src/share/classes/com/sun/tools/javac/comp/Resolve.java

Thu, 06 Feb 2014 21:11:27 +0000

author
vromero
date
Thu, 06 Feb 2014 21:11:27 +0000
changeset 2261
79dc4b992c0a
parent 2260
fb870c70e774
child 2368
0524f786d7e8
permissions
-rw-r--r--

8030855: Default methods should be visible under source previous to 8
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    29 import com.sun.tools.javac.api.Formattable.LocalizedString;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.code.Symbol.*;
    32 import com.sun.tools.javac.code.Type.*;
    33 import com.sun.tools.javac.comp.Attr.ResultInfo;
    34 import com.sun.tools.javac.comp.Check.CheckContext;
    35 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    37 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext;
    39 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    40 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    41 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
    42 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
    43 import com.sun.tools.javac.jvm.*;
    44 import com.sun.tools.javac.main.Option;
    45 import com.sun.tools.javac.tree.*;
    46 import com.sun.tools.javac.tree.JCTree.*;
    47 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    49 import com.sun.tools.javac.util.*;
    50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    54 import java.util.Arrays;
    55 import java.util.Collection;
    56 import java.util.EnumMap;
    57 import java.util.EnumSet;
    58 import java.util.Iterator;
    59 import java.util.LinkedHashMap;
    60 import java.util.LinkedHashSet;
    61 import java.util.Map;
    63 import javax.lang.model.element.ElementVisitor;
    65 import static com.sun.tools.javac.code.Flags.*;
    66 import static com.sun.tools.javac.code.Flags.BLOCK;
    67 import static com.sun.tools.javac.code.Kinds.*;
    68 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    69 import static com.sun.tools.javac.code.TypeTag.*;
    70 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    71 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    73 /** Helper class for name resolution, used mostly by the attribution phase.
    74  *
    75  *  <p><b>This is NOT part of any supported API.
    76  *  If you write code that depends on this, you do so at your own risk.
    77  *  This code and its internal interfaces are subject to change or
    78  *  deletion without notice.</b>
    79  */
    80 public class Resolve {
    81     protected static final Context.Key<Resolve> resolveKey =
    82         new Context.Key<Resolve>();
    84     Names names;
    85     Log log;
    86     Symtab syms;
    87     Attr attr;
    88     DeferredAttr deferredAttr;
    89     Check chk;
    90     Infer infer;
    91     ClassReader reader;
    92     TreeInfo treeinfo;
    93     Types types;
    94     JCDiagnostic.Factory diags;
    95     public final boolean boxingEnabled;
    96     public final boolean varargsEnabled;
    97     public final boolean allowMethodHandles;
    98     public final boolean allowStructuralMostSpecific;
    99     private final boolean debugResolve;
   100     private final boolean compactMethodDiags;
   101     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
   103     Scope polymorphicSignatureScope;
   105     protected Resolve(Context context) {
   106         context.put(resolveKey, this);
   107         syms = Symtab.instance(context);
   109         varNotFound = new
   110             SymbolNotFoundError(ABSENT_VAR);
   111         methodNotFound = new
   112             SymbolNotFoundError(ABSENT_MTH);
   113         methodWithCorrectStaticnessNotFound = new
   114             SymbolNotFoundError(WRONG_STATICNESS,
   115                 "method found has incorrect staticness");
   116         typeNotFound = new
   117             SymbolNotFoundError(ABSENT_TYP);
   119         names = Names.instance(context);
   120         log = Log.instance(context);
   121         attr = Attr.instance(context);
   122         deferredAttr = DeferredAttr.instance(context);
   123         chk = Check.instance(context);
   124         infer = Infer.instance(context);
   125         reader = ClassReader.instance(context);
   126         treeinfo = TreeInfo.instance(context);
   127         types = Types.instance(context);
   128         diags = JCDiagnostic.Factory.instance(context);
   129         Source source = Source.instance(context);
   130         boxingEnabled = source.allowBoxing();
   131         varargsEnabled = source.allowVarargs();
   132         Options options = Options.instance(context);
   133         debugResolve = options.isSet("debugresolve");
   134         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
   135                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
   136         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   137         Target target = Target.instance(context);
   138         allowMethodHandles = target.hasMethodHandles();
   139         allowStructuralMostSpecific = source.allowStructuralMostSpecific();
   140         polymorphicSignatureScope = new Scope(syms.noSymbol);
   142         inapplicableMethodException = new InapplicableMethodException(diags);
   143     }
   145     /** error symbols, which are returned when resolution fails
   146      */
   147     private final SymbolNotFoundError varNotFound;
   148     private final SymbolNotFoundError methodNotFound;
   149     private final SymbolNotFoundError methodWithCorrectStaticnessNotFound;
   150     private final SymbolNotFoundError typeNotFound;
   152     public static Resolve instance(Context context) {
   153         Resolve instance = context.get(resolveKey);
   154         if (instance == null)
   155             instance = new Resolve(context);
   156         return instance;
   157     }
   159     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   160     enum VerboseResolutionMode {
   161         SUCCESS("success"),
   162         FAILURE("failure"),
   163         APPLICABLE("applicable"),
   164         INAPPLICABLE("inapplicable"),
   165         DEFERRED_INST("deferred-inference"),
   166         PREDEF("predef"),
   167         OBJECT_INIT("object-init"),
   168         INTERNAL("internal");
   170         final String opt;
   172         private VerboseResolutionMode(String opt) {
   173             this.opt = opt;
   174         }
   176         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   177             String s = opts.get("verboseResolution");
   178             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   179             if (s == null) return res;
   180             if (s.contains("all")) {
   181                 res = EnumSet.allOf(VerboseResolutionMode.class);
   182             }
   183             Collection<String> args = Arrays.asList(s.split(","));
   184             for (VerboseResolutionMode mode : values()) {
   185                 if (args.contains(mode.opt)) {
   186                     res.add(mode);
   187                 } else if (args.contains("-" + mode.opt)) {
   188                     res.remove(mode);
   189                 }
   190             }
   191             return res;
   192         }
   193     }
   195     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   196             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   197         boolean success = bestSoFar.kind < ERRONEOUS;
   199         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   200             return;
   201         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   202             return;
   203         }
   205         if (bestSoFar.name == names.init &&
   206                 bestSoFar.owner == syms.objectType.tsym &&
   207                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   208             return; //skip diags for Object constructor resolution
   209         } else if (site == syms.predefClass.type &&
   210                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   211             return; //skip spurious diags for predef symbols (i.e. operators)
   212         } else if (currentResolutionContext.internalResolution &&
   213                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   214             return;
   215         }
   217         int pos = 0;
   218         int mostSpecificPos = -1;
   219         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
   220         for (Candidate c : currentResolutionContext.candidates) {
   221             if (currentResolutionContext.step != c.step ||
   222                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   223                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   224                 continue;
   225             } else {
   226                 subDiags.append(c.isApplicable() ?
   227                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   228                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   229                 if (c.sym == bestSoFar)
   230                     mostSpecificPos = pos;
   231                 pos++;
   232             }
   233         }
   234         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   235         List<Type> argtypes2 = Type.map(argtypes,
   236                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   237         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   238                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   239                 methodArguments(argtypes2),
   240                 methodArguments(typeargtypes));
   241         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   242         log.report(d);
   243     }
   245     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   246         JCDiagnostic subDiag = null;
   247         if (sym.type.hasTag(FORALL)) {
   248             subDiag = diags.fragment("partial.inst.sig", inst);
   249         }
   251         String key = subDiag == null ?
   252                 "applicable.method.found" :
   253                 "applicable.method.found.1";
   255         return diags.fragment(key, pos, sym, subDiag);
   256     }
   258     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   259         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   260     }
   261     // </editor-fold>
   263 /* ************************************************************************
   264  * Identifier resolution
   265  *************************************************************************/
   267     /** An environment is "static" if its static level is greater than
   268      *  the one of its outer environment
   269      */
   270     protected static boolean isStatic(Env<AttrContext> env) {
   271         return env.info.staticLevel > env.outer.info.staticLevel;
   272     }
   274     /** An environment is an "initializer" if it is a constructor or
   275      *  an instance initializer.
   276      */
   277     static boolean isInitializer(Env<AttrContext> env) {
   278         Symbol owner = env.info.scope.owner;
   279         return owner.isConstructor() ||
   280             owner.owner.kind == TYP &&
   281             (owner.kind == VAR ||
   282              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   283             (owner.flags() & STATIC) == 0;
   284     }
   286     /** Is class accessible in given evironment?
   287      *  @param env    The current environment.
   288      *  @param c      The class whose accessibility is checked.
   289      */
   290     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   291         return isAccessible(env, c, false);
   292     }
   294     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   295         boolean isAccessible = false;
   296         switch ((short)(c.flags() & AccessFlags)) {
   297             case PRIVATE:
   298                 isAccessible =
   299                     env.enclClass.sym.outermostClass() ==
   300                     c.owner.outermostClass();
   301                 break;
   302             case 0:
   303                 isAccessible =
   304                     env.toplevel.packge == c.owner // fast special case
   305                     ||
   306                     env.toplevel.packge == c.packge()
   307                     ||
   308                     // Hack: this case is added since synthesized default constructors
   309                     // of anonymous classes should be allowed to access
   310                     // classes which would be inaccessible otherwise.
   311                     env.enclMethod != null &&
   312                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   313                 break;
   314             default: // error recovery
   315             case PUBLIC:
   316                 isAccessible = true;
   317                 break;
   318             case PROTECTED:
   319                 isAccessible =
   320                     env.toplevel.packge == c.owner // fast special case
   321                     ||
   322                     env.toplevel.packge == c.packge()
   323                     ||
   324                     isInnerSubClass(env.enclClass.sym, c.owner);
   325                 break;
   326         }
   327         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   328             isAccessible :
   329             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   330     }
   331     //where
   332         /** Is given class a subclass of given base class, or an inner class
   333          *  of a subclass?
   334          *  Return null if no such class exists.
   335          *  @param c     The class which is the subclass or is contained in it.
   336          *  @param base  The base class
   337          */
   338         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   339             while (c != null && !c.isSubClass(base, types)) {
   340                 c = c.owner.enclClass();
   341             }
   342             return c != null;
   343         }
   345     boolean isAccessible(Env<AttrContext> env, Type t) {
   346         return isAccessible(env, t, false);
   347     }
   349     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   350         return (t.hasTag(ARRAY))
   351             ? isAccessible(env, types.upperBound(types.elemtype(t)))
   352             : isAccessible(env, t.tsym, checkInner);
   353     }
   355     /** Is symbol accessible as a member of given type in given environment?
   356      *  @param env    The current environment.
   357      *  @param site   The type of which the tested symbol is regarded
   358      *                as a member.
   359      *  @param sym    The symbol.
   360      */
   361     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   362         return isAccessible(env, site, sym, false);
   363     }
   364     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   365         if (sym.name == names.init && sym.owner != site.tsym) return false;
   366         switch ((short)(sym.flags() & AccessFlags)) {
   367         case PRIVATE:
   368             return
   369                 (env.enclClass.sym == sym.owner // fast special case
   370                  ||
   371                  env.enclClass.sym.outermostClass() ==
   372                  sym.owner.outermostClass())
   373                 &&
   374                 sym.isInheritedIn(site.tsym, types);
   375         case 0:
   376             return
   377                 (env.toplevel.packge == sym.owner.owner // fast special case
   378                  ||
   379                  env.toplevel.packge == sym.packge())
   380                 &&
   381                 isAccessible(env, site, checkInner)
   382                 &&
   383                 sym.isInheritedIn(site.tsym, types)
   384                 &&
   385                 notOverriddenIn(site, sym);
   386         case PROTECTED:
   387             return
   388                 (env.toplevel.packge == sym.owner.owner // fast special case
   389                  ||
   390                  env.toplevel.packge == sym.packge()
   391                  ||
   392                  isProtectedAccessible(sym, env.enclClass.sym, site)
   393                  ||
   394                  // OK to select instance method or field from 'super' or type name
   395                  // (but type names should be disallowed elsewhere!)
   396                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   397                 &&
   398                 isAccessible(env, site, checkInner)
   399                 &&
   400                 notOverriddenIn(site, sym);
   401         default: // this case includes erroneous combinations as well
   402             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   403         }
   404     }
   405     //where
   406     /* `sym' is accessible only if not overridden by
   407      * another symbol which is a member of `site'
   408      * (because, if it is overridden, `sym' is not strictly
   409      * speaking a member of `site'). A polymorphic signature method
   410      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   411      */
   412     private boolean notOverriddenIn(Type site, Symbol sym) {
   413         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   414             return true;
   415         else {
   416             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   417             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   418                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   419         }
   420     }
   421     //where
   422         /** Is given protected symbol accessible if it is selected from given site
   423          *  and the selection takes place in given class?
   424          *  @param sym     The symbol with protected access
   425          *  @param c       The class where the access takes place
   426          *  @site          The type of the qualifier
   427          */
   428         private
   429         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   430             Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
   431             while (c != null &&
   432                    !(c.isSubClass(sym.owner, types) &&
   433                      (c.flags() & INTERFACE) == 0 &&
   434                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   435                      // only to instance fields and methods -- types are excluded
   436                      // regardless of whether they are declared 'static' or not.
   437                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
   438                 c = c.owner.enclClass();
   439             return c != null;
   440         }
   442     /**
   443      * Performs a recursive scan of a type looking for accessibility problems
   444      * from current attribution environment
   445      */
   446     void checkAccessibleType(Env<AttrContext> env, Type t) {
   447         accessibilityChecker.visit(t, env);
   448     }
   450     /**
   451      * Accessibility type-visitor
   452      */
   453     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   454             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   456         void visit(List<Type> ts, Env<AttrContext> env) {
   457             for (Type t : ts) {
   458                 visit(t, env);
   459             }
   460         }
   462         public Void visitType(Type t, Env<AttrContext> env) {
   463             return null;
   464         }
   466         @Override
   467         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   468             visit(t.elemtype, env);
   469             return null;
   470         }
   472         @Override
   473         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   474             visit(t.getTypeArguments(), env);
   475             if (!isAccessible(env, t, true)) {
   476                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   477             }
   478             return null;
   479         }
   481         @Override
   482         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   483             visit(t.type, env);
   484             return null;
   485         }
   487         @Override
   488         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   489             visit(t.getParameterTypes(), env);
   490             visit(t.getReturnType(), env);
   491             visit(t.getThrownTypes(), env);
   492             return null;
   493         }
   494     };
   496     /** Try to instantiate the type of a method so that it fits
   497      *  given type arguments and argument types. If successful, return
   498      *  the method's instantiated type, else return null.
   499      *  The instantiation will take into account an additional leading
   500      *  formal parameter if the method is an instance method seen as a member
   501      *  of an under determined site. In this case, we treat site as an additional
   502      *  parameter and the parameters of the class containing the method as
   503      *  additional type variables that get instantiated.
   504      *
   505      *  @param env         The current environment
   506      *  @param site        The type of which the method is a member.
   507      *  @param m           The method symbol.
   508      *  @param argtypes    The invocation's given value arguments.
   509      *  @param typeargtypes    The invocation's given type arguments.
   510      *  @param allowBoxing Allow boxing conversions of arguments.
   511      *  @param useVarargs Box trailing arguments into an array for varargs.
   512      */
   513     Type rawInstantiate(Env<AttrContext> env,
   514                         Type site,
   515                         Symbol m,
   516                         ResultInfo resultInfo,
   517                         List<Type> argtypes,
   518                         List<Type> typeargtypes,
   519                         boolean allowBoxing,
   520                         boolean useVarargs,
   521                         Warner warn) throws Infer.InferenceException {
   523         Type mt = types.memberType(site, m);
   524         // tvars is the list of formal type variables for which type arguments
   525         // need to inferred.
