src/share/classes/com/sun/tools/javac/jvm/Gen.java

Wed, 16 Jul 2014 10:47:56 -0400

author
vromero
date
Wed, 16 Jul 2014 10:47:56 -0400
changeset 2541
77e510138519
parent 2534
71a31843f550
child 2566
58e7e71b302e
permissions
-rw-r--r--

8050386: javac, follow-up of fix for JDK-8049305
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.jvm;
    28 import java.util.*;
    30 import com.sun.tools.javac.util.*;
    31 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    32 import com.sun.tools.javac.util.List;
    33 import com.sun.tools.javac.code.*;
    34 import com.sun.tools.javac.code.Attribute.TypeCompound;
    35 import com.sun.tools.javac.code.Symbol.VarSymbol;
    36 import com.sun.tools.javac.comp.*;
    37 import com.sun.tools.javac.tree.*;
    39 import com.sun.tools.javac.code.Symbol.*;
    40 import com.sun.tools.javac.code.Type.*;
    41 import com.sun.tools.javac.jvm.Code.*;
    42 import com.sun.tools.javac.jvm.Items.*;
    43 import com.sun.tools.javac.tree.EndPosTable;
    44 import com.sun.tools.javac.tree.JCTree.*;
    46 import static com.sun.tools.javac.code.Flags.*;
    47 import static com.sun.tools.javac.code.Kinds.*;
    48 import static com.sun.tools.javac.code.TypeTag.*;
    49 import static com.sun.tools.javac.jvm.ByteCodes.*;
    50 import static com.sun.tools.javac.jvm.CRTFlags.*;
    51 import static com.sun.tools.javac.main.Option.*;
    52 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    54 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
    55  *
    56  *  <p><b>This is NOT part of any supported API.
    57  *  If you write code that depends on this, you do so at your own risk.
    58  *  This code and its internal interfaces are subject to change or
    59  *  deletion without notice.</b>
    60  */
    61 public class Gen extends JCTree.Visitor {
    62     protected static final Context.Key<Gen> genKey =
    63         new Context.Key<Gen>();
    65     private final Log log;
    66     private final Symtab syms;
    67     private final Check chk;
    68     private final Resolve rs;
    69     private final TreeMaker make;
    70     private final Names names;
    71     private final Target target;
    72     private final Type stringBufferType;
    73     private final Map<Type,Symbol> stringBufferAppend;
    74     private Name accessDollar;
    75     private final Types types;
    76     private final Lower lower;
    78     /** Switch: GJ mode?
    79      */
    80     private final boolean allowGenerics;
    82     /** Set when Miranda method stubs are to be generated. */
    83     private final boolean generateIproxies;
    85     /** Format of stackmap tables to be generated. */
    86     private final Code.StackMapFormat stackMap;
    88     /** A type that serves as the expected type for all method expressions.
    89      */
    90     private final Type methodType;
    92     public static Gen instance(Context context) {
    93         Gen instance = context.get(genKey);
    94         if (instance == null)
    95             instance = new Gen(context);
    96         return instance;
    97     }
    99     /** Constant pool, reset by genClass.
   100      */
   101     private Pool pool;
   103     /** LVTRanges info.
   104      */
   105     private LVTRanges lvtRanges;
   107     private final boolean typeAnnoAsserts;
   109     protected Gen(Context context) {
   110         context.put(genKey, this);
   112         names = Names.instance(context);
   113         log = Log.instance(context);
   114         syms = Symtab.instance(context);
   115         chk = Check.instance(context);
   116         rs = Resolve.instance(context);
   117         make = TreeMaker.instance(context);
   118         target = Target.instance(context);
   119         types = Types.instance(context);
   120         methodType = new MethodType(null, null, null, syms.methodClass);
   121         allowGenerics = Source.instance(context).allowGenerics();
   122         stringBufferType = target.useStringBuilder()
   123             ? syms.stringBuilderType
   124             : syms.stringBufferType;
   125         stringBufferAppend = new HashMap<Type,Symbol>();
   126         accessDollar = names.
   127             fromString("access" + target.syntheticNameChar());
   128         lower = Lower.instance(context);
   130         Options options = Options.instance(context);
   131         lineDebugInfo =
   132             options.isUnset(G_CUSTOM) ||
   133             options.isSet(G_CUSTOM, "lines");
   134         varDebugInfo =
   135             options.isUnset(G_CUSTOM)
   136             ? options.isSet(G)
   137             : options.isSet(G_CUSTOM, "vars");
   138         if (varDebugInfo) {
   139             lvtRanges = LVTRanges.instance(context);
   140         }
   141         genCrt = options.isSet(XJCOV);
   142         debugCode = options.isSet("debugcode");
   143         allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
   144         pool = new Pool(types);
   145         typeAnnoAsserts = options.isSet("TypeAnnotationAsserts");
   147         generateIproxies =
   148             target.requiresIproxy() ||
   149             options.isSet("miranda");
   151         if (target.generateStackMapTable()) {
   152             // ignore cldc because we cannot have both stackmap formats
   153             this.stackMap = StackMapFormat.JSR202;
   154         } else {
   155             if (target.generateCLDCStackmap()) {
   156                 this.stackMap = StackMapFormat.CLDC;
   157             } else {
   158                 this.stackMap = StackMapFormat.NONE;
   159             }
   160         }
   162         // by default, avoid jsr's for simple finalizers
   163         int setjsrlimit = 50;
   164         String jsrlimitString = options.get("jsrlimit");
   165         if (jsrlimitString != null) {
   166             try {
   167                 setjsrlimit = Integer.parseInt(jsrlimitString);
   168             } catch (NumberFormatException ex) {
   169                 // ignore ill-formed numbers for jsrlimit
   170             }
   171         }
   172         this.jsrlimit = setjsrlimit;
   173         this.useJsrLocally = false; // reset in visitTry
   174     }
   176     /** Switches
   177      */
   178     private final boolean lineDebugInfo;
   179     private final boolean varDebugInfo;
   180     private final boolean genCrt;
   181     private final boolean debugCode;
   182     private final boolean allowInvokedynamic;
   184     /** Default limit of (approximate) size of finalizer to inline.
   185      *  Zero means always use jsr.  100 or greater means never use
   186      *  jsr.
   187      */
   188     private final int jsrlimit;
   190     /** True if jsr is used.
   191      */
   192     private boolean useJsrLocally;
   194     /** Code buffer, set by genMethod.
   195      */
   196     private Code code;
   198     /** Items structure, set by genMethod.
   199      */
   200     private Items items;
   202     /** Environment for symbol lookup, set by genClass
   203      */
   204     private Env<AttrContext> attrEnv;
   206     /** The top level tree.
   207      */
   208     private JCCompilationUnit toplevel;
   210     /** The number of code-gen errors in this class.
   211      */
   212     private int nerrs = 0;
   214     /** An object containing mappings of syntax trees to their
   215      *  ending source positions.
   216      */
   217     EndPosTable endPosTable;
   219     /** Generate code to load an integer constant.
   220      *  @param n     The integer to be loaded.
   221      */
   222     void loadIntConst(int n) {
   223         items.makeImmediateItem(syms.intType, n).load();
   224     }
   226     /** The opcode that loads a zero constant of a given type code.
   227      *  @param tc   The given type code (@see ByteCode).
   228      */
   229     public static int zero(int tc) {
   230         switch(tc) {
   231         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
   232             return iconst_0;
   233         case LONGcode:
   234             return lconst_0;
   235         case FLOATcode:
   236             return fconst_0;
   237         case DOUBLEcode:
   238             return dconst_0;
   239         default:
   240             throw new AssertionError("zero");
   241         }
   242     }
   244     /** The opcode that loads a one constant of a given type code.
   245      *  @param tc   The given type code (@see ByteCode).
   246      */
   247     public static int one(int tc) {
   248         return zero(tc) + 1;
   249     }
   251     /** Generate code to load -1 of the given type code (either int or long).
   252      *  @param tc   The given type code (@see ByteCode).
   253      */
   254     void emitMinusOne(int tc) {
   255         if (tc == LONGcode) {
   256             items.makeImmediateItem(syms.longType, new Long(-1)).load();
   257         } else {
   258             code.emitop0(iconst_m1);
   259         }
   260     }
   262     /** Construct a symbol to reflect the qualifying type that should
   263      *  appear in the byte code as per JLS 13.1.
   264      *
   265      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
   266      *  for those cases where we need to work around VM bugs).
   267      *
   268      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
   269      *  non-accessible class, clone it with the qualifier class as owner.
   270      *
   271      *  @param sym    The accessed symbol
   272      *  @param site   The qualifier's type.
   273      */
   274     Symbol binaryQualifier(Symbol sym, Type site) {
   276         if (site.hasTag(ARRAY)) {
   277             if (sym == syms.lengthVar ||
   278                 sym.owner != syms.arrayClass)
   279                 return sym;
   280             // array clone can be qualified by the array type in later targets
   281             Symbol qualifier = target.arrayBinaryCompatibility()
   282                 ? new ClassSymbol(Flags.PUBLIC, site.tsym.name,
   283                                   site, syms.noSymbol)
   284                 : syms.objectType.tsym;
   285             return sym.clone(qualifier);
   286         }
   288         if (sym.owner == site.tsym ||
   289             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
   290             return sym;
   291         }
   292         if (!target.obeyBinaryCompatibility())
   293             return rs.isAccessible(attrEnv, (TypeSymbol)sym.owner)
   294                 ? sym
   295                 : sym.clone(site.tsym);
   297         if (!target.interfaceFieldsBinaryCompatibility()) {
   298             if ((sym.owner.flags() & INTERFACE) != 0 && sym.kind == VAR)
   299                 return sym;
   300         }
   302         // leave alone methods inherited from Object
   303         // JLS 13.1.
   304         if (sym.owner == syms.objectType.tsym)
   305             return sym;
   307         if (!target.interfaceObjectOverridesBinaryCompatibility()) {
   308             if ((sym.owner.flags() & INTERFACE) != 0 &&
   309                 syms.objectType.tsym.members().lookup(sym.name).scope != null)
   310                 return sym;
   311         }
   313         return sym.clone(site.tsym);
   314     }
   316     /** Insert a reference to given type in the constant pool,
   317      *  checking for an array with too many dimensions;
   318      *  return the reference's index.
   319      *  @param type   The type for which a reference is inserted.
   320      */
   321     int makeRef(DiagnosticPosition pos, Type type) {
   322         checkDimension(pos, type);
   323         if (type.isAnnotated()) {
   324             // Treat annotated types separately - we don't want
   325             // to collapse all of them - at least for annotated
   326             // exceptions.
   327             // TODO: review this.
   328             return pool.put((Object)type);
   329         } else {
   330             return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
   331         }
   332     }
   334     /** Check if the given type is an array with too many dimensions.
   335      */
   336     private void checkDimension(DiagnosticPosition pos, Type t) {
   337         switch (t.getTag()) {
   338         case METHOD:
   339             checkDimension(pos, t.getReturnType());
   340             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
   341                 checkDimension(pos, args.head);
   342             break;
   343         case ARRAY:
   344             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
   345                 log.error(pos, "limit.dimensions");
   346                 nerrs++;
   347             }
   348             break;
   349         default:
   350             break;
   351         }
   352     }
   354     /** Create a tempory variable.
   355      *  @param type   The variable's type.
   356      */
   357     LocalItem makeTemp(Type type) {
   358         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
   359                                     names.empty,
   360                                     type,
   361                                     env.enclMethod.sym);
   362         code.newLocal(v);
   363         return items.makeLocalItem(v);
   364     }
   366     /** Generate code to call a non-private method or constructor.
   367      *  @param pos         Position to be used for error reporting.
   368      *  @param site        The type of which the method is a member.
   369      *  @param name        The method's name.
   370      *  @param argtypes    The method's argument types.
   371      *  @param isStatic    A flag that indicates whether we call a
   372      *                     static or instance method.
   373      */
   374     void callMethod(DiagnosticPosition pos,
   375                     Type site, Name name, List<Type> argtypes,
   376                     boolean isStatic) {
   377         Symbol msym = rs.
   378             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
   379         if (isStatic) items.makeStaticItem(msym).invoke();
   380         else items.makeMemberItem(msym, name == names.init).invoke();
   381     }
   383     /** Is the given method definition an access method
   384      *  resulting from a qualified super? This is signified by an odd
   385      *  access code.
   386      */
   387     private boolean isAccessSuper(JCMethodDecl enclMethod) {
   388         return
   389             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
   390             isOddAccessName(enclMethod.name);
   391     }
   393     /** Does given name start with "access$" and end in an odd digit?
   394      */
   395     private boolean isOddAccessName(Name name) {
   396         return
   397             name.startsWith(accessDollar) &&
   398             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
   399     }
   401 /* ************************************************************************
   402  * Non-local exits
   403  *************************************************************************/
   405     /** Generate code to invoke the finalizer associated with given
   406      *  environment.
