src/share/classes/com/sun/tools/javac/comp/Flow.java

Fri, 18 Oct 2013 15:03:34 -0700

author
jjg
date
Fri, 18 Oct 2013 15:03:34 -0700
changeset 2146
7de97abc4a5c
parent 2135
d7e155f874a7
child 2252
fa004631cf00
permissions
-rw-r--r--

8026749: Missing LV table in lambda bodies
Reviewed-by: vromero, jlahoda

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 //todo: one might eliminate uninits.andSets when monotonic
    28 package com.sun.tools.javac.comp;
    30 import java.util.HashMap;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.code.Symbol.*;
    38 import com.sun.tools.javac.tree.JCTree.*;
    40 import static com.sun.tools.javac.code.Flags.*;
    41 import static com.sun.tools.javac.code.Flags.BLOCK;
    42 import static com.sun.tools.javac.code.Kinds.*;
    43 import static com.sun.tools.javac.code.TypeTag.BOOLEAN;
    44 import static com.sun.tools.javac.code.TypeTag.VOID;
    45 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    47 /** This pass implements dataflow analysis for Java programs though
    48  *  different AST visitor steps. Liveness analysis (see AliveAlanyzer) checks that
    49  *  every statement is reachable. Exception analysis (see FlowAnalyzer) ensures that
    50  *  every checked exception that is thrown is declared or caught.  Definite assignment analysis
    51  *  (see AssignAnalyzer) ensures that each variable is assigned when used.  Definite
    52  *  unassignment analysis (see AssignAnalyzer) in ensures that no final variable
    53  *  is assigned more than once. Finally, local variable capture analysis (see CaptureAnalyzer)
    54  *  determines that local variables accessed within the scope of an inner class/lambda
    55  *  are either final or effectively-final.
    56  *
    57  *  <p>The JLS has a number of problems in the
    58  *  specification of these flow analysis problems. This implementation
    59  *  attempts to address those issues.
    60  *
    61  *  <p>First, there is no accommodation for a finally clause that cannot
    62  *  complete normally. For liveness analysis, an intervening finally
    63  *  clause can cause a break, continue, or return not to reach its
    64  *  target.  For exception analysis, an intervening finally clause can
    65  *  cause any exception to be "caught".  For DA/DU analysis, the finally
    66  *  clause can prevent a transfer of control from propagating DA/DU
    67  *  state to the target.  In addition, code in the finally clause can
    68  *  affect the DA/DU status of variables.
    69  *
    70  *  <p>For try statements, we introduce the idea of a variable being
    71  *  definitely unassigned "everywhere" in a block.  A variable V is
    72  *  "unassigned everywhere" in a block iff it is unassigned at the
    73  *  beginning of the block and there is no reachable assignment to V
    74  *  in the block.  An assignment V=e is reachable iff V is not DA
    75  *  after e.  Then we can say that V is DU at the beginning of the
    76  *  catch block iff V is DU everywhere in the try block.  Similarly, V
    77  *  is DU at the beginning of the finally block iff V is DU everywhere
    78  *  in the try block and in every catch block.  Specifically, the
    79  *  following bullet is added to 16.2.2
    80  *  <pre>
    81  *      V is <em>unassigned everywhere</em> in a block if it is
    82  *      unassigned before the block and there is no reachable
    83  *      assignment to V within the block.
    84  *  </pre>
    85  *  <p>In 16.2.15, the third bullet (and all of its sub-bullets) for all
    86  *  try blocks is changed to
    87  *  <pre>
    88  *      V is definitely unassigned before a catch block iff V is
    89  *      definitely unassigned everywhere in the try block.
    90  *  </pre>
    91  *  <p>The last bullet (and all of its sub-bullets) for try blocks that
    92  *  have a finally block is changed to
    93  *  <pre>
    94  *      V is definitely unassigned before the finally block iff
    95  *      V is definitely unassigned everywhere in the try block
    96  *      and everywhere in each catch block of the try statement.
    97  *  </pre>
    98  *  <p>In addition,
    99  *  <pre>
   100  *      V is definitely assigned at the end of a constructor iff
   101  *      V is definitely assigned after the block that is the body
   102  *      of the constructor and V is definitely assigned at every
   103  *      return that can return from the constructor.
   104  *  </pre>
   105  *  <p>In addition, each continue statement with the loop as its target
   106  *  is treated as a jump to the end of the loop body, and "intervening"
   107  *  finally clauses are treated as follows: V is DA "due to the
   108  *  continue" iff V is DA before the continue statement or V is DA at
   109  *  the end of any intervening finally block.  V is DU "due to the
   110  *  continue" iff any intervening finally cannot complete normally or V
   111  *  is DU at the end of every intervening finally block.  This "due to
   112  *  the continue" concept is then used in the spec for the loops.
   113  *
   114  *  <p>Similarly, break statements must consider intervening finally
   115  *  blocks.  For liveness analysis, a break statement for which any
   116  *  intervening finally cannot complete normally is not considered to
   117  *  cause the target statement to be able to complete normally. Then
   118  *  we say V is DA "due to the break" iff V is DA before the break or
   119  *  V is DA at the end of any intervening finally block.  V is DU "due
   120  *  to the break" iff any intervening finally cannot complete normally
   121  *  or V is DU at the break and at the end of every intervening
   122  *  finally block.  (I suspect this latter condition can be
   123  *  simplified.)  This "due to the break" is then used in the spec for
   124  *  all statements that can be "broken".
   125  *
   126  *  <p>The return statement is treated similarly.  V is DA "due to a
   127  *  return statement" iff V is DA before the return statement or V is
   128  *  DA at the end of any intervening finally block.  Note that we
   129  *  don't have to worry about the return expression because this
   130  *  concept is only used for construcrors.
   131  *
   132  *  <p>There is no spec in the JLS for when a variable is definitely
   133  *  assigned at the end of a constructor, which is needed for final
   134  *  fields (8.3.1.2).  We implement the rule that V is DA at the end
   135  *  of the constructor iff it is DA and the end of the body of the
   136  *  constructor and V is DA "due to" every return of the constructor.
   137  *
   138  *  <p>Intervening finally blocks similarly affect exception analysis.  An
   139  *  intervening finally that cannot complete normally allows us to ignore
   140  *  an otherwise uncaught exception.
   141  *
   142  *  <p>To implement the semantics of intervening finally clauses, all
   143  *  nonlocal transfers (break, continue, return, throw, method call that
   144  *  can throw a checked exception, and a constructor invocation that can
   145  *  thrown a checked exception) are recorded in a queue, and removed
   146  *  from the queue when we complete processing the target of the
   147  *  nonlocal transfer.  This allows us to modify the queue in accordance
   148  *  with the above rules when we encounter a finally clause.  The only
   149  *  exception to this [no pun intended] is that checked exceptions that
   150  *  are known to be caught or declared to be caught in the enclosing
   151  *  method are not recorded in the queue, but instead are recorded in a
   152  *  global variable "{@code Set<Type> thrown}" that records the type of all
   153  *  exceptions that can be thrown.
   154  *
   155  *  <p>Other minor issues the treatment of members of other classes
   156  *  (always considered DA except that within an anonymous class
   157  *  constructor, where DA status from the enclosing scope is
   158  *  preserved), treatment of the case expression (V is DA before the
   159  *  case expression iff V is DA after the switch expression),
   160  *  treatment of variables declared in a switch block (the implied
   161  *  DA/DU status after the switch expression is DU and not DA for
   162  *  variables defined in a switch block), the treatment of boolean ?:
   163  *  expressions (The JLS rules only handle b and c non-boolean; the
   164  *  new rule is that if b and c are boolean valued, then V is
   165  *  (un)assigned after a?b:c when true/false iff V is (un)assigned
   166  *  after b when true/false and V is (un)assigned after c when
   167  *  true/false).
   168  *
   169  *  <p>There is the remaining question of what syntactic forms constitute a
   170  *  reference to a variable.  It is conventional to allow this.x on the
   171  *  left-hand-side to initialize a final instance field named x, yet
   172  *  this.x isn't considered a "use" when appearing on a right-hand-side
   173  *  in most implementations.  Should parentheses affect what is
   174  *  considered a variable reference?  The simplest rule would be to
   175  *  allow unqualified forms only, parentheses optional, and phase out
   176  *  support for assigning to a final field via this.x.
   177  *
   178  *  <p><b>This is NOT part of any supported API.
   179  *  If you write code that depends on this, you do so at your own risk.
   180  *  This code and its internal interfaces are subject to change or
   181  *  deletion without notice.</b>
   182  */
   183 public class Flow {
   184     protected static final Context.Key<Flow> flowKey =
   185         new Context.Key<Flow>();
   187     private final Names names;
   188     private final Log log;
   189     private final Symtab syms;
   190     private final Types types;
   191     private final Check chk;
   192     private       TreeMaker make;
   193     private final Resolve rs;
   194     private final JCDiagnostic.Factory diags;
   195     private Env<AttrContext> attrEnv;
   196     private       Lint lint;
   197     private final boolean allowImprovedRethrowAnalysis;
   198     private final boolean allowImprovedCatchAnalysis;
   199     private final boolean allowEffectivelyFinalInInnerClasses;
   201     public static Flow instance(Context context) {
   202         Flow instance = context.get(flowKey);
   203         if (instance == null)
   204             instance = new Flow(context);
   205         return instance;
   206     }
   208     public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
   209         new AliveAnalyzer().analyzeTree(env, make);
   210         new AssignAnalyzer(log, syms, lint, names).analyzeTree(env);
   211         new FlowAnalyzer().analyzeTree(env, make);
   212         new CaptureAnalyzer().analyzeTree(env, make);
   213     }
   215     public void analyzeLambda(Env<AttrContext> env, JCLambda that, TreeMaker make, boolean speculative) {
   216         Log.DiagnosticHandler diagHandler = null;
   217         //we need to disable diagnostics temporarily; the problem is that if
   218         //a lambda expression contains e.g. an unreachable statement, an error
   219         //message will be reported and will cause compilation to skip the flow analyis
   220         //step - if we suppress diagnostics, we won't stop at Attr for flow-analysis
   221         //related errors, which will allow for more errors to be detected
   222         if (!speculative) {
   223             diagHandler = new Log.DiscardDiagnosticHandler(log);
   224         }
   225         try {
   226             new AliveAnalyzer().analyzeTree(env, that, make);
   227         } finally {
   228             if (!speculative) {
   229                 log.popDiagnosticHandler(diagHandler);
   230             }
   231         }
   232     }
   234     public List<Type> analyzeLambdaThrownTypes(Env<AttrContext> env, JCLambda that, TreeMaker make) {
   235         //we need to disable diagnostics temporarily; the problem is that if
   236         //a lambda expression contains e.g. an unreachable statement, an error
   237         //message will be reported and will cause compilation to skip the flow analyis
   238         //step - if we suppress diagnostics, we won't stop at Attr for flow-analysis
   239         //related errors, which will allow for more errors to be detected
   240         Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
   241         try {
   242             new AssignAnalyzer(log, syms, lint, names).analyzeTree(env);
   243             LambdaFlowAnalyzer flowAnalyzer = new LambdaFlowAnalyzer();
   244             flowAnalyzer.analyzeTree(env, that, make);
   245             return flowAnalyzer.inferredThrownTypes;
   246         } finally {
   247             log.popDiagnosticHandler(diagHandler);
   248         }
   249     }
   251     /**
   252      * Definite assignment scan mode
   253      */
   254     enum FlowKind {
   255         /**
   256          * This is the normal DA/DU analysis mode
   257          */
   258         NORMAL("var.might.already.be.assigned", false),
   259         /**
   260          * This is the speculative DA/DU analysis mode used to speculatively
   261          * derive assertions within loop bodies
   262          */
   263         SPECULATIVE_LOOP("var.might.be.assigned.in.loop", true);
   265         final String errKey;
   266         final boolean isFinal;
   268         FlowKind(String errKey, boolean isFinal) {
   269             this.errKey = errKey;
   270             this.isFinal = isFinal;
   271         }
   273         boolean isFinal() {
   274             return isFinal;
   275         }
   276     }
   278     protected Flow(Context context) {
   279         context.put(flowKey, this);
   280         names = Names.instance(context);
   281         log = Log.instance(context);
   282         syms = Symtab.instance(context);
   283         types = Types.instance(context);
   284         chk = Check.instance(context);
   285         lint = Lint.instance(context);
   286         rs = Resolve.instance(context);
   287         diags = JCDiagnostic.Factory.instance(context);
   288         Source source = Source.instance(context);
   289         allowImprovedRethrowAnalysis = source.allowImprovedRethrowAnalysis();
   290         allowImprovedCatchAnalysis = source.allowImprovedCatchAnalysis();
   291         allowEffectivelyFinalInInnerClasses = source.allowEffectivelyFinalInInnerClasses();
   292     }
   294     /**
   295      * Base visitor class for all visitors implementing dataflow analysis logic.