   526         List<Type> tvars = List.nil();
   527         if (typeargtypes == null) typeargtypes = List.nil();
   528         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   529             // This is not a polymorphic method, but typeargs are supplied
   530             // which is fine, see JLS 15.12.2.1
   531         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   532             ForAll pmt = (ForAll) mt;
   533             if (typeargtypes.length() != pmt.tvars.length())
   534                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   535             // Check type arguments are within bounds
   536             List<Type> formals = pmt.tvars;
   537             List<Type> actuals = typeargtypes;
   538             while (formals.nonEmpty() && actuals.nonEmpty()) {
   539                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   540                                                 pmt.tvars, typeargtypes);
   541                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   542                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   543                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   544                 formals = formals.tail;
   545                 actuals = actuals.tail;
   546             }
   547             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   548         } else if (mt.hasTag(FORALL)) {
   549             ForAll pmt = (ForAll) mt;
   550             List<Type> tvars1 = types.newInstances(pmt.tvars);
   551             tvars = tvars.appendList(tvars1);
   552             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   553         }
   555         // find out whether we need to go the slow route via infer
   556         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   557         for (List<Type> l = argtypes;
   558              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   559              l = l.tail) {
   560             if (l.head.hasTag(FORALL)) instNeeded = true;
   561         }
   563         if (instNeeded)
   564             return infer.instantiateMethod(env,
   565                                     tvars,
   566                                     (MethodType)mt,
   567                                     resultInfo,
   568                                     m,
   569                                     argtypes,
   570                                     allowBoxing,
   571                                     useVarargs,
   572                                     currentResolutionContext,
   573                                     warn);
   575         DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
   576         currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
   577                                 argtypes, mt.getParameterTypes(), warn);
   578         dc.complete();
   579         return mt;
   580     }
   582     Type checkMethod(Env<AttrContext> env,
   583                      Type site,
   584                      Symbol m,
   585                      ResultInfo resultInfo,
   586                      List<Type> argtypes,
   587                      List<Type> typeargtypes,
   588                      Warner warn) {
   589         MethodResolutionContext prevContext = currentResolutionContext;
   590         try {
   591             currentResolutionContext = new MethodResolutionContext();
   592             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   593             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
   594                 //method/constructor references need special check class
   595                 //to handle inference variables in 'argtypes' (might happen
   596                 //during an unsticking round)
   597                 currentResolutionContext.methodCheck =
   598                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
   599             }
   600             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   601             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   602                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   603         }
   604         finally {
   605             currentResolutionContext = prevContext;
   606         }
   607     }
   609     /** Same but returns null instead throwing a NoInstanceException
   610      */
   611     Type instantiate(Env<AttrContext> env,
   612                      Type site,
   613                      Symbol m,
   614                      ResultInfo resultInfo,
   615                      List<Type> argtypes,
   616                      List<Type> typeargtypes,
   617                      boolean allowBoxing,
   618                      boolean useVarargs,
   619                      Warner warn) {
   620         try {
   621             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   622                                   allowBoxing, useVarargs, warn);
   623         } catch (InapplicableMethodException ex) {
   624             return null;
   625         }
   626     }
   628     /**
   629      * This interface defines an entry point that should be used to perform a
   630      * method check. A method check usually consist in determining as to whether
   631      * a set of types (actuals) is compatible with another set of types (formals).
   632      * Since the notion of compatibility can vary depending on the circumstances,
   633      * this interfaces allows to easily add new pluggable method check routines.
   634      */
   635     interface MethodCheck {
   636         /**
   637          * Main method check routine. A method check usually consist in determining
   638          * as to whether a set of types (actuals) is compatible with another set of
   639          * types (formals). If an incompatibility is found, an unchecked exception
   640          * is assumed to be thrown.
   641          */
   642         void argumentsAcceptable(Env<AttrContext> env,
   643                                 DeferredAttrContext deferredAttrContext,
   644                                 List<Type> argtypes,
   645                                 List<Type> formals,
   646                                 Warner warn);
   648         /**
   649          * Retrieve the method check object that will be used during a
   650          * most specific check.
   651          */
   652         MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
   653     }
   655     /**
   656      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   657      */
   658     enum MethodCheckDiag {
   659         /**
   660          * Actuals and formals differs in length.
   661          */
   662         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   663         /**
   664          * An actual is incompatible with a formal.
   665          */
   666         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   667         /**
   668          * An actual is incompatible with the varargs element type.
   669          */
   670         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   671         /**
   672          * The varargs element type is inaccessible.
   673          */
   674         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   676         final String basicKey;
   677         final String inferKey;
   679         MethodCheckDiag(String basicKey, String inferKey) {
   680             this.basicKey = basicKey;
   681             this.inferKey = inferKey;
   682         }
   684         String regex() {
   685             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
   686         }
   687     }
   689     /**
   690      * Dummy method check object. All methods are deemed applicable, regardless
   691      * of their formal parameter types.
   692      */
   693     MethodCheck nilMethodCheck = new MethodCheck() {
   694         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
   695             //do nothing - method always applicable regardless of actuals
   696         }
   698         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   699             return this;
   700         }
   701     };
   703     /**
   704      * Base class for 'real' method checks. The class defines the logic for
   705      * iterating through formals and actuals and provides and entry point
   706      * that can be used by subclasses in order to define the actual check logic.
   707      */
   708     abstract class AbstractMethodCheck implements MethodCheck {
   709         @Override
   710         public void argumentsAcceptable(final Env<AttrContext> env,
   711                                     DeferredAttrContext deferredAttrContext,
   712                                     List<Type> argtypes,
   713                                     List<Type> formals,
   714                                     Warner warn) {
   715             //should we expand formals?
   716             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   717             List<JCExpression> trees = TreeInfo.args(env.tree);
   719             //inference context used during this method check
   720             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   722             Type varargsFormal = useVarargs ? formals.last() : null;
   724             if (varargsFormal == null &&
   725                     argtypes.size() != formals.size()) {
   726                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   727             }
   729             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   730                 DiagnosticPosition pos = trees != null ? trees.head : null;
   731                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
   732                 argtypes = argtypes.tail;
   733                 formals = formals.tail;
   734                 trees = trees != null ? trees.tail : trees;
   735             }
   737             if (formals.head != varargsFormal) {
   738                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   739             }
   741             if (useVarargs) {
   742                 //note: if applicability check is triggered by most specific test,
   743                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   744                 final Type elt = types.elemtype(varargsFormal);
   745                 while (argtypes.nonEmpty()) {
   746                     DiagnosticPosition pos = trees != null ? trees.head : null;
   747                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
   748                     argtypes = argtypes.tail;
   749                     trees = trees != null ? trees.tail : trees;
   750                 }
   751             }
   752         }
   754         /**
   755          * Does the actual argument conforms to the corresponding formal?
   756          */
   757         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
   759         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   760             boolean inferDiag = inferenceContext != infer.emptyContext;
   761             InapplicableMethodException ex = inferDiag ?
   762                     infer.inferenceException : inapplicableMethodException;
   763             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   764                 Object[] args2 = new Object[args.length + 1];
   765                 System.arraycopy(args, 0, args2, 1, args.length);
   766                 args2[0] = inferenceContext.inferenceVars();
   767                 args = args2;
   768             }
   769             String key = inferDiag ? diag.inferKey : diag.basicKey;
   770             throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
   771         }
   773         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   774             return nilMethodCheck;
   775         }
   776     }
   778     /**
   779      * Arity-based method check. A method is applicable if the number of actuals
   780      * supplied conforms to the method signature.
   781      */
   782     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
   783         @Override
   784         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   785             //do nothing - actual always compatible to formals
   786         }
   787     };
   789     List<Type> dummyArgs(int length) {
   790         ListBuffer<Type> buf = new ListBuffer<>();
   791         for (int i = 0 ; i < length ; i++) {
   792             buf.append(Type.noType);
   793         }
   794         return buf.toList();
   795     }
   797     /**
   798      * Main method applicability routine. Given a list of actual types A,
   799      * a list of formal types F, determines whether the types in A are
   800      * compatible (by method invocation conversion) with the types in F.
   801      *
   802      * Since this routine is shared between overload resolution and method
   803      * type-inference, a (possibly empty) inference context is used to convert
   804      * formal types to the corresponding 'undet' form ahead of a compatibility
   805      * check so that constraints can be propagated and collected.
   806      *
   807      * Moreover, if one or more types in A is a deferred type, this routine uses
   808      * DeferredAttr in order to perform deferred attribution. If one or more actual
   809      * deferred types are stuck, they are placed in a queue and revisited later
   810      * after the remainder of the arguments have been seen. If this is not sufficient
   811      * to 'unstuck' the argument, a cyclic inference error is called out.
   812      *
   813      * A method check handler (see above) is used in order to report errors.
   814      */
   815     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
   817         @Override
   818         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   819             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   820             mresult.check(pos, actual);
   821         }
   823         @Override
   824         public void argumentsAcceptable(final Env<AttrContext> env,
   825                                     DeferredAttrContext deferredAttrContext,
   826                                     List<Type> argtypes,
   827                                     List<Type> formals,
   828                                     Warner warn) {
   829             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
   830             //should we expand formals?
   831             if (deferredAttrContext.phase.isVarargsRequired()) {
   832                 //check varargs element type accessibility
   833                 varargsAccessible(env, types.elemtype(formals.last()),
   834                         deferredAttrContext.inferenceContext);
   835             }
   836         }
   838         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   839             if (inferenceContext.free(t)) {
   840                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   841                     @Override
   842                     public void typesInferred(InferenceContext inferenceContext) {
   843                         varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
   844                     }
   845                 });
   846             } else {
   847                 if (!isAccessible(env, t)) {
   848                     Symbol location = env.enclClass.sym;
   849                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   850                 }
   851             }
   852         }
   854         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   855                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   856             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   857                 MethodCheckDiag methodDiag = varargsCheck ?
   858                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   860                 @Override
   861                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   862                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   863                 }
   864             };
   865             return new MethodResultInfo(to, checkContext);
   866         }
   868         @Override
   869         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   870             return new MostSpecificCheck(strict, actuals);
   871         }
   872     };
   874     /**
   875      * This class handles method reference applicability checks; since during
   876      * these checks it's sometime possible to have inference variables on
   877      * the actual argument types list, the method applicability check must be
   878      * extended so that inference variables are 'opened' as needed.
   879      */
   880     class MethodReferenceCheck extends AbstractMethodCheck {
   882         InferenceContext pendingInferenceContext;
   884         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
   885             this.pendingInferenceContext = pendingInferenceContext;
   886         }
   888         @Override
   889         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   890             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   891             mresult.check(pos, actual);
   892         }
   894         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   895                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   896             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   897                 MethodCheckDiag methodDiag = varargsCheck ?
   898                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   900                 @Override
   901                 public boolean compatible(Type found, Type req, Warner warn) {
   902                     found = pendingInferenceContext.asFree(found);
   903                     req = infer.returnConstraintTarget(found, req);
   904                     return super.compatible(found, req, warn);
   905                 }
   907                 @Override
   908                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   909                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   910                 }
   911             };
   912             return new MethodResultInfo(to, checkContext);
   913         }
   915         @Override
   916         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   917             return new MostSpecificCheck(strict, actuals);
   918         }
   919     };
   921     /**
   922      * Check context to be used during method applicability checks. A method check
   923      * context might contain inference variables.
   924      */
   925     abstract class MethodCheckContext implements CheckContext {
   927         boolean strict;
   928         DeferredAttrContext deferredAttrContext;
   929         Warner rsWarner;
   931         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   932            this.strict = strict;
   933            this.deferredAttrContext = deferredAttrContext;
   934            this.rsWarner = rsWarner;
   935         }
   937         public boolean compatible(Type found, Type req, Warner warn) {
   938             return strict ?
   939                     types.isSubtypeUnchecked(found, deferredAttrContext.inferenceContext.asFree(req), warn) :
   940                     types.isConvertible(found, deferredAttrContext.inferenceContext.asFree(req), warn);
   941         }
   943         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   944             throw inapplicableMethodException.setMessage(details);
   945         }
   947         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   948             return rsWarner;
   949         }
   951         public InferenceContext inferenceContext() {
   952             return deferredAttrContext.inferenceContext;
   953         }
   955         public DeferredAttrContext deferredAttrContext() {
   956             return deferredAttrContext;
   957         }
   958     }
   960     /**
   961      * ResultInfo class to be used during method applicability checks. Check
   962      * for deferred types goes through special path.
   963      */
   964     class MethodResultInfo extends ResultInfo {
   966         public MethodResultInfo(Type pt, CheckContext checkContext) {
   967             attr.super(VAL, pt, checkContext);
   968         }
   970         @Override
   971         protected Type check(DiagnosticPosition pos, Type found) {
   972             if (found.hasTag(DEFERRED)) {
   973                 DeferredType dt = (DeferredType)found;
   974                 return dt.check(this);
   975             } else {
   976                 return super.check(pos, chk.checkNonVoid(pos, types.capture(U(found.baseType()))));
   977             }
   978         }
   980         /**
   981          * javac has a long-standing 'simplification' (see 6391995):
   982          * given an actual argument type, the method check is performed
   983          * on its upper bound. This leads to inconsistencies when an
   984          * argument type is checked against itself. For example, given
   985          * a type-variable T, it is not true that {@code U(T) <: T},
   986          * so we need to guard against that.
   987          */
   988         private Type U(Type found) {
   989             return found == pt ?
   990                     found : types.upperBound(found);
   991         }
   993         @Override
   994         protected MethodResultInfo dup(Type newPt) {
   995             return new MethodResultInfo(newPt, checkContext);
   996         }
   998         @Override
   999         protected ResultInfo dup(CheckContext newContext) {
  1000             return new MethodResultInfo(pt, newContext);
  1004     /**
  1005      * Most specific method applicability routine. Given a list of actual types A,
  1006      * a list of formal types F1, and a list of formal types F2, the routine determines
  1007      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
  1008      * argument types A.
  1009      */
  1010     class MostSpecificCheck implements MethodCheck {
  1012         boolean strict;
  1013         List<Type> actuals;
  1015         MostSpecificCheck(boolean strict, List<Type> actuals) {
  1016             this.strict = strict;
  1017             this.actuals = actuals;
  1020         @Override
  1021         public void argumentsAcceptable(final Env<AttrContext> env,
  1022                                     DeferredAttrContext deferredAttrContext,
  1023                                     List<Type> formals1,
  1024                                     List<Type> formals2,
  1025                                     Warner warn) {
  1026             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
  1027             while (formals2.nonEmpty()) {
  1028                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
  1029                 mresult.check(null, formals1.head);
  1030                 formals1 = formals1.tail;
  1031                 formals2 = formals2.tail;
  1032                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
  1036        /**
  1037         * Create a method check context to be used during the most specific applicability check
  1038         */
  1039         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
  1040                Warner rsWarner, Type actual) {
  1041            return attr.new ResultInfo(Kinds.VAL, to,
  1042                    new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
  1045         /**
  1046          * Subclass of method check context class that implements most specific
  1047          * method conversion. If the actual type under analysis is a deferred type
  1048          * a full blown structural analysis is carried out.
  1049          */
  1050         class MostSpecificCheckContext extends MethodCheckContext {
  1052             Type actual;
  1054             public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
  1055                 super(strict, deferredAttrContext, rsWarner);
  1056                 this.actual = actual;
  1059             public boolean compatible(Type found, Type req, Warner warn) {
  1060                 if (!allowStructuralMostSpecific || actual == null) {
  1061                     return super.compatible(found, req, warn);
  1062                 } else {
  1063                     switch (actual.getTag()) {
  1064                         case DEFERRED:
  1065                             DeferredType dt = (DeferredType) actual;
  1066                             DeferredType.SpeculativeCache.Entry e = dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
  1067                             return (e == null || e.speculativeTree == deferredAttr.stuckTree)
  1068                                     ? super.compatible(found, req, warn) :
  1069                                       mostSpecific(found, req, e.speculativeTree, warn);
  1070                         default:
  1071                             return standaloneMostSpecific(found, req, actual, warn);
  1076             private boolean mostSpecific(Type t, Type s, JCTree tree, Warner warn) {
  1077                 MostSpecificChecker msc = new MostSpecificChecker(t, s, warn);
  1078                 msc.scan(tree);
  1079                 return msc.result;
  1082             boolean polyMostSpecific(Type t1, Type t2, Warner warn) {
  1083                 return (!t1.isPrimitive() && t2.isPrimitive())
  1084                         ? true : super.compatible(t1, t2, warn);
  1087             boolean standaloneMostSpecific(Type t1, Type t2, Type exprType, Warner warn) {
  1088                 return (exprType.isPrimitive() == t1.isPrimitive()
  1089                         && exprType.isPrimitive() != t2.isPrimitive())
  1090                         ? true : super.compatible(t1, t2, warn);
  1093             /**
  1094              * Structural checker for most specific.