   407      *  Any calls to finalizers are appended to the environments `cont' chain.
   408      *  Mark beginning of gap in catch all range for finalizer.
   409      */
   410     void genFinalizer(Env<GenContext> env) {
   411         if (code.isAlive() && env.info.finalize != null)
   412             env.info.finalize.gen();
   413     }
   415     /** Generate code to call all finalizers of structures aborted by
   416      *  a non-local
   417      *  exit.  Return target environment of the non-local exit.
   418      *  @param target      The tree representing the structure that's aborted
   419      *  @param env         The environment current at the non-local exit.
   420      */
   421     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
   422         Env<GenContext> env1 = env;
   423         while (true) {
   424             genFinalizer(env1);
   425             if (env1.tree == target) break;
   426             env1 = env1.next;
   427         }
   428         return env1;
   429     }
   431     /** Mark end of gap in catch-all range for finalizer.
   432      *  @param env   the environment which might contain the finalizer
   433      *               (if it does, env.info.gaps != null).
   434      */
   435     void endFinalizerGap(Env<GenContext> env) {
   436         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
   437             env.info.gaps.append(code.curCP());
   438     }
   440     /** Mark end of all gaps in catch-all ranges for finalizers of environments
   441      *  lying between, and including to two environments.
   442      *  @param from    the most deeply nested environment to mark
   443      *  @param to      the least deeply nested environment to mark
   444      */
   445     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
   446         Env<GenContext> last = null;
   447         while (last != to) {
   448             endFinalizerGap(from);
   449             last = from;
   450             from = from.next;
   451         }
   452     }
   454     /** Do any of the structures aborted by a non-local exit have
   455      *  finalizers that require an empty stack?
   456      *  @param target      The tree representing the structure that's aborted
   457      *  @param env         The environment current at the non-local exit.
   458      */
   459     boolean hasFinally(JCTree target, Env<GenContext> env) {
   460         while (env.tree != target) {
   461             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
   462                 return true;
   463             env = env.next;
   464         }
   465         return false;
   466     }
   468 /* ************************************************************************
   469  * Normalizing class-members.
   470  *************************************************************************/
   472     /** Distribute member initializer code into constructors and {@code <clinit>}
   473      *  method.
   474      *  @param defs         The list of class member declarations.
   475      *  @param c            The enclosing class.
   476      */
   477     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
   478         ListBuffer<JCStatement> initCode = new ListBuffer<JCStatement>();
   479         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<Attribute.TypeCompound>();
   480         ListBuffer<JCStatement> clinitCode = new ListBuffer<JCStatement>();
   481         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<Attribute.TypeCompound>();
   482         ListBuffer<JCTree> methodDefs = new ListBuffer<JCTree>();
   483         // Sort definitions into three listbuffers:
   484         //  - initCode for instance initializers
   485         //  - clinitCode for class initializers
   486         //  - methodDefs for method definitions
   487         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
   488             JCTree def = l.head;
   489             switch (def.getTag()) {
   490             case BLOCK:
   491                 JCBlock block = (JCBlock)def;
   492                 if ((block.flags & STATIC) != 0)
   493                     clinitCode.append(block);
   494                 else
   495                     initCode.append(block);
   496                 break;
   497             case METHODDEF:
   498                 methodDefs.append(def);
   499                 break;
   500             case VARDEF:
   501                 JCVariableDecl vdef = (JCVariableDecl) def;
   502                 VarSymbol sym = vdef.sym;
   503                 checkDimension(vdef.pos(), sym.type);
   504                 if (vdef.init != null) {
   505                     if ((sym.flags() & STATIC) == 0) {
   506                         // Always initialize instance variables.
   507                         JCStatement init = make.at(vdef.pos()).
   508                             Assignment(sym, vdef.init);
   509                         initCode.append(init);
   510                         endPosTable.replaceTree(vdef, init);
   511                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
   512                     } else if (sym.getConstValue() == null) {
   513                         // Initialize class (static) variables only if
   514                         // they are not compile-time constants.
   515                         JCStatement init = make.at(vdef.pos).
   516                             Assignment(sym, vdef.init);
   517                         clinitCode.append(init);
   518                         endPosTable.replaceTree(vdef, init);
   519                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
   520                     } else {
   521                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
   522                     }
   523                 }
   524                 break;
   525             default:
   526                 Assert.error();
   527             }
   528         }
   529         // Insert any instance initializers into all constructors.
   530         if (initCode.length() != 0) {
   531             List<JCStatement> inits = initCode.toList();
   532             initTAs.addAll(c.getInitTypeAttributes());
   533             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
   534             for (JCTree t : methodDefs) {
   535                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
   536             }
   537         }
   538         // If there are class initializers, create a <clinit> method
   539         // that contains them as its body.
   540         if (clinitCode.length() != 0) {
   541             MethodSymbol clinit = new MethodSymbol(
   542                 STATIC | (c.flags() & STRICTFP),
   543                 names.clinit,
   544                 new MethodType(
   545                     List.<Type>nil(), syms.voidType,
   546                     List.<Type>nil(), syms.methodClass),
   547                 c);
   548             c.members().enter(clinit);
   549             List<JCStatement> clinitStats = clinitCode.toList();
   550             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
   551             block.endpos = TreeInfo.endPos(clinitStats.last());
   552             methodDefs.append(make.MethodDef(clinit, block));
   554             if (!clinitTAs.isEmpty())
   555                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
   556             if (!c.getClassInitTypeAttributes().isEmpty())
   557                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
   558         }
   559         // Return all method definitions.
   560         return methodDefs.toList();
   561     }
   563     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
   564         List<TypeCompound> tas = sym.getRawTypeAttributes();
   565         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<Attribute.TypeCompound>();
   566         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<Attribute.TypeCompound>();
   567         for (TypeCompound ta : tas) {
   568             if (ta.getPosition().type == TargetType.FIELD) {
   569                 fieldTAs.add(ta);
   570             } else {
   571                 if (typeAnnoAsserts) {
   572                     Assert.error("Type annotation does not have a valid positior");
   573                 }
   575                 nonfieldTAs.add(ta);
   576             }
   577         }
   578         sym.setTypeAttributes(fieldTAs.toList());
   579         return nonfieldTAs.toList();
   580     }
   582     /** Check a constant value and report if it is a string that is
   583      *  too large.
   584      */
   585     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
   586         if (nerrs != 0 || // only complain about a long string once
   587             constValue == null ||
   588             !(constValue instanceof String) ||
   589             ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
   590             return;
   591         log.error(pos, "limit.string");
   592         nerrs++;
   593     }
   595     /** Insert instance initializer code into initial constructor.
   596      *  @param md        The tree potentially representing a
   597      *                   constructor's definition.
   598      *  @param initCode  The list of instance initializer statements.
   599      *  @param initTAs  Type annotations from the initializer expression.
   600      */
   601     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
   602         if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
   603             // We are seeing a constructor that does not call another
   604             // constructor of the same class.
   605             List<JCStatement> stats = md.body.stats;
   606             ListBuffer<JCStatement> newstats = new ListBuffer<JCStatement>();
   608             if (stats.nonEmpty()) {
   609                 // Copy initializers of synthetic variables generated in
   610                 // the translation of inner classes.
   611                 while (TreeInfo.isSyntheticInit(stats.head)) {
   612                     newstats.append(stats.head);
   613                     stats = stats.tail;
   614                 }
   615                 // Copy superclass constructor call
   616                 newstats.append(stats.head);
   617                 stats = stats.tail;
   618                 // Copy remaining synthetic initializers.
   619                 while (stats.nonEmpty() &&
   620                        TreeInfo.isSyntheticInit(stats.head)) {
   621                     newstats.append(stats.head);
   622                     stats = stats.tail;
   623                 }
   624                 // Now insert the initializer code.
   625                 newstats.appendList(initCode);
   626                 // And copy all remaining statements.
   627                 while (stats.nonEmpty()) {
   628                     newstats.append(stats.head);
   629                     stats = stats.tail;
   630                 }
   631             }
   632             md.body.stats = newstats.toList();
   633             if (md.body.endpos == Position.NOPOS)
   634                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
   636             md.sym.appendUniqueTypeAttributes(initTAs);
   637         }
   638     }
   640 /* ********************************************************************
   641  * Adding miranda methods
   642  *********************************************************************/
   644     /** Add abstract methods for all methods defined in one of
   645      *  the interfaces of a given class,
   646      *  provided they are not already implemented in the class.
   647      *
   648      *  @param c      The class whose interfaces are searched for methods
   649      *                for which Miranda methods should be added.
   650      */
   651     void implementInterfaceMethods(ClassSymbol c) {
   652         implementInterfaceMethods(c, c);
   653     }
   655     /** Add abstract methods for all methods defined in one of
   656      *  the interfaces of a given class,
   657      *  provided they are not already implemented in the class.
   658      *
   659      *  @param c      The class whose interfaces are searched for methods
   660      *                for which Miranda methods should be added.
   661      *  @param site   The class in which a definition may be needed.
   662      */
   663     void implementInterfaceMethods(ClassSymbol c, ClassSymbol site) {
   664         for (List<Type> l = types.interfaces(c.type); l.nonEmpty(); l = l.tail) {
   665             ClassSymbol i = (ClassSymbol)l.head.tsym;
   666             for (Scope.Entry e = i.members().elems;
   667                  e != null;
   668                  e = e.sibling)
   669             {
   670                 if (e.sym.kind == MTH && (e.sym.flags() & STATIC) == 0)
   671                 {
   672                     MethodSymbol absMeth = (MethodSymbol)e.sym;
   673                     MethodSymbol implMeth = absMeth.binaryImplementation(site, types);
   674                     if (implMeth == null)
   675                         addAbstractMethod(site, absMeth);
   676                     else if ((implMeth.flags() & IPROXY) != 0)
   677                         adjustAbstractMethod(site, implMeth, absMeth);
   678                 }
   679             }
   680             implementInterfaceMethods(i, site);
   681         }
   682     }
   684     /** Add an abstract methods to a class
   685      *  which implicitly implements a method defined in some interface
   686      *  implemented by the class. These methods are called "Miranda methods".
   687      *  Enter the newly created method into its enclosing class scope.
   688      *  Note that it is not entered into the class tree, as the emitter
   689      *  doesn't need to see it there to emit an abstract method.
   690      *
   691      *  @param c      The class to which the Miranda method is added.
   692      *  @param m      The interface method symbol for which a Miranda method
   693      *                is added.
   694      */
   695     private void addAbstractMethod(ClassSymbol c,
   696                                    MethodSymbol m) {
   697         MethodSymbol absMeth = new MethodSymbol(
   698             m.flags() | IPROXY | SYNTHETIC, m.name,
   699             m.type, // was c.type.memberType(m), but now only !generics supported
   700             c);
   701         c.members().enter(absMeth); // add to symbol table
   702     }
   704     private void adjustAbstractMethod(ClassSymbol c,
   705                                       MethodSymbol pm,
   706                                       MethodSymbol im) {
   707         MethodType pmt = (MethodType)pm.type;
   708         Type imt = types.memberType(c.type, im);
   709         pmt.thrown = chk.intersect(pmt.getThrownTypes(), imt.getThrownTypes());
   710     }
   712 /* ************************************************************************
   713  * Traversal methods
   714  *************************************************************************/
   716     /** Visitor argument: The current environment.
   717      */
   718     Env<GenContext> env;
   720     /** Visitor argument: The expected type (prototype).
   721      */
   722     Type pt;
   724     /** Visitor result: The item representing the computed value.
   725      */
   726     Item result;
   728     /** Visitor method: generate code for a definition, catching and reporting
   729      *  any completion failures.
   730      *  @param tree    The definition to be visited.
   731      *  @param env     The environment current at the definition.
   732      */
   733     public void genDef(JCTree tree, Env<GenContext> env) {
   734         Env<GenContext> prevEnv = this.env;
   735         try {
   736             this.env = env;
   737             tree.accept(this);
   738         } catch (CompletionFailure ex) {
   739             chk.completionError(tree.pos(), ex);
   740         } finally {
   741             this.env = prevEnv;
   742         }
   743     }
   745     /** Derived visitor method: check whether CharacterRangeTable
   746      *  should be emitted, if so, put a new entry into CRTable
   747      *  and call method to generate bytecode.
   748      *  If not, just call method to generate bytecode.
   749      *  @see    #genStat(JCTree, Env)
   750      *
   751      *  @param  tree     The tree to be visited.
   752      *  @param  env      The environment to use.
   753      *  @param  crtFlags The CharacterRangeTable flags
   754      *                   indicating type of the entry.
