src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 27 Aug 2009 13:40:48 +0100

author
mcimadamore
date
Thu, 27 Aug 2009 13:40:48 +0100
changeset 383
8109aa93b212
parent 377
d9febdd5ae21
child 398
8d999cb7ec09
permissions
-rw-r--r--

6840638: Project Coin: Improved Type Inference for Generic Instance Creation (aka 'diamond')
Summary: diamond operator implementation (simple approach)
Reviewed-by: jjg

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Target target;
    64     private final Source source;
    65     private final Types types;
    66     private final JCDiagnostic.Factory diags;
    67     private final boolean skipAnnotations;
    68     private boolean warnOnSyntheticConflicts;
    69     private final TreeInfo treeinfo;
    71     // The set of lint options currently in effect. It is initialized
    72     // from the context, and then is set/reset as needed by Attr as it
    73     // visits all the various parts of the trees during attribution.
    74     private Lint lint;
    76     public static Check instance(Context context) {
    77         Check instance = context.get(checkKey);
    78         if (instance == null)
    79             instance = new Check(context);
    80         return instance;
    81     }
    83     protected Check(Context context) {
    84         context.put(checkKey, this);
    86         names = Names.instance(context);
    87         log = Log.instance(context);
    88         syms = Symtab.instance(context);
    89         infer = Infer.instance(context);
    90         this.types = Types.instance(context);
    91         diags = JCDiagnostic.Factory.instance(context);
    92         Options options = Options.instance(context);
    93         target = Target.instance(context);
    94         source = Source.instance(context);
    95         lint = Lint.instance(context);
    96         treeinfo = TreeInfo.instance(context);
    98         Source source = Source.instance(context);
    99         allowGenerics = source.allowGenerics();
   100         allowAnnotations = source.allowAnnotations();
   101         complexInference = options.get("-complexinference") != null;
   102         skipAnnotations = options.get("skipAnnotations") != null;
   103         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   105         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   106         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   107         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   108         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   110         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   111                 enforceMandatoryWarnings, "deprecated");
   112         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   113                 enforceMandatoryWarnings, "unchecked");
   114         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   115                 enforceMandatoryWarnings, "sunapi");
   116     }
   118     /** Switch: generics enabled?
   119      */
   120     boolean allowGenerics;
   122     /** Switch: annotations enabled?
   123      */
   124     boolean allowAnnotations;
   126     /** Switch: -complexinference option set?
   127      */
   128     boolean complexInference;
   130     /** A table mapping flat names of all compiled classes in this run to their
   131      *  symbols; maintained from outside.
   132      */
   133     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   135     /** A handler for messages about deprecated usage.
   136      */
   137     private MandatoryWarningHandler deprecationHandler;
   139     /** A handler for messages about unchecked or unsafe usage.
   140      */
   141     private MandatoryWarningHandler uncheckedHandler;
   143     /** A handler for messages about using Sun proprietary API.
   144      */
   145     private MandatoryWarningHandler sunApiHandler;
   147 /* *************************************************************************
   148  * Errors and Warnings
   149  **************************************************************************/
   151     Lint setLint(Lint newLint) {
   152         Lint prev = lint;
   153         lint = newLint;
   154         return prev;
   155     }
   157     /** Warn about deprecated symbol.
   158      *  @param pos        Position to be used for error reporting.
   159      *  @param sym        The deprecated symbol.
   160      */
   161     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   162         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   163             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   164     }
   166     /** Warn about unchecked operation.
   167      *  @param pos        Position to be used for error reporting.
   168      *  @param msg        A string describing the problem.
   169      */
   170     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   171         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   172             uncheckedHandler.report(pos, msg, args);
   173     }
   175     /** Warn about using Sun proprietary API.
   176      *  @param pos        Position to be used for error reporting.
   177      *  @param msg        A string describing the problem.
   178      */
   179     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   180         if (!lint.isSuppressed(LintCategory.SUNAPI))
   181             sunApiHandler.report(pos, msg, args);
   182     }
   184     /**
   185      * Report any deferred diagnostics.
   186      */
   187     public void reportDeferredDiagnostics() {
   188         deprecationHandler.reportDeferredDiagnostic();
   189         uncheckedHandler.reportDeferredDiagnostic();
   190         sunApiHandler.reportDeferredDiagnostic();
   191     }
   194     /** Report a failure to complete a class.
   195      *  @param pos        Position to be used for error reporting.
   196      *  @param ex         The failure to report.
   197      */
   198     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   199         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   200         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   201         else return syms.errType;
   202     }
   204     /** Report a type error.
   205      *  @param pos        Position to be used for error reporting.
   206      *  @param problem    A string describing the error.
   207      *  @param found      The type that was found.
   208      *  @param req        The type that was required.
   209      */
   210     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   211         log.error(pos, "prob.found.req",
   212                   problem, found, req);
   213         return types.createErrorType(found);
   214     }
   216     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   217         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   218         return types.createErrorType(found);
   219     }
   221     /** Report an error that wrong type tag was found.
   222      *  @param pos        Position to be used for error reporting.
   223      *  @param required   An internationalized string describing the type tag
   224      *                    required.
   225      *  @param found      The type that was found.
   226      */
   227     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   228         // this error used to be raised by the parser,
   229         // but has been delayed to this point:
   230         if (found instanceof Type && ((Type)found).tag == VOID) {
   231             log.error(pos, "illegal.start.of.type");
   232             return syms.errType;
   233         }
   234         log.error(pos, "type.found.req", found, required);
   235         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   236     }
   238     /** Report an error that symbol cannot be referenced before super
   239      *  has been called.
   240      *  @param pos        Position to be used for error reporting.
   241      *  @param sym        The referenced symbol.
   242      */
   243     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   244         log.error(pos, "cant.ref.before.ctor.called", sym);
   245     }
   247     /** Report duplicate declaration error.
   248      */
   249     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   250         if (!sym.type.isErroneous()) {
   251             log.error(pos, "already.defined", sym, sym.location());
   252         }
   253     }
   255     /** Report array/varargs duplicate declaration
   256      */
   257     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   258         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   259             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   260         }
   261     }
   263 /* ************************************************************************
   264  * duplicate declaration checking
   265  *************************************************************************/
   267     /** Check that variable does not hide variable with same name in
   268      *  immediately enclosing local scope.
   269      *  @param pos           Position for error reporting.
   270      *  @param v             The symbol.
   271      *  @param s             The scope.
   272      */
   273     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   274         if (s.next != null) {
   275             for (Scope.Entry e = s.next.lookup(v.name);
   276                  e.scope != null && e.sym.owner == v.owner;
   277                  e = e.next()) {
   278                 if (e.sym.kind == VAR &&
   279                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   280                     v.name != names.error) {
   281                     duplicateError(pos, e.sym);
   282                     return;
   283                 }
   284             }
   285         }
   286     }
   288     /** Check that a class or interface does not hide a class or
   289      *  interface with same name in immediately enclosing local scope.
   290      *  @param pos           Position for error reporting.
   291      *  @param c             The symbol.
   292      *  @param s             The scope.
   293      */
   294     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   295         if (s.next != null) {
   296             for (Scope.Entry e = s.next.lookup(c.name);
   297                  e.scope != null && e.sym.owner == c.owner;
   298                  e = e.next()) {
   299                 if (e.sym.kind == TYP &&
   300                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   301                     c.name != names.error) {
   302                     duplicateError(pos, e.sym);
   303                     return;
   304                 }
   305             }
   306         }
   307     }
   309     /** Check that class does not have the same name as one of
   310      *  its enclosing classes, or as a class defined in its enclosing scope.
   311      *  return true if class is unique in its enclosing scope.
   312      *  @param pos           Position for error reporting.
   313      *  @param name          The class name.
   314      *  @param s             The enclosing scope.
   315      */
   316     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   317         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   318             if (e.sym.kind == TYP && e.sym.name != names.error) {
   319                 duplicateError(pos, e.sym);
   320                 return false;
   321             }
   322         }
   323         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   324             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   325                 duplicateError(pos, sym);
   326                 return true;
   327             }
   328         }
   329         return true;
   330     }
   332 /* *************************************************************************
   333  * Class name generation
   334  **************************************************************************/
   336     /** Return name of local class.
   337      *  This is of the form    <enclClass> $ n <classname>
   338      *  where
   339      *    enclClass is the flat name of the enclosing class,
   340      *    classname is the simple name of the local class
   341      */
   342     Name localClassName(ClassSymbol c) {
   343         for (int i=1; ; i++) {
   344             Name flatname = names.
   345                 fromString("" + c.owner.enclClass().flatname +
   346                            target.syntheticNameChar() + i +
   347                            c.name);
   348             if (compiled.get(flatname) == null) return flatname;
   349         }
   350     }
   352 /* *************************************************************************
   353  * Type Checking
   354  **************************************************************************/
   356     /** Check that a given type is assignable to a given proto-type.
   357      *  If it is, return the type, otherwise return errType.
   358      *  @param pos        Position to be used for error reporting.