  1095              */
  1096             class MostSpecificChecker extends DeferredAttr.PolyScanner {
  1098                 final Type t;
  1099                 final Type s;
  1100                 final Warner warn;
  1101                 boolean result;
  1103                 MostSpecificChecker(Type t, Type s, Warner warn) {
  1104                     this.t = t;
  1105                     this.s = s;
  1106                     this.warn = warn;
  1107                     result = true;
  1110                 @Override
  1111                 void skip(JCTree tree) {
  1112                     result &= standaloneMostSpecific(t, s, tree.type, warn);
  1115                 @Override
  1116                 public void visitConditional(JCConditional tree) {
  1117                     if (tree.polyKind == PolyKind.STANDALONE) {
  1118                         result &= standaloneMostSpecific(t, s, tree.type, warn);
  1119                     } else {
  1120                         super.visitConditional(tree);
  1124                 @Override
  1125                 public void visitApply(JCMethodInvocation tree) {
  1126                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1127                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1128                             : polyMostSpecific(t, s, warn);
  1131                 @Override
  1132                 public void visitNewClass(JCNewClass tree) {
  1133                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1134                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1135                             : polyMostSpecific(t, s, warn);
  1138                 @Override
  1139                 public void visitReference(JCMemberReference tree) {
  1140                     if (types.isFunctionalInterface(t.tsym) &&
  1141                             types.isFunctionalInterface(s.tsym)) {
  1142                         Type desc_t = types.findDescriptorType(t);
  1143                         Type desc_s = types.findDescriptorType(s);
  1144                         if (types.isSameTypes(desc_t.getParameterTypes(),
  1145                                 inferenceContext().asFree(desc_s.getParameterTypes()))) {
  1146                             if (types.asSuper(t, s.tsym) != null ||
  1147                                 types.asSuper(s, t.tsym) != null) {
  1148                                 result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1149                             } else if (!desc_s.getReturnType().hasTag(VOID)) {
  1150                                 //perform structural comparison
  1151                                 Type ret_t = desc_t.getReturnType();
  1152                                 Type ret_s = desc_s.getReturnType();
  1153                                 result &= ((tree.refPolyKind == PolyKind.STANDALONE)
  1154                                         ? standaloneMostSpecific(ret_t, ret_s, tree.sym.type.getReturnType(), warn)
  1155                                         : polyMostSpecific(ret_t, ret_s, warn));
  1156                             } else {
  1157                                 return;
  1160                     } else {
  1161                         result &= false;
  1165                 @Override
  1166                 public void visitLambda(JCLambda tree) {
  1167                     if (types.isFunctionalInterface(t.tsym) &&
  1168                             types.isFunctionalInterface(s.tsym)) {
  1169                         Type desc_t = types.findDescriptorType(t);
  1170                         Type desc_s = types.findDescriptorType(s);
  1171                         if (types.isSameTypes(desc_t.getParameterTypes(),
  1172                                 inferenceContext().asFree(desc_s.getParameterTypes()))) {
  1173                             if (types.asSuper(t, s.tsym) != null ||
  1174                                 types.asSuper(s, t.tsym) != null) {
  1175                                 result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1176                             } else if (!desc_s.getReturnType().hasTag(VOID)) {
  1177                                 //perform structural comparison
  1178                                 Type ret_t = desc_t.getReturnType();
  1179                                 Type ret_s = desc_s.getReturnType();
  1180                                 scanLambdaBody(tree, ret_t, ret_s);
  1181                             } else {
  1182                                 return;
  1185                     } else {
  1186                         result &= false;
  1189                 //where
  1191                 void scanLambdaBody(JCLambda lambda, final Type t, final Type s) {
  1192                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
  1193                         result &= MostSpecificCheckContext.this.mostSpecific(t, s, lambda.body, warn);
  1194                     } else {
  1195                         DeferredAttr.LambdaReturnScanner lambdaScanner =
  1196                                 new DeferredAttr.LambdaReturnScanner() {
  1197                                     @Override
  1198                                     public void visitReturn(JCReturn tree) {
  1199                                         if (tree.expr != null) {
  1200                                             result &= MostSpecificCheckContext.this.mostSpecific(t, s, tree.expr, warn);
  1203                                 };
  1204                         lambdaScanner.scan(lambda.body);
  1210         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
  1211             Assert.error("Cannot get here!");
  1212             return null;
  1216     public static class InapplicableMethodException extends RuntimeException {
  1217         private static final long serialVersionUID = 0;
  1219         JCDiagnostic diagnostic;
  1220         JCDiagnostic.Factory diags;
  1222         InapplicableMethodException(JCDiagnostic.Factory diags) {
  1223             this.diagnostic = null;
  1224             this.diags = diags;
  1226         InapplicableMethodException setMessage() {
  1227             return setMessage((JCDiagnostic)null);
  1229         InapplicableMethodException setMessage(String key) {
  1230             return setMessage(key != null ? diags.fragment(key) : null);
  1232         InapplicableMethodException setMessage(String key, Object... args) {
  1233             return setMessage(key != null ? diags.fragment(key, args) : null);
  1235         InapplicableMethodException setMessage(JCDiagnostic diag) {
  1236             this.diagnostic = diag;
  1237             return this;
  1240         public JCDiagnostic getDiagnostic() {
  1241             return diagnostic;
  1244     private final InapplicableMethodException inapplicableMethodException;
  1246 /* ***************************************************************************
  1247  *  Symbol lookup
  1248  *  the following naming conventions for arguments are used
  1250  *       env      is the environment where the symbol was mentioned
  1251  *       site     is the type of which the symbol is a member
  1252  *       name     is the symbol's name
  1253  *                if no arguments are given
  1254  *       argtypes are the value arguments, if we search for a method
  1256  *  If no symbol was found, a ResolveError detailing the problem is returned.
  1257  ****************************************************************************/
  1259     /** Find field. Synthetic fields are always skipped.
  1260      *  @param env     The current environment.
  1261      *  @param site    The original type from where the selection takes place.
  1262      *  @param name    The name of the field.
  1263      *  @param c       The class to search for the field. This is always
  1264      *                 a superclass or implemented interface of site's class.
  1265      */
  1266     Symbol findField(Env<AttrContext> env,
  1267                      Type site,
  1268                      Name name,
  1269                      TypeSymbol c) {
  1270         while (c.type.hasTag(TYPEVAR))
  1271             c = c.type.getUpperBound().tsym;
  1272         Symbol bestSoFar = varNotFound;
  1273         Symbol sym;
  1274         Scope.Entry e = c.members().lookup(name);
  1275         while (e.scope != null) {
  1276             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
  1277                 return isAccessible(env, site, e.sym)
  1278                     ? e.sym : new AccessError(env, site, e.sym);
  1280             e = e.next();
  1282         Type st = types.supertype(c.type);
  1283         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
  1284             sym = findField(env, site, name, st.tsym);
  1285             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1287         for (List<Type> l = types.interfaces(c.type);
  1288              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1289              l = l.tail) {
  1290             sym = findField(env, site, name, l.head.tsym);
  1291             if (bestSoFar.exists() && sym.exists() &&
  1292                 sym.owner != bestSoFar.owner)
  1293                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1294             else if (sym.kind < bestSoFar.kind)
  1295                 bestSoFar = sym;
  1297         return bestSoFar;
  1300     /** Resolve a field identifier, throw a fatal error if not found.
  1301      *  @param pos       The position to use for error reporting.
  1302      *  @param env       The environment current at the method invocation.
  1303      *  @param site      The type of the qualifying expression, in which
  1304      *                   identifier is searched.
  1305      *  @param name      The identifier's name.
  1306      */
  1307     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
  1308                                           Type site, Name name) {
  1309         Symbol sym = findField(env, site, name, site.tsym);
  1310         if (sym.kind == VAR) return (VarSymbol)sym;
  1311         else throw new FatalError(
  1312                  diags.fragment("fatal.err.cant.locate.field",
  1313                                 name));
  1316     /** Find unqualified variable or field with given name.
  1317      *  Synthetic fields always skipped.
  1318      *  @param env     The current environment.
  1319      *  @param name    The name of the variable or field.
  1320      */
  1321     Symbol findVar(Env<AttrContext> env, Name name) {
  1322         Symbol bestSoFar = varNotFound;
  1323         Symbol sym;
  1324         Env<AttrContext> env1 = env;
  1325         boolean staticOnly = false;
  1326         while (env1.outer != null) {
  1327             if (isStatic(env1)) staticOnly = true;
  1328             Scope.Entry e = env1.info.scope.lookup(name);
  1329             while (e.scope != null &&
  1330                    (e.sym.kind != VAR ||
  1331                     (e.sym.flags_field & SYNTHETIC) != 0))
  1332                 e = e.next();
  1333             sym = (e.scope != null)
  1334                 ? e.sym
  1335                 : findField(
  1336                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
  1337             if (sym.exists()) {
  1338                 if (staticOnly &&
  1339                     sym.kind == VAR &&
  1340                     sym.owner.kind == TYP &&
  1341                     (sym.flags() & STATIC) == 0)
  1342                     return new StaticError(sym);
  1343                 else
  1344                     return sym;
  1345             } else if (sym.kind < bestSoFar.kind) {
  1346                 bestSoFar = sym;
  1349             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1350             env1 = env1.outer;
  1353         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
  1354         if (sym.exists())
  1355             return sym;
  1356         if (bestSoFar.exists())
  1357             return bestSoFar;
  1359         Symbol origin = null;
  1360         for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
  1361             Scope.Entry e = sc.lookup(name);
  1362             for (; e.scope != null; e = e.next()) {
  1363                 sym = e.sym;
  1364                 if (sym.kind != VAR)
  1365                     continue;
  1366                 // invariant: sym.kind == VAR
  1367                 if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1368                     return new AmbiguityError(bestSoFar, sym);
  1369                 else if (bestSoFar.kind >= VAR) {
  1370                     origin = e.getOrigin().owner;
  1371                     bestSoFar = isAccessible(env, origin.type, sym)
  1372                         ? sym : new AccessError(env, origin.type, sym);
  1375             if (bestSoFar.exists()) break;
  1377         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1378             return bestSoFar.clone(origin);
  1379         else
  1380             return bestSoFar;
  1383     Warner noteWarner = new Warner();
  1385     /** Select the best method for a call site among two choices.
  1386      *  @param env              The current environment.
  1387      *  @param site             The original type from where the
  1388      *                          selection takes place.
  1389      *  @param argtypes         The invocation's value arguments,
  1390      *  @param typeargtypes     The invocation's type arguments,
  1391      *  @param sym              Proposed new best match.
  1392      *  @param bestSoFar        Previously found best match.
  1393      *  @param allowBoxing Allow boxing conversions of arguments.
  1394      *  @param useVarargs Box trailing arguments into an array for varargs.
  1395      */
  1396     @SuppressWarnings("fallthrough")
  1397     Symbol selectBest(Env<AttrContext> env,
  1398                       Type site,
  1399                       List<Type> argtypes,
  1400                       List<Type> typeargtypes,
  1401                       Symbol sym,
  1402                       Symbol bestSoFar,
  1403                       boolean allowBoxing,
  1404                       boolean useVarargs,
  1405                       boolean operator) {
  1406         if (sym.kind == ERR ||
  1407                 !sym.isInheritedIn(site.tsym, types)) {
  1408             return bestSoFar;
  1409         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
  1410             return bestSoFar.kind >= ERRONEOUS ?
  1411                     new BadVarargsMethod((ResolveError)bestSoFar) :
  1412                     bestSoFar;
  1414         Assert.check(sym.kind < AMBIGUOUS);
  1415         try {
  1416             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1417                                allowBoxing, useVarargs, types.noWarnings);
  1418             if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
  1419                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1420         } catch (InapplicableMethodException ex) {
  1421             if (!operator)
  1422                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1423             switch (bestSoFar.kind) {
  1424                 case ABSENT_MTH:
  1425                     return new InapplicableSymbolError(currentResolutionContext);
  1426                 case WRONG_MTH:
  1427                     if (operator) return bestSoFar;
  1428                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1429                 default:
  1430                     return bestSoFar;
  1433         if (!isAccessible(env, site, sym)) {
  1434             return (bestSoFar.kind == ABSENT_MTH)
  1435                 ? new AccessError(env, site, sym)
  1436                 : bestSoFar;
  1438         return (bestSoFar.kind > AMBIGUOUS)
  1439             ? sym
  1440             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1441                            allowBoxing && operator, useVarargs);
  1444     /* Return the most specific of the two methods for a call,
  1445      *  given that both are accessible and applicable.
  1446      *  @param m1               A new candidate for most specific.
  1447      *  @param m2               The previous most specific candidate.
  1448      *  @param env              The current environment.
  1449      *  @param site             The original type from where the selection
  1450      *                          takes place.
  1451      *  @param allowBoxing Allow boxing conversions of arguments.
  1452      *  @param useVarargs Box trailing arguments into an array for varargs.
  1453      */
  1454     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1455                         Symbol m2,
  1456                         Env<AttrContext> env,
  1457                         final Type site,
  1458                         boolean allowBoxing,
  1459                         boolean useVarargs) {
  1460         switch (m2.kind) {
  1461         case MTH:
  1462             if (m1 == m2) return m1;
  1463             boolean m1SignatureMoreSpecific =
  1464                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1465             boolean m2SignatureMoreSpecific =
  1466                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1467             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1468                 Type mt1 = types.memberType(site, m1);
  1469                 Type mt2 = types.memberType(site, m2);
  1470                 if (!types.overrideEquivalent(mt1, mt2))
  1471                     return ambiguityError(m1, m2);
  1473                 // same signature; select (a) the non-bridge method, or
  1474                 // (b) the one that overrides the other, or (c) the concrete
  1475                 // one, or (d) merge both abstract signatures
  1476                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1477                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1479                 // if one overrides or hides the other, use it
  1480                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1481                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1482                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1483                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1484                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1485                     m1.overrides(m2, m1Owner, types, false))
  1486                     return m1;
  1487                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1488                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1489                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1490                     m2.overrides(m1, m2Owner, types, false))
  1491                     return m2;
  1492                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1493                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1494                 if (m1Abstract && !m2Abstract) return m2;
  1495                 if (m2Abstract && !m1Abstract) return m1;
  1496                 // both abstract or both concrete
  1497                 return ambiguityError(m1, m2);
  1499             if (m1SignatureMoreSpecific) return m1;
  1500             if (m2SignatureMoreSpecific) return m2;
  1501             return ambiguityError(m1, m2);
  1502         case AMBIGUOUS:
  1503             //check if m1 is more specific than all ambiguous methods in m2
  1504             AmbiguityError e = (AmbiguityError)m2.baseSymbol();
  1505             for (Symbol s : e.ambiguousSyms) {
  1506                 if (mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs) != m1) {
  1507                     return e.addAmbiguousSymbol(m1);
  1510             return m1;
  1511         default:
  1512             throw new AssertionError();
  1515     //where
  1516     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1517         noteWarner.clear();
  1518         int maxLength = Math.max(
  1519                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
  1520                             m2.type.getParameterTypes().length());
  1521         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1522         try {
  1523             currentResolutionContext = new MethodResolutionContext();
  1524             currentResolutionContext.step = prevResolutionContext.step;
  1525             currentResolutionContext.methodCheck =
  1526                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
  1527             Type mst = instantiate(env, site, m2, null,
  1528                     adjustArgs(types.lowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
  1529                     allowBoxing, useVarargs, noteWarner);
  1530             return mst != null &&
  1531                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1532         } finally {
  1533             currentResolutionContext = prevResolutionContext;
  1537     List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
  1538         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
  1539             Type varargsElem = types.elemtype(args.last());
  1540             if (varargsElem == null) {
  1541                 Assert.error("Bad varargs = " + args.last() + " " + msym);
  1543             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
  1544             while (newArgs.length() < length) {
  1545                 newArgs = newArgs.append(newArgs.last());
  1547             return newArgs;
  1548         } else {
  1549             return args;
  1552     //where
  1553     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1554         Type rt1 = mt1.getReturnType();
  1555         Type rt2 = mt2.getReturnType();
  1557         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1558             //if both are generic methods, adjust return type ahead of subtyping check
  1559             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1561         //first use subtyping, then return type substitutability
  1562         if (types.isSubtype(rt1, rt2)) {
  1563             return mt1;
  1564         } else if (types.isSubtype(rt2, rt1)) {
  1565             return mt2;
  1566         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1567             return mt1;
  1568         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1569             return mt2;
  1570         } else {
  1571             return null;
  1574     //where
  1575     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1576         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1577             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1578         } else {
  1579             return new AmbiguityError(m1, m2);
  1583     Symbol findMethodInScope(Env<AttrContext> env,
  1584             Type site,
  1585             Name name,
  1586             List<Type> argtypes,
  1587             List<Type> typeargtypes,
  1588             Scope sc,
  1589             Symbol bestSoFar,
  1590             boolean allowBoxing,
  1591             boolean useVarargs,
  1592             boolean operator,
  1593             boolean abstractok) {
  1594         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1595             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1596                     bestSoFar, allowBoxing, useVarargs, operator);
  1598         return bestSoFar;
  1600     //where
  1601         class LookupFilter implements Filter<Symbol> {
  1603             boolean abstractOk;
  1605             LookupFilter(boolean abstractOk) {
  1606                 this.abstractOk = abstractOk;
  1609             public boolean accepts(Symbol s) {
  1610                 long flags = s.flags();
  1611                 return s.kind == MTH &&
  1612                         (flags & SYNTHETIC) == 0 &&
  1613                         (abstractOk ||
  1614                         (flags & DEFAULT) != 0 ||
  1615                         (flags & ABSTRACT) == 0);
  1617         };
  1619     /** Find best qualified method matching given name, type and value
  1620      *  arguments.