   755      */
   756     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
   757         if (!genCrt) {
   758             genStat(tree, env);
   759             return;
   760         }
   761         int startpc = code.curCP();
   762         genStat(tree, env);
   763         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
   764         code.crt.put(tree, crtFlags, startpc, code.curCP());
   765     }
   767     /** Derived visitor method: generate code for a statement.
   768      */
   769     public void genStat(JCTree tree, Env<GenContext> env) {
   770         if (code.isAlive()) {
   771             code.statBegin(tree.pos);
   772             genDef(tree, env);
   773         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
   774             // variables whose declarations are in a switch
   775             // can be used even if the decl is unreachable.
   776             code.newLocal(((JCVariableDecl) tree).sym);
   777         }
   778     }
   780     /** Derived visitor method: check whether CharacterRangeTable
   781      *  should be emitted, if so, put a new entry into CRTable
   782      *  and call method to generate bytecode.
   783      *  If not, just call method to generate bytecode.
   784      *  @see    #genStats(List, Env)
   785      *
   786      *  @param  trees    The list of trees to be visited.
   787      *  @param  env      The environment to use.
   788      *  @param  crtFlags The CharacterRangeTable flags
   789      *                   indicating type of the entry.
   790      */
   791     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
   792         if (!genCrt) {
   793             genStats(trees, env);
   794             return;
   795         }
   796         if (trees.length() == 1) {        // mark one statement with the flags
   797             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
   798         } else {
   799             int startpc = code.curCP();
   800             genStats(trees, env);
   801             code.crt.put(trees, crtFlags, startpc, code.curCP());
   802         }
   803     }
   805     /** Derived visitor method: generate code for a list of statements.
   806      */
   807     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
   808         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   809             genStat(l.head, env, CRT_STATEMENT);
   810     }
   812     /** Derived visitor method: check whether CharacterRangeTable
   813      *  should be emitted, if so, put a new entry into CRTable
   814      *  and call method to generate bytecode.
   815      *  If not, just call method to generate bytecode.
   816      *  @see    #genCond(JCTree,boolean)
   817      *
   818      *  @param  tree     The tree to be visited.
   819      *  @param  crtFlags The CharacterRangeTable flags
   820      *                   indicating type of the entry.
   821      */
   822     public CondItem genCond(JCTree tree, int crtFlags) {
   823         if (!genCrt) return genCond(tree, false);
   824         int startpc = code.curCP();
   825         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
   826         code.crt.put(tree, crtFlags, startpc, code.curCP());
   827         return item;
   828     }
   830     /** Derived visitor method: generate code for a boolean
   831      *  expression in a control-flow context.
   832      *  @param _tree         The expression to be visited.
   833      *  @param markBranches The flag to indicate that the condition is
   834      *                      a flow controller so produced conditions
   835      *                      should contain a proper tree to generate
   836      *                      CharacterRangeTable branches for them.
   837      */
   838     public CondItem genCond(JCTree _tree, boolean markBranches) {
   839         JCTree inner_tree = TreeInfo.skipParens(_tree);
   840         if (inner_tree.hasTag(CONDEXPR)) {
   841             JCConditional tree = (JCConditional)inner_tree;
   842             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
   843             if (cond.isTrue()) {
   844                 code.resolve(cond.trueJumps);
   845                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
   846                 if (markBranches) result.tree = tree.truepart;
   847                 return result;
   848             }
   849             if (cond.isFalse()) {
   850                 code.resolve(cond.falseJumps);
   851                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
   852                 if (markBranches) result.tree = tree.falsepart;
   853                 return result;
   854             }
   855             Chain secondJumps = cond.jumpFalse();
   856             code.resolve(cond.trueJumps);
   857             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
   858             if (markBranches) first.tree = tree.truepart;
   859             Chain falseJumps = first.jumpFalse();
   860             code.resolve(first.trueJumps);
   861             Chain trueJumps = code.branch(goto_);
   862             code.resolve(secondJumps);
   863             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
   864             CondItem result = items.makeCondItem(second.opcode,
   865                                       Code.mergeChains(trueJumps, second.trueJumps),
   866                                       Code.mergeChains(falseJumps, second.falseJumps));
   867             if (markBranches) result.tree = tree.falsepart;
   868             return result;
   869         } else {
   870             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
   871             if (markBranches) result.tree = _tree;
   872             return result;
   873         }
   874     }
   876     /** Visitor class for expressions which might be constant expressions.
   877      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
   878      *  Lower as long as constant expressions looking for references to any
   879      *  ClassSymbol. Any such reference will be added to the constant pool so
   880      *  automated tools can detect class dependencies better.
   881      */
   882     class ClassReferenceVisitor extends JCTree.Visitor {
   884         @Override
   885         public void visitTree(JCTree tree) {}
   887         @Override
   888         public void visitBinary(JCBinary tree) {
   889             tree.lhs.accept(this);
   890             tree.rhs.accept(this);
   891         }
   893         @Override
   894         public void visitSelect(JCFieldAccess tree) {
   895             if (tree.selected.type.hasTag(CLASS)) {
   896                 makeRef(tree.selected.pos(), tree.selected.type);
   897             }
   898         }
   900         @Override
   901         public void visitIdent(JCIdent tree) {
   902             if (tree.sym.owner instanceof ClassSymbol) {
   903                 pool.put(tree.sym.owner);
   904             }
   905         }
   907         @Override
   908         public void visitConditional(JCConditional tree) {
   909             tree.cond.accept(this);
   910             tree.truepart.accept(this);
   911             tree.falsepart.accept(this);
   912         }
   914         @Override
   915         public void visitUnary(JCUnary tree) {
   916             tree.arg.accept(this);
   917         }
   919         @Override
   920         public void visitParens(JCParens tree) {
   921             tree.expr.accept(this);
   922         }
   924         @Override
   925         public void visitTypeCast(JCTypeCast tree) {
   926             tree.expr.accept(this);
   927         }
   928     }
   930     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
   932     /** Visitor method: generate code for an expression, catching and reporting
   933      *  any completion failures.
   934      *  @param tree    The expression to be visited.
   935      *  @param pt      The expression's expected type (proto-type).
   936      */
   937     public Item genExpr(JCTree tree, Type pt) {
   938         Type prevPt = this.pt;
   939         try {
   940             if (tree.type.constValue() != null) {
   941                 // Short circuit any expressions which are constants
   942                 tree.accept(classReferenceVisitor);
   943                 checkStringConstant(tree.pos(), tree.type.constValue());
   944                 result = items.makeImmediateItem(tree.type, tree.type.constValue());
   945             } else {
   946                 this.pt = pt;
   947                 tree.accept(this);
   948             }
   949             return result.coerce(pt);
   950         } catch (CompletionFailure ex) {
   951             chk.completionError(tree.pos(), ex);
   952             code.state.stacksize = 1;
   953             return items.makeStackItem(pt);
   954         } finally {
   955             this.pt = prevPt;
   956         }
   957     }
   959     /** Derived visitor method: generate code for a list of method arguments.
   960      *  @param trees    The argument expressions to be visited.
   961      *  @param pts      The expression's expected types (i.e. the formal parameter
   962      *                  types of the invoked method).
   963      */
   964     public void genArgs(List<JCExpression> trees, List<Type> pts) {
   965         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
   966             genExpr(l.head, pts.head).load();
   967             pts = pts.tail;
   968         }
   969         // require lists be of same length
   970         Assert.check(pts.isEmpty());
   971     }
   973 /* ************************************************************************
   974  * Visitor methods for statements and definitions
   975  *************************************************************************/
   977     /** Thrown when the byte code size exceeds limit.
   978      */
   979     public static class CodeSizeOverflow extends RuntimeException {
   980         private static final long serialVersionUID = 0;
   981         public CodeSizeOverflow() {}
   982     }
   984     public void visitMethodDef(JCMethodDecl tree) {
   985         // Create a new local environment that points pack at method
   986         // definition.
   987         Env<GenContext> localEnv = env.dup(tree);
   988         localEnv.enclMethod = tree;
   989         // The expected type of every return statement in this method
   990         // is the method's return type.
   991         this.pt = tree.sym.erasure(types).getReturnType();
   993         checkDimension(tree.pos(), tree.sym.erasure(types));
   994         genMethod(tree, localEnv, false);
   995     }
   996 //where
   997         /** Generate code for a method.
   998          *  @param tree     The tree representing the method definition.
   999          *  @param env      The environment current for the method body.
  1000          *  @param fatcode  A flag that indicates whether all jumps are
  1001          *                  within 32K.  We first invoke this method under
  1002          *                  the assumption that fatcode == false, i.e. all
  1003          *                  jumps are within 32K.  If this fails, fatcode
  1004          *                  is set to true and we try again.
  1005          */
  1006         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
  1007             MethodSymbol meth = tree.sym;
  1008             int extras = 0;
  1009             // Count up extra parameters
  1010             if (meth.isConstructor()) {
  1011                 extras++;
  1012                 if (meth.enclClass().isInner() &&
  1013                     !meth.enclClass().isStatic()) {
  1014                     extras++;
  1016             } else if ((tree.mods.flags & STATIC) == 0) {
  1017                 extras++;
  1019             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
  1020             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
  1021                 ClassFile.MAX_PARAMETERS) {
  1022                 log.error(tree.pos(), "limit.parameters");
  1023                 nerrs++;
  1026             else if (tree.body != null) {
  1027                 // Create a new code structure and initialize it.
  1028                 int startpcCrt = initCode(tree, env, fatcode);
  1030                 try {
  1031                     genStat(tree.body, env);
  1032                 } catch (CodeSizeOverflow e) {
  1033                     // Failed due to code limit, try again with jsr/ret
  1034                     startpcCrt = initCode(tree, env, fatcode);
  1035                     genStat(tree.body, env);
  1038                 if (code.state.stacksize != 0) {
  1039                     log.error(tree.body.pos(), "stack.sim.error", tree);
  1040                     throw new AssertionError();
  1043                 // If last statement could complete normally, insert a
  1044                 // return at the end.
  1045                 if (code.isAlive()) {
  1046                     code.statBegin(TreeInfo.endPos(tree.body));
  1047                     if (env.enclMethod == null ||
  1048                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
  1049                         code.emitop0(return_);
  1050                     } else {
  1051                         // sometime dead code seems alive (4415991);
  1052                         // generate a small loop instead
  1053                         int startpc = code.entryPoint();
  1054                         CondItem c = items.makeCondItem(goto_);
  1055                         code.resolve(c.jumpTrue(), startpc);
  1058                 if (genCrt)
  1059                     code.crt.put(tree.body,
  1060                                  CRT_BLOCK,
  1061                                  startpcCrt,
  1062                                  code.curCP());
  1064                 code.endScopes(0);
  1066                 // If we exceeded limits, panic
  1067                 if (code.checkLimits(tree.pos(), log)) {
  1068                     nerrs++;
  1069                     return;
  1072                 // If we generated short code but got a long jump, do it again
  1073                 // with fatCode = true.
  1074                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
  1076                 // Clean up
  1077                 if(stackMap == StackMapFormat.JSR202) {
  1078                     code.lastFrame = null;
  1079                     code.frameBeforeLast = null;
  1082                 // Compress exception table
  1083                 code.compressCatchTable();
  1085                 // Fill in type annotation positions for exception parameters
  1086                 code.fillExceptionParameterPositions();
  1090         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
  1091             MethodSymbol meth = tree.sym;
  1093             // Create a new code structure.
  1094             meth.code = code = new Code(meth,
  1095                                         fatcode,
  1096                                         lineDebugInfo ? toplevel.lineMap : null,
  1097                                         varDebugInfo,
  1098                                         stackMap,
  1099                                         debugCode,
  1100                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
  1101                                                : null,
  1102                                         syms,
  1103                                         types,
  1104                                         pool,
  1105                                         varDebugInfo ? lvtRanges : null);
  1106             items = new Items(pool, code, syms, types);
  1107             if (code.debugCode) {
  1108                 System.err.println(meth + " for body " + tree);
  1111             // If method is not static, create a new local variable address
  1112             // for `this'.
  1113             if ((tree.mods.flags & STATIC) == 0) {
  1114                 Type selfType = meth.owner.type;
  1115                 if (meth.isConstructor() && selfType != syms.objectType)
  1116                     selfType = UninitializedType.uninitializedThis(selfType);
  1117                 code.setDefined(
  1118                         code.newLocal(
  1119                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
  1122             // Mark all parameters as defined from the beginning of
  1123             // the method.
  1124             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
  1125                 checkDimension(l.head.pos(), l.head.sym.type);
  1126                 code.setDefined(code.newLocal(l.head.sym));
  1129             // Get ready to generate code for method body.