   296      * This class define the shared logic for handling jumps (break/continue statements).
   297      */
   298     static abstract class BaseAnalyzer<P extends BaseAnalyzer.PendingExit> extends TreeScanner {
   300         enum JumpKind {
   301             BREAK(JCTree.Tag.BREAK) {
   302                 @Override
   303                 JCTree getTarget(JCTree tree) {
   304                     return ((JCBreak)tree).target;
   305                 }
   306             },
   307             CONTINUE(JCTree.Tag.CONTINUE) {
   308                 @Override
   309                 JCTree getTarget(JCTree tree) {
   310                     return ((JCContinue)tree).target;
   311                 }
   312             };
   314             final JCTree.Tag treeTag;
   316             private JumpKind(Tag treeTag) {
   317                 this.treeTag = treeTag;
   318             }
   320             abstract JCTree getTarget(JCTree tree);
   321         }
   323         /** The currently pending exits that go from current inner blocks
   324          *  to an enclosing block, in source order.
   325          */
   326         ListBuffer<P> pendingExits;
   328         /** A pending exit.  These are the statements return, break, and
   329          *  continue.  In addition, exception-throwing expressions or
   330          *  statements are put here when not known to be caught.  This
   331          *  will typically result in an error unless it is within a
   332          *  try-finally whose finally block cannot complete normally.
   333          */
   334         static class PendingExit {
   335             JCTree tree;
   337             PendingExit(JCTree tree) {
   338                 this.tree = tree;
   339             }
   341             void resolveJump(JCTree tree) {
   342                 //do nothing
   343             }
   344         }
   346         abstract void markDead(JCTree tree);
   348         /** Record an outward transfer of control. */
   349         void recordExit(JCTree tree, P pe) {
   350             pendingExits.append(pe);
   351             markDead(tree);
   352         }
   354         /** Resolve all jumps of this statement. */
   355         private boolean resolveJump(JCTree tree,
   356                         ListBuffer<P> oldPendingExits,
   357                         JumpKind jk) {
   358             boolean resolved = false;
   359             List<P> exits = pendingExits.toList();
   360             pendingExits = oldPendingExits;
   361             for (; exits.nonEmpty(); exits = exits.tail) {
   362                 P exit = exits.head;
   363                 if (exit.tree.hasTag(jk.treeTag) &&
   364                         jk.getTarget(exit.tree) == tree) {
   365                     exit.resolveJump(tree);
   366                     resolved = true;
   367                 } else {
   368                     pendingExits.append(exit);
   369                 }
   370             }
   371             return resolved;
   372         }
   374         /** Resolve all continues of this statement. */
   375         boolean resolveContinues(JCTree tree) {
   376             return resolveJump(tree, new ListBuffer<P>(), JumpKind.CONTINUE);
   377         }
   379         /** Resolve all breaks of this statement. */
   380         boolean resolveBreaks(JCTree tree, ListBuffer<P> oldPendingExits) {
   381             return resolveJump(tree, oldPendingExits, JumpKind.BREAK);
   382         }
   384         @Override
   385         public void scan(JCTree tree) {
   386             if (tree != null && (
   387                     tree.type == null ||
   388                     tree.type != Type.stuckType)) {
   389                 super.scan(tree);
   390             }
   391         }
   392     }
   394     /**
   395      * This pass implements the first step of the dataflow analysis, namely
   396      * the liveness analysis check. This checks that every statement is reachable.
   397      * The output of this analysis pass are used by other analyzers. This analyzer
   398      * sets the 'finallyCanCompleteNormally' field in the JCTry class.
   399      */
   400     class AliveAnalyzer extends BaseAnalyzer<BaseAnalyzer.PendingExit> {
   402         /** A flag that indicates whether the last statement could
   403          *  complete normally.
   404          */
   405         private boolean alive;
   407         @Override
   408         void markDead(JCTree tree) {
   409             alive = false;
   410         }
   412     /*************************************************************************
   413      * Visitor methods for statements and definitions
   414      *************************************************************************/
   416         /** Analyze a definition.
   417          */
   418         void scanDef(JCTree tree) {
   419             scanStat(tree);
   420             if (tree != null && tree.hasTag(JCTree.Tag.BLOCK) && !alive) {
   421                 log.error(tree.pos(),
   422                           "initializer.must.be.able.to.complete.normally");
   423             }
   424         }
   426         /** Analyze a statement. Check that statement is reachable.
   427          */
   428         void scanStat(JCTree tree) {
   429             if (!alive && tree != null) {
   430                 log.error(tree.pos(), "unreachable.stmt");
   431                 if (!tree.hasTag(SKIP)) alive = true;
   432             }
   433             scan(tree);
   434         }
   436         /** Analyze list of statements.
   437          */
   438         void scanStats(List<? extends JCStatement> trees) {
   439             if (trees != null)
   440                 for (List<? extends JCStatement> l = trees; l.nonEmpty(); l = l.tail)
   441                     scanStat(l.head);
   442         }
   444         /* ------------ Visitor methods for various sorts of trees -------------*/
   446         public void visitClassDef(JCClassDecl tree) {
   447             if (tree.sym == null) return;
   448             boolean alivePrev = alive;
   449             ListBuffer<PendingExit> pendingExitsPrev = pendingExits;
   450             Lint lintPrev = lint;
   452             pendingExits = new ListBuffer<PendingExit>();
   453             lint = lint.augment(tree.sym);
   455             try {
   456                 // process all the static initializers
   457                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   458                     if (!l.head.hasTag(METHODDEF) &&
   459                         (TreeInfo.flags(l.head) & STATIC) != 0) {
   460                         scanDef(l.head);
   461                     }
   462                 }
   464                 // process all the instance initializers
   465                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   466                     if (!l.head.hasTag(METHODDEF) &&
   467                         (TreeInfo.flags(l.head) & STATIC) == 0) {
   468                         scanDef(l.head);
   469                     }
   470                 }
   472                 // process all the methods
   473                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   474                     if (l.head.hasTag(METHODDEF)) {
   475                         scan(l.head);
   476                     }
   477                 }
   478             } finally {
   479                 pendingExits = pendingExitsPrev;
   480                 alive = alivePrev;
   481                 lint = lintPrev;
   482             }
   483         }
   485         public void visitMethodDef(JCMethodDecl tree) {
   486             if (tree.body == null) return;
   487             Lint lintPrev = lint;
   489             lint = lint.augment(tree.sym);
   491             Assert.check(pendingExits.isEmpty());
   493             try {
   494                 alive = true;
   495                 scanStat(tree.body);
   497                 if (alive && !tree.sym.type.getReturnType().hasTag(VOID))
   498                     log.error(TreeInfo.diagEndPos(tree.body), "missing.ret.stmt");
   500                 List<PendingExit> exits = pendingExits.toList();
   501                 pendingExits = new ListBuffer<PendingExit>();
   502                 while (exits.nonEmpty()) {
   503                     PendingExit exit = exits.head;
   504                     exits = exits.tail;
   505                     Assert.check(exit.tree.hasTag(RETURN));
   506                 }
   507             } finally {
   508                 lint = lintPrev;
   509             }
   510         }
   512         public void visitVarDef(JCVariableDecl tree) {
   513             if (tree.init != null) {
   514                 Lint lintPrev = lint;
   515                 lint = lint.augment(tree.sym);
   516                 try{
   517                     scan(tree.init);
   518                 } finally {
   519                     lint = lintPrev;
   520                 }
   521             }
   522         }
   524         public void visitBlock(JCBlock tree) {
   525             scanStats(tree.stats);
   526         }
   528         public void visitDoLoop(JCDoWhileLoop tree) {
   529             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   530             pendingExits = new ListBuffer<PendingExit>();
   531             scanStat(tree.body);
   532             alive |= resolveContinues(tree);
   533             scan(tree.cond);
   534             alive = alive && !tree.cond.type.isTrue();
   535             alive |= resolveBreaks(tree, prevPendingExits);
   536         }
   538         public void visitWhileLoop(JCWhileLoop tree) {
   539             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   540             pendingExits = new ListBuffer<PendingExit>();
   541             scan(tree.cond);
   542             alive = !tree.cond.type.isFalse();
   543             scanStat(tree.body);
   544             alive |= resolveContinues(tree);
   545             alive = resolveBreaks(tree, prevPendingExits) ||
   546                 !tree.cond.type.isTrue();
   547         }
   549         public void visitForLoop(JCForLoop tree) {
   550             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   551             scanStats(tree.init);
   552             pendingExits = new ListBuffer<PendingExit>();
   553             if (tree.cond != null) {
   554                 scan(tree.cond);
   555                 alive = !tree.cond.type.isFalse();
   556             } else {
   557                 alive = true;
   558             }
   559             scanStat(tree.body);
   560             alive |= resolveContinues(tree);
   561             scan(tree.step);
   562             alive = resolveBreaks(tree, prevPendingExits) ||
   563                 tree.cond != null && !tree.cond.type.isTrue();
   564         }
   566         public void visitForeachLoop(JCEnhancedForLoop tree) {
   567             visitVarDef(tree.var);
   568             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   569             scan(tree.expr);
   570             pendingExits = new ListBuffer<PendingExit>();
   571             scanStat(tree.body);
   572             alive |= resolveContinues(tree);
   573             resolveBreaks(tree, prevPendingExits);
   574             alive = true;
   575         }
   577         public void visitLabelled(JCLabeledStatement tree) {
   578             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   579             pendingExits = new ListBuffer<PendingExit>();
   580             scanStat(tree.body);
   581             alive |= resolveBreaks(tree, prevPendingExits);
   582         }
   584         public void visitSwitch(JCSwitch tree) {
   585             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   586             pendingExits = new ListBuffer<PendingExit>();
   587             scan(tree.selector);
   588             boolean hasDefault = false;
   589             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
   590                 alive = true;
   591                 JCCase c = l.head;
   592                 if (c.pat == null)
   593                     hasDefault = true;
   594                 else
   595                     scan(c.pat);
   596                 scanStats(c.stats);
   597                 // Warn about fall-through if lint switch fallthrough enabled.