  1621      *  @param env       The current environment.
  1622      *  @param site      The original type from where the selection
  1623      *                   takes place.
  1624      *  @param name      The method's name.
  1625      *  @param argtypes  The method's value arguments.
  1626      *  @param typeargtypes The method's type arguments
  1627      *  @param allowBoxing Allow boxing conversions of arguments.
  1628      *  @param useVarargs Box trailing arguments into an array for varargs.
  1629      */
  1630     Symbol findMethod(Env<AttrContext> env,
  1631                       Type site,
  1632                       Name name,
  1633                       List<Type> argtypes,
  1634                       List<Type> typeargtypes,
  1635                       boolean allowBoxing,
  1636                       boolean useVarargs,
  1637                       boolean operator) {
  1638         Symbol bestSoFar = methodNotFound;
  1639         bestSoFar = findMethod(env,
  1640                           site,
  1641                           name,
  1642                           argtypes,
  1643                           typeargtypes,
  1644                           site.tsym.type,
  1645                           bestSoFar,
  1646                           allowBoxing,
  1647                           useVarargs,
  1648                           operator);
  1649         return bestSoFar;
  1651     // where
  1652     private Symbol findMethod(Env<AttrContext> env,
  1653                               Type site,
  1654                               Name name,
  1655                               List<Type> argtypes,
  1656                               List<Type> typeargtypes,
  1657                               Type intype,
  1658                               Symbol bestSoFar,
  1659                               boolean allowBoxing,
  1660                               boolean useVarargs,
  1661                               boolean operator) {
  1662         @SuppressWarnings({"unchecked","rawtypes"})
  1663         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1664         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1665         for (TypeSymbol s : superclasses(intype)) {
  1666             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1667                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1668             if (name == names.init) return bestSoFar;
  1669             iphase = (iphase == null) ? null : iphase.update(s, this);
  1670             if (iphase != null) {
  1671                 for (Type itype : types.interfaces(s.type)) {
  1672                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1677         Symbol concrete = bestSoFar.kind < ERR &&
  1678                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1679                 bestSoFar : methodNotFound;
  1681         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1682             //keep searching for abstract methods
  1683             for (Type itype : itypes[iphase2.ordinal()]) {
  1684                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1685                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1686                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1687                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1688                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1689                 if (concrete != bestSoFar &&
  1690                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1691                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1692                     //this is an hack - as javac does not do full membership checks
  1693                     //most specific ends up comparing abstract methods that might have
  1694                     //been implemented by some concrete method in a subclass and,
  1695                     //because of raw override, it is possible for an abstract method
  1696                     //to be more specific than the concrete method - so we need
  1697                     //to explicitly call that out (see CR 6178365)
  1698                     bestSoFar = concrete;
  1702         return bestSoFar;
  1705     enum InterfaceLookupPhase {
  1706         ABSTRACT_OK() {
  1707             @Override
  1708             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1709                 //We should not look for abstract methods if receiver is a concrete class
  1710                 //(as concrete classes are expected to implement all abstracts coming
  1711                 //from superinterfaces)
  1712                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1713                     return this;
  1714                 } else {
  1715                     return DEFAULT_OK;
  1718         },
  1719         DEFAULT_OK() {
  1720             @Override
  1721             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1722                 return this;
  1724         };
  1726         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1729     /**
  1730      * Return an Iterable object to scan the superclasses of a given type.
  1731      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1732      * access more supertypes than strictly needed (as this could trigger completion
  1733      * errors if some of the not-needed supertypes are missing/ill-formed).
  1734      */
  1735     Iterable<TypeSymbol> superclasses(final Type intype) {
  1736         return new Iterable<TypeSymbol>() {
  1737             public Iterator<TypeSymbol> iterator() {
  1738                 return new Iterator<TypeSymbol>() {
  1740                     List<TypeSymbol> seen = List.nil();
  1741                     TypeSymbol currentSym = symbolFor(intype);
  1742                     TypeSymbol prevSym = null;
  1744                     public boolean hasNext() {
  1745                         if (currentSym == syms.noSymbol) {
  1746                             currentSym = symbolFor(types.supertype(prevSym.type));
  1748                         return currentSym != null;
  1751                     public TypeSymbol next() {
  1752                         prevSym = currentSym;
  1753                         currentSym = syms.noSymbol;
  1754                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1755                         return prevSym;
  1758                     public void remove() {
  1759                         throw new UnsupportedOperationException();
  1762                     TypeSymbol symbolFor(Type t) {
  1763                         if (!t.hasTag(CLASS) &&
  1764                                 !t.hasTag(TYPEVAR)) {
  1765                             return null;
  1767                         while (t.hasTag(TYPEVAR))
  1768                             t = t.getUpperBound();
  1769                         if (seen.contains(t.tsym)) {
  1770                             //degenerate case in which we have a circular
  1771                             //class hierarchy - because of ill-formed classfiles
  1772                             return null;
  1774                         seen = seen.prepend(t.tsym);
  1775                         return t.tsym;
  1777                 };
  1779         };
  1782     /** Find unqualified method matching given name, type and value arguments.
  1783      *  @param env       The current environment.
  1784      *  @param name      The method's name.
  1785      *  @param argtypes  The method's value arguments.
  1786      *  @param typeargtypes  The method's type arguments.
  1787      *  @param allowBoxing Allow boxing conversions of arguments.
  1788      *  @param useVarargs Box trailing arguments into an array for varargs.
  1789      */
  1790     Symbol findFun(Env<AttrContext> env, Name name,
  1791                    List<Type> argtypes, List<Type> typeargtypes,
  1792                    boolean allowBoxing, boolean useVarargs) {
  1793         Symbol bestSoFar = methodNotFound;
  1794         Symbol sym;
  1795         Env<AttrContext> env1 = env;
  1796         boolean staticOnly = false;
  1797         while (env1.outer != null) {
  1798             if (isStatic(env1)) staticOnly = true;
  1799             sym = findMethod(
  1800                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1801                 allowBoxing, useVarargs, false);
  1802             if (sym.exists()) {
  1803                 if (staticOnly &&
  1804                     sym.kind == MTH &&
  1805                     sym.owner.kind == TYP &&
  1806                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1807                 else return sym;
  1808             } else if (sym.kind < bestSoFar.kind) {
  1809                 bestSoFar = sym;
  1811             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1812             env1 = env1.outer;
  1815         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1816                          typeargtypes, allowBoxing, useVarargs, false);
  1817         if (sym.exists())
  1818             return sym;
  1820         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1821         for (; e.scope != null; e = e.next()) {
  1822             sym = e.sym;
  1823             Type origin = e.getOrigin().owner.type;
  1824             if (sym.kind == MTH) {
  1825                 if (e.sym.owner.type != origin)
  1826                     sym = sym.clone(e.getOrigin().owner);
  1827                 if (!isAccessible(env, origin, sym))
  1828                     sym = new AccessError(env, origin, sym);
  1829                 bestSoFar = selectBest(env, origin,
  1830                                        argtypes, typeargtypes,
  1831                                        sym, bestSoFar,
  1832                                        allowBoxing, useVarargs, false);
  1835         if (bestSoFar.exists())
  1836             return bestSoFar;
  1838         e = env.toplevel.starImportScope.lookup(name);
  1839         for (; e.scope != null; e = e.next()) {
  1840             sym = e.sym;
  1841             Type origin = e.getOrigin().owner.type;
  1842             if (sym.kind == MTH) {
  1843                 if (e.sym.owner.type != origin)
  1844                     sym = sym.clone(e.getOrigin().owner);
  1845                 if (!isAccessible(env, origin, sym))
  1846                     sym = new AccessError(env, origin, sym);
  1847                 bestSoFar = selectBest(env, origin,
  1848                                        argtypes, typeargtypes,
  1849                                        sym, bestSoFar,
  1850                                        allowBoxing, useVarargs, false);
  1853         return bestSoFar;
  1856     /** Load toplevel or member class with given fully qualified name and
  1857      *  verify that it is accessible.
  1858      *  @param env       The current environment.
  1859      *  @param name      The fully qualified name of the class to be loaded.
  1860      */
  1861     Symbol loadClass(Env<AttrContext> env, Name name) {
  1862         try {
  1863             ClassSymbol c = reader.loadClass(name);
  1864             return isAccessible(env, c) ? c : new AccessError(c);
  1865         } catch (ClassReader.BadClassFile err) {
  1866             throw err;
  1867         } catch (CompletionFailure ex) {
  1868             return typeNotFound;
  1873     /**
  1874      * Find a type declared in a scope (not inherited).  Return null
  1875      * if none is found.
  1876      *  @param env       The current environment.
  1877      *  @param site      The original type from where the selection takes
  1878      *                   place.
  1879      *  @param name      The type's name.
  1880      *  @param c         The class to search for the member type. This is
  1881      *                   always a superclass or implemented interface of
  1882      *                   site's class.
  1883      */
  1884     Symbol findImmediateMemberType(Env<AttrContext> env,
  1885                                    Type site,
  1886                                    Name name,
  1887                                    TypeSymbol c) {
  1888         Scope.Entry e = c.members().lookup(name);
  1889         while (e.scope != null) {
  1890             if (e.sym.kind == TYP) {
  1891                 return isAccessible(env, site, e.sym)
  1892                     ? e.sym
  1893                     : new AccessError(env, site, e.sym);
  1895             e = e.next();
  1897         return typeNotFound;
  1900     /** Find a member type inherited from a superclass or interface.
  1901      *  @param env       The current environment.
  1902      *  @param site      The original type from where the selection takes
  1903      *                   place.
  1904      *  @param name      The type's name.
  1905      *  @param c         The class to search for the member type. This is
  1906      *                   always a superclass or implemented interface of
  1907      *                   site's class.
  1908      */
  1909     Symbol findInheritedMemberType(Env<AttrContext> env,
  1910                                    Type site,
  1911                                    Name name,
  1912                                    TypeSymbol c) {
  1913         Symbol bestSoFar = typeNotFound;
  1914         Symbol sym;
  1915         Type st = types.supertype(c.type);
  1916         if (st != null && st.hasTag(CLASS)) {
  1917             sym = findMemberType(env, site, name, st.tsym);
  1918             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1920         for (List<Type> l = types.interfaces(c.type);
  1921              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1922              l = l.tail) {
  1923             sym = findMemberType(env, site, name, l.head.tsym);
  1924             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1925                 sym.owner != bestSoFar.owner)
  1926                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1927             else if (sym.kind < bestSoFar.kind)
  1928                 bestSoFar = sym;
  1930         return bestSoFar;
  1933     /** Find qualified member type.
  1934      *  @param env       The current environment.
  1935      *  @param site      The original type from where the selection takes
  1936      *                   place.
  1937      *  @param name      The type's name.
  1938      *  @param c         The class to search for the member type. This is
  1939      *                   always a superclass or implemented interface of
  1940      *                   site's class.
  1941      */
  1942     Symbol findMemberType(Env<AttrContext> env,
  1943                           Type site,
  1944                           Name name,
  1945                           TypeSymbol c) {
  1946         Symbol sym = findImmediateMemberType(env, site, name, c);
  1948         if (sym != typeNotFound)
  1949             return sym;
  1951         return findInheritedMemberType(env, site, name, c);
  1955     /** Find a global type in given scope and load corresponding class.
  1956      *  @param env       The current environment.
  1957      *  @param scope     The scope in which to look for the type.
  1958      *  @param name      The type's name.
  1959      */
  1960     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1961         Symbol bestSoFar = typeNotFound;
  1962         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1963             Symbol sym = loadClass(env, e.sym.flatName());
  1964             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1965                 bestSoFar != sym)
  1966                 return new AmbiguityError(bestSoFar, sym);
  1967             else if (sym.kind < bestSoFar.kind)
  1968                 bestSoFar = sym;
  1970         return bestSoFar;
  1973     Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
  1974         for (Scope.Entry e = env.info.scope.lookup(name);
  1975              e.scope != null;
  1976              e = e.next()) {
  1977             if (e.sym.kind == TYP) {
  1978                 if (staticOnly &&
  1979                     e.sym.type.hasTag(TYPEVAR) &&
  1980                     e.sym.owner.kind == TYP)
  1981                     return new StaticError(e.sym);
  1982                 return e.sym;
  1985         return typeNotFound;
  1988     /** Find an unqualified type symbol.
  1989      *  @param env       The current environment.
  1990      *  @param name      The type's name.
  1991      */
  1992     Symbol findType(Env<AttrContext> env, Name name) {
  1993         Symbol bestSoFar = typeNotFound;
  1994         Symbol sym;
  1995         boolean staticOnly = false;
  1996         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1997             if (isStatic(env1)) staticOnly = true;
  1998             // First, look for a type variable and the first member type
  1999             final Symbol tyvar = findTypeVar(env1, name, staticOnly);
  2000             sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
  2001                                           name, env1.enclClass.sym);
  2003             // Return the type variable if we have it, and have no
  2004             // immediate member, OR the type variable is for a method.
  2005             if (tyvar != typeNotFound) {
  2006                 if (sym == typeNotFound ||
  2007                     (tyvar.kind == TYP && tyvar.exists() &&
  2008                      tyvar.owner.kind == MTH))
  2009                     return tyvar;
  2012             // If the environment is a class def, finish up,
  2013             // otherwise, do the entire findMemberType
  2014             if (sym == typeNotFound)
  2015                 sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
  2016                                               name, env1.enclClass.sym);
  2018             if (staticOnly && sym.kind == TYP &&
  2019                 sym.type.hasTag(CLASS) &&
  2020                 sym.type.getEnclosingType().hasTag(CLASS) &&
  2021                 env1.enclClass.sym.type.isParameterized() &&
  2022                 sym.type.getEnclosingType().isParameterized())
  2023                 return new StaticError(sym);
  2024             else if (sym.exists()) return sym;
  2025             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2027             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  2028             if ((encl.sym.flags() & STATIC) != 0)
  2029                 staticOnly = true;
  2032         if (!env.tree.hasTag(IMPORT)) {
  2033             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  2034             if (sym.exists()) return sym;
  2035             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2037             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  2038             if (sym.exists()) return sym;
  2039             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2041             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  2042             if (sym.exists()) return sym;
  2043             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2046         return bestSoFar;
  2049     /** Find an unqualified identifier which matches a specified kind set.
  2050      *  @param env       The current environment.
  2051      *  @param name      The identifier's name.
  2052      *  @param kind      Indicates the possible symbol kinds
  2053      *                   (a subset of VAL, TYP, PCK).
  2054      */
  2055     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  2056         Symbol bestSoFar = typeNotFound;
  2057         Symbol sym;
  2059         if ((kind & VAR) != 0) {
  2060             sym = findVar(env, name);
  2061             if (sym.exists()) return sym;
  2062             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2065         if ((kind & TYP) != 0) {
  2066             sym = findType(env, name);
  2067             if (sym.kind==TYP) {
  2068                  reportDependence(env.enclClass.sym, sym);
  2070             if (sym.exists()) return sym;
  2071             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2074         if ((kind & PCK) != 0) return reader.enterPackage(name);
  2075         else return bestSoFar;
  2078     /** Report dependencies.
  2079      * @param from The enclosing class sym
  2080      * @param to   The found identifier that the class depends on.
  2081      */
  2082     public void reportDependence(Symbol from, Symbol to) {
  2083         // Override if you want to collect the reported dependencies.
  2086     /** Find an identifier in a package which matches a specified kind set.
  2087      *  @param env       The current environment.
  2088      *  @param name      The identifier's name.
  2089      *  @param kind      Indicates the possible symbol kinds
  2090      *                   (a nonempty subset of TYP, PCK).
  2091      */
  2092     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  2093                               Name name, int kind) {
  2094         Name fullname = TypeSymbol.formFullName(name, pck);
  2095         Symbol bestSoFar = typeNotFound;
  2096         PackageSymbol pack = null;
  2097         if ((kind & PCK) != 0) {
  2098             pack = reader.enterPackage(fullname);
  2099             if (pack.exists()) return pack;
  2101         if ((kind & TYP) != 0) {
  2102             Symbol sym = loadClass(env, fullname);
  2103             if (sym.exists()) {
  2104                 // don't allow programs to use flatnames
  2105                 if (name == sym.name) return sym;
  2107             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2109         return (pack != null) ? pack : bestSoFar;
  2112     /** Find an identifier among the members of a given type `site'.
  2113      *  @param env       The current environment.