  1130             int startpcCrt = genCrt ? code.curCP() : 0;
  1131             code.entryPoint();
  1133             // Suppress initial stackmap
  1134             code.pendingStackMap = false;
  1136             return startpcCrt;
  1139     public void visitVarDef(JCVariableDecl tree) {
  1140         VarSymbol v = tree.sym;
  1141         code.newLocal(v);
  1142         if (tree.init != null) {
  1143             checkStringConstant(tree.init.pos(), v.getConstValue());
  1144             if (v.getConstValue() == null || varDebugInfo) {
  1145                 genExpr(tree.init, v.erasure(types)).load();
  1146                 items.makeLocalItem(v).store();
  1149         checkDimension(tree.pos(), v.type);
  1152     public void visitSkip(JCSkip tree) {
  1155     public void visitBlock(JCBlock tree) {
  1156         int limit = code.nextreg;
  1157         Env<GenContext> localEnv = env.dup(tree, new GenContext());
  1158         genStats(tree.stats, localEnv);
  1159         // End the scope of all block-local variables in variable info.
  1160         if (!env.tree.hasTag(METHODDEF)) {
  1161             code.statBegin(tree.endpos);
  1162             code.endScopes(limit);
  1163             code.pendingStatPos = Position.NOPOS;
  1167     public void visitDoLoop(JCDoWhileLoop tree) {
  1168         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
  1171     public void visitWhileLoop(JCWhileLoop tree) {
  1172         genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
  1175     public void visitForLoop(JCForLoop tree) {
  1176         int limit = code.nextreg;
  1177         genStats(tree.init, env);
  1178         genLoop(tree, tree.body, tree.cond, tree.step, true);
  1179         code.endScopes(limit);
  1181     //where
  1182         /** Generate code for a loop.
  1183          *  @param loop       The tree representing the loop.
  1184          *  @param body       The loop's body.
  1185          *  @param cond       The loop's controling condition.
  1186          *  @param step       "Step" statements to be inserted at end of
  1187          *                    each iteration.
  1188          *  @param testFirst  True if the loop test belongs before the body.
  1189          */
  1190         private void genLoop(JCStatement loop,
  1191                              JCStatement body,
  1192                              JCExpression cond,
  1193                              List<JCExpressionStatement> step,
  1194                              boolean testFirst) {
  1195             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
  1196             int startpc = code.entryPoint();
  1197             if (testFirst) { //while or for loop
  1198                 CondItem c;
  1199                 if (cond != null) {
  1200                     code.statBegin(cond.pos);
  1201                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
  1202                 } else {
  1203                     c = items.makeCondItem(goto_);
  1205                 Chain loopDone = c.jumpFalse();
  1206                 code.resolve(c.trueJumps);
  1207                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
  1208                 if (varDebugInfo) {
  1209                     checkLoopLocalVarRangeEnding(loop, body,
  1210                             LoopLocalVarRangeEndingPoint.BEFORE_STEPS);
  1212                 code.resolve(loopEnv.info.cont);
  1213                 genStats(step, loopEnv);
  1214                 if (varDebugInfo) {
  1215                     checkLoopLocalVarRangeEnding(loop, body,
  1216                             LoopLocalVarRangeEndingPoint.AFTER_STEPS);
  1218                 code.resolve(code.branch(goto_), startpc);
  1219                 code.resolve(loopDone);
  1220             } else {
  1221                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
  1222                 if (varDebugInfo) {
  1223                     checkLoopLocalVarRangeEnding(loop, body,
  1224                             LoopLocalVarRangeEndingPoint.BEFORE_STEPS);
  1226                 code.resolve(loopEnv.info.cont);
  1227                 genStats(step, loopEnv);
  1228                 if (varDebugInfo) {
  1229                     checkLoopLocalVarRangeEnding(loop, body,
  1230                             LoopLocalVarRangeEndingPoint.AFTER_STEPS);
  1232                 CondItem c;
  1233                 if (cond != null) {
  1234                     code.statBegin(cond.pos);
  1235                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
  1236                 } else {
  1237                     c = items.makeCondItem(goto_);
  1239                 code.resolve(c.jumpTrue(), startpc);
  1240                 code.resolve(c.falseJumps);
  1242             code.resolve(loopEnv.info.exit);
  1243             if (loopEnv.info.exit != null) {
  1244                 loopEnv.info.exit.state.defined.excludeFrom(code.nextreg);
  1248         private enum LoopLocalVarRangeEndingPoint {
  1249             BEFORE_STEPS,
  1250             AFTER_STEPS,
  1253         /**
  1254          *  Checks whether we have reached an alive range ending point for local
  1255          *  variables after a loop.
  1257          *  Local variables alive range ending point for loops varies depending
  1258          *  on the loop type. The range can be closed before or after the code
  1259          *  for the steps sentences has been generated.
  1261          *  - While loops has no steps so in that case the range is closed just
  1262          *  after the body of the loop.
  1264          *  - For-like loops may have steps so as long as the steps sentences
  1265          *  can possibly contain non-synthetic local variables, the alive range
  1266          *  for local variables must be closed after the steps in this case.
  1267         */
  1268         private void checkLoopLocalVarRangeEnding(JCTree loop, JCTree body,
  1269                 LoopLocalVarRangeEndingPoint endingPoint) {
  1270             if (varDebugInfo && lvtRanges.containsKey(code.meth, body)) {
  1271                 switch (endingPoint) {
  1272                     case BEFORE_STEPS:
  1273                         if (!loop.hasTag(FORLOOP)) {
  1274                             code.closeAliveRanges(body);
  1276                         break;
  1277                     case AFTER_STEPS:
  1278                         if (loop.hasTag(FORLOOP)) {
  1279                             code.closeAliveRanges(body);
  1281                         break;
  1286     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1287         throw new AssertionError(); // should have been removed by Lower.
  1290     public void visitLabelled(JCLabeledStatement tree) {
  1291         Env<GenContext> localEnv = env.dup(tree, new GenContext());
  1292         genStat(tree.body, localEnv, CRT_STATEMENT);
  1293         code.resolve(localEnv.info.exit);
  1296     public void visitSwitch(JCSwitch tree) {
  1297         int limit = code.nextreg;
  1298         Assert.check(!tree.selector.type.hasTag(CLASS));
  1299         int startpcCrt = genCrt ? code.curCP() : 0;
  1300         Item sel = genExpr(tree.selector, syms.intType);
  1301         List<JCCase> cases = tree.cases;
  1302         if (cases.isEmpty()) {
  1303             // We are seeing:  switch <sel> {}
  1304             sel.load().drop();
  1305             if (genCrt)
  1306                 code.crt.put(TreeInfo.skipParens(tree.selector),
  1307                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
  1308         } else {
  1309             // We are seeing a nonempty switch.
  1310             sel.load();
  1311             if (genCrt)
  1312                 code.crt.put(TreeInfo.skipParens(tree.selector),
  1313                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
  1314             Env<GenContext> switchEnv = env.dup(tree, new GenContext());
  1315             switchEnv.info.isSwitch = true;
  1317             // Compute number of labels and minimum and maximum label values.
  1318             // For each case, store its label in an array.
  1319             int lo = Integer.MAX_VALUE;  // minimum label.
  1320             int hi = Integer.MIN_VALUE;  // maximum label.
  1321             int nlabels = 0;               // number of labels.
  1323             int[] labels = new int[cases.length()];  // the label array.
  1324             int defaultIndex = -1;     // the index of the default clause.
  1326             List<JCCase> l = cases;
  1327             for (int i = 0; i < labels.length; i++) {
  1328                 if (l.head.pat != null) {
  1329                     int val = ((Number)l.head.pat.type.constValue()).intValue();
  1330                     labels[i] = val;
  1331                     if (val < lo) lo = val;
  1332                     if (hi < val) hi = val;
  1333                     nlabels++;
  1334                 } else {
  1335                     Assert.check(defaultIndex == -1);
  1336                     defaultIndex = i;
  1338                 l = l.tail;
  1341             // Determine whether to issue a tableswitch or a lookupswitch
  1342             // instruction.
  1343             long table_space_cost = 4 + ((long) hi - lo + 1); // words
  1344             long table_time_cost = 3; // comparisons
  1345             long lookup_space_cost = 3 + 2 * (long) nlabels;
  1346             long lookup_time_cost = nlabels;
  1347             int opcode =
  1348                 nlabels > 0 &&
  1349                 table_space_cost + 3 * table_time_cost <=
  1350                 lookup_space_cost + 3 * lookup_time_cost
  1352                 tableswitch : lookupswitch;
  1354             int startpc = code.curCP();    // the position of the selector operation
  1355             code.emitop0(opcode);
  1356             code.align(4);
  1357             int tableBase = code.curCP();  // the start of the jump table
  1358             int[] offsets = null;          // a table of offsets for a lookupswitch
  1359             code.emit4(-1);                // leave space for default offset
  1360             if (opcode == tableswitch) {
  1361                 code.emit4(lo);            // minimum label
  1362                 code.emit4(hi);            // maximum label
  1363                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
  1364                     code.emit4(-1);
  1366             } else {
  1367                 code.emit4(nlabels);    // number of labels
  1368                 for (int i = 0; i < nlabels; i++) {
  1369                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
  1371                 offsets = new int[labels.length];
  1373             Code.State stateSwitch = code.state.dup();
  1374             code.markDead();
  1376             // For each case do:
  1377             l = cases;
  1378             for (int i = 0; i < labels.length; i++) {
  1379                 JCCase c = l.head;
  1380                 l = l.tail;
  1382                 int pc = code.entryPoint(stateSwitch);
  1383                 // Insert offset directly into code or else into the
  1384                 // offsets table.
  1385                 if (i != defaultIndex) {
  1386                     if (opcode == tableswitch) {
  1387                         code.put4(
  1388                             tableBase + 4 * (labels[i] - lo + 3),
  1389                             pc - startpc);
  1390                     } else {
  1391                         offsets[i] = pc - startpc;
  1393                 } else {
  1394                     code.put4(tableBase, pc - startpc);
  1397                 // Generate code for the statements in this case.
  1398                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
  1399                 if (varDebugInfo && lvtRanges.containsKey(code.meth, c.stats.last())) {
  1400                     code.closeAliveRanges(c.stats.last());
  1404             // Resolve all breaks.
  1405             code.resolve(switchEnv.info.exit);
  1407             // If we have not set the default offset, we do so now.
  1408             if (code.get4(tableBase) == -1) {
  1409                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
  1412             if (opcode == tableswitch) {
  1413                 // Let any unfilled slots point to the default case.
  1414                 int defaultOffset = code.get4(tableBase);
  1415                 for (long i = lo; i <= hi; i++) {
  1416                     int t = (int)(tableBase + 4 * (i - lo + 3));
  1417                     if (code.get4(t) == -1)
  1418                         code.put4(t, defaultOffset);
  1420             } else {
  1421                 // Sort non-default offsets and copy into lookup table.
  1422                 if (defaultIndex >= 0)
  1423                     for (int i = defaultIndex; i < labels.length - 1; i++) {
  1424                         labels[i] = labels[i+1];
  1425                         offsets[i] = offsets[i+1];
  1427                 if (nlabels > 0)
  1428                     qsort2(labels, offsets, 0, nlabels - 1);
  1429                 for (int i = 0; i < nlabels; i++) {
  1430                     int caseidx = tableBase + 8 * (i + 1);
  1431                     code.put4(caseidx, labels[i]);
  1432                     code.put4(caseidx + 4, offsets[i]);
  1436         code.endScopes(limit);
  1438 //where
  1439         /** Sort (int) arrays of keys and values
  1440          */
  1441        static void qsort2(int[] keys, int[] values, int lo, int hi) {
  1442             int i = lo;
  1443             int j = hi;
  1444             int pivot = keys[(i+j)/2];
  1445             do {
  1446                 while (keys[i] < pivot) i++;
  1447                 while (pivot < keys[j]) j--;
  1448                 if (i <= j) {
  1449                     int temp1 = keys[i];
  1450                     keys[i] = keys[j];
  1451                     keys[j] = temp1;
  1452                     int temp2 = values[i];
  1453                     values[i] = values[j];
  1454                     values[j] = temp2;
  1455                     i++;
  1456                     j--;
  1458             } while (i <= j);
  1459             if (lo < j) qsort2(keys, values, lo, j);
  1460             if (i < hi) qsort2(keys, values, i, hi);
  1463     public void visitSynchronized(JCSynchronized tree) {
  1464         int limit = code.nextreg;
  1465         // Generate code to evaluate lock and save in temporary variable.
  1466         final LocalItem lockVar = makeTemp(syms.objectType);
  1467         genExpr(tree.lock, tree.lock.type).load().duplicate();
  1468         lockVar.store();
  1470         // Generate code to enter monitor.
  1471         code.emitop0(monitorenter);
  1472         code.state.lock(lockVar.reg);
  1474         // Generate code for a try statement with given body, no catch clauses
  1475         // in a new environment with the "exit-monitor" operation as finalizer.
