src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 21 Jan 2013 20:13:56 +0000

author
mcimadamore
date
Mon, 21 Jan 2013 20:13:56 +0000
changeset 1510
7873d37f5b37
parent 1497
7aa2025bbb7b
child 1521
71f35e4b93a5
permissions
-rw-r--r--

8005244: Implement overload resolution as per latest spec EDR
Summary: Add support for stuck expressions and provisional applicability
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.Comparator;
    30 import java.util.HashSet;
    31 import java.util.HashMap;
    32 import java.util.Locale;
    33 import java.util.Map;
    34 import java.util.Set;
    35 import java.util.WeakHashMap;
    37 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    38 import com.sun.tools.javac.code.Lint.LintCategory;
    39 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    40 import com.sun.tools.javac.comp.Check;
    41 import com.sun.tools.javac.jvm.ClassReader;
    42 import com.sun.tools.javac.util.*;
    43 import com.sun.tools.javac.util.List;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.code.Flags.*;
    46 import static com.sun.tools.javac.code.Scope.*;
    47 import static com.sun.tools.javac.code.Symbol.*;
    48 import static com.sun.tools.javac.code.Type.*;
    49 import static com.sun.tools.javac.code.TypeTag.*;
    50 import static com.sun.tools.javac.util.ListBuffer.lb;
    52 /**
    53  * Utility class containing various operations on types.
    54  *
    55  * <p>Unless other names are more illustrative, the following naming
    56  * conventions should be observed in this file:
    57  *
    58  * <dl>
    59  * <dt>t</dt>
    60  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    61  * <dt>s</dt>
    62  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    63  * <dt>ts</dt>
    64  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    65  * <dt>ss</dt>
    66  * <dd>A second list of types should be named ss.</dd>
    67  * </dl>
    68  *
    69  * <p><b>This is NOT part of any supported API.
    70  * If you write code that depends on this, you do so at your own risk.
    71  * This code and its internal interfaces are subject to change or
    72  * deletion without notice.</b>
    73  */
    74 public class Types {
    75     protected static final Context.Key<Types> typesKey =
    76         new Context.Key<Types>();
    78     final Symtab syms;
    79     final JavacMessages messages;
    80     final Names names;
    81     final boolean allowBoxing;
    82     final boolean allowCovariantReturns;
    83     final boolean allowObjectToPrimitiveCast;
    84     final boolean allowDefaultMethods;
    85     final ClassReader reader;
    86     final Check chk;
    87     JCDiagnostic.Factory diags;
    88     List<Warner> warnStack = List.nil();
    89     final Name capturedName;
    90     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    92     public final Warner noWarnings;
    94     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    95     public static Types instance(Context context) {
    96         Types instance = context.get(typesKey);
    97         if (instance == null)
    98             instance = new Types(context);
    99         return instance;
   100     }
   102     protected Types(Context context) {
   103         context.put(typesKey, this);
   104         syms = Symtab.instance(context);
   105         names = Names.instance(context);
   106         Source source = Source.instance(context);
   107         allowBoxing = source.allowBoxing();
   108         allowCovariantReturns = source.allowCovariantReturns();
   109         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   110         allowDefaultMethods = source.allowDefaultMethods();
   111         reader = ClassReader.instance(context);
   112         chk = Check.instance(context);
   113         capturedName = names.fromString("<captured wildcard>");
   114         messages = JavacMessages.instance(context);
   115         diags = JCDiagnostic.Factory.instance(context);
   116         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   117         noWarnings = new Warner(null);
   118     }
   119     // </editor-fold>
   121     // <editor-fold defaultstate="collapsed" desc="upperBound">
   122     /**
   123      * The "rvalue conversion".<br>
   124      * The upper bound of most types is the type
   125      * itself.  Wildcards, on the other hand have upper
   126      * and lower bounds.
   127      * @param t a type
   128      * @return the upper bound of the given type
   129      */
   130     public Type upperBound(Type t) {
   131         return upperBound.visit(t);
   132     }
   133     // where
   134         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   136             @Override
   137             public Type visitWildcardType(WildcardType t, Void ignored) {
   138                 if (t.isSuperBound())
   139                     return t.bound == null ? syms.objectType : t.bound.bound;
   140                 else
   141                     return visit(t.type);
   142             }
   144             @Override
   145             public Type visitCapturedType(CapturedType t, Void ignored) {
   146                 return visit(t.bound);
   147             }
   148         };
   149     // </editor-fold>
   151     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   152     /**
   153      * The "lvalue conversion".<br>
   154      * The lower bound of most types is the type
   155      * itself.  Wildcards, on the other hand have upper
   156      * and lower bounds.
   157      * @param t a type
   158      * @return the lower bound of the given type
   159      */
   160     public Type lowerBound(Type t) {
   161         return lowerBound.visit(t);
   162     }
   163     // where
   164         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   166             @Override
   167             public Type visitWildcardType(WildcardType t, Void ignored) {
   168                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   169             }
   171             @Override
   172             public Type visitCapturedType(CapturedType t, Void ignored) {
   173                 return visit(t.getLowerBound());
   174             }
   175         };
   176     // </editor-fold>
   178     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   179     /**
   180      * Checks that all the arguments to a class are unbounded
   181      * wildcards or something else that doesn't make any restrictions
   182      * on the arguments. If a class isUnbounded, a raw super- or
   183      * subclass can be cast to it without a warning.
   184      * @param t a type
   185      * @return true iff the given type is unbounded or raw
   186      */
   187     public boolean isUnbounded(Type t) {
   188         return isUnbounded.visit(t);
   189     }
   190     // where
   191         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   193             public Boolean visitType(Type t, Void ignored) {
   194                 return true;
   195             }
   197             @Override
   198             public Boolean visitClassType(ClassType t, Void ignored) {
   199                 List<Type> parms = t.tsym.type.allparams();
   200                 List<Type> args = t.allparams();
   201                 while (parms.nonEmpty()) {
   202                     WildcardType unb = new WildcardType(syms.objectType,
   203                                                         BoundKind.UNBOUND,
   204                                                         syms.boundClass,
   205                                                         (TypeVar)parms.head);
   206                     if (!containsType(args.head, unb))
   207                         return false;
   208                     parms = parms.tail;
   209                     args = args.tail;
   210                 }
   211                 return true;
   212             }
   213         };
   214     // </editor-fold>
   216     // <editor-fold defaultstate="collapsed" desc="asSub">
   217     /**
   218      * Return the least specific subtype of t that starts with symbol
   219      * sym.  If none exists, return null.  The least specific subtype
   220      * is determined as follows:
   221      *
   222      * <p>If there is exactly one parameterized instance of sym that is a
   223      * subtype of t, that parameterized instance is returned.<br>
   224      * Otherwise, if the plain type or raw type `sym' is a subtype of
   225      * type t, the type `sym' itself is returned.  Otherwise, null is
   226      * returned.
   227      */
   228     public Type asSub(Type t, Symbol sym) {
   229         return asSub.visit(t, sym);
   230     }
   231     // where
   232         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   234             public Type visitType(Type t, Symbol sym) {
   235                 return null;
   236             }
   238             @Override
   239             public Type visitClassType(ClassType t, Symbol sym) {
   240                 if (t.tsym == sym)
   241                     return t;
   242                 Type base = asSuper(sym.type, t.tsym);
   243                 if (base == null)
   244                     return null;
   245                 ListBuffer<Type> from = new ListBuffer<Type>();
   246                 ListBuffer<Type> to = new ListBuffer<Type>();
   247                 try {
   248                     adapt(base, t, from, to);
   249                 } catch (AdaptFailure ex) {
   250                     return null;
   251                 }
   252                 Type res = subst(sym.type, from.toList(), to.toList());
   253                 if (!isSubtype(res, t))
   254                     return null;
   255                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   256                 for (List<Type> l = sym.type.allparams();
   257                      l.nonEmpty(); l = l.tail)
   258                     if (res.contains(l.head) && !t.contains(l.head))
   259                         openVars.append(l.head);
   260                 if (openVars.nonEmpty()) {
   261                     if (t.isRaw()) {
   262                         // The subtype of a raw type is raw
   263                         res = erasure(res);
   264                     } else {
   265                         // Unbound type arguments default to ?
   266                         List<Type> opens = openVars.toList();
   267                         ListBuffer<Type> qs = new ListBuffer<Type>();
   268                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   269                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   270                         }
   271                         res = subst(res, opens, qs.toList());
   272                     }
   273                 }
   274                 return res;
   275             }
   277             @Override
   278             public Type visitErrorType(ErrorType t, Symbol sym) {
   279                 return t;
   280             }
   281         };
   282     // </editor-fold>
   284     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   285     /**
   286      * Is t a subtype of or convertible via boxing/unboxing
   287      * conversion to s?
   288      */
   289     public boolean isConvertible(Type t, Type s, Warner warn) {
   290         if (t.tag == ERROR)
   291             return true;
   292         boolean tPrimitive = t.isPrimitive();
   293         boolean sPrimitive = s.isPrimitive();
   294         if (tPrimitive == sPrimitive) {
   295             return isSubtypeUnchecked(t, s, warn);
   296         }
   297         if (!allowBoxing) return false;
   298         return tPrimitive
   299             ? isSubtype(boxedClass(t).type, s)
   300             : isSubtype(unboxedType(t), s);
   301     }
   303     /**
   304      * Is t a subtype of or convertiable via boxing/unboxing
   305      * convertions to s?
   306      */
   307     public boolean isConvertible(Type t, Type s) {
   308         return isConvertible(t, s, noWarnings);
   309     }
   310     // </editor-fold>
   312     // <editor-fold defaultstate="collapsed" desc="findSam">
   314     /**
   315      * Exception used to report a function descriptor lookup failure. The exception
   316      * wraps a diagnostic that can be used to generate more details error
   317      * messages.
   318      */
   319     public static class FunctionDescriptorLookupError extends RuntimeException {
   320         private static final long serialVersionUID = 0;
   322         JCDiagnostic diagnostic;
   324         FunctionDescriptorLookupError() {
   325             this.diagnostic = null;
   326         }
   328         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   329             this.diagnostic = diag;
   330             return this;
   331         }
   333         public JCDiagnostic getDiagnostic() {
   334             return diagnostic;
   335         }
   336     }
   338     /**
   339      * A cache that keeps track of function descriptors associated with given
   340      * functional interfaces.
   341      */
   342     class DescriptorCache {
   344         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   346         class FunctionDescriptor {
   347             Symbol descSym;
   349             FunctionDescriptor(Symbol descSym) {
   350                 this.descSym = descSym;
   351             }
   353             public Symbol getSymbol() {
   354                 return descSym;
   355             }
   357             public Type getType(Type site) {
   358                 if (capture(site) != site) {
   359                     Type formalInterface = site.tsym.type;
   360                     ListBuffer<Type> typeargs = ListBuffer.lb();
   361                     List<Type> actualTypeargs = site.getTypeArguments();
   362                     //simply replace the wildcards with its bound
   363                     for (Type t : formalInterface.getTypeArguments()) {
   364                         if (actualTypeargs.head.hasTag(WILDCARD)) {
   365                             WildcardType wt = (WildcardType)actualTypeargs.head;
   366                             typeargs.append(wt.type);
   367                         } else {
   368                             typeargs.append(actualTypeargs.head);
   369                         }
   370                         actualTypeargs = actualTypeargs.tail;
   371                     }
   372                     site = subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   373                     if (!chk.checkValidGenericType(site)) {
   374                         //if the inferred functional interface type is not well-formed,
   375                         //or if it's not a subtype of the original target, issue an error
   376                         throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   377                     }
   378                 }
   379                 return memberType(site, descSym);
   380             }
   381         }
   383         class Entry {
   384             final FunctionDescriptor cachedDescRes;
   385             final int prevMark;
   387             public Entry(FunctionDescriptor cachedDescRes,
   388                     int prevMark) {
   389                 this.cachedDescRes = cachedDescRes;
   390                 this.prevMark = prevMark;
   391             }
   393             boolean matches(int mark) {
   394                 return  this.prevMark == mark;
   395             }
   396         }
   398         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   399             Entry e = _map.get(origin);
   400             CompoundScope members = membersClosure(origin.type, false);
   401             if (e == null ||
   402                     !e.matches(members.getMark())) {
   403                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   404                 _map.put(origin, new Entry(descRes, members.getMark()));
   405                 return descRes;
   406             }
   407             else {
   408                 return e.cachedDescRes;
   409             }
   410         }
   412         /**
   413          * Compute the function descriptor associated with a given functional interface
   414          */
   415         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   416             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   417                 //t must be an interface
   418                 throw failure("not.a.functional.intf", origin);
   419             }
   421             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   422             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   423                 Type mtype = memberType(origin.type, sym);
   424                 if (abstracts.isEmpty() ||
   425                         (sym.name == abstracts.first().name &&
   426                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   427                     abstracts.append(sym);
   428                 } else {
   429                     //the target method(s) should be the only abstract members of t
   430                     throw failure("not.a.functional.intf.1",  origin,
   431                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   432                 }
   433             }
   434             if (abstracts.isEmpty()) {
   435                 //t must define a suitable non-generic method
   436                 throw failure("not.a.functional.intf.1", origin,
   437                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   438             } else if (abstracts.size() == 1) {
   439                 return new FunctionDescriptor(abstracts.first());
   440             } else { // size > 1
   441                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   442                 if (descRes == null) {
   443                     //we can get here if the functional interface is ill-formed
   444                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   445                     for (Symbol desc : abstracts) {
   446                         String key = desc.type.getThrownTypes().nonEmpty() ?
   447                                 "descriptor.throws" : "descriptor";
   448                         descriptors.append(diags.fragment(key, desc.name,
   449                                 desc.type.getParameterTypes(),
   450                                 desc.type.getReturnType(),
   451                                 desc.type.getThrownTypes()));
   452                     }
   453                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   454                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   455                             Kinds.kindName(origin), origin), descriptors.toList());
   456                     throw failure(incompatibleDescriptors);
   457                 }
   458                 return descRes;
   459             }
   460         }
   462         /**
   463          * Compute a synthetic type for the target descriptor given a list
   464          * of override-equivalent methods in the functional interface type.
   465          * The resulting method type is a method type that is override-equivalent
   466          * and return-type substitutable with each method in the original list.
   467          */
   468         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   469             //pick argument types - simply take the signature that is a
   470             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   471             List<Symbol> mostSpecific = List.nil();
   472             outer: for (Symbol msym1 : methodSyms) {
   473                 Type mt1 = memberType(origin.type, msym1);
   474                 for (Symbol msym2 : methodSyms) {
   475                     Type mt2 = memberType(origin.type, msym2);
   476                     if (!isSubSignature(mt1, mt2)) {
   477                         continue outer;
   478                     }
   479                 }
   480                 mostSpecific = mostSpecific.prepend(msym1);
   481             }
   482             if (mostSpecific.isEmpty()) {
   483                 return null;
   484             }
   487             //pick return types - this is done in two phases: (i) first, the most
   488             //specific return type is chosen using strict subtyping; if this fails,
   489             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   490             boolean phase2 = false;
   491             Symbol bestSoFar = null;
   492             while (bestSoFar == null) {
   493                 outer: for (Symbol msym1 : mostSpecific) {
   494                     Type mt1 = memberType(origin.type, msym1);
   495                     for (Symbol msym2 : methodSyms) {
   496                         Type mt2 = memberType(origin.type, msym2);
   497                         if (phase2 ?