   359      *  @param found      The type that was found.
   360      *  @param req        The type that was required.
   361      */
   362     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   363         if (req.tag == ERROR)
   364             return req;
   365         if (req.tag == NONE)
   366             return found;
   367         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   368             return found;
   369         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   370             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   371         if (found.isSuperBound()) {
   372             log.error(pos, "assignment.from.super-bound", found);
   373             return types.createErrorType(found);
   374         }
   375         if (req.isExtendsBound()) {
   376             log.error(pos, "assignment.to.extends-bound", req);
   377             return types.createErrorType(found);
   378         }
   379         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   380     }
   382     Type checkReturnType(DiagnosticPosition pos, Type found, Type req) {
   383         if (found.tag == FORALL) {
   384             try {
   385                 return instantiatePoly(pos, (ForAll) found, req, convertWarner(pos, found, req));
   386             } catch (Infer.NoInstanceException ex) {
   387                 if (ex.isAmbiguous) {
   388                     JCDiagnostic d = ex.getDiagnostic();
   389                     log.error(pos,
   390                             "undetermined.type" + (d != null ? ".1" : ""),
   391                             found, d);
   392                     return types.createErrorType(req);
   393                 } else {
   394                     JCDiagnostic d = ex.getDiagnostic();
   395                     return typeError(pos,
   396                             diags.fragment("incompatible.types" + (d != null ? ".1" : ""), d),
   397                             found, req);
   398                 }
   399             } catch (Infer.InvalidInstanceException ex) {
   400                 JCDiagnostic d = ex.getDiagnostic();
   401                 log.error(pos, "invalid.inferred.types", ((ForAll)found).tvars, d);
   402                 return types.createErrorType(req);
   403             }
   404         } else {
   405             return checkType(pos, found, req);
   406         }
   407     }
   409     /** Instantiate polymorphic type to some prototype, unless
   410      *  prototype is `anyPoly' in which case polymorphic type
   411      *  is returned unchanged.
   412      */
   413     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   414         if (pt == Infer.anyPoly && complexInference) {
   415             return t;
   416         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   417             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   418             return instantiatePoly(pos, t, newpt, warn);
   419         } else if (pt.tag == ERROR) {
   420             return pt;
   421         } else {
   422             return infer.instantiateExpr(t, pt, warn);
   423         }
   424      }
   426     /** Check that a given type can be cast to a given target type.
   427      *  Return the result of the cast.
   428      *  @param pos        Position to be used for error reporting.
   429      *  @param found      The type that is being cast.
   430      *  @param req        The target type of the cast.
   431      */
   432     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   433         if (found.tag == FORALL) {
   434             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   435             return req;
   436         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   437             return req;
   438         } else {
   439             return typeError(pos,
   440                              diags.fragment("inconvertible.types"),
   441                              found, req);
   442         }
   443     }
   444 //where
   445         /** Is type a type variable, or a (possibly multi-dimensional) array of
   446          *  type variables?
   447          */
   448         boolean isTypeVar(Type t) {
   449             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   450         }
   452     /** Check that a type is within some bounds.
   453      *
   454      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   455      *  type argument.
   456      *  @param pos           Position to be used for error reporting.
   457      *  @param a             The type that should be bounded by bs.
   458      *  @param bs            The bound.
   459      */
   460     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   461          if (a.isUnbound()) {
   462              return;
   463          } else if (a.tag != WILDCARD) {
   464              a = types.upperBound(a);
   465              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   466                  if (!types.isSubtype(a, l.head)) {
   467                      log.error(pos, "not.within.bounds", a);
   468                      return;
   469                  }
   470              }
   471          } else if (a.isExtendsBound()) {
   472              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   473                  log.error(pos, "not.within.bounds", a);
   474          } else if (a.isSuperBound()) {
   475              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   476                  log.error(pos, "not.within.bounds", a);
   477          }
   478      }
   480     /** Check that a type is within some bounds.
   481      *
   482      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   483      *  type argument.
   484      *  @param pos           Position to be used for error reporting.
   485      *  @param a             The type that should be bounded by bs.
   486      *  @param bs            The bound.
   487      */
   488     private void checkCapture(JCTypeApply tree) {
   489         List<JCExpression> args = tree.getTypeArguments();
   490         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   491             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   492                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   493                 break;
   494             }
   495             args = args.tail;
   496         }
   497      }
   499     /** Check that type is different from 'void'.
   500      *  @param pos           Position to be used for error reporting.
   501      *  @param t             The type to be checked.
   502      */
   503     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   504         if (t.tag == VOID) {
   505             log.error(pos, "void.not.allowed.here");
   506             return types.createErrorType(t);
   507         } else {
   508             return t;
   509         }
   510     }
   512     /** Check that type is a class or interface type.
   513      *  @param pos           Position to be used for error reporting.
   514      *  @param t             The type to be checked.
   515      */
   516     Type checkClassType(DiagnosticPosition pos, Type t) {
   517         if (t.tag != CLASS && t.tag != ERROR)
   518             return typeTagError(pos,
   519                                 diags.fragment("type.req.class"),
   520                                 (t.tag == TYPEVAR)
   521                                 ? diags.fragment("type.parameter", t)
   522                                 : t);
   523         else
   524             return t;
   525     }
   527     /** Check that type is a class or interface type.
   528      *  @param pos           Position to be used for error reporting.
   529      *  @param t             The type to be checked.
   530      *  @param noBounds    True if type bounds are illegal here.
   531      */
   532     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   533         t = checkClassType(pos, t);
   534         if (noBounds && t.isParameterized()) {
   535             List<Type> args = t.getTypeArguments();
   536             while (args.nonEmpty()) {
   537                 if (args.head.tag == WILDCARD)
   538                     return typeTagError(pos,
   539                                         log.getLocalizedString("type.req.exact"),
   540                                         args.head);
   541                 args = args.tail;
   542             }
   543         }
   544         return t;
   545     }
   547     /** Check that type is a valid type for a new expression. If the type contains
   548      * some uninferred type variables, instantiate them exploiting the expected
   549      * type.
   550      *
   551      *  @param pos           Position to be used for error reporting.
   552      *  @param t             The type to be checked.
   553      *  @param noBounds    True if type bounds are illegal here.
   554      *  @param pt          Expected type (used with diamond operator)
   555      */
   556     Type checkNewClassType(DiagnosticPosition pos, Type t, boolean noBounds, Type pt) {
   557         if (t.tag == FORALL) {
   558             try {
   559                 t = instantiatePoly(pos, (ForAll)t, pt, Warner.noWarnings);
   560             }
   561             catch (Infer.NoInstanceException ex) {
   562                 JCDiagnostic d = ex.getDiagnostic();
   563                 log.error(pos, "cant.apply.diamond", t.getTypeArguments(), d);
   564                 return types.createErrorType(pt);
   565             }
   566         }
   567         return checkClassType(pos, t, noBounds);
   568     }
   570     /** Check that type is a reifiable class, interface or array type.
   571      *  @param pos           Position to be used for error reporting.
   572      *  @param t             The type to be checked.
   573      */
   574     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   575         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   576             return typeTagError(pos,
   577                                 diags.fragment("type.req.class.array"),
   578                                 t);
   579         } else if (!types.isReifiable(t)) {
   580             log.error(pos, "illegal.generic.type.for.instof");
   581             return types.createErrorType(t);
   582         } else {
   583             return t;
   584         }
   585     }
   587     /** Check that type is a reference type, i.e. a class, interface or array type
   588      *  or a type variable.
   589      *  @param pos           Position to be used for error reporting.
   590      *  @param t             The type to be checked.
   591      */
   592     Type checkRefType(DiagnosticPosition pos, Type t) {
   593         switch (t.tag) {
   594         case CLASS:
   595         case ARRAY:
   596         case TYPEVAR:
   597         case WILDCARD:
   598         case ERROR:
   599             return t;
   600         default:
   601             return typeTagError(pos,
   602                                 diags.fragment("type.req.ref"),
   603                                 t);
   604         }
   605     }
   607     /** Check that each type is a reference type, i.e. a class, interface or array type
   608      *  or a type variable.
   609      *  @param trees         Original trees, used for error reporting.
   610      *  @param types         The types to be checked.
   611      */
   612     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   613         List<JCExpression> tl = trees;
   614         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   615             l.head = checkRefType(tl.head.pos(), l.head);
   616             tl = tl.tail;
   617         }
   618         return types;
   619     }
   621     /** Check that type is a null or reference type.
   622      *  @param pos           Position to be used for error reporting.
   623      *  @param t             The type to be checked.
   624      */
   625     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   626         switch (t.tag) {
   627         case CLASS:
   628         case ARRAY:
   629         case TYPEVAR:
   630         case WILDCARD:
   631         case BOT:
   632         case ERROR:
   633             return t;
   634         default:
   635             return typeTagError(pos,
   636                                 diags.fragment("type.req.ref"),
   637                                 t);
   638         }
   639     }
   641     /** Check that flag set does not contain elements of two conflicting sets. s
   642      *  Return true if it doesn't.