  1476         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
  1477         syncEnv.info.finalize = new GenFinalizer() {
  1478             void gen() {
  1479                 genLast();
  1480                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
  1481                 syncEnv.info.gaps.append(code.curCP());
  1483             void genLast() {
  1484                 if (code.isAlive()) {
  1485                     lockVar.load();
  1486                     code.emitop0(monitorexit);
  1487                     code.state.unlock(lockVar.reg);
  1490         };
  1491         syncEnv.info.gaps = new ListBuffer<Integer>();
  1492         genTry(tree.body, List.<JCCatch>nil(), syncEnv);
  1493         code.endScopes(limit);
  1496     public void visitTry(final JCTry tree) {
  1497         // Generate code for a try statement with given body and catch clauses,
  1498         // in a new environment which calls the finally block if there is one.
  1499         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
  1500         final Env<GenContext> oldEnv = env;
  1501         if (!useJsrLocally) {
  1502             useJsrLocally =
  1503                 (stackMap == StackMapFormat.NONE) &&
  1504                 (jsrlimit <= 0 ||
  1505                 jsrlimit < 100 &&
  1506                 estimateCodeComplexity(tree.finalizer)>jsrlimit);
  1508         tryEnv.info.finalize = new GenFinalizer() {
  1509             void gen() {
  1510                 if (useJsrLocally) {
  1511                     if (tree.finalizer != null) {
  1512                         Code.State jsrState = code.state.dup();
  1513                         jsrState.push(Code.jsrReturnValue);
  1514                         tryEnv.info.cont =
  1515                             new Chain(code.emitJump(jsr),
  1516                                       tryEnv.info.cont,
  1517                                       jsrState);
  1519                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
  1520                     tryEnv.info.gaps.append(code.curCP());
  1521                 } else {
  1522                     Assert.check(tryEnv.info.gaps.length() % 2 == 0);
  1523                     tryEnv.info.gaps.append(code.curCP());
  1524                     genLast();
  1527             void genLast() {
  1528                 if (tree.finalizer != null)
  1529                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
  1531             boolean hasFinalizer() {
  1532                 return tree.finalizer != null;
  1534         };
  1535         tryEnv.info.gaps = new ListBuffer<Integer>();
  1536         genTry(tree.body, tree.catchers, tryEnv);
  1538     //where
  1539         /** Generate code for a try or synchronized statement
  1540          *  @param body      The body of the try or synchronized statement.
  1541          *  @param catchers  The lis of catch clauses.
  1542          *  @param env       the environment current for the body.
  1543          */
  1544         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
  1545             int limit = code.nextreg;
  1546             int startpc = code.curCP();
  1547             Code.State stateTry = code.state.dup();
  1548             genStat(body, env, CRT_BLOCK);
  1549             int endpc = code.curCP();
  1550             boolean hasFinalizer =
  1551                 env.info.finalize != null &&
  1552                 env.info.finalize.hasFinalizer();
  1553             List<Integer> gaps = env.info.gaps.toList();
  1554             code.statBegin(TreeInfo.endPos(body));
  1555             genFinalizer(env);
  1556             code.statBegin(TreeInfo.endPos(env.tree));
  1557             Chain exitChain = code.branch(goto_);
  1558             if (varDebugInfo && lvtRanges.containsKey(code.meth, body)) {
  1559                 code.closeAliveRanges(body);
  1561             endFinalizerGap(env);
  1562             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
  1563                 // start off with exception on stack
  1564                 code.entryPoint(stateTry, l.head.param.sym.type);
  1565                 genCatch(l.head, env, startpc, endpc, gaps);
  1566                 genFinalizer(env);
  1567                 if (hasFinalizer || l.tail.nonEmpty()) {
  1568                     code.statBegin(TreeInfo.endPos(env.tree));
  1569                     exitChain = Code.mergeChains(exitChain,
  1570                                                  code.branch(goto_));
  1572                 endFinalizerGap(env);
  1574             if (hasFinalizer) {
  1575                 // Create a new register segement to avoid allocating
  1576                 // the same variables in finalizers and other statements.
  1577                 code.newRegSegment();
  1579                 // Add a catch-all clause.
  1581                 // start off with exception on stack
  1582                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
  1584                 // Register all exception ranges for catch all clause.
  1585                 // The range of the catch all clause is from the beginning
  1586                 // of the try or synchronized block until the present
  1587                 // code pointer excluding all gaps in the current
  1588                 // environment's GenContext.
  1589                 int startseg = startpc;
  1590                 while (env.info.gaps.nonEmpty()) {
  1591                     int endseg = env.info.gaps.next().intValue();
  1592                     registerCatch(body.pos(), startseg, endseg,
  1593                                   catchallpc, 0);
  1594                     startseg = env.info.gaps.next().intValue();
  1596                 code.statBegin(TreeInfo.finalizerPos(env.tree));
  1597                 code.markStatBegin();
  1599                 Item excVar = makeTemp(syms.throwableType);
  1600                 excVar.store();
  1601                 genFinalizer(env);
  1602                 excVar.load();
  1603                 registerCatch(body.pos(), startseg,
  1604                               env.info.gaps.next().intValue(),
  1605                               catchallpc, 0);
  1606                 code.emitop0(athrow);
  1607                 code.markDead();
  1609                 // If there are jsr's to this finalizer, ...
  1610                 if (env.info.cont != null) {
  1611                     // Resolve all jsr's.
  1612                     code.resolve(env.info.cont);
  1614                     // Mark statement line number
  1615                     code.statBegin(TreeInfo.finalizerPos(env.tree));
  1616                     code.markStatBegin();
  1618                     // Save return address.
  1619                     LocalItem retVar = makeTemp(syms.throwableType);
  1620                     retVar.store();
  1622                     // Generate finalizer code.
  1623                     env.info.finalize.genLast();
  1625                     // Return.
  1626                     code.emitop1w(ret, retVar.reg);
  1627                     code.markDead();
  1630             // Resolve all breaks.
  1631             code.resolve(exitChain);
  1633             code.endScopes(limit);
  1636         /** Generate code for a catch clause.
  1637          *  @param tree     The catch clause.
  1638          *  @param env      The environment current in the enclosing try.
  1639          *  @param startpc  Start pc of try-block.
  1640          *  @param endpc    End pc of try-block.
  1641          */
  1642         void genCatch(JCCatch tree,
  1643                       Env<GenContext> env,
  1644                       int startpc, int endpc,
  1645                       List<Integer> gaps) {
  1646             if (startpc != endpc) {
  1647                 List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
  1648                         ((JCTypeUnion)tree.param.vartype).alternatives :
  1649                         List.of(tree.param.vartype);
  1650                 while (gaps.nonEmpty()) {
  1651                     for (JCExpression subCatch : subClauses) {
  1652                         int catchType = makeRef(tree.pos(), subCatch.type);
  1653                         int end = gaps.head.intValue();
  1654                         registerCatch(tree.pos(),
  1655                                       startpc,  end, code.curCP(),
  1656                                       catchType);
  1657                         if (subCatch.type.isAnnotated()) {
  1658                             for (Attribute.TypeCompound tc :
  1659                                      subCatch.type.getAnnotationMirrors()) {
  1660                                 tc.position.type_index = catchType;
  1664                     gaps = gaps.tail;
  1665                     startpc = gaps.head.intValue();
  1666                     gaps = gaps.tail;
  1668                 if (startpc < endpc) {
  1669                     for (JCExpression subCatch : subClauses) {
  1670                         int catchType = makeRef(tree.pos(), subCatch.type);
  1671                         registerCatch(tree.pos(),
  1672                                       startpc, endpc, code.curCP(),
  1673                                       catchType);
  1674                         if (subCatch.type.isAnnotated()) {
  1675                             for (Attribute.TypeCompound tc :
  1676                                      subCatch.type.getAnnotationMirrors()) {
  1677                                 tc.position.type_index = catchType;
  1682                 VarSymbol exparam = tree.param.sym;
  1683                 code.statBegin(tree.pos);
  1684                 code.markStatBegin();
  1685                 int limit = code.nextreg;
  1686                 int exlocal = code.newLocal(exparam);
  1687                 items.makeLocalItem(exparam).store();
  1688                 code.statBegin(TreeInfo.firstStatPos(tree.body));
  1689                 genStat(tree.body, env, CRT_BLOCK);
  1690                 code.endScopes(limit);
  1691                 code.statBegin(TreeInfo.endPos(tree.body));
  1695         /** Register a catch clause in the "Exceptions" code-attribute.
  1696          */
  1697         void registerCatch(DiagnosticPosition pos,
  1698                            int startpc, int endpc,
  1699                            int handler_pc, int catch_type) {
  1700             char startpc1 = (char)startpc;
  1701             char endpc1 = (char)endpc;
  1702             char handler_pc1 = (char)handler_pc;
  1703             if (startpc1 == startpc &&
  1704                 endpc1 == endpc &&
  1705                 handler_pc1 == handler_pc) {
  1706                 code.addCatch(startpc1, endpc1, handler_pc1,
  1707                               (char)catch_type);
  1708             } else {
  1709                 if (!useJsrLocally && !target.generateStackMapTable()) {
  1710                     useJsrLocally = true;
  1711                     throw new CodeSizeOverflow();
  1712                 } else {
  1713                     log.error(pos, "limit.code.too.large.for.try.stmt");
  1714                     nerrs++;
  1719     /** Very roughly estimate the number of instructions needed for
  1720      *  the given tree.
  1721      */
  1722     int estimateCodeComplexity(JCTree tree) {
  1723         if (tree == null) return 0;
  1724         class ComplexityScanner extends TreeScanner {
  1725             int complexity = 0;
  1726             public void scan(JCTree tree) {
  1727                 if (complexity > jsrlimit) return;
  1728                 super.scan(tree);
  1730             public void visitClassDef(JCClassDecl tree) {}
  1731             public void visitDoLoop(JCDoWhileLoop tree)
  1732                 { super.visitDoLoop(tree); complexity++; }
  1733             public void visitWhileLoop(JCWhileLoop tree)
  1734                 { super.visitWhileLoop(tree); complexity++; }
  1735             public void visitForLoop(JCForLoop tree)
  1736                 { super.visitForLoop(tree); complexity++; }
  1737             public void visitSwitch(JCSwitch tree)
  1738                 { super.visitSwitch(tree); complexity+=5; }
  1739             public void visitCase(JCCase tree)
  1740                 { super.visitCase(tree); complexity++; }
  1741             public void visitSynchronized(JCSynchronized tree)
  1742                 { super.visitSynchronized(tree); complexity+=6; }
  1743             public void visitTry(JCTry tree)
  1744                 { super.visitTry(tree);
  1745                   if (tree.finalizer != null) complexity+=6; }
  1746             public void visitCatch(JCCatch tree)
  1747                 { super.visitCatch(tree); complexity+=2; }
  1748             public void visitConditional(JCConditional tree)
  1749                 { super.visitConditional(tree); complexity+=2; }
  1750             public void visitIf(JCIf tree)
  1751                 { super.visitIf(tree); complexity+=2; }
  1752             // note: for break, continue, and return we don't take unwind() into account.