   498                                 !returnTypeSubstitutable(mt1, mt2) :
   499                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   500                             continue outer;
   501                         }
   502                     }
   503                     bestSoFar = msym1;
   504                 }
   505                 if (phase2) {
   506                     break;
   507                 } else {
   508                     phase2 = true;
   509                 }
   510             }
   511             if (bestSoFar == null) return null;
   513             //merge thrown types - form the intersection of all the thrown types in
   514             //all the signatures in the list
   515             List<Type> thrown = null;
   516             for (Symbol msym1 : methodSyms) {
   517                 Type mt1 = memberType(origin.type, msym1);
   518                 thrown = (thrown == null) ?
   519                     mt1.getThrownTypes() :
   520                     chk.intersect(mt1.getThrownTypes(), thrown);
   521             }
   523             final List<Type> thrown1 = thrown;
   524             return new FunctionDescriptor(bestSoFar) {
   525                 @Override
   526                 public Type getType(Type origin) {
   527                     Type mt = memberType(origin, getSymbol());
   528                     return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
   529                 }
   530             };
   531         }
   533         boolean isSubtypeInternal(Type s, Type t) {
   534             return (s.isPrimitive() && t.isPrimitive()) ?
   535                     isSameType(t, s) :
   536                     isSubtype(s, t);
   537         }
   539         FunctionDescriptorLookupError failure(String msg, Object... args) {
   540             return failure(diags.fragment(msg, args));
   541         }
   543         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   544             return functionDescriptorLookupError.setMessage(diag);
   545         }
   546     }
   548     private DescriptorCache descCache = new DescriptorCache();
   550     /**
   551      * Find the method descriptor associated to this class symbol - if the
   552      * symbol 'origin' is not a functional interface, an exception is thrown.
   553      */
   554     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   555         return descCache.get(origin).getSymbol();
   556     }
   558     /**
   559      * Find the type of the method descriptor associated to this class symbol -
   560      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   561      */
   562     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   563         return descCache.get(origin.tsym).getType(origin);
   564     }
   566     /**
   567      * Is given type a functional interface?
   568      */
   569     public boolean isFunctionalInterface(TypeSymbol tsym) {
   570         try {
   571             findDescriptorSymbol(tsym);
   572             return true;
   573         } catch (FunctionDescriptorLookupError ex) {
   574             return false;
   575         }
   576     }
   578     public boolean isFunctionalInterface(Type site) {
   579         try {
   580             findDescriptorType(site);
   581             return true;
   582         } catch (FunctionDescriptorLookupError ex) {
   583             return false;
   584         }
   585     }
   586     // </editor-fold>
   588    /**
   589     * Scope filter used to skip methods that should be ignored (such as methods
   590     * overridden by j.l.Object) during function interface conversion/marker interface checks
   591     */
   592     class DescriptorFilter implements Filter<Symbol> {
   594        TypeSymbol origin;
   596        DescriptorFilter(TypeSymbol origin) {
   597            this.origin = origin;
   598        }
   600        @Override
   601        public boolean accepts(Symbol sym) {
   602            return sym.kind == Kinds.MTH &&
   603                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   604                    !overridesObjectMethod(origin, sym) &&
   605                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   606        }
   607     };
   609     // <editor-fold defaultstate="collapsed" desc="isMarker">
   611     /**
   612      * A cache that keeps track of marker interfaces
   613      */
   614     class MarkerCache {
   616         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   618         class Entry {
   619             final boolean isMarkerIntf;
   620             final int prevMark;
   622             public Entry(boolean isMarkerIntf,
   623                     int prevMark) {
   624                 this.isMarkerIntf = isMarkerIntf;
   625                 this.prevMark = prevMark;
   626             }
   628             boolean matches(int mark) {
   629                 return  this.prevMark == mark;
   630             }
   631         }
   633         boolean get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   634             Entry e = _map.get(origin);
   635             CompoundScope members = membersClosure(origin.type, false);
   636             if (e == null ||
   637                     !e.matches(members.getMark())) {
   638                 boolean isMarkerIntf = isMarkerInterfaceInternal(origin, members);
   639                 _map.put(origin, new Entry(isMarkerIntf, members.getMark()));
   640                 return isMarkerIntf;
   641             }
   642             else {
   643                 return e.isMarkerIntf;
   644             }
   645         }
   647         /**
   648          * Is given symbol a marker interface
   649          */
   650         public boolean isMarkerInterfaceInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   651             return !origin.isInterface() ?
   652                     false :
   653                     !membersCache.getElements(new DescriptorFilter(origin)).iterator().hasNext();
   654         }
   655     }
   657     private MarkerCache markerCache = new MarkerCache();
   659     /**
   660      * Is given type a marker interface?
   661      */
   662     public boolean isMarkerInterface(Type site) {
   663         return markerCache.get(site.tsym);
   664     }
   665     // </editor-fold>
   667     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   668     /**
   669      * Is t an unchecked subtype of s?
   670      */
   671     public boolean isSubtypeUnchecked(Type t, Type s) {
   672         return isSubtypeUnchecked(t, s, noWarnings);
   673     }
   674     /**
   675      * Is t an unchecked subtype of s?
   676      */
   677     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   678         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   679         if (result) {
   680             checkUnsafeVarargsConversion(t, s, warn);
   681         }
   682         return result;
   683     }
   684     //where
   685         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   686             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   687                 if (((ArrayType)t).elemtype.isPrimitive()) {
   688                     return isSameType(elemtype(t), elemtype(s));
   689                 } else {
   690                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   691                 }
   692             } else if (isSubtype(t, s)) {
   693                 return true;
   694             }
   695             else if (t.tag == TYPEVAR) {
   696                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   697             }
   698             else if (!s.isRaw()) {
   699                 Type t2 = asSuper(t, s.tsym);
   700                 if (t2 != null && t2.isRaw()) {
   701                     if (isReifiable(s))
   702                         warn.silentWarn(LintCategory.UNCHECKED);
   703                     else
   704                         warn.warn(LintCategory.UNCHECKED);
   705                     return true;
   706                 }
   707             }
   708             return false;
   709         }
   711         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   712             if (t.tag != ARRAY || isReifiable(t)) return;
   713             ArrayType from = (ArrayType)t;
   714             boolean shouldWarn = false;
   715             switch (s.tag) {
   716                 case ARRAY:
   717                     ArrayType to = (ArrayType)s;
   718                     shouldWarn = from.isVarargs() &&
   719                             !to.isVarargs() &&
   720                             !isReifiable(from);
   721                     break;
   722                 case CLASS:
   723                     shouldWarn = from.isVarargs();
   724                     break;
   725             }
   726             if (shouldWarn) {
   727                 warn.warn(LintCategory.VARARGS);
   728             }
   729         }
   731     /**
   732      * Is t a subtype of s?<br>
   733      * (not defined for Method and ForAll types)
   734      */
   735     final public boolean isSubtype(Type t, Type s) {
   736         return isSubtype(t, s, true);
   737     }
   738     final public boolean isSubtypeNoCapture(Type t, Type s) {
   739         return isSubtype(t, s, false);
   740     }
   741     public boolean isSubtype(Type t, Type s, boolean capture) {
   742         if (t == s)
   743             return true;
   745         if (s.isPartial())
   746             return isSuperType(s, t);
   748         if (s.isCompound()) {
   749             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   750                 if (!isSubtype(t, s2, capture))
   751                     return false;
   752             }
   753             return true;
   754         }
   756         Type lower = lowerBound(s);
   757         if (s != lower)
   758             return isSubtype(capture ? capture(t) : t, lower, false);
   760         return isSubtype.visit(capture ? capture(t) : t, s);
   761     }
   762     // where
   763         private TypeRelation isSubtype = new TypeRelation()
   764         {
   765             public Boolean visitType(Type t, Type s) {
   766                 switch (t.tag) {
   767                  case BYTE:
   768                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   769                  case CHAR:
   770                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   771                  case SHORT: case INT: case LONG:
   772                  case FLOAT: case DOUBLE:
   773                      return t.getTag().isSubRangeOf(s.getTag());
   774                  case BOOLEAN: case VOID:
   775                      return t.hasTag(s.getTag());
   776                  case TYPEVAR:
   777                      return isSubtypeNoCapture(t.getUpperBound(), s);
   778                  case BOT:
   779                      return
   780                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   781                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   782                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   783                  case NONE:
   784                      return false;
   785                  default:
   786                      throw new AssertionError("isSubtype " + t.tag);
   787                  }
   788             }
   790             private Set<TypePair> cache = new HashSet<TypePair>();
   792             private boolean containsTypeRecursive(Type t, Type s) {
   793                 TypePair pair = new TypePair(t, s);
   794                 if (cache.add(pair)) {
   795                     try {
   796                         return containsType(t.getTypeArguments(),
   797                                             s.getTypeArguments());
   798                     } finally {
   799                         cache.remove(pair);
   800                     }
   801                 } else {
   802                     return containsType(t.getTypeArguments(),
   803                                         rewriteSupers(s).getTypeArguments());
   804                 }
   805             }
   807             private Type rewriteSupers(Type t) {
   808                 if (!t.isParameterized())
   809                     return t;
   810                 ListBuffer<Type> from = lb();
   811                 ListBuffer<Type> to = lb();
   812                 adaptSelf(t, from, to);
   813                 if (from.isEmpty())
   814                     return t;
   815                 ListBuffer<Type> rewrite = lb();
   816                 boolean changed = false;
   817                 for (Type orig : to.toList()) {
   818                     Type s = rewriteSupers(orig);
   819                     if (s.isSuperBound() && !s.isExtendsBound()) {
   820                         s = new WildcardType(syms.objectType,
   821                                              BoundKind.UNBOUND,
   822                                              syms.boundClass);
   823                         changed = true;
   824                     } else if (s != orig) {
   825                         s = new WildcardType(upperBound(s),
   826                                              BoundKind.EXTENDS,
   827                                              syms.boundClass);
   828                         changed = true;
   829                     }
   830                     rewrite.append(s);
   831                 }
   832                 if (changed)
   833                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   834                 else
   835                     return t;
   836             }
   838             @Override
   839             public Boolean visitClassType(ClassType t, Type s) {
   840                 Type sup = asSuper(t, s.tsym);
   841                 return sup != null
   842                     && sup.tsym == s.tsym
   843                     // You're not allowed to write
   844                     //     Vector<Object> vec = new Vector<String>();
   845                     // But with wildcards you can write
   846                     //     Vector<? extends Object> vec = new Vector<String>();
   847                     // which means that subtype checking must be done
   848                     // here instead of same-type checking (via containsType).
   849                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   850                     && isSubtypeNoCapture(sup.getEnclosingType(),
   851                                           s.getEnclosingType());
   852             }
   854             @Override
   855             public Boolean visitArrayType(ArrayType t, Type s) {
   856                 if (s.tag == ARRAY) {
   857                     if (t.elemtype.isPrimitive())
   858                         return isSameType(t.elemtype, elemtype(s));
   859                     else
   860                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   861                 }
   863                 if (s.tag == CLASS) {
   864                     Name sname = s.tsym.getQualifiedName();
   865                     return sname == names.java_lang_Object
   866                         || sname == names.java_lang_Cloneable
   867                         || sname == names.java_io_Serializable;
   868                 }
   870                 return false;
   871             }
   873             @Override
   874             public Boolean visitUndetVar(UndetVar t, Type s) {
   875                 //todo: test against origin needed? or replace with substitution?
   876                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   877                     return true;
   878                 } else if (s.tag == BOT) {
   879                     //if 's' is 'null' there's no instantiated type U for which
   880                     //U <: s (but 'null' itself, which is not a valid type)
   881                     return false;
   882                 }
   884                 t.addBound(InferenceBound.UPPER, s, Types.this);
   885                 return true;
   886             }
   888             @Override
   889             public Boolean visitErrorType(ErrorType t, Type s) {
   890                 return true;
   891             }
   892         };
   894     /**
   895      * Is t a subtype of every type in given list `ts'?<br>
   896      * (not defined for Method and ForAll types)<br>
   897      * Allows unchecked conversions.
   898      */
   899     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   900         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   901             if (!isSubtypeUnchecked(t, l.head, warn))
   902                 return false;
   903         return true;
   904     }
   906     /**
   907      * Are corresponding elements of ts subtypes of ss?  If lists are
   908      * of different length, return false.
   909      */
   910     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   911         while (ts.tail != null && ss.tail != null
   912                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   913                isSubtype(ts.head, ss.head)) {
   914             ts = ts.tail;
   915             ss = ss.tail;
   916         }
   917         return ts.tail == null && ss.tail == null;
   918         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   919     }
   921     /**
   922      * Are corresponding elements of ts subtypes of ss, allowing
   923      * unchecked conversions?  If lists are of different length,
   924      * return false.
   925      **/
   926     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   927         while (ts.tail != null && ss.tail != null
   928                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   929                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   930             ts = ts.tail;
   931             ss = ss.tail;
   932         }
   933         return ts.tail == null && ss.tail == null;
   934         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   935     }
   936     // </editor-fold>
   938     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   939     /**
   940      * Is t a supertype of s?
   941      */
   942     public boolean isSuperType(Type t, Type s) {
   943         switch (t.tag) {
   944         case ERROR:
   945             return true;
   946         case UNDETVAR: {
   947             UndetVar undet = (UndetVar)t;
   948             if (t == s ||
   949                 undet.qtype == s ||
   950                 s.tag == ERROR ||
   951                 s.tag == BOT) return true;
   952             undet.addBound(InferenceBound.LOWER, s, this);
   953             return true;
   954         }
   955         default:
   956             return isSubtype(s, t);
   957         }
   958     }
   959     // </editor-fold>
   961     // <editor-fold defaultstate="collapsed" desc="isSameType">
   962     /**
   963      * Are corresponding elements of the lists the same type?  If
   964      * lists are of different length, return false.
   965      */
   966     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   967         while (ts.tail != null && ss.tail != null
   968                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   969                isSameType(ts.head, ss.head)) {
   970             ts = ts.tail;
   971             ss = ss.tail;
   972         }
   973         return ts.tail == null && ss.tail == null;
   974         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   975     }
   977     /**
   978      * Is t the same type as s?
   979      */
   980     public boolean isSameType(Type t, Type s) {
   981         return isSameType.visit(t, s);
   982     }
   983     // where
   984         private TypeRelation isSameType = new TypeRelation() {
   986             public Boolean visitType(Type t, Type s) {
   987                 if (t == s)
   988                     return true;
   990                 if (s.isPartial())
   991                     return visit(s, t);
   993                 switch (t.tag) {
   994                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   995                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   996                     return t.tag == s.tag;
   997                 case TYPEVAR: {
   998                     if (s.tag == TYPEVAR) {
   999                         //type-substitution does not preserve type-var types
  1000                         //check that type var symbols and bounds are indeed the same
  1001                         return t.tsym == s.tsym &&
  1002                                 visit(t.getUpperBound(), s.getUpperBound());
  1004                     else {
  1005                         //special case for s == ? super X, where upper(s) = u
  1006                         //check that u == t, where u has been set by Type.withTypeVar
  1007                         return s.isSuperBound() &&
  1008                                 !s.isExtendsBound() &&
  1009                                 visit(t, upperBound(s));
  1012                 default:
  1013                     throw new AssertionError("isSameType " + t.tag);
  1017             @Override
  1018             public Boolean visitWildcardType(WildcardType t, Type s) {
  1019                 if (s.isPartial())
  1020                     return visit(s, t);
  1021                 else
  1022                     return false;
  1025             @Override
  1026             public Boolean visitClassType(ClassType t, Type s) {
  1027                 if (t == s)
  1028                     return true;
  1030                 if (s.isPartial())
  1031                     return visit(s, t);
  1033                 if (s.isSuperBound() && !s.isExtendsBound())
  1034                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1036                 if (t.isCompound() && s.isCompound()) {
  1037                     if (!visit(supertype(t), supertype(s)))
  1038                         return false;
  1040                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1041                     for (Type x : interfaces(t))
  1042                         set.add(new UniqueType(x, Types.this));
  1043                     for (Type x : interfaces(s)) {
  1044                         if (!set.remove(new UniqueType(x, Types.this)))
  1045                             return false;
  1047                     return (set.isEmpty());
  1049                 return t.tsym == s.tsym
  1050                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1051                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
  1054             @Override
  1055             public Boolean visitArrayType(ArrayType t, Type s) {
  1056                 if (t == s)
  1057                     return true;
  1059                 if (s.isPartial())
  1060                     return visit(s, t);
  1062                 return s.hasTag(ARRAY)
  1063                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1066             @Override
  1067             public Boolean visitMethodType(MethodType t, Type s) {
  1068                 // isSameType for methods does not take thrown
  1069                 // exceptions into account!
