 bestSoFar = isAccessible(env, origin.type, sym)
  1358                     ? sym : new AccessError(env, origin.type, sym);
  1361         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1362             return bestSoFar.clone(origin);
  1363         else
  1364             return bestSoFar;
  1367     Warner noteWarner = new Warner();
  1369     /** Select the best method for a call site among two choices.
  1370      *  @param env              The current environment.
  1371      *  @param site             The original type from where the
  1372      *                          selection takes place.
  1373      *  @param argtypes         The invocation's value arguments,
  1374      *  @param typeargtypes     The invocation's type arguments,
  1375      *  @param sym              Proposed new best match.
  1376      *  @param bestSoFar        Previously found best match.
  1377      *  @param allowBoxing Allow boxing conversions of arguments.
  1378      *  @param useVarargs Box trailing arguments into an array for varargs.
  1379      */
  1380     @SuppressWarnings("fallthrough")
  1381     Symbol selectBest(Env<AttrContext> env,
  1382                       Type site,
  1383                       List<Type> argtypes,
  1384                       List<Type> typeargtypes,
  1385                       Symbol sym,
  1386                       Symbol bestSoFar,
  1387                       boolean allowBoxing,
  1388                       boolean useVarargs,
  1389                       boolean operator) {
  1390         if (sym.kind == ERR ||
  1391                 !sym.isInheritedIn(site.tsym, types)) {
  1392             return bestSoFar;
  1393         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
  1394             return bestSoFar.kind >= ERRONEOUS ?
  1395                     new BadVarargsMethod((ResolveError)bestSoFar) :
  1396                     bestSoFar;
  1398         Assert.check(sym.kind < AMBIGUOUS);
  1399         try {
  1400             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1401                                allowBoxing, useVarargs, types.noWarnings);
  1402             if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
  1403                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1404         } catch (InapplicableMethodException ex) {
  1405             if (!operator)
  1406                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1407             switch (bestSoFar.kind) {
  1408                 case ABSENT_MTH:
  1409                     return new InapplicableSymbolError(currentResolutionContext);
  1410                 case WRONG_MTH:
  1411                     if (operator) return bestSoFar;
  1412                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1413                 default:
  1414                     return bestSoFar;
  1417         if (!isAccessible(env, site, sym)) {
  1418             return (bestSoFar.kind == ABSENT_MTH)
  1419                 ? new AccessError(env, site, sym)
  1420                 : bestSoFar;
  1422         return (bestSoFar.kind > AMBIGUOUS)
  1423             ? sym
  1424             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1425                            allowBoxing && operator, useVarargs);
  1428     /* Return the most specific of the two methods for a call,
  1429      *  given that both are accessible and applicable.
  1430      *  @param m1               A new candidate for most specific.
  1431      *  @param m2               The previous most specific candidate.
  1432      *  @param env              The current environment.
  1433      *  @param site             The original type from where the selection
  1434      *                          takes place.
  1435      *  @param allowBoxing Allow boxing conversions of arguments.
  1436      *  @param useVarargs Box trailing arguments into an array for varargs.
  1437      */
  1438     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1439                         Symbol m2,
  1440                         Env<AttrContext> env,
  1441                         final Type site,
  1442                         boolean allowBoxing,
  1443                         boolean useVarargs) {
  1444         switch (m2.kind) {
  1445         case MTH:
  1446             if (m1 == m2) return m1;
  1447             boolean m1SignatureMoreSpecific =
  1448                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1449             boolean m2SignatureMoreSpecific =
  1450                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1451             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1452                 Type mt1 = types.memberType(site, m1);
  1453                 Type mt2 = types.memberType(site, m2);
  1454                 if (!types.overrideEquivalent(mt1, mt2))
  1455                     return ambiguityError(m1, m2);
  1457                 // same signature; select (a) the non-bridge method, or
  1458                 // (b) the one that overrides the other, or (c) the concrete
  1459                 // one, or (d) merge both abstract signatures
  1460                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1461                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1463                 // if one overrides or hides the other, use it
  1464                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1465                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1466                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1467                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1468                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1469                     m1.overrides(m2, m1Owner, types, false))
  1470                     return m1;
  1471                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1472                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1473                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1474                     m2.overrides(m1, m2Owner, types, false))
  1475                     return m2;
  1476                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1477                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1478                 if (m1Abstract && !m2Abstract) return m2;
  1479                 if (m2Abstract && !m1Abstract) return m1;
  1480                 // both abstract or both concrete
  1481                 return ambiguityError(m1, m2);
  1483             if (m1SignatureMoreSpecific) return m1;
  1484             if (m2SignatureMoreSpecific) return m2;
  1485             return ambiguityError(m1, m2);
  1486         case AMBIGUOUS:
  1487             //check if m1 is more specific than all ambiguous methods in m2
  1488             AmbiguityError e = (AmbiguityError)m2;
  1489             for (Symbol s : e.ambiguousSyms) {
  1490                 if (mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs) != m1) {
  1491                     return e.addAmbiguousSymbol(m1);
  1494             return m1;
  1495         default:
  1496             throw new AssertionError();
  1499     //where
  1500     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1501         noteWarner.clear();
  1502         int maxLength = Math.max(
  1503                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
  1504                             m2.type.getParameterTypes().length());
  1505         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1506         try {
  1507             currentResolutionContext = new MethodResolutionContext();
  1508             currentResolutionContext.step = prevResolutionContext.step;
  1509             currentResolutionContext.methodCheck =
  1510                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
  1511             Type mst = instantiate(env, site, m2, null,
  1512                     adjustArgs(types.lowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
  1513                     allowBoxing, useVarargs, noteWarner);
  1514             return mst != null &&
  1515                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1516         } finally {
  1517             currentResolutionContext = prevResolutionContext;
  1520     private List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
  1521         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
  1522             Type varargsElem = types.elemtype(args.last());
  1523             if (varargsElem == null) {
  1524                 Assert.error("Bad varargs = " + args.last() + " " + msym);
  1526             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
  1527             while (newArgs.length() < length) {
  1528                 newArgs = newArgs.append(newArgs.last());
  1530             return newArgs;
  1531         } else {
  1532             return args;
  1535     //where
  1536     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1537         Type rt1 = mt1.getReturnType();
  1538         Type rt2 = mt2.getReturnType();
  1540         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1541             //if both are generic methods, adjust return type ahead of subtyping check
  1542             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1544         //first use subtyping, then return type substitutability
  1545         if (types.isSubtype(rt1, rt2)) {
  1546             return mt1;
  1547         } else if (types.isSubtype(rt2, rt1)) {
  1548             return mt2;
  1549         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1550             return mt1;
  1551         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1552             return mt2;
  1553         } else {
  1554             return null;
  1557     //where
  1558     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1559         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1560             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1561         } else {
  1562             return new AmbiguityError(m1, m2);
  1566     Symbol findMethodInScope(Env<AttrContext> env,
  1567             Type site,
  1568             Name name,
  1569             List<Type> argtypes,
  1570             List<Type> typeargtypes,
  1571             Scope sc,
  1572             Symbol bestSoFar,
  1573             boolean allowBoxing,
  1574             boolean useVarargs,
  1575             boolean operator,
  1576             boolean abstractok) {
  1577         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1578             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1579                     bestSoFar, allowBoxing, useVarargs, operator);
  1581         return bestSoFar;
  1583     //where
  1584         class LookupFilter implements Filter<Symbol> {
  1586             boolean abstractOk;
  1588             LookupFilter(boolean abstractOk) {
  1589                 this.abstractOk = abstractOk;
  1592             public boolean accepts(Symbol s) {
  1593                 long flags = s.flags();
  1594                 return s.kind == MTH &&
  1595                         (flags & SYNTHETIC) == 0 &&
  1596                         (abstractOk ||
  1597                         (flags & DEFAULT) != 0 ||
  1598                         (flags & ABSTRACT) == 0);
  1600         };
  1602     /** Find best qualified method matching given name, type and value
  1603      *  arguments.
  1604      *  @param env       The current environment.
  1605      *  @param site      The original type from where the selection
  1606      *                   takes place.
  1607      *  @param name      The method's name.
  1608      *  @param argtypes  The method's value arguments.
  1609      *  @param typeargtypes The method's type arguments
  1610      *  @param allowBoxing Allow boxing conversions of arguments.
  1611      *  @param useVarargs Box trailing arguments into an array for varargs.
  1612      */
  1613     Symbol findMethod(Env<AttrContext> env,
  1614                       Type site,
  1615                       Name name,
  1616                       List<Type> argtypes,
  1617                       List<Type> typeargtypes,
  1618                       boolean allowBoxing,
  1619                       boolean useVarargs,
  1620                       boolean operator) {
  1621         Symbol bestSoFar = methodNotFound;
  1622         bestSoFar = findMethod(env,
  1623                           site,
  1624                           name,
  1625                           argtypes,
  1626                           typeargtypes,
  1627                           site.tsym.type,
  1628                           bestSoFar,
  1629                           allowBoxing,
  1630                           useVarargs,
  1631                           operator);
  1632         return bestSoFar;
  1634     // where
  1635     private Symbol findMethod(Env<AttrContext> env,
  1636                               Type site,
  1637                               Name name,
  1638                               List<Type> argtypes,
  1639                               List<Type> typeargtypes,
  1640                               Type intype,
  1641                               Symbol bestSoFar,
  1642                               boolean allowBoxing,
  1643                               boolean useVarargs,
  1644                               boolean operator) {
  1645         @SuppressWarnings({"unchecked","rawtypes"})
  1646         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1647         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1648         for (TypeSymbol s : superclasses(intype)) {
  1649             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1650                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1651             if (name == names.init) return bestSoFar;
  1652             iphase = (iphase == null) ? null : iphase.update(s, this);
  1653             if (iphase != null) {
  1654                 for (Type itype : types.interfaces(s.type)) {
  1655                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1660         Symbol concrete = bestSoFar.kind < ERR &&
  1661                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1662                 bestSoFar : methodNotFound;
  1664         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1665             if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && !allowDefaultMethods) break;
  1666             //keep searching for abstract methods
  1667             for (Type itype : itypes[iphase2.ordinal()]) {
  1668                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1669                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1670                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1671                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1672                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1673                 if (concrete != bestSoFar &&
  1674                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1675                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1676                     //this is an hack - as javac does not do full membership checks
  1677                     //most specific ends up comparing abstract methods that might have
  1678                     //been implemented by some concrete method in a subclass and,
  1679                     //because of raw override, it is possible for an abstract method
  1680                     //to be more specific than the concrete method - so we need
  1681                     //to explicitly call that out (see CR 6178365)
  1682                     bestSoFar = concrete;
  1686         return bestSoFar;
  1689     enum InterfaceLookupPhase {
  1690         ABSTRACT_OK() {
  1691             @Override
  1692             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1693                 //We should not look for abstract methods if receiver is a concrete class
  1694                 //(as concrete classes are expected to implement all abstracts coming
  1695                 //from superinterfaces)
  1696                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1697                     return this;
  1698                 } else if (rs.allowDefaultMethods) {
  1699                     return DEFAULT_OK;
  1700                 } else {
  1701                     return null;
  1704         },
  1705         DEFAULT_OK() {
  1706             @Override
  1707             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1708                 return this;
  1710         };
  1712         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1715     /**
  1716      * Return an Iterable object to scan the superclasses of a given type.
  1717      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1718      * access more supertypes than strictly needed (as this could trigger completion
  1719      * errors if some of the not-needed supertypes are missing/ill-formed).
  1720      */
  1721     Iterable<TypeSymbol> superclasses(final Type intype) {
  1722         return new Iterable<TypeSymbol>() {
  1723             public Iterator<TypeSymbol> iterator() {
  1724                 return new Iterator<TypeSymbol>() {
  1726                     List<TypeSymbol> seen = List.nil();
  1727                     TypeSymbol currentSym = symbolFor(intype);
  1728                     TypeSymbol prevSym = null;
  1730                     public boolean hasNext() {
  1731                         if (currentSym == syms.noSymbol) {
  1732                             currentSym = symbolFor(types.supertype(prevSym.type));
  1734                         return currentSym != null;
  1737                     public TypeSymbol next() {
  1738                         prevSym = currentSym;
  1739                         currentSym = syms.noSymbol;
  1740                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1741                         return prevSym;
  1744                     public void remove() {
  1745                         throw new UnsupportedOperationException();
  1748                     TypeSymbol symbolFor(Type t) {
  1749                         if (!t.hasTag(CLASS) &&
  1750                                 !t.hasTag(TYPEVAR)) {
  1751                             return null;
  1753                         while (t.hasTag(TYPEVAR))
  1754                             t = t.getUpperBound();
  1755                         if (seen.contains(t.tsym)) {
  1756                             //degenerate case in which we have a circular
  1757                             //class hierarchy - because of ill-formed classfiles
  1758                             return null;
  1760                         seen = seen.prepend(t.tsym);
  1761                         return t.tsym;
  1763                 };
  1765         };
  1768     /** Find unqualified method matching given name, type and value arguments.
  1769      *  @param env       The current environment.
  1770      *  @param name      The method's name.
  1771      *  @param argtypes  The method's value arguments.
  1772      *  @param typeargtypes  The method's type arguments.
  1773      *  @param allowBoxing Allow boxing conversions of arguments.
  1774      *  @param useVarargs Box trailing arguments into an array for varargs.
  1775      */
  1776     Symbol findFun(Env<AttrContext> env, Name name,
  1777                    List<Type> argtypes, List<Type> typeargtypes,
  1778                    boolean allowBoxing, boolean useVarargs) {
  1779         Symbol bestSoFar = methodNotFound;
  1780         Symbol sym;
  1781         Env<AttrContext> env1 = env;
  1782         boolean staticOnly = false;
  1783         while (env1.outer != null) {
  1784             if (isStatic(env1)) staticOnly = true;
  1785             sym = findMethod(
  1786                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1787                 allowBoxing, useVarargs, false);
  1788             if (sym.exists()) {
  1789                 if (staticOnly &&
  1790                     sym.kind == MTH &&
  1791                     sym.owner.kind == TYP &&
  1792                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1793                 else return sym;
  1794             } else if (sym.kind < bestSoFar.kind) {
  1795                 bestSoFar = sym;
  1797             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1798             env1 = env1.outer;
  1801         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1802                          typeargtypes, allowBoxing, useVarargs, false);
  1803         if (sym.exists())
  1804             return sym;
  1806         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1807         for (; e.scope != null; e = e.next()) {
  1808             sym = e.sym;
  1809             Type origin = e.getOrigin().owner.type;
  1810             if (sym.kind == MTH) {
  1811                 if (e.sym.owner.type != origin)
  1812                     sym = sym.clone(e.getOrigin().owner);
  1813                 if (!isAccessible(env, origin, sym))
  1814                     sym = new AccessError(env, origin, sym);
  1815                 bestSoFar = selectBest(env, origin,
  1816                                        argtypes, typeargtypes,
  1817                                        sym, bestSoFar,
  1818                                        allowBoxing, useVarargs, false);
  1821         if (bestSoFar.exists())
  1822             return bestSoFar;
  1824         e = env.toplevel.starImportScope.lookup(name);
  1825         for (; e.scope != null; e = e.next()) {
  1826             sym = e.sym;
  1827             Type origin = e.getOrigin().owner.type;
  1828             if (sym.kind == MTH) {
  1829                 if (e.sym.owner.type != origin)
  1830                     sym = sym.clone(e.getOrigin().owner);
  1831                 if (!isAccessible(env, origin, sym))
  1832                     sym = new AccessError(env, origin, sym);
  1833                 bestSoFar = selectBest(env, origin,
  1834                                        argtypes, typeargtypes,
  1835                                        sym, bestSoFar,
  1836                                        allowBoxing, useVarargs, false);
  1839         return bestSoFar;
  1842     /** Load toplevel or member class with given fully qualified name and
  1843      *  verify that it is accessible.
  1844      *  @param env       The current environment.
  1845      *  @param name      The fully qualified name of the class to be loaded.
  1846      */
  1847     Symbol loadClass(Env<AttrContext> env, Name name) {
  1848         try {
  1849             ClassSymbol c = reader.loadClass(name);
  1850             return isAccessible(env, c) ? c : new AccessError(c);
  1851         } catch (ClassReader.BadClassFile err) {
  1852             throw err;
  1853         } catch (CompletionFailure ex) {
  1854             return typeNotFound;
  1858     /** Find qualified member type.
  1859      *  @param env       The current environment.
  1860      *  @param site      The original type from where the selection takes
  1861      *                   place.
  1862      *  @param name      The type's name.
  1863      *  @param c         The class to search for the member type. This is
  1864      *                   always a superclass or implemented interface of
  1865      *                   site's class.
  1866      */
  1867     Symbol findMemberType(Env<AttrContext> env,
  1868                           Type site,
  1869                           Name name,
  1870                           TypeSymbol c) {
  1871         Symbol bestSoFar = typeNotFound;
  1872         Symbol sym;
  1873         Scope.Entry e = c.members().lookup(name);
  1874         while (e.scope != null) {
  1875             if (e.sym.kind == TYP) {
  1876                 return isAccessible(env, site, e.sym)
  1877                     ? e.sym
  1878                     : new AccessError(env, site, e.sym);
  1880             e = e.next();
  1882         Type st = types.supertype(c.type);
  1883         if (st != null && st.hasTag(CLASS)) {
  1884             sym = findMemberType(env, site, name, st.tsym);
  1885             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1887         for (List<Type> l = types.interfaces(c.type);
  1888              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1889              l = l.tail) {
  1890             sym = findMemberType(env, site, name, l.head.tsym);
  1891             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1892                 sym.owner != bestSoFar.owner)
  1893                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1894             else if (sym.kind < bestSoFar.kind)
  1895                 bestSoFar = sym;
  1897         return bestSoFar;
  1900     /** Find a global type in given scope and load corresponding class.
  1901      *  @param env       The current environment.
  1902      *  @param scope     The scope in which to look for the type.
  1903      *  @param name      The type's name.
  1904      */
  1905     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1906         Symbol bestSoFar = typeNotFound;
  1907         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1908             Symbol sym = loadClass(env, e.sym.flatName());
  1909             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1910                 bestSoFar != sym)
  1911                 return new AmbiguityError(bestSoFar, sym);
  1912             else if (sym.kind < bestSoFar.kind)
  1913                 bestSoFar = sym;
  1915         return bestSoFar;
  1918     /** Find an unqualified type symbol.
  1919      *  @param env       The current environment.
  1920      *  @param name      The type's name.
  1921      */
  1922     Symbol findType(Env<AttrContext> env, Name name) {
  1923         Symbol bestSoFar = typeNotFound;
  1924         Symbol sym;
  1925         boolean staticOnly = false;
  1926         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1927             if (isStatic(env1)) staticOnly = true;
  1928             for (Scope.Entry e = env1.info.scope.lookup(name);
  1929                  e.scope != null;
  1930                  e = e.next()) {
  1931                 if (e.sym.kind == TYP) {
  1932                     if (staticOnly &&
  1933                         e.sym.type.hasTag(TYPEVAR) &&
  1934                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1935                     return e.sym;
  1939             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1940                                  env1.enclClass.sym);
  1941             if (staticOnly && sym.kind == TYP &&
  1942                 sym.type.hasTag(CLASS) &&
  1943                 sym.type.getEnclosingType().hasTag(CLASS) &&
  1944                 env1.enclClass.sym.type.isParameterized() &&
  1945                 sym.type.getEnclosingType().isParameterized())
  1946                 return new StaticError(sym);
  1947             else if (sym.exists()) return sym;
  1948             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1950             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1951             if ((encl.sym.flags() & STATIC) != 0)
  1952                 staticOnly = true;
  1955         if (!env.tree.hasTag(IMPORT)) {
  1956             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1957             if (sym.exists()) return sym;
  1958             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1960             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1961             if (sym.exists()) return sym;
  1962             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1964             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1965             if (sym.exists()) return sym;
  1966             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1969         return bestSoFar;
  1972     /** Find an unqualified identifier which matches a specified kind set.
  1973      *  @param env       The current environment.
  1974      *  @param name      The identifier's name.
  1975      *  @param kind      Indicates the possible symbol kinds
  1976      *                   (a subset of VAL, TYP, PCK).
  1977      */
  1978     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1979         Symbol bestSoFar = typeNotFound;
  1980         Symbol sym;
  1982         if ((kind & VAR) != 0) {
  1983             sym = findVar(env, name);
  1984             if (sym.exists()) return sym;
  1985             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1988         if ((kind & TYP) != 0) {
  1989             sym = findType(env, name);
  1990             if (sym.kind==TYP) {
  1991                  reportDependence(env.enclClass.sym, sym);
  1993             if (sym.exists()) return sym;
  1994             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1997         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1998         else return bestSoFar;
  2001     /** Report dependencies.
  2002      * @param from The enclosing class sym
  2003      * @param to   The found identifier that the class depends on.
  2004      */
  2005     public void reportDependence(Symbol from, Symbol to) {
  2006         // Override if you want to collect the reported dependencies.
  2009     /** Find an identifier in a package which matches a specified kind set.
  2010      *  @param env       The current environment.
  2011      *  @param name      The identifier's name.
  2012      *  @param kind      Indicates the possible symbol kinds
  2013      *                   (a nonempty subset of TYP, PCK).
  2014      */
  2015     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  2016                               Name name, int kind) {
  2017         Name fullname = TypeSymbol.formFullName(name, pck);
  2018         Symbol bestSoFar = typeNotFound;
  2019         PackageSymbol pack = null;
  2020         if ((kind & PCK) != 0) {
  2021             pack = reader.enterPackage(fullname);
  2022             if (pack.exists()) return pack;
  2024         if ((kind & TYP) != 0) {
  2025             Symbol sym = loadClass(env, fullname);
  2026             if (sym.exists()) {
  2027                 // don't allow programs to use flatnames
  2028                 if (name == sym.name) return sym;
  2030             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2032         return (pack != null) ? pack : bestSoFar;
  2035     /** Find an identifier among the members of a given type `site'.
  2036      *  @param env       The current environment.
  2037      *  @param site      The type containing the symbol to be found.
  2038      *  @param name      The identifier's name.
  2039      *  @param kind      Indicates the possible symbol kinds
  2040      *                   (a subset of VAL, TYP).
  2041      */
  2042     Symbol findIdentInType(Env<AttrContext> env, Type site,
  2043                            Name name, int kind) {
  2044         Symbol bestSoFar = typeNotFound;
  2045         Symbol sym;
  2046         if ((kind & VAR) != 0) {
  2047             sym = findField(env, site, name, site.tsym);
  2048             if (sym.exists()) return sym;
  2049             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2052         if ((kind & TYP) != 0) {
  2053             sym = findMemberType(env, site, name, site.tsym);
  2054             if (sym.exists()) return sym;
  2055             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2057         return bestSoFar;
  2060 /* ***************************************************************************
  2061  *  Access checking
  2062  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  2063  *  an error message in the process
  2064  ****************************************************************************/
  2066     /** If `sym' is a bad symbol: report error and return errSymbol
  2067      *  else pass through unchanged,
  2068      *  additional arguments duplicate what has been used in trying to find the
  2069      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  2070      *  expect misses to happen frequently.
  2072      *  @param sym       The symbol that was found, or a ResolveError.
  2073      *  @param pos       The position to use for error reporting.
  2074      *  @param location  The symbol the served as a context for this lookup
  2075      *  @param site      The original type from where the selection took place.
  2076      *  @param name      The symbol's name.
  2077      *  @param qualified Did we get here through a qualified expression resolution?
  2078      *  @param argtypes  The invocation's value arguments,
  2079      *                   if we looked for a method.
  2080      *  @param typeargtypes  The invocation's type arguments,
  2081      *                   if we looked for a method.
  2082      *  @param logResolveHelper helper class used to log resolve errors
  2083      */
  2084     Symbol accessInternal(Symbol sym,
  2085                   DiagnosticPosition pos,
  2086                   Symbol location,
  2087                   Type site,
  2088                   Name name,
  2089                   boolean qualified,
  2090                   List<Type> argtypes,
  2091                   List<Type> typeargtypes,
  2092                   LogResolveHelper logResolveHelper) {
  2093         if (sym.kind >= AMBIGUOUS) {
  2094             ResolveError errSym = (ResolveError)sym;
  2095             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  2096             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  2097             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  2098                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  2101         return sym;
  2104     /**
  2105      * Variant of the generalized access routine, to be used for generating method
  2106      * resolution diagnostics
  2107      */
  2108     Symbol accessMethod(Symbol sym,
  2109                   DiagnosticPosition pos,
  2110                   Symbol location,
  2111                   Type site,
  2112                   Name name,
  2113                   boolean qualified,
  2114                   List<Type> argtypes,
  2115                   List<Type> typeargtypes) {
  2116         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  2119     /** Same as original accessMethod(), but without location.
  2120      */
  2121     Symbol accessMethod(Symbol sym,
  2122                   DiagnosticPosition pos,
  2123                   Type site,
  2124                   Name name,
  2125                   boolean qualified,
  2126                   List<Type> argtypes,
  2127                   List<Type> typeargtypes) {
  2128         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  2131     /**
  2132      * Variant of the generalized access routine, to be used for generating variable,
  2133      * type resolution diagnostics
  2134      */
  2135     Symbol accessBase(Symbol sym,
  2136                   DiagnosticPosition pos,
  2137                   Symbol location,
  2138                   Type site,
  2139                   Name name,
  2140                   boolean qualified) {
  2141         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  2144     /** Same as original accessBase(), but without location.
  2145      */
  2146     Symbol accessBase(Symbol sym,
  2147                   DiagnosticPosition pos,
  2148                   Type site,
  2149                   Name name,
  2150                   boolean qualified) {
  2151         return accessBase(sym, pos, site.tsym, site, name, qualified);
  2154     interface LogResolveHelper {
  2155         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  2156         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  2159     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  2160         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2161             return !site.isErroneous();
  2163         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2164             return argtypes;
  2166     };
  2168     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  2169         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2170             return !site.isErroneous() &&
  2171                         !Type.isErroneous(argtypes) &&
  2172                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  2174         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2175             return (syms.operatorNames.contains(name)) ?
  2176                     argtypes :
  2177                     Type.map(argtypes, new ResolveDeferredRecoveryMap(accessedSym));
  2180         class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  2182             public ResolveDeferredRecoveryMap(Symbol msym) {
  2183                 deferredAttr.super(AttrMode.SPECULATIVE, msym, currentResolutionContext.step);
  2186             @Override
  2187             protected Type typeOf(DeferredType dt) {
  2188                 Type res = super.typeOf(dt);
  2189                 if (!res.isErroneous()) {
  2190                     switch (TreeInfo.skipParens(dt.tree).getTag()) {
  2191                         case LAMBDA:
  2192                         case REFERENCE:
  2193                             return dt;
  2194                         case CONDEXPR:
  2195                             return res == Type.recoveryType ?
  2196                                     dt : res;
  2199                 return res;
  2202     };
  2204     /** Check that sym is not an abstract method.
  2205      */
  2206     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  2207         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  2208             log.error(pos, "abstract.cant.be.accessed.directly",
  2209                       kindName(sym), sym, sym.location());
  2212 /* ***************************************************************************
  2213  *  Debugging
  2214  ****************************************************************************/
  2216     /** print all scopes starting with scope s and proceeding outwards.
  2217      *  used for debugging.
  2218      */
  2219     public void printscopes(Scope s) {
  2220         while (s != null) {
  2221             if (s.owner != null)
  2222                 System.err.print(s.owner + ": ");
  2223             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  2224                 if ((e.sym.flags() & ABSTRACT) != 0)
  2225                     System.err.print("abstract ");
  2226                 System.err.print(e.sym + " ");
  2228             System.err.println();
  2229             s = s.next;
  2233     void printscopes(Env<AttrContext> env) {
  2234         while (env.outer != null) {
  2235             System.err.println("------------------------------");
  2236             printscopes(env.info.scope);
  2237             env = env.outer;
  2241     public void printscopes(Type t) {
  2242         while (t.hasTag(CLASS)) {
  2243             printscopes(t.tsym.members());
  2244             t = types.supertype(t);
  2248 /* ***************************************************************************
  2249  *  Name resolution
  2250  *  Naming conventions are as for symbol lookup
  2251  *  Unlike the find... methods these methods will report access errors
  2252  ****************************************************************************/
  2254     /** Resolve an unqualified (non-method) identifier.
  2255      *  @param pos       The position to use for error reporting.
  2256      *  @param env       The environment current at the identifier use.
  2257      *  @param name      The identifier's name.
  2258      *  @param kind      The set of admissible symbol kinds for the identifier.
  2259      */
  2260     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2261                         Name name, int kind) {
  2262         return accessBase(
  2263             findIdent(env, name, kind),
  2264             pos, env.enclClass.sym.type, name, false);
  2267     /** Resolve an unqualified method identifier.
  2268      *  @param pos       The position to use for error reporting.
  2269      *  @param env       The environment current at the method invocation.
  2270      *  @param name      The identifier's name.
  2271      *  @param argtypes  The types of the invocation's value arguments.
  2272      *  @param typeargtypes  The types of the invocation's type arguments.
  2273      */
  2274     Symbol resolveMethod(DiagnosticPosition pos,
  2275                          Env<AttrContext> env,
  2276                          Name name,
  2277                          List<Type> argtypes,
  2278                          List<Type> typeargtypes) {
  2279         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
  2280                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2281                     @Override
  2282                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2283                         return findFun(env, name, argtypes, typeargtypes,
  2284                                 phase.isBoxingRequired(),
  2285                                 phase.isVarargsRequired());
  2286                     }});
  2289     /** Resolve a qualified method identifier
  2290      *  @param pos       The position to use for error reporting.
  2291      *  @param env       The environment current at the method invocation.
  2292      *  @param site      The type of the qualifying expression, in which
  2293      *                   identifier is searched.
  2294      *  @param name      The identifier's name.
  2295      *  @param argtypes  The types of the invocation's value arguments.
  2296      *  @param typeargtypes  The types of the invocation's type arguments.
  2297      */
  2298     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2299                                   Type site, Name name, List<Type> argtypes,
  2300                                   List<Type> typeargtypes) {
  2301         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2303     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2304                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2305                                   List<Type> typeargtypes) {
  2306         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2308     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2309                                   DiagnosticPosition pos, Env<AttrContext> env,
  2310                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2311                                   List<Type> typeargtypes) {
  2312         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2313             @Override
  2314             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2315                 return findMethod(env, site, name, argtypes, typeargtypes,
  2316                         phase.isBoxingRequired(),
  2317                         phase.isVarargsRequired(), false);
  2319             @Override
  2320             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2321                 if (sym.kind >= AMBIGUOUS) {
  2322                     sym = super.access(env, pos, location, sym);
  2323                 } else if (allowMethodHandles) {
  2324                     MethodSymbol msym = (MethodSymbol)sym;
  2325                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
  2326                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2329                 return sym;
  2331         });
  2334     /** Find or create an implicit method of exactly the given type (after erasure).
  2335      *  Searches in a side table, not the main scope of the site.
  2336      *  This emulates the lookup process required by JSR 292 in JVM.
  2337      *  @param env       Attribution environment
  2338      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2339      *  @param argtypes  The required argument types
  2340      */
  2341     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2342                                             final Symbol spMethod,
  2343                                             List<Type> argtypes) {
  2344         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2345                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2346         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2347             if (types.isSameType(mtype, sym.type)) {
  2348                return sym;
  2352         // create the desired method
  2353         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2354         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2355             @Override
  2356             public Symbol baseSymbol() {
  2357                 return spMethod;
  2359         };
  2360         polymorphicSignatureScope.enter(msym);
  2361         return msym;
  2364     /** Resolve a qualified method identifier, throw a fatal error if not
  2365      *  found.
  2366      *  @param pos       The position to use for error reporting.
  2367      *  @param env       The environment current at the method invocation.
  2368      *  @param site      The type of the qualifying expression, in which
  2369      *                   identifier is searched.
  2370      *  @param name      The identifier's name.
  2371      *  @param argtypes  The types of the invocation's value arguments.
  2372      *  @param typeargtypes  The types of the invocation's type arguments.
  2373      */
  2374     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2375                                         Type site, Name name,
  2376                                         List<Type> argtypes,
  2377                                         List<Type> typeargtypes) {
  2378         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2379         resolveContext.internalResolution = true;
  2380         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2381                 site, name, argtypes, typeargtypes);
  2382         if (sym.kind == MTH) return (MethodSymbol)sym;
  2383         else throw new FatalError(
  2384                  diags.fragment("fatal.err.cant.locate.meth",
  2385                                 name));
  2388     /** Resolve constructor.
  2389      *  @param pos       The position to use for error reporting.
  2390      *  @param env       The environment current at the constructor invocation.
  2391      *  @param site      The type of class for which a constructor is searched.
  2392      *  @param argtypes  The types of the constructor invocation's value
  2393      *                   arguments.
  2394      *  @param typeargtypes  The types of the constructor invocation's type
  2395      *                   arguments.
  2396      */
  2397     Symbol resolveConstructor(DiagnosticPosition pos,
  2398                               Env<AttrContext> env,
  2399                               Type site,
  2400                               List<Type> argtypes,
  2401                               List<Type> typeargtypes) {
  2402         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2405     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2406                               final DiagnosticPosition pos,
  2407                               Env<AttrContext> env,
  2408                               Type site,
  2409                               List<Type> argtypes,
  2410                               List<Type> typeargtypes) {
  2411         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2412             @Override
  2413             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2414                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2415                         phase.isBoxingRequired(),
  2416                         phase.isVarargsRequired());
  2418         });
  2421     /** Resolve a constructor, throw a fatal error if not found.
  2422      *  @param pos       The position to use for error reporting.
  2423      *  @param env       The environment current at the method invocation.
  2424      *  @param site      The type to be constructed.
  2425      *  @param argtypes  The types of the invocation's value arguments.
  2426      *  @param typeargtypes  The types of the invocation's type arguments.
  2427      */
  2428     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2429                                         Type site,
  2430                                         List<Type> argtypes,
  2431                                         List<Type> typeargtypes) {
  2432         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2433         resolveContext.internalResolution = true;
  2434         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2435         if (sym.kind == MTH) return (MethodSymbol)sym;
  2436         else throw new FatalError(
  2437                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2440     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2441                               Type site, List<Type> argtypes,
  2442                               List<Type> typeargtypes,
  2443                               boolean allowBoxing,
  2444                               boolean useVarargs) {
  2445         Symbol sym = findMethod(env, site,
  2446                                     names.init, argtypes,
  2447                                     typeargtypes, allowBoxing,
  2448                                     useVarargs, false);
  2449         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2450         return sym;
  2453     /** Resolve constructor using diamond inference.
  2454      *  @param pos       The position to use for error reporting.
  2455      *  @param env       The environment current at the constructor invocation.
  2456      *  @param site      The type of class for which a constructor is searched.
  2457      *                   The scope of this class has been touched in attribution.
  2458      *  @param argtypes  The types of the constructor invocation's value
  2459      *                   arguments.
  2460      *  @param typeargtypes  The types of the constructor invocation's type
  2461      *                   arguments.
  2462      */
  2463     Symbol resolveDiamond(DiagnosticPosition pos,
  2464                               Env<AttrContext> env,
  2465                               Type site,
  2466                               List<Type> argtypes,
  2467                               List<Type> typeargtypes) {
  2468         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
  2469                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2470                     @Override
  2471                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2472                         return findDiamond(env, site, argtypes, typeargtypes,
  2473                                 phase.isBoxingRequired(),
  2474                                 phase.isVarargsRequired());
  2476                     @Override
  2477                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2478                         if (sym.kind >= AMBIGUOUS) {
  2479                             final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2480                                             ((InapplicableSymbolError)sym).errCandidate().details :
  2481                                             null;
  2482                             sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2483                                 @Override
  2484                                 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2485                                         Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2486                                     String key = details == null ?
  2487                                         "cant.apply.diamond" :
  2488                                         "cant.apply.diamond.1";
  2489                                     return diags.create(dkind, log.currentSource(), pos, key,
  2490                                             diags.fragment("diamond", site.tsym), details);
  2492                             };
  2493                             sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2494                             env.info.pendingResolutionPhase = currentResolutionContext.step;
  2496                         return sym;
  2497                     }});
  2500     /** This method scans all the constructor symbol in a given class scope -
  2501      *  assuming that the original scope contains a constructor of the kind:
  2502      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2503      *  a method check is executed against the modified constructor type:
  2504      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2505      *  inference. The inferred return type of the synthetic constructor IS
  2506      *  the inferred type for the diamond operator.
  2507      */
  2508     private Symbol findDiamond(Env<AttrContext> env,
  2509                               Type site,
  2510                               List<Type> argtypes,
  2511                               List<Type> typeargtypes,
  2512                               boolean allowBoxing,
  2513                               boolean useVarargs) {
  2514         Symbol bestSoFar = methodNotFound;
  2515         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2516              e.scope != null;
  2517              e = e.next()) {
  2518             final Symbol sym = e.sym;
  2519             //- System.out.println(" e " + e.sym);
  2520             if (sym.kind == MTH &&
  2521                 (sym.flags_field & SYNTHETIC) == 0) {
  2522                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2523                             ((ForAll)sym.type).tvars :
  2524                             List.<Type>nil();
  2525                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2526                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2527                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2528                         @Override
  2529                         public Symbol baseSymbol() {
  2530                             return sym;
  2532                     };
  2533                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2534                             newConstr,
  2535                             bestSoFar,
  2536                             allowBoxing,
  2537                             useVarargs,
  2538                             false);
  2541         return bestSoFar;
  2546     /** Resolve operator.
  2547      *  @param pos       The position to use for error reporting.
  2548      *  @param optag     The tag of the operation tree.
  2549      *  @param env       The environment current at the operation.
  2550      *  @param argtypes  The types of the operands.
  2551      */
  2552     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2553                            Env<AttrContext> env, List<Type> argtypes) {
  2554         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2555         try {
  2556             currentResolutionContext = new MethodResolutionContext();
  2557             Name name = treeinfo.operatorName(optag);
  2558             return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
  2559                     new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
  2560                 @Override
  2561                 Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2562                     return findMethod(env, site, name, argtypes, typeargtypes,
  2563                             phase.isBoxingRequired(),
  2564                             phase.isVarargsRequired(), true);
  2566                 @Override
  2567                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2568                     return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2569                           false, argtypes, null);
  2571             });
  2572         } finally {
  2573             currentResolutionContext = prevResolutionContext;
  2577     /** Resolve operator.
  2578      *  @param pos       The position to use for error reporting.
  2579      *  @param optag     The tag of the operation tree.
  2580      *  @param env       The environment current at the operation.
  2581      *  @param arg       The type of the operand.
  2582      */
  2583     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2584         return resolveOperator(pos, optag, env, List.of(arg));
  2587     /** Resolve binary operator.
  2588      *  @param pos       The position to use for error reporting.
  2589      *  @param optag     The tag of the operation tree.
  2590      *  @param env       The environment current at the operation.
  2591      *  @param left      The types of the left operand.
  2592      *  @param right     The types of the right operand.
  2593      */
  2594     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2595                                  JCTree.Tag optag,
  2596                                  Env<AttrContext> env,
  2597                                  Type left,
  2598                                  Type right) {
  2599         return resolveOperator(pos, optag, env, List.of(left, right));
  2602     /**
  2603      * Resolution of member references is typically done as a single
  2604      * overload resolution step, where the argument types A are inferred from
  2605      * the target functional descriptor.
  2607      * If the member reference is a method reference with a type qualifier,
  2608      * a two-step lookup process is performed. The first step uses the
  2609      * expected argument list A, while the second step discards the first
  2610      * type from A (which is treated as a receiver type).
  2612      * There are two cases in which inference is performed: (i) if the member
  2613      * reference is a constructor reference and the qualifier type is raw - in
  2614      * which case diamond inference is used to infer a parameterization for the
  2615      * type qualifier; (ii) if the member reference is an unbound reference
  2616      * where the type qualifier is raw - in that case, during the unbound lookup
  2617      * the receiver argument type is used to infer an instantiation for the raw
  2618      * qualifier type.
  2620      * When a multi-step resolution process is exploited, it is an error
  2621      * if two candidates are found (ambiguity).
  2623      * This routine returns a pair (T,S), where S is the member reference symbol,
  2624      * and T is the type of the class in which S is defined. This is necessary as
  2625      * the type T might be dynamically inferred (i.e. if constructor reference
  2626      * has a raw qualifier).
  2627      */
  2628     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(DiagnosticPosition pos,
  2629                                   Env<AttrContext> env,
  2630                                   JCMemberReference referenceTree,
  2631                                   Type site,
  2632                                   Name name, List<Type> argtypes,
  2633                                   List<Type> typeargtypes,
  2634                                   boolean boxingAllowed,
  2635                                   MethodCheck methodCheck,
  2636                                   InferenceContext inferenceContext) {
  2637         MethodResolutionPhase maxPhase = boxingAllowed ? VARARITY : BASIC;
  2639         ReferenceLookupHelper boundLookupHelper;
  2640         if (!name.equals(names.init)) {
  2641             //method reference
  2642             boundLookupHelper =
  2643                     new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2644         } else if (site.hasTag(ARRAY)) {
  2645             //array constructor reference
  2646             boundLookupHelper =
  2647                     new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2648         } else {
  2649             //class constructor reference
  2650             boundLookupHelper =
  2651                     new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2654         //step 1 - bound lookup
  2655         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2656         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym, methodCheck, boundLookupHelper);
  2658         //step 2 - unbound lookup
  2659         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2660         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2661         Symbol unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym, methodCheck, unboundLookupHelper);
  2663         //merge results
  2664         Pair<Symbol, ReferenceLookupHelper> res;
  2665         if (!lookupSuccess(unboundSym)) {
  2666             res = new Pair<Symbol, ReferenceLookupHelper>(boundSym, boundLookupHelper);
  2667             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2668         } else if (lookupSuccess(boundSym)) {
  2669             res = new Pair<Symbol, ReferenceLookupHelper>(ambiguityError(boundSym, unboundSym), boundLookupHelper);
  2670             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2671         } else {
  2672             res = new Pair<Symbol, ReferenceLookupHelper>(unboundSym, unboundLookupHelper);
  2673             env.info.pendingResolutionPhase = unboundEnv.info.pendingResolutionPhase;
  2676         return res;
  2678     //private
  2679         boolean lookupSuccess(Symbol s) {
  2680             return s.kind == MTH || s.kind == AMBIGUOUS;
  2683     /**
  2684      * Helper for defining custom method-like lookup logic; a lookup helper
  2685      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2686      * lookup result (this step might result in compiler diagnostics to be generated)
  2687      */
  2688     abstract class LookupHelper {
  2690         /** name of the symbol to lookup */
  2691         Name name;
  2693         /** location in which the lookup takes place */
  2694         Type site;
  2696         /** actual types used during the lookup */
  2697         List<Type> argtypes;
  2699         /** type arguments used during the lookup */
  2700         List<Type> typeargtypes;
  2702         /** Max overload resolution phase handled by this helper */
  2703         MethodResolutionPhase maxPhase;
  2705         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2706             this.name = name;
  2707             this.site = site;
  2708             this.argtypes = argtypes;
  2709             this.typeargtypes = typeargtypes;
  2710             this.maxPhase = maxPhase;
  2713         /**
  2714          * Should lookup stop at given phase with given result
  2715          */
  2716         protected boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  2717             return phase.ordinal() > maxPhase.ordinal() ||
  2718                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  2721         /**
  2722          * Search for a symbol under a given overload resolution phase - this method
  2723          * is usually called several times, once per each overload resolution phase
  2724          */
  2725         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2727         /**
  2728          * Dump overload resolution info
  2729          */
  2730         void debug(DiagnosticPosition pos, Symbol sym) {
  2731             //do nothing
  2734         /**
  2735          * Validate the result of the lookup
  2736          */
  2737         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  2740     abstract class BasicLookupHelper extends LookupHelper {
  2742         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2743             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  2746         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2747             super(name, site, argtypes, typeargtypes, maxPhase);
  2750         @Override
  2751         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2752             Symbol sym = doLookup(env, phase);
  2753             if (sym.kind == AMBIGUOUS) {
  2754                 AmbiguityError a_err = (AmbiguityError)sym;
  2755                 sym = a_err.mergeAbstracts(site);
  2757             return sym;
  2760         abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2762         @Override
  2763         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2764             if (sym.kind >= AMBIGUOUS) {
  2765                 //if nothing is found return the 'first' error
  2766                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  2768             return sym;
  2771         @Override
  2772         void debug(DiagnosticPosition pos, Symbol sym) {
  2773             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
  2777     /**
  2778      * Helper class for member reference lookup. A reference lookup helper
  2779      * defines the basic logic for member reference lookup; a method gives
  2780      * access to an 'unbound' helper used to perform an unbound member
  2781      * reference lookup.
  2782      */
  2783     abstract class ReferenceLookupHelper extends LookupHelper {
  2785         /** The member reference tree */
  2786         JCMemberReference referenceTree;
  2788         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2789                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2790             super(name, site, argtypes, typeargtypes, maxPhase);
  2791             this.referenceTree = referenceTree;
  2795         /**
  2796          * Returns an unbound version of this lookup helper. By default, this
  2797          * method returns an dummy lookup helper.
  2798          */
  2799         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  2800             //dummy loopkup helper that always return 'methodNotFound'
  2801             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  2802                 @Override
  2803                 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  2804                     return this;
  2806                 @Override
  2807                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2808                     return methodNotFound;
  2810                 @Override
  2811                 ReferenceKind referenceKind(Symbol sym) {
  2812                     Assert.error();
  2813                     return null;
  2815             };
  2818         /**
  2819          * Get the kind of the member reference
  2820          */
  2821         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  2823         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2824             if (sym.kind == AMBIGUOUS) {
  2825                 AmbiguityError a_err = (AmbiguityError)sym;
  2826                 sym = a_err.mergeAbstracts(site);
  2828             //skip error reporting
  2829             return sym;
  2833     /**
  2834      * Helper class for method reference lookup. The lookup logic is based
  2835      * upon Resolve.findMethod; in certain cases, this helper class has a
  2836      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  2837      * In such cases, non-static lookup results are thrown away.
  2838      */
  2839     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  2841         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2842                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2843             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2846         @Override
  2847         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2848             return findMethod(env, site, name, argtypes, typeargtypes,
  2849                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2852         @Override
  2853         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  2854             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  2855                     argtypes.nonEmpty() &&
  2856                     (argtypes.head.hasTag(NONE) ||
  2857                     types.isSubtypeUnchecked(inferenceContext.asFree(argtypes.head), site))) {
  2858                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  2859                         site, argtypes, typeargtypes, maxPhase);
  2860             } else {
  2861                 return super.unboundLookup(inferenceContext);
  2865         @Override
  2866         ReferenceKind referenceKind(Symbol sym) {
  2867             if (sym.isStatic()) {
  2868                 return ReferenceKind.STATIC;
  2869             } else {
  2870                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  2871                 return selName != null && selName == names._super ?
  2872                         ReferenceKind.SUPER :
  2873                         ReferenceKind.BOUND;
  2878     /**
  2879      * Helper class for unbound method reference lookup. Essentially the same
  2880      * as the basic method reference lookup helper; main difference is that static
  2881      * lookup results are thrown away. If qualifier type is raw, an attempt to
  2882      * infer a parameterized type is made using the first actual argument (that
  2883      * would otherwise be ignored during the lookup).
  2884      */
  2885     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  2887         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2888                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2889             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
  2890             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
  2891                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
  2892                 this.site = asSuperSite;
  2896         @Override
  2897         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  2898             return this;
  2901         @Override
  2902         ReferenceKind referenceKind(Symbol sym) {
  2903             return ReferenceKind.UNBOUND;
  2907     /**
  2908      * Helper class for array constructor lookup; an array constructor lookup
  2909      * is simulated by looking up a method that returns the array type specified
  2910      * as qualifier, and that accepts a single int parameter (size of the array).
  2911      */
  2912     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2914         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2915                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2916             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  2919         @Override
  2920         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2921             Scope sc = new Scope(syms.arrayClass);
  2922             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
  2923             arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
  2924             sc.enter(arrayConstr);
  2925             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
  2928         @Override
  2929         ReferenceKind referenceKind(Symbol sym) {
  2930             return ReferenceKind.ARRAY_CTOR;
  2934     /**
  2935      * Helper class for constructor reference lookup. The lookup logic is based
  2936      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  2937      * whether the constructor reference needs diamond inference (this is the case
  2938      * if the qualifier type is raw). A special erroneous symbol is returned
  2939      * if the lookup returns the constructor of an inner class and there's no
  2940      * enclosing instance in scope.
  2941      */
  2942     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2944         boolean needsInference;
  2946         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2947                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2948             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  2949             if (site.isRaw()) {
  2950                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  2951                 needsInference = true;
  2955         @Override
  2956         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2957             Symbol sym = needsInference ?
  2958                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  2959                 findMethod(env, site, name, argtypes, typeargtypes,
  2960                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2961             return sym.kind != MTH ||
  2962                           site.getEnclosingType().hasTag(NONE) ||
  2963                           hasEnclosingInstance(env, site) ?
  2964                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  2965                     @Override
  2966                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2967                        return diags.create(dkind, log.currentSource(), pos,
  2968                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  2970                 };
  2973         @Override
  2974         ReferenceKind referenceKind(Symbol sym) {
  2975             return site.getEnclosingType().hasTag(NONE) ?
  2976                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  2980     /**
  2981      * Main overload resolution routine. On each overload resolution step, a
  2982      * lookup helper class is used to perform the method/constructor lookup;
  2983      * at the end of the lookup, the helper is used to validate the results
  2984      * (this last step might trigger overload resolution diagnostics).
  2985      */
  2986     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
  2987         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2988         resolveContext.methodCheck = methodCheck;
  2989         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
  2992     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  2993             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  2994         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2995         try {
  2996             Symbol bestSoFar = methodNotFound;
  2997             currentResolutionContext = resolveContext;
  2998             for (MethodResolutionPhase phase : methodResolutionSteps) {
  2999                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  3000                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  3001                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  3002                 Symbol prevBest = bestSoFar;
  3003                 currentResolutionContext.step = phase;
  3004                 Symbol sym = lookupHelper.lookup(env, phase);
  3005                 lookupHelper.debug(pos, sym);
  3006                 bestSoFar = phase.mergeResults(bestSoFar, sym);
  3007                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  3009             return lookupHelper.access(env, pos, location, bestSoFar);
  3010         } finally {
  3011             currentResolutionContext = prevResolutionContext;
  3015     /**
  3016      * Resolve `c.name' where name == this or name == super.
  3017      * @param pos           The position to use for error reporting.
  3018      * @param env           The environment current at the expression.
  3019      * @param c             The qualifier.
  3020      * @param name          The identifier's name.
  3021      */
  3022     Symbol resolveSelf(DiagnosticPosition pos,
  3023                        Env<AttrContext> env,
  3024                        TypeSymbol c,
  3025                        Name name) {
  3026         Env<AttrContext> env1 = env;
  3027         boolean staticOnly = false;
  3028         while (env1.outer != null) {
  3029             if (isStatic(env1)) staticOnly = true;
  3030             if (env1.enclClass.sym == c) {
  3031                 Symbol sym = env1.info.scope.lookup(name).sym;
  3032                 if (sym != null) {
  3033                     if (staticOnly) sym = new StaticError(sym);
  3034                     return accessBase(sym, pos, env.enclClass.sym.type,
  3035                                   name, true);
  3038             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  3039             env1 = env1.outer;
  3041         if (allowDefaultMethods && c.isInterface() &&
  3042                 name == names._super && !isStatic(env) &&
  3043                 types.isDirectSuperInterface(c, env.enclClass.sym)) {
  3044             //this might be a default super call if one of the superinterfaces is 'c'
  3045             for (Type t : pruneInterfaces(env.enclClass.type)) {
  3046                 if (t.tsym == c) {
  3047                     env.info.defaultSuperCallSite = t;
  3048                     return new VarSymbol(0, names._super,
  3049                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  3052             //find a direct superinterface that is a subtype of 'c'
  3053             for (Type i : types.interfaces(env.enclClass.type)) {
  3054                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  3055                     log.error(pos, "illegal.default.super.call", c,
  3056                             diags.fragment("redundant.supertype", c, i));
  3057                     return syms.errSymbol;
  3060             Assert.error();
  3062         log.error(pos, "not.encl.class", c);
  3063         return syms.errSymbol;
  3065     //where
  3066     private List<Type> pruneInterfaces(Type t) {
  3067         ListBuffer<Type> result = ListBuffer.lb();
  3068         for (Type t1 : types.interfaces(t)) {
  3069             boolean shouldAdd = true;
  3070             for (Type t2 : types.interfaces(t)) {
  3071                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  3072                     shouldAdd = false;
  3075             if (shouldAdd) {
  3076                 result.append(t1);
  3079         return result.toList();
  3083     /**
  3084      * Resolve `c.this' for an enclosing class c that contains the
  3085      * named member.
  3086      * @param pos           The position to use for error reporting.
  3087      * @param env           The environment current at the expression.
  3088      * @param member        The member that must be contained in the result.
  3089      */
  3090     Symbol resolveSelfContaining(DiagnosticPosition pos,
  3091                                  Env<AttrContext> env,
  3092                                  Symbol member,
  3093                                  boolean isSuperCall) {
  3094         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  3095         if (sym == null) {
  3096             log.error(pos, "encl.class.required", member);
  3097             return syms.errSymbol;
  3098         } else {
  3099             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  3103     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  3104         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  3105         return encl != null && encl.kind < ERRONEOUS;
  3108     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  3109                                  Symbol member,
  3110                                  boolean isSuperCall) {
  3111         Name name = names._this;
  3112         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  3113         boolean staticOnly = false;
  3114         if (env1 != null) {
  3115             while (env1 != null && env1.outer != null) {
  3116                 if (isStatic(env1)) staticOnly = true;
  3117                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  3118                     Symbol sym = env1.info.scope.lookup(name).sym;
  3119                     if (sym != null) {
  3120                         if (staticOnly) sym = new StaticError(sym);
  3121                         return sym;
  3124                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  3125                     staticOnly = true;
  3126                 env1 = env1.outer;
  3129         return null;
  3132     /**
  3133      * Resolve an appropriate implicit this instance for t's container.
  3134      * JLS 8.8.5.1 and 15.9.2
  3135      */
  3136     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  3137         return resolveImplicitThis(pos, env, t, false);
  3140     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  3141         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  3142                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  3143                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  3144         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  3145             log.error(pos, "cant.ref.before.ctor.called", "this");
  3146         return thisType;
  3149 /* ***************************************************************************
  3150  *  ResolveError classes, indicating error situations when accessing symbols
  3151  ****************************************************************************/
  3153     //used by TransTypes when checking target type of synthetic cast
  3154     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  3155         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  3156         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  3158     //where
  3159     private void logResolveError(ResolveError error,
  3160             DiagnosticPosition pos,
  3161             Symbol location,
  3162             Type site,
  3163             Name name,
  3164             List<Type> argtypes,
  3165             List<Type> typeargtypes) {
  3166         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3167                 pos, location, site, name, argtypes, typeargtypes);
  3168         if (d != null) {
  3169             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  3170             log.report(d);
  3174     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  3176     public Object methodArguments(List<Type> argtypes) {
  3177         if (argtypes == null || argtypes.isEmpty()) {
  3178             return noArgs;
  3179         } else {
  3180             ListBuffer<Object> diagArgs = ListBuffer.lb();
  3181             for (Type t : argtypes) {
  3182                 if (t.hasTag(DEFERRED)) {
  3183                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  3184                 } else {
  3185                     diagArgs.append(t);
  3188             return diagArgs;
  3192     /**
  3193      * Root class for resolution errors. Subclass of ResolveError
  3194      * represent a different kinds of resolution error - as such they must
  3195      * specify how they map into concrete compiler diagnostics.
  3196      */
  3197     abstract class ResolveError extends Symbol {
  3199         /** The name of the kind of error, for debugging only. */
  3200         final String debugName;
  3202         ResolveError(int kind, String debugName) {
  3203             super(kind, 0, null, null, null);
  3204             this.debugName = debugName;
  3207         @Override
  3208         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  3209             throw new AssertionError();
  3212         @Override
  3213         public String toString() {
  3214             return debugName;
  3217         @Override
  3218         public boolean exists() {
  3219             return false;
  3222         /**
  3223          * Create an external representation for this erroneous symbol to be
  3224          * used during attribution - by default this returns the symbol of a
  3225          * brand new error type which stores the original type found
  3226          * during resolution.
  3228          * @param name     the name used during resolution
  3229          * @param location the location from which the symbol is accessed
  3230          */
  3231         protected Symbol access(Name name, TypeSymbol location) {
  3232             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3235         /**
  3236          * Create a diagnostic representing this resolution error.
  3238          * @param dkind     The kind of the diagnostic to be created (e.g error).
  3239          * @param pos       The position to be used for error reporting.
  3240          * @param site      The original type from where the selection took place.
  3241          * @param name      The name of the symbol to be resolved.
  3242          * @param argtypes  The invocation's value arguments,
  3243          *                  if we looked for a method.
  3244          * @param typeargtypes  The invocation's type arguments,
  3245          *                      if we looked for a method.
  3246          */
  3247         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3248                 DiagnosticPosition pos,
  3249                 Symbol location,
  3250                 Type site,
  3251                 Name name,
  3252                 List<Type> argtypes,
  3253                 List<Type> typeargtypes);
  3256     /**
  3257      * This class is the root class of all resolution errors caused by
  3258      * an invalid symbol being found during resolution.
  3259      */
  3260     abstract class InvalidSymbolError extends ResolveError {
  3262         /** The invalid symbol found during resolution */
  3263         Symbol sym;
  3265         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  3266             super(kind, debugName);
  3267             this.sym = sym;
  3270         @Override
  3271         public boolean exists() {
  3272             return true;
  3275         @Override
  3276         public String toString() {
  3277              return super.toString() + " wrongSym=" + sym;
  3280         @Override
  3281         public Symbol access(Name name, TypeSymbol location) {
  3282             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3283                 return types.createErrorType(name, location, sym.type).tsym;
  3284             else
  3285                 return sym;
  3289     /**
  3290      * InvalidSymbolError error class indicating that a symbol matching a
  3291      * given name does not exists in a given site.
  3292      */
  3293     class SymbolNotFoundError extends ResolveError {
  3295         SymbolNotFoundError(int kind) {
  3296             super(kind, "symbol not found error");
  3299         @Override
  3300         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3301                 DiagnosticPosition pos,
  3302                 Symbol location,
  3303                 Type site,
  3304                 Name name,
  3305                 List<Type> argtypes,
  3306                 List<Type> typeargtypes) {
  3307             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3308             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3309             if (name == names.error)
  3310                 return null;
  3312             if (syms.operatorNames.contains(name)) {
  3313                 boolean isUnaryOp = argtypes.size() == 1;
  3314                 String key = argtypes.size() == 1 ?
  3315                     "operator.cant.be.applied" :
  3316                     "operator.cant.be.applied.1";
  3317                 Type first = argtypes.head;
  3318                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3319                 return diags.create(dkind, log.currentSource(), pos,
  3320                         key, name, first, second);
  3322             boolean hasLocation = false;
  3323             if (location == null) {
  3324                 location = site.tsym;
  3326             if (!location.name.isEmpty()) {
  3327                 if (location.kind == PCK && !site.tsym.exists()) {
  3328                     return diags.create(dkind, log.currentSource(), pos,
  3329                         "doesnt.exist", location);
  3331                 hasLocation = !location.name.equals(names._this) &&
  3332                         !location.name.equals(names._super);
  3334             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  3335             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3336             Name idname = isConstructor ? site.tsym.name : name;
  3337             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3338             if (hasLocation) {
  3339                 return diags.create(dkind, log.currentSource(), pos,
  3340                         errKey, kindname, idname, //symbol kindname, name
  3341                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3342                         getLocationDiag(location, site)); //location kindname, type
  3344             else {
  3345                 return diags.create(dkind, log.currentSource(), pos,
  3346                         errKey, kindname, idname, //symbol kindname, name
  3347                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3350         //where
  3351         private Object args(List<Type> args) {
  3352             return args.isEmpty() ? args : methodArguments(args);
  3355         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3356             String key = "cant.resolve";
  3357             String suffix = hasLocation ? ".location" : "";
  3358             switch (kindname) {
  3359                 case METHOD:
  3360                 case CONSTRUCTOR: {
  3361                     suffix += ".args";
  3362                     suffix += hasTypeArgs ? ".params" : "";
  3365             return key + suffix;
  3367         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3368             if (location.kind == VAR) {
  3369                 return diags.fragment("location.1",
  3370                     kindName(location),
  3371                     location,
  3372                     location.type);
  3373             } else {
  3374                 return diags.fragment("location",
  3375                     typeKindName(site),
  3376                     site,
  3377                     null);
  3382     /**
  3383      * InvalidSymbolError error class indicating that a given symbol
  3384      * (either a method, a constructor or an operand) is not applicable
  3385      * given an actual arguments/type argument list.
  3386      */
  3387     class InapplicableSymbolError extends ResolveError {
  3389         protected MethodResolutionContext resolveContext;
  3391         InapplicableSymbolError(MethodResolutionContext context) {
  3392             this(WRONG_MTH, "inapplicable symbol error", context);
  3395         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3396             super(kind, debugName);
  3397             this.resolveContext = context;
  3400         @Override
  3401         public String toString() {
  3402             return super.toString();
  3405         @Override
  3406         public boolean exists() {
  3407             return true;
  3410         @Override
  3411         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3412                 DiagnosticPosition pos,
  3413                 Symbol location,
  3414                 Type site,
  3415                 Name name,
  3416                 List<Type> argtypes,
  3417                 List<Type> typeargtypes) {
  3418             if (name == names.error)
  3419                 return null;
  3421             if (syms.operatorNames.contains(name)) {
  3422                 boolean isUnaryOp = argtypes.size() == 1;
  3423                 String key = argtypes.size() == 1 ?
  3424                     "operator.cant.be.applied" :
  3425                     "operator.cant.be.applied.1";
  3426                 Type first = argtypes.head;
  3427                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3428                 return diags.create(dkind, log.currentSource(), pos,
  3429                         key, name, first, second);
  3431             else {
  3432                 Candidate c = errCandidate();
  3433                 if (compactMethodDiags) {
  3434                     for (Map.Entry<Template, DiagnosticRewriter> _entry :
  3435                             MethodResolutionDiagHelper.rewriters.entrySet()) {
  3436                         if (_entry.getKey().matches(c.details)) {
  3437                             JCDiagnostic simpleDiag =
  3438                                     _entry.getValue().rewriteDiagnostic(diags, pos,
  3439                                         log.currentSource(), dkind, c.details);
  3440                             simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
  3441                             return simpleDiag;
  3445                 Symbol ws = c.sym.asMemberOf(site, types);
  3446                 return diags.create(dkind, log.currentSource(), pos,
  3447                           "cant.apply.symbol",
  3448                           kindName(ws),
  3449                           ws.name == names.init ? ws.owner.name : ws.name,
  3450                           methodArguments(ws.type.getParameterTypes()),
  3451                           methodArguments(argtypes),
  3452                           kindName(ws.owner),
  3453                           ws.owner.type,
  3454                           c.details);
  3458         @Override
  3459         public Symbol access(Name name, TypeSymbol location) {
  3460             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3463         private Candidate errCandidate() {
  3464             Candidate bestSoFar = null;
  3465             for (Candidate c : resolveContext.candidates) {
  3466                 if (c.isApplicable()) continue;
  3467                 bestSoFar = c;
  3469             Assert.checkNonNull(bestSoFar);
  3470             return bestSoFar;
  3474     /**
  3475      * ResolveError error class indicating that a set of symbols
  3476      * (either methods, constructors or operands) is not applicable
  3477      * given an actual arguments/type argument list.
  3478      */
  3479     class InapplicableSymbolsError extends InapplicableSymbolError {
  3481         InapplicableSymbolsError(MethodResolutionContext context) {
  3482             super(WRONG_MTHS, "inapplicable symbols", context);
  3485         @Override
  3486         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3487                 DiagnosticPosition pos,
  3488                 Symbol location,
  3489                 Type site,
  3490                 Name name,
  3491                 List<Type> argtypes,
  3492                 List<Type> typeargtypes) {
  3493             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
  3494             Map<Symbol, JCDiagnostic> filteredCandidates = filterCandidates(candidatesMap);
  3495             if (filteredCandidates.isEmpty()) {
  3496                 filteredCandidates = candidatesMap;
  3498             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
  3499             if (filteredCandidates.size() > 1) {
  3500                 JCDiagnostic err = diags.create(dkind,
  3501                         null,
  3502                         truncatedDiag ?
  3503                             EnumSet.of(DiagnosticFlag.COMPRESSED) :
  3504                             EnumSet.noneOf(DiagnosticFlag.class),
  3505                         log.currentSource(),
  3506                         pos,
  3507                         "cant.apply.symbols",
  3508                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3509                         name == names.init ? site.tsym.name : name,
  3510                         methodArguments(argtypes));
  3511                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
  3512             } else if (filteredCandidates.size() == 1) {
  3513                 JCDiagnostic d =  new InapplicableSymbolError(resolveContext).getDiagnostic(dkind, pos,
  3514                     location, site, name, argtypes, typeargtypes);
  3515                 if (truncatedDiag) {
  3516                     d.setFlag(DiagnosticFlag.COMPRESSED);
  3518                 return d;
  3519             } else {
  3520                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3521                     location, site, name, argtypes, typeargtypes);
  3524         //where
  3525             private Map<Symbol, JCDiagnostic> mapCandidates() {
  3526                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3527                 for (Candidate c : resolveContext.candidates) {
  3528                     if (c.isApplicable()) continue;
  3529                     candidates.put(c.sym, c.details);
  3531                 return candidates;
  3534             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
  3535                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3536                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3537                     JCDiagnostic d = _entry.getValue();
  3538                     if (!compactMethodDiags ||
  3539                             !new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
  3540                         candidates.put(_entry.getKey(), d);
  3543                 return candidates;
  3546             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
  3547                 List<JCDiagnostic> details = List.nil();
  3548                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3549                     Symbol sym = _entry.getKey();
  3550                     JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3551                             Kinds.kindName(sym),
  3552                             sym.location(site, types),
  3553                             sym.asMemberOf(site, types),
  3554                             _entry.getValue());
  3555                     details = details.prepend(detailDiag);
  3557                 //typically members are visited in reverse order (see Scope)
  3558                 //so we need to reverse the candidate list so that candidates
  3559                 //conform to source order
  3560                 return details;
  3564     /**
  3565      * An InvalidSymbolError error class indicating that a symbol is not
  3566      * accessible from a given site
  3567      */
  3568     class AccessError extends InvalidSymbolError {
  3570         private Env<AttrContext> env;
  3571         private Type site;
  3573         AccessError(Symbol sym) {
  3574             this(null, null, sym);
  3577         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3578             super(HIDDEN, sym, "access error");
  3579             this.env = env;
  3580             this.site = site;
  3581             if (debugResolve)
  3582                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3585         @Override
  3586         public boolean exists() {
  3587             return false;
  3590         @Override
  3591         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3592                 DiagnosticPosition pos,
  3593                 Symbol location,
  3594                 Type site,
  3595                 Name name,
  3596                 List<Type> argtypes,
  3597                 List<Type> typeargtypes) {
  3598             if (sym.owner.type.hasTag(ERROR))
  3599                 return null;
  3601             if (sym.name == names.init && sym.owner != site.tsym) {
  3602                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3603                         pos, location, site, name, argtypes, typeargtypes);
  3605             else if ((sym.flags() & PUBLIC) != 0
  3606                 || (env != null && this.site != null
  3607                     && !isAccessible(env, this.site))) {
  3608                 return diags.create(dkind, log.currentSource(),
  3609                         pos, "not.def.access.class.intf.cant.access",
  3610                     sym, sym.location());
  3612             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3613                 return diags.create(dkind, log.currentSource(),
  3614                         pos, "report.access", sym,
  3615                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3616                         sym.location());
  3618             else {
  3619                 return diags.create(dkind, log.currentSource(),
  3620                         pos, "not.def.public.cant.access", sym, sym.location());
  3625     /**
  3626      * InvalidSymbolError error class indicating that an instance member
  3627      * has erroneously been accessed from a static context.
  3628      */
  3629     class StaticError extends InvalidSymbolError {
  3631         StaticError(Symbol sym) {
  3632             super(STATICERR, sym, "static error");
  3635         @Override
  3636         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3637                 DiagnosticPosition pos,
  3638                 Symbol location,
  3639                 Type site,
  3640                 Name name,
  3641                 List<Type> argtypes,
  3642                 List<Type> typeargtypes) {
  3643             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3644                 ? types.erasure(sym.type).tsym
  3645                 : sym);
  3646             return diags.create(dkind, log.currentSource(), pos,
  3647                     "non-static.cant.be.ref", kindName(sym), errSym);
  3651     /**
  3652      * InvalidSymbolError error class indicating that a pair of symbols
  3653      * (either methods, constructors or operands) are ambiguous
  3654      * given an actual arguments/type argument list.
  3655      */
  3656     class AmbiguityError extends ResolveError {
  3658         /** The other maximally specific symbol */
  3659         List<Symbol> ambiguousSyms = List.nil();
  3661         @Override
  3662         public boolean exists() {
  3663             return true;
  3666         AmbiguityError(Symbol sym1, Symbol sym2) {
  3667             super(AMBIGUOUS, "ambiguity error");
  3668             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
  3671         private List<Symbol> flatten(Symbol sym) {
  3672             if (sym.kind == AMBIGUOUS) {
  3673                 return ((AmbiguityError)sym).ambiguousSyms;
  3674             } else {
  3675                 return List.of(sym);
  3679         AmbiguityError addAmbiguousSymbol(Symbol s) {
  3680             ambiguousSyms = ambiguousSyms.prepend(s);
  3681             return this;
  3684         @Override
  3685         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3686                 DiagnosticPosition pos,
  3687                 Symbol location,
  3688                 Type site,
  3689                 Name name,
  3690                 List<Type> argtypes,
  3691                 List<Type> typeargtypes) {
  3692             List<Symbol> diagSyms = ambiguousSyms.reverse();
  3693             Symbol s1 = diagSyms.head;
  3694             Symbol s2 = diagSyms.tail.head;
  3695             Name sname = s1.name;
  3696             if (sname == names.init) sname = s1.owner.name;
  3697             return diags.create(dkind, log.currentSource(),
  3698                       pos, "ref.ambiguous", sname,
  3699                       kindName(s1),
  3700                       s1,
  3701                       s1.location(site, types),
  3702                       kindName(s2),
  3703                       s2,
  3704                       s2.location(site, types));
  3707         /**
  3708          * If multiple applicable methods are found during overload and none of them
  3709          * is more specific than the others, attempt to merge their signatures.
  3710          */
  3711         Symbol mergeAbstracts(Type site) {
  3712             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
  3713             for (Symbol s : ambiguousInOrder) {
  3714                 Type mt = types.memberType(site, s);
  3715                 boolean found = true;
  3716                 List<Type> allThrown = mt.getThrownTypes();
  3717                 for (Symbol s2 : ambiguousInOrder) {
  3718                     Type mt2 = types.memberType(site, s2);
  3719                     if ((s2.flags() & ABSTRACT) == 0 ||
  3720                         !types.overrideEquivalent(mt, mt2) ||
  3721                         !types.isSameTypes(s.erasure(types).getParameterTypes(),
  3722                                        s2.erasure(types).getParameterTypes())) {
  3723                         //ambiguity cannot be resolved
  3724                         return this;
  3726                     Type mst = mostSpecificReturnType(mt, mt2);
  3727                     if (mst == null || mst != mt) {
  3728                         found = false;
  3729                         break;
  3731                     allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
  3733                 if (found) {
  3734                     //all ambiguous methods were abstract and one method had
  3735                     //most specific return type then others
  3736                     return (allThrown == mt.getThrownTypes()) ?
  3737                             s : new MethodSymbol(
  3738                                 s.flags(),
  3739                                 s.name,
  3740                                 types.createMethodTypeWithThrown(mt, allThrown),
  3741                                 s.owner);
  3744             return this;
  3747         @Override
  3748         protected Symbol access(Name name, TypeSymbol location) {
  3749             Symbol firstAmbiguity = ambiguousSyms.last();
  3750             return firstAmbiguity.kind == TYP ?
  3751                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
  3752                     firstAmbiguity;
  3756     class BadVarargsMethod extends ResolveError {
  3758         ResolveError delegatedError;
  3760         BadVarargsMethod(ResolveError delegatedError) {
  3761             super(delegatedError.kind, "badVarargs");
  3762             this.delegatedError = delegatedError;
  3765         @Override
  3766         public Symbol baseSymbol() {
  3767             return delegatedError.baseSymbol();
  3770         @Override
  3771         protected Symbol access(Name name, TypeSymbol location) {
  3772             return delegatedError.access(name, location);
  3775         @Override
  3776         public boolean exists() {
  3777             return true;
  3780         @Override
  3781         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  3782             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
  3786     /**
  3787      * Helper class for method resolution diagnostic simplification.
  3788      * Certain resolution diagnostic are rewritten as simpler diagnostic
  3789      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
  3790      * is stripped away, as it doesn't carry additional info. The logic
  3791      * for matching a given diagnostic is given in terms of a template
  3792      * hierarchy: a diagnostic template can be specified programmatically,
  3793      * so that only certain diagnostics are matched. Each templete is then
  3794      * associated with a rewriter object that carries out the task of rewtiting
  3795      * the diagnostic to a simpler one.
  3796      */
  3797     static class MethodResolutionDiagHelper {
  3799         /**
  3800          * A diagnostic rewriter transforms a method resolution diagnostic
  3801          * into a simpler one
  3802          */
  3803         interface DiagnosticRewriter {
  3804             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  3805                     DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  3806                     DiagnosticType preferredKind, JCDiagnostic d);
  3809         /**
  3810          * A diagnostic template is made up of two ingredients: (i) a regular
  3811          * expression for matching a diagnostic key and (ii) a list of sub-templates
  3812          * for matching diagnostic arguments.
  3813          */
  3814         static class Template {
  3816             /** regex used to match diag key */
  3817             String regex;
  3819             /** templates used to match diagnostic args */
  3820             Template[] subTemplates;
  3822             Template(String key, Template... subTemplates) {
  3823                 this.regex = key;
  3824                 this.subTemplates = subTemplates;
  3827             /**
  3828              * Returns true if the regex matches the diagnostic key and if
  3829              * all diagnostic arguments are matches by corresponding sub-templates.
  3830              */
  3831             boolean matches(Object o) {
  3832                 JCDiagnostic d = (JCDiagnostic)o;
  3833                 Object[] args = d.getArgs();
  3834                 if (!d.getCode().matches(regex) ||
  3835                         subTemplates.length != d.getArgs().length) {
  3836                     return false;
  3838                 for (int i = 0; i < args.length ; i++) {
  3839                     if (!subTemplates[i].matches(args[i])) {
  3840                         return false;
  3843                 return true;
  3847         /** a dummy template that match any diagnostic argument */
  3848         static final Template skip = new Template("") {
  3849             @Override
  3850             boolean matches(Object d) {
  3851                 return true;
  3853         };
  3855         /** rewriter map used for method resolution simplification */
  3856         static final Map<Template, DiagnosticRewriter> rewriters =
  3857                 new LinkedHashMap<Template, DiagnosticRewriter>();
  3859         static {
  3860             String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
  3861             rewriters.put(new Template(argMismatchRegex, new Template("(.*)(bad.arg.types.in.lambda)", skip, skip)),
  3862                     new DiagnosticRewriter() {
  3863                 @Override
  3864                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  3865                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  3866                         DiagnosticType preferredKind, JCDiagnostic d) {
  3867                     return (JCDiagnostic)((JCDiagnostic)d.getArgs()[0]).getArgs()[1];
  3869             });
  3871             rewriters.put(new Template(argMismatchRegex, skip),
  3872                     new DiagnosticRewriter() {
  3873                 @Override
  3874                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  3875                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  3876                         DiagnosticType preferredKind, JCDiagnostic d) {
  3877                     JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
  3878                     return diags.create(preferredKind, preferredSource, d.getDiagnosticPosition(),
  3879                             "prob.found.req", cause);
  3881             });
  3885     enum MethodResolutionPhase {
  3886         BASIC(false, false),
  3887         BOX(true, false),
  3888         VARARITY(true, true) {
  3889             @Override
  3890             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  3891                 switch (sym.kind) {
  3892                     case WRONG_MTH:
  3893                         return (bestSoFar.kind == WRONG_MTH || bestSoFar.kind == WRONG_MTHS) ?
  3894                             bestSoFar :
  3895                             sym;
  3896                     case ABSENT_MTH:
  3897                         return bestSoFar;
  3898                     default:
  3899                         return sym;
  3902         };
  3904         final boolean isBoxingRequired;
  3905         final boolean isVarargsRequired;
  3907         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  3908            this.isBoxingRequired = isBoxingRequired;
  3909            this.isVarargsRequired = isVarargsRequired;
  3912         public boolean isBoxingRequired() {
  3913             return isBoxingRequired;
  3916         public boolean isVarargsRequired() {
  3917             return isVarargsRequired;
  3920         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  3921             return (varargsEnabled || !isVarargsRequired) &&
  3922                    (boxingEnabled || !isBoxingRequired);
  3925         public Symbol mergeResults(Symbol prev, Symbol sym) {
  3926             return sym;
  3930     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  3932     /**
  3933      * A resolution context is used to keep track of intermediate results of
  3934      * overload resolution, such as list of method that are not applicable
  3935      * (used to generate more precise diagnostics) and so on. Resolution contexts
  3936      * can be nested - this means that when each overload resolution routine should
  3937      * work within the resolution context it created.
  3938      */
  3939     class MethodResolutionContext {
  3941         private List<Candidate> candidates = List.nil();
  3943         MethodResolutionPhase step = null;
  3945         MethodCheck methodCheck = resolveMethodCheck;
  3947         private boolean internalResolution = false;
  3948         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  3950         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  3951             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  3952             candidates = candidates.append(c);
  3955         void addApplicableCandidate(Symbol sym, Type mtype) {
  3956             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  3957             candidates = candidates.append(c);
  3960         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
  3961             return deferredAttr.new DeferredAttrContext(attrMode, sym, step, inferenceContext, pendingResult != null ? pendingResult.checkContext.deferredAttrContext() : deferredAttr.emptyDeferredAttrContext, warn);
  3964         /**
  3965          * This class represents an overload resolution candidate. There are two
  3966          * kinds of candidates: applicable methods and inapplicable methods;
  3967          * applicable methods have a pointer to the instantiated method type,
  3968          * while inapplicable candidates contain further details about the
  3969          * reason why the method has been considered inapplicable.
  3970          */
  3971         @SuppressWarnings("overrides")
  3972         class Candidate {
  3974             final MethodResolutionPhase step;
  3975             final Symbol sym;
  3976             final JCDiagnostic details;
  3977             final Type mtype;
  3979             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  3980                 this.step = step;
  3981                 this.sym = sym;
  3982                 this.details = details;
  3983                 this.mtype = mtype;
  3986             @Override
  3987             public boolean equals(Object o) {
  3988                 if (o instanceof Candidate) {
  3989                     Symbol s1 = this.sym;
  3990                     Symbol s2 = ((Candidate)o).sym;
  3991                     if  ((s1 != s2 &&
  3992                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  3993                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  3994                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  3995                         return true;
  3997                 return false;
  4000             boolean isApplicable() {
  4001                 return mtype != null;
  4005         DeferredAttr.AttrMode attrMode() {
  4006             return attrMode;
  4009         boolean internal() {
  4010             return internalResolution;
  4014     MethodResolutionContext currentResolutionContext = null;

mercurial