  1753             public void visitBreak(JCBreak tree)
  1754                 { super.visitBreak(tree); complexity+=1; }
  1755             public void visitContinue(JCContinue tree)
  1756                 { super.visitContinue(tree); complexity+=1; }
  1757             public void visitReturn(JCReturn tree)
  1758                 { super.visitReturn(tree); complexity+=1; }
  1759             public void visitThrow(JCThrow tree)
  1760                 { super.visitThrow(tree); complexity+=1; }
  1761             public void visitAssert(JCAssert tree)
  1762                 { super.visitAssert(tree); complexity+=5; }
  1763             public void visitApply(JCMethodInvocation tree)
  1764                 { super.visitApply(tree); complexity+=2; }
  1765             public void visitNewClass(JCNewClass tree)
  1766                 { scan(tree.encl); scan(tree.args); complexity+=2; }
  1767             public void visitNewArray(JCNewArray tree)
  1768                 { super.visitNewArray(tree); complexity+=5; }
  1769             public void visitAssign(JCAssign tree)
  1770                 { super.visitAssign(tree); complexity+=1; }
  1771             public void visitAssignop(JCAssignOp tree)
  1772                 { super.visitAssignop(tree); complexity+=2; }
  1773             public void visitUnary(JCUnary tree)
  1774                 { complexity+=1;
  1775                   if (tree.type.constValue() == null) super.visitUnary(tree); }
  1776             public void visitBinary(JCBinary tree)
  1777                 { complexity+=1;
  1778                   if (tree.type.constValue() == null) super.visitBinary(tree); }
  1779             public void visitTypeTest(JCInstanceOf tree)
  1780                 { super.visitTypeTest(tree); complexity+=1; }
  1781             public void visitIndexed(JCArrayAccess tree)
  1782                 { super.visitIndexed(tree); complexity+=1; }
  1783             public void visitSelect(JCFieldAccess tree)
  1784                 { super.visitSelect(tree);
  1785                   if (tree.sym.kind == VAR) complexity+=1; }
  1786             public void visitIdent(JCIdent tree) {
  1787                 if (tree.sym.kind == VAR) {
  1788                     complexity+=1;
  1789                     if (tree.type.constValue() == null &&
  1790                         tree.sym.owner.kind == TYP)
  1791                         complexity+=1;
  1794             public void visitLiteral(JCLiteral tree)
  1795                 { complexity+=1; }
  1796             public void visitTree(JCTree tree) {}
  1797             public void visitWildcard(JCWildcard tree) {
  1798                 throw new AssertionError(this.getClass().getName());
  1801         ComplexityScanner scanner = new ComplexityScanner();
  1802         tree.accept(scanner);
  1803         return scanner.complexity;
  1806     public void visitIf(JCIf tree) {
  1807         int limit = code.nextreg;
  1808         Chain thenExit = null;
  1809         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
  1810                              CRT_FLOW_CONTROLLER);
  1811         Chain elseChain = c.jumpFalse();
  1812         if (!c.isFalse()) {
  1813             code.resolve(c.trueJumps);
  1814             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
  1815             thenExit = code.branch(goto_);
  1816             if (varDebugInfo && lvtRanges.containsKey(code.meth, tree.thenpart)) {
  1817                 code.closeAliveRanges(tree.thenpart, code.cp);
  1820         if (elseChain != null) {
  1821             code.resolve(elseChain);
  1822             if (tree.elsepart != null) {
  1823                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
  1824                 if (varDebugInfo && lvtRanges.containsKey(code.meth, tree.elsepart)) {
  1825                     code.closeAliveRanges(tree.elsepart);
  1829         code.resolve(thenExit);
  1830         code.endScopes(limit);
  1833     public void visitExec(JCExpressionStatement tree) {
  1834         // Optimize x++ to ++x and x-- to --x.
  1835         JCExpression e = tree.expr;
  1836         switch (e.getTag()) {
  1837             case POSTINC:
  1838                 ((JCUnary) e).setTag(PREINC);
  1839                 break;
  1840             case POSTDEC:
  1841                 ((JCUnary) e).setTag(PREDEC);
  1842                 break;
  1844         genExpr(tree.expr, tree.expr.type).drop();
  1847     public void visitBreak(JCBreak tree) {
  1848         Env<GenContext> targetEnv = unwind(tree.target, env);
  1849         Assert.check(code.state.stacksize == 0);
  1850         targetEnv.info.addExit(code.branch(goto_));
  1851         endFinalizerGaps(env, targetEnv);
  1854     public void visitContinue(JCContinue tree) {
  1855         Env<GenContext> targetEnv = unwind(tree.target, env);
  1856         Assert.check(code.state.stacksize == 0);
  1857         targetEnv.info.addCont(code.branch(goto_));
  1858         endFinalizerGaps(env, targetEnv);
  1861     public void visitReturn(JCReturn tree) {
  1862         int limit = code.nextreg;
  1863         final Env<GenContext> targetEnv;
  1864         if (tree.expr != null) {
  1865             Item r = genExpr(tree.expr, pt).load();
  1866             if (hasFinally(env.enclMethod, env)) {
  1867                 r = makeTemp(pt);
  1868                 r.store();
  1870             targetEnv = unwind(env.enclMethod, env);
  1871             r.load();
  1872             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
  1873         } else {
  1874             /*  If we have a statement like:
  1876              *  return;
  1878              *  we need to store the code.pendingStatPos value before generating
  1879              *  the finalizer.
  1880              */
  1881             int tmpPos = code.pendingStatPos;
  1882             targetEnv = unwind(env.enclMethod, env);
  1883             code.pendingStatPos = tmpPos;
  1884             code.emitop0(return_);
  1886         endFinalizerGaps(env, targetEnv);
  1887         code.endScopes(limit);
  1890     public void visitThrow(JCThrow tree) {
  1891         genExpr(tree.expr, tree.expr.type).load();
  1892         code.emitop0(athrow);
  1895 /* ************************************************************************
  1896  * Visitor methods for expressions
  1897  *************************************************************************/
  1899     public void visitApply(JCMethodInvocation tree) {
  1900         setTypeAnnotationPositions(tree.pos);
  1901         // Generate code for method.
  1902         Item m = genExpr(tree.meth, methodType);
  1903         // Generate code for all arguments, where the expected types are
  1904         // the parameters of the method's external type (that is, any implicit
  1905         // outer instance of a super(...) call appears as first parameter).
  1906         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
  1907         genArgs(tree.args,
  1908                 msym.externalType(types).getParameterTypes());
  1909         if (!msym.isDynamic()) {
  1910             code.statBegin(tree.pos);
  1912         result = m.invoke();
  1915     public void visitConditional(JCConditional tree) {
  1916         Chain thenExit = null;
  1917         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
  1918         Chain elseChain = c.jumpFalse();
  1919         if (!c.isFalse()) {
  1920             code.resolve(c.trueJumps);
  1921             int startpc = genCrt ? code.curCP() : 0;
  1922             genExpr(tree.truepart, pt).load();
  1923             code.state.forceStackTop(tree.type);
  1924             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
  1925                                      startpc, code.curCP());
  1926             thenExit = code.branch(goto_);
  1928         if (elseChain != null) {
  1929             code.resolve(elseChain);
  1930             int startpc = genCrt ? code.curCP() : 0;
  1931             genExpr(tree.falsepart, pt).load();
  1932             code.state.forceStackTop(tree.type);
  1933             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
  1934                                      startpc, code.curCP());
  1936         code.resolve(thenExit);
  1937         result = items.makeStackItem(pt);
  1940     private void setTypeAnnotationPositions(int treePos) {
  1941         MethodSymbol meth = code.meth;
  1942         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
  1943                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
  1945         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
  1946             if (ta.hasUnknownPosition())
  1947                 ta.tryFixPosition();
  1949             if (ta.position.matchesPos(treePos))
  1950                 ta.position.updatePosOffset(code.cp);
  1953         if (!initOrClinit)
  1954             return;
  1956         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
  1957             if (ta.hasUnknownPosition())
  1958                 ta.tryFixPosition();
  1960             if (ta.position.matchesPos(treePos))
  1961                 ta.position.updatePosOffset(code.cp);
  1964         ClassSymbol clazz = meth.enclClass();
  1965         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
  1966             if (!s.getKind().isField())
  1967                 continue;
  1969             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
  1970                 if (ta.hasUnknownPosition())
  1971                     ta.tryFixPosition();
  1973                 if (ta.position.matchesPos(treePos))
  1974                     ta.position.updatePosOffset(code.cp);
  1979     public void visitNewClass(JCNewClass tree) {
  1980         // Enclosing instances or anonymous classes should have been eliminated
  1981         // by now.
  1982         Assert.check(tree.encl == null && tree.def == null);
  1983         setTypeAnnotationPositions(tree.pos);
  1985         code.emitop2(new_, makeRef(tree.pos(), tree.type));
  1986         code.emitop0(dup);
  1988         // Generate code for all arguments, where the expected types are
  1989         // the parameters of the constructor's external type (that is,
  1990         // any implicit outer instance appears as first parameter).
  1991         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
  1993         items.makeMemberItem(tree.constructor, true).invoke();
  1994         result = items.makeStackItem(tree.type);
  1997     public void visitNewArray(JCNewArray tree) {
  1998         setTypeAnnotationPositions(tree.pos);
  2000         if (tree.elems != null) {
  2001             Type elemtype = types.elemtype(tree.type);
  2002             loadIntConst(tree.elems.length());
  2003             Item arr = makeNewArray(tree.pos(), tree.type, 1);
  2004             int i = 0;
  2005             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
  2006                 arr.duplicate();
  2007                 loadIntConst(i);
  2008                 i++;
  2009                 genExpr(l.head, elemtype).load();
  2010                 items.makeIndexedItem(elemtype).store();
  2012             result = arr;
  2013         } else {
  2014             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2015                 genExpr(l.head, syms.intType).load();
  2017             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
  2020 //where
  2021         /** Generate code to create an array with given element type and number
  2022          *  of dimensions.
  2023          */
  2024         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
  2025             Type elemtype = types.elemtype(type);
  2026             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
  2027                 log.error(pos, "limit.dimensions");
  2028                 nerrs++;
  2030             int elemcode = Code.arraycode(elemtype);
  2031             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
  2032                 code.emitAnewarray(makeRef(pos, elemtype), type);
  2033             } else if (elemcode == 1) {
  2034                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
  2035             } else {
  2036                 code.emitNewarray(elemcode, type);
  2038             return items.makeStackItem(type);
  2041     public void visitParens(JCParens tree) {
  2042         result = genExpr(tree.expr, tree.expr.type);
  2045     public void visitAssign(JCAssign tree) {
  2046         Item l = genExpr(tree.lhs, tree.lhs.type);
  2047         genExpr(tree.rhs, tree.lhs.type).load();
  2048         result = items.makeAssignItem(l);
  2051     public void visitAssignop(JCAssignOp tree) {
  2052         OperatorSymbol operator = (OperatorSymbol) tree.operator;
  2053         Item l;
  2054         if (operator.opcode == string_add) {
  2055             // Generate code to make a string buffer
  2056             makeStringBuffer(tree.pos());
  2058             // Generate code for first string, possibly save one
  2059             // copy under buffer
  2060             l = genExpr(tree.lhs, tree.lhs.type);
  2061             if (l.width() > 0) {
  2062                 code.emitop0(dup_x1 + 3 * (l.width() - 1));
  2065             // Load first string and append to buffer.
  2066             l.load();
  2067             appendString(tree.lhs);
  2069             // Append all other strings to buffer.
  2070             appendStrings(tree.rhs);
  2072             // Convert buffer to string.
  2073             bufferToString(tree.pos());
  2074         } else {
  2075             // Generate code for first expression
  2076             l = genExpr(tree.lhs, tree.lhs.type);
  2078             // If we have an increment of -32768 to +32767 of a local
  2079             // int variable we can use an incr instruction instead of
  2080             // proceeding further.
  2081             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
  2082                 l instanceof LocalItem &&
  2083                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
  2084                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
  2085                 tree.rhs.type.constValue() != null) {
  2086                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
  2087                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
  2088                 ((LocalItem)l).incr(ival);
  2089                 result = l;
  2090                 return;
  2092             // Otherwise, duplicate expression, load one copy
  2093             // and complete binary operation.
  2094             l.duplicate();
  2095             l.coerce(operator.type.getParameterTypes().head).load();
  2096             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
  2098         result = items.makeAssignItem(l);
  2101     public void visitUnary(JCUnary tree) {
  2102         OperatorSymbol operator = (OperatorSymbol)tree.operator;
  2103         if (tree.hasTag(NOT)) {
  2104             CondItem od = genCond(tree.arg, false);
  2105             result = od.negate();
  2106         } else {
  2107             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
  2108             switch (tree.getTag()) {
  2109             case POS:
  2110                 result = od.load();
  2111                 break;
  2112             case NEG:
  2113                 result = od.load();
  2114                 code.emitop0(operator.opcode);
  2115                 break;
  2116             case COMPL:
  2117                 result = od.load();
  2118                 emitMinusOne(od.typecode);
  2119                 code.emitop0(operator.opcode);
  2120                 break;
  2121             case PREINC: case PREDEC:
  2122                 od.duplicate();
  2123                 if (od instanceof LocalItem &&
  2124                     (operator.opcode == iadd || operator.opcode == isub)) {
  2125                     ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
  2126                     result = od;
  2127                 } else {
  2128                     od.load();
  2129                     code.emitop0(one(od.typecode));
  2130                     code.emitop0(operator.opcode);
  2131                     // Perform narrowing primitive conversion if byte,
  2132                     // char, or short.  Fix for 4304655.
  2133                     if (od.typecode != INTcode &&
  2134                         Code.truncate(od.typecode) == INTcode)
  2135                       code.emitop0(int2byte + od.typecode - BYTEcode);
  2136                     result = items.makeAssignItem(od);
  2138                 break;
  2139             case POSTINC: case POSTDEC:
  2140                 od.duplicate();
  2141                 if (od instanceof LocalItem &&
  2142                     (operator.opcode == iadd || operator.opcode == isub)) {
  2143                     Item res = od.load();
  2144                     ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
  2145                     result = res;
  2146                 } else {
  2147                     Item res = od.load();
  2148                     od.stash(od.typecode);
  2149                     code.emitop0(one(od.typecode));
  2150                     code.emitop0(operator.opcode);
  2151                     // Perform narrowing primitive conversion if byte,
  2152                     // char, or short.  Fix for 4304655.