  1070                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1073             @Override
  1074             public Boolean visitPackageType(PackageType t, Type s) {
  1075                 return t == s;
  1078             @Override
  1079             public Boolean visitForAll(ForAll t, Type s) {
  1080                 if (s.tag != FORALL)
  1081                     return false;
  1083                 ForAll forAll = (ForAll)s;
  1084                 return hasSameBounds(t, forAll)
  1085                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1088             @Override
  1089             public Boolean visitUndetVar(UndetVar t, Type s) {
  1090                 if (s.tag == WILDCARD)
  1091                     // FIXME, this might be leftovers from before capture conversion
  1092                     return false;
  1094                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1095                     return true;
  1097                 t.addBound(InferenceBound.EQ, s, Types.this);
  1099                 return true;
  1102             @Override
  1103             public Boolean visitErrorType(ErrorType t, Type s) {
  1104                 return true;
  1106         };
  1107     // </editor-fold>
  1109     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1110     public boolean containedBy(Type t, Type s) {
  1111         switch (t.tag) {
  1112         case UNDETVAR:
  1113             if (s.tag == WILDCARD) {
  1114                 UndetVar undetvar = (UndetVar)t;
  1115                 WildcardType wt = (WildcardType)s;
  1116                 switch(wt.kind) {
  1117                     case UNBOUND: //similar to ? extends Object
  1118                     case EXTENDS: {
  1119                         Type bound = upperBound(s);
  1120                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1121                         break;
  1123                     case SUPER: {
  1124                         Type bound = lowerBound(s);
  1125                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1126                         break;
  1129                 return true;
  1130             } else {
  1131                 return isSameType(t, s);
  1133         case ERROR:
  1134             return true;
  1135         default:
  1136             return containsType(s, t);
  1140     boolean containsType(List<Type> ts, List<Type> ss) {
  1141         while (ts.nonEmpty() && ss.nonEmpty()
  1142                && containsType(ts.head, ss.head)) {
  1143             ts = ts.tail;
  1144             ss = ss.tail;
  1146         return ts.isEmpty() && ss.isEmpty();
  1149     /**
  1150      * Check if t contains s.
  1152      * <p>T contains S if:
  1154      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1156      * <p>This relation is only used by ClassType.isSubtype(), that
  1157      * is,
  1159      * <p>{@code C<S> <: C<T> if T contains S.}
  1161      * <p>Because of F-bounds, this relation can lead to infinite
  1162      * recursion.  Thus we must somehow break that recursion.  Notice
  1163      * that containsType() is only called from ClassType.isSubtype().
  1164      * Since the arguments have already been checked against their
  1165      * bounds, we know:
  1167      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1169      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1171      * @param t a type
  1172      * @param s a type
  1173      */
  1174     public boolean containsType(Type t, Type s) {
  1175         return containsType.visit(t, s);
  1177     // where
  1178         private TypeRelation containsType = new TypeRelation() {
  1180             private Type U(Type t) {
  1181                 while (t.tag == WILDCARD) {
  1182                     WildcardType w = (WildcardType)t;
  1183                     if (w.isSuperBound())
  1184                         return w.bound == null ? syms.objectType : w.bound.bound;
  1185                     else
  1186                         t = w.type;
  1188                 return t;
  1191             private Type L(Type t) {
  1192                 while (t.tag == WILDCARD) {
  1193                     WildcardType w = (WildcardType)t;
  1194                     if (w.isExtendsBound())
  1195                         return syms.botType;
  1196                     else
  1197                         t = w.type;
  1199                 return t;
  1202             public Boolean visitType(Type t, Type s) {
  1203                 if (s.isPartial())
  1204                     return containedBy(s, t);
  1205                 else
  1206                     return isSameType(t, s);
  1209 //            void debugContainsType(WildcardType t, Type s) {
  1210 //                System.err.println();
  1211 //                System.err.format(" does %s contain %s?%n", t, s);
  1212 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1213 //                                  upperBound(s), s, t, U(t),
  1214 //                                  t.isSuperBound()
  1215 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1216 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1217 //                                  L(t), t, s, lowerBound(s),
  1218 //                                  t.isExtendsBound()
  1219 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1220 //                System.err.println();
  1221 //            }
  1223             @Override
  1224             public Boolean visitWildcardType(WildcardType t, Type s) {
  1225                 if (s.isPartial())
  1226                     return containedBy(s, t);
  1227                 else {
  1228 //                    debugContainsType(t, s);
  1229                     return isSameWildcard(t, s)
  1230                         || isCaptureOf(s, t)
  1231                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1232                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1236             @Override
  1237             public Boolean visitUndetVar(UndetVar t, Type s) {
  1238                 if (s.tag != WILDCARD)
  1239                     return isSameType(t, s);
  1240                 else
  1241                     return false;
  1244             @Override
  1245             public Boolean visitErrorType(ErrorType t, Type s) {
  1246                 return true;
  1248         };
  1250     public boolean isCaptureOf(Type s, WildcardType t) {
  1251         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1252             return false;
  1253         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1256     public boolean isSameWildcard(WildcardType t, Type s) {
  1257         if (s.tag != WILDCARD)
  1258             return false;
  1259         WildcardType w = (WildcardType)s;
  1260         return w.kind == t.kind && w.type == t.type;
  1263     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1264         while (ts.nonEmpty() && ss.nonEmpty()
  1265                && containsTypeEquivalent(ts.head, ss.head)) {
  1266             ts = ts.tail;
  1267             ss = ss.tail;
  1269         return ts.isEmpty() && ss.isEmpty();
  1271     // </editor-fold>
  1273     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1274     public boolean isCastable(Type t, Type s) {
  1275         return isCastable(t, s, noWarnings);
  1278     /**
  1279      * Is t is castable to s?<br>
  1280      * s is assumed to be an erased type.<br>
  1281      * (not defined for Method and ForAll types).
  1282      */
  1283     public boolean isCastable(Type t, Type s, Warner warn) {
  1284         if (t == s)
  1285             return true;
  1287         if (t.isPrimitive() != s.isPrimitive())
  1288             return allowBoxing && (
  1289                     isConvertible(t, s, warn)
  1290                     || (allowObjectToPrimitiveCast &&
  1291                         s.isPrimitive() &&
  1292                         isSubtype(boxedClass(s).type, t)));
  1293         if (warn != warnStack.head) {
  1294             try {
  1295                 warnStack = warnStack.prepend(warn);
  1296                 checkUnsafeVarargsConversion(t, s, warn);
  1297                 return isCastable.visit(t,s);
  1298             } finally {
  1299                 warnStack = warnStack.tail;
  1301         } else {
  1302             return isCastable.visit(t,s);
  1305     // where
  1306         private TypeRelation isCastable = new TypeRelation() {
  1308             public Boolean visitType(Type t, Type s) {
  1309                 if (s.tag == ERROR)
  1310                     return true;
  1312                 switch (t.tag) {
  1313                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1314                 case DOUBLE:
  1315                     return s.isNumeric();
  1316                 case BOOLEAN:
  1317                     return s.tag == BOOLEAN;
  1318                 case VOID:
  1319                     return false;
  1320                 case BOT:
  1321                     return isSubtype(t, s);
  1322                 default:
  1323                     throw new AssertionError();
  1327             @Override
  1328             public Boolean visitWildcardType(WildcardType t, Type s) {
  1329                 return isCastable(upperBound(t), s, warnStack.head);
  1332             @Override
  1333             public Boolean visitClassType(ClassType t, Type s) {
  1334                 if (s.tag == ERROR || s.tag == BOT)
  1335                     return true;
  1337                 if (s.tag == TYPEVAR) {
  1338                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1339                         warnStack.head.warn(LintCategory.UNCHECKED);
  1340                         return true;
  1341                     } else {
  1342                         return false;
  1346                 if (t.isCompound()) {
  1347                     Warner oldWarner = warnStack.head;
  1348                     warnStack.head = noWarnings;
  1349                     if (!visit(supertype(t), s))
  1350                         return false;
  1351                     for (Type intf : interfaces(t)) {
  1352                         if (!visit(intf, s))
  1353                             return false;
  1355                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1356                         oldWarner.warn(LintCategory.UNCHECKED);
  1357                     return true;
  1360                 if (s.isCompound()) {
  1361                     // call recursively to reuse the above code
  1362                     return visitClassType((ClassType)s, t);
  1365                 if (s.tag == CLASS || s.tag == ARRAY) {
  1366                     boolean upcast;
  1367                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1368                         || isSubtype(erasure(s), erasure(t))) {
  1369                         if (!upcast && s.tag == ARRAY) {
  1370                             if (!isReifiable(s))
  1371                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1372                             return true;
  1373                         } else if (s.isRaw()) {
  1374                             return true;
  1375                         } else if (t.isRaw()) {
  1376                             if (!isUnbounded(s))
  1377                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1378                             return true;
  1380                         // Assume |a| <: |b|
  1381                         final Type a = upcast ? t : s;
  1382                         final Type b = upcast ? s : t;
  1383                         final boolean HIGH = true;
  1384                         final boolean LOW = false;
  1385                         final boolean DONT_REWRITE_TYPEVARS = false;
  1386                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1387                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1388                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1389                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1390                         Type lowSub = asSub(bLow, aLow.tsym);
  1391                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1392                         if (highSub == null) {
  1393                             final boolean REWRITE_TYPEVARS = true;
  1394                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1395                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1396                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1397                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1398                             lowSub = asSub(bLow, aLow.tsym);
  1399                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1401                         if (highSub != null) {
  1402                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1403                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1405                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1406                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1407                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1408                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1409                                 if (upcast ? giveWarning(a, b) :
  1410                                     giveWarning(b, a))
  1411                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1412                                 return true;
  1415                         if (isReifiable(s))
  1416                             return isSubtypeUnchecked(a, b);
  1417                         else
  1418                             return isSubtypeUnchecked(a, b, warnStack.head);
  1421                     // Sidecast
  1422                     if (s.tag == CLASS) {
  1423                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1424                             return ((t.tsym.flags() & FINAL) == 0)
  1425                                 ? sideCast(t, s, warnStack.head)
  1426                                 : sideCastFinal(t, s, warnStack.head);
  1427                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1428                             return ((s.tsym.flags() & FINAL) == 0)
  1429                                 ? sideCast(t, s, warnStack.head)
  1430                                 : sideCastFinal(t, s, warnStack.head);
  1431                         } else {
  1432                             // unrelated class types
  1433                             return false;
  1437                 return false;
  1440             @Override
  1441             public Boolean visitArrayType(ArrayType t, Type s) {
  1442                 switch (s.tag) {
  1443                 case ERROR:
  1444                 case BOT:
  1445                     return true;
  1446                 case TYPEVAR:
  1447                     if (isCastable(s, t, noWarnings)) {
  1448                         warnStack.head.warn(LintCategory.UNCHECKED);
  1449                         return true;
  1450                     } else {
  1451                         return false;
  1453                 case CLASS:
  1454                     return isSubtype(t, s);
  1455                 case ARRAY:
  1456                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1457                         return elemtype(t).tag == elemtype(s).tag;
  1458                     } else {
  1459                         return visit(elemtype(t), elemtype(s));
  1461                 default:
  1462                     return false;
  1466             @Override
  1467             public Boolean visitTypeVar(TypeVar t, Type s) {
  1468                 switch (s.tag) {
  1469                 case ERROR:
  1470                 case BOT:
  1471                     return true;
  1472                 case TYPEVAR:
  1473                     if (isSubtype(t, s)) {
  1474                         return true;
  1475                     } else if (isCastable(t.bound, s, noWarnings)) {
  1476                         warnStack.head.warn(LintCategory.UNCHECKED);
  1477                         return true;
  1478                     } else {
  1479                         return false;
  1481                 default:
  1482                     return isCastable(t.bound, s, warnStack.head);
  1486             @Override
  1487             public Boolean visitErrorType(ErrorType t, Type s) {
  1488                 return true;
  1490         };
  1491     // </editor-fold>
  1493     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1494     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1495         while (ts.tail != null && ss.tail != null) {
  1496             if (disjointType(ts.head, ss.head)) return true;
  1497             ts = ts.tail;
  1498             ss = ss.tail;
  1500         return false;
  1503     /**
  1504      * Two types or wildcards are considered disjoint if it can be
  1505      * proven that no type can be contained in both. It is
  1506      * conservative in that it is allowed to say that two types are
  1507      * not disjoint, even though they actually are.
  1509      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1510      * {@code X} and {@code Y} are not disjoint.
  1511      */
  1512     public boolean disjointType(Type t, Type s) {
  1513         return disjointType.visit(t, s);
  1515     // where
  1516         private TypeRelation disjointType = new TypeRelation() {
  1518             private Set<TypePair> cache = new HashSet<TypePair>();
  1520             public Boolean visitType(Type t, Type s) {
  1521                 if (s.tag == WILDCARD)
  1522                     return visit(s, t);
  1523                 else
  1524                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1527             private boolean isCastableRecursive(Type t, Type s) {
  1528                 TypePair pair = new TypePair(t, s);
  1529                 if (cache.add(pair)) {
  1530                     try {
  1531                         return Types.this.isCastable(t, s);
  1532                     } finally {
  1533                         cache.remove(pair);
  1535                 } else {
  1536                     return true;
  1540             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1541                 TypePair pair = new TypePair(t, s);
  1542                 if (cache.add(pair)) {
  1543                     try {
  1544                         return Types.this.notSoftSubtype(t, s);
  1545                     } finally {
  1546                         cache.remove(pair);
  1548                 } else {
  1549                     return false;
  1553             @Override
  1554             public Boolean visitWildcardType(WildcardType t, Type s) {
  1555                 if (t.isUnbound())
  1556                     return false;
  1558                 if (s.tag != WILDCARD) {
  1559                     if (t.isExtendsBound())
  1560                         return notSoftSubtypeRecursive(s, t.type);
  1561                     else // isSuperBound()
  1562                         return notSoftSubtypeRecursive(t.type, s);
  1565                 if (s.isUnbound())
  1566                     return false;
  1568                 if (t.isExtendsBound()) {
  1569                     if (s.isExtendsBound())
  1570                         return !isCastableRecursive(t.type, upperBound(s));
  1571                     else if (s.isSuperBound())
  1572                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1573                 } else if (t.isSuperBound()) {
  1574                     if (s.isExtendsBound())
  1575                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1577                 return false;
  1579         };
  1580     // </editor-fold>
  1582     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1583     /**
  1584      * Returns the lower bounds of the formals of a method.
  1585      */
  1586     public List<Type> lowerBoundArgtypes(Type t) {
  1587         return lowerBounds(t.getParameterTypes());
  1589     public List<Type> lowerBounds(List<Type> ts) {
  1590         return map(ts, lowerBoundMapping);
  1592     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1593             public Type apply(Type t) {
  1594                 return lowerBound(t);
  1596         };
  1597     // </editor-fold>
  1599     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1600     /**
  1601      * This relation answers the question: is impossible that
  1602      * something of type `t' can be a subtype of `s'? This is
  1603      * different from the question "is `t' not a subtype of `s'?"
  1604      * when type variables are involved: Integer is not a subtype of T
  1605      * where {@code <T extends Number>} but it is not true that Integer cannot
  1606      * possibly be a subtype of T.
  1607      */
  1608     public boolean notSoftSubtype(Type t, Type s) {
  1609         if (t == s) return false;
  1610         if (t.tag == TYPEVAR) {
  1611             TypeVar tv = (TypeVar) t;
  1612             return !isCastable(tv.bound,
  1613                                relaxBound(s),
  1614                                noWarnings);
  1616         if (s.tag != WILDCARD)
  1617             s = upperBound(s);
  1619         return !isSubtype(t, relaxBound(s));
  1622     private Type relaxBound(Type t) {
  1623         if (t.tag == TYPEVAR) {
  1624             while (t.tag == TYPEVAR)
  1625                 t = t.getUpperBound();
  1626             t = rewriteQuantifiers(t, true, true);
  1628         return t;
  1630     // </editor-fold>
  1632     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1633     public boolean isReifiable(Type t) {
  1634         return isReifiable.visit(t);
  1636     // where
  1637         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1639             public Boolean visitType(Type t, Void ignored) {
  1640                 return true;
  1643             @Override
  1644             public Boolean visitClassType(ClassType t, Void ignored) {
  1645                 if (t.isCompound())
  1646                     return false;
  1647                 else {
  1648                     if (!t.isParameterized())
  1649                         return true;
  1651                     for (Type param : t.allparams()) {
  1652                         if (!param.isUnbound())
  1653                             return false;
  1655                     return true;
  1659             @Override
  1660             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1661                 return visit(t.elemtype);
  1664             @Override
  1665             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1666                 return false;
  1668         };
  1669     // </editor-fold>
  1671     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1672     public boolean isArray(Type t) {
  1673         while (t.tag == WILDCARD)
  1674             t = upperBound(t);
  1675         return t.tag == ARRAY;
  1678     /**
  1679      * The element type of an array.
  1680      */
  1681     public Type elemtype(Type t) {
  1682         switch (t.tag) {
  1683         case WILDCARD:
  1684             return elemtype(upperBound(t));
  1685         case ARRAY:
  1686             return ((ArrayType)t).elemtype;
  1687         case FORALL:
  1688             return elemtype(((ForAll)t).qtype);
  1689         case ERROR:
  1690             return t;
  1691         default:
  1692             return null;
  1696     public Type elemtypeOrType(Type t) {
  1697         Type elemtype = elemtype(t);
  1698         return elemtype != null ?
  1699             elemtype :
  1700             t;
  1703     /**
  1704      * Mapping to take element type of an arraytype
  1705      */
  1706     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1707         public Type apply(Type t) { return elemtype(t); }
  1708     };
  1710     /**
  1711      * The number of dimensions of an array type.
  1712      */
  1713     public int dimensions(Type t) {
  1714         int result = 0;
  1715         while (t.tag == ARRAY) {
  1716             result++;
  1717             t = elemtype(t);
  1719         return result;
  1722     /**
  1723      * Returns an ArrayType with the component type t
  1725      * @param t The component type of the ArrayType
  1726      * @return the ArrayType for the given component
  1727      */
  1728     public ArrayType makeArrayType(Type t) {
  1729         if (t.tag == VOID ||
  1730             t.tag == PACKAGE) {
  1731             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1733         return new ArrayType(t, syms.arrayClass);
  1735     // </editor-fold>
  1737     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1738     /**
  1739      * Return the (most specific) base type of t that starts with the
  1740      * given symbol.  If none exists, return null.
  1742      * @param t a type
  1743      * @param sym a symbol
  1744      */
  1745     public Type asSuper(Type t, Symbol sym) {
  1746         return asSuper.visit(t, sym);
  1748     // where
  1749         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1751             public Type visitType(Type t, Symbol sym) {
  1752                 return null;
  1755             @Override
  1756             public Type visitClassType(ClassType t, Symbol sym) {
  1757                 if (t.tsym == sym)
  1758                     return t;
  1760                 Type st = supertype(t);
  1761                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1762                     Type x = asSuper(st, sym);
  1763                     if (x != null)
  1764                         return x;
  1766                 if ((sym.flags() & INTERFACE) != 0) {
  1767                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1768                         Type x = asSuper(l.head, sym);
  1769                         if (x != null)
  1770                             return x;
  1773                 return null;
  1776             @Override
  1777             public Type visitArrayType(ArrayType t, Symbol sym) {
  1778                 return isSubtype(t, sym.type) ? sym.type : null;
  1781             @Override
  1782             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1783                 if (t.tsym == sym)
  1784                     return t;
  1785                 else
  1786                     return asSuper(t.bound, sym);
  1789             @Override
  1790             public Type visitErrorType(ErrorType t, Symbol sym) {
  1791                 return t;
  1793         };
  1795     /**
  1796      * Return the base type of t or any of its outer types that starts
  1797      * with the given symbol.  If none exists, return null.
  1799      * @param t a type
  1800      * @param sym a symbol
  1801      */
  1802     public Type asOuterSuper(Type t, Symbol sym) {
  1803         switch (t.tag) {
  1804         case CLASS:
  1805             do {
  1806                 Type s = asSuper(t, sym);
  1807                 if (s != null) return s;
  1808                 t = t.getEnclosingType();
  1809             } while (t.tag == CLASS);
  1810             return null;
  1811         case ARRAY:
  1812             return isSubtype(t, sym.type) ? sym.type : null;
  1813         case TYPEVAR:
  1814             return asSuper(t, sym);
  1815         case ERROR:
  1816             return t;
  1817         default:
  1818             return null;
  1822     /**
  1823      * Return the base type of t or any of its enclosing types that
  1824      * starts with the given symbol.  If none exists, return null.
  1826      * @param t a type
  1827      * @param sym a symbol
  1828      */
  1829     public Type asEnclosingSuper(Type t, Symbol sym) {
  1830         switch (t.tag) {
  1831         case CLASS:
  1832             do {
  1833                 Type s = asSuper(t, sym);
  1834                 if (s != null) return s;
  1835                 Type outer = t.getEnclosingType();
  1836                 t = (outer.tag == CLASS) ? outer :
  1837                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1838                     Type.noType;
  1839             } while (t.tag == CLASS);
  1840             return null;
  1841         case ARRAY:
  1842             return isSubtype(t, sym.type) ? sym.type : null;
  1843         case TYPEVAR:
  1844             return asSuper(t, sym);
  1845         case ERROR:
  1846             return t;
  1847         default:
  1848             return null;
  1851     // </editor-fold>
  1853     // <editor-fold defaultstate="collapsed" desc="memberType">
  1854     /**
  1855      * The type of given symbol, seen as a member of t.
  1857      * @param t a type
  1858      * @param sym a symbol
  1859      */
  1860     public Type memberType(Type t, Symbol sym) {
  1861         return (sym.flags() & STATIC) != 0
  1862             ? sym.type
  1863             : memberType.visit(t, sym);
  1865     // where
  1866         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1868             public Type visitType(Type t, Symbol sym) {
  1869                 return sym.type;
  1872             @Override
  1873             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1874                 return memberType(upperBound(t), sym);
  1877             @Override
  1878             public Type visitClassType(ClassType t, Symbol sym) {
  1879                 Symbol owner = sym.owner;
  1880                 long flags = sym.flags();
  1881                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1882                     Type base = asOuterSuper(t, owner);
  1883                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1884                     //its supertypes CT, I1, ... In might contain wildcards
  1885                     //so we need to go through capture conversion
  1886                     base = t.isCompound() ? capture(base) : base;
  1887                     if (base != null) {
  1888                         List<Type> ownerParams = owner.type.allparams();
  1889                         List<Type> baseParams = base.allparams();
  1890                         if (ownerParams.nonEmpty()) {
  1891                             if (baseParams.isEmpty()) {
  1892                                 // then base is a raw type
  1893                                 return erasure(sym.type);
  1894                             } else {
  1895                                 return subst(sym.type, ownerParams, baseParams);
  1900                 return sym.type;
  1903             @Override
  1904             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1905                 return memberType(t.bound, sym);
  1908             @Override
  1909             public Type visitErrorType(ErrorType t, Symbol sym) {
  1910                 return t;
  1912         };
  1913     // </editor-fold>
  1915     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1916     public boolean isAssignable(Type t, Type s) {
  1917         return isAssignable(t, s, noWarnings);
  1920     /**
  1921      * Is t assignable to s?<br>
  1922      * Equivalent to subtype except for constant values and raw
  1923      * types.<br>
  1924      * (not defined for Method and ForAll types)
  1925      */
  1926     public boolean isAssignable(Type t, Type s, Warner warn) {
  1927         if (t.tag == ERROR)
  1928             return true;
  1929         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  1930             int value = ((Number)t.constValue()).intValue();
  1931             switch (s.tag) {
  1932             case BYTE:
  1933                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1934                     return true;
  1935                 break;
  1936             case CHAR:
  1937                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1938                     return true;
  1939                 break;
  1940             case SHORT:
  1941                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1942                     return true;
  1943                 break;
  1944             case INT:
  1945                 return true;
  1946             case CLASS:
  1947                 switch (unboxedType(s).tag) {
  1948                 case BYTE:
  1949                 case CHAR:
  1950                 case SHORT:
  1951                     return isAssignable(t, unboxedType(s), warn);
  1953                 break;
  1956         return isConvertible(t, s, warn);
  1958     // </editor-fold>
  1960     // <editor-fold defaultstate="collapsed" desc="erasure">
  1961     /**
  1962      * The erasure of t {@code |t|} -- the type that results when all
  1963      * type parameters in t are deleted.
  1964      */
  1965     public Type erasure(Type t) {
  1966         return eraseNotNeeded(t)? t : erasure(t, false);
  1968     //where
  1969     private boolean eraseNotNeeded(Type t) {
  1970         // We don't want to erase primitive types and String type as that
  1971         // operation is idempotent. Also, erasing these could result in loss
  1972         // of information such as constant values attached to such types.
  1973         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  1976     private Type erasure(Type t, boolean recurse) {
  1977         if (t.isPrimitive())
  1978             return t; /* fast special case */
  1979         else
  1980             return erasure.visit(t, recurse);
  1982     // where
  1983         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1984             public Type visitType(Type t, Boolean recurse) {
  1985                 if (t.isPrimitive())
  1986                     return t; /*fast special case*/
  1987                 else
  1988                     return t.map(recurse ? erasureRecFun : erasureFun);
  1991             @Override
  1992             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1993                 return erasure(upperBound(t), recurse);
  1996             @Override
  1997             public Type visitClassType(ClassType t, Boolean recurse) {
  1998                 Type erased = t.tsym.erasure(Types.this);
  1999                 if (recurse) {
  2000                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2002                 return erased;
  2005             @Override
  2006             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2007                 return erasure(t.bound, recurse);
  2010             @Override
  2011             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2012                 return t;
  2014         };
  2016     private Mapping erasureFun = new Mapping ("erasure") {
  2017             public Type apply(Type t) { return erasure(t); }
  2018         };
  2020     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2021         public Type apply(Type t) { return erasureRecursive(t); }
  2022     };
  2024     public List<Type> erasure(List<Type> ts) {
  2025         return Type.map(ts, erasureFun);
  2028     public Type erasureRecursive(Type t) {
  2029         return erasure(t, true);
  2032     public List<Type> erasureRecursive(List<Type> ts) {
  2033         return Type.map(ts, erasureRecFun);
  2035     // </editor-fold>
  2037     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2038     /**
  2039      * Make a compound type from non-empty list of types
  2041      * @param bounds            the types from which the compound type is formed
  2042      * @param supertype         is objectType if all bounds are interfaces,
  2043      *                          null otherwise.
  2044      */
  2045     public Type makeCompoundType(List<Type> bounds) {
  2046         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2048     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2049         Assert.check(bounds.nonEmpty());
  2050         Type firstExplicitBound = bounds.head;
  2051         if (allInterfaces) {
  2052             bounds = bounds.prepend(syms.objectType);
  2054         ClassSymbol bc =
  2055             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2056                             Type.moreInfo
  2057                                 ? names.fromString(bounds.toString())
  2058                                 : names.empty,
  2059                             null,
  2060                             syms.noSymbol);
  2061         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2062         bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
  2063                 syms.objectType : // error condition, recover
  2064                 erasure(firstExplicitBound);
  2065         bc.members_field = new Scope(bc);
  2066         return bc.type;
  2069     /**
  2070      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2071      * arguments are converted to a list and passed to the other
  2072      * method.  Note that this might cause a symbol completion.
  2073      * Hence, this version of makeCompoundType may not be called
  2074      * during a classfile read.
  2075      */
  2076     public Type makeCompoundType(Type bound1, Type bound2) {
  2077         return makeCompoundType(List.of(bound1, bound2));
  2079     // </editor-fold>
  2081     // <editor-fold defaultstate="collapsed" desc="supertype">
  2082     public Type supertype(Type t) {
  2083         return supertype.visit(t);
  2085     // where
  2086         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2088             public Type visitType(Type t, Void ignored) {
  2089                 // A note on wildcards: there is no good way to
  2090                 // determine a supertype for a super bounded wildcard.
  2091                 return null;
  2094             @Override
  2095             public Type visitClassType(ClassType t, Void ignored) {
  2096                 if (t.supertype_field == null) {
  2097                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2098                     // An interface has no superclass; its supertype is Object.
  2099                     if (t.isInterface())
  2100                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2101                     if (t.supertype_field == null) {
  2102                         List<Type> actuals = classBound(t).allparams();
  2103                         List<Type> formals = t.tsym.type.allparams();
  2104                         if (t.hasErasedSupertypes()) {
  2105                             t.supertype_field = erasureRecursive(supertype);
  2106                         } else if (formals.nonEmpty()) {
  2107                             t.supertype_field = subst(supertype, formals, actuals);
  2109                         else {
  2110                             t.supertype_field = supertype;
  2114                 return t.supertype_field;
  2117             /**
  2118              * The supertype is always a class type. If the type
  2119              * variable's bounds start with a class type, this is also
  2120              * the supertype.  Otherwise, the supertype is
  2121              * java.lang.Object.
  2122              */
  2123             @Override
  2124             public Type visitTypeVar(TypeVar t, Void ignored) {
  2125                 if (t.bound.tag == TYPEVAR ||
  2126                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2127                     return t.bound;
  2128                 } else {
  2129                     return supertype(t.bound);
  2133             @Override
  2134             public Type visitArrayType(ArrayType t, Void ignored) {
  2135                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2136                     return arraySuperType();
  2137                 else
  2138                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2141             @Override
  2142             public Type visitErrorType(ErrorType t, Void ignored) {
  2143                 return t;
  2145         };
  2146     // </editor-fold>
  2148     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2149     /**
  2150      * Return the interfaces implemented by this class.
  2151      */
  2152     public List<Type> interfaces(Type t) {
  2153         return interfaces.visit(t);
  2155     // where
  2156         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2158             public List<Type> visitType(Type t, Void ignored) {
  2159                 return List.nil();
  2162             @Override
  2163             public List<Type> visitClassType(ClassType t, Void ignored) {
  2164                 if (t.interfaces_field == null) {
  2165                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2166                     if (t.interfaces_field == null) {
  2167                         // If t.interfaces_field is null, then t must
  2168                         // be a parameterized type (not to be confused
  2169                         // with a generic type declaration).
  2170                         // Terminology:
  2171                         //    Parameterized type: List<String>
  2172                         //    Generic type declaration: class List<E> { ... }
  2173                         // So t corresponds to List<String> and
  2174                         // t.tsym.type corresponds to List<E>.
  2175                         // The reason t must be parameterized type is
  2176                         // that completion will happen as a side
  2177                         // effect of calling
  2178                         // ClassSymbol.getInterfaces.  Since
  2179                         // t.interfaces_field is null after
  2180                         // completion, we can assume that t is not the
  2181                         // type of a class/interface declaration.
  2182                         Assert.check(t != t.tsym.type, t);
  2183                         List<Type> actuals = t.allparams();
  2184                         List<Type> formals = t.tsym.type.allparams();
  2185                         if (t.hasErasedSupertypes()) {
  2186                             t.interfaces_field = erasureRecursive(interfaces);
  2187                         } else if (formals.nonEmpty()) {
  2188                             t.interfaces_field =
  2189                                 upperBounds(subst(interfaces, formals, actuals));
  2191                         else {
  2192                             t.interfaces_field = interfaces;
  2196                 return t.interfaces_field;
  2199             @Override
  2200             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2201                 if (t.bound.isCompound())
  2202                     return interfaces(t.bound);
  2204                 if (t.bound.isInterface())
  2205                     return List.of(t.bound);
  2207                 return List.nil();
  2209         };
  2211     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2212         for (Type i2 : interfaces(origin.type)) {
  2213             if (isym == i2.tsym) return true;
  2215         return false;
  2217     // </editor-fold>
  2219     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2220     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2222     public boolean isDerivedRaw(Type t) {
  2223         Boolean result = isDerivedRawCache.get(t);
  2224         if (result == null) {
  2225             result = isDerivedRawInternal(t);
  2226             isDerivedRawCache.put(t, result);
  2228         return result;
  2231     public boolean isDerivedRawInternal(Type t) {
  2232         if (t.isErroneous())
  2233             return false;
  2234         return
  2235             t.isRaw() ||
  2236             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2237             isDerivedRaw(interfaces(t));
  2240     public boolean isDerivedRaw(List<Type> ts) {
  2241         List<Type> l = ts;
  2242         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2243         return l.nonEmpty();
  2245     // </editor-fold>
  2247     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2248     /**
  2249      * Set the bounds field of the given type variable to reflect a
  2250      * (possibly multiple) list of bounds.
  2251      * @param t                 a type variable
  2252      * @param bounds            the bounds, must be nonempty
  2253      * @param supertype         is objectType if all bounds are interfaces,
  2254      *                          null otherwise.
  2255      */
  2256     public void setBounds(TypeVar t, List<Type> bounds) {
  2257         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2260     /**
  2261      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2262      * third parameter is computed directly, as follows: if all
  2263      * all bounds are interface types, the computed supertype is Object,
  2264      * otherwise the supertype is simply left null (in this case, the supertype
  2265      * is assumed to be the head of the bound list passed as second argument).
  2266      * Note that this check might cause a symbol completion. Hence, this version of
  2267      * setBounds may not be called during a classfile read.
  2268      */
  2269     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2270         t.bound = bounds.tail.isEmpty() ?
  2271                 bounds.head :
  2272                 makeCompoundType(bounds, allInterfaces);
  2273         t.rank_field = -1;
  2275     // </editor-fold>
  2277     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2278     /**
  2279      * Return list of bounds of the given type variable.
  2280      */
  2281     public List<Type> getBounds(TypeVar t) {
  2282         if (t.bound.hasTag(NONE))
  2283             return List.nil();
  2284         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2285             return List.of(t.bound);
  2286         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2287             return interfaces(t).prepend(supertype(t));
  2288         else
  2289             // No superclass was given in bounds.
  2290             // In this case, supertype is Object, erasure is first interface.
  2291             return interfaces(t);
  2293     // </editor-fold>
  2295     // <editor-fold defaultstate="collapsed" desc="classBound">
  2296     /**
  2297      * If the given type is a (possibly selected) type variable,
  2298      * return the bounding class of this type, otherwise return the
  2299      * type itself.
  2300      */
  2301     public Type classBound(Type t) {
  2302         return classBound.visit(t);
  2304     // where
  2305         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2307             public Type visitType(Type t, Void ignored) {
  2308                 return t;
  2311             @Override
  2312             public Type visitClassType(ClassType t, Void ignored) {
  2313                 Type outer1 = classBound(t.getEnclosingType());
  2314                 if (outer1 != t.getEnclosingType())
  2315                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2316                 else
  2317                     return t;
  2320             @Override
  2321             public Type visitTypeVar(TypeVar t, Void ignored) {
  2322                 return classBound(supertype(t));
  2325             @Override
  2326             public Type visitErrorType(ErrorType t, Void ignored) {
  2327                 return t;
  2329         };
  2330     // </editor-fold>
  2332     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2333     /**
  2334      * Returns true iff the first signature is a <em>sub
  2335      * signature</em> of the other.  This is <b>not</b> an equivalence
  2336      * relation.
  2338      * @jls section 8.4.2.
  2339      * @see #overrideEquivalent(Type t, Type s)
  2340      * @param t first signature (possibly raw).
  2341      * @param s second signature (could be subjected to erasure).
  2342      * @return true if t is a sub signature of s.
  2343      */
  2344     public boolean isSubSignature(Type t, Type s) {
  2345         return isSubSignature(t, s, true);
  2348     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2349         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2352     /**
  2353      * Returns true iff these signatures are related by <em>override
  2354      * equivalence</em>.  This is the natural extension of
  2355      * isSubSignature to an equivalence relation.
  2357      * @jls section 8.4.2.
  2358      * @see #isSubSignature(Type t, Type s)
  2359      * @param t a signature (possible raw, could be subjected to
  2360      * erasure).
  2361      * @param s a signature (possible raw, could be subjected to
  2362      * erasure).
  2363      * @return true if either argument is a sub signature of the other.
  2364      */
  2365     public boolean overrideEquivalent(Type t, Type s) {
  2366         return hasSameArgs(t, s) ||
  2367             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2370     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2371         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2372             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2373                 return true;
  2376         return false;
  2379     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2380     class ImplementationCache {
  2382         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2383                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2385         class Entry {
  2386             final MethodSymbol cachedImpl;
  2387             final Filter<Symbol> implFilter;
  2388             final boolean checkResult;
  2389             final int prevMark;
  2391             public Entry(MethodSymbol cachedImpl,
  2392                     Filter<Symbol> scopeFilter,
  2393                     boolean checkResult,
  2394                     int prevMark) {
  2395                 this.cachedImpl = cachedImpl;
  2396                 this.implFilter = scopeFilter;
  2397                 this.checkResult = checkResult;
  2398                 this.prevMark = prevMark;
  2401             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2402                 return this.implFilter == scopeFilter &&
  2403                         this.checkResult == checkResult &&
  2404                         this.prevMark == mark;
  2408         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2409             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2410             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2411             if (cache == null) {
  2412                 cache = new HashMap<TypeSymbol, Entry>();
  2413                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2415             Entry e = cache.get(origin);
  2416             CompoundScope members = membersClosure(origin.type, true);
  2417             if (e == null ||
  2418                     !e.matches(implFilter, checkResult, members.getMark())) {
  2419                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2420                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2421                 return impl;
  2423             else {
  2424                 return e.cachedImpl;
  2428         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2429             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2430                 while (t.tag == TYPEVAR)
  2431                     t = t.getUpperBound();
  2432                 TypeSymbol c = t.tsym;
  2433                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2434                      e.scope != null;
  2435                      e = e.next(implFilter)) {
  2436                     if (e.sym != null &&
  2437                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2438                         return (MethodSymbol)e.sym;
  2441             return null;
  2445     private ImplementationCache implCache = new ImplementationCache();
  2447     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2448         return implCache.get(ms, origin, checkResult, implFilter);
  2450     // </editor-fold>
  2452     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2453     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2455         private WeakHashMap<TypeSymbol, Entry> _map =
  2456                 new WeakHashMap<TypeSymbol, Entry>();
  2458         class Entry {
  2459             final boolean skipInterfaces;
  2460             final CompoundScope compoundScope;
  2462             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2463                 this.skipInterfaces = skipInterfaces;
  2464                 this.compoundScope = compoundScope;
  2467             boolean matches(boolean skipInterfaces) {
  2468                 return this.skipInterfaces == skipInterfaces;
  2472         List<TypeSymbol> seenTypes = List.nil();
  2474         /** members closure visitor methods **/
  2476         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2477             return null;
  2480         @Override
  2481         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2482             if (seenTypes.contains(t.tsym)) {
  2483                 //this is possible when an interface is implemented in multiple
  2484                 //superclasses, or when a classs hierarchy is circular - in such
  2485                 //cases we don't need to recurse (empty scope is returned)
  2486                 return new CompoundScope(t.tsym);
  2488             try {
  2489                 seenTypes = seenTypes.prepend(t.tsym);
  2490                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2491                 Entry e = _map.get(csym);
  2492                 if (e == null || !e.matches(skipInterface)) {
  2493                     CompoundScope membersClosure = new CompoundScope(csym);
  2494                     if (!skipInterface) {
  2495                         for (Type i : interfaces(t)) {
  2496                             membersClosure.addSubScope(visit(i, skipInterface));
  2499                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2500                     membersClosure.addSubScope(csym.members());
  2501                     e = new Entry(skipInterface, membersClosure);
  2502                     _map.put(csym, e);
  2504                 return e.compoundScope;
  2506             finally {
  2507                 seenTypes = seenTypes.tail;
  2511         @Override
  2512         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2513             return visit(t.getUpperBound(), skipInterface);
  2517     private MembersClosureCache membersCache = new MembersClosureCache();
  2519     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2520         return membersCache.visit(site, skipInterface);
  2522     // </editor-fold>
  2525     //where
  2526     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2527         Filter<Symbol> filter = new MethodFilter(ms, site);
  2528         List<MethodSymbol> candidates = List.nil();
  2529         for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2530             if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2531                 return List.of((MethodSymbol)s);
  2532             } else if (!candidates.contains(s)) {
  2533                 candidates = candidates.prepend((MethodSymbol)s);
  2536         return prune(candidates, ownerComparator);
  2539     public List<MethodSymbol> prune(List<MethodSymbol> methods, Comparator<MethodSymbol> cmp) {
  2540         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2541         for (MethodSymbol m1 : methods) {
  2542             boolean isMin_m1 = true;
  2543             for (MethodSymbol m2 : methods) {
  2544                 if (m1 == m2) continue;
  2545                 if (cmp.compare(m2, m1) < 0) {
  2546                     isMin_m1 = false;
  2547                     break;
  2550             if (isMin_m1)
  2551                 methodsMin.append(m1);
  2553         return methodsMin.toList();
  2556     Comparator<MethodSymbol> ownerComparator = new Comparator<MethodSymbol>() {
  2557         public int compare(MethodSymbol s1, MethodSymbol s2) {
  2558             return s1.owner.isSubClass(s2.owner, Types.this) ? -1 : 1;
  2560     };
  2561     // where
  2562             private class MethodFilter implements Filter<Symbol> {
  2564                 Symbol msym;
  2565                 Type site;
  2567                 MethodFilter(Symbol msym, Type site) {
  2568                     this.msym = msym;
  2569                     this.site = site;
  2572                 public boolean accepts(Symbol s) {
  2573                     return s.kind == Kinds.MTH &&
  2574                             s.name == msym.name &&
  2575                             s.isInheritedIn(site.tsym, Types.this) &&
  2576                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2578             };
  2579     // </editor-fold>
  2581     /**
  2582      * Does t have the same arguments as s?  It is assumed that both
  2583      * types are (possibly polymorphic) method types.  Monomorphic
  2584      * method types "have the same arguments", if their argument lists
  2585      * are equal.  Polymorphic method types "have the same arguments",
  2586      * if they have the same arguments after renaming all type
  2587      * variables of one to corresponding type variables in the other,
  2588      * where correspondence is by position in the type parameter list.
  2589      */
  2590     public boolean hasSameArgs(Type t, Type s) {
  2591         return hasSameArgs(t, s, true);
  2594     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2595         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2598     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2599         return hasSameArgs.visit(t, s);
  2601     // where
  2602         private class HasSameArgs extends TypeRelation {
  2604             boolean strict;
  2606             public HasSameArgs(boolean strict) {
  2607                 this.strict = strict;
  2610             public Boolean visitType(Type t, Type s) {
  2611                 throw new AssertionError();
  2614             @Override
  2615             public Boolean visitMethodType(MethodType t, Type s) {
  2616                 return s.tag == METHOD
  2617                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2620             @Override
  2621             public Boolean visitForAll(ForAll t, Type s) {
  2622                 if (s.tag != FORALL)
  2623                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2625                 ForAll forAll = (ForAll)s;
  2626                 return hasSameBounds(t, forAll)
  2627                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2630             @Override
  2631             public Boolean visitErrorType(ErrorType t, Type s) {
  2632                 return false;
  2634         };
  2636         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2637         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2639     // </editor-fold>
  2641     // <editor-fold defaultstate="collapsed" desc="subst">
  2642     public List<Type> subst(List<Type> ts,
  2643                             List<Type> from,
  2644                             List<Type> to) {
  2645         return new Subst(from, to).subst(ts);
  2648     /**
  2649      * Substitute all occurrences of a type in `from' with the
  2650      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2651      * from the right: If lists have different length, discard leading
  2652      * elements of the longer list.
  2653      */
  2654     public Type subst(Type t, List<Type> from, List<Type> to) {
  2655         return new Subst(from, to).subst(t);
  2658     private class Subst extends UnaryVisitor<Type> {
  2659         List<Type> from;
  2660         List<Type> to;
  2662         public Subst(List<Type> from, List<Type> to) {
  2663             int fromLength = from.length();
  2664             int toLength = to.length();
  2665             while (fromLength > toLength) {
  2666                 fromLength--;
  2667                 from = from.tail;
  2669             while (fromLength < toLength) {
  2670                 toLength--;
  2671                 to = to.tail;
  2673             this.from = from;
  2674             this.to = to;
  2677         Type subst(Type t) {
  2678             if (from.tail == null)
  2679                 return t;
  2680             else
  2681                 return visit(t);
  2684         List<Type> subst(List<Type> ts) {
  2685             if (from.tail == null)
  2686                 return ts;
  2687             boolean wild = false;
  2688             if (ts.nonEmpty() && from.nonEmpty()) {
  2689                 Type head1 = subst(ts.head);
  2690                 List<Type> tail1 = subst(ts.tail);
  2691                 if (head1 != ts.head || tail1 != ts.tail)
  2692                     return tail1.prepend(head1);
  2694             return ts;
  2697         public Type visitType(Type t, Void ignored) {
  2698             return t;
  2701         @Override
  2702         public Type visitMethodType(MethodType t, Void ignored) {
  2703             List<Type> argtypes = subst(t.argtypes);
  2704             Type restype = subst(t.restype);
  2705             List<Type> thrown = subst(t.thrown);
  2706             if (argtypes == t.argtypes &&
  2707                 restype == t.restype &&
  2708                 thrown == t.thrown)
  2709                 return t;
  2710             else
  2711                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2714         @Override
  2715         public Type visitTypeVar(TypeVar t, Void ignored) {
  2716             for (List<Type> from = this.from, to = this.to;
  2717                  from.nonEmpty();
  2718                  from = from.tail, to = to.tail) {
  2719                 if (t == from.head) {
  2720                     return to.head.withTypeVar(t);
  2723             return t;
  2726         @Override
  2727         public Type visitClassType(ClassType t, Void ignored) {
  2728             if (!t.isCompound()) {
  2729                 List<Type> typarams = t.getTypeArguments();
  2730                 List<Type> typarams1 = subst(typarams);
  2731                 Type outer = t.getEnclosingType();
  2732                 Type outer1 = subst(outer);
  2733                 if (typarams1 == typarams && outer1 == outer)
  2734                     return t;
  2735                 else
  2736                     return new ClassType(outer1, typarams1, t.tsym);
  2737             } else {
  2738                 Type st = subst(supertype(t));
  2739                 List<Type> is = upperBounds(subst(interfaces(t)));
  2740                 if (st == supertype(t) && is == interfaces(t))
  2741                     return t;
  2742                 else
  2743                     return makeCompoundType(is.prepend(st));
  2747         @Override
  2748         public Type visitWildcardType(WildcardType t, Void ignored) {
  2749             Type bound = t.type;
  2750             if (t.kind != BoundKind.UNBOUND)
  2751                 bound = subst(bound);
  2752             if (bound == t.type) {
  2753                 return t;
  2754             } else {
  2755                 if (t.isExtendsBound() && bound.isExtendsBound())
  2756                     bound = upperBound(bound);
  2757                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2761         @Override
  2762         public Type visitArrayType(ArrayType t, Void ignored) {
  2763             Type elemtype = subst(t.elemtype);
  2764             if (elemtype == t.elemtype)
  2765                 return t;
  2766             else
  2767                 return new ArrayType(upperBound(elemtype), t.tsym);
  2770         @Override
  2771         public Type visitForAll(ForAll t, Void ignored) {
  2772             if (Type.containsAny(to, t.tvars)) {
  2773                 //perform alpha-renaming of free-variables in 't'
  2774                 //if 'to' types contain variables that are free in 't'
  2775                 List<Type> freevars = newInstances(t.tvars);
  2776                 t = new ForAll(freevars,
  2777                         Types.this.subst(t.qtype, t.tvars, freevars));
  2779             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2780             Type qtype1 = subst(t.qtype);
  2781             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2782                 return t;
  2783             } else if (tvars1 == t.tvars) {
  2784                 return new ForAll(tvars1, qtype1);
  2785             } else {
  2786                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2790         @Override
  2791         public Type visitErrorType(ErrorType t, Void ignored) {
  2792             return t;
  2796     public List<Type> substBounds(List<Type> tvars,
  2797                                   List<Type> from,
  2798                                   List<Type> to) {
  2799         if (tvars.isEmpty())
  2800             return tvars;
  2801         ListBuffer<Type> newBoundsBuf = lb();
  2802         boolean changed = false;
  2803         // calculate new bounds
  2804         for (Type t : tvars) {
  2805             TypeVar tv = (TypeVar) t;
  2806             Type bound = subst(tv.bound, from, to);
  2807             if (bound != tv.bound)
  2808                 changed = true;
  2809             newBoundsBuf.append(bound);
  2811         if (!changed)
  2812             return tvars;
  2813         ListBuffer<Type> newTvars = lb();
  2814         // create new type variables without bounds
  2815         for (Type t : tvars) {
  2816             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2818         // the new bounds should use the new type variables in place
  2819         // of the old
  2820         List<Type> newBounds = newBoundsBuf.toList();
  2821         from = tvars;
  2822         to = newTvars.toList();
  2823         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2824             newBounds.head = subst(newBounds.head, from, to);
  2826         newBounds = newBoundsBuf.toList();
  2827         // set the bounds of new type variables to the new bounds
  2828         for (Type t : newTvars.toList()) {
  2829             TypeVar tv = (TypeVar) t;
  2830             tv.bound = newBounds.head;
  2831             newBounds = newBounds.tail;
  2833         return newTvars.toList();
  2836     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2837         Type bound1 = subst(t.bound, from, to);
  2838         if (bound1 == t.bound)
  2839             return t;
  2840         else {
  2841             // create new type variable without bounds
  2842             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2843             // the new bound should use the new type variable in place
  2844             // of the old
  2845             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2846             return tv;
  2849     // </editor-fold>
  2851     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2852     /**
  2853      * Does t have the same bounds for quantified variables as s?
  2854      */
  2855     boolean hasSameBounds(ForAll t, ForAll s) {
  2856         List<Type> l1 = t.tvars;
  2857         List<Type> l2 = s.tvars;
  2858         while (l1.nonEmpty() && l2.nonEmpty() &&
  2859                isSameType(l1.head.getUpperBound(),
  2860                           subst(l2.head.getUpperBound(),
  2861                                 s.tvars,
  2862                                 t.tvars))) {
  2863             l1 = l1.tail;
  2864             l2 = l2.tail;
  2866         return l1.isEmpty() && l2.isEmpty();
  2868     // </editor-fold>
  2870     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2871     /** Create new vector of type variables from list of variables
  2872      *  changing all recursive bounds from old to new list.
  2873      */
  2874     public List<Type> newInstances(List<Type> tvars) {
  2875         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2876         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2877             TypeVar tv = (TypeVar) l.head;
  2878             tv.bound = subst(tv.bound, tvars, tvars1);
  2880         return tvars1;
  2882     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2883             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2884         };
  2885     // </editor-fold>
  2887     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2888         return original.accept(methodWithParameters, newParams);
  2890     // where
  2891         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2892             public Type visitType(Type t, List<Type> newParams) {
  2893                 throw new IllegalArgumentException("Not a method type: " + t);
  2895             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2896                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2898             public Type visitForAll(ForAll t, List<Type> newParams) {
  2899                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2901         };
  2903     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2904         return original.accept(methodWithThrown, newThrown);
  2906     // where
  2907         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2908             public Type visitType(Type t, List<Type> newThrown) {
  2909                 throw new IllegalArgumentException("Not a method type: " + t);
  2911             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2912                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2914             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2915                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2917         };
  2919     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2920         return original.accept(methodWithReturn, newReturn);
  2922     // where
  2923         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2924             public Type visitType(Type t, Type newReturn) {
  2925                 throw new IllegalArgumentException("Not a method type: " + t);
  2927             public Type visitMethodType(MethodType t, Type newReturn) {
  2928                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2930             public Type visitForAll(ForAll t, Type newReturn) {
  2931                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2933         };
  2935     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2936     public Type createErrorType(Type originalType) {
  2937         return new ErrorType(originalType, syms.errSymbol);
  2940     public Type createErrorType(ClassSymbol c, Type originalType) {
  2941         return new ErrorType(c, originalType);
  2944     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2945         return new ErrorType(name, container, originalType);
  2947     // </editor-fold>
  2949     // <editor-fold defaultstate="collapsed" desc="rank">
  2950     /**
  2951      * The rank of a class is the length of the longest path between
  2952      * the class and java.lang.Object in the class inheritance
  2953      * graph. Undefined for all but reference types.
  2954      */
  2955     public int rank(Type t) {
  2956         switch(t.tag) {
  2957         case CLASS: {
  2958             ClassType cls = (ClassType)t;
  2959             if (cls.rank_field < 0) {
  2960                 Name fullname = cls.tsym.getQualifiedName();
  2961                 if (fullname == names.java_lang_Object)
  2962                     cls.rank_field = 0;
  2963                 else {
  2964                     int r = rank(supertype(cls));
  2965                     for (List<Type> l = interfaces(cls);
  2966                          l.nonEmpty();
  2967                          l = l.tail) {
  2968                         if (rank(l.head) > r)
  2969                             r = rank(l.head);
  2971                     cls.rank_field = r + 1;
  2974             return cls.rank_field;
  2976         case TYPEVAR: {
  2977             TypeVar tvar = (TypeVar)t;
  2978             if (tvar.rank_field < 0) {
  2979                 int r = rank(supertype(tvar));
  2980                 for (List<Type> l = interfaces(tvar);
  2981                      l.nonEmpty();
  2982                      l = l.tail) {
  2983                     if (rank(l.head) > r) r = rank(l.head);
  2985                 tvar.rank_field = r + 1;
  2987             return tvar.rank_field;
  2989         case ERROR:
  2990             return 0;
  2991         default:
  2992             throw new AssertionError();
  2995     // </editor-fold>
  2997     /**
  2998      * Helper method for generating a string representation of a given type
  2999      * accordingly to a given locale
  3000      */
  3001     public String toString(Type t, Locale locale) {
  3002         return Printer.createStandardPrinter(messages).visit(t, locale);
  3005     /**
  3006      * Helper method for generating a string representation of a given type
  3007      * accordingly to a given locale
  3008      */
  3009     public String toString(Symbol t, Locale locale) {
  3010         return Printer.createStandardPrinter(messages).visit(t, locale);
  3013     // <editor-fold defaultstate="collapsed" desc="toString">
  3014     /**
  3015      * This toString is slightly more descriptive than the one on Type.
  3017      * @deprecated Types.toString(Type t, Locale l) provides better support
  3018      * for localization
  3019      */
  3020     @Deprecated
  3021     public String toString(Type t) {
  3022         if (t.tag == FORALL) {
  3023             ForAll forAll = (ForAll)t;
  3024             return typaramsString(forAll.tvars) + forAll.qtype;
  3026         return "" + t;
  3028     // where
  3029         private String typaramsString(List<Type> tvars) {
  3030             StringBuilder s = new StringBuilder();
  3031             s.append('<');
  3032             boolean first = true;
  3033             for (Type t : tvars) {
  3034                 if (!first) s.append(", ");
  3035                 first = false;
  3036                 appendTyparamString(((TypeVar)t), s);
  3038             s.append('>');
  3039             return s.toString();
  3041         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3042             buf.append(t);
  3043             if (t.bound == null ||
  3044                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3045                 return;
  3046             buf.append(" extends "); // Java syntax; no need for i18n
  3047             Type bound = t.bound;
  3048             if (!bound.isCompound()) {
  3049                 buf.append(bound);
  3050             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3051                 buf.append(supertype(t));
  3052                 for (Type intf : interfaces(t)) {
  3053                     buf.append('&');
  3054                     buf.append(intf);
  3056             } else {
  3057                 // No superclass was given in bounds.
  3058                 // In this case, supertype is Object, erasure is first interface.
  3059                 boolean first = true;
  3060                 for (Type intf : interfaces(t)) {
  3061                     if (!first) buf.append('&');
  3062                     first = false;
  3063                     buf.append(intf);
  3067     // </editor-fold>
  3069     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3070     /**
  3071      * A cache for closures.
  3073      * <p>A closure is a list of all the supertypes and interfaces of
  3074      * a class or interface type, ordered by ClassSymbol.precedes
  3075      * (that is, subclasses come first, arbitrary but fixed
  3076      * otherwise).
  3077      */
  3078     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3080     /**
  3081      * Returns the closure of a class or interface type.
  3082      */
  3083     public List<Type> closure(Type t) {
  3084         List<Type> cl = closureCache.get(t);
  3085         if (cl == null) {
  3086             Type st = supertype(t);
  3087             if (!t.isCompound()) {
  3088                 if (st.tag == CLASS) {
  3089                     cl = insert(closure(st), t);
  3090                 } else if (st.tag == TYPEVAR) {
  3091                     cl = closure(st).prepend(t);
  3092                 } else {
  3093                     cl = List.of(t);
  3095             } else {
  3096                 cl = closure(supertype(t));
  3098             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3099                 cl = union(cl, closure(l.head));
  3100             closureCache.put(t, cl);
  3102         return cl;
  3105     /**
  3106      * Insert a type in a closure
  3107      */
  3108     public List<Type> insert(List<Type> cl, Type t) {
  3109         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3110             return cl.prepend(t);
  3111         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3112             return insert(cl.tail, t).prepend(cl.head);
  3113         } else {
  3114             return cl;
  3118     /**
  3119      * Form the union of two closures
  3120      */
  3121     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3122         if (cl1.isEmpty()) {
  3123             return cl2;
  3124         } else if (cl2.isEmpty()) {
  3125             return cl1;
  3126         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3127             return union(cl1.tail, cl2).prepend(cl1.head);
  3128         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3129             return union(cl1, cl2.tail).prepend(cl2.head);
  3130         } else {
  3131             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3135     /**
  3136      * Intersect two closures
  3137      */
  3138     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3139         if (cl1 == cl2)
  3140             return cl1;
  3141         if (cl1.isEmpty() || cl2.isEmpty())
  3142             return List.nil();
  3143         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3144             return intersect(cl1.tail, cl2);
  3145         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3146             return intersect(cl1, cl2.tail);
  3147         if (isSameType(cl1.head, cl2.head))
  3148             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3149         if (cl1.head.tsym == cl2.head.tsym &&
  3150             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3151             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3152                 Type merge = merge(cl1.head,cl2.head);
  3153                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3155             if (cl1.head.isRaw() || cl2.head.isRaw())
  3156                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3158         return intersect(cl1.tail, cl2.tail);
  3160     // where
  3161         class TypePair {
  3162             final Type t1;
  3163             final Type t2;
  3164             TypePair(Type t1, Type t2) {
  3165                 this.t1 = t1;
  3166                 this.t2 = t2;
  3168             @Override
  3169             public int hashCode() {
  3170                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3172             @Override
  3173             public boolean equals(Object obj) {
  3174                 if (!(obj instanceof TypePair))
  3175                     return false;
  3176                 TypePair typePair = (TypePair)obj;
  3177                 return isSameType(t1, typePair.t1)
  3178                     && isSameType(t2, typePair.t2);
  3181         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3182         private Type merge(Type c1, Type c2) {
  3183             ClassType class1 = (ClassType) c1;
  3184             List<Type> act1 = class1.getTypeArguments();
  3185             ClassType class2 = (ClassType) c2;
  3186             List<Type> act2 = class2.getTypeArguments();
  3187             ListBuffer<Type> merged = new ListBuffer<Type>();
  3188             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3190             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3191                 if (containsType(act1.head, act2.head)) {
  3192                     merged.append(act1.head);
  3193                 } else if (containsType(act2.head, act1.head)) {
  3194                     merged.append(act2.head);
  3195                 } else {
  3196                     TypePair pair = new TypePair(c1, c2);
  3197                     Type m;
  3198                     if (mergeCache.add(pair)) {
  3199                         m = new WildcardType(lub(upperBound(act1.head),
  3200                                                  upperBound(act2.head)),
  3201                                              BoundKind.EXTENDS,
  3202                                              syms.boundClass);
  3203                         mergeCache.remove(pair);
  3204                     } else {
  3205                         m = new WildcardType(syms.objectType,
  3206                                              BoundKind.UNBOUND,
  3207                                              syms.boundClass);
  3209                     merged.append(m.withTypeVar(typarams.head));
  3211                 act1 = act1.tail;
  3212                 act2 = act2.tail;
  3213                 typarams = typarams.tail;
  3215             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3216             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3219     /**
  3220      * Return the minimum type of a closure, a compound type if no
  3221      * unique minimum exists.
  3222      */
  3223     private Type compoundMin(List<Type> cl) {
  3224         if (cl.isEmpty()) return syms.objectType;
  3225         List<Type> compound = closureMin(cl);
  3226         if (compound.isEmpty())
  3227             return null;
  3228         else if (compound.tail.isEmpty())
  3229             return compound.head;
  3230         else
  3231             return makeCompoundType(compound);
  3234     /**
  3235      * Return the minimum types of a closure, suitable for computing
  3236      * compoundMin or glb.
  3237      */
  3238     private List<Type> closureMin(List<Type> cl) {
  3239         ListBuffer<Type> classes = lb();
  3240         ListBuffer<Type> interfaces = lb();
  3241         while (!cl.isEmpty()) {
  3242             Type current = cl.head;
  3243             if (current.isInterface())
  3244                 interfaces.append(current);
  3245             else
  3246                 classes.append(current);
  3247             ListBuffer<Type> candidates = lb();
  3248             for (Type t : cl.tail) {
  3249                 if (!isSubtypeNoCapture(current, t))
  3250                     candidates.append(t);
  3252             cl = candidates.toList();
  3254         return classes.appendList(interfaces).toList();
  3257     /**
  3258      * Return the least upper bound of pair of types.  if the lub does
  3259      * not exist return null.
  3260      */
  3261     public Type lub(Type t1, Type t2) {
  3262         return lub(List.of(t1, t2));
  3265     /**
  3266      * Return the least upper bound (lub) of set of types.  If the lub
  3267      * does not exist return the type of null (bottom).
  3268      */
  3269     public Type lub(List<Type> ts) {
  3270         final int ARRAY_BOUND = 1;
  3271         final int CLASS_BOUND = 2;
  3272         int boundkind = 0;
  3273         for (Type t : ts) {
  3274             switch (t.tag) {
  3275             case CLASS:
  3276                 boundkind |= CLASS_BOUND;
  3277                 break;
  3278             case ARRAY:
  3279                 boundkind |= ARRAY_BOUND;
  3280                 break;
  3281             case  TYPEVAR:
  3282                 do {
  3283                     t = t.getUpperBound();
  3284                 } while (t.tag == TYPEVAR);
  3285                 if (t.tag == ARRAY) {
  3286                     boundkind |= ARRAY_BOUND;
  3287                 } else {
  3288                     boundkind |= CLASS_BOUND;
  3290                 break;
  3291             default:
  3292                 if (t.isPrimitive())
  3293                     return syms.errType;
  3296         switch (boundkind) {
  3297         case 0:
  3298             return syms.botType;
  3300         case ARRAY_BOUND:
  3301             // calculate lub(A[], B[])
  3302             List<Type> elements = Type.map(ts, elemTypeFun);
  3303             for (Type t : elements) {
  3304                 if (t.isPrimitive()) {
  3305                     // if a primitive type is found, then return
  3306                     // arraySuperType unless all the types are the
  3307                     // same
  3308                     Type first = ts.head;
  3309                     for (Type s : ts.tail) {
  3310                         if (!isSameType(first, s)) {
  3311                              // lub(int[], B[]) is Cloneable & Serializable
  3312                             return arraySuperType();
  3315                     // all the array types are the same, return one
  3316                     // lub(int[], int[]) is int[]
  3317                     return first;
  3320             // lub(A[], B[]) is lub(A, B)[]
  3321             return new ArrayType(lub(elements), syms.arrayClass);
  3323         case CLASS_BOUND:
  3324             // calculate lub(A, B)
  3325             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3326                 ts = ts.tail;
  3327             Assert.check(!ts.isEmpty());
  3328             //step 1 - compute erased candidate set (EC)
  3329             List<Type> cl = erasedSupertypes(ts.head);
  3330             for (Type t : ts.tail) {
  3331                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3332                     cl = intersect(cl, erasedSupertypes(t));
  3334             //step 2 - compute minimal erased candidate set (MEC)
  3335             List<Type> mec = closureMin(cl);
  3336             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3337             List<Type> candidates = List.nil();
  3338             for (Type erasedSupertype : mec) {
  3339                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3340                 for (Type t : ts) {
  3341                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3343                 candidates = candidates.appendList(lci);
  3345             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3346             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3347             return compoundMin(candidates);
  3349         default:
  3350             // calculate lub(A, B[])
  3351             List<Type> classes = List.of(arraySuperType());
  3352             for (Type t : ts) {
  3353                 if (t.tag != ARRAY) // Filter out any arrays
  3354                     classes = classes.prepend(t);
  3356             // lub(A, B[]) is lub(A, arraySuperType)
  3357             return lub(classes);
  3360     // where
  3361         List<Type> erasedSupertypes(Type t) {
  3362             ListBuffer<Type> buf = lb();
  3363             for (Type sup : closure(t)) {
  3364                 if (sup.tag == TYPEVAR) {
  3365                     buf.append(sup);
  3366                 } else {
  3367                     buf.append(erasure(sup));
  3370             return buf.toList();
  3373         private Type arraySuperType = null;
  3374         private Type arraySuperType() {
  3375             // initialized lazily to avoid problems during compiler startup
  3376             if (arraySuperType == null) {
  3377                 synchronized (this) {
  3378                     if (arraySuperType == null) {
  3379                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3380                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3381                                                                   syms.cloneableType), true);
  3385             return arraySuperType;
  3387     // </editor-fold>
  3389     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3390     public Type glb(List<Type> ts) {
  3391         Type t1 = ts.head;
  3392         for (Type t2 : ts.tail) {
  3393             if (t1.isErroneous())
  3394                 return t1;
  3395             t1 = glb(t1, t2);
  3397         return t1;
  3399     //where
  3400     public Type glb(Type t, Type s) {
  3401         if (s == null)
  3402             return t;
  3403         else if (t.isPrimitive() || s.isPrimitive())
  3404             return syms.errType;
  3405         else if (isSubtypeNoCapture(t, s))
  3406             return t;
  3407         else if (isSubtypeNoCapture(s, t))
  3408             return s;
  3410         List<Type> closure = union(closure(t), closure(s));
  3411         List<Type> bounds = closureMin(closure);
  3413         if (bounds.isEmpty()) {             // length == 0
  3414             return syms.objectType;
  3415         } else if (bounds.tail.isEmpty()) { // length == 1
  3416             return bounds.head;
  3417         } else {                            // length > 1
  3418             int classCount = 0;
  3419             for (Type bound : bounds)
  3420                 if (!bound.isInterface())
  3421                     classCount++;
  3422             if (classCount > 1)
  3423                 return createErrorType(t);
  3425         return makeCompoundType(bounds);
  3427     // </editor-fold>
  3429     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3430     /**
  3431      * Compute a hash code on a type.
  3432      */
  3433     public int hashCode(Type t) {
  3434         return hashCode.visit(t);
  3436     // where
  3437         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3439             public Integer visitType(Type t, Void ignored) {
  3440                 return t.tag.ordinal();
  3443             @Override
  3444             public Integer visitClassType(ClassType t, Void ignored) {
  3445                 int result = visit(t.getEnclosingType());
  3446                 result *= 127;
  3447                 result += t.tsym.flatName().hashCode();
  3448                 for (Type s : t.getTypeArguments()) {
  3449                     result *= 127;
  3450                     result += visit(s);
  3452                 return result;
  3455             @Override
  3456             public Integer visitMethodType(MethodType t, Void ignored) {
  3457                 int h = METHOD.ordinal();
  3458                 for (List<Type> thisargs = t.argtypes;
  3459                      thisargs.tail != null;
  3460                      thisargs = thisargs.tail)
  3461                     h = (h << 5) + visit(thisargs.head);
  3462                 return (h << 5) + visit(t.restype);
  3465             @Override
  3466             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3467                 int result = t.kind.hashCode();
  3468                 if (t.type != null) {
  3469                     result *= 127;
  3470                     result += visit(t.type);
  3472                 return result;
  3475             @Override
  3476             public Integer visitArrayType(ArrayType t, Void ignored) {
  3477                 return visit(t.elemtype) + 12;
  3480             @Override
  3481             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3482                 return System.identityHashCode(t.tsym);
  3485             @Override
  3486             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3487                 return System.identityHashCode(t);
  3490             @Override
  3491             public Integer visitErrorType(ErrorType t, Void ignored) {
  3492                 return 0;
  3494         };
  3495     // </editor-fold>
  3497     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3498     /**
  3499      * Does t have a result that is a subtype of the result type of s,
  3500      * suitable for covariant returns?  It is assumed that both types
  3501      * are (possibly polymorphic) method types.  Monomorphic method
  3502      * types are handled in the obvious way.  Polymorphic method types
  3503      * require renaming all type variables of one to corresponding
  3504      * type variables in the other, where correspondence is by
  3505      * position in the type parameter list. */
  3506     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3507         List<Type> tvars = t.getTypeArguments();
  3508         List<Type> svars = s.getTypeArguments();
  3509         Type tres = t.getReturnType();
  3510         Type sres = subst(s.getReturnType(), svars, tvars);
  3511         return covariantReturnType(tres, sres, warner);
  3514     /**
  3515      * Return-Type-Substitutable.
  3516      * @jls section 8.4.5
  3517      */
  3518     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3519         if (hasSameArgs(r1, r2))
  3520             return resultSubtype(r1, r2, noWarnings);
  3521         else
  3522             return covariantReturnType(r1.getReturnType(),
  3523                                        erasure(r2.getReturnType()),
  3524                                        noWarnings);
  3527     public boolean returnTypeSubstitutable(Type r1,
  3528                                            Type r2, Type r2res,
  3529                                            Warner warner) {
  3530         if (isSameType(r1.getReturnType(), r2res))
  3531             return true;
  3532         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3533             return false;
  3535         if (hasSameArgs(r1, r2))
  3536             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3537         if (!allowCovariantReturns)
  3538             return false;
  3539         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3540             return true;
  3541         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3542             return false;
  3543         warner.warn(LintCategory.UNCHECKED);
  3544         return true;
  3547     /**
  3548      * Is t an appropriate return type in an overrider for a
  3549      * method that returns s?
  3550      */
  3551     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3552         return
  3553             isSameType(t, s) ||
  3554             allowCovariantReturns &&
  3555             !t.isPrimitive() &&
  3556             !s.isPrimitive() &&
  3557             isAssignable(t, s, warner);
  3559     // </editor-fold>
  3561     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3562     /**
  3563      * Return the class that boxes the given primitive.
  3564      */
  3565     public ClassSymbol boxedClass(Type t) {
  3566         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3569     /**
  3570      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3571      */
  3572     public Type boxedTypeOrType(Type t) {
  3573         return t.isPrimitive() ?
  3574             boxedClass(t).type :
  3575             t;
  3578     /**
  3579      * Return the primitive type corresponding to a boxed type.
  3580      */
  3581     public Type unboxedType(Type t) {
  3582         if (allowBoxing) {
  3583             for (int i=0; i<syms.boxedName.length; i++) {
  3584                 Name box = syms.boxedName[i];
  3585                 if (box != null &&
  3586                     asSuper(t, reader.enterClass(box)) != null)
  3587                     return syms.typeOfTag[i];
  3590         return Type.noType;
  3593     /**
  3594      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3595      */
  3596     public Type unboxedTypeOrType(Type t) {
  3597         Type unboxedType = unboxedType(t);
  3598         return unboxedType.tag == NONE ? t : unboxedType;
  3600     // </editor-fold>
  3602     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3603     /*
  3604      * JLS 5.1.10 Capture Conversion:
  3606      * Let G name a generic type declaration with n formal type
  3607      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3608      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3609      * where, for 1 <= i <= n:
  3611      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3612      *   Si is a fresh type variable whose upper bound is
  3613      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3614      *   type.
  3616      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3617      *   then Si is a fresh type variable whose upper bound is
  3618      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3619      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3620      *   a compile-time error if for any two classes (not interfaces)
  3621      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3623      * + If Ti is a wildcard type argument of the form ? super Bi,
  3624      *   then Si is a fresh type variable whose upper bound is
  3625      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3627      * + Otherwise, Si = Ti.
  3629      * Capture conversion on any type other than a parameterized type
  3630      * (4.5) acts as an identity conversion (5.1.1). Capture
  3631      * conversions never require a special action at run time and
  3632      * therefore never throw an exception at run time.
  3634      * Capture conversion is not applied recursively.
  3635      */
  3636     /**
  3637      * Capture conversion as specified by the JLS.
  3638      */
  3640     public List<Type> capture(List<Type> ts) {
  3641         List<Type> buf = List.nil();
  3642         for (Type t : ts) {
  3643             buf = buf.prepend(capture(t));
  3645         return buf.reverse();
  3647     public Type capture(Type t) {
  3648         if (t.tag != CLASS)
  3649             return t;
  3650         if (t.getEnclosingType() != Type.noType) {
  3651             Type capturedEncl = capture(t.getEnclosingType());
  3652             if (capturedEncl != t.getEnclosingType()) {
  3653                 Type type1 = memberType(capturedEncl, t.tsym);
  3654                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3657         ClassType cls = (ClassType)t;
  3658         if (cls.isRaw() || !cls.isParameterized())
  3659             return cls;
  3661         ClassType G = (ClassType)cls.asElement().asType();
  3662         List<Type> A = G.getTypeArguments();
  3663         List<Type> T = cls.getTypeArguments();
  3664         List<Type> S = freshTypeVariables(T);
  3666         List<Type> currentA = A;
  3667         List<Type> currentT = T;
  3668         List<Type> currentS = S;
  3669         boolean captured = false;
  3670         while (!currentA.isEmpty() &&
  3671                !currentT.isEmpty() &&
  3672                !currentS.isEmpty()) {
  3673             if (currentS.head != currentT.head) {
  3674                 captured = true;
  3675                 WildcardType Ti = (WildcardType)currentT.head;
  3676                 Type Ui = currentA.head.getUpperBound();
  3677                 CapturedType Si = (CapturedType)currentS.head;
  3678                 if (Ui == null)
  3679                     Ui = syms.objectType;
  3680                 switch (Ti.kind) {
  3681                 case UNBOUND:
  3682                     Si.bound = subst(Ui, A, S);
  3683                     Si.lower = syms.botType;
  3684                     break;
  3685                 case EXTENDS:
  3686                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3687                     Si.lower = syms.botType;
  3688                     break;
  3689                 case SUPER:
  3690                     Si.bound = subst(Ui, A, S);
  3691                     Si.lower = Ti.getSuperBound();
  3692                     break;
  3694                 if (Si.bound == Si.lower)
  3695                     currentS.head = Si.bound;
  3697             currentA = currentA.tail;
  3698             currentT = currentT.tail;
  3699             currentS = currentS.tail;
  3701         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3702             return erasure(t); // some "rare" type involved
  3704         if (captured)
  3705             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3706         else
  3707             return t;
  3709     // where
  3710         public List<Type> freshTypeVariables(List<Type> types) {
  3711             ListBuffer<Type> result = lb();
  3712             for (Type t : types) {
  3713                 if (t.tag == WILDCARD) {
  3714                     Type bound = ((WildcardType)t).getExtendsBound();
  3715                     if (bound == null)
  3716                         bound = syms.objectType;
  3717                     result.append(new CapturedType(capturedName,
  3718                                                    syms.noSymbol,
  3719                                                    bound,
  3720                                                    syms.botType,
  3721                                                    (WildcardType)t));
  3722                 } else {
  3723                     result.append(t);
  3726             return result.toList();
  3728     // </editor-fold>
  3730     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3731     private List<Type> upperBounds(List<Type> ss) {
  3732         if (ss.isEmpty()) return ss;
  3733         Type head = upperBound(ss.head);
  3734         List<Type> tail = upperBounds(ss.tail);
  3735         if (head != ss.head || tail != ss.tail)
  3736             return tail.prepend(head);
  3737         else
  3738             return ss;
  3741     private boolean sideCast(Type from, Type to, Warner warn) {
  3742         // We are casting from type $from$ to type $to$, which are
  3743         // non-final unrelated types.  This method
  3744         // tries to reject a cast by transferring type parameters
  3745         // from $to$ to $from$ by common superinterfaces.
  3746         boolean reverse = false;
  3747         Type target = to;
  3748         if ((to.tsym.flags() & INTERFACE) == 0) {
  3749             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3750             reverse = true;
  3751             to = from;
  3752             from = target;
  3754         List<Type> commonSupers = superClosure(to, erasure(from));
  3755         boolean giveWarning = commonSupers.isEmpty();
  3756         // The arguments to the supers could be unified here to
  3757         // get a more accurate analysis
  3758         while (commonSupers.nonEmpty()) {
  3759             Type t1 = asSuper(from, commonSupers.head.tsym);
  3760             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3761             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3762                 return false;
  3763             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3764             commonSupers = commonSupers.tail;
  3766         if (giveWarning && !isReifiable(reverse ? from : to))
  3767             warn.warn(LintCategory.UNCHECKED);
  3768         if (!allowCovariantReturns)
  3769             // reject if there is a common method signature with
  3770             // incompatible return types.
  3771             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3772         return true;
  3775     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3776         // We are casting from type $from$ to type $to$, which are
  3777         // unrelated types one of which is final and the other of
  3778         // which is an interface.  This method
  3779         // tries to reject a cast by transferring type parameters
  3780         // from the final class to the interface.
  3781         boolean reverse = false;
  3782         Type target = to;
  3783         if ((to.tsym.flags() & INTERFACE) == 0) {
  3784             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3785             reverse = true;
  3786             to = from;
  3787             from = target;
  3789         Assert.check((from.tsym.flags() & FINAL) != 0);
  3790         Type t1 = asSuper(from, to.tsym);
  3791         if (t1 == null) return false;
  3792         Type t2 = to;
  3793         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3794             return false;
  3795         if (!allowCovariantReturns)
  3796             // reject if there is a common method signature with
  3797             // incompatible return types.
  3798             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3799         if (!isReifiable(target) &&
  3800             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3801             warn.warn(LintCategory.UNCHECKED);
  3802         return true;
  3805     private boolean giveWarning(Type from, Type to) {
  3806         Type subFrom = asSub(from, to.tsym);
  3807         return to.isParameterized() &&
  3808                 (!(isUnbounded(to) ||
  3809                 isSubtype(from, to) ||
  3810                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3813     private List<Type> superClosure(Type t, Type s) {
  3814         List<Type> cl = List.nil();
  3815         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3816             if (isSubtype(s, erasure(l.head))) {
  3817                 cl = insert(cl, l.head);
  3818             } else {
  3819                 cl = union(cl, superClosure(l.head, s));
  3822         return cl;
  3825     private boolean containsTypeEquivalent(Type t, Type s) {
  3826         return
  3827             isSameType(t, s) || // shortcut
  3828             containsType(t, s) && containsType(s, t);
  3831     // <editor-fold defaultstate="collapsed" desc="adapt">
  3832     /**
  3833      * Adapt a type by computing a substitution which maps a source
  3834      * type to a target type.
  3836      * @param source    the source type
  3837      * @param target    the target type
  3838      * @param from      the type variables of the computed substitution
  3839      * @param to        the types of the computed substitution.
  3840      */
  3841     public void adapt(Type source,
  3842                        Type target,
  3843                        ListBuffer<Type> from,
  3844                        ListBuffer<Type> to) throws AdaptFailure {
  3845         new Adapter(from, to).adapt(source, target);
  3848     class Adapter extends SimpleVisitor<Void, Type> {
  3850         ListBuffer<Type> from;
  3851         ListBuffer<Type> to;
  3852         Map<Symbol,Type> mapping;
  3854         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3855             this.from = from;
  3856             this.to = to;
  3857             mapping = new HashMap<Symbol,Type>();
  3860         public void adapt(Type source, Type target) throws AdaptFailure {
  3861             visit(source, target);
  3862             List<Type> fromList = from.toList();
  3863             List<Type> toList = to.toList();
  3864             while (!fromList.isEmpty()) {
  3865                 Type val = mapping.get(fromList.head.tsym);
  3866                 if (toList.head != val)
  3867                     toList.head = val;
  3868                 fromList = fromList.tail;
  3869                 toList = toList.tail;
  3873         @Override
  3874         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3875             if (target.tag == CLASS)
  3876                 adaptRecursive(source.allparams(), target.allparams());
  3877             return null;
  3880         @Override
  3881         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3882             if (target.tag == ARRAY)
  3883                 adaptRecursive(elemtype(source), elemtype(target));
  3884             return null;
  3887         @Override
  3888         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3889             if (source.isExtendsBound())
  3890                 adaptRecursive(upperBound(source), upperBound(target));
  3891             else if (source.isSuperBound())
  3892                 adaptRecursive(lowerBound(source), lowerBound(target));
  3893             return null;
  3896         @Override
  3897         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3898             // Check to see if there is
  3899             // already a mapping for $source$, in which case
  3900             // the old mapping will be merged with the new
  3901             Type val = mapping.get(source.tsym);
  3902             if (val != null) {
  3903                 if (val.isSuperBound() && target.isSuperBound()) {
  3904                     val = isSubtype(lowerBound(val), lowerBound(target))
  3905                         ? target : val;
  3906                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3907                     val = isSubtype(upperBound(val), upperBound(target))
  3908                         ? val : target;
  3909                 } else if (!isSameType(val, target)) {
  3910                     throw new AdaptFailure();
  3912             } else {
  3913                 val = target;
  3914                 from.append(source);
  3915                 to.append(target);
  3917             mapping.put(source.tsym, val);
  3918             return null;
  3921         @Override
  3922         public Void visitType(Type source, Type target) {
  3923             return null;
  3926         private Set<TypePair> cache = new HashSet<TypePair>();
  3928         private void adaptRecursive(Type source, Type target) {
  3929             TypePair pair = new TypePair(source, target);
  3930             if (cache.add(pair)) {
  3931                 try {
  3932                     visit(source, target);
  3933                 } finally {
  3934                     cache.remove(pair);
  3939         private void adaptRecursive(List<Type> source, List<Type> target) {
  3940             if (source.length() == target.length()) {
  3941                 while (source.nonEmpty()) {
  3942                     adaptRecursive(source.head, target.head);
  3943                     source = source.tail;
  3944                     target = target.tail;
  3950     public static class AdaptFailure extends RuntimeException {
  3951         static final long serialVersionUID = -7490231548272701566L;
  3954     private void adaptSelf(Type t,
  3955                            ListBuffer<Type> from,
  3956                            ListBuffer<Type> to) {
  3957         try {
  3958             //if (t.tsym.type != t)
  3959                 adapt(t.tsym.type, t, from, to);
  3960         } catch (AdaptFailure ex) {
  3961             // Adapt should never fail calculating a mapping from
  3962             // t.tsym.type to t as there can be no merge problem.
  3963             throw new AssertionError(ex);
  3966     // </editor-fold>
  3968     /**
  3969      * Rewrite all type variables (universal quantifiers) in the given
  3970      * type to wildcards (existential quantifiers).  This is used to
  3971      * determine if a cast is allowed.  For example, if high is true
  3972      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3973      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3974      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3975      * List<Integer>} with a warning.
  3976      * @param t a type
  3977      * @param high if true return an upper bound; otherwise a lower
  3978      * bound
  3979      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3980      * otherwise rewrite all type variables
  3981      * @return the type rewritten with wildcards (existential
  3982      * quantifiers) only
  3983      */
  3984     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3985         return new Rewriter(high, rewriteTypeVars).visit(t);
  3988     class Rewriter extends UnaryVisitor<Type> {
  3990         boolean high;
  3991         boolean rewriteTypeVars;
  3993         Rewriter(boolean high, boolean rewriteTypeVars) {
  3994             this.high = high;
  3995             this.rewriteTypeVars = rewriteTypeVars;
  3998         @Override
  3999         public Type visitClassType(ClassType t, Void s) {
  4000             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4001             boolean changed = false;
  4002             for (Type arg : t.allparams()) {
  4003                 Type bound = visit(arg);
  4004                 if (arg != bound) {
  4005                     changed = true;
  4007                 rewritten.append(bound);
  4009             if (changed)
  4010                 return subst(t.tsym.type,
  4011                         t.tsym.type.allparams(),
  4012                         rewritten.toList());
  4013             else
  4014                 return t;
  4017         public Type visitType(Type t, Void s) {
  4018             return high ? upperBound(t) : lowerBound(t);
  4021         @Override
  4022         public Type visitCapturedType(CapturedType t, Void s) {
  4023             Type w_bound = t.wildcard.type;
  4024             Type bound = w_bound.contains(t) ?
  4025                         erasure(w_bound) :
  4026                         visit(w_bound);
  4027             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4030         @Override
  4031         public Type visitTypeVar(TypeVar t, Void s) {
  4032             if (rewriteTypeVars) {
  4033                 Type bound = t.bound.contains(t) ?
  4034                         erasure(t.bound) :
  4035                         visit(t.bound);
  4036                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4037             } else {
  4038                 return t;
  4042         @Override
  4043         public Type visitWildcardType(WildcardType t, Void s) {
  4044             Type bound2 = visit(t.type);
  4045             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4048         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4049             switch (bk) {
  4050                case EXTENDS: return high ?
  4051                        makeExtendsWildcard(B(bound), formal) :
  4052                        makeExtendsWildcard(syms.objectType, formal);
  4053                case SUPER: return high ?
  4054                        makeSuperWildcard(syms.botType, formal) :
  4055                        makeSuperWildcard(B(bound), formal);
  4056                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4057                default:
  4058                    Assert.error("Invalid bound kind " + bk);
  4059                    return null;
  4063         Type B(Type t) {
  4064             while (t.tag == WILDCARD) {
  4065                 WildcardType w = (WildcardType)t;
  4066                 t = high ?
  4067                     w.getExtendsBound() :
  4068                     w.getSuperBound();
  4069                 if (t == null) {
  4070                     t = high ? syms.objectType : syms.botType;
  4073             return t;
  4078     /**
  4079      * Create a wildcard with the given upper (extends) bound; create
  4080      * an unbounded wildcard if bound is Object.
  4082      * @param bound the upper bound
  4083      * @param formal the formal type parameter that will be
  4084      * substituted by the wildcard
  4085      */
  4086     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4087         if (bound == syms.objectType) {
  4088             return new WildcardType(syms.objectType,
  4089                                     BoundKind.UNBOUND,
  4090                                     syms.boundClass,
  4091                                     formal);
  4092         } else {
  4093             return new WildcardType(bound,
  4094                                     BoundKind.EXTENDS,
  4095                                     syms.boundClass,
  4096                                     formal);
  4100     /**
  4101      * Create a wildcard with the given lower (super) bound; create an
  4102      * unbounded wildcard if bound is bottom (type of {@code null}).
  4104      * @param bound the lower bound
  4105      * @param formal the formal type parameter that will be
  4106      * substituted by the wildcard
  4107      */
  4108     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4109         if (bound.tag == BOT) {
  4110             return new WildcardType(syms.objectType,
  4111                                     BoundKind.UNBOUND,
  4112                                     syms.boundClass,
  4113                                     formal);
  4114         } else {
  4115             return new WildcardType(bound,
  4116                                     BoundKind.SUPER,
  4117                                     syms.boundClass,
  4118                                     formal);
  4122     /**
  4123      * A wrapper for a type that allows use in sets.
  4124      */
  4125     public static class UniqueType {
  4126         public final Type type;
  4127         final Types types;
  4129         public UniqueType(Type type, Types types) {
  4130             this.type = type;
  4131             this.types = types;
  4134         public int hashCode() {
  4135             return types.hashCode(type);
  4138         public boolean equals(Object obj) {
  4139             return (obj instanceof UniqueType) &&
  4140                 types.isSameType(type, ((UniqueType)obj).type);
  4143         public String toString() {
  4144             return type.toString();
  4148     // </editor-fold>
  4150     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4151     /**
  4152      * A default visitor for types.  All visitor methods except
  4153      * visitType are implemented by delegating to visitType.  Concrete
  4154      * subclasses must provide an implementation of visitType and can
  4155      * override other methods as needed.
  4157      * @param <R> the return type of the operation implemented by this
  4158      * visitor; use Void if no return type is needed.
  4159      * @param <S> the type of the second argument (the first being the
  4160      * type itself) of the operation implemented by this visitor; use
  4161      * Void if a second argument is not needed.
  4162      */
  4163     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4164         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4165         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4166         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4167         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4168         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4169         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4170         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4171         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4172         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4173         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4174         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4177     /**
  4178      * A default visitor for symbols.  All visitor methods except
  4179      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4180      * subclasses must provide an implementation of visitSymbol and can
  4181      * override other methods as needed.
  4183      * @param <R> the return type of the operation implemented by this
  4184      * visitor; use Void if no return type is needed.
  4185      * @param <S> the type of the second argument (the first being the
  4186      * symbol itself) of the operation implemented by this visitor; use
  4187      * Void if a second argument is not needed.
  4188      */
  4189     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4190         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4191         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4192         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4193         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4194         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4195         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4196         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4199     /**
  4200      * A <em>simple</em> visitor for types.  This visitor is simple as
  4201      * captured wildcards, for-all types (generic methods), and
  4202      * undetermined type variables (part of inference) are hidden.
  4203      * Captured wildcards are hidden by treating them as type
  4204      * variables and the rest are hidden by visiting their qtypes.
  4206      * @param <R> the return type of the operation implemented by this
  4207      * visitor; use Void if no return type is needed.
  4208      * @param <S> the type of the second argument (the first being the
  4209      * type itself) of the operation implemented by this visitor; use
  4210      * Void if a second argument is not needed.
  4211      */
  4212     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4213         @Override
  4214         public R visitCapturedType(CapturedType t, S s) {
  4215             return visitTypeVar(t, s);
  4217         @Override
  4218         public R visitForAll(ForAll t, S s) {
  4219             return visit(t.qtype, s);
  4221         @Override
  4222         public R visitUndetVar(UndetVar t, S s) {
  4223             return visit(t.qtype, s);
  4227     /**
  4228      * A plain relation on types.  That is a 2-ary function on the
  4229      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4230      * <!-- In plain text: Type x Type -> Boolean -->
  4231      */
  4232     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4234     /**
  4235      * A convenience visitor for implementing operations that only
  4236      * require one argument (the type itself), that is, unary
  4237      * operations.
  4239      * @param <R> the return type of the operation implemented by this
  4240      * visitor; use Void if no return type is needed.
  4241      */
  4242     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4243         final public R visit(Type t) { return t.accept(this, null); }
  4246     /**
  4247      * A visitor for implementing a mapping from types to types.  The
  4248      * default behavior of this class is to implement the identity
  4249      * mapping (mapping a type to itself).  This can be overridden in
  4250      * subclasses.
  4252      * @param <S> the type of the second argument (the first being the
  4253      * type itself) of this mapping; use Void if a second argument is
  4254      * not needed.
  4255      */
  4256     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4257         final public Type visit(Type t) { return t.accept(this, null); }
  4258         public Type visitType(Type t, S s) { return t; }
  4260     // </editor-fold>
  4263     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4265     public RetentionPolicy getRetention(Attribute.Compound a) {
  4266         return getRetention(a.type.tsym);
  4269     public RetentionPolicy getRetention(Symbol sym) {
  4270         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4271         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4272         if (c != null) {
  4273             Attribute value = c.member(names.value);
  4274             if (value != null && value instanceof Attribute.Enum) {
  4275                 Name levelName = ((Attribute.Enum)value).value.name;
  4276                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4277                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4278                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4279                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4282         return vis;
  4284     // </editor-fold>

mercurial