   598                 if (alive &&
   599                     lint.isEnabled(Lint.LintCategory.FALLTHROUGH) &&
   600                     c.stats.nonEmpty() && l.tail.nonEmpty())
   601                     log.warning(Lint.LintCategory.FALLTHROUGH,
   602                                 l.tail.head.pos(),
   603                                 "possible.fall-through.into.case");
   604             }
   605             if (!hasDefault) {
   606                 alive = true;
   607             }
   608             alive |= resolveBreaks(tree, prevPendingExits);
   609         }
   611         public void visitTry(JCTry tree) {
   612             ListBuffer<PendingExit> prevPendingExits = pendingExits;
   613             pendingExits = new ListBuffer<PendingExit>();
   614             for (JCTree resource : tree.resources) {
   615                 if (resource instanceof JCVariableDecl) {
   616                     JCVariableDecl vdecl = (JCVariableDecl) resource;
   617                     visitVarDef(vdecl);
   618                 } else if (resource instanceof JCExpression) {
   619                     scan((JCExpression) resource);
   620                 } else {
   621                     throw new AssertionError(tree);  // parser error
   622                 }
   623             }
   625             scanStat(tree.body);
   626             boolean aliveEnd = alive;
   628             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
   629                 alive = true;
   630                 JCVariableDecl param = l.head.param;
   631                 scan(param);
   632                 scanStat(l.head.body);
   633                 aliveEnd |= alive;
   634             }
   635             if (tree.finalizer != null) {
   636                 ListBuffer<PendingExit> exits = pendingExits;
   637                 pendingExits = prevPendingExits;
   638                 alive = true;
   639                 scanStat(tree.finalizer);
   640                 tree.finallyCanCompleteNormally = alive;
   641                 if (!alive) {
   642                     if (lint.isEnabled(Lint.LintCategory.FINALLY)) {
   643                         log.warning(Lint.LintCategory.FINALLY,
   644                                 TreeInfo.diagEndPos(tree.finalizer),
   645                                 "finally.cannot.complete");
   646                     }
   647                 } else {
   648                     while (exits.nonEmpty()) {
   649                         pendingExits.append(exits.next());
   650                     }
   651                     alive = aliveEnd;
   652                 }
   653             } else {
   654                 alive = aliveEnd;
   655                 ListBuffer<PendingExit> exits = pendingExits;
   656                 pendingExits = prevPendingExits;
   657                 while (exits.nonEmpty()) pendingExits.append(exits.next());
   658             }
   659         }
   661         @Override
   662         public void visitIf(JCIf tree) {
   663             scan(tree.cond);
   664             scanStat(tree.thenpart);
   665             if (tree.elsepart != null) {
   666                 boolean aliveAfterThen = alive;
   667                 alive = true;
   668                 scanStat(tree.elsepart);
   669                 alive = alive | aliveAfterThen;
   670             } else {
   671                 alive = true;
   672             }
   673         }
   675         public void visitBreak(JCBreak tree) {
   676             recordExit(tree, new PendingExit(tree));
   677         }
   679         public void visitContinue(JCContinue tree) {
   680             recordExit(tree, new PendingExit(tree));
   681         }
   683         public void visitReturn(JCReturn tree) {
   684             scan(tree.expr);
   685             recordExit(tree, new PendingExit(tree));
   686         }
   688         public void visitThrow(JCThrow tree) {
   689             scan(tree.expr);
   690             markDead(tree);
   691         }
   693         public void visitApply(JCMethodInvocation tree) {
   694             scan(tree.meth);
   695             scan(tree.args);
   696         }
   698         public void visitNewClass(JCNewClass tree) {
   699             scan(tree.encl);
   700             scan(tree.args);
   701             if (tree.def != null) {
   702                 scan(tree.def);
   703             }
   704         }
   706         @Override
   707         public void visitLambda(JCLambda tree) {
   708             if (tree.type != null &&
   709                     tree.type.isErroneous()) {
   710                 return;
   711             }
   713             ListBuffer<PendingExit> prevPending = pendingExits;
   714             boolean prevAlive = alive;
   715             try {
   716                 pendingExits = new ListBuffer<>();
   717                 alive = true;
   718                 scanStat(tree.body);
   719                 tree.canCompleteNormally = alive;
   720             }
   721             finally {
   722                 pendingExits = prevPending;
   723                 alive = prevAlive;
   724             }
   725         }
   727         public void visitTopLevel(JCCompilationUnit tree) {
   728             // Do nothing for TopLevel since each class is visited individually
   729         }
   731     /**************************************************************************
   732      * main method
   733      *************************************************************************/
   735         /** Perform definite assignment/unassignment analysis on a tree.
   736          */
   737         public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
   738             analyzeTree(env, env.tree, make);
   739         }
   740         public void analyzeTree(Env<AttrContext> env, JCTree tree, TreeMaker make) {
   741             try {
   742                 attrEnv = env;
   743                 Flow.this.make = make;
   744                 pendingExits = new ListBuffer<PendingExit>();
   745                 alive = true;
   746                 scan(tree);
   747             } finally {
   748                 pendingExits = null;
   749                 Flow.this.make = null;
   750             }
   751         }
   752     }
   754     /**
   755      * This pass implements the second step of the dataflow analysis, namely
   756      * the exception analysis. This is to ensure that every checked exception that is
   757      * thrown is declared or caught. The analyzer uses some info that has been set by
   758      * the liveliness analyzer.
   759      */
   760     class FlowAnalyzer extends BaseAnalyzer<FlowAnalyzer.FlowPendingExit> {
   762         /** A flag that indicates whether the last statement could
   763          *  complete normally.
   764          */
   765         HashMap<Symbol, List<Type>> preciseRethrowTypes;
   767         /** The current class being defined.
   768          */
   769         JCClassDecl classDef;
   771         /** The list of possibly thrown declarable exceptions.
   772          */
   773         List<Type> thrown;
   775         /** The list of exceptions that are either caught or declared to be
   776          *  thrown.
   777          */
   778         List<Type> caught;
   780         class FlowPendingExit extends BaseAnalyzer.PendingExit {
   782             Type thrown;
   784             FlowPendingExit(JCTree tree, Type thrown) {
   785                 super(tree);
   786                 this.thrown = thrown;
   787             }
   788         }
   790         @Override
   791         void markDead(JCTree tree) {
   792             //do nothing
   793         }
   795         /*-------------------- Exceptions ----------------------*/
   797         /** Complain that pending exceptions are not caught.
   798          */
   799         void errorUncaught() {
   800             for (FlowPendingExit exit = pendingExits.next();
   801                  exit != null;
   802                  exit = pendingExits.next()) {
   803                 if (classDef != null &&
   804                     classDef.pos == exit.tree.pos) {
   805                     log.error(exit.tree.pos(),
   806                             "unreported.exception.default.constructor",
   807                             exit.thrown);
   808                 } else if (exit.tree.hasTag(VARDEF) &&
   809                         ((JCVariableDecl)exit.tree).sym.isResourceVariable()) {
   810                     log.error(exit.tree.pos(),
   811                             "unreported.exception.implicit.close",
   812                             exit.thrown,
   813                             ((JCVariableDecl)exit.tree).sym.name);
   814                 } else {
   815                     log.error(exit.tree.pos(),
   816                             "unreported.exception.need.to.catch.or.throw",
   817                             exit.thrown);
   818                 }
   819             }
   820         }
   822         /** Record that exception is potentially thrown and check that it
   823          *  is caught.
   824          */
   825         void markThrown(JCTree tree, Type exc) {
   826             if (!chk.isUnchecked(tree.pos(), exc)) {
   827                 if (!chk.isHandled(exc, caught)) {
   828                     pendingExits.append(new FlowPendingExit(tree, exc));
   829                 }
   830                 thrown = chk.incl(exc, thrown);
   831             }
   832         }
   834     /*************************************************************************
   835      * Visitor methods for statements and definitions
   836      *************************************************************************/
   838         /* ------------ Visitor methods for various sorts of trees -------------*/
   840         public void visitClassDef(JCClassDecl tree) {
   841             if (tree.sym == null) return;
   843             JCClassDecl classDefPrev = classDef;
   844             List<Type> thrownPrev = thrown;
   845             List<Type> caughtPrev = caught;
   846             ListBuffer<FlowPendingExit> pendingExitsPrev = pendingExits;
   847             Lint lintPrev = lint;
   849             pendingExits = new ListBuffer<FlowPendingExit>();
   850             if (tree.name != names.empty) {
   851                 caught = List.nil();
   852             }
   853             classDef = tree;
   854             thrown = List.nil();
   855             lint = lint.augment(tree.sym);
   857             try {
   858                 // process all the static initializers
   859                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   860                     if (!l.head.hasTag(METHODDEF) &&
   861                         (TreeInfo.flags(l.head) & STATIC) != 0) {
   862                         scan(l.head);
   863                         errorUncaught();
   864                     }
   865                 }
   867                 // add intersection of all thrown clauses of initial constructors
   868                 // to set of caught exceptions, unless class is anonymous.
   869                 if (tree.name != names.empty) {
   870                     boolean firstConstructor = true;
   871                     for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   872                         if (TreeInfo.isInitialConstructor(l.head)) {
   873                             List<Type> mthrown =
   874                                 ((JCMethodDecl) l.head).sym.type.getThrownTypes();
   875                             if (firstConstructor) {
   876                                 caught = mthrown;
   877                                 firstConstructor = false;
   878                             } else {
   879                                 caught = chk.intersect(mthrown, caught);
   880                             }
   881                         }
   882                     }
   883                 }
   885                 // process all the instance initializers
   886                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   887                     if (!l.head.hasTag(METHODDEF) &&
   888                         (TreeInfo.flags(l.head) & STATIC) == 0) {
   889                         scan(l.head);
   890                         errorUncaught();
   891                     }
   892                 }
   894                 // in an anonymous class, add the set of thrown exceptions to
   895                 // the throws clause of the synthetic constructor and propagate
   896                 // outwards.
   897                 // Changing the throws clause on the fly is okay here because
   898                 // the anonymous constructor can't be invoked anywhere else,
   899                 // and its type hasn't been cached.
   900                 if (tree.name == names.empty) {
   901                     for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   902                         if (TreeInfo.isInitialConstructor(l.head)) {
   903                             JCMethodDecl mdef = (JCMethodDecl)l.head;
   904                             mdef.thrown = make.Types(thrown);
   905                             mdef.sym.type = types.createMethodTypeWithThrown(mdef.sym.type, thrown);
   906                         }
   907                     }
   908                     thrownPrev = chk.union(thrown, thrownPrev);
   909                 }
   911                 // process all the methods
   912                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
   913                     if (l.head.hasTag(METHODDEF)) {
   914                         scan(l.head);
   915                         errorUncaught();
   916                     }
   917                 }
   919                 thrown = thrownPrev;
   920             } finally {
   921                 pendingExits = pendingExitsPrev;
   922                 caught = caughtPrev;
   923                 classDef = classDefPrev;
   924                 lint = lintPrev;
   925             }
   926         }
   928         public void visitMethodDef(JCMethodDecl tree) {
   929             if (tree.body == null) return;
   931             List<Type> caughtPrev = caught;
   932             List<Type> mthrown = tree.sym.type.getThrownTypes();
   933             Lint lintPrev = lint;
   935             lint = lint.augment(tree.sym);
   937             Assert.check(pendingExits.isEmpty());
   939             try {
   940                 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   941                     JCVariableDecl def = l.head;
   942                     scan(def);
   943                 }
   944                 if (TreeInfo.isInitialConstructor(tree))
   945                     caught = chk.union(caught, mthrown);
   946                 else if ((tree.sym.flags() & (BLOCK | STATIC)) != BLOCK)
   947                     caught = mthrown;
   948                 // else we are in an instance initializer block;
   949                 // leave caught unchanged.
   951                 scan(tree.body);
   953                 List<FlowPendingExit> exits = pendingExits.toList();
   954                 pendingExits = new ListBuffer<FlowPendingExit>();
   955                 while (exits.nonEmpty()) {
   956                     FlowPendingExit exit = exits.head;
   957                     exits = exits.tail;
   958                     if (exit.thrown == null) {
   959                         Assert.check(exit.tree.hasTag(RETURN));
   960                     } else {
   961                         // uncaught throws will be reported later
   962                         pendingExits.append(exit);
   963                     }
   964                 }
   965             } finally {
   966                 caught = caughtPrev;
   967                 lint = lintPrev;
   968             }
   969         }
   971         public void visitVarDef(JCVariableDecl tree) {
   972             if (tree.init != null) {
   973                 Lint lintPrev = lint;
   974                 lint = lint.augment(tree.sym);
   975                 try{
   976                     scan(tree.init);
   977                 } finally {
   978                     lint = lintPrev;
   979                 }
   980             }
   981         }
   983         public void visitBlock(JCBlock tree) {
   984             scan(tree.stats);
   985         }
   987         public void visitDoLoop(JCDoWhileLoop tree) {
   988             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
   989             pendingExits = new ListBuffer<FlowPendingExit>();
   990             scan(tree.body);
   991             resolveContinues(tree);
   992             scan(tree.cond);
   993             resolveBreaks(tree, prevPendingExits);
   994         }
   996         public void visitWhileLoop(JCWhileLoop tree) {
   997             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
   998             pendingExits = new ListBuffer<FlowPendingExit>();
   999             scan(tree.cond);
  1000             scan(tree.body);
  1001             resolveContinues(tree);
  1002             resolveBreaks(tree, prevPendingExits);
  1005         public void visitForLoop(JCForLoop tree) {
  1006             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
  1007             scan(tree.init);
  1008             pendingExits = new ListBuffer<FlowPendingExit>();
  1009             if (tree.cond != null) {
  1010                 scan(tree.cond);
  1012             scan(tree.body);
  1013             resolveContinues(tree);
  1014             scan(tree.step);
  1015             resolveBreaks(tree, prevPendingExits);
  1018         public void visitForeachLoop(JCEnhancedForLoop tree) {
  1019             visitVarDef(tree.var);
  1020             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
  1021             scan(tree.expr);
  1022             pendingExits = new ListBuffer<FlowPendingExit>();
  1023             scan(tree.body);
  1024             resolveContinues(tree);
  1025             resolveBreaks(tree, prevPendingExits);
  1028         public void visitLabelled(JCLabeledStatement tree) {
  1029             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
  1030             pendingExits = new ListBuffer<FlowPendingExit>();
  1031             scan(tree.body);
  1032             resolveBreaks(tree, prevPendingExits);
  1035         public void visitSwitch(JCSwitch tree) {
  1036             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
  1037             pendingExits = new ListBuffer<FlowPendingExit>();
  1038             scan(tree.selector);
  1039             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1040                 JCCase c = l.head;
  1041                 if (c.pat != null) {
  1042                     scan(c.pat);
  1044                 scan(c.stats);
  1046             resolveBreaks(tree, prevPendingExits);
  1049         public void visitTry(JCTry tree) {
  1050             List<Type> caughtPrev = caught;
  1051             List<Type> thrownPrev = thrown;
  1052             thrown = List.nil();
  1053             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1054                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
  1055                         ((JCTypeUnion)l.head.param.vartype).alternatives :
  1056                         List.of(l.head.param.vartype);
  1057                 for (JCExpression ct : subClauses) {
  1058                     caught = chk.incl(ct.type, caught);
  1062             ListBuffer<FlowPendingExit> prevPendingExits = pendingExits;
  1063             pendingExits = new ListBuffer<FlowPendingExit>();
  1064             for (JCTree resource : tree.resources) {
  1065                 if (resource instanceof JCVariableDecl) {
  1066                     JCVariableDecl vdecl = (JCVariableDecl) resource;
  1067                     visitVarDef(vdecl);
  1068                 } else if (resource instanceof JCExpression) {
  1069                     scan((JCExpression) resource);