  2153                     if (od.typecode != INTcode &&
  2154                         Code.truncate(od.typecode) == INTcode)
  2155                       code.emitop0(int2byte + od.typecode - BYTEcode);
  2156                     od.store();
  2157                     result = res;
  2159                 break;
  2160             case NULLCHK:
  2161                 result = od.load();
  2162                 code.emitop0(dup);
  2163                 genNullCheck(tree.pos());
  2164                 break;
  2165             default:
  2166                 Assert.error();
  2171     /** Generate a null check from the object value at stack top. */
  2172     private void genNullCheck(DiagnosticPosition pos) {
  2173         callMethod(pos, syms.objectType, names.getClass,
  2174                    List.<Type>nil(), false);
  2175         code.emitop0(pop);
  2178     public void visitBinary(JCBinary tree) {
  2179         OperatorSymbol operator = (OperatorSymbol)tree.operator;
  2180         if (operator.opcode == string_add) {
  2181             // Create a string buffer.
  2182             makeStringBuffer(tree.pos());
  2183             // Append all strings to buffer.
  2184             appendStrings(tree);
  2185             // Convert buffer to string.
  2186             bufferToString(tree.pos());
  2187             result = items.makeStackItem(syms.stringType);
  2188         } else if (tree.hasTag(AND)) {
  2189             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
  2190             if (!lcond.isFalse()) {
  2191                 Chain falseJumps = lcond.jumpFalse();
  2192                 code.resolve(lcond.trueJumps);
  2193                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
  2194                 result = items.
  2195                     makeCondItem(rcond.opcode,
  2196                                  rcond.trueJumps,
  2197                                  Code.mergeChains(falseJumps,
  2198                                                   rcond.falseJumps));
  2199             } else {
  2200                 result = lcond;
  2202         } else if (tree.hasTag(OR)) {
  2203             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
  2204             if (!lcond.isTrue()) {
  2205                 Chain trueJumps = lcond.jumpTrue();
  2206                 code.resolve(lcond.falseJumps);
  2207                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
  2208                 result = items.
  2209                     makeCondItem(rcond.opcode,
  2210                                  Code.mergeChains(trueJumps, rcond.trueJumps),
  2211                                  rcond.falseJumps);
  2212             } else {
  2213                 result = lcond;
  2215         } else {
  2216             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
  2217             od.load();
  2218             result = completeBinop(tree.lhs, tree.rhs, operator);
  2221 //where
  2222         /** Make a new string buffer.
  2223          */
  2224         void makeStringBuffer(DiagnosticPosition pos) {
  2225             code.emitop2(new_, makeRef(pos, stringBufferType));
  2226             code.emitop0(dup);
  2227             callMethod(
  2228                 pos, stringBufferType, names.init, List.<Type>nil(), false);
  2231         /** Append value (on tos) to string buffer (on tos - 1).
  2232          */
  2233         void appendString(JCTree tree) {
  2234             Type t = tree.type.baseType();
  2235             if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
  2236                 t = syms.objectType;
  2238             items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
  2240         Symbol getStringBufferAppend(JCTree tree, Type t) {
  2241             Assert.checkNull(t.constValue());
  2242             Symbol method = stringBufferAppend.get(t);
  2243             if (method == null) {
  2244                 method = rs.resolveInternalMethod(tree.pos(),
  2245                                                   attrEnv,
  2246                                                   stringBufferType,
  2247                                                   names.append,
  2248                                                   List.of(t),
  2249                                                   null);
  2250                 stringBufferAppend.put(t, method);
  2252             return method;
  2255         /** Add all strings in tree to string buffer.
  2256          */
  2257         void appendStrings(JCTree tree) {
  2258             tree = TreeInfo.skipParens(tree);
  2259             if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
  2260                 JCBinary op = (JCBinary) tree;
  2261                 if (op.operator.kind == MTH &&
  2262                     ((OperatorSymbol) op.operator).opcode == string_add) {
  2263                     appendStrings(op.lhs);
  2264                     appendStrings(op.rhs);
  2265                     return;
  2268             genExpr(tree, tree.type).load();
  2269             appendString(tree);
  2272         /** Convert string buffer on tos to string.
  2273          */
  2274         void bufferToString(DiagnosticPosition pos) {
  2275             callMethod(
  2276                 pos,
  2277                 stringBufferType,
  2278                 names.toString,
  2279                 List.<Type>nil(),
  2280                 false);
  2283         /** Complete generating code for operation, with left operand
  2284          *  already on stack.
  2285          *  @param lhs       The tree representing the left operand.
  2286          *  @param rhs       The tree representing the right operand.
  2287          *  @param operator  The operator symbol.
  2288          */
  2289         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
  2290             MethodType optype = (MethodType)operator.type;
  2291             int opcode = operator.opcode;
  2292             if (opcode >= if_icmpeq && opcode <= if_icmple &&
  2293                 rhs.type.constValue() instanceof Number &&
  2294                 ((Number) rhs.type.constValue()).intValue() == 0) {
  2295                 opcode = opcode + (ifeq - if_icmpeq);
  2296             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
  2297                        TreeInfo.isNull(rhs)) {
  2298                 opcode = opcode + (if_acmp_null - if_acmpeq);
  2299             } else {
  2300                 // The expected type of the right operand is
  2301                 // the second parameter type of the operator, except for
  2302                 // shifts with long shiftcount, where we convert the opcode
  2303                 // to a short shift and the expected type to int.
  2304                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
  2305                 if (opcode >= ishll && opcode <= lushrl) {
  2306                     opcode = opcode + (ishl - ishll);
  2307                     rtype = syms.intType;
  2309                 // Generate code for right operand and load.
  2310                 genExpr(rhs, rtype).load();
  2311                 // If there are two consecutive opcode instructions,
  2312                 // emit the first now.
  2313                 if (opcode >= (1 << preShift)) {
  2314                     code.emitop0(opcode >> preShift);
  2315                     opcode = opcode & 0xFF;
  2318             if (opcode >= ifeq && opcode <= if_acmpne ||
  2319                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
  2320                 return items.makeCondItem(opcode);
  2321             } else {
  2322                 code.emitop0(opcode);
  2323                 return items.makeStackItem(optype.restype);
  2327     public void visitTypeCast(JCTypeCast tree) {
  2328         setTypeAnnotationPositions(tree.pos);
  2329         result = genExpr(tree.expr, tree.clazz.type).load();
  2330         // Additional code is only needed if we cast to a reference type
  2331         // which is not statically a supertype of the expression's type.
  2332         // For basic types, the coerce(...) in genExpr(...) will do
  2333         // the conversion.
  2334         if (!tree.clazz.type.isPrimitive() &&
  2335             types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
  2336             code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
  2340     public void visitWildcard(JCWildcard tree) {
  2341         throw new AssertionError(this.getClass().getName());
  2344     public void visitTypeTest(JCInstanceOf tree) {
  2345         setTypeAnnotationPositions(tree.pos);
  2346         genExpr(tree.expr, tree.expr.type).load();
  2347         code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
  2348         result = items.makeStackItem(syms.booleanType);
  2351     public void visitIndexed(JCArrayAccess tree) {
  2352         genExpr(tree.indexed, tree.indexed.type).load();
  2353         genExpr(tree.index, syms.intType).load();
  2354         result = items.makeIndexedItem(tree.type);
  2357     public void visitIdent(JCIdent tree) {
  2358         Symbol sym = tree.sym;
  2359         if (tree.name == names._this || tree.name == names._super) {
  2360             Item res = tree.name == names._this
  2361                 ? items.makeThisItem()
  2362                 : items.makeSuperItem();
  2363             if (sym.kind == MTH) {
  2364                 // Generate code to address the constructor.
  2365                 res.load();
  2366                 res = items.makeMemberItem(sym, true);
  2368             result = res;
  2369         } else if (sym.kind == VAR && sym.owner.kind == MTH) {
  2370             result = items.makeLocalItem((VarSymbol)sym);
  2371         } else if (isInvokeDynamic(sym)) {
  2372             result = items.makeDynamicItem(sym);
  2373         } else if ((sym.flags() & STATIC) != 0) {
  2374             if (!isAccessSuper(env.enclMethod))
  2375                 sym = binaryQualifier(sym, env.enclClass.type);
  2376             result = items.makeStaticItem(sym);
  2377         } else {
  2378             items.makeThisItem().load();
  2379             sym = binaryQualifier(sym, env.enclClass.type);
  2380             result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
  2384     public void visitSelect(JCFieldAccess tree) {
  2385         Symbol sym = tree.sym;
  2387         if (tree.name == names._class) {
  2388             Assert.check(target.hasClassLiterals());
  2389             code.emitLdc(makeRef(tree.pos(), tree.selected.type));
  2390             result = items.makeStackItem(pt);
  2391             return;
  2394         Symbol ssym = TreeInfo.symbol(tree.selected);
  2396         // Are we selecting via super?
  2397         boolean selectSuper =
  2398             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
  2400         // Are we accessing a member of the superclass in an access method
  2401         // resulting from a qualified super?
  2402         boolean accessSuper = isAccessSuper(env.enclMethod);
  2404         Item base = (selectSuper)
  2405             ? items.makeSuperItem()
  2406             : genExpr(tree.selected, tree.selected.type);
  2408         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
  2409             // We are seeing a variable that is constant but its selecting
  2410             // expression is not.
  2411             if ((sym.flags() & STATIC) != 0) {
  2412                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
  2413                     base = base.load();
  2414                 base.drop();
  2415             } else {
  2416                 base.load();
  2417                 genNullCheck(tree.selected.pos());
  2419             result = items.
  2420                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
  2421         } else {
  2422             if (isInvokeDynamic(sym)) {
  2423                 result = items.makeDynamicItem(sym);
  2424                 return;
  2425             } else {
  2426                 sym = binaryQualifier(sym, tree.selected.type);
  2428             if ((sym.flags() & STATIC) != 0) {
  2429                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
  2430                     base = base.load();
  2431                 base.drop();
  2432                 result = items.makeStaticItem(sym);
  2433             } else {
  2434                 base.load();
  2435                 if (sym == syms.lengthVar) {
  2436                     code.emitop0(arraylength);
  2437                     result = items.makeStackItem(syms.intType);
  2438                 } else {
  2439                     result = items.
  2440                         makeMemberItem(sym,
  2441                                        (sym.flags() & PRIVATE) != 0 ||
  2442                                        selectSuper || accessSuper);
  2448     public boolean isInvokeDynamic(Symbol sym) {
  2449         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
  2452     public void visitLiteral(JCLiteral tree) {
  2453         if (tree.type.hasTag(BOT)) {
  2454             code.emitop0(aconst_null);
  2455             if (types.dimensions(pt) > 1) {
  2456                 code.emitop2(checkcast, makeRef(tree.pos(), pt));
  2457                 result = items.makeStackItem(pt);
  2458             } else {
  2459                 result = items.makeStackItem(tree.type);
  2462         else
  2463             result = items.makeImmediateItem(tree.type, tree.value);
  2466     public void visitLetExpr(LetExpr tree) {
  2467         int limit = code.nextreg;
  2468         genStats(tree.defs, env);
  2469         result = genExpr(tree.expr, tree.expr.type).load();
  2470         code.endScopes(limit);
  2473     private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
  2474         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
  2475         if (prunedInfo != null) {
  2476             for (JCTree prunedTree: prunedInfo) {
  2477                 prunedTree.accept(classReferenceVisitor);
  2482 /* ************************************************************************
  2483  * main method
  2484  *************************************************************************/
  2486     /** Generate code for a class definition.
  2487      *  @param env   The attribution environment that belongs to the
  2488      *               outermost class containing this class definition.
  2489      *               We need this for resolving some additional symbols.
  2490      *  @param cdef  The tree representing the class definition.
  2491      *  @return      True if code is generated with no errors.
  2492      */
  2493     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
  2494         try {
  2495             attrEnv = env;
  2496             ClassSymbol c = cdef.sym;
  2497             this.toplevel = env.toplevel;
  2498             this.endPosTable = toplevel.endPositions;
  2499             // If this is a class definition requiring Miranda methods,
  2500             // add them.