   643      *  @param pos           Position to be used for error reporting.
   644      *  @param flags         The set of flags to be checked.
   645      *  @param set1          Conflicting flags set #1.
   646      *  @param set2          Conflicting flags set #2.
   647      */
   648     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   649         if ((flags & set1) != 0 && (flags & set2) != 0) {
   650             log.error(pos,
   651                       "illegal.combination.of.modifiers",
   652                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   653                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   654             return false;
   655         } else
   656             return true;
   657     }
   659     /** Check that given modifiers are legal for given symbol and
   660      *  return modifiers together with any implicit modififiers for that symbol.
   661      *  Warning: we can't use flags() here since this method
   662      *  is called during class enter, when flags() would cause a premature
   663      *  completion.
   664      *  @param pos           Position to be used for error reporting.
   665      *  @param flags         The set of modifiers given in a definition.
   666      *  @param sym           The defined symbol.
   667      */
   668     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   669         long mask;
   670         long implicit = 0;
   671         switch (sym.kind) {
   672         case VAR:
   673             if (sym.owner.kind != TYP)
   674                 mask = LocalVarFlags;
   675             else if ((sym.owner.flags_field & INTERFACE) != 0)
   676                 mask = implicit = InterfaceVarFlags;
   677             else
   678                 mask = VarFlags;
   679             break;
   680         case MTH:
   681             if (sym.name == names.init) {
   682                 if ((sym.owner.flags_field & ENUM) != 0) {
   683                     // enum constructors cannot be declared public or
   684                     // protected and must be implicitly or explicitly
   685                     // private
   686                     implicit = PRIVATE;
   687                     mask = PRIVATE;
   688                 } else
   689                     mask = ConstructorFlags;
   690             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   691                 mask = implicit = InterfaceMethodFlags;
   692             else {
   693                 mask = MethodFlags;
   694             }
   695             // Imply STRICTFP if owner has STRICTFP set.
   696             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   697               implicit |= sym.owner.flags_field & STRICTFP;
   698             break;
   699         case TYP:
   700             if (sym.isLocal()) {
   701                 mask = LocalClassFlags;
   702                 if (sym.name.isEmpty()) { // Anonymous class
   703                     // Anonymous classes in static methods are themselves static;
   704                     // that's why we admit STATIC here.
   705                     mask |= STATIC;
   706                     // JLS: Anonymous classes are final.
   707                     implicit |= FINAL;
   708                 }
   709                 if ((sym.owner.flags_field & STATIC) == 0 &&
   710                     (flags & ENUM) != 0)
   711                     log.error(pos, "enums.must.be.static");
   712             } else if (sym.owner.kind == TYP) {
   713                 mask = MemberClassFlags;
   714                 if (sym.owner.owner.kind == PCK ||
   715                     (sym.owner.flags_field & STATIC) != 0)
   716                     mask |= STATIC;
   717                 else if ((flags & ENUM) != 0)
   718                     log.error(pos, "enums.must.be.static");
   719                 // Nested interfaces and enums are always STATIC (Spec ???)
   720                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   721             } else {
   722                 mask = ClassFlags;
   723             }
   724             // Interfaces are always ABSTRACT
   725             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   727             if ((flags & ENUM) != 0) {
   728                 // enums can't be declared abstract or final
   729                 mask &= ~(ABSTRACT | FINAL);
   730                 implicit |= implicitEnumFinalFlag(tree);
   731             }
   732             // Imply STRICTFP if owner has STRICTFP set.
   733             implicit |= sym.owner.flags_field & STRICTFP;
   734             break;
   735         default:
   736             throw new AssertionError();
   737         }
   738         long illegal = flags & StandardFlags & ~mask;
   739         if (illegal != 0) {
   740             if ((illegal & INTERFACE) != 0) {
   741                 log.error(pos, "intf.not.allowed.here");
   742                 mask |= INTERFACE;
   743             }
   744             else {
   745                 log.error(pos,
   746                           "mod.not.allowed.here", asFlagSet(illegal));
   747             }
   748         }
   749         else if ((sym.kind == TYP ||
   750                   // ISSUE: Disallowing abstract&private is no longer appropriate
   751                   // in the presence of inner classes. Should it be deleted here?
   752                   checkDisjoint(pos, flags,
   753                                 ABSTRACT,
   754                                 PRIVATE | STATIC))
   755                  &&
   756                  checkDisjoint(pos, flags,
   757                                ABSTRACT | INTERFACE,
   758                                FINAL | NATIVE | SYNCHRONIZED)
   759                  &&
   760                  checkDisjoint(pos, flags,
   761                                PUBLIC,
   762                                PRIVATE | PROTECTED)
   763                  &&
   764                  checkDisjoint(pos, flags,
   765                                PRIVATE,
   766                                PUBLIC | PROTECTED)
   767                  &&
   768                  checkDisjoint(pos, flags,
   769                                FINAL,
   770                                VOLATILE)
   771                  &&
   772                  (sym.kind == TYP ||
   773                   checkDisjoint(pos, flags,
   774                                 ABSTRACT | NATIVE,
   775                                 STRICTFP))) {
   776             // skip
   777         }
   778         return flags & (mask | ~StandardFlags) | implicit;
   779     }
   782     /** Determine if this enum should be implicitly final.
   783      *
   784      *  If the enum has no specialized enum contants, it is final.
   785      *
   786      *  If the enum does have specialized enum contants, it is
   787      *  <i>not</i> final.
   788      */
   789     private long implicitEnumFinalFlag(JCTree tree) {
   790         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   791         class SpecialTreeVisitor extends JCTree.Visitor {
   792             boolean specialized;
   793             SpecialTreeVisitor() {
   794                 this.specialized = false;
   795             };
   797             public void visitTree(JCTree tree) { /* no-op */ }
   799             public void visitVarDef(JCVariableDecl tree) {
   800                 if ((tree.mods.flags & ENUM) != 0) {
   801                     if (tree.init instanceof JCNewClass &&
   802                         ((JCNewClass) tree.init).def != null) {
   803                         specialized = true;
   804                     }
   805                 }
   806             }
   807         }
   809         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   810         JCClassDecl cdef = (JCClassDecl) tree;
   811         for (JCTree defs: cdef.defs) {
   812             defs.accept(sts);
   813             if (sts.specialized) return 0;
   814         }
   815         return FINAL;
   816     }
   818 /* *************************************************************************
   819  * Type Validation
   820  **************************************************************************/
   822     /** Validate a type expression. That is,
   823      *  check that all type arguments of a parametric type are within
   824      *  their bounds. This must be done in a second phase after type attributon
   825      *  since a class might have a subclass as type parameter bound. E.g:
   826      *
   827      *  class B<A extends C> { ... }
   828      *  class C extends B<C> { ... }
   829      *
   830      *  and we can't make sure that the bound is already attributed because
   831      *  of possible cycles.
   832      */
   833     private Validator validator = new Validator();
   835     /** Visitor method: Validate a type expression, if it is not null, catching
   836      *  and reporting any completion failures.
   837      */
   838     void validate(JCTree tree, Env<AttrContext> env) {
   839         try {
   840             if (tree != null) {
   841                 validator.env = env;
   842                 tree.accept(validator);
   843                 checkRaw(tree, env);
   844             }
   845         } catch (CompletionFailure ex) {
   846             completionError(tree.pos(), ex);
   847         }
   848     }
   849     //where
   850     void checkRaw(JCTree tree, Env<AttrContext> env) {
   851         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   852             tree.type.tag == CLASS &&
   853             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   854             tree.type.isRaw()) {
   855             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   856         }
   857     }
   859     /** Visitor method: Validate a list of type expressions.
   860      */
   861     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   862         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   863             validate(l.head, env);
   864     }
   866     /** A visitor class for type validation.
   867      */
   868     class Validator extends JCTree.Visitor {
   870         public void visitTypeArray(JCArrayTypeTree tree) {
   871             validate(tree.elemtype, env);
   872         }
   874         public void visitTypeApply(JCTypeApply tree) {
   875             if (tree.type.tag == CLASS) {
   876                 List<Type> formals = tree.type.tsym.type.allparams();
   877                 List<Type> actuals = tree.type.allparams();
   878                 List<JCExpression> args = tree.arguments;
   879                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   880                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   882                 // For matching pairs of actual argument types `a' and
   883                 // formal type parameters with declared bound `b' ...
   884                 while (args.nonEmpty() && forms.nonEmpty()) {
   885                     validate(args.head, env);
   887                     // exact type arguments needs to know their
   888                     // bounds (for upper and lower bound
   889                     // calculations).  So we create new TypeVars with
   890                     // bounds substed with actuals.