  1070                 } else {
  1071                     throw new AssertionError(tree);  // parser error
  1074             for (JCTree resource : tree.resources) {
  1075                 List<Type> closeableSupertypes = resource.type.isCompound() ?
  1076                     types.interfaces(resource.type).prepend(types.supertype(resource.type)) :
  1077                     List.of(resource.type);
  1078                 for (Type sup : closeableSupertypes) {
  1079                     if (types.asSuper(sup, syms.autoCloseableType.tsym) != null) {
  1080                         Symbol closeMethod = rs.resolveQualifiedMethod(tree,
  1081                                 attrEnv,
  1082                                 sup,
  1083                                 names.close,
  1084                                 List.<Type>nil(),
  1085                                 List.<Type>nil());
  1086                         Type mt = types.memberType(resource.type, closeMethod);
  1087                         if (closeMethod.kind == MTH) {
  1088                             for (Type t : mt.getThrownTypes()) {
  1089                                 markThrown(resource, t);
  1095             scan(tree.body);
  1096             List<Type> thrownInTry = allowImprovedCatchAnalysis ?
  1097                 chk.union(thrown, List.of(syms.runtimeExceptionType, syms.errorType)) :
  1098                 thrown;
  1099             thrown = thrownPrev;
  1100             caught = caughtPrev;
  1102             List<Type> caughtInTry = List.nil();
  1103             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1104                 JCVariableDecl param = l.head.param;
  1105                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(l.head) ?
  1106                         ((JCTypeUnion)l.head.param.vartype).alternatives :
  1107                         List.of(l.head.param.vartype);
  1108                 List<Type> ctypes = List.nil();
  1109                 List<Type> rethrownTypes = chk.diff(thrownInTry, caughtInTry);
  1110                 for (JCExpression ct : subClauses) {
  1111                     Type exc = ct.type;
  1112                     if (exc != syms.unknownType) {
  1113                         ctypes = ctypes.append(exc);
  1114                         if (types.isSameType(exc, syms.objectType))
  1115                             continue;
  1116                         checkCaughtType(l.head.pos(), exc, thrownInTry, caughtInTry);
  1117                         caughtInTry = chk.incl(exc, caughtInTry);
  1120                 scan(param);
  1121                 preciseRethrowTypes.put(param.sym, chk.intersect(ctypes, rethrownTypes));
  1122                 scan(l.head.body);
  1123                 preciseRethrowTypes.remove(param.sym);
  1125             if (tree.finalizer != null) {
  1126                 List<Type> savedThrown = thrown;
  1127                 thrown = List.nil();
  1128                 ListBuffer<FlowPendingExit> exits = pendingExits;
  1129                 pendingExits = prevPendingExits;
  1130                 scan(tree.finalizer);
  1131                 if (!tree.finallyCanCompleteNormally) {
  1132                     // discard exits and exceptions from try and finally
  1133                     thrown = chk.union(thrown, thrownPrev);
  1134                 } else {
  1135                     thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
  1136                     thrown = chk.union(thrown, savedThrown);
  1137                     // FIX: this doesn't preserve source order of exits in catch
  1138                     // versus finally!
  1139                     while (exits.nonEmpty()) {
  1140                         pendingExits.append(exits.next());
  1143             } else {
  1144                 thrown = chk.union(thrown, chk.diff(thrownInTry, caughtInTry));
  1145                 ListBuffer<FlowPendingExit> exits = pendingExits;
  1146                 pendingExits = prevPendingExits;
  1147                 while (exits.nonEmpty()) pendingExits.append(exits.next());
  1151         @Override
  1152         public void visitIf(JCIf tree) {
  1153             scan(tree.cond);
  1154             scan(tree.thenpart);
  1155             if (tree.elsepart != null) {
  1156                 scan(tree.elsepart);
  1160         void checkCaughtType(DiagnosticPosition pos, Type exc, List<Type> thrownInTry, List<Type> caughtInTry) {
  1161             if (chk.subset(exc, caughtInTry)) {
  1162                 log.error(pos, "except.already.caught", exc);
  1163             } else if (!chk.isUnchecked(pos, exc) &&
  1164                     !isExceptionOrThrowable(exc) &&
  1165                     !chk.intersects(exc, thrownInTry)) {
  1166                 log.error(pos, "except.never.thrown.in.try", exc);
  1167             } else if (allowImprovedCatchAnalysis) {
  1168                 List<Type> catchableThrownTypes = chk.intersect(List.of(exc), thrownInTry);
  1169                 // 'catchableThrownTypes' cannnot possibly be empty - if 'exc' was an
  1170                 // unchecked exception, the result list would not be empty, as the augmented
  1171                 // thrown set includes { RuntimeException, Error }; if 'exc' was a checked
  1172                 // exception, that would have been covered in the branch above
  1173                 if (chk.diff(catchableThrownTypes, caughtInTry).isEmpty() &&
  1174                         !isExceptionOrThrowable(exc)) {
  1175                     String key = catchableThrownTypes.length() == 1 ?
  1176                             "unreachable.catch" :
  1177                             "unreachable.catch.1";
  1178                     log.warning(pos, key, catchableThrownTypes);
  1182         //where
  1183             private boolean isExceptionOrThrowable(Type exc) {
  1184                 return exc.tsym == syms.throwableType.tsym ||
  1185                     exc.tsym == syms.exceptionType.tsym;
  1188         public void visitBreak(JCBreak tree) {
  1189             recordExit(tree, new FlowPendingExit(tree, null));
  1192         public void visitContinue(JCContinue tree) {
  1193             recordExit(tree, new FlowPendingExit(tree, null));
  1196         public void visitReturn(JCReturn tree) {
  1197             scan(tree.expr);
  1198             recordExit(tree, new FlowPendingExit(tree, null));
  1201         public void visitThrow(JCThrow tree) {
  1202             scan(tree.expr);
  1203             Symbol sym = TreeInfo.symbol(tree.expr);
  1204             if (sym != null &&
  1205                 sym.kind == VAR &&
  1206                 (sym.flags() & (FINAL | EFFECTIVELY_FINAL)) != 0 &&
  1207                 preciseRethrowTypes.get(sym) != null &&
  1208                 allowImprovedRethrowAnalysis) {
  1209                 for (Type t : preciseRethrowTypes.get(sym)) {
  1210                     markThrown(tree, t);
  1213             else {
  1214                 markThrown(tree, tree.expr.type);
  1216             markDead(tree);
  1219         public void visitApply(JCMethodInvocation tree) {
  1220             scan(tree.meth);
  1221             scan(tree.args);
  1222             for (List<Type> l = tree.meth.type.getThrownTypes(); l.nonEmpty(); l = l.tail)
  1223                 markThrown(tree, l.head);
  1226         public void visitNewClass(JCNewClass tree) {
  1227             scan(tree.encl);
  1228             scan(tree.args);
  1229            // scan(tree.def);
  1230             for (List<Type> l = tree.constructorType.getThrownTypes();
  1231                  l.nonEmpty();
  1232                  l = l.tail) {
  1233                 markThrown(tree, l.head);
  1235             List<Type> caughtPrev = caught;
  1236             try {
  1237                 // If the new class expression defines an anonymous class,
  1238                 // analysis of the anonymous constructor may encounter thrown
  1239                 // types which are unsubstituted type variables.
  1240                 // However, since the constructor's actual thrown types have
  1241                 // already been marked as thrown, it is safe to simply include
  1242                 // each of the constructor's formal thrown types in the set of
  1243                 // 'caught/declared to be thrown' types, for the duration of
  1244                 // the class def analysis.
  1245                 if (tree.def != null)
  1246                     for (List<Type> l = tree.constructor.type.getThrownTypes();
  1247                          l.nonEmpty();
  1248                          l = l.tail) {
  1249                         caught = chk.incl(l.head, caught);
  1251                 scan(tree.def);
  1253             finally {
  1254                 caught = caughtPrev;
  1258         @Override
  1259         public void visitLambda(JCLambda tree) {
  1260             if (tree.type != null &&
  1261                     tree.type.isErroneous()) {
  1262                 return;
  1264             List<Type> prevCaught = caught;
  1265             List<Type> prevThrown = thrown;
  1266             ListBuffer<FlowPendingExit> prevPending = pendingExits;
  1267             try {
  1268                 pendingExits = new ListBuffer<>();
  1269                 caught = tree.getDescriptorType(types).getThrownTypes();
  1270                 thrown = List.nil();
  1271                 scan(tree.body);
  1272                 List<FlowPendingExit> exits = pendingExits.toList();
  1273                 pendingExits = new ListBuffer<FlowPendingExit>();
  1274                 while (exits.nonEmpty()) {
  1275                     FlowPendingExit exit = exits.head;
  1276                     exits = exits.tail;
  1277                     if (exit.thrown == null) {
  1278                         Assert.check(exit.tree.hasTag(RETURN));
  1279                     } else {
  1280                         // uncaught throws will be reported later
  1281                         pendingExits.append(exit);
  1285                 errorUncaught();
  1286             } finally {
  1287                 pendingExits = prevPending;
  1288                 caught = prevCaught;
  1289                 thrown = prevThrown;
  1293         public void visitTopLevel(JCCompilationUnit tree) {
  1294             // Do nothing for TopLevel since each class is visited individually
  1297     /**************************************************************************
  1298      * main method
  1299      *************************************************************************/
  1301         /** Perform definite assignment/unassignment analysis on a tree.
  1302          */
  1303         public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
  1304             analyzeTree(env, env.tree, make);
  1306         public void analyzeTree(Env<AttrContext> env, JCTree tree, TreeMaker make) {
  1307             try {
  1308                 attrEnv = env;
  1309                 Flow.this.make = make;
  1310                 pendingExits = new ListBuffer<FlowPendingExit>();
  1311                 preciseRethrowTypes = new HashMap<Symbol, List<Type>>();
  1312                 this.thrown = this.caught = null;
  1313                 this.classDef = null;
  1314                 scan(tree);
  1315             } finally {
  1316                 pendingExits = null;
  1317                 Flow.this.make = null;
  1318                 this.thrown = this.caught = null;
  1319                 this.classDef = null;
  1324     /**
  1325      * Specialized pass that performs inference of thrown types for lambdas.
  1326      */
  1327     class LambdaFlowAnalyzer extends FlowAnalyzer {
  1328         List<Type> inferredThrownTypes;
  1329         boolean inLambda;
  1330         @Override
  1331         public void visitLambda(JCLambda tree) {
  1332             if ((tree.type != null &&
  1333                     tree.type.isErroneous()) || inLambda) {
  1334                 return;
  1336             List<Type> prevCaught = caught;
  1337             List<Type> prevThrown = thrown;
  1338             ListBuffer<FlowPendingExit> prevPending = pendingExits;
  1339             inLambda = true;
  1340             try {
  1341                 pendingExits = new ListBuffer<>();
  1342                 caught = List.of(syms.throwableType);
  1343                 thrown = List.nil();
  1344                 scan(tree.body);
  1345                 inferredThrownTypes = thrown;
  1346             } finally {
  1347                 pendingExits = prevPending;
  1348                 caught = prevCaught;
  1349                 thrown = prevThrown;
  1350                 inLambda = false;
  1353         @Override
  1354         public void visitClassDef(JCClassDecl tree) {
  1355             //skip
  1359     /**
  1360      * This pass implements (i) definite assignment analysis, which ensures that
  1361      * each variable is assigned when used and (ii) definite unassignment analysis,
  1362      * which ensures that no final variable is assigned more than once. This visitor
  1363      * depends on the results of the liveliness analyzer. This pass is also used to mark
  1364      * effectively-final local variables/parameters.