  2114      *  @param site      The type containing the symbol to be found.
  2115      *  @param name      The identifier's name.
  2116      *  @param kind      Indicates the possible symbol kinds
  2117      *                   (a subset of VAL, TYP).
  2118      */
  2119     Symbol findIdentInType(Env<AttrContext> env, Type site,
  2120                            Name name, int kind) {
  2121         Symbol bestSoFar = typeNotFound;
  2122         Symbol sym;
  2123         if ((kind & VAR) != 0) {
  2124             sym = findField(env, site, name, site.tsym);
  2125             if (sym.exists()) return sym;
  2126             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2129         if ((kind & TYP) != 0) {
  2130             sym = findMemberType(env, site, name, site.tsym);
  2131             if (sym.exists()) return sym;
  2132             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2134         return bestSoFar;
  2137 /* ***************************************************************************
  2138  *  Access checking
  2139  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  2140  *  an error message in the process
  2141  ****************************************************************************/
  2143     /** If `sym' is a bad symbol: report error and return errSymbol
  2144      *  else pass through unchanged,
  2145      *  additional arguments duplicate what has been used in trying to find the
  2146      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  2147      *  expect misses to happen frequently.
  2149      *  @param sym       The symbol that was found, or a ResolveError.
  2150      *  @param pos       The position to use for error reporting.
  2151      *  @param location  The symbol the served as a context for this lookup
  2152      *  @param site      The original type from where the selection took place.
  2153      *  @param name      The symbol's name.
  2154      *  @param qualified Did we get here through a qualified expression resolution?
  2155      *  @param argtypes  The invocation's value arguments,
  2156      *                   if we looked for a method.
  2157      *  @param typeargtypes  The invocation's type arguments,
  2158      *                   if we looked for a method.
  2159      *  @param logResolveHelper helper class used to log resolve errors
  2160      */
  2161     Symbol accessInternal(Symbol sym,
  2162                   DiagnosticPosition pos,
  2163                   Symbol location,
  2164                   Type site,
  2165                   Name name,
  2166                   boolean qualified,
  2167                   List<Type> argtypes,
  2168                   List<Type> typeargtypes,
  2169                   LogResolveHelper logResolveHelper) {
  2170         if (sym.kind >= AMBIGUOUS) {
  2171             ResolveError errSym = (ResolveError)sym;
  2172             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  2173             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  2174             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  2175                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  2178         return sym;
  2181     /**
  2182      * Variant of the generalized access routine, to be used for generating method
  2183      * resolution diagnostics
  2184      */
  2185     Symbol accessMethod(Symbol sym,
  2186                   DiagnosticPosition pos,
  2187                   Symbol location,
  2188                   Type site,
  2189                   Name name,
  2190                   boolean qualified,
  2191                   List<Type> argtypes,
  2192                   List<Type> typeargtypes) {
  2193         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  2196     /** Same as original accessMethod(), but without location.
  2197      */
  2198     Symbol accessMethod(Symbol sym,
  2199                   DiagnosticPosition pos,
  2200                   Type site,
  2201                   Name name,
  2202                   boolean qualified,
  2203                   List<Type> argtypes,
  2204                   List<Type> typeargtypes) {
  2205         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  2208     /**
  2209      * Variant of the generalized access routine, to be used for generating variable,
  2210      * type resolution diagnostics
  2211      */
  2212     Symbol accessBase(Symbol sym,
  2213                   DiagnosticPosition pos,
  2214                   Symbol location,
  2215                   Type site,
  2216                   Name name,
  2217                   boolean qualified) {
  2218         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  2221     /** Same as original accessBase(), but without location.
  2222      */
  2223     Symbol accessBase(Symbol sym,
  2224                   DiagnosticPosition pos,
  2225                   Type site,
  2226                   Name name,
  2227                   boolean qualified) {
  2228         return accessBase(sym, pos, site.tsym, site, name, qualified);
  2231     interface LogResolveHelper {
  2232         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  2233         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  2236     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  2237         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2238             return !site.isErroneous();
  2240         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2241             return argtypes;
  2243     };
  2245     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  2246         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2247             return !site.isErroneous() &&
  2248                         !Type.isErroneous(argtypes) &&
  2249                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  2251         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2252             return (syms.operatorNames.contains(name)) ?
  2253                     argtypes :
  2254                     Type.map(argtypes, new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
  2256     };
  2258     class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  2260         public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
  2261             deferredAttr.super(mode, msym, step);
  2264         @Override
  2265         protected Type typeOf(DeferredType dt) {
  2266             Type res = super.typeOf(dt);
  2267             if (!res.isErroneous()) {
  2268                 switch (TreeInfo.skipParens(dt.tree).getTag()) {
  2269                     case LAMBDA:
  2270                     case REFERENCE:
  2271                         return dt;
  2272                     case CONDEXPR:
  2273                         return res == Type.recoveryType ?
  2274                                 dt : res;
  2277             return res;
  2281     /** Check that sym is not an abstract method.
  2282      */
  2283     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  2284         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  2285             log.error(pos, "abstract.cant.be.accessed.directly",
  2286                       kindName(sym), sym, sym.location());
  2289 /* ***************************************************************************
  2290  *  Debugging
  2291  ****************************************************************************/
  2293     /** print all scopes starting with scope s and proceeding outwards.
  2294      *  used for debugging.
  2295      */
  2296     public void printscopes(Scope s) {
  2297         while (s != null) {
  2298             if (s.owner != null)
  2299                 System.err.print(s.owner + ": ");
  2300             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  2301                 if ((e.sym.flags() & ABSTRACT) != 0)
  2302                     System.err.print("abstract ");
  2303                 System.err.print(e.sym + " ");
  2305             System.err.println();
  2306             s = s.next;
  2310     void printscopes(Env<AttrContext> env) {
  2311         while (env.outer != null) {
  2312             System.err.println("------------------------------");
  2313             printscopes(env.info.scope);
  2314             env = env.outer;
  2318     public void printscopes(Type t) {
  2319         while (t.hasTag(CLASS)) {
  2320             printscopes(t.tsym.members());
  2321             t = types.supertype(t);
  2325 /* ***************************************************************************
  2326  *  Name resolution
  2327  *  Naming conventions are as for symbol lookup
  2328  *  Unlike the find... methods these methods will report access errors
  2329  ****************************************************************************/
  2331     /** Resolve an unqualified (non-method) identifier.
  2332      *  @param pos       The position to use for error reporting.
  2333      *  @param env       The environment current at the identifier use.
  2334      *  @param name      The identifier's name.
  2335      *  @param kind      The set of admissible symbol kinds for the identifier.
  2336      */
  2337     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2338                         Name name, int kind) {
  2339         return accessBase(
  2340             findIdent(env, name, kind),
  2341             pos, env.enclClass.sym.type, name, false);
  2344     /** Resolve an unqualified method identifier.
  2345      *  @param pos       The position to use for error reporting.
  2346      *  @param env       The environment current at the method invocation.
  2347      *  @param name      The identifier's name.
  2348      *  @param argtypes  The types of the invocation's value arguments.
  2349      *  @param typeargtypes  The types of the invocation's type arguments.
  2350      */
  2351     Symbol resolveMethod(DiagnosticPosition pos,
  2352                          Env<AttrContext> env,
  2353                          Name name,
  2354                          List<Type> argtypes,
  2355                          List<Type> typeargtypes) {
  2356         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
  2357                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2358                     @Override
  2359                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2360                         return findFun(env, name, argtypes, typeargtypes,
  2361                                 phase.isBoxingRequired(),
  2362                                 phase.isVarargsRequired());
  2363                     }});
  2366     /** Resolve a qualified method identifier
  2367      *  @param pos       The position to use for error reporting.
  2368      *  @param env       The environment current at the method invocation.
  2369      *  @param site      The type of the qualifying expression, in which
  2370      *                   identifier is searched.
  2371      *  @param name      The identifier's name.
  2372      *  @param argtypes  The types of the invocation's value arguments.
  2373      *  @param typeargtypes  The types of the invocation's type arguments.
  2374      */
  2375     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2376                                   Type site, Name name, List<Type> argtypes,
  2377                                   List<Type> typeargtypes) {
  2378         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2380     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2381                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2382                                   List<Type> typeargtypes) {
  2383         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2385     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2386                                   DiagnosticPosition pos, Env<AttrContext> env,
  2387                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2388                                   List<Type> typeargtypes) {
  2389         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2390             @Override
  2391             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2392                 return findMethod(env, site, name, argtypes, typeargtypes,
  2393                         phase.isBoxingRequired(),
  2394                         phase.isVarargsRequired(), false);
  2396             @Override
  2397             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2398                 if (sym.kind >= AMBIGUOUS) {
  2399                     sym = super.access(env, pos, location, sym);
  2400                 } else if (allowMethodHandles) {
  2401                     MethodSymbol msym = (MethodSymbol)sym;
  2402                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
  2403                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2406                 return sym;
  2408         });
  2411     /** Find or create an implicit method of exactly the given type (after erasure).
  2412      *  Searches in a side table, not the main scope of the site.
  2413      *  This emulates the lookup process required by JSR 292 in JVM.
  2414      *  @param env       Attribution environment
  2415      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2416      *  @param argtypes  The required argument types
  2417      */
  2418     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2419                                             final Symbol spMethod,
  2420                                             List<Type> argtypes) {
  2421         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2422                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2423         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2424             if (types.isSameType(mtype, sym.type)) {
  2425                return sym;
  2429         // create the desired method
  2430         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2431         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2432             @Override
  2433             public Symbol baseSymbol() {
  2434                 return spMethod;
  2436         };
  2437         polymorphicSignatureScope.enter(msym);
  2438         return msym;
  2441     /** Resolve a qualified method identifier, throw a fatal error if not
  2442      *  found.
  2443      *  @param pos       The position to use for error reporting.
  2444      *  @param env       The environment current at the method invocation.
  2445      *  @param site      The type of the qualifying expression, in which
  2446      *                   identifier is searched.
  2447      *  @param name      The identifier's name.
  2448      *  @param argtypes  The types of the invocation's value arguments.
  2449      *  @param typeargtypes  The types of the invocation's type arguments.
  2450      */
  2451     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2452                                         Type site, Name name,
  2453                                         List<Type> argtypes,
  2454                                         List<Type> typeargtypes) {
  2455         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2456         resolveContext.internalResolution = true;
  2457         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2458                 site, name, argtypes, typeargtypes);
  2459         if (sym.kind == MTH) return (MethodSymbol)sym;
  2460         else throw new FatalError(
  2461                  diags.fragment("fatal.err.cant.locate.meth",
  2462                                 name));
  2465     /** Resolve constructor.
  2466      *  @param pos       The position to use for error reporting.
  2467      *  @param env       The environment current at the constructor invocation.
  2468      *  @param site      The type of class for which a constructor is searched.
  2469      *  @param argtypes  The types of the constructor invocation's value
  2470      *                   arguments.
  2471      *  @param typeargtypes  The types of the constructor invocation's type
  2472      *                   arguments.
  2473      */
  2474     Symbol resolveConstructor(DiagnosticPosition pos,
  2475                               Env<AttrContext> env,
  2476                               Type site,
  2477                               List<Type> argtypes,
  2478                               List<Type> typeargtypes) {
  2479         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2482     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2483                               final DiagnosticPosition pos,
  2484                               Env<AttrContext> env,
  2485                               Type site,
  2486                               List<Type> argtypes,
  2487                               List<Type> typeargtypes) {
  2488         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2489             @Override
  2490             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2491                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2492                         phase.isBoxingRequired(),
  2493                         phase.isVarargsRequired());
  2495         });
  2498     /** Resolve a constructor, throw a fatal error if not found.
  2499      *  @param pos       The position to use for error reporting.
  2500      *  @param env       The environment current at the method invocation.
  2501      *  @param site      The type to be constructed.
  2502      *  @param argtypes  The types of the invocation's value arguments.
  2503      *  @param typeargtypes  The types of the invocation's type arguments.
  2504      */
  2505     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2506                                         Type site,
  2507                                         List<Type> argtypes,
  2508                                         List<Type> typeargtypes) {
  2509         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2510         resolveContext.internalResolution = true;
  2511         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2512         if (sym.kind == MTH) return (MethodSymbol)sym;
  2513         else throw new FatalError(
  2514                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2517     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2518                               Type site, List<Type> argtypes,
  2519                               List<Type> typeargtypes,
  2520                               boolean allowBoxing,
  2521                               boolean useVarargs) {
  2522         Symbol sym = findMethod(env, site,
  2523                                     names.init, argtypes,
  2524                                     typeargtypes, allowBoxing,
  2525                                     useVarargs, false);
  2526         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2527         return sym;
  2530     /** Resolve constructor using diamond inference.
  2531      *  @param pos       The position to use for error reporting.
  2532      *  @param env       The environment current at the constructor invocation.
  2533      *  @param site      The type of class for which a constructor is searched.
  2534      *                   The scope of this class has been touched in attribution.
  2535      *  @param argtypes  The types of the constructor invocation's value
  2536      *                   arguments.
  2537      *  @param typeargtypes  The types of the constructor invocation's type
  2538      *                   arguments.
  2539      */
  2540     Symbol resolveDiamond(DiagnosticPosition pos,
  2541                               Env<AttrContext> env,
  2542                               Type site,
  2543                               List<Type> argtypes,
  2544                               List<Type> typeargtypes) {
  2545         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
  2546                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2547                     @Override
  2548                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2549                         return findDiamond(env, site, argtypes, typeargtypes,
  2550                                 phase.isBoxingRequired(),
  2551                                 phase.isVarargsRequired());
  2553                     @Override
  2554                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2555                         if (sym.kind >= AMBIGUOUS) {
  2556                             if (sym.kind != WRONG_MTH && sym.kind != WRONG_MTHS) {
  2557                                 sym = super.access(env, pos, location, sym);
  2558                             } else {
  2559                                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2560                                                 ((InapplicableSymbolError)sym).errCandidate().snd :
  2561                                                 null;
  2562                                 sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2563                                     @Override
  2564                                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2565                                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2566                                         String key = details == null ?
  2567                                             "cant.apply.diamond" :
  2568                                             "cant.apply.diamond.1";
  2569                                         return diags.create(dkind, log.currentSource(), pos, key,
  2570                                                 diags.fragment("diamond", site.tsym), details);
  2572                                 };
  2573                                 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2574                                 env.info.pendingResolutionPhase = currentResolutionContext.step;
  2577                         return sym;
  2578                     }});
  2581     /** This method scans all the constructor symbol in a given class scope -
  2582      *  assuming that the original scope contains a constructor of the kind:
  2583      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2584      *  a method check is executed against the modified constructor type:
  2585      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2586      *  inference. The inferred return type of the synthetic constructor IS
  2587      *  the inferred type for the diamond operator.
  2588      */
  2589     private Symbol findDiamond(Env<AttrContext> env,
  2590                               Type site,
  2591                               List<Type> argtypes,
  2592                               List<Type> typeargtypes,
  2593                               boolean allowBoxing,
  2594                               boolean useVarargs) {
  2595         Symbol bestSoFar = methodNotFound;
  2596         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2597              e.scope != null;
  2598              e = e.next()) {
  2599             final Symbol sym = e.sym;
  2600             //- System.out.println(" e " + e.sym);
  2601             if (sym.kind == MTH &&
  2602                 (sym.flags_field & SYNTHETIC) == 0) {
  2603                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2604                             ((ForAll)sym.type).tvars :
  2605                             List.<Type>nil();
  2606                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2607                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2608                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2609                         @Override
  2610                         public Symbol baseSymbol() {
  2611                             return sym;
  2613                     };
  2614                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2615                             newConstr,
  2616                             bestSoFar,
  2617                             allowBoxing,
  2618                             useVarargs,
  2619                             false);
  2622         return bestSoFar;
  2627     /** Resolve operator.
  2628      *  @param pos       The position to use for error reporting.
  2629      *  @param optag     The tag of the operation tree.
  2630      *  @param env       The environment current at the operation.
  2631      *  @param argtypes  The types of the operands.
  2632      */
  2633     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2634                            Env<AttrContext> env, List<Type> argtypes) {
  2635         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2636         try {
  2637             currentResolutionContext = new MethodResolutionContext();
  2638             Name name = treeinfo.operatorName(optag);
  2639             return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
  2640                     new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
  2641                 @Override
  2642                 Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2643                     return findMethod(env, site, name, argtypes, typeargtypes,
  2644                             phase.isBoxingRequired(),
  2645                             phase.isVarargsRequired(), true);
  2647                 @Override
  2648                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2649                     return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2650                           false, argtypes, null);
  2652             });
  2653         } finally {
  2654             currentResolutionContext = prevResolutionContext;
  2658     /** Resolve operator.