   891                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   892                                                       formals,
   893                                                       actuals));
   895                     args = args.tail;
   896                     forms = forms.tail;
   897                 }
   899                 args = tree.arguments;
   900                 List<Type> tvars_cap = types.substBounds(formals,
   901                                           formals,
   902                                           types.capture(tree.type).allparams());
   903                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   904                     // Let the actual arguments know their bound
   905                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   906                     args = args.tail;
   907                     tvars_cap = tvars_cap.tail;
   908                 }
   910                 args = tree.arguments;
   911                 List<TypeVar> tvars = tvars_buf.toList();
   913                 while (args.nonEmpty() && tvars.nonEmpty()) {
   914                     checkExtends(args.head.pos(),
   915                                  args.head.type,
   916                                  tvars.head);
   917                     args = args.tail;
   918                     tvars = tvars.tail;
   919                 }
   921                 checkCapture(tree);
   922             }
   923             if (tree.type.tag == CLASS || tree.type.tag == FORALL) {
   924                 // Check that this type is either fully parameterized, or
   925                 // not parameterized at all.
   926                 if (tree.type.getEnclosingType().isRaw())
   927                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   928                 if (tree.clazz.getTag() == JCTree.SELECT)
   929                     visitSelectInternal((JCFieldAccess)tree.clazz);
   930             }
   931         }
   933         public void visitTypeParameter(JCTypeParameter tree) {
   934             validate(tree.bounds, env);
   935             checkClassBounds(tree.pos(), tree.type);
   936         }
   938         @Override
   939         public void visitWildcard(JCWildcard tree) {
   940             if (tree.inner != null)
   941                 validate(tree.inner, env);
   942         }
   944         public void visitSelect(JCFieldAccess tree) {
   945             if (tree.type.tag == CLASS) {
   946                 visitSelectInternal(tree);
   948                 // Check that this type is either fully parameterized, or
   949                 // not parameterized at all.
   950                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   951                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   952             }
   953         }
   954         public void visitSelectInternal(JCFieldAccess tree) {
   955             if (tree.type.tsym.isStatic() &&
   956                 tree.selected.type.isParameterized()) {
   957                 // The enclosing type is not a class, so we are
   958                 // looking at a static member type.  However, the
   959                 // qualifying expression is parameterized.
   960                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   961             } else {
   962                 // otherwise validate the rest of the expression
   963                 tree.selected.accept(this);
   964             }
   965         }
   967         public void visitAnnotatedType(JCAnnotatedType tree) {
   968             tree.underlyingType.accept(this);
   969         }
   971         /** Default visitor method: do nothing.
   972          */
   973         public void visitTree(JCTree tree) {
   974         }
   976         Env<AttrContext> env;
   977     }
   979 /* *************************************************************************
   980  * Exception checking
   981  **************************************************************************/
   983     /* The following methods treat classes as sets that contain
   984      * the class itself and all their subclasses
   985      */
   987     /** Is given type a subtype of some of the types in given list?
   988      */
   989     boolean subset(Type t, List<Type> ts) {
   990         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   991             if (types.isSubtype(t, l.head)) return true;
   992         return false;
   993     }
   995     /** Is given type a subtype or supertype of
   996      *  some of the types in given list?
   997      */
   998     boolean intersects(Type t, List<Type> ts) {
   999         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1000             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1001         return false;
  1004     /** Add type set to given type list, unless it is a subclass of some class
  1005      *  in the list.
  1006      */
  1007     List<Type> incl(Type t, List<Type> ts) {
  1008         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1011     /** Remove type set from type set list.
  1012      */
  1013     List<Type> excl(Type t, List<Type> ts) {
  1014         if (ts.isEmpty()) {
  1015             return ts;
  1016         } else {
  1017             List<Type> ts1 = excl(t, ts.tail);
  1018             if (types.isSubtype(ts.head, t)) return ts1;
  1019             else if (ts1 == ts.tail) return ts;
  1020             else return ts1.prepend(ts.head);
  1024     /** Form the union of two type set lists.
  1025      */
  1026     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1027         List<Type> ts = ts1;
  1028         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1029             ts = incl(l.head, ts);
  1030         return ts;
  1033     /** Form the difference of two type lists.
  1034      */
  1035     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1036         List<Type> ts = ts1;
  1037         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1038             ts = excl(l.head, ts);
  1039         return ts;
  1042     /** Form the intersection of two type lists.
  1043      */
  1044     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1045         List<Type> ts = List.nil();
  1046         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1047             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1048         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1049             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1050         return ts;
  1053     /** Is exc an exception symbol that need not be declared?
  1054      */
  1055     boolean isUnchecked(ClassSymbol exc) {
  1056         return
  1057             exc.kind == ERR ||
  1058             exc.isSubClass(syms.errorType.tsym, types) ||
  1059             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1062     /** Is exc an exception type that need not be declared?
  1063      */
  1064     boolean isUnchecked(Type exc) {
  1065         return
  1066             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1067             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1068             exc.tag == BOT;
  1071     /** Same, but handling completion failures.
  1072      */
  1073     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1074         try {
  1075             return isUnchecked(exc);
  1076         } catch (CompletionFailure ex) {
  1077             completionError(pos, ex);
  1078             return true;
  1082     /** Is exc handled by given exception list?
  1083      */
  1084     boolean isHandled(Type exc, List<Type> handled) {
  1085         return isUnchecked(exc) || subset(exc, handled);
  1088     /** Return all exceptions in thrown list that are not in handled list.
  1089      *  @param thrown     The list of thrown exceptions.
  1090      *  @param handled    The list of handled exceptions.
  1091      */
  1092     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1093         List<Type> unhandled = List.nil();
  1094         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1095             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1096         return unhandled;
  1099 /* *************************************************************************
  1100  * Overriding/Implementation checking
  1101  **************************************************************************/
  1103     /** The level of access protection given by a flag set,
  1104      *  where PRIVATE is highest and PUBLIC is lowest.
  1105      */
  1106     static int protection(long flags) {
  1107         switch ((short)(flags & AccessFlags)) {
  1108         case PRIVATE: return 3;
  1109         case PROTECTED: return 1;
  1110         default:
  1111         case PUBLIC: return 0;
  1112         case 0: return 2;
  1116     /** A customized "cannot override" error message.
  1117      *  @param m      The overriding method.
  1118      *  @param other  The overridden method.
  1119      *  @return       An internationalized string.
  1120      */
  1121     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1122         String key;
  1123         if ((other.owner.flags() & INTERFACE) == 0)
  1124             key = "cant.override";
  1125         else if ((m.owner.flags() & INTERFACE) == 0)
  1126             key = "cant.implement";
  1127         else
  1128             key = "clashes.with";
  1129         return diags.fragment(key, m, m.location(), other, other.location());
  1132     /** A customized "override" warning message.
  1133      *  @param m      The overriding method.
  1134      *  @param other  The overridden method.
  1135      *  @return       An internationalized string.
  1136      */
  1137     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1138         String key;
  1139         if ((other.owner.flags() & INTERFACE) == 0)
  1140             key = "unchecked.override";
  1141         else if ((m.owner.flags() & INTERFACE) == 0)
  1142             key = "unchecked.implement";
  1143         else
  1144             key = "unchecked.clash.with";
  1145         return diags.fragment(key, m, m.location(), other, other.location());
  1148     /** A customized "override" warning message.
  1149      *  @param m      The overriding method.
  1150      *  @param other  The overridden method.
  1151      *  @return       An internationalized string.
  1152      */
  1153     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1154         String key;
  1155         if ((other.owner.flags() & INTERFACE) == 0)
  1156             key = "varargs.override";
  1157         else  if ((m.owner.flags() & INTERFACE) == 0)
  1158             key = "varargs.implement";
  1159         else
  1160             key = "varargs.clash.with";
  1161         return diags.fragment(key, m, m.location(), other, other.location());
  1164     /** Check that this method conforms with overridden method 'other'.
  1165      *  where `origin' is the class where checking started.
  1166      *  Complications:
  1167      *  (1) Do not check overriding of synthetic methods
  1168      *      (reason: they might be final).
  1169      *      todo: check whether this is still necessary.
  1170      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1171      *      than the method it implements. Augment the proxy methods with the
  1172      *      undeclared exceptions in this case.
  1173      *  (3) When generics are enabled, admit the case where an interface proxy
  1174      *      has a result type
  1175      *      extended by the result type of the method it implements.
  1176      *      Change the proxies result type to the smaller type in this case.
  1178      *  @param tree         The tree from which positions
  1179      *                      are extracted for errors.
  1180      *  @param m            The overriding method.
  1181      *  @param other        The overridden method.
  1182      *  @param origin       The class of which the overriding method
  1183      *                      is a member.
  1184      */
  1185     void checkOverride(JCTree tree,
  1186                        MethodSymbol m,
  1187                        MethodSymbol other,
  1188                        ClassSymbol origin) {
  1189         // Don't check overriding of synthetic methods or by bridge methods.
  1190         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1191             return;
  1194         // Error if static method overrides instance method (JLS 8.4.6.2).
  1195         if ((m.flags() & STATIC) != 0 &&
  1196                    (other.flags() & STATIC) == 0) {
  1197             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1198                       cannotOverride(m, other));
  1199             return;
  1202         // Error if instance method overrides static or final
  1203         // method (JLS 8.4.6.1).