  2501             if (generateIproxies &&
  2502                 (c.flags() & (INTERFACE|ABSTRACT)) == ABSTRACT
  2503                 && !allowGenerics // no Miranda methods available with generics
  2505                 implementInterfaceMethods(c);
  2506             cdef.defs = normalizeDefs(cdef.defs, c);
  2507             c.pool = pool;
  2508             pool.reset();
  2509             generateReferencesToPrunedTree(c, pool);
  2510             Env<GenContext> localEnv =
  2511                 new Env<GenContext>(cdef, new GenContext());
  2512             localEnv.toplevel = env.toplevel;
  2513             localEnv.enclClass = cdef;
  2515             /*  We must not analyze synthetic methods
  2516              */
  2517             if (varDebugInfo && (cdef.sym.flags() & SYNTHETIC) == 0) {
  2518                 try {
  2519                     LVTAssignAnalyzer lvtAssignAnalyzer = LVTAssignAnalyzer.make(
  2520                             lvtRanges, syms, names);
  2521                     lvtAssignAnalyzer.analyzeTree(localEnv);
  2522                 } catch (Throwable e) {
  2523                     throw e;
  2527             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
  2528                 genDef(l.head, localEnv);
  2530             if (pool.numEntries() > Pool.MAX_ENTRIES) {
  2531                 log.error(cdef.pos(), "limit.pool");
  2532                 nerrs++;
  2534             if (nerrs != 0) {
  2535                 // if errors, discard code
  2536                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
  2537                     if (l.head.hasTag(METHODDEF))
  2538                         ((JCMethodDecl) l.head).sym.code = null;
  2541             cdef.defs = List.nil(); // discard trees
  2542             return nerrs == 0;
  2543         } finally {
  2544             // note: this method does NOT support recursion.
  2545             attrEnv = null;
  2546             this.env = null;
  2547             toplevel = null;
  2548             endPosTable = null;
  2549             nerrs = 0;
  2553 /* ************************************************************************
  2554  * Auxiliary classes
  2555  *************************************************************************/
  2557     /** An abstract class for finalizer generation.
  2558      */
  2559     abstract class GenFinalizer {
  2560         /** Generate code to clean up when unwinding. */
  2561         abstract void gen();
  2563         /** Generate code to clean up at last. */
  2564         abstract void genLast();
  2566         /** Does this finalizer have some nontrivial cleanup to perform? */
  2567         boolean hasFinalizer() { return true; }
  2570     /** code generation contexts,
  2571      *  to be used as type parameter for environments.
  2572      */
  2573     static class GenContext {
  2575         /** A chain for all unresolved jumps that exit the current environment.
  2576          */
  2577         Chain exit = null;
  2579         /** A chain for all unresolved jumps that continue in the
  2580          *  current environment.
  2581          */
  2582         Chain cont = null;
  2584         /** A closure that generates the finalizer of the current environment.
  2585          *  Only set for Synchronized and Try contexts.
  2586          */
  2587         GenFinalizer finalize = null;
  2589         /** Is this a switch statement?  If so, allocate registers
  2590          * even when the variable declaration is unreachable.
  2591          */
  2592         boolean isSwitch = false;
  2594         /** A list buffer containing all gaps in the finalizer range,
  2595          *  where a catch all exception should not apply.
  2596          */
  2597         ListBuffer<Integer> gaps = null;
  2599         /** Add given chain to exit chain.
  2600          */
  2601         void addExit(Chain c)  {
  2602             exit = Code.mergeChains(c, exit);
  2605         /** Add given chain to cont chain.
  2606          */
  2607         void addCont(Chain c) {
  2608             cont = Code.mergeChains(c, cont);
  2612     static class LVTAssignAnalyzer
  2613         extends Flow.AbstractAssignAnalyzer<LVTAssignAnalyzer.LVTAssignPendingExit> {
  2615         final LVTBits lvtInits;
  2616         final LVTRanges lvtRanges;
  2618         /*  This class is anchored to a context dependent tree. The tree can
  2619          *  vary inside the same instruction for example in the switch instruction
  2620          *  the same FlowBits instance can be anchored to the whole tree, or
  2621          *  to a given case. The aim is to always anchor the bits to the tree
  2622          *  capable of closing a DA range.
  2623          */
  2624         static class LVTBits extends Bits {
  2626             enum BitsOpKind {
  2627                 INIT,
  2628                 CLEAR,
  2629                 INCL_BIT,
  2630                 EXCL_BIT,
  2631                 ASSIGN,
  2632                 AND_SET,
  2633                 OR_SET,
  2634                 DIFF_SET,
  2635                 XOR_SET,
  2636                 INCL_RANGE,
  2637                 EXCL_RANGE,
  2640             JCTree currentTree;
  2641             LVTAssignAnalyzer analyzer;
  2642             private int[] oldBits = null;
  2643             BitsState stateBeforeOp;
  2645             LVTBits() {
  2646                 super(false);
  2649             LVTBits(int[] bits, BitsState initState) {
  2650                 super(bits, initState);
  2653             @Override
  2654             public void clear() {
  2655                 generalOp(null, -1, BitsOpKind.CLEAR);
  2658             @Override
  2659             protected void internalReset() {
  2660                 super.internalReset();
  2661                 oldBits = null;
  2664             @Override
  2665             public Bits assign(Bits someBits) {
  2666                 // bits can be null
  2667                 oldBits = bits;
  2668                 stateBeforeOp = currentState;
  2669                 super.assign(someBits);
  2670                 changed();
  2671                 return this;
  2674             @Override
  2675             public void excludeFrom(int start) {
  2676                 generalOp(null, start, BitsOpKind.EXCL_RANGE);
  2679             @Override
  2680             public void excl(int x) {
  2681                 Assert.check(x >= 0);
  2682                 generalOp(null, x, BitsOpKind.EXCL_BIT);
  2685             @Override
  2686             public Bits andSet(Bits xs) {
  2687                return generalOp(xs, -1, BitsOpKind.AND_SET);
  2690             @Override
  2691             public Bits orSet(Bits xs) {
  2692                 return generalOp(xs, -1, BitsOpKind.OR_SET);
  2695             @Override
  2696             public Bits diffSet(Bits xs) {
  2697                 return generalOp(xs, -1, BitsOpKind.DIFF_SET);
  2700             @Override
  2701             public Bits xorSet(Bits xs) {
  2702                 return generalOp(xs, -1, BitsOpKind.XOR_SET);
  2705             private Bits generalOp(Bits xs, int i, BitsOpKind opKind) {
  2706                 Assert.check(currentState != BitsState.UNKNOWN);
  2707                 oldBits = dupBits();
  2708                 stateBeforeOp = currentState;
  2709                 switch (opKind) {
  2710                     case AND_SET:
  2711                         super.andSet(xs);
  2712                         break;
  2713                     case OR_SET:
  2714                         super.orSet(xs);
  2715                         break;
  2716                     case XOR_SET:
  2717                         super.xorSet(xs);
  2718                         break;
  2719                     case DIFF_SET:
  2720                         super.diffSet(xs);
  2721                         break;
  2722                     case CLEAR:
  2723                         super.clear();
  2724                         break;
  2725                     case EXCL_BIT:
  2726                         super.excl(i);
  2727                         break;
  2728                     case EXCL_RANGE:
  2729                         super.excludeFrom(i);
  2730                         break;
  2732                 changed();
  2733                 return this;
  2736             /*  The tree we need to anchor the bits instance to.
  2737              */
  2738             LVTBits at(JCTree tree) {
  2739                 this.currentTree = tree;
  2740                 return this;
  2743             /*  If the instance should be changed but the tree is not a closing
  2744              *  tree then a reset is needed or the former tree can mistakingly be
  2745              *  used.
  2746              */
  2747             LVTBits resetTree() {
  2748                 this.currentTree = null;
  2749                 return this;
  2752             /** This method will be called after any operation that causes a change to
  2753              *  the bits. Subclasses can thus override it in order to extract information
  2754              *  from the changes produced to the bits by the given operation.
  2755              */
  2756             public void changed() {
  2757                 if (currentTree != null &&
  2758                         stateBeforeOp != BitsState.UNKNOWN &&
  2759                         trackTree(currentTree)) {
  2760                     List<VarSymbol> locals =
  2761                             analyzer.lvtRanges
  2762                             .getVars(analyzer.currentMethod, currentTree);
  2763                     locals = locals != null ?
  2764                             locals : List.<VarSymbol>nil();
  2765                     for (JCVariableDecl vardecl : analyzer.vardecls) {
  2766                         //once the first is null, the rest will be so.
  2767                         if (vardecl == null) {
  2768                             break;
  2770                         if (trackVar(vardecl.sym) && bitChanged(vardecl.sym.adr)) {
  2771                             locals = locals.prepend(vardecl.sym);
  2774                     if (!locals.isEmpty()) {
  2775                         analyzer.lvtRanges.setEntry(analyzer.currentMethod,
  2776                                 currentTree, locals);
  2781             boolean bitChanged(int x) {
  2782                 boolean isMemberOfBits = isMember(x);
  2783                 int[] tmp = bits;
  2784                 bits = oldBits;
  2785                 boolean isMemberOfOldBits = isMember(x);
  2786                 bits = tmp;
  2787                 return (!isMemberOfBits && isMemberOfOldBits);
  2790             boolean trackVar(VarSymbol var) {
  2791                 return (var.owner.kind == MTH &&
  2792                         (var.flags() & PARAMETER) == 0 &&
  2793                         analyzer.trackable(var));
  2796             boolean trackTree(JCTree tree) {
  2797                 switch (tree.getTag()) {
  2798                     // of course a method closes the alive range of a local variable.
  2799                     case METHODDEF:
  2800                     // for while loops we want only the body
  2801                     case WHILELOOP:
  2802                         return false;
  2804                 return true;
  2809         public class LVTAssignPendingExit extends Flow.AssignAnalyzer.AssignPendingExit {
  2811             LVTAssignPendingExit(JCTree tree, final Bits inits, final Bits uninits) {
  2812                 super(tree, inits, uninits);
  2815             @Override
  2816             public void resolveJump(JCTree tree) {
  2817                 lvtInits.at(tree);
  2818                 super.resolveJump(tree);
  2822         private LVTAssignAnalyzer(LVTRanges lvtRanges, Symtab syms, Names names) {
  2823             super(new LVTBits(), syms, names, false);
  2824             lvtInits = (LVTBits)inits;
  2825             this.lvtRanges = lvtRanges;
  2828         public static LVTAssignAnalyzer make(LVTRanges lvtRanges, Symtab syms, Names names) {
  2829             LVTAssignAnalyzer result = new LVTAssignAnalyzer(lvtRanges, syms, names);
  2830             result.lvtInits.analyzer = result;
  2831             return result;
  2834         @Override
  2835         protected void markDead(JCTree tree) {
  2836             lvtInits.at(tree).inclRange(returnadr, nextadr);
  2837             super.markDead(tree);
  2840         @Override
  2841         protected void merge(JCTree tree) {
  2842             lvtInits.at(tree);
  2843             super.merge(tree);
  2846         boolean isSyntheticOrMandated(Symbol sym) {
  2847             return (sym.flags() & (SYNTHETIC | MANDATED)) != 0;
  2850         @Override
  2851         protected boolean trackable(VarSymbol sym) {
  2852             if (isSyntheticOrMandated(sym)) {
  2853                 //fast check to avoid tracking synthetic or mandated variables
  2854                 return false;
  2856             return super.trackable(sym);
  2859         @Override
  2860         protected void initParam(JCVariableDecl def) {
  2861             if (!isSyntheticOrMandated(def.sym)) {
  2862                 super.initParam(def);
  2866         @Override
  2867         protected void assignToInits(JCTree tree, Bits bits) {
  2868             lvtInits.at(tree);
  2869             lvtInits.assign(bits);
  2872         @Override
  2873         protected void andSetInits(JCTree tree, Bits bits) {
  2874             lvtInits.at(tree);
  2875             lvtInits.andSet(bits);
  2878         @Override
  2879         protected void orSetInits(JCTree tree, Bits bits) {
  2880             lvtInits.at(tree);
  2881             lvtInits.orSet(bits);
  2884         @Override
  2885         protected void exclVarFromInits(JCTree tree, int adr) {
  2886             lvtInits.at(tree);
  2887             lvtInits.excl(adr);
  2890         @Override
  2891         protected LVTAssignPendingExit createNewPendingExit(JCTree tree, Bits inits, Bits uninits) {
  2892             return new LVTAssignPendingExit(tree, inits, uninits);
  2895         MethodSymbol currentMethod;
  2897         @Override
  2898         public void visitMethodDef(JCMethodDecl tree) {
  2899             if ((tree.sym.flags() & (SYNTHETIC | GENERATEDCONSTR)) != 0
  2900                     && (tree.sym.flags() & LAMBDA_METHOD) == 0) {
  2901                 return;
  2903             if (tree.name.equals(names.clinit)) {
  2904                 return;
  2906             boolean enumClass = (tree.sym.owner.flags() & ENUM) != 0;
  2907             if (enumClass &&
  2908                     (tree.name.equals(names.valueOf) ||
  2909                     tree.name.equals(names.values) ||
  2910                     tree.name.equals(names.init))) {
  2911                 return;
  2913             currentMethod = tree.sym;
  2915             super.visitMethodDef(tree);

mercurial