  1365      */
  1367     public abstract static class AbstractAssignAnalyzer<P extends AbstractAssignAnalyzer.AbstractAssignPendingExit>
  1368         extends BaseAnalyzer<P> {
  1370         /** The set of definitely assigned variables.
  1371          */
  1372         protected final Bits inits;
  1374         /** The set of definitely unassigned variables.
  1375          */
  1376         final Bits uninits;
  1378         /** The set of variables that are definitely unassigned everywhere
  1379          *  in current try block. This variable is maintained lazily; it is
  1380          *  updated only when something gets removed from uninits,
  1381          *  typically by being assigned in reachable code.  To obtain the
  1382          *  correct set of variables which are definitely unassigned
  1383          *  anywhere in current try block, intersect uninitsTry and
  1384          *  uninits.
  1385          */
  1386         final Bits uninitsTry;
  1388         /** When analyzing a condition, inits and uninits are null.
  1389          *  Instead we have:
  1390          */
  1391         final Bits initsWhenTrue;
  1392         final Bits initsWhenFalse;
  1393         final Bits uninitsWhenTrue;
  1394         final Bits uninitsWhenFalse;
  1396         /** A mapping from addresses to variable symbols.
  1397          */
  1398         protected JCVariableDecl[] vardecls;
  1400         /** The current class being defined.
  1401          */
  1402         JCClassDecl classDef;
  1404         /** The first variable sequence number in this class definition.
  1405          */
  1406         int firstadr;
  1408         /** The next available variable sequence number.
  1409          */
  1410         protected int nextadr;
  1412         /** The first variable sequence number in a block that can return.
  1413          */
  1414         protected int returnadr;
  1416         /** The list of unreferenced automatic resources.
  1417          */
  1418         Scope unrefdResources;
  1420         /** Set when processing a loop body the second time for DU analysis. */
  1421         FlowKind flowKind = FlowKind.NORMAL;
  1423         /** The starting position of the analysed tree */
  1424         int startPos;
  1426         final Symtab syms;
  1428         protected Names names;
  1430         public static class AbstractAssignPendingExit extends BaseAnalyzer.PendingExit {
  1432             final Bits inits;
  1433             final Bits uninits;
  1434             final Bits exit_inits = new Bits(true);
  1435             final Bits exit_uninits = new Bits(true);
  1437             public AbstractAssignPendingExit(JCTree tree, final Bits inits, final Bits uninits) {
  1438                 super(tree);
  1439                 this.inits = inits;
  1440                 this.uninits = uninits;
  1441                 this.exit_inits.assign(inits);
  1442                 this.exit_uninits.assign(uninits);
  1445             @Override
  1446             public void resolveJump(JCTree tree) {
  1447                 inits.andSet(exit_inits);
  1448                 uninits.andSet(exit_uninits);
  1452         public AbstractAssignAnalyzer(Bits inits, Symtab syms, Names names) {
  1453             this.inits = inits;
  1454             uninits = new Bits();
  1455             uninitsTry = new Bits();
  1456             initsWhenTrue = new Bits(true);
  1457             initsWhenFalse = new Bits(true);
  1458             uninitsWhenTrue = new Bits(true);
  1459             uninitsWhenFalse = new Bits(true);
  1460             this.syms = syms;
  1461             this.names = names;
  1464         @Override
  1465         protected void markDead(JCTree tree) {
  1466             inits.inclRange(returnadr, nextadr);
  1467             uninits.inclRange(returnadr, nextadr);
  1470         /*-------------- Processing variables ----------------------*/
  1472         /** Do we need to track init/uninit state of this symbol?
  1473          *  I.e. is symbol either a local or a blank final variable?
  1474          */
  1475         protected boolean trackable(VarSymbol sym) {
  1476             return
  1477                 sym.pos >= startPos &&
  1478                 ((sym.owner.kind == MTH ||
  1479                  ((sym.flags() & (FINAL | HASINIT | PARAMETER)) == FINAL &&
  1480                   classDef.sym.isEnclosedBy((ClassSymbol)sym.owner))));
  1483         /** Initialize new trackable variable by setting its address field
  1484          *  to the next available sequence number and entering it under that
  1485          *  index into the vars array.
  1486          */
  1487         void newVar(JCVariableDecl varDecl) {
  1488             VarSymbol sym = varDecl.sym;
  1489             vardecls = ArrayUtils.ensureCapacity(vardecls, nextadr);
  1490             if ((sym.flags() & FINAL) == 0) {
  1491                 sym.flags_field |= EFFECTIVELY_FINAL;
  1493             sym.adr = nextadr;
  1494             vardecls[nextadr] = varDecl;
  1495             exclVarFromInits(varDecl, nextadr);
  1496             uninits.incl(nextadr);
  1497             nextadr++;
  1500         protected void exclVarFromInits(JCTree tree, int adr) {
  1501             inits.excl(adr);
  1504         protected void assignToInits(JCTree tree, Bits bits) {
  1505             inits.assign(bits);
  1508         protected void andSetInits(JCTree tree, Bits bits) {
  1509             inits.andSet(bits);
  1512         protected void orSetInits(JCTree tree, Bits bits) {
  1513             inits.orSet(bits);
  1516         /** Record an initialization of a trackable variable.
  1517          */
  1518         void letInit(DiagnosticPosition pos, VarSymbol sym) {
  1519             if (sym.adr >= firstadr && trackable(sym)) {
  1520                 if (uninits.isMember(sym.adr)) {
  1521                     uninit(sym);
  1523                 inits.incl(sym.adr);
  1526         //where
  1527             void uninit(VarSymbol sym) {
  1528                 if (!inits.isMember(sym.adr)) {
  1529                     // reachable assignment
  1530                     uninits.excl(sym.adr);
  1531                     uninitsTry.excl(sym.adr);
  1532                 } else {
  1533                     //log.rawWarning(pos, "unreachable assignment");//DEBUG
  1534                     uninits.excl(sym.adr);
  1538         /** If tree is either a simple name or of the form this.name or
  1539          *  C.this.name, and tree represents a trackable variable,
  1540          *  record an initialization of the variable.
  1541          */
  1542         void letInit(JCTree tree) {
  1543             tree = TreeInfo.skipParens(tree);
  1544             if (tree.hasTag(IDENT) || tree.hasTag(SELECT)) {
  1545                 Symbol sym = TreeInfo.symbol(tree);
  1546                 if (sym.kind == VAR) {
  1547                     letInit(tree.pos(), (VarSymbol)sym);
  1552         /** Check that trackable variable is initialized.
  1553          */
  1554         void checkInit(DiagnosticPosition pos, VarSymbol sym) {
  1555             checkInit(pos, sym, "var.might.not.have.been.initialized");
  1558         void checkInit(DiagnosticPosition pos, VarSymbol sym, String errkey) {}
  1560         /** Utility method to reset several Bits instances.
  1561          */
  1562         private void resetBits(Bits... bits) {
  1563             for (Bits b : bits) {
  1564                 b.reset();
  1568         /** Split (duplicate) inits/uninits into WhenTrue/WhenFalse sets
  1569          */
  1570         void split(boolean setToNull) {
  1571             initsWhenFalse.assign(inits);
  1572             uninitsWhenFalse.assign(uninits);
  1573             initsWhenTrue.assign(inits);
  1574             uninitsWhenTrue.assign(uninits);
  1575             if (setToNull) {
  1576                 resetBits(inits, uninits);
  1580         /** Merge (intersect) inits/uninits from WhenTrue/WhenFalse sets.
  1581          */
  1582         protected void merge(JCTree tree) {
  1583             inits.assign(initsWhenFalse.andSet(initsWhenTrue));
  1584             uninits.assign(uninitsWhenFalse.andSet(uninitsWhenTrue));
  1587     /* ************************************************************************
  1588      * Visitor methods for statements and definitions
  1589      *************************************************************************/
  1591         /** Analyze an expression. Make sure to set (un)inits rather than
  1592          *  (un)initsWhenTrue(WhenFalse) on exit.
  1593          */
  1594         void scanExpr(JCTree tree) {
  1595             if (tree != null) {
  1596                 scan(tree);
  1597                 if (inits.isReset()) {
  1598                     merge(tree);
  1603         /** Analyze a list of expressions.
  1604          */
  1605         void scanExprs(List<? extends JCExpression> trees) {
  1606             if (trees != null)
  1607                 for (List<? extends JCExpression> l = trees; l.nonEmpty(); l = l.tail)
  1608                     scanExpr(l.head);
  1611         /** Analyze a condition. Make sure to set (un)initsWhenTrue(WhenFalse)
  1612          *  rather than (un)inits on exit.
  1613          */
  1614         void scanCond(JCTree tree) {
  1615             if (tree.type.isFalse()) {
  1616                 if (inits.isReset()) merge(tree);
  1617                 initsWhenTrue.assign(inits);
  1618                 initsWhenTrue.inclRange(firstadr, nextadr);
  1619                 uninitsWhenTrue.assign(uninits);
  1620                 uninitsWhenTrue.inclRange(firstadr, nextadr);
  1621                 initsWhenFalse.assign(inits);
  1622                 uninitsWhenFalse.assign(uninits);
  1623             } else if (tree.type.isTrue()) {
  1624                 if (inits.isReset()) merge(tree);
  1625                 initsWhenFalse.assign(inits);
  1626                 initsWhenFalse.inclRange(firstadr, nextadr);
  1627                 uninitsWhenFalse.assign(uninits);
  1628                 uninitsWhenFalse.inclRange(firstadr, nextadr);
  1629                 initsWhenTrue.assign(inits);
  1630                 uninitsWhenTrue.assign(uninits);
  1631             } else {
  1632                 scan(tree);
  1633                 if (!inits.isReset())
  1634                     split(tree.type != syms.unknownType);
  1636             if (tree.type != syms.unknownType) {
  1637                 resetBits(inits, uninits);
  1641         /* ------------ Visitor methods for various sorts of trees -------------*/
  1643         @Override
  1644         public void visitClassDef(JCClassDecl tree) {
  1645             if (tree.sym == null) {
  1646                 return;
  1649             JCClassDecl classDefPrev = classDef;
  1650             int firstadrPrev = firstadr;
  1651             int nextadrPrev = nextadr;
  1652             ListBuffer<P> pendingExitsPrev = pendingExits;
  1654             pendingExits = new ListBuffer<P>();
  1655             if (tree.name != names.empty) {
  1656                 firstadr = nextadr;
  1658             classDef = tree;
  1659             try {
  1660                 // define all the static fields
  1661                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1662                     if (l.head.hasTag(VARDEF)) {
  1663                         JCVariableDecl def = (JCVariableDecl)l.head;
  1664                         if ((def.mods.flags & STATIC) != 0) {
  1665                             VarSymbol sym = def.sym;
  1666                             if (trackable(sym)) {
  1667                                 newVar(def);
  1673                 // process all the static initializers
  1674                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1675                     if (!l.head.hasTag(METHODDEF) &&
  1676                         (TreeInfo.flags(l.head) & STATIC) != 0) {
  1677                         scan(l.head);
  1681                 // define all the instance fields
  1682                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1683                     if (l.head.hasTag(VARDEF)) {
  1684                         JCVariableDecl def = (JCVariableDecl)l.head;
  1685                         if ((def.mods.flags & STATIC) == 0) {
  1686                             VarSymbol sym = def.sym;
  1687                             if (trackable(sym)) {
  1688                                 newVar(def);
  1694                 // process all the instance initializers
  1695                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1696                     if (!l.head.hasTag(METHODDEF) &&
  1697                         (TreeInfo.flags(l.head) & STATIC) == 0) {
  1698                         scan(l.head);
  1702                 // process all the methods
  1703                 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1704                     if (l.head.hasTag(METHODDEF)) {
  1705                         scan(l.head);
  1708             } finally {
  1709                 pendingExits = pendingExitsPrev;
  1710                 nextadr = nextadrPrev;
  1711                 firstadr = firstadrPrev;
  1712                 classDef = classDefPrev;
  1716         @Override
  1717         public void visitMethodDef(JCMethodDecl tree) {
  1718             if (tree.body == null) {
  1719                 return;
  1721             /*  Ignore synthetic methods, except for translated lambda methods.