  1204         if ((other.flags() & FINAL) != 0 ||
  1205                  (m.flags() & STATIC) == 0 &&
  1206                  (other.flags() & STATIC) != 0) {
  1207             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1208                       cannotOverride(m, other),
  1209                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1210             return;
  1213         if ((m.owner.flags() & ANNOTATION) != 0) {
  1214             // handled in validateAnnotationMethod
  1215             return;
  1218         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1219         if ((origin.flags() & INTERFACE) == 0 &&
  1220                  protection(m.flags()) > protection(other.flags())) {
  1221             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1222                       cannotOverride(m, other),
  1223                       other.flags() == 0 ?
  1224                           Flag.PACKAGE :
  1225                           asFlagSet(other.flags() & AccessFlags));
  1226             return;
  1229         Type mt = types.memberType(origin.type, m);
  1230         Type ot = types.memberType(origin.type, other);
  1231         // Error if overriding result type is different
  1232         // (or, in the case of generics mode, not a subtype) of
  1233         // overridden result type. We have to rename any type parameters
  1234         // before comparing types.
  1235         List<Type> mtvars = mt.getTypeArguments();
  1236         List<Type> otvars = ot.getTypeArguments();
  1237         Type mtres = mt.getReturnType();
  1238         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1240         overrideWarner.warned = false;
  1241         boolean resultTypesOK =
  1242             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1243         if (!resultTypesOK) {
  1244             if (!source.allowCovariantReturns() &&
  1245                 m.owner != origin &&
  1246                 m.owner.isSubClass(other.owner, types)) {
  1247                 // allow limited interoperability with covariant returns
  1248             } else {
  1249                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1250                           "override.incompatible.ret",
  1251                           cannotOverride(m, other),
  1252                           mtres, otres);
  1253                 return;
  1255         } else if (overrideWarner.warned) {
  1256             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1257                     "override.unchecked.ret",
  1258                     uncheckedOverrides(m, other),
  1259                     mtres, otres);
  1262         // Error if overriding method throws an exception not reported
  1263         // by overridden method.
  1264         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1265         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1266         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1267         if (unhandledErased.nonEmpty()) {
  1268             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1269                       "override.meth.doesnt.throw",
  1270                       cannotOverride(m, other),
  1271                       unhandledUnerased.head);
  1272             return;
  1274         else if (unhandledUnerased.nonEmpty()) {
  1275             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1276                           "override.unchecked.thrown",
  1277                          cannotOverride(m, other),
  1278                          unhandledUnerased.head);
  1279             return;
  1282         // Optional warning if varargs don't agree
  1283         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1284             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1285             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1286                         ((m.flags() & Flags.VARARGS) != 0)
  1287                         ? "override.varargs.missing"
  1288                         : "override.varargs.extra",
  1289                         varargsOverrides(m, other));
  1292         // Warn if instance method overrides bridge method (compiler spec ??)
  1293         if ((other.flags() & BRIDGE) != 0) {
  1294             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1295                         uncheckedOverrides(m, other));
  1298         // Warn if a deprecated method overridden by a non-deprecated one.
  1299         if ((other.flags() & DEPRECATED) != 0
  1300             && (m.flags() & DEPRECATED) == 0
  1301             && m.outermostClass() != other.outermostClass()
  1302             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1303             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1306     // where
  1307         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1308             // If the method, m, is defined in an interface, then ignore the issue if the method
  1309             // is only inherited via a supertype and also implemented in the supertype,
  1310             // because in that case, we will rediscover the issue when examining the method
  1311             // in the supertype.
  1312             // If the method, m, is not defined in an interface, then the only time we need to
  1313             // address the issue is when the method is the supertype implemementation: any other
  1314             // case, we will have dealt with when examining the supertype classes
  1315             ClassSymbol mc = m.enclClass();
  1316             Type st = types.supertype(origin.type);
  1317             if (st.tag != CLASS)
  1318                 return true;
  1319             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1321             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1322                 List<Type> intfs = types.interfaces(origin.type);
  1323                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1325             else
  1326                 return (stimpl != m);
  1330     // used to check if there were any unchecked conversions
  1331     Warner overrideWarner = new Warner();
  1333     /** Check that a class does not inherit two concrete methods
  1334      *  with the same signature.
  1335      *  @param pos          Position to be used for error reporting.
  1336      *  @param site         The class type to be checked.
  1337      */
  1338     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1339         Type sup = types.supertype(site);
  1340         if (sup.tag != CLASS) return;
  1342         for (Type t1 = sup;
  1343              t1.tsym.type.isParameterized();
  1344              t1 = types.supertype(t1)) {
  1345             for (Scope.Entry e1 = t1.tsym.members().elems;
  1346                  e1 != null;
  1347                  e1 = e1.sibling) {
  1348                 Symbol s1 = e1.sym;
  1349                 if (s1.kind != MTH ||
  1350                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1351                     !s1.isInheritedIn(site.tsym, types) ||
  1352                     ((MethodSymbol)s1).implementation(site.tsym,
  1353                                                       types,
  1354                                                       true) != s1)
  1355                     continue;
  1356                 Type st1 = types.memberType(t1, s1);
  1357                 int s1ArgsLength = st1.getParameterTypes().length();
  1358                 if (st1 == s1.type) continue;
  1360                 for (Type t2 = sup;
  1361                      t2.tag == CLASS;
  1362                      t2 = types.supertype(t2)) {
  1363                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1364                          e2.scope != null;
  1365                          e2 = e2.next()) {
  1366                         Symbol s2 = e2.sym;
  1367                         if (s2 == s1 ||
  1368                             s2.kind != MTH ||
  1369                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1370                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1371                             !s2.isInheritedIn(site.tsym, types) ||
  1372                             ((MethodSymbol)s2).implementation(site.tsym,
  1373                                                               types,
  1374                                                               true) != s2)
  1375                             continue;
  1376                         Type st2 = types.memberType(t2, s2);
  1377                         if (types.overrideEquivalent(st1, st2))
  1378                             log.error(pos, "concrete.inheritance.conflict",
  1379                                       s1, t1, s2, t2, sup);
  1386     /** Check that classes (or interfaces) do not each define an abstract
  1387      *  method with same name and arguments but incompatible return types.
  1388      *  @param pos          Position to be used for error reporting.
  1389      *  @param t1           The first argument type.
  1390      *  @param t2           The second argument type.
  1391      */
  1392     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1393                                             Type t1,
  1394                                             Type t2) {
  1395         return checkCompatibleAbstracts(pos, t1, t2,
  1396                                         types.makeCompoundType(t1, t2));
  1399     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1400                                             Type t1,
  1401                                             Type t2,
  1402                                             Type site) {
  1403         Symbol sym = firstIncompatibility(t1, t2, site);
  1404         if (sym != null) {
  1405             log.error(pos, "types.incompatible.diff.ret",
  1406                       t1, t2, sym.name +
  1407                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1408             return false;
  1410         return true;
  1413     /** Return the first method which is defined with same args
  1414      *  but different return types in two given interfaces, or null if none
  1415      *  exists.
  1416      *  @param t1     The first type.
  1417      *  @param t2     The second type.
  1418      *  @param site   The most derived type.
  1419      *  @returns symbol from t2 that conflicts with one in t1.
  1420      */
  1421     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1422         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1423         closure(t1, interfaces1);
  1424         Map<TypeSymbol,Type> interfaces2;
  1425         if (t1 == t2)
  1426             interfaces2 = interfaces1;
  1427         else
  1428             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1430         for (Type t3 : interfaces1.values()) {
  1431             for (Type t4 : interfaces2.values()) {
  1432                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1433                 if (s != null) return s;
  1436         return null;
  1439     /** Compute all the supertypes of t, indexed by type symbol. */
  1440     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1441         if (t.tag != CLASS) return;
  1442         if (typeMap.put(t.tsym, t) == null) {
  1443             closure(types.supertype(t), typeMap);
  1444             for (Type i : types.interfaces(t))
  1445                 closure(i, typeMap);
  1449     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1450     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1451         if (t.tag != CLASS) return;
  1452         if (typesSkip.get(t.tsym) != null) return;
  1453         if (typeMap.put(t.tsym, t) == null) {
  1454             closure(types.supertype(t), typesSkip, typeMap);
  1455             for (Type i : types.interfaces(t))
  1456                 closure(i, typesSkip, typeMap);
  1460     /** Return the first method in t2 that conflicts with a method from t1. */
  1461     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1462         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1463             Symbol s1 = e1.sym;
  1464             Type st1 = null;
  1465             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1466             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1467             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1468             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1469                 Symbol s2 = e2.sym;
  1470                 if (s1 == s2) continue;
  1471                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1472                 if (st1 == null) st1 = types.memberType(t1, s1);
  1473                 Type st2 = types.memberType(t2, s2);
  1474                 if (types.overrideEquivalent(st1, st2)) {
  1475                     List<Type> tvars1 = st1.getTypeArguments();
  1476                     List<Type> tvars2 = st2.getTypeArguments();
  1477                     Type rt1 = st1.getReturnType();
  1478                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1479                     boolean compat =
  1480                         types.isSameType(rt1, rt2) ||
  1481                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1482                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1483                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1484                          checkCommonOverriderIn(s1,s2,site);
  1485                     if (!compat) return s2;
  1489         return null;
  1491     //WHERE
  1492     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1493         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1494         Type st1 = types.memberType(site, s1);
  1495         Type st2 = types.memberType(site, s2);
  1496         closure(site, supertypes);
  1497         for (Type t : supertypes.values()) {
  1498             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1499                 Symbol s3 = e.sym;
  1500                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1501                 Type st3 = types.memberType(site,s3);
  1502                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1503                     if (s3.owner == site.tsym) {
  1504                         return true;
  1506                     List<Type> tvars1 = st1.getTypeArguments();
  1507                     List<Type> tvars2 = st2.getTypeArguments();
  1508                     List<Type> tvars3 = st3.getTypeArguments();
  1509                     Type rt1 = st1.getReturnType();
  1510                     Type rt2 = st2.getReturnType();
  1511                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1512                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1513                     boolean compat =
  1514                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1515                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1516                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1517                     if (compat)
  1518                         return true;
  1522         return false;
  1525     /** Check that a given method conforms with any method it overrides.