  2659      *  @param pos       The position to use for error reporting.
  2660      *  @param optag     The tag of the operation tree.
  2661      *  @param env       The environment current at the operation.
  2662      *  @param arg       The type of the operand.
  2663      */
  2664     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2665         return resolveOperator(pos, optag, env, List.of(arg));
  2668     /** Resolve binary operator.
  2669      *  @param pos       The position to use for error reporting.
  2670      *  @param optag     The tag of the operation tree.
  2671      *  @param env       The environment current at the operation.
  2672      *  @param left      The types of the left operand.
  2673      *  @param right     The types of the right operand.
  2674      */
  2675     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2676                                  JCTree.Tag optag,
  2677                                  Env<AttrContext> env,
  2678                                  Type left,
  2679                                  Type right) {
  2680         return resolveOperator(pos, optag, env, List.of(left, right));
  2683     Symbol getMemberReference(DiagnosticPosition pos,
  2684             Env<AttrContext> env,
  2685             JCMemberReference referenceTree,
  2686             Type site,
  2687             Name name) {
  2689         site = types.capture(site);
  2691         ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
  2692                 referenceTree, site, name, List.<Type>nil(), null, VARARITY);
  2694         Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
  2695         Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
  2696                 nilMethodCheck, lookupHelper);
  2698         env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
  2700         return sym;
  2703     ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
  2704                                   Type site,
  2705                                   Name name,
  2706                                   List<Type> argtypes,
  2707                                   List<Type> typeargtypes,
  2708                                   MethodResolutionPhase maxPhase) {
  2709         ReferenceLookupHelper result;
  2710         if (!name.equals(names.init)) {
  2711             //method reference
  2712             result =
  2713                     new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2714         } else {
  2715             if (site.hasTag(ARRAY)) {
  2716                 //array constructor reference
  2717                 result =
  2718                         new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2719             } else {
  2720                 //class constructor reference
  2721                 result =
  2722                         new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2725         return result;
  2728     Symbol resolveMemberReferenceByArity(Env<AttrContext> env,
  2729                                   JCMemberReference referenceTree,
  2730                                   Type site,
  2731                                   Name name,
  2732                                   List<Type> argtypes,
  2733                                   InferenceContext inferenceContext) {
  2735         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
  2736         site = types.capture(site);
  2738         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
  2739                 referenceTree, site, name, argtypes, null, VARARITY);
  2740         //step 1 - bound lookup
  2741         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2742         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym,
  2743                 arityMethodCheck, boundLookupHelper);
  2744         if (isStaticSelector &&
  2745             !name.equals(names.init) &&
  2746             !boundSym.isStatic() &&
  2747             boundSym.kind < ERRONEOUS) {
  2748             boundSym = methodNotFound;
  2751         //step 2 - unbound lookup
  2752         Symbol unboundSym = methodNotFound;
  2753         ReferenceLookupHelper unboundLookupHelper = null;
  2754         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2755         if (isStaticSelector) {
  2756             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2757             unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym,
  2758                     arityMethodCheck, unboundLookupHelper);
  2759             if (unboundSym.isStatic() &&
  2760                 unboundSym.kind < ERRONEOUS) {
  2761                 unboundSym = methodNotFound;
  2765         //merge results
  2766         Symbol bestSym = choose(boundSym, unboundSym);
  2767         env.info.pendingResolutionPhase = bestSym == unboundSym ?
  2768                 unboundEnv.info.pendingResolutionPhase :
  2769                 boundEnv.info.pendingResolutionPhase;
  2771         return bestSym;
  2774     /**
  2775      * Resolution of member references is typically done as a single
  2776      * overload resolution step, where the argument types A are inferred from
  2777      * the target functional descriptor.
  2779      * If the member reference is a method reference with a type qualifier,
  2780      * a two-step lookup process is performed. The first step uses the
  2781      * expected argument list A, while the second step discards the first
  2782      * type from A (which is treated as a receiver type).
  2784      * There are two cases in which inference is performed: (i) if the member
  2785      * reference is a constructor reference and the qualifier type is raw - in
  2786      * which case diamond inference is used to infer a parameterization for the
  2787      * type qualifier; (ii) if the member reference is an unbound reference
  2788      * where the type qualifier is raw - in that case, during the unbound lookup
  2789      * the receiver argument type is used to infer an instantiation for the raw
  2790      * qualifier type.
  2792      * When a multi-step resolution process is exploited, it is an error
  2793      * if two candidates are found (ambiguity).
  2795      * This routine returns a pair (T,S), where S is the member reference symbol,
  2796      * and T is the type of the class in which S is defined. This is necessary as
  2797      * the type T might be dynamically inferred (i.e. if constructor reference
  2798      * has a raw qualifier).
  2799      */
  2800     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
  2801                                   JCMemberReference referenceTree,
  2802                                   Type site,
  2803                                   Name name,
  2804                                   List<Type> argtypes,
  2805                                   List<Type> typeargtypes,
  2806                                   MethodCheck methodCheck,
  2807                                   InferenceContext inferenceContext,
  2808                                   AttrMode mode) {
  2810         site = types.capture(site);
  2811         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
  2812                 referenceTree, site, name, argtypes, typeargtypes, VARARITY);
  2814         //step 1 - bound lookup
  2815         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2816         Symbol origBoundSym;
  2817         boolean staticErrorForBound = false;
  2818         MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
  2819         boundSearchResolveContext.methodCheck = methodCheck;
  2820         Symbol boundSym = origBoundSym = lookupMethod(boundEnv, env.tree.pos(),
  2821                 site.tsym, boundSearchResolveContext, boundLookupHelper);
  2822         SearchResultKind boundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
  2823         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
  2824         boolean shouldCheckForStaticness = isStaticSelector &&
  2825                 referenceTree.getMode() == ReferenceMode.INVOKE;
  2826         if (boundSym.kind != WRONG_MTHS && boundSym.kind != WRONG_MTH) {
  2827             if (shouldCheckForStaticness) {
  2828                 if (!boundSym.isStatic()) {
  2829                     staticErrorForBound = true;
  2830                     if (hasAnotherApplicableMethod(
  2831                             boundSearchResolveContext, boundSym, true)) {
  2832                         boundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
  2833                     } else {
  2834                         boundSearchResultKind = SearchResultKind.BAD_MATCH;
  2835                         if (boundSym.kind < ERRONEOUS) {
  2836                             boundSym = methodWithCorrectStaticnessNotFound;
  2839                 } else if (boundSym.kind < ERRONEOUS) {
  2840                     boundSearchResultKind = SearchResultKind.GOOD_MATCH;
  2845         //step 2 - unbound lookup
  2846         Symbol origUnboundSym = null;
  2847         Symbol unboundSym = methodNotFound;
  2848         ReferenceLookupHelper unboundLookupHelper = null;
  2849         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2850         SearchResultKind unboundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
  2851         boolean staticErrorForUnbound = false;
  2852         if (isStaticSelector) {
  2853             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2854             MethodResolutionContext unboundSearchResolveContext =
  2855                     new MethodResolutionContext();
  2856             unboundSearchResolveContext.methodCheck = methodCheck;
  2857             unboundSym = origUnboundSym = lookupMethod(unboundEnv, env.tree.pos(),
  2858                     site.tsym, unboundSearchResolveContext, unboundLookupHelper);
  2860             if (unboundSym.kind != WRONG_MTH && unboundSym.kind != WRONG_MTHS) {
  2861                 if (shouldCheckForStaticness) {
  2862                     if (unboundSym.isStatic()) {
  2863                         staticErrorForUnbound = true;
  2864                         if (hasAnotherApplicableMethod(
  2865                                 unboundSearchResolveContext, unboundSym, false)) {
  2866                             unboundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
  2867                         } else {
  2868                             unboundSearchResultKind = SearchResultKind.BAD_MATCH;
  2869                             if (unboundSym.kind < ERRONEOUS) {
  2870                                 unboundSym = methodWithCorrectStaticnessNotFound;
  2873                     } else if (unboundSym.kind < ERRONEOUS) {
  2874                         unboundSearchResultKind = SearchResultKind.GOOD_MATCH;
  2880         //merge results
  2881         Pair<Symbol, ReferenceLookupHelper> res;
  2882         Symbol bestSym = choose(boundSym, unboundSym);
  2883         if (bestSym.kind < ERRONEOUS && (staticErrorForBound || staticErrorForUnbound)) {
  2884             if (staticErrorForBound) {
  2885                 boundSym = methodWithCorrectStaticnessNotFound;
  2887             if (staticErrorForUnbound) {
  2888                 unboundSym = methodWithCorrectStaticnessNotFound;
  2890             bestSym = choose(boundSym, unboundSym);
  2892         if (bestSym == methodWithCorrectStaticnessNotFound && mode == AttrMode.CHECK) {
  2893             Symbol symToPrint = origBoundSym;
  2894             String errorFragmentToPrint = "non-static.cant.be.ref";
  2895             if (staticErrorForBound && staticErrorForUnbound) {
  2896                 if (unboundSearchResultKind == SearchResultKind.BAD_MATCH_MORE_SPECIFIC) {
  2897                     symToPrint = origUnboundSym;
  2898                     errorFragmentToPrint = "static.method.in.unbound.lookup";
  2900             } else {
  2901                 if (!staticErrorForBound) {
  2902                     symToPrint = origUnboundSym;
  2903                     errorFragmentToPrint = "static.method.in.unbound.lookup";
  2906             log.error(referenceTree.expr.pos(), "invalid.mref",
  2907                 Kinds.kindName(referenceTree.getMode()),
  2908                 diags.fragment(errorFragmentToPrint,
  2909                 Kinds.kindName(symToPrint), symToPrint));
  2911         res = new Pair<>(bestSym,
  2912                 bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
  2913         env.info.pendingResolutionPhase = bestSym == unboundSym ?
  2914                 unboundEnv.info.pendingResolutionPhase :
  2915                 boundEnv.info.pendingResolutionPhase;
  2917         return res;
  2920     enum SearchResultKind {
  2921         GOOD_MATCH,                 //type I
  2922         BAD_MATCH_MORE_SPECIFIC,    //type II
  2923         BAD_MATCH,                  //type III
  2924         NOT_APPLICABLE_MATCH        //type IV
  2927     boolean hasAnotherApplicableMethod(MethodResolutionContext resolutionContext,
  2928             Symbol bestSoFar, boolean staticMth) {
  2929         for (Candidate c : resolutionContext.candidates) {
  2930             if (resolutionContext.step != c.step ||
  2931                 !c.isApplicable() ||
  2932                 c.sym == bestSoFar) {
  2933                 continue;
  2934             } else {
  2935                 if (c.sym.isStatic() == staticMth) {
  2936                     return true;
  2940         return false;
  2943     //where
  2944         private Symbol choose(Symbol boundSym, Symbol unboundSym) {
  2945             if (lookupSuccess(boundSym) && lookupSuccess(unboundSym)) {
  2946                 return ambiguityError(boundSym, unboundSym);
  2947             } else if (lookupSuccess(boundSym) ||
  2948                     (canIgnore(unboundSym) && !canIgnore(boundSym))) {
  2949                 return boundSym;
  2950             } else if (lookupSuccess(unboundSym) ||
  2951                     (canIgnore(boundSym) && !canIgnore(unboundSym))) {
  2952                 return unboundSym;
  2953             } else {
  2954                 return boundSym;
  2958         private boolean lookupSuccess(Symbol s) {
  2959             return s.kind == MTH || s.kind == AMBIGUOUS;
  2962         private boolean canIgnore(Symbol s) {
  2963             switch (s.kind) {
  2964                 case ABSENT_MTH:
  2965                     return true;
  2966                 case WRONG_MTH:
  2967                     InapplicableSymbolError errSym =
  2968                             (InapplicableSymbolError)s;
  2969                     return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
  2970                             .matches(errSym.errCandidate().snd);
  2971                 case WRONG_MTHS:
  2972                     InapplicableSymbolsError errSyms =
  2973                             (InapplicableSymbolsError)s;
  2974                     return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
  2975                 case WRONG_STATICNESS:
  2976                     return false;
  2977                 default:
  2978                     return false;
  2982     /**
  2983      * Helper for defining custom method-like lookup logic; a lookup helper
  2984      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2985      * lookup result (this step might result in compiler diagnostics to be generated)
  2986      */
  2987     abstract class LookupHelper {
  2989         /** name of the symbol to lookup */
  2990         Name name;
  2992         /** location in which the lookup takes place */
  2993         Type site;
  2995         /** actual types used during the lookup */
  2996         List<Type> argtypes;
  2998         /** type arguments used during the lookup */
  2999         List<Type> typeargtypes;
  3001         /** Max overload resolution phase handled by this helper */
  3002         MethodResolutionPhase maxPhase;
  3004         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3005             this.name = name;
  3006             this.site = site;
  3007             this.argtypes = argtypes;
  3008             this.typeargtypes = typeargtypes;
  3009             this.maxPhase = maxPhase;
  3012         /**
  3013          * Should lookup stop at given phase with given result
  3014          */
  3015         protected boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  3016             return phase.ordinal() > maxPhase.ordinal() ||
  3017                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  3020         /**
  3021          * Search for a symbol under a given overload resolution phase - this method
  3022          * is usually called several times, once per each overload resolution phase
  3023          */
  3024         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  3026         /**
  3027          * Dump overload resolution info
  3028          */
  3029         void debug(DiagnosticPosition pos, Symbol sym) {
  3030             //do nothing
  3033         /**
  3034          * Validate the result of the lookup
  3035          */
  3036         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  3039     abstract class BasicLookupHelper extends LookupHelper {
  3041         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  3042             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  3045         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3046             super(name, site, argtypes, typeargtypes, maxPhase);
  3049         @Override
  3050         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3051             Symbol sym = doLookup(env, phase);
  3052             if (sym.kind == AMBIGUOUS) {
  3053                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
  3054                 sym = a_err.mergeAbstracts(site);
  3056             return sym;
  3059         abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
  3061         @Override
  3062         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  3063             if (sym.kind >= AMBIGUOUS) {
  3064                 //if nothing is found return the 'first' error
  3065                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  3067             return sym;
  3070         @Override
  3071         void debug(DiagnosticPosition pos, Symbol sym) {
  3072             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
  3076     /**
  3077      * Helper class for member reference lookup. A reference lookup helper
  3078      * defines the basic logic for member reference lookup; a method gives
  3079      * access to an 'unbound' helper used to perform an unbound member
  3080      * reference lookup.
  3081      */
  3082     abstract class ReferenceLookupHelper extends LookupHelper {
  3084         /** The member reference tree */
  3085         JCMemberReference referenceTree;
  3087         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3088                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3089             super(name, site, argtypes, typeargtypes, maxPhase);
  3090             this.referenceTree = referenceTree;
  3093         /**
  3094          * Returns an unbound version of this lookup helper. By default, this
  3095          * method returns an dummy lookup helper.
  3096          */
  3097         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3098             //dummy loopkup helper that always return 'methodNotFound'
  3099             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  3100                 @Override
  3101                 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3102                     return this;
  3104                 @Override
  3105                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3106                     return methodNotFound;
  3108                 @Override
  3109                 ReferenceKind referenceKind(Symbol sym) {
  3110                     Assert.error();
  3111                     return null;
  3113             };
  3116         /**
  3117          * Get the kind of the member reference
  3118          */
  3119         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  3121         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  3122             if (sym.kind == AMBIGUOUS) {
  3123                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
  3124                 sym = a_err.mergeAbstracts(site);
  3126             //skip error reporting
  3127             return sym;
  3131     /**
  3132      * Helper class for method reference lookup. The lookup logic is based
  3133      * upon Resolve.findMethod; in certain cases, this helper class has a
  3134      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  3135      * In such cases, non-static lookup results are thrown away.
  3136      */
  3137     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  3139         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3140                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3141             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  3144         @Override
  3145         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3146             return findMethod(env, site, name, argtypes, typeargtypes,
  3147                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  3150         @Override
  3151         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3152             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  3153                     argtypes.nonEmpty() &&
  3154                     (argtypes.head.hasTag(NONE) ||
  3155                     types.isSubtypeUnchecked(inferenceContext.asFree(argtypes.head), site))) {
  3156                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  3157                         site, argtypes, typeargtypes, maxPhase);
  3158             } else {
  3159                 return super.unboundLookup(inferenceContext);
  3163         @Override
  3164         ReferenceKind referenceKind(Symbol sym) {
  3165             if (sym.isStatic()) {
  3166                 return ReferenceKind.STATIC;
  3167             } else {
  3168                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  3169                 return selName != null && selName == names._super ?
  3170                         ReferenceKind.SUPER :
  3171                         ReferenceKind.BOUND;
  3176     /**
  3177      * Helper class for unbound method reference lookup. Essentially the same
  3178      * as the basic method reference lookup helper; main difference is that static
  3179      * lookup results are thrown away. If qualifier type is raw, an attempt to
  3180      * infer a parameterized type is made using the first actual argument (that
  3181      * would otherwise be ignored during the lookup).
  3182      */
  3183     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  3185         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3186                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3187             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
  3188             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
  3189                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
  3190                 this.site = asSuperSite;
  3194         @Override
  3195         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3196             return this;
  3199         @Override
  3200         ReferenceKind referenceKind(Symbol sym) {
  3201             return ReferenceKind.UNBOUND;
  3205     /**
  3206      * Helper class for array constructor lookup; an array constructor lookup
  3207      * is simulated by looking up a method that returns the array type specified
  3208      * as qualifier, and that accepts a single int parameter (size of the array).
  3209      */
  3210     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  3212         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  3213                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3214             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  3217         @Override
  3218         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3219             Scope sc = new Scope(syms.arrayClass);
  3220             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
  3221             arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
  3222             sc.enter(arrayConstr);
  3223             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
  3226         @Override
  3227         ReferenceKind referenceKind(Symbol sym) {
  3228             return ReferenceKind.ARRAY_CTOR;
  3232     /**
  3233      * Helper class for constructor reference lookup. The lookup logic is based
  3234      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  3235      * whether the constructor reference needs diamond inference (this is the case
  3236      * if the qualifier type is raw). A special erroneous symbol is returned
  3237      * if the lookup returns the constructor of an inner class and there's no
  3238      * enclosing instance in scope.
  3239      */
  3240     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  3242         boolean needsInference;
  3244         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  3245                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3246             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  3247             if (site.isRaw()) {
  3248                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  3249                 needsInference = true;
  3253         @Override
  3254         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3255             Symbol sym = needsInference ?
  3256                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  3257                 findMethod(env, site, name, argtypes, typeargtypes,
  3258                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  3259             return sym.kind != MTH ||
  3260                           site.getEnclosingType().hasTag(NONE) ||
  3261                           hasEnclosingInstance(env, site) ?
  3262                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  3263                     @Override
  3264                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  3265                        return diags.create(dkind, log.currentSource(), pos,
  3266                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  3268                 };
  3271         @Override
  3272         ReferenceKind referenceKind(Symbol sym) {
  3273             return site.getEnclosingType().hasTag(NONE) ?
  3274                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  3278     /**
  3279      * Main overload resolution routine. On each overload resolution step, a
  3280      * lookup helper class is used to perform the method/constructor lookup;
  3281      * at the end of the lookup, the helper is used to validate the results
  3282      * (this last step might trigger overload resolution diagnostics).
  3283      */
  3284     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
  3285         MethodResolutionContext resolveContext = new MethodResolutionContext();
  3286         resolveContext.methodCheck = methodCheck;
  3287         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
  3290     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  3291             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  3292         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  3293         try {
  3294             Symbol bestSoFar = methodNotFound;
  3295             currentResolutionContext = resolveContext;
  3296             for (MethodResolutionPhase phase : methodResolutionSteps) {
  3297                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  3298                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  3299                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  3300                 Symbol prevBest = bestSoFar;
  3301                 currentResolutionContext.step = phase;
  3302                 Symbol sym = lookupHelper.lookup(env, phase);
  3303                 lookupHelper.debug(pos, sym);
  3304                 bestSoFar = phase.mergeResults(bestSoFar, sym);
  3305                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  3307             return lookupHelper.access(env, pos, location, bestSoFar);
  3308         } finally {
  3309             currentResolutionContext = prevResolutionContext;
  3313     /**
  3314      * Resolve `c.name' where name == this or name == super.
  3315      * @param pos           The position to use for error reporting.
  3316      * @param env           The environment current at the expression.
  3317      * @param c             The qualifier.
  3318      * @param name          The identifier's name.
  3319      */
  3320     Symbol resolveSelf(DiagnosticPosition pos,
  3321                        Env<AttrContext> env,
  3322                        TypeSymbol c,
  3323                        Name name) {
  3324         Env<AttrContext> env1 = env;
  3325         boolean staticOnly = false;
  3326         while (env1.outer != null) {
  3327             if (isStatic(env1)) staticOnly = true;
  3328             if (env1.enclClass.sym == c) {
  3329                 Symbol sym = env1.info.scope.lookup(name).sym;
  3330                 if (sym != null) {
  3331                     if (staticOnly) sym = new StaticError(sym);
  3332                     return accessBase(sym, pos, env.enclClass.sym.type,
  3333                                   name, true);
  3336             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  3337             env1 = env1.outer;
  3339         if (c.isInterface() &&
  3340             name == names._super && !isStatic(env) &&
  3341             types.isDirectSuperInterface(c, env.enclClass.sym)) {
  3342             //this might be a default super call if one of the superinterfaces is 'c'
  3343             for (Type t : pruneInterfaces(env.enclClass.type)) {
  3344                 if (t.tsym == c) {
  3345                     env.info.defaultSuperCallSite = t;
  3346                     return new VarSymbol(0, names._super,
  3347                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  3350             //find a direct superinterface that is a subtype of 'c'
  3351             for (Type i : types.interfaces(env.enclClass.type)) {
  3352                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  3353                     log.error(pos, "illegal.default.super.call", c,
  3354                             diags.fragment("redundant.supertype", c, i));
  3355                     return syms.errSymbol;
  3358             Assert.error();
  3360         log.error(pos, "not.encl.class", c);
  3361         return syms.errSymbol;
  3363     //where
  3364     private List<Type> pruneInterfaces(Type t) {
  3365         ListBuffer<Type> result = new ListBuffer<>();
  3366         for (Type t1 : types.interfaces(t)) {
  3367             boolean shouldAdd = true;
  3368             for (Type t2 : types.interfaces(t)) {
  3369                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  3370                     shouldAdd = false;
  3373             if (shouldAdd) {
  3374                 result.append(t1);
  3377         return result.toList();
  3381     /**
  3382      * Resolve `c.this' for an enclosing class c that contains the
  3383      * named member.
  3384      * @param pos           The position to use for error reporting.
  3385      * @param env           The environment current at the expression.
  3386      * @param member        The member that must be contained in the result.
  3387      */
  3388     Symbol resolveSelfContaining(DiagnosticPosition pos,
  3389                                  Env<AttrContext> env,
  3390                                  Symbol member,
  3391                                  boolean isSuperCall) {
  3392         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  3393         if (sym == null) {
  3394             log.error(pos, "encl.class.required", member);
  3395             return syms.errSymbol;
  3396         } else {
  3397             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  3401     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  3402         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  3403         return encl != null && encl.kind < ERRONEOUS;
  3406     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  3407                                  Symbol member,
  3408                                  boolean isSuperCall) {
  3409         Name name = names._this;
  3410         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  3411         boolean staticOnly = false;
  3412         if (env1 != null) {
  3413             while (env1 != null && env1.outer != null) {
  3414                 if (isStatic(env1)) staticOnly = true;
  3415                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  3416                     Symbol sym = env1.info.scope.lookup(name).sym;
  3417                     if (sym != null) {
  3418                         if (staticOnly) sym = new StaticError(sym);
  3419                         return sym;
  3422                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  3423                     staticOnly = true;
  3424                 env1 = env1.outer;
  3427         return null;
  3430     /**
  3431      * Resolve an appropriate implicit this instance for t's container.
  3432      * JLS 8.8.5.1 and 15.9.2
  3433      */
  3434     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  3435         return resolveImplicitThis(pos, env, t, false);
  3438     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  3439         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  3440                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  3441                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  3442         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  3443             log.error(pos, "cant.ref.before.ctor.called", "this");
  3444         return thisType;
  3447 /* ***************************************************************************
  3448  *  ResolveError classes, indicating error situations when accessing symbols
  3449  ****************************************************************************/
  3451     //used by TransTypes when checking target type of synthetic cast
  3452     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  3453         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  3454         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  3456     //where
  3457     private void logResolveError(ResolveError error,
  3458             DiagnosticPosition pos,
  3459             Symbol location,
  3460             Type site,
  3461             Name name,
  3462             List<Type> argtypes,
  3463             List<Type> typeargtypes) {
  3464         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3465                 pos, location, site, name, argtypes, typeargtypes);
  3466         if (d != null) {
  3467             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  3468             log.report(d);
  3472     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  3474     public Object methodArguments(List<Type> argtypes) {
  3475         if (argtypes == null || argtypes.isEmpty()) {
  3476             return noArgs;
  3477         } else {
  3478             ListBuffer<Object> diagArgs = new ListBuffer<>();
  3479             for (Type t : argtypes) {
  3480                 if (t.hasTag(DEFERRED)) {
  3481                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  3482                 } else {
  3483                     diagArgs.append(t);
  3486             return diagArgs;
  3490     /**
  3491      * Root class for resolution errors. Subclass of ResolveError
  3492      * represent a different kinds of resolution error - as such they must
  3493      * specify how they map into concrete compiler diagnostics.
  3494      */
  3495     abstract class ResolveError extends Symbol {
  3497         /** The name of the kind of error, for debugging only. */
  3498         final String debugName;
  3500         ResolveError(int kind, String debugName) {
  3501             super(kind, 0, null, null, null);
  3502             this.debugName = debugName;
  3505         @Override
  3506         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  3507             throw new AssertionError();
  3510         @Override
  3511         public String toString() {
  3512             return debugName;
  3515         @Override
  3516         public boolean exists() {
  3517             return false;
  3520         @Override
  3521         public boolean isStatic() {
  3522             return false;
  3525         /**
  3526          * Create an external representation for this erroneous symbol to be
  3527          * used during attribution - by default this returns the symbol of a
  3528          * brand new error type which stores the original type found
  3529          * during resolution.
  3531          * @param name     the name used during resolution
  3532          * @param location the location from which the symbol is accessed
  3533          */
  3534         protected Symbol access(Name name, TypeSymbol location) {
  3535             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3538         /**
  3539          * Create a diagnostic representing this resolution error.
  3541          * @param dkind     The kind of the diagnostic to be created (e.g error).
  3542          * @param pos       The position to be used for error reporting.
  3543          * @param site      The original type from where the selection took place.
  3544          * @param name      The name of the symbol to be resolved.
  3545          * @param argtypes  The invocation's value arguments,
  3546          *                  if we looked for a method.
  3547          * @param typeargtypes  The invocation's type arguments,
  3548          *                      if we looked for a method.
  3549          */
  3550         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3551                 DiagnosticPosition pos,
  3552                 Symbol location,
  3553                 Type site,
  3554                 Name name,
  3555                 List<Type> argtypes,
  3556                 List<Type> typeargtypes);
  3559     /**
  3560      * This class is the root class of all resolution errors caused by
  3561      * an invalid symbol being found during resolution.
  3562      */
  3563     abstract class InvalidSymbolError extends ResolveError {
  3565         /** The invalid symbol found during resolution */
  3566         Symbol sym;
  3568         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  3569             super(kind, debugName);
  3570             this.sym = sym;
  3573         @Override
  3574         public boolean exists() {
  3575             return true;
  3578         @Override
  3579         public String toString() {
  3580              return super.toString() + " wrongSym=" + sym;
  3583         @Override
  3584         public Symbol access(Name name, TypeSymbol location) {
  3585             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3586                 return types.createErrorType(name, location, sym.type).tsym;
  3587             else
  3588                 return sym;
  3592     /**
  3593      * InvalidSymbolError error class indicating that a symbol matching a
  3594      * given name does not exists in a given site.
  3595      */
  3596     class SymbolNotFoundError extends ResolveError {
  3598         SymbolNotFoundError(int kind) {
  3599             this(kind, "symbol not found error");
  3602         SymbolNotFoundError(int kind, String debugName) {
  3603             super(kind, debugName);
  3606         @Override
  3607         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3608                 DiagnosticPosition pos,
  3609                 Symbol location,
  3610                 Type site,
  3611                 Name name,
  3612                 List<Type> argtypes,
  3613                 List<Type> typeargtypes) {
  3614             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3615             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3616             if (name == names.error)
  3617                 return null;
  3619             if (syms.operatorNames.contains(name)) {
  3620                 boolean isUnaryOp = argtypes.size() == 1;
  3621                 String key = argtypes.size() == 1 ?
  3622                     "operator.cant.be.applied" :
  3623                     "operator.cant.be.applied.1";
  3624                 Type first = argtypes.head;
  3625                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3626                 return diags.create(dkind, log.currentSource(), pos,
  3627                         key, name, first, second);
  3629             boolean hasLocation = false;
  3630             if (location == null) {
  3631                 location = site.tsym;
  3633             if (!location.name.isEmpty()) {
  3634                 if (location.kind == PCK && !site.tsym.exists()) {
  3635                     return diags.create(dkind, log.currentSource(), pos,
  3636                         "doesnt.exist", location);
  3638                 hasLocation = !location.name.equals(names._this) &&
  3639                         !location.name.equals(names._super);
  3641             boolean isConstructor = (kind == ABSENT_MTH || kind == WRONG_STATICNESS) &&
  3642                     name == names.init;
  3643             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3644             Name idname = isConstructor ? site.tsym.name : name;
  3645             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3646             if (hasLocation) {
  3647                 return diags.create(dkind, log.currentSource(), pos,
  3648                         errKey, kindname, idname, //symbol kindname, name
  3649                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3650                         getLocationDiag(location, site)); //location kindname, type
  3652             else {
  3653                 return diags.create(dkind, log.currentSource(), pos,
  3654                         errKey, kindname, idname, //symbol kindname, name
  3655                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3658         //where
  3659         private Object args(List<Type> args) {
  3660             return args.isEmpty() ? args : methodArguments(args);
  3663         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3664             String key = "cant.resolve";
  3665             String suffix = hasLocation ? ".location" : "";
  3666             switch (kindname) {
  3667                 case METHOD:
  3668                 case CONSTRUCTOR: {
  3669                     suffix += ".args";
  3670                     suffix += hasTypeArgs ? ".params" : "";
  3673             return key + suffix;
  3675         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3676             if (location.kind == VAR) {
  3677                 return diags.fragment("location.1",
  3678                     kindName(location),
  3679                     location,
  3680                     location.type);
  3681             } else {
  3682                 return diags.fragment("location",
  3683                     typeKindName(site),
  3684                     site,
  3685                     null);
  3690     /**
  3691      * InvalidSymbolError error class indicating that a given symbol
  3692      * (either a method, a constructor or an operand) is not applicable
  3693      * given an actual arguments/type argument list.
  3694      */
  3695     class InapplicableSymbolError extends ResolveError {
  3697         protected MethodResolutionContext resolveContext;
  3699         InapplicableSymbolError(MethodResolutionContext context) {
  3700             this(WRONG_MTH, "inapplicable symbol error", context);
  3703         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3704             super(kind, debugName);
  3705             this.resolveContext = context;
  3708         @Override
  3709         public String toString() {
  3710             return super.toString();
  3713         @Override
  3714         public boolean exists() {
  3715             return true;
  3718         @Override
  3719         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3720                 DiagnosticPosition pos,
  3721                 Symbol location,
  3722                 Type site,
  3723                 Name name,
  3724                 List<Type> argtypes,
  3725                 List<Type> typeargtypes) {
  3726             if (name == names.error)
  3727                 return null;
  3729             if (syms.operatorNames.contains(name)) {
  3730                 boolean isUnaryOp = argtypes.size() == 1;
  3731                 String key = argtypes.size() == 1 ?
  3732                     "operator.cant.be.applied" :
  3733                     "operator.cant.be.applied.1";
  3734                 Type first = argtypes.head;
  3735                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3736                 return diags.create(dkind, log.currentSource(), pos,
  3737                         key, name, first, second);
  3739             else {
  3740                 Pair<Symbol, JCDiagnostic> c = errCandidate();
  3741                 if (compactMethodDiags) {
  3742                     for (Map.Entry<Template, DiagnosticRewriter> _entry :
  3743                             MethodResolutionDiagHelper.rewriters.entrySet()) {
  3744                         if (_entry.getKey().matches(c.snd)) {
  3745                             JCDiagnostic simpleDiag =
  3746                                     _entry.getValue().rewriteDiagnostic(diags, pos,
  3747                                         log.currentSource(), dkind, c.snd);
  3748                             simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
  3749                             return simpleDiag;
  3753                 Symbol ws = c.fst.asMemberOf(site, types);
  3754                 return diags.create(dkind, log.currentSource(), pos,
  3755                           "cant.apply.symbol",
  3756                           kindName(ws),
  3757                           ws.name == names.init ? ws.owner.name : ws.name,
  3758                           methodArguments(ws.type.getParameterTypes()),
  3759                           methodArguments(argtypes),
  3760                           kindName(ws.owner),
  3761                           ws.owner.type,
  3762                           c.snd);
  3766         @Override
  3767         public Symbol access(Name name, TypeSymbol location) {
  3768             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3771         protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3772             Candidate bestSoFar = null;
  3773             for (Candidate c : resolveContext.candidates) {
  3774                 if (c.isApplicable()) continue;
  3775                 bestSoFar = c;
  3777             Assert.checkNonNull(bestSoFar);
  3778             return new Pair<Symbol, JCDiagnostic>(bestSoFar.sym, bestSoFar.details);
  3782     /**
  3783      * ResolveError error class indicating that a set of symbols
  3784      * (either methods, constructors or operands) is not applicable
  3785      * given an actual arguments/type argument list.
  3786      */
  3787     class InapplicableSymbolsError extends InapplicableSymbolError {
  3789         InapplicableSymbolsError(MethodResolutionContext context) {
  3790             super(WRONG_MTHS, "inapplicable symbols", context);
  3793         @Override
  3794         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3795                 DiagnosticPosition pos,
  3796                 Symbol location,
  3797                 Type site,
  3798                 Name name,
  3799                 List<Type> argtypes,
  3800                 List<Type> typeargtypes) {
  3801             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
  3802             Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
  3803                     filterCandidates(candidatesMap) :
  3804                     mapCandidates();
  3805             if (filteredCandidates.isEmpty()) {
  3806                 filteredCandidates = candidatesMap;
  3808             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
  3809             if (filteredCandidates.size() > 1) {
  3810                 JCDiagnostic err = diags.create(dkind,
  3811                         null,
  3812                         truncatedDiag ?
  3813                             EnumSet.of(DiagnosticFlag.COMPRESSED) :
  3814                             EnumSet.noneOf(DiagnosticFlag.class),
  3815                         log.currentSource(),
  3816                         pos,
  3817                         "cant.apply.symbols",
  3818                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3819                         name == names.init ? site.tsym.name : name,
  3820                         methodArguments(argtypes));
  3821                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
  3822             } else if (filteredCandidates.size() == 1) {
  3823                 Map.Entry<Symbol, JCDiagnostic> _e =
  3824                                 filteredCandidates.entrySet().iterator().next();
  3825                 final Pair<Symbol, JCDiagnostic> p = new Pair<Symbol, JCDiagnostic>(_e.getKey(), _e.getValue());
  3826                 JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
  3827                     @Override
  3828                     protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3829                         return p;
  3831                 }.getDiagnostic(dkind, pos,
  3832                     location, site, name, argtypes, typeargtypes);
  3833                 if (truncatedDiag) {
  3834                     d.setFlag(DiagnosticFlag.COMPRESSED);
  3836                 return d;
  3837             } else {
  3838                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3839                     location, site, name, argtypes, typeargtypes);
  3842         //where
  3843             private Map<Symbol, JCDiagnostic> mapCandidates() {
  3844                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3845                 for (Candidate c : resolveContext.candidates) {
  3846                     if (c.isApplicable()) continue;
  3847                     candidates.put(c.sym, c.details);
  3849                 return candidates;
  3852             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
  3853                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3854                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3855                     JCDiagnostic d = _entry.getValue();
  3856                     if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
  3857                         candidates.put(_entry.getKey(), d);
  3860                 return candidates;
  3863             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
  3864                 List<JCDiagnostic> details = List.nil();
  3865                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3866                     Symbol sym = _entry.getKey();
  3867                     JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3868                             Kinds.kindName(sym),
  3869                             sym.location(site, types),
  3870                             sym.asMemberOf(site, types),
  3871                             _entry.getValue());
  3872                     details = details.prepend(detailDiag);
  3874                 //typically members are visited in reverse order (see Scope)
  3875                 //so we need to reverse the candidate list so that candidates
  3876                 //conform to source order
  3877                 return details;
  3881     /**
  3882      * An InvalidSymbolError error class indicating that a symbol is not
  3883      * accessible from a given site
  3884      */
  3885     class AccessError extends InvalidSymbolError {
  3887         private Env<AttrContext> env;
  3888         private Type site;
  3890         AccessError(Symbol sym) {
  3891             this(null, null, sym);
  3894         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3895             super(HIDDEN, sym, "access error");
  3896             this.env = env;
  3897             this.site = site;
  3898             if (debugResolve)
  3899                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3902         @Override
  3903         public boolean exists() {
  3904             return false;
  3907         @Override
  3908         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3909                 DiagnosticPosition pos,
  3910                 Symbol location,
  3911                 Type site,
  3912                 Name name,
  3913                 List<Type> argtypes,
  3914                 List<Type> typeargtypes) {
  3915             if (sym.owner.type.hasTag(ERROR))
  3916                 return null;
  3918             if (sym.name == names.init && sym.owner != site.tsym) {
  3919                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3920                         pos, location, site, name, argtypes, typeargtypes);
  3922             else if ((sym.flags() & PUBLIC) != 0
  3923                 || (env != null && this.site != null
  3924                     && !isAccessible(env, this.site))) {
  3925                 return diags.create(dkind, log.currentSource(),
  3926                         pos, "not.def.access.class.intf.cant.access",
  3927                     sym, sym.location());
  3929             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3930                 return diags.create(dkind, log.currentSource(),
  3931                         pos, "report.access", sym,
  3932                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3933                         sym.location());
  3935             else {
  3936                 return diags.create(dkind, log.currentSource(),
  3937                         pos, "not.def.public.cant.access", sym, sym.location());
  3942     /**
  3943      * InvalidSymbolError error class indicating that an instance member
  3944      * has erroneously been accessed from a static context.
  3945      */
  3946     class StaticError extends InvalidSymbolError {
  3948         StaticError(Symbol sym) {
  3949             super(STATICERR, sym, "static error");
  3952         @Override
  3953         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3954                 DiagnosticPosition pos,
  3955                 Symbol location,
  3956                 Type site,
  3957                 Name name,
  3958                 List<Type> argtypes,
  3959                 List<Type> typeargtypes) {
  3960             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3961                 ? types.erasure(sym.type).tsym
  3962                 : sym);
  3963             return diags.create(dkind, log.currentSource(), pos,
  3964                     "non-static.cant.be.ref", kindName(sym), errSym);
  3968     /**
  3969      * InvalidSymbolError error class indicating that a pair of symbols
  3970      * (either methods, constructors or operands) are ambiguous
  3971      * given an actual arguments/type argument list.
  3972      */
  3973     class AmbiguityError extends ResolveError {
  3975         /** The other maximally specific symbol */
  3976         List<Symbol> ambiguousSyms = List.nil();
  3978         @Override
  3979         public boolean exists() {
  3980             return true;
  3983         AmbiguityError(Symbol sym1, Symbol sym2) {
  3984             super(AMBIGUOUS, "ambiguity error");
  3985             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
  3988         private List<Symbol> flatten(Symbol sym) {
  3989             if (sym.kind == AMBIGUOUS) {
  3990                 return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
  3991             } else {
  3992                 return List.of(sym);
  3996         AmbiguityError addAmbiguousSymbol(Symbol s) {
  3997             ambiguousSyms = ambiguousSyms.prepend(s);
  3998             return this;
  4001         @Override
  4002         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  4003                 DiagnosticPosition pos,
  4004                 Symbol location,
  4005                 Type site,
  4006                 Name name,
  4007                 List<Type> argtypes,
  4008                 List<Type> typeargtypes) {
  4009             List<Symbol> diagSyms = ambiguousSyms.reverse();
  4010             Symbol s1 = diagSyms.head;
  4011             Symbol s2 = diagSyms.tail.head;
  4012             Name sname = s1.name;
  4013             if (sname == names.init) sname = s1.owner.name;
  4014             return diags.create(dkind, log.currentSource(),
  4015                       pos, "ref.ambiguous", sname,
  4016                       kindName(s1),
  4017                       s1,
  4018                       s1.location(site, types),
  4019                       kindName(s2),
  4020                       s2,
  4021                       s2.location(site, types));
  4024         /**
  4025          * If multiple applicable methods are found during overload and none of them
  4026          * is more specific than the others, attempt to merge their signatures.
  4027          */
  4028         Symbol mergeAbstracts(Type site) {
  4029             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
  4030             for (Symbol s : ambiguousInOrder) {
  4031                 Type mt = types.memberType(site, s);
  4032                 boolean found = true;
  4033                 List<Type> allThrown = mt.getThrownTypes();
  4034                 for (Symbol s2 : ambiguousInOrder) {
  4035                     Type mt2 = types.memberType(site, s2);
  4036                     if ((s2.flags() & ABSTRACT) == 0 ||
  4037                         !types.overrideEquivalent(mt, mt2) ||
  4038                         !types.isSameTypes(s.erasure(types).getParameterTypes(),
  4039                                        s2.erasure(types).getParameterTypes())) {
  4040                         //ambiguity cannot be resolved
  4041                         return this;
  4043                     Type mst = mostSpecificReturnType(mt, mt2);
  4044                     if (mst == null || mst != mt) {
  4045                         found = false;
  4046                         break;
  4048                     allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
  4050                 if (found) {
  4051                     //all ambiguous methods were abstract and one method had
  4052                     //most specific return type then others
  4053                     return (allThrown == mt.getThrownTypes()) ?
  4054                             s : new MethodSymbol(
  4055                                 s.flags(),
  4056                                 s.name,
  4057                                 types.createMethodTypeWithThrown(mt, allThrown),
  4058                                 s.owner);
  4061             return this;
  4064         @Override
  4065         protected Symbol access(Name name, TypeSymbol location) {
  4066             Symbol firstAmbiguity = ambiguousSyms.last();
  4067             return firstAmbiguity.kind == TYP ?
  4068                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
  4069                     firstAmbiguity;
  4073     class BadVarargsMethod extends ResolveError {
  4075         ResolveError delegatedError;
  4077         BadVarargsMethod(ResolveError delegatedError) {
  4078             super(delegatedError.kind, "badVarargs");
  4079             this.delegatedError = delegatedError;
  4082         @Override
  4083         public Symbol baseSymbol() {
  4084             return delegatedError.baseSymbol();
  4087         @Override
  4088         protected Symbol access(Name name, TypeSymbol location) {
  4089             return delegatedError.access(name, location);
  4092         @Override
  4093         public boolean exists() {
  4094             return true;
  4097         @Override
  4098         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  4099             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
  4103     /**
  4104      * Helper class for method resolution diagnostic simplification.
  4105      * Certain resolution diagnostic are rewritten as simpler diagnostic
  4106      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
  4107      * is stripped away, as it doesn't carry additional info. The logic
  4108      * for matching a given diagnostic is given in terms of a template
  4109      * hierarchy: a diagnostic template can be specified programmatically,
  4110      * so that only certain diagnostics are matched. Each templete is then
  4111      * associated with a rewriter object that carries out the task of rewtiting
  4112      * the diagnostic to a simpler one.
  4113      */
  4114     static class MethodResolutionDiagHelper {
  4116         /**
  4117          * A diagnostic rewriter transforms a method resolution diagnostic
  4118          * into a simpler one
  4119          */
  4120         interface DiagnosticRewriter {
  4121             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  4122                     DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  4123                     DiagnosticType preferredKind, JCDiagnostic d);
  4126         /**
  4127          * A diagnostic template is made up of two ingredients: (i) a regular
  4128          * expression for matching a diagnostic key and (ii) a list of sub-templates
  4129          * for matching diagnostic arguments.
  4130          */
  4131         static class Template {
  4133             /** regex used to match diag key */
  4134             String regex;
  4136             /** templates used to match diagnostic args */
  4137             Template[] subTemplates;
  4139             Template(String key, Template... subTemplates) {
  4140                 this.regex = key;
  4141                 this.subTemplates = subTemplates;
  4144             /**
  4145              * Returns true if the regex matches the diagnostic key and if
  4146              * all diagnostic arguments are matches by corresponding sub-templates.
  4147              */
  4148             boolean matches(Object o) {
  4149                 JCDiagnostic d = (JCDiagnostic)o;
  4150                 Object[] args = d.getArgs();
  4151                 if (!d.getCode().matches(regex) ||
  4152                         subTemplates.length != d.getArgs().length) {
  4153                     return false;
  4155                 for (int i = 0; i < args.length ; i++) {
  4156                     if (!subTemplates[i].matches(args[i])) {
  4157                         return false;
  4160                 return true;
  4164         /** a dummy template that match any diagnostic argument */
  4165         static final Template skip = new Template("") {
  4166             @Override
  4167             boolean matches(Object d) {
  4168                 return true;
  4170         };
  4172         /** rewriter map used for method resolution simplification */
  4173         static final Map<Template, DiagnosticRewriter> rewriters =
  4174                 new LinkedHashMap<Template, DiagnosticRewriter>();
  4176         static {
  4177             String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
  4178             rewriters.put(new Template(argMismatchRegex, skip),
  4179                     new DiagnosticRewriter() {
  4180                 @Override
  4181                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  4182                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  4183                         DiagnosticType preferredKind, JCDiagnostic d) {
  4184                     JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
  4185                     return diags.create(preferredKind, preferredSource, d.getDiagnosticPosition(),
  4186                             "prob.found.req", cause);
  4188             });
  4192     enum MethodResolutionPhase {
  4193         BASIC(false, false),
  4194         BOX(true, false),
  4195         VARARITY(true, true) {
  4196             @Override
  4197             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  4198                 switch (sym.kind) {
  4199                     case WRONG_MTH:
  4200                         return (bestSoFar.kind == WRONG_MTH || bestSoFar.kind == WRONG_MTHS) ?
  4201                             bestSoFar :
  4202                             sym;
  4203                     case ABSENT_MTH:
  4204                         return bestSoFar;
  4205                     default:
  4206                         return sym;
  4209         };
  4211         final boolean isBoxingRequired;
  4212         final boolean isVarargsRequired;
  4214         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  4215            this.isBoxingRequired = isBoxingRequired;
  4216            this.isVarargsRequired = isVarargsRequired;
  4219         public boolean isBoxingRequired() {
  4220             return isBoxingRequired;
  4223         public boolean isVarargsRequired() {
  4224             return isVarargsRequired;
  4227         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  4228             return (varargsEnabled || !isVarargsRequired) &&
  4229                    (boxingEnabled || !isBoxingRequired);
  4232         public Symbol mergeResults(Symbol prev, Symbol sym) {
  4233             return sym;
  4237     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  4239     /**
  4240      * A resolution context is used to keep track of intermediate results of
  4241      * overload resolution, such as list of method that are not applicable
  4242      * (used to generate more precise diagnostics) and so on. Resolution contexts
  4243      * can be nested - this means that when each overload resolution routine should
  4244      * work within the resolution context it created.
  4245      */
  4246     class MethodResolutionContext {
  4248         private List<Candidate> candidates = List.nil();
  4250         MethodResolutionPhase step = null;
  4252         MethodCheck methodCheck = resolveMethodCheck;
  4254         private boolean internalResolution = false;
  4255         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  4257         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  4258             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  4259             candidates = candidates.append(c);
  4262         void addApplicableCandidate(Symbol sym, Type mtype) {
  4263             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  4264             candidates = candidates.append(c);
  4267         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
  4268             return deferredAttr.new DeferredAttrContext(attrMode, sym, step, inferenceContext, pendingResult != null ? pendingResult.checkContext.deferredAttrContext() : deferredAttr.emptyDeferredAttrContext, warn);
  4271         /**
  4272          * This class represents an overload resolution candidate. There are two
  4273          * kinds of candidates: applicable methods and inapplicable methods;
  4274          * applicable methods have a pointer to the instantiated method type,
  4275          * while inapplicable candidates contain further details about the
  4276          * reason why the method has been considered inapplicable.
  4277          */
  4278         @SuppressWarnings("overrides")
  4279         class Candidate {
  4281             final MethodResolutionPhase step;
  4282             final Symbol sym;
  4283             final JCDiagnostic details;
  4284             final Type mtype;
  4286             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  4287                 this.step = step;
  4288                 this.sym = sym;
  4289                 this.details = details;
  4290                 this.mtype = mtype;
  4293             @Override
  4294             public boolean equals(Object o) {
  4295                 if (o instanceof Candidate) {
  4296                     Symbol s1 = this.sym;
  4297                     Symbol s2 = ((Candidate)o).sym;
  4298                     if  ((s1 != s2 &&
  4299                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  4300                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  4301                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  4302                         return true;
  4304                 return false;
  4307             boolean isApplicable() {
  4308                 return mtype != null;
  4312         DeferredAttr.AttrMode attrMode() {
  4313             return attrMode;
  4316         boolean internal() {
  4317             return internalResolution;
  4321     MethodResolutionContext currentResolutionContext = null;

mercurial