  1722              */
  1723             if ((tree.sym.flags() & (SYNTHETIC | LAMBDA_METHOD)) == SYNTHETIC) {
  1724                 return;
  1727             final Bits initsPrev = new Bits(inits);
  1728             final Bits uninitsPrev = new Bits(uninits);
  1729             int nextadrPrev = nextadr;
  1730             int firstadrPrev = firstadr;
  1731             int returnadrPrev = returnadr;
  1733             Assert.check(pendingExits.isEmpty());
  1735             try {
  1736                 boolean isInitialConstructor =
  1737                     TreeInfo.isInitialConstructor(tree);
  1739                 if (!isInitialConstructor) {
  1740                     firstadr = nextadr;
  1742                 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
  1743                     JCVariableDecl def = l.head;
  1744                     scan(def);
  1745                     Assert.check((def.sym.flags() & PARAMETER) != 0, "Method parameter without PARAMETER flag");
  1746                     /*  If we are executing the code from Gen, then there can be
  1747                      *  synthetic or mandated variables, ignore them.
  1748                      */
  1749                     initParam(def);
  1751                 // else we are in an instance initializer block;
  1752                 // leave caught unchanged.
  1753                 scan(tree.body);
  1755                 if (isInitialConstructor) {
  1756                     boolean isSynthesized = (tree.sym.flags() &
  1757                                              GENERATEDCONSTR) != 0;
  1758                     for (int i = firstadr; i < nextadr; i++) {
  1759                         JCVariableDecl vardecl = vardecls[i];
  1760                         VarSymbol var = vardecl.sym;
  1761                         if (var.owner == classDef.sym) {
  1762                             // choose the diagnostic position based on whether
  1763                             // the ctor is default(synthesized) or not
  1764                             if (isSynthesized) {
  1765                                 checkInit(TreeInfo.diagnosticPositionFor(var, vardecl),
  1766                                     var, "var.not.initialized.in.default.constructor");
  1767                             } else {
  1768                                 checkInit(TreeInfo.diagEndPos(tree.body), var);
  1773                 List<P> exits = pendingExits.toList();
  1774                 pendingExits = new ListBuffer<>();
  1775                 while (exits.nonEmpty()) {
  1776                     P exit = exits.head;
  1777                     exits = exits.tail;
  1778                     Assert.check(exit.tree.hasTag(RETURN), exit.tree);
  1779                     if (isInitialConstructor) {
  1780                         assignToInits(exit.tree, exit.exit_inits);
  1781                         for (int i = firstadr; i < nextadr; i++) {
  1782                             checkInit(exit.tree.pos(), vardecls[i].sym);
  1786             } finally {
  1787                 assignToInits(tree, initsPrev);
  1788                 uninits.assign(uninitsPrev);
  1789                 nextadr = nextadrPrev;
  1790                 firstadr = firstadrPrev;
  1791                 returnadr = returnadrPrev;
  1795         protected void initParam(JCVariableDecl def) {
  1796             inits.incl(def.sym.adr);
  1797             uninits.excl(def.sym.adr);
  1800         public void visitVarDef(JCVariableDecl tree) {
  1801             boolean track = trackable(tree.sym);
  1802             if (track && tree.sym.owner.kind == MTH) {
  1803                 newVar(tree);
  1805             if (tree.init != null) {
  1806                 scanExpr(tree.init);
  1807                 if (track) {
  1808                     letInit(tree.pos(), tree.sym);
  1813         public void visitBlock(JCBlock tree) {
  1814             int nextadrPrev = nextadr;
  1815             scan(tree.stats);
  1816             nextadr = nextadrPrev;
  1819         int getLogNumberOfErrors() {
  1820             return 0;
  1823         public void visitDoLoop(JCDoWhileLoop tree) {
  1824             ListBuffer<P> prevPendingExits = pendingExits;
  1825             FlowKind prevFlowKind = flowKind;
  1826             flowKind = FlowKind.NORMAL;
  1827             final Bits initsSkip = new Bits(true);
  1828             final Bits uninitsSkip = new Bits(true);
  1829             pendingExits = new ListBuffer<P>();
  1830             int prevErrors = getLogNumberOfErrors();
  1831             do {
  1832                 final Bits uninitsEntry = new Bits(uninits);
  1833                 uninitsEntry.excludeFrom(nextadr);
  1834                 scan(tree.body);
  1835                 resolveContinues(tree);
  1836                 scanCond(tree.cond);
  1837                 if (!flowKind.isFinal()) {
  1838                     initsSkip.assign(initsWhenFalse);
  1839                     uninitsSkip.assign(uninitsWhenFalse);
  1841                 if (getLogNumberOfErrors() !=  prevErrors ||
  1842                     flowKind.isFinal() ||
  1843                     new Bits(uninitsEntry).diffSet(uninitsWhenTrue).nextBit(firstadr)==-1)
  1844                     break;
  1845                 assignToInits(tree.cond, initsWhenTrue);
  1846                 uninits.assign(uninitsEntry.andSet(uninitsWhenTrue));
  1847                 flowKind = FlowKind.SPECULATIVE_LOOP;
  1848             } while (true);
  1849             flowKind = prevFlowKind;
  1850             assignToInits(tree, initsSkip);
  1851             uninits.assign(uninitsSkip);
  1852             resolveBreaks(tree, prevPendingExits);
  1855         public void visitWhileLoop(JCWhileLoop tree) {
  1856             ListBuffer<P> prevPendingExits = pendingExits;
  1857             FlowKind prevFlowKind = flowKind;
  1858             flowKind = FlowKind.NORMAL;
  1859             final Bits initsSkip = new Bits(true);
  1860             final Bits uninitsSkip = new Bits(true);
  1861             pendingExits = new ListBuffer<>();
  1862             int prevErrors = getLogNumberOfErrors();
  1863             final Bits uninitsEntry = new Bits(uninits);
  1864             uninitsEntry.excludeFrom(nextadr);
  1865             do {
  1866                 scanCond(tree.cond);
  1867                 if (!flowKind.isFinal()) {
  1868                     initsSkip.assign(initsWhenFalse) ;
  1869                     uninitsSkip.assign(uninitsWhenFalse);
  1871                 assignToInits(tree, initsWhenTrue);
  1872                 uninits.assign(uninitsWhenTrue);
  1873                 scan(tree.body);
  1874                 resolveContinues(tree);
  1875                 if (getLogNumberOfErrors() != prevErrors ||
  1876                     flowKind.isFinal() ||
  1877                     new Bits(uninitsEntry).diffSet(uninits).nextBit(firstadr) == -1) {
  1878                     break;
  1880                 uninits.assign(uninitsEntry.andSet(uninits));
  1881                 flowKind = FlowKind.SPECULATIVE_LOOP;
  1882             } while (true);
  1883             flowKind = prevFlowKind;
  1884             //a variable is DA/DU after the while statement, if it's DA/DU assuming the
  1885             //branch is not taken AND if it's DA/DU before any break statement
  1886             assignToInits(tree.body, initsSkip);
  1887             uninits.assign(uninitsSkip);
  1888             resolveBreaks(tree, prevPendingExits);
  1891         public void visitForLoop(JCForLoop tree) {
  1892             ListBuffer<P> prevPendingExits = pendingExits;
  1893             FlowKind prevFlowKind = flowKind;
  1894             flowKind = FlowKind.NORMAL;
  1895             int nextadrPrev = nextadr;
  1896             scan(tree.init);
  1897             final Bits initsSkip = new Bits(true);
  1898             final Bits uninitsSkip = new Bits(true);
  1899             pendingExits = new ListBuffer<P>();
  1900             int prevErrors = getLogNumberOfErrors();
  1901             do {
  1902                 final Bits uninitsEntry = new Bits(uninits);
  1903                 uninitsEntry.excludeFrom(nextadr);
  1904                 if (tree.cond != null) {
  1905                     scanCond(tree.cond);
  1906                     if (!flowKind.isFinal()) {
  1907                         initsSkip.assign(initsWhenFalse);
  1908                         uninitsSkip.assign(uninitsWhenFalse);
  1910                     assignToInits(tree.body, initsWhenTrue);
  1911                     uninits.assign(uninitsWhenTrue);
  1912                 } else if (!flowKind.isFinal()) {
  1913                     initsSkip.assign(inits);
  1914                     initsSkip.inclRange(firstadr, nextadr);
  1915                     uninitsSkip.assign(uninits);
  1916                     uninitsSkip.inclRange(firstadr, nextadr);
  1918                 scan(tree.body);
  1919                 resolveContinues(tree);
  1920                 scan(tree.step);
  1921                 if (getLogNumberOfErrors() != prevErrors ||
  1922                     flowKind.isFinal() ||
  1923                     new Bits(uninitsEntry).diffSet(uninits).nextBit(firstadr) == -1)
  1924                     break;
  1925                 uninits.assign(uninitsEntry.andSet(uninits));
  1926                 flowKind = FlowKind.SPECULATIVE_LOOP;
  1927             } while (true);
  1928             flowKind = prevFlowKind;
  1929             //a variable is DA/DU after a for loop, if it's DA/DU assuming the
  1930             //branch is not taken AND if it's DA/DU before any break statement
  1931             assignToInits(tree.body, initsSkip);
  1932             uninits.assign(uninitsSkip);
  1933             resolveBreaks(tree, prevPendingExits);
  1934             nextadr = nextadrPrev;
  1937         public void visitForeachLoop(JCEnhancedForLoop tree) {
  1938             visitVarDef(tree.var);
  1940             ListBuffer<P> prevPendingExits = pendingExits;
  1941             FlowKind prevFlowKind = flowKind;
  1942             flowKind = FlowKind.NORMAL;
  1943             int nextadrPrev = nextadr;
  1944             scan(tree.expr);
  1945             final Bits initsStart = new Bits(inits);
  1946             final Bits uninitsStart = new Bits(uninits);
  1948             letInit(tree.pos(), tree.var.sym);
  1949             pendingExits = new ListBuffer<P>();
  1950             int prevErrors = getLogNumberOfErrors();
  1951             do {
  1952                 final Bits uninitsEntry = new Bits(uninits);
  1953                 uninitsEntry.excludeFrom(nextadr);
  1954                 scan(tree.body);
  1955                 resolveContinues(tree);
  1956                 if (getLogNumberOfErrors() != prevErrors ||
  1957                     flowKind.isFinal() ||
  1958                     new Bits(uninitsEntry).diffSet(uninits).nextBit(firstadr) == -1)
  1959                     break;
  1960                 uninits.assign(uninitsEntry.andSet(uninits));
  1961                 flowKind = FlowKind.SPECULATIVE_LOOP;
  1962             } while (true);
  1963             flowKind = prevFlowKind;
  1964             assignToInits(tree.body, initsStart);
  1965             uninits.assign(uninitsStart.andSet(uninits));
  1966             resolveBreaks(tree, prevPendingExits);
  1967             nextadr = nextadrPrev;
  1970         public void visitLabelled(JCLabeledStatement tree) {
  1971             ListBuffer<P> prevPendingExits = pendingExits;
  1972             pendingExits = new ListBuffer<P>();
  1973             scan(tree.body);
  1974             resolveBreaks(tree, prevPendingExits);
  1977         public void visitSwitch(JCSwitch tree) {
  1978             ListBuffer<P> prevPendingExits = pendingExits;
  1979             pendingExits = new ListBuffer<>();
  1980             int nextadrPrev = nextadr;
  1981             scanExpr(tree.selector);
  1982             final Bits initsSwitch = new Bits(inits);
  1983             final Bits uninitsSwitch = new Bits(uninits);
  1984             boolean hasDefault = false;
  1985             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1986                 assignToInits(l.head, initsSwitch);
  1987                 uninits.assign(uninits.andSet(uninitsSwitch));
  1988                 JCCase c = l.head;
  1989                 if (c.pat == null) {
  1990                     hasDefault = true;
  1991                 } else {
  1992                     scanExpr(c.pat);
  1994                 if (hasDefault) {
  1995                     assignToInits(null, initsSwitch);
  1996                     uninits.assign(uninits.andSet(uninitsSwitch));
  1998                 scan(c.stats);
  1999                 addVars(c.stats, initsSwitch, uninitsSwitch);
  2000                 if (!hasDefault) {
  2001                     assignToInits(l.head.stats.last(), initsSwitch);
  2002                     uninits.assign(uninits.andSet(uninitsSwitch));
  2004                 // Warn about fall-through if lint switch fallthrough enabled.