  1526      *  @param tree         The tree from which positions are extracted
  1527      *                      for errors.
  1528      *  @param m            The overriding method.
  1529      */
  1530     void checkOverride(JCTree tree, MethodSymbol m) {
  1531         ClassSymbol origin = (ClassSymbol)m.owner;
  1532         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1533             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1534                 log.error(tree.pos(), "enum.no.finalize");
  1535                 return;
  1537         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1538              t = types.supertype(t)) {
  1539             TypeSymbol c = t.tsym;
  1540             Scope.Entry e = c.members().lookup(m.name);
  1541             while (e.scope != null) {
  1542                 if (m.overrides(e.sym, origin, types, false))
  1543                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1544                 else if (e.sym.kind == MTH &&
  1545                         e.sym.isInheritedIn(origin, types) &&
  1546                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1547                         !m.isConstructor()) {
  1548                     Type er1 = m.erasure(types);
  1549                     Type er2 = e.sym.erasure(types);
  1550                     if (types.isSameTypes(er1.getParameterTypes(),
  1551                             er2.getParameterTypes())) {
  1552                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1553                                     "name.clash.same.erasure.no.override",
  1554                                     m, m.location(),
  1555                                     e.sym, e.sym.location());
  1558                 e = e.next();
  1563     /** Check that all abstract members of given class have definitions.
  1564      *  @param pos          Position to be used for error reporting.
  1565      *  @param c            The class.
  1566      */
  1567     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1568         try {
  1569             MethodSymbol undef = firstUndef(c, c);
  1570             if (undef != null) {
  1571                 if ((c.flags() & ENUM) != 0 &&
  1572                     types.supertype(c.type).tsym == syms.enumSym &&
  1573                     (c.flags() & FINAL) == 0) {
  1574                     // add the ABSTRACT flag to an enum
  1575                     c.flags_field |= ABSTRACT;
  1576                 } else {
  1577                     MethodSymbol undef1 =
  1578                         new MethodSymbol(undef.flags(), undef.name,
  1579                                          types.memberType(c.type, undef), undef.owner);
  1580                     log.error(pos, "does.not.override.abstract",
  1581                               c, undef1, undef1.location());
  1584         } catch (CompletionFailure ex) {
  1585             completionError(pos, ex);
  1588 //where
  1589         /** Return first abstract member of class `c' that is not defined
  1590          *  in `impl', null if there is none.
  1591          */
  1592         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1593             MethodSymbol undef = null;
  1594             // Do not bother to search in classes that are not abstract,
  1595             // since they cannot have abstract members.
  1596             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1597                 Scope s = c.members();
  1598                 for (Scope.Entry e = s.elems;
  1599                      undef == null && e != null;
  1600                      e = e.sibling) {
  1601                     if (e.sym.kind == MTH &&
  1602                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1603                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1604                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1605                         if (implmeth == null || implmeth == absmeth)
  1606                             undef = absmeth;
  1609                 if (undef == null) {
  1610                     Type st = types.supertype(c.type);
  1611                     if (st.tag == CLASS)
  1612                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1614                 for (List<Type> l = types.interfaces(c.type);
  1615                      undef == null && l.nonEmpty();
  1616                      l = l.tail) {
  1617                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1620             return undef;
  1623     /** Check for cyclic references. Issue an error if the
  1624      *  symbol of the type referred to has a LOCKED flag set.
  1626      *  @param pos      Position to be used for error reporting.
  1627      *  @param t        The type referred to.
  1628      */
  1629     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1630         checkNonCyclicInternal(pos, t);
  1634     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1635         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1638     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1639         final TypeVar tv;
  1640         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1641             return;
  1642         if (seen.contains(t)) {
  1643             tv = (TypeVar)t;
  1644             tv.bound = types.createErrorType(t);
  1645             log.error(pos, "cyclic.inheritance", t);
  1646         } else if (t.tag == TYPEVAR) {
  1647             tv = (TypeVar)t;
  1648             seen = seen.prepend(tv);
  1649             for (Type b : types.getBounds(tv))
  1650                 checkNonCyclic1(pos, b, seen);
  1654     /** Check for cyclic references. Issue an error if the
  1655      *  symbol of the type referred to has a LOCKED flag set.
  1657      *  @param pos      Position to be used for error reporting.
  1658      *  @param t        The type referred to.
  1659      *  @returns        True if the check completed on all attributed classes
  1660      */
  1661     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1662         boolean complete = true; // was the check complete?
  1663         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1664         Symbol c = t.tsym;
  1665         if ((c.flags_field & ACYCLIC) != 0) return true;
  1667         if ((c.flags_field & LOCKED) != 0) {
  1668             noteCyclic(pos, (ClassSymbol)c);
  1669         } else if (!c.type.isErroneous()) {
  1670             try {
  1671                 c.flags_field |= LOCKED;
  1672                 if (c.type.tag == CLASS) {
  1673                     ClassType clazz = (ClassType)c.type;
  1674                     if (clazz.interfaces_field != null)
  1675                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1676                             complete &= checkNonCyclicInternal(pos, l.head);
  1677                     if (clazz.supertype_field != null) {
  1678                         Type st = clazz.supertype_field;
  1679                         if (st != null && st.tag == CLASS)
  1680                             complete &= checkNonCyclicInternal(pos, st);
  1682                     if (c.owner.kind == TYP)
  1683                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1685             } finally {
  1686                 c.flags_field &= ~LOCKED;
  1689         if (complete)
  1690             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1691         if (complete) c.flags_field |= ACYCLIC;
  1692         return complete;
  1695     /** Note that we found an inheritance cycle. */
  1696     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1697         log.error(pos, "cyclic.inheritance", c);
  1698         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1699             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1700         Type st = types.supertype(c.type);
  1701         if (st.tag == CLASS)
  1702             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1703         c.type = types.createErrorType(c, c.type);
  1704         c.flags_field |= ACYCLIC;
  1707     /** Check that all methods which implement some
  1708      *  method conform to the method they implement.
  1709      *  @param tree         The class definition whose members are checked.
  1710      */
  1711     void checkImplementations(JCClassDecl tree) {
  1712         checkImplementations(tree, tree.sym);
  1714 //where
  1715         /** Check that all methods which implement some
  1716          *  method in `ic' conform to the method they implement.
  1717          */
  1718         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1719             ClassSymbol origin = tree.sym;
  1720             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1721                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1722                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1723                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1724                         if (e.sym.kind == MTH &&
  1725                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1726                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1727                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1728                             if (implmeth != null && implmeth != absmeth &&
  1729                                 (implmeth.owner.flags() & INTERFACE) ==
  1730                                 (origin.flags() & INTERFACE)) {
  1731                                 // don't check if implmeth is in a class, yet
  1732                                 // origin is an interface. This case arises only
  1733                                 // if implmeth is declared in Object. The reason is
  1734                                 // that interfaces really don't inherit from
  1735                                 // Object it's just that the compiler represents
  1736                                 // things that way.
  1737                                 checkOverride(tree, implmeth, absmeth, origin);
  1745     /** Check that all abstract methods implemented by a class are
  1746      *  mutually compatible.
  1747      *  @param pos          Position to be used for error reporting.
  1748      *  @param c            The class whose interfaces are checked.
  1749      */
  1750     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1751         List<Type> supertypes = types.interfaces(c);
  1752         Type supertype = types.supertype(c);
  1753         if (supertype.tag == CLASS &&
  1754             (supertype.tsym.flags() & ABSTRACT) != 0)
  1755             supertypes = supertypes.prepend(supertype);
  1756         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1757             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1758                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1759                 return;
  1760             for (List<Type> m = supertypes; m != l; m = m.tail)
  1761                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1762                     return;
  1764         checkCompatibleConcretes(pos, c);
  1767     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1768         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1769             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1770                 // VM allows methods and variables with differing types
  1771                 if (sym.kind == e.sym.kind &&
  1772                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1773                     sym != e.sym &&
  1774                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1775                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1776                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1777                     return;
  1783     /** Report a conflict between a user symbol and a synthetic symbol.
  1784      */
  1785     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1786         if (!sym.type.isErroneous()) {
  1787             if (warnOnSyntheticConflicts) {
  1788                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1790             else {
  1791                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1796     /** Check that class c does not implement directly or indirectly
  1797      *  the same parameterized interface with two different argument lists.
  1798      *  @param pos          Position to be used for error reporting.
  1799      *  @param type         The type whose interfaces are checked.
  1800      */
  1801     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1802         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1804 //where
  1805         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1806          *  with their class symbol as key and their type as value. Make
  1807          *  sure no class is entered with two different types.
  1808          */
  1809         void checkClassBounds(DiagnosticPosition pos,
  1810                               Map<TypeSymbol,Type> seensofar,
  1811                               Type type) {
  1812             if (type.isErroneous()) return;
  1813             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1814                 Type it = l.head;
  1815                 Type oldit = seensofar.put(it.tsym, it);
  1816                 if (oldit != null) {
  1817                     List<Type> oldparams = oldit.allparams();
  1818                     List<Type> newparams = it.allparams();
  1819                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1820                         log.error(pos, "cant.inherit.diff.arg",
  1821                                   it.tsym, Type.toString(oldparams),
  1822                                   Type.toString(newparams));
  1824                 checkClassBounds(pos, seensofar, it);
  1826             Type st = types.supertype(type);
  1827             if (st != null) checkClassBounds(pos, seensofar, st);
  1830     /** Enter interface into into set.
  1831      *  If it existed already, issue a "repeated interface" error.
  1832      */
  1833     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1834         if (its.contains(it))
  1835             log.error(pos, "repeated.interface");
  1836         else {
  1837             its.add(it);
  1841 /* *************************************************************************
  1842  * Check annotations
  1843  **************************************************************************/
  1845     /** Annotation types are restricted to primitives, String, an
  1846      *  enum, an annotation, Class, Class<?>, Class<? extends
  1847      *  Anything>, arrays of the preceding.
  1848      */
  1849     void validateAnnotationType(JCTree restype) {
  1850         // restype may be null if an error occurred, so don't bother validating it
  1851         if (restype != null) {
  1852             validateAnnotationType(restype.pos(), restype.type);
  1856     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1857         if (type.isPrimitive()) return;
  1858         if (types.isSameType(type, syms.stringType)) return;
  1859         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1860         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1861         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1862         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1863             validateAnnotationType(pos, types.elemtype(type));
  1864             return;
  1866         log.error(pos, "invalid.annotation.member.type");
  1869     /**
  1870      * "It is also a compile-time error if any method declared in an
  1871      * annotation type has a signature that is override-equivalent to
  1872      * that of any public or protected method declared in class Object
  1873      * or in the interface annotation.Annotation."
  1875      * @jls3 9.6 Annotation Types
  1876      */
  1877     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1878         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1879             Scope s = sup.tsym.members();
  1880             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1881                 if (e.sym.kind == MTH &&
  1882                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1883                     types.overrideEquivalent(m.type, e.sym.type))
  1884                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1889     /** Check the annotations of a symbol.
  1890      */
  1891     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1892         if (skipAnnotations) return;
  1893         for (JCAnnotation a : annotations)
  1894             validateAnnotation(a, s);
  1897     /** Check the type annotations
  1898      */
  1899     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  1900         if (skipAnnotations) return;
  1901         for (JCTypeAnnotation a : annotations)
  1902             validateTypeAnnotation(a, isTypeParameter);
  1905     /** Check an annotation of a symbol.
  1906      */
  1907     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1908         validateAnnotation(a);
  1910         if (!annotationApplicable(a, s))
  1911             log.error(a.pos(), "annotation.type.not.applicable");
  1913         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1914             if (!isOverrider(s))
  1915                 log.error(a.pos(), "method.does.not.override.superclass");
  1919     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1920         if (a.type == null)
  1921             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  1922         validateAnnotation(a);
  1924         if (!isTypeAnnotation(a, isTypeParameter))
  1925             log.error(a.pos(), "annotation.type.not.applicable");
  1928     /** Is s a method symbol that overrides a method in a superclass? */
  1929     boolean isOverrider(Symbol s) {
  1930         if (s.kind != MTH || s.isStatic())
  1931             return false;
  1932         MethodSymbol m = (MethodSymbol)s;
  1933         TypeSymbol owner = (TypeSymbol)m.owner;
  1934         for (Type sup : types.closure(owner.type)) {
  1935             if (sup == owner.type)
  1936                 continue; // skip "this"
  1937             Scope scope = sup.tsym.members();
  1938             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1939                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1940                     return true;
  1943         return false;
  1946     /** Is the annotation applicable to type annotations */
  1947     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1948         Attribute.Compound atTarget =
  1949             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1950         if (atTarget == null) return true;
  1951         Attribute atValue = atTarget.member(names.value);
  1952         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1953         Attribute.Array arr = (Attribute.Array) atValue;
  1954         for (Attribute app : arr.values) {
  1955             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1956             Attribute.Enum e = (Attribute.Enum) app;
  1957             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  1958                 return true;
  1959             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  1960                 return true;
  1962         return false;
  1965     /** Is the annotation applicable to the symbol? */
  1966     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1967         Attribute.Compound atTarget =
  1968             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1969         if (atTarget == null) return true;
  1970         Attribute atValue = atTarget.member(names.value);
  1971         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1972         Attribute.Array arr = (Attribute.Array) atValue;
  1973         for (Attribute app : arr.values) {
  1974             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1975             Attribute.Enum e = (Attribute.Enum) app;
  1976             if (e.value.name == names.TYPE)
  1977                 { if (s.kind == TYP) return true; }
  1978             else if (e.value.name == names.FIELD)
  1979                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1980             else if (e.value.name == names.METHOD)
  1981                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1982             else if (e.value.name == names.PARAMETER)
  1983                 { if (s.kind == VAR &&
  1984                       s.owner.kind == MTH &&
  1985                       (s.flags() & PARAMETER) != 0)
  1986                     return true;
  1988             else if (e.value.name == names.CONSTRUCTOR)
  1989                 { if (s.kind == MTH && s.isConstructor()) return true; }
  1990             else if (e.value.name == names.LOCAL_VARIABLE)
  1991                 { if (s.kind == VAR && s.owner.kind == MTH &&
  1992                       (s.flags() & PARAMETER) == 0)
  1993                     return true;
  1995             else if (e.value.name == names.ANNOTATION_TYPE)
  1996                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1997                     return true;
  1999             else if (e.value.name == names.PACKAGE)
  2000                 { if (s.kind == PCK) return true; }
  2001             else if (e.value.name == names.TYPE_USE)
  2002                 { if (s.kind == TYP ||
  2003                       s.kind == VAR ||
  2004                       (s.kind == MTH && !s.isConstructor() &&
  2005                        s.type.getReturnType().tag != VOID))
  2006                     return true;
  2008             else
  2009                 return true; // recovery
  2011         return false;
  2014     /** Check an annotation value.
  2015      */
  2016     public void validateAnnotation(JCAnnotation a) {
  2017         if (a.type.isErroneous()) return;
  2019         // collect an inventory of the members
  2020         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  2021         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2022              e != null;
  2023              e = e.sibling)
  2024             if (e.sym.kind == MTH)
  2025                 members.add((MethodSymbol) e.sym);
  2027         // count them off as they're annotated
  2028         for (JCTree arg : a.args) {
  2029             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2030             JCAssign assign = (JCAssign) arg;
  2031             Symbol m = TreeInfo.symbol(assign.lhs);
  2032             if (m == null || m.type.isErroneous()) continue;
  2033             if (!members.remove(m))
  2034                 log.error(arg.pos(), "duplicate.annotation.member.value",
  2035                           m.name, a.type);
  2036             if (assign.rhs.getTag() == ANNOTATION)
  2037                 validateAnnotation((JCAnnotation)assign.rhs);
  2040         // all the remaining ones better have default values
  2041         for (MethodSymbol m : members)
  2042             if (m.defaultValue == null && !m.type.isErroneous())
  2043                 log.error(a.pos(), "annotation.missing.default.value",
  2044                           a.type, m.name);
  2046         // special case: java.lang.annotation.Target must not have
  2047         // repeated values in its value member
  2048         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2049             a.args.tail == null)
  2050             return;
  2052         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2053         JCAssign assign = (JCAssign) a.args.head;
  2054         Symbol m = TreeInfo.symbol(assign.lhs);
  2055         if (m.name != names.value) return;
  2056         JCTree rhs = assign.rhs;
  2057         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2058         JCNewArray na = (JCNewArray) rhs;
  2059         Set<Symbol> targets = new HashSet<Symbol>();
  2060         for (JCTree elem : na.elems) {
  2061             if (!targets.add(TreeInfo.symbol(elem))) {
  2062                 log.error(elem.pos(), "repeated.annotation.target");
  2067     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2068         if (allowAnnotations &&
  2069             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2070             (s.flags() & DEPRECATED) != 0 &&
  2071             !syms.deprecatedType.isErroneous() &&
  2072             s.attribute(syms.deprecatedType.tsym) == null) {
  2073             log.warning(pos, "missing.deprecated.annotation");
  2077 /* *************************************************************************
  2078  * Check for recursive annotation elements.