  2006             if (!hasDefault) {
  2007                 andSetInits(null, initsSwitch);
  2009             resolveBreaks(tree, prevPendingExits);
  2010             nextadr = nextadrPrev;
  2012         // where
  2013             /** Add any variables defined in stats to inits and uninits. */
  2014             private void addVars(List<JCStatement> stats, final Bits inits,
  2015                                         final Bits uninits) {
  2016                 for (;stats.nonEmpty(); stats = stats.tail) {
  2017                     JCTree stat = stats.head;
  2018                     if (stat.hasTag(VARDEF)) {
  2019                         int adr = ((JCVariableDecl) stat).sym.adr;
  2020                         inits.excl(adr);
  2021                         uninits.incl(adr);
  2026         boolean isEnabled(Lint.LintCategory lc) {
  2027             return false;
  2030         void reportWarning(Lint.LintCategory lc, DiagnosticPosition pos, String key, Object ... args) {}
  2032         public void visitTry(JCTry tree) {
  2033             ListBuffer<JCVariableDecl> resourceVarDecls = new ListBuffer<>();
  2034             final Bits uninitsTryPrev = new Bits(uninitsTry);
  2035             ListBuffer<P> prevPendingExits = pendingExits;
  2036             pendingExits = new ListBuffer<>();
  2037             final Bits initsTry = new Bits(inits);
  2038             uninitsTry.assign(uninits);
  2039             for (JCTree resource : tree.resources) {
  2040                 if (resource instanceof JCVariableDecl) {
  2041                     JCVariableDecl vdecl = (JCVariableDecl) resource;
  2042                     visitVarDef(vdecl);
  2043                     unrefdResources.enter(vdecl.sym);
  2044                     resourceVarDecls.append(vdecl);
  2045                 } else if (resource instanceof JCExpression) {
  2046                     scanExpr((JCExpression) resource);
  2047                 } else {
  2048                     throw new AssertionError(tree);  // parser error
  2051             scan(tree.body);
  2052             uninitsTry.andSet(uninits);
  2053             final Bits initsEnd = new Bits(inits);
  2054             final Bits uninitsEnd = new Bits(uninits);
  2055             int nextadrCatch = nextadr;
  2057             if (!resourceVarDecls.isEmpty() &&
  2058                     isEnabled(Lint.LintCategory.TRY)) {
  2059                 for (JCVariableDecl resVar : resourceVarDecls) {
  2060                     if (unrefdResources.includes(resVar.sym)) {
  2061                         reportWarning(Lint.LintCategory.TRY, resVar.pos(),
  2062                                     "try.resource.not.referenced", resVar.sym);
  2063                         unrefdResources.remove(resVar.sym);
  2068             /*  The analysis of each catch should be independent.
  2069              *  Each one should have the same initial values of inits and
  2070              *  uninits.
  2071              */
  2072             final Bits initsCatchPrev = new Bits(initsTry);
  2073             final Bits uninitsCatchPrev = new Bits(uninitsTry);
  2075             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  2076                 JCVariableDecl param = l.head.param;
  2077                 assignToInits(tree.body, initsCatchPrev);
  2078                 uninits.assign(uninitsCatchPrev);
  2079                 scan(param);
  2080                 /* If this is a TWR and we are executing the code from Gen,
  2081                  * then there can be synthetic variables, ignore them.
  2082                  */
  2083                 initParam(param);
  2084                 scan(l.head.body);
  2085                 initsEnd.andSet(inits);
  2086                 uninitsEnd.andSet(uninits);
  2087                 nextadr = nextadrCatch;
  2089             if (tree.finalizer != null) {
  2090                 assignToInits(tree.finalizer, initsTry);
  2091                 uninits.assign(uninitsTry);
  2092                 ListBuffer<P> exits = pendingExits;
  2093                 pendingExits = prevPendingExits;
  2094                 scan(tree.finalizer);
  2095                 if (!tree.finallyCanCompleteNormally) {
  2096                     // discard exits and exceptions from try and finally
  2097                 } else {
  2098                     uninits.andSet(uninitsEnd);
  2099                     // FIX: this doesn't preserve source order of exits in catch
  2100                     // versus finally!
  2101                     while (exits.nonEmpty()) {
  2102                         P exit = exits.next();
  2103                         if (exit.exit_inits != null) {
  2104                             exit.exit_inits.orSet(inits);
  2105                             exit.exit_uninits.andSet(uninits);
  2107                         pendingExits.append(exit);
  2109                     orSetInits(tree, initsEnd);
  2111             } else {
  2112                 assignToInits(tree, initsEnd);
  2113                 uninits.assign(uninitsEnd);
  2114                 ListBuffer<P> exits = pendingExits;
  2115                 pendingExits = prevPendingExits;
  2116                 while (exits.nonEmpty()) pendingExits.append(exits.next());
  2118             uninitsTry.andSet(uninitsTryPrev).andSet(uninits);
  2121         public void visitConditional(JCConditional tree) {
  2122             scanCond(tree.cond);
  2123             final Bits initsBeforeElse = new Bits(initsWhenFalse);
  2124             final Bits uninitsBeforeElse = new Bits(uninitsWhenFalse);
  2125             assignToInits(tree.cond, initsWhenTrue);
  2126             uninits.assign(uninitsWhenTrue);
  2127             if (tree.truepart.type.hasTag(BOOLEAN) &&
  2128                 tree.falsepart.type.hasTag(BOOLEAN)) {
  2129                 // if b and c are boolean valued, then
  2130                 // v is (un)assigned after a?b:c when true iff
  2131                 //    v is (un)assigned after b when true and
  2132                 //    v is (un)assigned after c when true
  2133                 scanCond(tree.truepart);
  2134                 final Bits initsAfterThenWhenTrue = new Bits(initsWhenTrue);
  2135                 final Bits initsAfterThenWhenFalse = new Bits(initsWhenFalse);
  2136                 final Bits uninitsAfterThenWhenTrue = new Bits(uninitsWhenTrue);
  2137                 final Bits uninitsAfterThenWhenFalse = new Bits(uninitsWhenFalse);
  2138                 assignToInits(tree.truepart, initsBeforeElse);
  2139                 uninits.assign(uninitsBeforeElse);
  2140                 scanCond(tree.falsepart);
  2141                 initsWhenTrue.andSet(initsAfterThenWhenTrue);
  2142                 initsWhenFalse.andSet(initsAfterThenWhenFalse);
  2143                 uninitsWhenTrue.andSet(uninitsAfterThenWhenTrue);
  2144                 uninitsWhenFalse.andSet(uninitsAfterThenWhenFalse);
  2145             } else {
  2146                 scanExpr(tree.truepart);
  2147                 final Bits initsAfterThen = new Bits(inits);
  2148                 final Bits uninitsAfterThen = new Bits(uninits);
  2149                 assignToInits(tree.truepart, initsBeforeElse);
  2150                 uninits.assign(uninitsBeforeElse);
  2151                 scanExpr(tree.falsepart);
  2152                 andSetInits(tree.falsepart, initsAfterThen);
  2153                 uninits.andSet(uninitsAfterThen);
  2157         public void visitIf(JCIf tree) {
  2158             scanCond(tree.cond);
  2159             final Bits initsBeforeElse = new Bits(initsWhenFalse);
  2160             final Bits uninitsBeforeElse = new Bits(uninitsWhenFalse);
  2161             assignToInits(tree.cond, initsWhenTrue);
  2162             uninits.assign(uninitsWhenTrue);
  2163             scan(tree.thenpart);
  2164             if (tree.elsepart != null) {
  2165                 final Bits initsAfterThen = new Bits(inits);
  2166                 final Bits uninitsAfterThen = new Bits(uninits);
  2167                 assignToInits(tree.thenpart, initsBeforeElse);
  2168                 uninits.assign(uninitsBeforeElse);
  2169                 scan(tree.elsepart);
  2170                 andSetInits(tree.elsepart, initsAfterThen);
  2171                 uninits.andSet(uninitsAfterThen);
  2172             } else {
  2173                 andSetInits(tree.thenpart, initsBeforeElse);
  2174                 uninits.andSet(uninitsBeforeElse);
  2178         protected P createNewPendingExit(JCTree tree, Bits inits, Bits uninits) {
  2179             return null;
  2182         @Override
  2183         public void visitBreak(JCBreak tree) {
  2184             recordExit(tree, createNewPendingExit(tree, inits, uninits));
  2187         @Override
  2188         public void visitContinue(JCContinue tree) {
  2189             recordExit(tree, createNewPendingExit(tree, inits, uninits));
  2192         @Override
  2193         public void visitReturn(JCReturn tree) {
  2194             scanExpr(tree.expr);
  2195             recordExit(tree, createNewPendingExit(tree, inits, uninits));
  2198         public void visitThrow(JCThrow tree) {
  2199             scanExpr(tree.expr);
  2200             markDead(tree.expr);
  2203         public void visitApply(JCMethodInvocation tree) {
  2204             scanExpr(tree.meth);
  2205             scanExprs(tree.args);
  2208         public void visitNewClass(JCNewClass tree) {
  2209             scanExpr(tree.encl);
  2210             scanExprs(tree.args);
  2211             scan(tree.def);
  2214         @Override
  2215         public void visitLambda(JCLambda tree) {
  2216             final Bits prevUninits = new Bits(uninits);
  2217             final Bits prevInits = new Bits(inits);
  2218             int returnadrPrev = returnadr;
  2219             ListBuffer<P> prevPending = pendingExits;
  2220             try {
  2221                 returnadr = nextadr;
  2222                 pendingExits = new ListBuffer<P>();
  2223                 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
  2224                     JCVariableDecl def = l.head;
  2225                     scan(def);
  2226                     inits.incl(def.sym.adr);
  2227                     uninits.excl(def.sym.adr);
  2229                 if (tree.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2230                     scanExpr(tree.body);
  2231                 } else {
  2232                     scan(tree.body);
  2235             finally {
  2236                 returnadr = returnadrPrev;
  2237                 uninits.assign(prevUninits);
  2238                 assignToInits(tree, prevInits);
  2239                 pendingExits = prevPending;
  2243         public void visitNewArray(JCNewArray tree) {
  2244             scanExprs(tree.dims);
  2245             scanExprs(tree.elems);
  2248         public void visitAssert(JCAssert tree) {
  2249             final Bits initsExit = new Bits(inits);
  2250             final Bits uninitsExit = new Bits(uninits);
  2251             scanCond(tree.cond);
  2252             uninitsExit.andSet(uninitsWhenTrue);
  2253             if (tree.detail != null) {
  2254                 assignToInits(tree, initsWhenFalse);
  2255                 uninits.assign(uninitsWhenFalse);
  2256                 scanExpr(tree.detail);
  2258             assignToInits(tree, initsExit);
  2259             uninits.assign(uninitsExit);
  2262         public void visitAssign(JCAssign tree) {
  2263             JCTree lhs = TreeInfo.skipParens(tree.lhs);
  2264             if (!(lhs instanceof JCIdent)) {
  2265                 scanExpr(lhs);
  2267             scanExpr(tree.rhs);
  2268             letInit(lhs);
  2271         public void visitAssignop(JCAssignOp tree) {
  2272             scanExpr(tree.lhs);
  2273             scanExpr(tree.rhs);
  2274             letInit(tree.lhs);
  2277         public void visitUnary(JCUnary tree) {
  2278             switch (tree.getTag()) {
  2279             case NOT:
  2280                 scanCond(tree.arg);
  2281                 final Bits t = new Bits(initsWhenFalse);
  2282                 initsWhenFalse.assign(initsWhenTrue);
  2283                 initsWhenTrue.assign(t);
  2284                 t.assign(uninitsWhenFalse);
  2285                 uninitsWhenFalse.assign(uninitsWhenTrue);
  2286                 uninitsWhenTrue.assign(t);
  2287                 break;
  2288             case PREINC: case POSTINC:
  2289             case PREDEC: case POSTDEC:
  2290                 scanExpr(tree.arg);
  2291                 letInit(tree.arg);
  2292                 break;
  2293             default:
  2294                 scanExpr(tree.arg);
  2298         public void visitBinary(JCBinary tree) {
  2299             switch (tree.getTag()) {
  2300             case AND:
  2301                 scanCond(tree.lhs);
  2302                 final Bits initsWhenFalseLeft = new Bits(initsWhenFalse);
  2303                 final Bits uninitsWhenFalseLeft = new Bits(uninitsWhenFalse);
  2304                 assignToInits(tree.lhs, initsWhenTrue);
  2305                 uninits.assign(uninitsWhenTrue);
  2306                 scanCond(tree.rhs);
  2307                 initsWhenFalse.andSet(initsWhenFalseLeft);
  2308                 uninitsWhenFalse.andSet(uninitsWhenFalseLeft);
  2309                 break;
  2310             case OR:
  2311                 scanCond(tree.lhs);
  2312                 final Bits initsWhenTrueLeft = new Bits(initsWhenTrue);
  2313                 final Bits uninitsWhenTrueLeft = new Bits(uninitsWhenTrue);
  2314                 assignToInits(tree.lhs, initsWhenFalse);
  2315                 uninits.assign(uninitsWhenFalse);
  2316                 scanCond(tree.rhs);
  2317                 initsWhenTrue.andSet(initsWhenTrueLeft);
  2318                 uninitsWhenTrue.andSet(uninitsWhenTrueLeft);
  2319                 break;
  2320             default:
  2321                 scanExpr(tree.lhs);
  2322                 scanExpr(tree.rhs);
  2326         public void visitIdent(JCIdent tree) {
  2327             if (tree.sym.kind == VAR) {
  2328                 checkInit(tree.pos(), (VarSymbol)tree.sym);
  2329                 referenced(tree.sym);
  2333         void referenced(Symbol sym) {
  2334             unrefdResources.remove(sym);
  2337         public void visitAnnotatedType(JCAnnotatedType tree) {
  2338             // annotations don't get scanned
  2339             tree.underlyingType.accept(this);
  2342         public void visitTopLevel(JCCompilationUnit tree) {
  2343             // Do nothing for TopLevel since each class is visited individually
  2346     /**************************************************************************
  2347      * main method
  2348      *************************************************************************/
  2350         /** Perform definite assignment/unassignment analysis on a tree.
  2351          */
  2352         public void analyzeTree(Env<?> env) {
  2353             analyzeTree(env, env.tree);
  2356         public void analyzeTree(Env<?> env, JCTree tree) {
  2357             try {
  2358                 startPos = tree.pos().getStartPosition();
  2360                 if (vardecls == null)
  2361                     vardecls = new JCVariableDecl[32];
  2362                 else
  2363                     for (int i=0; i<vardecls.length; i++)
  2364                         vardecls[i] = null;
  2365                 firstadr = 0;
  2366                 nextadr = 0;
  2367                 pendingExits = new ListBuffer<>();
  2368                 this.classDef = null;
  2369                 unrefdResources = new Scope(env.enclClass.sym);
  2370                 scan(tree);
  2371             } finally {
  2372                 // note that recursive invocations of this method fail hard
  2373                 startPos = -1;
  2374                 resetBits(inits, uninits, uninitsTry, initsWhenTrue,
  2375                         initsWhenFalse, uninitsWhenTrue, uninitsWhenFalse);
  2376                 if (vardecls != null) {
  2377                     for (int i=0; i<vardecls.length; i++)
  2378                         vardecls[i] = null;
  2380                 firstadr = 0;
  2381                 nextadr = 0;
  2382                 pendingExits = null;
  2383                 this.classDef = null;
  2384                 unrefdResources = null;
  2389     public static class AssignAnalyzer
  2390         extends AbstractAssignAnalyzer<AssignAnalyzer.AssignPendingExit> {
  2392         Log log;
  2393         Lint lint;
  2395         public static class AssignPendingExit
  2396             extends AbstractAssignAnalyzer.AbstractAssignPendingExit {
  2398             public AssignPendingExit(JCTree tree, final Bits inits, final Bits uninits) {
  2399                 super(tree, inits, uninits);
  2403         public AssignAnalyzer(Log log, Symtab syms, Lint lint, Names names) {
  2404             super(new Bits(), syms, names);
  2405             this.log = log;
  2406             this.lint = lint;
  2409         @Override
  2410         protected AssignPendingExit createNewPendingExit(JCTree tree,
  2411             Bits inits, Bits uninits) {
  2412             return new AssignPendingExit(tree, inits, uninits);
  2415         /** Record an initialization of a trackable variable.
  2416          */
  2417         @Override
  2418         void letInit(DiagnosticPosition pos, VarSymbol sym) {
  2419             if (sym.adr >= firstadr && trackable(sym)) {
  2420                 if ((sym.flags() & EFFECTIVELY_FINAL) != 0) {
  2421                     if (!uninits.isMember(sym.adr)) {
  2422                         //assignment targeting an effectively final variable
  2423                         //makes the variable lose its status of effectively final
  2424                         //if the variable is _not_ definitively unassigned
  2425                         sym.flags_field &= ~EFFECTIVELY_FINAL;
  2426                     } else {
  2427                         uninit(sym);
  2430                 else if ((sym.flags() & FINAL) != 0) {
  2431                     if ((sym.flags() & PARAMETER) != 0) {
  2432                         if ((sym.flags() & UNION) != 0) { //multi-catch parameter
  2433                             log.error(pos, "multicatch.parameter.may.not.be.assigned", sym);
  2435                         else {
  2436                             log.error(pos, "final.parameter.may.not.be.assigned",
  2437                                   sym);
  2439                     } else if (!uninits.isMember(sym.adr)) {
  2440                         log.error(pos, flowKind.errKey, sym);
  2441                     } else {
  2442                         uninit(sym);
  2445                 inits.incl(sym.adr);
  2446             } else if ((sym.flags() & FINAL) != 0) {
  2447                 log.error(pos, "var.might.already.be.assigned", sym);
  2451         @Override
  2452         void checkInit(DiagnosticPosition pos, VarSymbol sym, String errkey) {
  2453             if ((sym.adr >= firstadr || sym.owner.kind != TYP) &&
  2454                 trackable(sym) &&
  2455                 !inits.isMember(sym.adr)) {
  2456                 log.error(pos, errkey, sym);
  2457                 inits.incl(sym.adr);
  2461         @Override
  2462         void reportWarning(Lint.LintCategory lc, DiagnosticPosition pos,
  2463             String key, Object ... args) {
  2464             log.warning(lc, pos, key, args);
  2467         @Override
  2468         int getLogNumberOfErrors() {
  2469             return log.nerrors;
  2472         @Override
  2473         boolean isEnabled(Lint.LintCategory lc) {
  2474             return lint.isEnabled(lc);
  2477         @Override
  2478         public void visitClassDef(JCClassDecl tree) {
  2479             if (tree.sym == null) {
  2480                 return;
  2483             Lint lintPrev = lint;
  2484             lint = lint.augment(tree.sym);
  2485             try {
  2486                 super.visitClassDef(tree);
  2487             } finally {
  2488                 lint = lintPrev;
  2492         @Override
  2493         public void visitMethodDef(JCMethodDecl tree) {
  2494             if (tree.body == null) {
  2495                 return;
  2498             /*  MemberEnter can generate synthetic methods ignore them
  2499              */
  2500             if ((tree.sym.flags() & SYNTHETIC) != 0) {
  2501                 return;
  2504             Lint lintPrev = lint;
  2505             lint = lint.augment(tree.sym);
  2506             try {
  2507                 super.visitMethodDef(tree);
  2508             } finally {
  2509                 lint = lintPrev;
  2513         @Override
  2514         public void visitVarDef(JCVariableDecl tree) {
  2515             if (tree.init == null) {
  2516                 super.visitVarDef(tree);
  2517             } else {
  2518                 Lint lintPrev = lint;
  2519                 lint = lint.augment(tree.sym);
  2520                 try{
  2521                     super.visitVarDef(tree);
  2522                 } finally {
  2523                     lint = lintPrev;
  2530     /**
  2531      * This pass implements the last step of the dataflow analysis, namely
  2532      * the effectively-final analysis check. This checks that every local variable
  2533      * reference from a lambda body/local inner class is either final or effectively final.
  2534      * As effectively final variables are marked as such during DA/DU, this pass must run after
  2535      * AssignAnalyzer.
  2536      */
  2537     class CaptureAnalyzer extends BaseAnalyzer<BaseAnalyzer.PendingExit> {
  2539         JCTree currentTree; //local class or lambda
  2541         @Override
  2542         void markDead(JCTree tree) {
  2543             //do nothing
  2546         @SuppressWarnings("fallthrough")
  2547         void checkEffectivelyFinal(DiagnosticPosition pos, VarSymbol sym) {
  2548             if (currentTree != null &&
  2549                     sym.owner.kind == MTH &&
  2550                     sym.pos < currentTree.getStartPosition()) {
  2551                 switch (currentTree.getTag()) {
  2552                     case CLASSDEF:
  2553                         if (!allowEffectivelyFinalInInnerClasses) {
  2554                             if ((sym.flags() & FINAL) == 0) {
  2555                                 reportInnerClsNeedsFinalError(pos, sym);
  2557                             break;
  2559                     case LAMBDA:
  2560                         if ((sym.flags() & (EFFECTIVELY_FINAL | FINAL)) == 0) {
  2561                            reportEffectivelyFinalError(pos, sym);
  2567         @SuppressWarnings("fallthrough")
  2568         void letInit(JCTree tree) {
  2569             tree = TreeInfo.skipParens(tree);
  2570             if (tree.hasTag(IDENT) || tree.hasTag(SELECT)) {
  2571                 Symbol sym = TreeInfo.symbol(tree);
  2572                 if (currentTree != null &&
  2573                         sym.kind == VAR &&
  2574                         sym.owner.kind == MTH &&
  2575                         ((VarSymbol)sym).pos < currentTree.getStartPosition()) {
  2576                     switch (currentTree.getTag()) {
  2577                         case CLASSDEF:
  2578                             if (!allowEffectivelyFinalInInnerClasses) {
  2579                                 reportInnerClsNeedsFinalError(tree, sym);
  2580                                 break;
  2582                         case LAMBDA:
  2583                             reportEffectivelyFinalError(tree, sym);
  2589         void reportEffectivelyFinalError(DiagnosticPosition pos, Symbol sym) {
  2590             String subKey = currentTree.hasTag(LAMBDA) ?
  2591                   "lambda"  : "inner.cls";
  2592             log.error(pos, "cant.ref.non.effectively.final.var", sym, diags.fragment(subKey));
  2595         void reportInnerClsNeedsFinalError(DiagnosticPosition pos, Symbol sym) {
  2596             log.error(pos,
  2597                     "local.var.accessed.from.icls.needs.final",
  2598                     sym);
  2601     /*************************************************************************
  2602      * Visitor methods for statements and definitions
  2603      *************************************************************************/
  2605         /* ------------ Visitor methods for various sorts of trees -------------*/
  2607         public void visitClassDef(JCClassDecl tree) {
  2608             JCTree prevTree = currentTree;
  2609             try {
  2610                 currentTree = tree.sym.isLocal() ? tree : null;
  2611                 super.visitClassDef(tree);
  2612             } finally {
  2613                 currentTree = prevTree;
  2617         @Override
  2618         public void visitLambda(JCLambda tree) {
  2619             JCTree prevTree = currentTree;
  2620             try {
  2621                 currentTree = tree;
  2622                 super.visitLambda(tree);
  2623             } finally {
  2624                 currentTree = prevTree;
  2628         @Override
  2629         public void visitIdent(JCIdent tree) {
  2630             if (tree.sym.kind == VAR) {
  2631                 checkEffectivelyFinal(tree, (VarSymbol)tree.sym);
  2635         public void visitAssign(JCAssign tree) {
  2636             JCTree lhs = TreeInfo.skipParens(tree.lhs);
  2637             if (!(lhs instanceof JCIdent)) {
  2638                 scan(lhs);
  2640             scan(tree.rhs);
  2641             letInit(lhs);
  2644         public void visitAssignop(JCAssignOp tree) {
  2645             scan(tree.lhs);
  2646             scan(tree.rhs);
  2647             letInit(tree.lhs);
  2650         public void visitUnary(JCUnary tree) {
  2651             switch (tree.getTag()) {
  2652                 case PREINC: case POSTINC:
  2653                 case PREDEC: case POSTDEC:
  2654                     scan(tree.arg);
  2655                     letInit(tree.arg);
  2656                     break;
  2657                 default:
  2658                     scan(tree.arg);
  2662         public void visitTopLevel(JCCompilationUnit tree) {
  2663             // Do nothing for TopLevel since each class is visited individually
  2666     /**************************************************************************
  2667      * main method
  2668      *************************************************************************/
  2670         /** Perform definite assignment/unassignment analysis on a tree.
  2671          */
  2672         public void analyzeTree(Env<AttrContext> env, TreeMaker make) {
  2673             analyzeTree(env, env.tree, make);
  2675         public void analyzeTree(Env<AttrContext> env, JCTree tree, TreeMaker make) {
  2676             try {
  2677                 attrEnv = env;
  2678                 Flow.this.make = make;
  2679                 pendingExits = new ListBuffer<PendingExit>();
  2680                 scan(tree);
  2681             } finally {
  2682                 pendingExits = null;
  2683                 Flow.this.make = null;

mercurial