  2079  **************************************************************************/
  2081     /** Check for cycles in the graph of annotation elements.
  2082      */
  2083     void checkNonCyclicElements(JCClassDecl tree) {
  2084         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2085         assert (tree.sym.flags_field & LOCKED) == 0;
  2086         try {
  2087             tree.sym.flags_field |= LOCKED;
  2088             for (JCTree def : tree.defs) {
  2089                 if (def.getTag() != JCTree.METHODDEF) continue;
  2090                 JCMethodDecl meth = (JCMethodDecl)def;
  2091                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2093         } finally {
  2094             tree.sym.flags_field &= ~LOCKED;
  2095             tree.sym.flags_field |= ACYCLIC_ANN;
  2099     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2100         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2101             return;
  2102         if ((tsym.flags_field & LOCKED) != 0) {
  2103             log.error(pos, "cyclic.annotation.element");
  2104             return;
  2106         try {
  2107             tsym.flags_field |= LOCKED;
  2108             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2109                 Symbol s = e.sym;
  2110                 if (s.kind != Kinds.MTH)
  2111                     continue;
  2112                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2114         } finally {
  2115             tsym.flags_field &= ~LOCKED;
  2116             tsym.flags_field |= ACYCLIC_ANN;
  2120     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2121         switch (type.tag) {
  2122         case TypeTags.CLASS:
  2123             if ((type.tsym.flags() & ANNOTATION) != 0)
  2124                 checkNonCyclicElementsInternal(pos, type.tsym);
  2125             break;
  2126         case TypeTags.ARRAY:
  2127             checkAnnotationResType(pos, types.elemtype(type));
  2128             break;
  2129         default:
  2130             break; // int etc
  2134 /* *************************************************************************
  2135  * Check for cycles in the constructor call graph.
  2136  **************************************************************************/
  2138     /** Check for cycles in the graph of constructors calling other
  2139      *  constructors.
  2140      */
  2141     void checkCyclicConstructors(JCClassDecl tree) {
  2142         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2144         // enter each constructor this-call into the map
  2145         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2146             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2147             if (app == null) continue;
  2148             JCMethodDecl meth = (JCMethodDecl) l.head;
  2149             if (TreeInfo.name(app.meth) == names._this) {
  2150                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2151             } else {
  2152                 meth.sym.flags_field |= ACYCLIC;
  2156         // Check for cycles in the map
  2157         Symbol[] ctors = new Symbol[0];
  2158         ctors = callMap.keySet().toArray(ctors);
  2159         for (Symbol caller : ctors) {
  2160             checkCyclicConstructor(tree, caller, callMap);
  2164     /** Look in the map to see if the given constructor is part of a
  2165      *  call cycle.
  2166      */
  2167     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2168                                         Map<Symbol,Symbol> callMap) {
  2169         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2170             if ((ctor.flags_field & LOCKED) != 0) {
  2171                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2172                           "recursive.ctor.invocation");
  2173             } else {
  2174                 ctor.flags_field |= LOCKED;
  2175                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2176                 ctor.flags_field &= ~LOCKED;
  2178             ctor.flags_field |= ACYCLIC;
  2182 /* *************************************************************************
  2183  * Miscellaneous
  2184  **************************************************************************/
  2186     /**
  2187      * Return the opcode of the operator but emit an error if it is an
  2188      * error.
  2189      * @param pos        position for error reporting.
  2190      * @param operator   an operator
  2191      * @param tag        a tree tag
  2192      * @param left       type of left hand side
  2193      * @param right      type of right hand side
  2194      */
  2195     int checkOperator(DiagnosticPosition pos,
  2196                        OperatorSymbol operator,
  2197                        int tag,
  2198                        Type left,
  2199                        Type right) {
  2200         if (operator.opcode == ByteCodes.error) {
  2201             log.error(pos,
  2202                       "operator.cant.be.applied",
  2203                       treeinfo.operatorName(tag),
  2204                       List.of(left, right));
  2206         return operator.opcode;
  2210     /**
  2211      *  Check for division by integer constant zero
  2212      *  @param pos           Position for error reporting.
  2213      *  @param operator      The operator for the expression
  2214      *  @param operand       The right hand operand for the expression
  2215      */
  2216     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2217         if (operand.constValue() != null
  2218             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2219             && operand.tag <= LONG
  2220             && ((Number) (operand.constValue())).longValue() == 0) {
  2221             int opc = ((OperatorSymbol)operator).opcode;
  2222             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2223                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2224                 log.warning(pos, "div.zero");
  2229     /**
  2230      * Check for empty statements after if
  2231      */
  2232     void checkEmptyIf(JCIf tree) {
  2233         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2234             log.warning(tree.thenpart.pos(), "empty.if");
  2237     /** Check that symbol is unique in given scope.
  2238      *  @param pos           Position for error reporting.
  2239      *  @param sym           The symbol.
  2240      *  @param s             The scope.
  2241      */
  2242     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2243         if (sym.type.isErroneous())
  2244             return true;
  2245         if (sym.owner.name == names.any) return false;
  2246         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2247             if (sym != e.sym &&
  2248                 sym.kind == e.sym.kind &&
  2249                 sym.name != names.error &&
  2250                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2251                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2252                     varargsDuplicateError(pos, sym, e.sym);
  2253                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2254                     duplicateErasureError(pos, sym, e.sym);
  2255                 else
  2256                     duplicateError(pos, e.sym);
  2257                 return false;
  2260         return true;
  2262     //where
  2263     /** Report duplicate declaration error.
  2264      */
  2265     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2266         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2267             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2271     /** Check that single-type import is not already imported or top-level defined,
  2272      *  but make an exception for two single-type imports which denote the same type.
  2273      *  @param pos           Position for error reporting.
  2274      *  @param sym           The symbol.
  2275      *  @param s             The scope
  2276      */
  2277     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2278         return checkUniqueImport(pos, sym, s, false);
  2281     /** Check that static single-type import is not already imported or top-level defined,
  2282      *  but make an exception for two single-type imports which denote the same type.
  2283      *  @param pos           Position for error reporting.
  2284      *  @param sym           The symbol.
  2285      *  @param s             The scope
  2286      *  @param staticImport  Whether or not this was a static import
  2287      */
  2288     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2289         return checkUniqueImport(pos, sym, s, true);
  2292     /** Check that single-type import is not already imported or top-level defined,
  2293      *  but make an exception for two single-type imports which denote the same type.
  2294      *  @param pos           Position for error reporting.
  2295      *  @param sym           The symbol.
  2296      *  @param s             The scope.
  2297      *  @param staticImport  Whether or not this was a static import
  2298      */
  2299     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2300         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2301             // is encountered class entered via a class declaration?
  2302             boolean isClassDecl = e.scope == s;
  2303             if ((isClassDecl || sym != e.sym) &&
  2304                 sym.kind == e.sym.kind &&
  2305                 sym.name != names.error) {
  2306                 if (!e.sym.type.isErroneous()) {
  2307                     String what = e.sym.toString();
  2308                     if (!isClassDecl) {
  2309                         if (staticImport)
  2310                             log.error(pos, "already.defined.static.single.import", what);
  2311                         else
  2312                             log.error(pos, "already.defined.single.import", what);
  2314                     else if (sym != e.sym)
  2315                         log.error(pos, "already.defined.this.unit", what);
  2317                 return false;
  2320         return true;
  2323     /** Check that a qualified name is in canonical form (for import decls).
  2324      */
  2325     public void checkCanonical(JCTree tree) {
  2326         if (!isCanonical(tree))
  2327             log.error(tree.pos(), "import.requires.canonical",
  2328                       TreeInfo.symbol(tree));
  2330         // where
  2331         private boolean isCanonical(JCTree tree) {
  2332             while (tree.getTag() == JCTree.SELECT) {
  2333                 JCFieldAccess s = (JCFieldAccess) tree;
  2334                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2335                     return false;
  2336                 tree = s.selected;
  2338             return true;
  2341     private class ConversionWarner extends Warner {
  2342         final String key;
  2343         final Type found;
  2344         final Type expected;
  2345         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2346             super(pos);
  2347             this.key = key;
  2348             this.found = found;
  2349             this.expected = expected;
  2352         public void warnUnchecked() {
  2353             boolean warned = this.warned;
  2354             super.warnUnchecked();
  2355             if (warned) return; // suppress redundant diagnostics
  2356             Object problem = diags.fragment(key);
  2357             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2361     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2362         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2365     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2366         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial