src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 28 Sep 2012 11:39:29 -0700

author
jfranck
date
Fri, 28 Sep 2012 11:39:29 -0700
changeset 1344
73312ec2cf7c
parent 1337
2eca84194807
child 1347
1408af4cd8b0
permissions
-rw-r--r--

7199925: Separate compilation breaks check that elements have a default for the containing annotation
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.Infer.InferenceContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    46 import static com.sun.tools.javac.code.Flags.*;
    47 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    48 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    49 import static com.sun.tools.javac.code.Kinds.*;
    50 import static com.sun.tools.javac.code.TypeTags.*;
    51 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    53 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    55 /** Type checking helper class for the attribution phase.
    56  *
    57  *  <p><b>This is NOT part of any supported API.
    58  *  If you write code that depends on this, you do so at your own risk.
    59  *  This code and its internal interfaces are subject to change or
    60  *  deletion without notice.</b>
    61  */
    62 public class Check {
    63     protected static final Context.Key<Check> checkKey =
    64         new Context.Key<Check>();
    66     private final Names names;
    67     private final Log log;
    68     private final Resolve rs;
    69     private final Symtab syms;
    70     private final Enter enter;
    71     private final Infer infer;
    72     private final Types types;
    73     private final JCDiagnostic.Factory diags;
    74     private boolean warnOnSyntheticConflicts;
    75     private boolean suppressAbortOnBadClassFile;
    76     private boolean enableSunApiLintControl;
    77     private final TreeInfo treeinfo;
    79     // The set of lint options currently in effect. It is initialized
    80     // from the context, and then is set/reset as needed by Attr as it
    81     // visits all the various parts of the trees during attribution.
    82     private Lint lint;
    84     // The method being analyzed in Attr - it is set/reset as needed by
    85     // Attr as it visits new method declarations.
    86     private MethodSymbol method;
    88     public static Check instance(Context context) {
    89         Check instance = context.get(checkKey);
    90         if (instance == null)
    91             instance = new Check(context);
    92         return instance;
    93     }
    95     protected Check(Context context) {
    96         context.put(checkKey, this);
    98         names = Names.instance(context);
    99         log = Log.instance(context);
   100         rs = Resolve.instance(context);
   101         syms = Symtab.instance(context);
   102         enter = Enter.instance(context);
   103         infer = Infer.instance(context);
   104         this.types = Types.instance(context);
   105         diags = JCDiagnostic.Factory.instance(context);
   106         Options options = Options.instance(context);
   107         lint = Lint.instance(context);
   108         treeinfo = TreeInfo.instance(context);
   110         Source source = Source.instance(context);
   111         allowGenerics = source.allowGenerics();
   112         allowVarargs = source.allowVarargs();
   113         allowAnnotations = source.allowAnnotations();
   114         allowCovariantReturns = source.allowCovariantReturns();
   115         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   116         complexInference = options.isSet("complexinference");
   117         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   118         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   119         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   121         Target target = Target.instance(context);
   122         syntheticNameChar = target.syntheticNameChar();
   124         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   125         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   126         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   127         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   129         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   130                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   131         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   132                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   133         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   134                 enforceMandatoryWarnings, "sunapi", null);
   136         deferredLintHandler = DeferredLintHandler.immediateHandler;
   137     }
   139     /** Switch: generics enabled?
   140      */
   141     boolean allowGenerics;
   143     /** Switch: varargs enabled?
   144      */
   145     boolean allowVarargs;
   147     /** Switch: annotations enabled?
   148      */
   149     boolean allowAnnotations;
   151     /** Switch: covariant returns enabled?
   152      */
   153     boolean allowCovariantReturns;
   155     /** Switch: simplified varargs enabled?
   156      */
   157     boolean allowSimplifiedVarargs;
   159     /** Switch: -complexinference option set?
   160      */
   161     boolean complexInference;
   163     /** Character for synthetic names
   164      */
   165     char syntheticNameChar;
   167     /** A table mapping flat names of all compiled classes in this run to their
   168      *  symbols; maintained from outside.
   169      */
   170     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   172     /** A handler for messages about deprecated usage.
   173      */
   174     private MandatoryWarningHandler deprecationHandler;
   176     /** A handler for messages about unchecked or unsafe usage.
   177      */
   178     private MandatoryWarningHandler uncheckedHandler;
   180     /** A handler for messages about using proprietary API.
   181      */
   182     private MandatoryWarningHandler sunApiHandler;
   184     /** A handler for deferred lint warnings.
   185      */
   186     private DeferredLintHandler deferredLintHandler;
   188 /* *************************************************************************
   189  * Errors and Warnings
   190  **************************************************************************/
   192     Lint setLint(Lint newLint) {
   193         Lint prev = lint;
   194         lint = newLint;
   195         return prev;
   196     }
   198     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   199         DeferredLintHandler prev = deferredLintHandler;
   200         deferredLintHandler = newDeferredLintHandler;
   201         return prev;
   202     }
   204     MethodSymbol setMethod(MethodSymbol newMethod) {
   205         MethodSymbol prev = method;
   206         method = newMethod;
   207         return prev;
   208     }
   210     /** Warn about deprecated symbol.
   211      *  @param pos        Position to be used for error reporting.
   212      *  @param sym        The deprecated symbol.
   213      */
   214     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   215         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   216             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   217     }
   219     /** Warn about unchecked operation.
   220      *  @param pos        Position to be used for error reporting.
   221      *  @param msg        A string describing the problem.
   222      */
   223     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   224         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   225             uncheckedHandler.report(pos, msg, args);
   226     }
   228     /** Warn about unsafe vararg method decl.
   229      *  @param pos        Position to be used for error reporting.
   230      *  @param sym        The deprecated symbol.
   231      */
   232     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   233         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   234             log.warning(LintCategory.VARARGS, pos, key, args);
   235     }
   237     /** Warn about using proprietary API.
   238      *  @param pos        Position to be used for error reporting.
   239      *  @param msg        A string describing the problem.
   240      */
   241     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   242         if (!lint.isSuppressed(LintCategory.SUNAPI))
   243             sunApiHandler.report(pos, msg, args);
   244     }
   246     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   247         if (lint.isEnabled(LintCategory.STATIC))
   248             log.warning(LintCategory.STATIC, pos, msg, args);
   249     }
   251     /**
   252      * Report any deferred diagnostics.
   253      */
   254     public void reportDeferredDiagnostics() {
   255         deprecationHandler.reportDeferredDiagnostic();
   256         uncheckedHandler.reportDeferredDiagnostic();
   257         sunApiHandler.reportDeferredDiagnostic();
   258     }
   261     /** Report a failure to complete a class.
   262      *  @param pos        Position to be used for error reporting.
   263      *  @param ex         The failure to report.
   264      */
   265     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   266         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   267         if (ex instanceof ClassReader.BadClassFile
   268                 && !suppressAbortOnBadClassFile) throw new Abort();
   269         else return syms.errType;
   270     }
   272     /** Report an error that wrong type tag was found.
   273      *  @param pos        Position to be used for error reporting.
   274      *  @param required   An internationalized string describing the type tag
   275      *                    required.
   276      *  @param found      The type that was found.
   277      */
   278     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   279         // this error used to be raised by the parser,
   280         // but has been delayed to this point:
   281         if (found instanceof Type && ((Type)found).tag == VOID) {
   282             log.error(pos, "illegal.start.of.type");
   283             return syms.errType;
   284         }
   285         log.error(pos, "type.found.req", found, required);
   286         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   287     }
   289     /** Report an error that symbol cannot be referenced before super
   290      *  has been called.
   291      *  @param pos        Position to be used for error reporting.
   292      *  @param sym        The referenced symbol.
   293      */
   294     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   295         log.error(pos, "cant.ref.before.ctor.called", sym);
   296     }
   298     /** Report duplicate declaration error.
   299      */
   300     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   301         if (!sym.type.isErroneous()) {
   302             Symbol location = sym.location();
   303             if (location.kind == MTH &&
   304                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   305                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   306                         kindName(sym.location()), kindName(sym.location().enclClass()),
   307                         sym.location().enclClass());
   308             } else {
   309                 log.error(pos, "already.defined", kindName(sym), sym,
   310                         kindName(sym.location()), sym.location());
   311             }
   312         }
   313     }
   315     /** Report array/varargs duplicate declaration
   316      */
   317     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   318         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   319             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   320         }
   321     }
   323 /* ************************************************************************
   324  * duplicate declaration checking
   325  *************************************************************************/
   327     /** Check that variable does not hide variable with same name in
   328      *  immediately enclosing local scope.
   329      *  @param pos           Position for error reporting.
   330      *  @param v             The symbol.
   331      *  @param s             The scope.
   332      */
   333     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   334         if (s.next != null) {
   335             for (Scope.Entry e = s.next.lookup(v.name);
   336                  e.scope != null && e.sym.owner == v.owner;
   337                  e = e.next()) {
   338                 if (e.sym.kind == VAR &&
   339                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   340                     v.name != names.error) {
   341                     duplicateError(pos, e.sym);
   342                     return;
   343                 }
   344             }
   345         }
   346     }
   348     /** Check that a class or interface does not hide a class or
   349      *  interface with same name in immediately enclosing local scope.
   350      *  @param pos           Position for error reporting.
   351      *  @param c             The symbol.
   352      *  @param s             The scope.
   353      */
   354     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   355         if (s.next != null) {
   356             for (Scope.Entry e = s.next.lookup(c.name);
   357                  e.scope != null && e.sym.owner == c.owner;
   358                  e = e.next()) {
   359                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   360                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   361                     c.name != names.error) {
   362                     duplicateError(pos, e.sym);
   363                     return;
   364                 }
   365             }
   366         }
   367     }
   369     /** Check that class does not have the same name as one of
   370      *  its enclosing classes, or as a class defined in its enclosing scope.
   371      *  return true if class is unique in its enclosing scope.
   372      *  @param pos           Position for error reporting.
   373      *  @param name          The class name.
   374      *  @param s             The enclosing scope.
   375      */
   376     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   377         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   378             if (e.sym.kind == TYP && e.sym.name != names.error) {
   379                 duplicateError(pos, e.sym);
   380                 return false;
   381             }
   382         }
   383         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   384             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   385                 duplicateError(pos, sym);
   386                 return true;
   387             }
   388         }
   389         return true;
   390     }
   392 /* *************************************************************************
   393  * Class name generation
   394  **************************************************************************/
   396     /** Return name of local class.
   397      *  This is of the form    <enclClass> $ n <classname>
   398      *  where
   399      *    enclClass is the flat name of the enclosing class,
   400      *    classname is the simple name of the local class
   401      */
   402     Name localClassName(ClassSymbol c) {
   403         for (int i=1; ; i++) {
   404             Name flatname = names.
   405                 fromString("" + c.owner.enclClass().flatname +
   406                            syntheticNameChar + i +
   407                            c.name);
   408             if (compiled.get(flatname) == null) return flatname;
   409         }
   410     }
   412 /* *************************************************************************
   413  * Type Checking
   414  **************************************************************************/
   416     /**
   417      * A check context is an object that can be used to perform compatibility
   418      * checks - depending on the check context, meaning of 'compatibility' might
   419      * vary significantly.
   420      */
   421     interface CheckContext {
   422         /**
   423          * Is type 'found' compatible with type 'req' in given context
   424          */
   425         boolean compatible(Type found, Type req, Warner warn);
   426         /**
   427          * Report a check error
   428          */
   429         void report(DiagnosticPosition pos, JCDiagnostic details);
   430         /**
   431          * Obtain a warner for this check context
   432          */
   433         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   435         public Infer.InferenceContext inferenceContext();
   436     }
   438     /**
   439      * This class represent a check context that is nested within another check
   440      * context - useful to check sub-expressions. The default behavior simply
   441      * redirects all method calls to the enclosing check context leveraging
   442      * the forwarding pattern.
   443      */
   444     static class NestedCheckContext implements CheckContext {
   445         CheckContext enclosingContext;
   447         NestedCheckContext(CheckContext enclosingContext) {
   448             this.enclosingContext = enclosingContext;
   449         }
   451         public boolean compatible(Type found, Type req, Warner warn) {
   452             return enclosingContext.compatible(found, req, warn);
   453         }
   455         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   456             enclosingContext.report(pos, details);
   457         }
   459         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   460             return enclosingContext.checkWarner(pos, found, req);
   461         }
   463         public Infer.InferenceContext inferenceContext() {
   464             return enclosingContext.inferenceContext();
   465         }
   466     }
   468     /**
   469      * Check context to be used when evaluating assignment/return statements
   470      */
   471     CheckContext basicHandler = new CheckContext() {
   472         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   473             log.error(pos, "prob.found.req", details);
   474         }
   475         public boolean compatible(Type found, Type req, Warner warn) {
   476             return types.isAssignable(found, req, warn);
   477         }
   479         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   480             return convertWarner(pos, found, req);
   481         }
   483         public InferenceContext inferenceContext() {
   484             return infer.emptyContext;
   485         }
   486     };
   488     /** Check that a given type is assignable to a given proto-type.
   489      *  If it is, return the type, otherwise return errType.
   490      *  @param pos        Position to be used for error reporting.
   491      *  @param found      The type that was found.
   492      *  @param req        The type that was required.
   493      */
   494     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   495         return checkType(pos, found, req, basicHandler);
   496     }
   498     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   499         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   500         if (inferenceContext.free(req)) {
   501             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   502                 @Override
   503                 public void typesInferred(InferenceContext inferenceContext) {
   504                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   505                 }
   506             });
   507         }
   508         if (req.tag == ERROR)
   509             return req;
   510         if (req.tag == NONE)
   511             return found;
   512         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   513             return found;
   514         } else {
   515             if (found.tag <= DOUBLE && req.tag <= DOUBLE) {
   516                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   517                 return types.createErrorType(found);
   518             }
   519             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   520             return types.createErrorType(found);
   521         }
   522     }
   524     /** Check that a given type can be cast to a given target type.
   525      *  Return the result of the cast.
   526      *  @param pos        Position to be used for error reporting.
   527      *  @param found      The type that is being cast.
   528      *  @param req        The target type of the cast.
   529      */
   530     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   531         return checkCastable(pos, found, req, basicHandler);
   532     }
   533     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   534         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   535             return req;
   536         } else {
   537             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   538             return types.createErrorType(found);
   539         }
   540     }
   542     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   543      * The problem should only be reported for non-292 cast
   544      */
   545     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   546         if (!tree.type.isErroneous() &&
   547             (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   548             && types.isSameType(tree.expr.type, tree.clazz.type)
   549             && !is292targetTypeCast(tree)) {
   550             log.warning(Lint.LintCategory.CAST,
   551                     tree.pos(), "redundant.cast", tree.expr.type);
   552         }
   553     }
   554     //where
   555             private boolean is292targetTypeCast(JCTypeCast tree) {
   556                 boolean is292targetTypeCast = false;
   557                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   558                 if (expr.hasTag(APPLY)) {
   559                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   560                     Symbol sym = TreeInfo.symbol(apply.meth);
   561                     is292targetTypeCast = sym != null &&
   562                         sym.kind == MTH &&
   563                         (sym.flags() & HYPOTHETICAL) != 0;
   564                 }
   565                 return is292targetTypeCast;
   566             }
   570 //where
   571         /** Is type a type variable, or a (possibly multi-dimensional) array of
   572          *  type variables?
   573          */
   574         boolean isTypeVar(Type t) {
   575             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   576         }
   578     /** Check that a type is within some bounds.
   579      *
   580      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   581      *  type argument.
   582      *  @param pos           Position to be used for error reporting.
   583      *  @param a             The type that should be bounded by bs.
   584      *  @param bs            The bound.
   585      */
   586     private boolean checkExtends(Type a, Type bound) {
   587          if (a.isUnbound()) {
   588              return true;
   589          } else if (a.tag != WILDCARD) {
   590              a = types.upperBound(a);
   591              return types.isSubtype(a, bound);
   592          } else if (a.isExtendsBound()) {
   593              return types.isCastable(bound, types.upperBound(a), Warner.noWarnings);
   594          } else if (a.isSuperBound()) {
   595              return !types.notSoftSubtype(types.lowerBound(a), bound);
   596          }
   597          return true;
   598      }
   600     /** Check that type is different from 'void'.
   601      *  @param pos           Position to be used for error reporting.
   602      *  @param t             The type to be checked.
   603      */
   604     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   605         if (t.tag == VOID) {
   606             log.error(pos, "void.not.allowed.here");
   607             return types.createErrorType(t);
   608         } else {
   609             return t;
   610         }
   611     }
   613     /** Check that type is a class or interface type.
   614      *  @param pos           Position to be used for error reporting.
   615      *  @param t             The type to be checked.
   616      */
   617     Type checkClassType(DiagnosticPosition pos, Type t) {
   618         if (t.tag != CLASS && t.tag != ERROR)
   619             return typeTagError(pos,
   620                                 diags.fragment("type.req.class"),
   621                                 (t.tag == TYPEVAR)
   622                                 ? diags.fragment("type.parameter", t)
   623                                 : t);
   624         else
   625             return t;
   626     }
   628     /** Check that type is a class or interface type.
   629      *  @param pos           Position to be used for error reporting.
   630      *  @param t             The type to be checked.
   631      *  @param noBounds    True if type bounds are illegal here.
   632      */
   633     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   634         t = checkClassType(pos, t);
   635         if (noBounds && t.isParameterized()) {
   636             List<Type> args = t.getTypeArguments();
   637             while (args.nonEmpty()) {
   638                 if (args.head.tag == WILDCARD)
   639                     return typeTagError(pos,
   640                                         diags.fragment("type.req.exact"),
   641                                         args.head);
   642                 args = args.tail;
   643             }
   644         }
   645         return t;
   646     }
   648     /** Check that type is a reifiable class, interface or array type.
   649      *  @param pos           Position to be used for error reporting.
   650      *  @param t             The type to be checked.
   651      */
   652     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   653         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   654             return typeTagError(pos,
   655                                 diags.fragment("type.req.class.array"),
   656                                 t);
   657         } else if (!types.isReifiable(t)) {
   658             log.error(pos, "illegal.generic.type.for.instof");
   659             return types.createErrorType(t);
   660         } else {
   661             return t;
   662         }
   663     }
   665     /** Check that type is a reference type, i.e. a class, interface or array type
   666      *  or a type variable.
   667      *  @param pos           Position to be used for error reporting.
   668      *  @param t             The type to be checked.
   669      */
   670     Type checkRefType(DiagnosticPosition pos, Type t) {
   671         switch (t.tag) {
   672         case CLASS:
   673         case ARRAY:
   674         case TYPEVAR:
   675         case WILDCARD:
   676         case ERROR:
   677             return t;
   678         default:
   679             return typeTagError(pos,
   680                                 diags.fragment("type.req.ref"),
   681                                 t);
   682         }
   683     }
   685     /** Check that each type is a reference type, i.e. a class, interface or array type
   686      *  or a type variable.
   687      *  @param trees         Original trees, used for error reporting.
   688      *  @param types         The types to be checked.
   689      */
   690     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   691         List<JCExpression> tl = trees;
   692         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   693             l.head = checkRefType(tl.head.pos(), l.head);
   694             tl = tl.tail;
   695         }
   696         return types;
   697     }
   699     /** Check that type is a null or reference type.
   700      *  @param pos           Position to be used for error reporting.
   701      *  @param t             The type to be checked.
   702      */
   703     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   704         switch (t.tag) {
   705         case CLASS:
   706         case ARRAY:
   707         case TYPEVAR:
   708         case WILDCARD:
   709         case BOT:
   710         case ERROR:
   711             return t;
   712         default:
   713             return typeTagError(pos,
   714                                 diags.fragment("type.req.ref"),
   715                                 t);
   716         }
   717     }
   719     /** Check that flag set does not contain elements of two conflicting sets. s
   720      *  Return true if it doesn't.
   721      *  @param pos           Position to be used for error reporting.
   722      *  @param flags         The set of flags to be checked.
   723      *  @param set1          Conflicting flags set #1.
   724      *  @param set2          Conflicting flags set #2.
   725      */
   726     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   727         if ((flags & set1) != 0 && (flags & set2) != 0) {
   728             log.error(pos,
   729                       "illegal.combination.of.modifiers",
   730                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   731                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   732             return false;
   733         } else
   734             return true;
   735     }
   737     /** Check that usage of diamond operator is correct (i.e. diamond should not
   738      * be used with non-generic classes or in anonymous class creation expressions)
   739      */
   740     Type checkDiamond(JCNewClass tree, Type t) {
   741         if (!TreeInfo.isDiamond(tree) ||
   742                 t.isErroneous()) {
   743             return checkClassType(tree.clazz.pos(), t, true);
   744         } else if (tree.def != null) {
   745             log.error(tree.clazz.pos(),
   746                     "cant.apply.diamond.1",
   747                     t, diags.fragment("diamond.and.anon.class", t));
   748             return types.createErrorType(t);
   749         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   750             log.error(tree.clazz.pos(),
   751                 "cant.apply.diamond.1",
   752                 t, diags.fragment("diamond.non.generic", t));
   753             return types.createErrorType(t);
   754         } else if (tree.typeargs != null &&
   755                 tree.typeargs.nonEmpty()) {
   756             log.error(tree.clazz.pos(),
   757                 "cant.apply.diamond.1",
   758                 t, diags.fragment("diamond.and.explicit.params", t));
   759             return types.createErrorType(t);
   760         } else {
   761             return t;
   762         }
   763     }
   765     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   766         MethodSymbol m = tree.sym;
   767         if (!allowSimplifiedVarargs) return;
   768         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   769         Type varargElemType = null;
   770         if (m.isVarArgs()) {
   771             varargElemType = types.elemtype(tree.params.last().type);
   772         }
   773         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   774             if (varargElemType != null) {
   775                 log.error(tree,
   776                         "varargs.invalid.trustme.anno",
   777                         syms.trustMeType.tsym,
   778                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   779             } else {
   780                 log.error(tree,
   781                             "varargs.invalid.trustme.anno",
   782                             syms.trustMeType.tsym,
   783                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   784             }
   785         } else if (hasTrustMeAnno && varargElemType != null &&
   786                             types.isReifiable(varargElemType)) {
   787             warnUnsafeVararg(tree,
   788                             "varargs.redundant.trustme.anno",
   789                             syms.trustMeType.tsym,
   790                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   791         }
   792         else if (!hasTrustMeAnno && varargElemType != null &&
   793                 !types.isReifiable(varargElemType)) {
   794             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   795         }
   796     }
   797     //where
   798         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   799             return (s.flags() & VARARGS) != 0 &&
   800                 (s.isConstructor() ||
   801                     (s.flags() & (STATIC | FINAL)) != 0);
   802         }
   804     Type checkMethod(Type owntype,
   805                             Symbol sym,
   806                             Env<AttrContext> env,
   807                             final List<JCExpression> argtrees,
   808                             List<Type> argtypes,
   809                             boolean useVarargs,
   810                             boolean unchecked) {
   811         // System.out.println("call   : " + env.tree);
   812         // System.out.println("method : " + owntype);
   813         // System.out.println("actuals: " + argtypes);
   814         List<Type> formals = owntype.getParameterTypes();
   815         Type last = useVarargs ? formals.last() : null;
   816         if (sym.name==names.init &&
   817                 sym.owner == syms.enumSym)
   818                 formals = formals.tail.tail;
   819         List<JCExpression> args = argtrees;
   820         while (formals.head != last) {
   821             JCTree arg = args.head;
   822             Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   823             assertConvertible(arg, arg.type, formals.head, warn);
   824             args = args.tail;
   825             formals = formals.tail;
   826         }
   827         if (useVarargs) {
   828             Type varArg = types.elemtype(last);
   829             while (args.tail != null) {
   830                 JCTree arg = args.head;
   831                 Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   832                 assertConvertible(arg, arg.type, varArg, warn);
   833                 args = args.tail;
   834             }
   835         } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   836             // non-varargs call to varargs method
   837             Type varParam = owntype.getParameterTypes().last();
   838             Type lastArg = argtypes.last();
   839             if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   840                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   841                 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   842                         types.elemtype(varParam), varParam);
   843         }
   844         if (unchecked) {
   845             warnUnchecked(env.tree.pos(),
   846                     "unchecked.meth.invocation.applied",
   847                     kindName(sym),
   848                     sym.name,
   849                     rs.methodArguments(sym.type.getParameterTypes()),
   850                     rs.methodArguments(argtypes),
   851                     kindName(sym.location()),
   852                     sym.location());
   853            owntype = new MethodType(owntype.getParameterTypes(),
   854                    types.erasure(owntype.getReturnType()),
   855                    types.erasure(owntype.getThrownTypes()),
   856                    syms.methodClass);
   857         }
   858         if (useVarargs) {
   859             JCTree tree = env.tree;
   860             Type argtype = owntype.getParameterTypes().last();
   861             if (!types.isReifiable(argtype) &&
   862                     (!allowSimplifiedVarargs ||
   863                     sym.attribute(syms.trustMeType.tsym) == null ||
   864                     !isTrustMeAllowedOnMethod(sym))) {
   865                 warnUnchecked(env.tree.pos(),
   866                                   "unchecked.generic.array.creation",
   867                                   argtype);
   868             }
   869             Type elemtype = types.elemtype(argtype);
   870             switch (tree.getTag()) {
   871                 case APPLY:
   872                     ((JCMethodInvocation) tree).varargsElement = elemtype;
   873                     break;
   874                 case NEWCLASS:
   875                     ((JCNewClass) tree).varargsElement = elemtype;
   876                     break;
   877                 default:
   878                     throw new AssertionError(""+tree);
   879             }
   880          }
   881          return owntype;
   882     }
   883     //where
   884         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   885             if (types.isConvertible(actual, formal, warn))
   886                 return;
   888             if (formal.isCompound()
   889                 && types.isSubtype(actual, types.supertype(formal))
   890                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   891                 return;
   892         }
   894     /**
   895      * Check that type 't' is a valid instantiation of a generic class
   896      * (see JLS 4.5)
   897      *
   898      * @param t class type to be checked
   899      * @return true if 't' is well-formed
   900      */
   901     public boolean checkValidGenericType(Type t) {
   902         return firstIncompatibleTypeArg(t) == null;
   903     }
   904     //WHERE
   905         private Type firstIncompatibleTypeArg(Type type) {
   906             List<Type> formals = type.tsym.type.allparams();
   907             List<Type> actuals = type.allparams();
   908             List<Type> args = type.getTypeArguments();
   909             List<Type> forms = type.tsym.type.getTypeArguments();
   910             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   912             // For matching pairs of actual argument types `a' and
   913             // formal type parameters with declared bound `b' ...
   914             while (args.nonEmpty() && forms.nonEmpty()) {
   915                 // exact type arguments needs to know their
   916                 // bounds (for upper and lower bound
   917                 // calculations).  So we create new bounds where
   918                 // type-parameters are replaced with actuals argument types.
   919                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   920                 args = args.tail;
   921                 forms = forms.tail;
   922             }
   924             args = type.getTypeArguments();
   925             List<Type> tvars_cap = types.substBounds(formals,
   926                                       formals,
   927                                       types.capture(type).allparams());
   928             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   929                 // Let the actual arguments know their bound
   930                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   931                 args = args.tail;
   932                 tvars_cap = tvars_cap.tail;
   933             }
   935             args = type.getTypeArguments();
   936             List<Type> bounds = bounds_buf.toList();
   938             while (args.nonEmpty() && bounds.nonEmpty()) {
   939                 Type actual = args.head;
   940                 if (!isTypeArgErroneous(actual) &&
   941                         !bounds.head.isErroneous() &&
   942                         !checkExtends(actual, bounds.head)) {
   943                     return args.head;
   944                 }
   945                 args = args.tail;
   946                 bounds = bounds.tail;
   947             }
   949             args = type.getTypeArguments();
   950             bounds = bounds_buf.toList();
   952             for (Type arg : types.capture(type).getTypeArguments()) {
   953                 if (arg.tag == TYPEVAR &&
   954                         arg.getUpperBound().isErroneous() &&
   955                         !bounds.head.isErroneous() &&
   956                         !isTypeArgErroneous(args.head)) {
   957                     return args.head;
   958                 }
   959                 bounds = bounds.tail;
   960                 args = args.tail;
   961             }
   963             return null;
   964         }
   965         //where
   966         boolean isTypeArgErroneous(Type t) {
   967             return isTypeArgErroneous.visit(t);
   968         }
   970         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
   971             public Boolean visitType(Type t, Void s) {
   972                 return t.isErroneous();
   973             }
   974             @Override
   975             public Boolean visitTypeVar(TypeVar t, Void s) {
   976                 return visit(t.getUpperBound());
   977             }
   978             @Override
   979             public Boolean visitCapturedType(CapturedType t, Void s) {
   980                 return visit(t.getUpperBound()) ||
   981                         visit(t.getLowerBound());
   982             }
   983             @Override
   984             public Boolean visitWildcardType(WildcardType t, Void s) {
   985                 return visit(t.type);
   986             }
   987         };
   989     /** Check that given modifiers are legal for given symbol and
   990      *  return modifiers together with any implicit modififiers for that symbol.
   991      *  Warning: we can't use flags() here since this method
   992      *  is called during class enter, when flags() would cause a premature
   993      *  completion.
   994      *  @param pos           Position to be used for error reporting.
   995      *  @param flags         The set of modifiers given in a definition.
   996      *  @param sym           The defined symbol.
   997      */
   998     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   999         long mask;
  1000         long implicit = 0;
  1001         switch (sym.kind) {
  1002         case VAR:
  1003             if (sym.owner.kind != TYP)
  1004                 mask = LocalVarFlags;
  1005             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1006                 mask = implicit = InterfaceVarFlags;
  1007             else
  1008                 mask = VarFlags;
  1009             break;
  1010         case MTH:
  1011             if (sym.name == names.init) {
  1012                 if ((sym.owner.flags_field & ENUM) != 0) {
  1013                     // enum constructors cannot be declared public or
  1014                     // protected and must be implicitly or explicitly
  1015                     // private
  1016                     implicit = PRIVATE;
  1017                     mask = PRIVATE;
  1018                 } else
  1019                     mask = ConstructorFlags;
  1020             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
  1021                 mask = implicit = InterfaceMethodFlags;
  1022             else {
  1023                 mask = MethodFlags;
  1025             // Imply STRICTFP if owner has STRICTFP set.
  1026             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1027               implicit |= sym.owner.flags_field & STRICTFP;
  1028             break;
  1029         case TYP:
  1030             if (sym.isLocal()) {
  1031                 mask = LocalClassFlags;
  1032                 if (sym.name.isEmpty()) { // Anonymous class
  1033                     // Anonymous classes in static methods are themselves static;
  1034                     // that's why we admit STATIC here.
  1035                     mask |= STATIC;
  1036                     // JLS: Anonymous classes are final.
  1037                     implicit |= FINAL;
  1039                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1040                     (flags & ENUM) != 0)
  1041                     log.error(pos, "enums.must.be.static");
  1042             } else if (sym.owner.kind == TYP) {
  1043                 mask = MemberClassFlags;
  1044                 if (sym.owner.owner.kind == PCK ||
  1045                     (sym.owner.flags_field & STATIC) != 0)
  1046                     mask |= STATIC;
  1047                 else if ((flags & ENUM) != 0)
  1048                     log.error(pos, "enums.must.be.static");
  1049                 // Nested interfaces and enums are always STATIC (Spec ???)
  1050                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1051             } else {
  1052                 mask = ClassFlags;
  1054             // Interfaces are always ABSTRACT
  1055             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1057             if ((flags & ENUM) != 0) {
  1058                 // enums can't be declared abstract or final
  1059                 mask &= ~(ABSTRACT | FINAL);
  1060                 implicit |= implicitEnumFinalFlag(tree);
  1062             // Imply STRICTFP if owner has STRICTFP set.
  1063             implicit |= sym.owner.flags_field & STRICTFP;
  1064             break;
  1065         default:
  1066             throw new AssertionError();
  1068         long illegal = flags & StandardFlags & ~mask;
  1069         if (illegal != 0) {
  1070             if ((illegal & INTERFACE) != 0) {
  1071                 log.error(pos, "intf.not.allowed.here");
  1072                 mask |= INTERFACE;
  1074             else {
  1075                 log.error(pos,
  1076                           "mod.not.allowed.here", asFlagSet(illegal));
  1079         else if ((sym.kind == TYP ||
  1080                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1081                   // in the presence of inner classes. Should it be deleted here?
  1082                   checkDisjoint(pos, flags,
  1083                                 ABSTRACT,
  1084                                 PRIVATE | STATIC))
  1085                  &&
  1086                  checkDisjoint(pos, flags,
  1087                                ABSTRACT | INTERFACE,
  1088                                FINAL | NATIVE | SYNCHRONIZED)
  1089                  &&
  1090                  checkDisjoint(pos, flags,
  1091                                PUBLIC,
  1092                                PRIVATE | PROTECTED)
  1093                  &&
  1094                  checkDisjoint(pos, flags,
  1095                                PRIVATE,
  1096                                PUBLIC | PROTECTED)
  1097                  &&
  1098                  checkDisjoint(pos, flags,
  1099                                FINAL,
  1100                                VOLATILE)
  1101                  &&
  1102                  (sym.kind == TYP ||
  1103                   checkDisjoint(pos, flags,
  1104                                 ABSTRACT | NATIVE,
  1105                                 STRICTFP))) {
  1106             // skip
  1108         return flags & (mask | ~StandardFlags) | implicit;
  1112     /** Determine if this enum should be implicitly final.
  1114      *  If the enum has no specialized enum contants, it is final.
  1116      *  If the enum does have specialized enum contants, it is
  1117      *  <i>not</i> final.
  1118      */
  1119     private long implicitEnumFinalFlag(JCTree tree) {
  1120         if (!tree.hasTag(CLASSDEF)) return 0;
  1121         class SpecialTreeVisitor extends JCTree.Visitor {
  1122             boolean specialized;
  1123             SpecialTreeVisitor() {
  1124                 this.specialized = false;
  1125             };
  1127             @Override
  1128             public void visitTree(JCTree tree) { /* no-op */ }
  1130             @Override
  1131             public void visitVarDef(JCVariableDecl tree) {
  1132                 if ((tree.mods.flags & ENUM) != 0) {
  1133                     if (tree.init instanceof JCNewClass &&
  1134                         ((JCNewClass) tree.init).def != null) {
  1135                         specialized = true;
  1141         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1142         JCClassDecl cdef = (JCClassDecl) tree;
  1143         for (JCTree defs: cdef.defs) {
  1144             defs.accept(sts);
  1145             if (sts.specialized) return 0;
  1147         return FINAL;
  1150 /* *************************************************************************
  1151  * Type Validation
  1152  **************************************************************************/
  1154     /** Validate a type expression. That is,
  1155      *  check that all type arguments of a parametric type are within
  1156      *  their bounds. This must be done in a second phase after type attributon
  1157      *  since a class might have a subclass as type parameter bound. E.g:
  1159      *  class B<A extends C> { ... }
  1160      *  class C extends B<C> { ... }
  1162      *  and we can't make sure that the bound is already attributed because
  1163      *  of possible cycles.
  1165      * Visitor method: Validate a type expression, if it is not null, catching
  1166      *  and reporting any completion failures.
  1167      */
  1168     void validate(JCTree tree, Env<AttrContext> env) {
  1169         validate(tree, env, true);
  1171     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1172         new Validator(env).validateTree(tree, checkRaw, true);
  1175     /** Visitor method: Validate a list of type expressions.
  1176      */
  1177     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1178         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1179             validate(l.head, env);
  1182     /** A visitor class for type validation.
  1183      */
  1184     class Validator extends JCTree.Visitor {
  1186         boolean isOuter;
  1187         Env<AttrContext> env;
  1189         Validator(Env<AttrContext> env) {
  1190             this.env = env;
  1193         @Override
  1194         public void visitTypeArray(JCArrayTypeTree tree) {
  1195             tree.elemtype.accept(this);
  1198         @Override
  1199         public void visitTypeApply(JCTypeApply tree) {
  1200             if (tree.type.tag == CLASS) {
  1201                 List<JCExpression> args = tree.arguments;
  1202                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1204                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1205                 if (incompatibleArg != null) {
  1206                     for (JCTree arg : tree.arguments) {
  1207                         if (arg.type == incompatibleArg) {
  1208                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1210                         forms = forms.tail;
  1214                 forms = tree.type.tsym.type.getTypeArguments();
  1216                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1218                 // For matching pairs of actual argument types `a' and
  1219                 // formal type parameters with declared bound `b' ...
  1220                 while (args.nonEmpty() && forms.nonEmpty()) {
  1221                     validateTree(args.head,
  1222                             !(isOuter && is_java_lang_Class),
  1223                             false);
  1224                     args = args.tail;
  1225                     forms = forms.tail;
  1228                 // Check that this type is either fully parameterized, or
  1229                 // not parameterized at all.
  1230                 if (tree.type.getEnclosingType().isRaw())
  1231                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1232                 if (tree.clazz.hasTag(SELECT))
  1233                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1237         @Override
  1238         public void visitTypeParameter(JCTypeParameter tree) {
  1239             validateTrees(tree.bounds, true, isOuter);
  1240             checkClassBounds(tree.pos(), tree.type);
  1243         @Override
  1244         public void visitWildcard(JCWildcard tree) {
  1245             if (tree.inner != null)
  1246                 validateTree(tree.inner, true, isOuter);
  1249         @Override
  1250         public void visitSelect(JCFieldAccess tree) {
  1251             if (tree.type.tag == CLASS) {
  1252                 visitSelectInternal(tree);
  1254                 // Check that this type is either fully parameterized, or
  1255                 // not parameterized at all.
  1256                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1257                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1261         public void visitSelectInternal(JCFieldAccess tree) {
  1262             if (tree.type.tsym.isStatic() &&
  1263                 tree.selected.type.isParameterized()) {
  1264                 // The enclosing type is not a class, so we are
  1265                 // looking at a static member type.  However, the
  1266                 // qualifying expression is parameterized.
  1267                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1268             } else {
  1269                 // otherwise validate the rest of the expression
  1270                 tree.selected.accept(this);
  1274         /** Default visitor method: do nothing.
  1275          */
  1276         @Override
  1277         public void visitTree(JCTree tree) {
  1280         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1281             try {
  1282                 if (tree != null) {
  1283                     this.isOuter = isOuter;
  1284                     tree.accept(this);
  1285                     if (checkRaw)
  1286                         checkRaw(tree, env);
  1288             } catch (CompletionFailure ex) {
  1289                 completionError(tree.pos(), ex);
  1293         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1294             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1295                 validateTree(l.head, checkRaw, isOuter);
  1298         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1299             if (lint.isEnabled(LintCategory.RAW) &&
  1300                 tree.type.tag == CLASS &&
  1301                 !TreeInfo.isDiamond(tree) &&
  1302                 !withinAnonConstr(env) &&
  1303                 tree.type.isRaw()) {
  1304                 log.warning(LintCategory.RAW,
  1305                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1309         boolean withinAnonConstr(Env<AttrContext> env) {
  1310             return env.enclClass.name.isEmpty() &&
  1311                     env.enclMethod != null && env.enclMethod.name == names.init;
  1315 /* *************************************************************************
  1316  * Exception checking
  1317  **************************************************************************/
  1319     /* The following methods treat classes as sets that contain
  1320      * the class itself and all their subclasses
  1321      */
  1323     /** Is given type a subtype of some of the types in given list?
  1324      */
  1325     boolean subset(Type t, List<Type> ts) {
  1326         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1327             if (types.isSubtype(t, l.head)) return true;
  1328         return false;
  1331     /** Is given type a subtype or supertype of
  1332      *  some of the types in given list?
  1333      */
  1334     boolean intersects(Type t, List<Type> ts) {
  1335         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1336             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1337         return false;
  1340     /** Add type set to given type list, unless it is a subclass of some class
  1341      *  in the list.
  1342      */
  1343     List<Type> incl(Type t, List<Type> ts) {
  1344         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1347     /** Remove type set from type set list.
  1348      */
  1349     List<Type> excl(Type t, List<Type> ts) {
  1350         if (ts.isEmpty()) {
  1351             return ts;
  1352         } else {
  1353             List<Type> ts1 = excl(t, ts.tail);
  1354             if (types.isSubtype(ts.head, t)) return ts1;
  1355             else if (ts1 == ts.tail) return ts;
  1356             else return ts1.prepend(ts.head);
  1360     /** Form the union of two type set lists.
  1361      */
  1362     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1363         List<Type> ts = ts1;
  1364         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1365             ts = incl(l.head, ts);
  1366         return ts;
  1369     /** Form the difference of two type lists.
  1370      */
  1371     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1372         List<Type> ts = ts1;
  1373         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1374             ts = excl(l.head, ts);
  1375         return ts;
  1378     /** Form the intersection of two type lists.
  1379      */
  1380     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1381         List<Type> ts = List.nil();
  1382         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1383             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1384         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1385             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1386         return ts;
  1389     /** Is exc an exception symbol that need not be declared?
  1390      */
  1391     boolean isUnchecked(ClassSymbol exc) {
  1392         return
  1393             exc.kind == ERR ||
  1394             exc.isSubClass(syms.errorType.tsym, types) ||
  1395             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1398     /** Is exc an exception type that need not be declared?
  1399      */
  1400     boolean isUnchecked(Type exc) {
  1401         return
  1402             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1403             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1404             exc.tag == BOT;
  1407     /** Same, but handling completion failures.
  1408      */
  1409     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1410         try {
  1411             return isUnchecked(exc);
  1412         } catch (CompletionFailure ex) {
  1413             completionError(pos, ex);
  1414             return true;
  1418     /** Is exc handled by given exception list?
  1419      */
  1420     boolean isHandled(Type exc, List<Type> handled) {
  1421         return isUnchecked(exc) || subset(exc, handled);
  1424     /** Return all exceptions in thrown list that are not in handled list.
  1425      *  @param thrown     The list of thrown exceptions.
  1426      *  @param handled    The list of handled exceptions.
  1427      */
  1428     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1429         List<Type> unhandled = List.nil();
  1430         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1431             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1432         return unhandled;
  1435 /* *************************************************************************
  1436  * Overriding/Implementation checking
  1437  **************************************************************************/
  1439     /** The level of access protection given by a flag set,
  1440      *  where PRIVATE is highest and PUBLIC is lowest.
  1441      */
  1442     static int protection(long flags) {
  1443         switch ((short)(flags & AccessFlags)) {
  1444         case PRIVATE: return 3;
  1445         case PROTECTED: return 1;
  1446         default:
  1447         case PUBLIC: return 0;
  1448         case 0: return 2;
  1452     /** A customized "cannot override" error message.
  1453      *  @param m      The overriding method.
  1454      *  @param other  The overridden method.
  1455      *  @return       An internationalized string.
  1456      */
  1457     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1458         String key;
  1459         if ((other.owner.flags() & INTERFACE) == 0)
  1460             key = "cant.override";
  1461         else if ((m.owner.flags() & INTERFACE) == 0)
  1462             key = "cant.implement";
  1463         else
  1464             key = "clashes.with";
  1465         return diags.fragment(key, m, m.location(), other, other.location());
  1468     /** A customized "override" warning message.
  1469      *  @param m      The overriding method.
  1470      *  @param other  The overridden method.
  1471      *  @return       An internationalized string.
  1472      */
  1473     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1474         String key;
  1475         if ((other.owner.flags() & INTERFACE) == 0)
  1476             key = "unchecked.override";
  1477         else if ((m.owner.flags() & INTERFACE) == 0)
  1478             key = "unchecked.implement";
  1479         else
  1480             key = "unchecked.clash.with";
  1481         return diags.fragment(key, m, m.location(), other, other.location());
  1484     /** A customized "override" warning message.
  1485      *  @param m      The overriding method.
  1486      *  @param other  The overridden method.
  1487      *  @return       An internationalized string.
  1488      */
  1489     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1490         String key;
  1491         if ((other.owner.flags() & INTERFACE) == 0)
  1492             key = "varargs.override";
  1493         else  if ((m.owner.flags() & INTERFACE) == 0)
  1494             key = "varargs.implement";
  1495         else
  1496             key = "varargs.clash.with";
  1497         return diags.fragment(key, m, m.location(), other, other.location());
  1500     /** Check that this method conforms with overridden method 'other'.
  1501      *  where `origin' is the class where checking started.
  1502      *  Complications:
  1503      *  (1) Do not check overriding of synthetic methods
  1504      *      (reason: they might be final).
  1505      *      todo: check whether this is still necessary.
  1506      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1507      *      than the method it implements. Augment the proxy methods with the
  1508      *      undeclared exceptions in this case.
  1509      *  (3) When generics are enabled, admit the case where an interface proxy
  1510      *      has a result type
  1511      *      extended by the result type of the method it implements.
  1512      *      Change the proxies result type to the smaller type in this case.
  1514      *  @param tree         The tree from which positions
  1515      *                      are extracted for errors.
  1516      *  @param m            The overriding method.
  1517      *  @param other        The overridden method.
  1518      *  @param origin       The class of which the overriding method
  1519      *                      is a member.
  1520      */
  1521     void checkOverride(JCTree tree,
  1522                        MethodSymbol m,
  1523                        MethodSymbol other,
  1524                        ClassSymbol origin) {
  1525         // Don't check overriding of synthetic methods or by bridge methods.
  1526         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1527             return;
  1530         // Error if static method overrides instance method (JLS 8.4.6.2).
  1531         if ((m.flags() & STATIC) != 0 &&
  1532                    (other.flags() & STATIC) == 0) {
  1533             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1534                       cannotOverride(m, other));
  1535             return;
  1538         // Error if instance method overrides static or final
  1539         // method (JLS 8.4.6.1).
  1540         if ((other.flags() & FINAL) != 0 ||
  1541                  (m.flags() & STATIC) == 0 &&
  1542                  (other.flags() & STATIC) != 0) {
  1543             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1544                       cannotOverride(m, other),
  1545                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1546             return;
  1549         if ((m.owner.flags() & ANNOTATION) != 0) {
  1550             // handled in validateAnnotationMethod
  1551             return;
  1554         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1555         if ((origin.flags() & INTERFACE) == 0 &&
  1556                  protection(m.flags()) > protection(other.flags())) {
  1557             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1558                       cannotOverride(m, other),
  1559                       other.flags() == 0 ?
  1560                           Flag.PACKAGE :
  1561                           asFlagSet(other.flags() & AccessFlags));
  1562             return;
  1565         Type mt = types.memberType(origin.type, m);
  1566         Type ot = types.memberType(origin.type, other);
  1567         // Error if overriding result type is different
  1568         // (or, in the case of generics mode, not a subtype) of
  1569         // overridden result type. We have to rename any type parameters
  1570         // before comparing types.
  1571         List<Type> mtvars = mt.getTypeArguments();
  1572         List<Type> otvars = ot.getTypeArguments();
  1573         Type mtres = mt.getReturnType();
  1574         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1576         overrideWarner.clear();
  1577         boolean resultTypesOK =
  1578             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1579         if (!resultTypesOK) {
  1580             if (!allowCovariantReturns &&
  1581                 m.owner != origin &&
  1582                 m.owner.isSubClass(other.owner, types)) {
  1583                 // allow limited interoperability with covariant returns
  1584             } else {
  1585                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1586                           "override.incompatible.ret",
  1587                           cannotOverride(m, other),
  1588                           mtres, otres);
  1589                 return;
  1591         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1592             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1593                     "override.unchecked.ret",
  1594                     uncheckedOverrides(m, other),
  1595                     mtres, otres);
  1598         // Error if overriding method throws an exception not reported
  1599         // by overridden method.
  1600         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1601         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1602         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1603         if (unhandledErased.nonEmpty()) {
  1604             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1605                       "override.meth.doesnt.throw",
  1606                       cannotOverride(m, other),
  1607                       unhandledUnerased.head);
  1608             return;
  1610         else if (unhandledUnerased.nonEmpty()) {
  1611             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1612                           "override.unchecked.thrown",
  1613                          cannotOverride(m, other),
  1614                          unhandledUnerased.head);
  1615             return;
  1618         // Optional warning if varargs don't agree
  1619         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1620             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1621             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1622                         ((m.flags() & Flags.VARARGS) != 0)
  1623                         ? "override.varargs.missing"
  1624                         : "override.varargs.extra",
  1625                         varargsOverrides(m, other));
  1628         // Warn if instance method overrides bridge method (compiler spec ??)
  1629         if ((other.flags() & BRIDGE) != 0) {
  1630             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1631                         uncheckedOverrides(m, other));
  1634         // Warn if a deprecated method overridden by a non-deprecated one.
  1635         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1636             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1639     // where
  1640         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1641             // If the method, m, is defined in an interface, then ignore the issue if the method
  1642             // is only inherited via a supertype and also implemented in the supertype,
  1643             // because in that case, we will rediscover the issue when examining the method
  1644             // in the supertype.
  1645             // If the method, m, is not defined in an interface, then the only time we need to
  1646             // address the issue is when the method is the supertype implemementation: any other
  1647             // case, we will have dealt with when examining the supertype classes
  1648             ClassSymbol mc = m.enclClass();
  1649             Type st = types.supertype(origin.type);
  1650             if (st.tag != CLASS)
  1651                 return true;
  1652             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1654             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1655                 List<Type> intfs = types.interfaces(origin.type);
  1656                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1658             else
  1659                 return (stimpl != m);
  1663     // used to check if there were any unchecked conversions
  1664     Warner overrideWarner = new Warner();
  1666     /** Check that a class does not inherit two concrete methods
  1667      *  with the same signature.
  1668      *  @param pos          Position to be used for error reporting.
  1669      *  @param site         The class type to be checked.
  1670      */
  1671     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1672         Type sup = types.supertype(site);
  1673         if (sup.tag != CLASS) return;
  1675         for (Type t1 = sup;
  1676              t1.tsym.type.isParameterized();
  1677              t1 = types.supertype(t1)) {
  1678             for (Scope.Entry e1 = t1.tsym.members().elems;
  1679                  e1 != null;
  1680                  e1 = e1.sibling) {
  1681                 Symbol s1 = e1.sym;
  1682                 if (s1.kind != MTH ||
  1683                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1684                     !s1.isInheritedIn(site.tsym, types) ||
  1685                     ((MethodSymbol)s1).implementation(site.tsym,
  1686                                                       types,
  1687                                                       true) != s1)
  1688                     continue;
  1689                 Type st1 = types.memberType(t1, s1);
  1690                 int s1ArgsLength = st1.getParameterTypes().length();
  1691                 if (st1 == s1.type) continue;
  1693                 for (Type t2 = sup;
  1694                      t2.tag == CLASS;
  1695                      t2 = types.supertype(t2)) {
  1696                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1697                          e2.scope != null;
  1698                          e2 = e2.next()) {
  1699                         Symbol s2 = e2.sym;
  1700                         if (s2 == s1 ||
  1701                             s2.kind != MTH ||
  1702                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1703                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1704                             !s2.isInheritedIn(site.tsym, types) ||
  1705                             ((MethodSymbol)s2).implementation(site.tsym,
  1706                                                               types,
  1707                                                               true) != s2)
  1708                             continue;
  1709                         Type st2 = types.memberType(t2, s2);
  1710                         if (types.overrideEquivalent(st1, st2))
  1711                             log.error(pos, "concrete.inheritance.conflict",
  1712                                       s1, t1, s2, t2, sup);
  1719     /** Check that classes (or interfaces) do not each define an abstract
  1720      *  method with same name and arguments but incompatible return types.
  1721      *  @param pos          Position to be used for error reporting.
  1722      *  @param t1           The first argument type.
  1723      *  @param t2           The second argument type.
  1724      */
  1725     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1726                                             Type t1,
  1727                                             Type t2) {
  1728         return checkCompatibleAbstracts(pos, t1, t2,
  1729                                         types.makeCompoundType(t1, t2));
  1732     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1733                                             Type t1,
  1734                                             Type t2,
  1735                                             Type site) {
  1736         return firstIncompatibility(pos, t1, t2, site) == null;
  1739     /** Return the first method which is defined with same args
  1740      *  but different return types in two given interfaces, or null if none
  1741      *  exists.
  1742      *  @param t1     The first type.
  1743      *  @param t2     The second type.
  1744      *  @param site   The most derived type.
  1745      *  @returns symbol from t2 that conflicts with one in t1.
  1746      */
  1747     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1748         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1749         closure(t1, interfaces1);
  1750         Map<TypeSymbol,Type> interfaces2;
  1751         if (t1 == t2)
  1752             interfaces2 = interfaces1;
  1753         else
  1754             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1756         for (Type t3 : interfaces1.values()) {
  1757             for (Type t4 : interfaces2.values()) {
  1758                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1759                 if (s != null) return s;
  1762         return null;
  1765     /** Compute all the supertypes of t, indexed by type symbol. */
  1766     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1767         if (t.tag != CLASS) return;
  1768         if (typeMap.put(t.tsym, t) == null) {
  1769             closure(types.supertype(t), typeMap);
  1770             for (Type i : types.interfaces(t))
  1771                 closure(i, typeMap);
  1775     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1776     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1777         if (t.tag != CLASS) return;
  1778         if (typesSkip.get(t.tsym) != null) return;
  1779         if (typeMap.put(t.tsym, t) == null) {
  1780             closure(types.supertype(t), typesSkip, typeMap);
  1781             for (Type i : types.interfaces(t))
  1782                 closure(i, typesSkip, typeMap);
  1786     /** Return the first method in t2 that conflicts with a method from t1. */
  1787     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1788         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1789             Symbol s1 = e1.sym;
  1790             Type st1 = null;
  1791             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1792             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1793             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1794             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1795                 Symbol s2 = e2.sym;
  1796                 if (s1 == s2) continue;
  1797                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1798                 if (st1 == null) st1 = types.memberType(t1, s1);
  1799                 Type st2 = types.memberType(t2, s2);
  1800                 if (types.overrideEquivalent(st1, st2)) {
  1801                     List<Type> tvars1 = st1.getTypeArguments();
  1802                     List<Type> tvars2 = st2.getTypeArguments();
  1803                     Type rt1 = st1.getReturnType();
  1804                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1805                     boolean compat =
  1806                         types.isSameType(rt1, rt2) ||
  1807                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1808                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1809                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1810                          checkCommonOverriderIn(s1,s2,site);
  1811                     if (!compat) {
  1812                         log.error(pos, "types.incompatible.diff.ret",
  1813                             t1, t2, s2.name +
  1814                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1815                         return s2;
  1817                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1818                         !checkCommonOverriderIn(s1, s2, site)) {
  1819                     log.error(pos,
  1820                             "name.clash.same.erasure.no.override",
  1821                             s1, s1.location(),
  1822                             s2, s2.location());
  1823                     return s2;
  1827         return null;
  1829     //WHERE
  1830     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1831         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1832         Type st1 = types.memberType(site, s1);
  1833         Type st2 = types.memberType(site, s2);
  1834         closure(site, supertypes);
  1835         for (Type t : supertypes.values()) {
  1836             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1837                 Symbol s3 = e.sym;
  1838                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1839                 Type st3 = types.memberType(site,s3);
  1840                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1841                     if (s3.owner == site.tsym) {
  1842                         return true;
  1844                     List<Type> tvars1 = st1.getTypeArguments();
  1845                     List<Type> tvars2 = st2.getTypeArguments();
  1846                     List<Type> tvars3 = st3.getTypeArguments();
  1847                     Type rt1 = st1.getReturnType();
  1848                     Type rt2 = st2.getReturnType();
  1849                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1850                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1851                     boolean compat =
  1852                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1853                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1854                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1855                     if (compat)
  1856                         return true;
  1860         return false;
  1863     /** Check that a given method conforms with any method it overrides.
  1864      *  @param tree         The tree from which positions are extracted
  1865      *                      for errors.
  1866      *  @param m            The overriding method.
  1867      */
  1868     void checkOverride(JCTree tree, MethodSymbol m) {
  1869         ClassSymbol origin = (ClassSymbol)m.owner;
  1870         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1871             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1872                 log.error(tree.pos(), "enum.no.finalize");
  1873                 return;
  1875         for (Type t = origin.type; t.tag == CLASS;
  1876              t = types.supertype(t)) {
  1877             if (t != origin.type) {
  1878                 checkOverride(tree, t, origin, m);
  1880             for (Type t2 : types.interfaces(t)) {
  1881                 checkOverride(tree, t2, origin, m);
  1886     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1887         TypeSymbol c = site.tsym;
  1888         Scope.Entry e = c.members().lookup(m.name);
  1889         while (e.scope != null) {
  1890             if (m.overrides(e.sym, origin, types, false)) {
  1891                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1892                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1895             e = e.next();
  1899     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1900         ClashFilter cf = new ClashFilter(origin.type);
  1901         return (cf.accepts(s1) &&
  1902                 cf.accepts(s2) &&
  1903                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1907     /** Check that all abstract members of given class have definitions.
  1908      *  @param pos          Position to be used for error reporting.
  1909      *  @param c            The class.
  1910      */
  1911     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1912         try {
  1913             MethodSymbol undef = firstUndef(c, c);
  1914             if (undef != null) {
  1915                 if ((c.flags() & ENUM) != 0 &&
  1916                     types.supertype(c.type).tsym == syms.enumSym &&
  1917                     (c.flags() & FINAL) == 0) {
  1918                     // add the ABSTRACT flag to an enum
  1919                     c.flags_field |= ABSTRACT;
  1920                 } else {
  1921                     MethodSymbol undef1 =
  1922                         new MethodSymbol(undef.flags(), undef.name,
  1923                                          types.memberType(c.type, undef), undef.owner);
  1924                     log.error(pos, "does.not.override.abstract",
  1925                               c, undef1, undef1.location());
  1928         } catch (CompletionFailure ex) {
  1929             completionError(pos, ex);
  1932 //where
  1933         /** Return first abstract member of class `c' that is not defined
  1934          *  in `impl', null if there is none.
  1935          */
  1936         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1937             MethodSymbol undef = null;
  1938             // Do not bother to search in classes that are not abstract,
  1939             // since they cannot have abstract members.
  1940             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1941                 Scope s = c.members();
  1942                 for (Scope.Entry e = s.elems;
  1943                      undef == null && e != null;
  1944                      e = e.sibling) {
  1945                     if (e.sym.kind == MTH &&
  1946                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1947                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1948                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1949                         if (implmeth == null || implmeth == absmeth)
  1950                             undef = absmeth;
  1953                 if (undef == null) {
  1954                     Type st = types.supertype(c.type);
  1955                     if (st.tag == CLASS)
  1956                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1958                 for (List<Type> l = types.interfaces(c.type);
  1959                      undef == null && l.nonEmpty();
  1960                      l = l.tail) {
  1961                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1964             return undef;
  1967     void checkNonCyclicDecl(JCClassDecl tree) {
  1968         CycleChecker cc = new CycleChecker();
  1969         cc.scan(tree);
  1970         if (!cc.errorFound && !cc.partialCheck) {
  1971             tree.sym.flags_field |= ACYCLIC;
  1975     class CycleChecker extends TreeScanner {
  1977         List<Symbol> seenClasses = List.nil();
  1978         boolean errorFound = false;
  1979         boolean partialCheck = false;
  1981         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1982             if (sym != null && sym.kind == TYP) {
  1983                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1984                 if (classEnv != null) {
  1985                     DiagnosticSource prevSource = log.currentSource();
  1986                     try {
  1987                         log.useSource(classEnv.toplevel.sourcefile);
  1988                         scan(classEnv.tree);
  1990                     finally {
  1991                         log.useSource(prevSource.getFile());
  1993                 } else if (sym.kind == TYP) {
  1994                     checkClass(pos, sym, List.<JCTree>nil());
  1996             } else {
  1997                 //not completed yet
  1998                 partialCheck = true;
  2002         @Override
  2003         public void visitSelect(JCFieldAccess tree) {
  2004             super.visitSelect(tree);
  2005             checkSymbol(tree.pos(), tree.sym);
  2008         @Override
  2009         public void visitIdent(JCIdent tree) {
  2010             checkSymbol(tree.pos(), tree.sym);
  2013         @Override
  2014         public void visitTypeApply(JCTypeApply tree) {
  2015             scan(tree.clazz);
  2018         @Override
  2019         public void visitTypeArray(JCArrayTypeTree tree) {
  2020             scan(tree.elemtype);
  2023         @Override
  2024         public void visitClassDef(JCClassDecl tree) {
  2025             List<JCTree> supertypes = List.nil();
  2026             if (tree.getExtendsClause() != null) {
  2027                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2029             if (tree.getImplementsClause() != null) {
  2030                 for (JCTree intf : tree.getImplementsClause()) {
  2031                     supertypes = supertypes.prepend(intf);
  2034             checkClass(tree.pos(), tree.sym, supertypes);
  2037         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2038             if ((c.flags_field & ACYCLIC) != 0)
  2039                 return;
  2040             if (seenClasses.contains(c)) {
  2041                 errorFound = true;
  2042                 noteCyclic(pos, (ClassSymbol)c);
  2043             } else if (!c.type.isErroneous()) {
  2044                 try {
  2045                     seenClasses = seenClasses.prepend(c);
  2046                     if (c.type.tag == CLASS) {
  2047                         if (supertypes.nonEmpty()) {
  2048                             scan(supertypes);
  2050                         else {
  2051                             ClassType ct = (ClassType)c.type;
  2052                             if (ct.supertype_field == null ||
  2053                                     ct.interfaces_field == null) {
  2054                                 //not completed yet
  2055                                 partialCheck = true;
  2056                                 return;
  2058                             checkSymbol(pos, ct.supertype_field.tsym);
  2059                             for (Type intf : ct.interfaces_field) {
  2060                                 checkSymbol(pos, intf.tsym);
  2063                         if (c.owner.kind == TYP) {
  2064                             checkSymbol(pos, c.owner);
  2067                 } finally {
  2068                     seenClasses = seenClasses.tail;
  2074     /** Check for cyclic references. Issue an error if the
  2075      *  symbol of the type referred to has a LOCKED flag set.
  2077      *  @param pos      Position to be used for error reporting.
  2078      *  @param t        The type referred to.
  2079      */
  2080     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2081         checkNonCyclicInternal(pos, t);
  2085     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2086         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2089     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2090         final TypeVar tv;
  2091         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2092             return;
  2093         if (seen.contains(t)) {
  2094             tv = (TypeVar)t;
  2095             tv.bound = types.createErrorType(t);
  2096             log.error(pos, "cyclic.inheritance", t);
  2097         } else if (t.tag == TYPEVAR) {
  2098             tv = (TypeVar)t;
  2099             seen = seen.prepend(tv);
  2100             for (Type b : types.getBounds(tv))
  2101                 checkNonCyclic1(pos, b, seen);
  2105     /** Check for cyclic references. Issue an error if the
  2106      *  symbol of the type referred to has a LOCKED flag set.
  2108      *  @param pos      Position to be used for error reporting.
  2109      *  @param t        The type referred to.
  2110      *  @returns        True if the check completed on all attributed classes
  2111      */
  2112     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2113         boolean complete = true; // was the check complete?
  2114         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2115         Symbol c = t.tsym;
  2116         if ((c.flags_field & ACYCLIC) != 0) return true;
  2118         if ((c.flags_field & LOCKED) != 0) {
  2119             noteCyclic(pos, (ClassSymbol)c);
  2120         } else if (!c.type.isErroneous()) {
  2121             try {
  2122                 c.flags_field |= LOCKED;
  2123                 if (c.type.tag == CLASS) {
  2124                     ClassType clazz = (ClassType)c.type;
  2125                     if (clazz.interfaces_field != null)
  2126                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2127                             complete &= checkNonCyclicInternal(pos, l.head);
  2128                     if (clazz.supertype_field != null) {
  2129                         Type st = clazz.supertype_field;
  2130                         if (st != null && st.tag == CLASS)
  2131                             complete &= checkNonCyclicInternal(pos, st);
  2133                     if (c.owner.kind == TYP)
  2134                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2136             } finally {
  2137                 c.flags_field &= ~LOCKED;
  2140         if (complete)
  2141             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2142         if (complete) c.flags_field |= ACYCLIC;
  2143         return complete;
  2146     /** Note that we found an inheritance cycle. */
  2147     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2148         log.error(pos, "cyclic.inheritance", c);
  2149         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2150             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2151         Type st = types.supertype(c.type);
  2152         if (st.tag == CLASS)
  2153             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2154         c.type = types.createErrorType(c, c.type);
  2155         c.flags_field |= ACYCLIC;
  2158     /** Check that all methods which implement some
  2159      *  method conform to the method they implement.
  2160      *  @param tree         The class definition whose members are checked.
  2161      */
  2162     void checkImplementations(JCClassDecl tree) {
  2163         checkImplementations(tree, tree.sym);
  2165 //where
  2166         /** Check that all methods which implement some
  2167          *  method in `ic' conform to the method they implement.
  2168          */
  2169         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  2170             ClassSymbol origin = tree.sym;
  2171             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2172                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2173                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2174                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2175                         if (e.sym.kind == MTH &&
  2176                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2177                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2178                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2179                             if (implmeth != null && implmeth != absmeth &&
  2180                                 (implmeth.owner.flags() & INTERFACE) ==
  2181                                 (origin.flags() & INTERFACE)) {
  2182                                 // don't check if implmeth is in a class, yet
  2183                                 // origin is an interface. This case arises only
  2184                                 // if implmeth is declared in Object. The reason is
  2185                                 // that interfaces really don't inherit from
  2186                                 // Object it's just that the compiler represents
  2187                                 // things that way.
  2188                                 checkOverride(tree, implmeth, absmeth, origin);
  2196     /** Check that all abstract methods implemented by a class are
  2197      *  mutually compatible.
  2198      *  @param pos          Position to be used for error reporting.
  2199      *  @param c            The class whose interfaces are checked.
  2200      */
  2201     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2202         List<Type> supertypes = types.interfaces(c);
  2203         Type supertype = types.supertype(c);
  2204         if (supertype.tag == CLASS &&
  2205             (supertype.tsym.flags() & ABSTRACT) != 0)
  2206             supertypes = supertypes.prepend(supertype);
  2207         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2208             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2209                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2210                 return;
  2211             for (List<Type> m = supertypes; m != l; m = m.tail)
  2212                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2213                     return;
  2215         checkCompatibleConcretes(pos, c);
  2218     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2219         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2220             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2221                 // VM allows methods and variables with differing types
  2222                 if (sym.kind == e.sym.kind &&
  2223                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2224                     sym != e.sym &&
  2225                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2226                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2227                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2228                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2229                     return;
  2235     /** Check that all non-override equivalent methods accessible from 'site'
  2236      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2238      *  @param pos  Position to be used for error reporting.
  2239      *  @param site The class whose methods are checked.
  2240      *  @param sym  The method symbol to be checked.
  2241      */
  2242     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2243          ClashFilter cf = new ClashFilter(site);
  2244         //for each method m1 that is overridden (directly or indirectly)
  2245         //by method 'sym' in 'site'...
  2246         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2247             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2248              //...check each method m2 that is a member of 'site'
  2249              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2250                 if (m2 == m1) continue;
  2251                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2252                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2253                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), false) &&
  2254                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2255                     sym.flags_field |= CLASH;
  2256                     String key = m1 == sym ?
  2257                             "name.clash.same.erasure.no.override" :
  2258                             "name.clash.same.erasure.no.override.1";
  2259                     log.error(pos,
  2260                             key,
  2261                             sym, sym.location(),
  2262                             m2, m2.location(),
  2263                             m1, m1.location());
  2264                     return;
  2272     /** Check that all static methods accessible from 'site' are
  2273      *  mutually compatible (JLS 8.4.8).
  2275      *  @param pos  Position to be used for error reporting.
  2276      *  @param site The class whose methods are checked.
  2277      *  @param sym  The method symbol to be checked.
  2278      */
  2279     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2280         ClashFilter cf = new ClashFilter(site);
  2281         //for each method m1 that is a member of 'site'...
  2282         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2283             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2284             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2285             if (!types.isSubSignature(sym.type, types.memberType(site, s), false) &&
  2286                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2287                 log.error(pos,
  2288                         "name.clash.same.erasure.no.hide",
  2289                         sym, sym.location(),
  2290                         s, s.location());
  2291                 return;
  2296      //where
  2297      private class ClashFilter implements Filter<Symbol> {
  2299          Type site;
  2301          ClashFilter(Type site) {
  2302              this.site = site;
  2305          boolean shouldSkip(Symbol s) {
  2306              return (s.flags() & CLASH) != 0 &&
  2307                 s.owner == site.tsym;
  2310          public boolean accepts(Symbol s) {
  2311              return s.kind == MTH &&
  2312                      (s.flags() & SYNTHETIC) == 0 &&
  2313                      !shouldSkip(s) &&
  2314                      s.isInheritedIn(site.tsym, types) &&
  2315                      !s.isConstructor();
  2319     /** Report a conflict between a user symbol and a synthetic symbol.
  2320      */
  2321     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2322         if (!sym.type.isErroneous()) {
  2323             if (warnOnSyntheticConflicts) {
  2324                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2326             else {
  2327                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2332     /** Check that class c does not implement directly or indirectly
  2333      *  the same parameterized interface with two different argument lists.
  2334      *  @param pos          Position to be used for error reporting.
  2335      *  @param type         The type whose interfaces are checked.
  2336      */
  2337     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2338         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2340 //where
  2341         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2342          *  with their class symbol as key and their type as value. Make
  2343          *  sure no class is entered with two different types.
  2344          */
  2345         void checkClassBounds(DiagnosticPosition pos,
  2346                               Map<TypeSymbol,Type> seensofar,
  2347                               Type type) {
  2348             if (type.isErroneous()) return;
  2349             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2350                 Type it = l.head;
  2351                 Type oldit = seensofar.put(it.tsym, it);
  2352                 if (oldit != null) {
  2353                     List<Type> oldparams = oldit.allparams();
  2354                     List<Type> newparams = it.allparams();
  2355                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2356                         log.error(pos, "cant.inherit.diff.arg",
  2357                                   it.tsym, Type.toString(oldparams),
  2358                                   Type.toString(newparams));
  2360                 checkClassBounds(pos, seensofar, it);
  2362             Type st = types.supertype(type);
  2363             if (st != null) checkClassBounds(pos, seensofar, st);
  2366     /** Enter interface into into set.
  2367      *  If it existed already, issue a "repeated interface" error.
  2368      */
  2369     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2370         if (its.contains(it))
  2371             log.error(pos, "repeated.interface");
  2372         else {
  2373             its.add(it);
  2377 /* *************************************************************************
  2378  * Check annotations
  2379  **************************************************************************/
  2381     /**
  2382      * Recursively validate annotations values
  2383      */
  2384     void validateAnnotationTree(JCTree tree) {
  2385         class AnnotationValidator extends TreeScanner {
  2386             @Override
  2387             public void visitAnnotation(JCAnnotation tree) {
  2388                 if (!tree.type.isErroneous()) {
  2389                     super.visitAnnotation(tree);
  2390                     validateAnnotation(tree);
  2394         tree.accept(new AnnotationValidator());
  2397     /**
  2398      *  {@literal
  2399      *  Annotation types are restricted to primitives, String, an
  2400      *  enum, an annotation, Class, Class<?>, Class<? extends
  2401      *  Anything>, arrays of the preceding.
  2402      *  }
  2403      */
  2404     void validateAnnotationType(JCTree restype) {
  2405         // restype may be null if an error occurred, so don't bother validating it
  2406         if (restype != null) {
  2407             validateAnnotationType(restype.pos(), restype.type);
  2411     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2412         if (type.isPrimitive()) return;
  2413         if (types.isSameType(type, syms.stringType)) return;
  2414         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2415         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2416         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2417         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2418             validateAnnotationType(pos, types.elemtype(type));
  2419             return;
  2421         log.error(pos, "invalid.annotation.member.type");
  2424     /**
  2425      * "It is also a compile-time error if any method declared in an
  2426      * annotation type has a signature that is override-equivalent to
  2427      * that of any public or protected method declared in class Object
  2428      * or in the interface annotation.Annotation."
  2430      * @jls 9.6 Annotation Types
  2431      */
  2432     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2433         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2434             Scope s = sup.tsym.members();
  2435             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2436                 if (e.sym.kind == MTH &&
  2437                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2438                     types.overrideEquivalent(m.type, e.sym.type))
  2439                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2444     /** Check the annotations of a symbol.
  2445      */
  2446     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2447         for (JCAnnotation a : annotations)
  2448             validateAnnotation(a, s);
  2451     /** Check an annotation of a symbol.
  2452      */
  2453     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2454         validateAnnotationTree(a);
  2456         if (!annotationApplicable(a, s))
  2457             log.error(a.pos(), "annotation.type.not.applicable");
  2459         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2460             if (!isOverrider(s))
  2461                 log.error(a.pos(), "method.does.not.override.superclass");
  2465     /**
  2466      * Validate the proposed container 'containedBy' on the
  2467      * annotation type symbol 's'. Report errors at position
  2468      * 'pos'.
  2470      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2471      * @param containerAnno the @ContainedBy on 's'
  2472      * @param pos where to report errors
  2473      */
  2474     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2475         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2477         Type t = null;
  2478         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2479         if (!l.isEmpty()) {
  2480             Assert.check(l.head.fst.name == names.value);
  2481             t = ((Attribute.Class)l.head.snd).getValue();
  2484         if (t == null) {
  2485             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2486             return;
  2489         validateHasContainerFor(t.tsym, s, pos);
  2490         validateRetention(t.tsym, s, pos);
  2491         validateDocumented(t.tsym, s, pos);
  2492         validateInherited(t.tsym, s, pos);
  2493         validateTarget(t.tsym, s, pos);
  2494         validateDefault(t.tsym, s, pos);
  2497     /**
  2498      * Validate the proposed container 'containerFor' on the
  2499      * annotation type symbol 's'. Report errors at position
  2500      * 'pos'.
  2502      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2503      * @param containerFor the @ContainedFor on 's'
  2504      * @param pos where to report errors
  2505      */
  2506     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2507         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2509         Type t = null;
  2510         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2511         if (!l.isEmpty()) {
  2512             Assert.check(l.head.fst.name == names.value);
  2513             t = ((Attribute.Class)l.head.snd).getValue();
  2516         if (t == null) {
  2517             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2518             return;
  2521         validateHasContainedBy(t.tsym, s, pos);
  2524     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2525         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2527         if (containedBy == null) {
  2528             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2529             return;
  2532         Type t = null;
  2533         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2534         if (!l.isEmpty()) {
  2535             Assert.check(l.head.fst.name == names.value);
  2536             t = ((Attribute.Class)l.head.snd).getValue();
  2539         if (t == null) {
  2540             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2541             return;
  2544         if (!types.isSameType(t, contained.type))
  2545             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2548     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2549         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2551         if (containerFor == null) {
  2552             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2553             return;
  2556         Type t = null;
  2557         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2558         if (!l.isEmpty()) {
  2559             Assert.check(l.head.fst.name == names.value);
  2560             t = ((Attribute.Class)l.head.snd).getValue();
  2563         if (t == null) {
  2564             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2565             return;
  2568         if (!types.isSameType(t, contained.type))
  2569             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2572     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2573         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2574         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2576         boolean error = false;
  2577         switch (containedRetention) {
  2578         case RUNTIME:
  2579             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2580                 error = true;
  2582             break;
  2583         case CLASS:
  2584             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2585                 error = true;
  2588         if (error ) {
  2589             log.error(pos, "invalid.containedby.annotation.retention",
  2590                       container, containerRetention,
  2591                       contained, containedRetention);
  2595     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2596         if (contained.attribute(syms.documentedType.tsym) != null) {
  2597             if (container.attribute(syms.documentedType.tsym) == null) {
  2598                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2603     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2604         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2605             if (container.attribute(syms.inheritedType.tsym) == null) {
  2606                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2611     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2612         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2614         // If contained has no Target, we are done
  2615         if (containedTarget == null) {
  2616             return;
  2619         // If contained has Target m1, container must have a Target
  2620         // annotation, m2, and m2 must be a subset of m1. (This is
  2621         // trivially true if contained has no target as per above).
  2623         // contained has target, but container has not, error
  2624         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2625         if (containerTarget == null) {
  2626             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2627             return;
  2630         Set<Name> containerTargets = new HashSet<Name>();
  2631         for (Attribute app : containerTarget.values) {
  2632             if (!(app instanceof Attribute.Enum)) {
  2633                 continue; // recovery
  2635             Attribute.Enum e = (Attribute.Enum)app;
  2636             containerTargets.add(e.value.name);
  2639         Set<Name> containedTargets = new HashSet<Name>();
  2640         for (Attribute app : containedTarget.values) {
  2641             if (!(app instanceof Attribute.Enum)) {
  2642                 continue; // recovery
  2644             Attribute.Enum e = (Attribute.Enum)app;
  2645             containedTargets.add(e.value.name);
  2648         if (!isTargetSubset(containedTargets, containerTargets)) {
  2649             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2653     /** Checks that t is a subset of s, with respect to ElementType
  2654      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2655      */
  2656     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2657         // Check that all elements in t are present in s
  2658         for (Name n2 : t) {
  2659             boolean currentElementOk = false;
  2660             for (Name n1 : s) {
  2661                 if (n1 == n2) {
  2662                     currentElementOk = true;
  2663                     break;
  2664                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2665                     currentElementOk = true;
  2666                     break;
  2669             if (!currentElementOk)
  2670                 return false;
  2672         return true;
  2675     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2676         // validate that all other elements of containing type has defaults
  2677         Scope scope = container.members();
  2678         for(Symbol elm : scope.getElements()) {
  2679             if (elm.name != names.value &&
  2680                 elm.kind == Kinds.MTH &&
  2681                 ((MethodSymbol)elm).defaultValue == null) {
  2682                 log.error(pos,
  2683                           "invalid.containedby.annotation.elem.nondefault",
  2684                           container,
  2685                           elm);
  2690     /** Is s a method symbol that overrides a method in a superclass? */
  2691     boolean isOverrider(Symbol s) {
  2692         if (s.kind != MTH || s.isStatic())
  2693             return false;
  2694         MethodSymbol m = (MethodSymbol)s;
  2695         TypeSymbol owner = (TypeSymbol)m.owner;
  2696         for (Type sup : types.closure(owner.type)) {
  2697             if (sup == owner.type)
  2698                 continue; // skip "this"
  2699             Scope scope = sup.tsym.members();
  2700             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2701                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2702                     return true;
  2705         return false;
  2708     /** Is the annotation applicable to the symbol? */
  2709     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2710         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2711         if (arr == null) {
  2712             return true;
  2714         for (Attribute app : arr.values) {
  2715             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2716             Attribute.Enum e = (Attribute.Enum) app;
  2717             if (e.value.name == names.TYPE)
  2718                 { if (s.kind == TYP) return true; }
  2719             else if (e.value.name == names.FIELD)
  2720                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2721             else if (e.value.name == names.METHOD)
  2722                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2723             else if (e.value.name == names.PARAMETER)
  2724                 { if (s.kind == VAR &&
  2725                       s.owner.kind == MTH &&
  2726                       (s.flags() & PARAMETER) != 0)
  2727                     return true;
  2729             else if (e.value.name == names.CONSTRUCTOR)
  2730                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2731             else if (e.value.name == names.LOCAL_VARIABLE)
  2732                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2733                       (s.flags() & PARAMETER) == 0)
  2734                     return true;
  2736             else if (e.value.name == names.ANNOTATION_TYPE)
  2737                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2738                     return true;
  2740             else if (e.value.name == names.PACKAGE)
  2741                 { if (s.kind == PCK) return true; }
  2742             else if (e.value.name == names.TYPE_USE)
  2743                 { if (s.kind == TYP ||
  2744                       s.kind == VAR ||
  2745                       (s.kind == MTH && !s.isConstructor() &&
  2746                        s.type.getReturnType().tag != VOID))
  2747                     return true;
  2749             else
  2750                 return true; // recovery
  2752         return false;
  2756     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2757         Attribute.Compound atTarget =
  2758             s.attribute(syms.annotationTargetType.tsym);
  2759         if (atTarget == null) return null; // ok, is applicable
  2760         Attribute atValue = atTarget.member(names.value);
  2761         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2762         return (Attribute.Array) atValue;
  2765     /** Check an annotation value.
  2766      */
  2767     public void validateAnnotation(JCAnnotation a) {
  2768         // collect an inventory of the members (sorted alphabetically)
  2769         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2770             public int compare(Symbol t, Symbol t1) {
  2771                 return t.name.compareTo(t1.name);
  2773         });
  2774         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2775              e != null;
  2776              e = e.sibling)
  2777             if (e.sym.kind == MTH)
  2778                 members.add((MethodSymbol) e.sym);
  2780         // count them off as they're annotated
  2781         for (JCTree arg : a.args) {
  2782             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2783             JCAssign assign = (JCAssign) arg;
  2784             Symbol m = TreeInfo.symbol(assign.lhs);
  2785             if (m == null || m.type.isErroneous()) continue;
  2786             if (!members.remove(m))
  2787                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2788                           m.name, a.type);
  2791         // all the remaining ones better have default values
  2792         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2793         for (MethodSymbol m : members) {
  2794             if (m.defaultValue == null && !m.type.isErroneous()) {
  2795                 missingDefaults.append(m.name);
  2798         if (missingDefaults.nonEmpty()) {
  2799             String key = (missingDefaults.size() > 1)
  2800                     ? "annotation.missing.default.value.1"
  2801                     : "annotation.missing.default.value";
  2802             log.error(a.pos(), key, a.type, missingDefaults);
  2805         // special case: java.lang.annotation.Target must not have
  2806         // repeated values in its value member
  2807         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2808             a.args.tail == null)
  2809             return;
  2811         if (!a.args.head.hasTag(ASSIGN)) return; // error recovery
  2812         JCAssign assign = (JCAssign) a.args.head;
  2813         Symbol m = TreeInfo.symbol(assign.lhs);
  2814         if (m.name != names.value) return;
  2815         JCTree rhs = assign.rhs;
  2816         if (!rhs.hasTag(NEWARRAY)) return;
  2817         JCNewArray na = (JCNewArray) rhs;
  2818         Set<Symbol> targets = new HashSet<Symbol>();
  2819         for (JCTree elem : na.elems) {
  2820             if (!targets.add(TreeInfo.symbol(elem))) {
  2821                 log.error(elem.pos(), "repeated.annotation.target");
  2826     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2827         if (allowAnnotations &&
  2828             lint.isEnabled(LintCategory.DEP_ANN) &&
  2829             (s.flags() & DEPRECATED) != 0 &&
  2830             !syms.deprecatedType.isErroneous() &&
  2831             s.attribute(syms.deprecatedType.tsym) == null) {
  2832             log.warning(LintCategory.DEP_ANN,
  2833                     pos, "missing.deprecated.annotation");
  2837     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2838         if ((s.flags() & DEPRECATED) != 0 &&
  2839                 (other.flags() & DEPRECATED) == 0 &&
  2840                 s.outermostClass() != other.outermostClass()) {
  2841             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2842                 @Override
  2843                 public void report() {
  2844                     warnDeprecated(pos, s);
  2846             });
  2850     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2851         if ((s.flags() & PROPRIETARY) != 0) {
  2852             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2853                 public void report() {
  2854                     if (enableSunApiLintControl)
  2855                       warnSunApi(pos, "sun.proprietary", s);
  2856                     else
  2857                       log.mandatoryWarning(pos, "sun.proprietary", s);
  2859             });
  2863 /* *************************************************************************
  2864  * Check for recursive annotation elements.
  2865  **************************************************************************/
  2867     /** Check for cycles in the graph of annotation elements.
  2868      */
  2869     void checkNonCyclicElements(JCClassDecl tree) {
  2870         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2871         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  2872         try {
  2873             tree.sym.flags_field |= LOCKED;
  2874             for (JCTree def : tree.defs) {
  2875                 if (!def.hasTag(METHODDEF)) continue;
  2876                 JCMethodDecl meth = (JCMethodDecl)def;
  2877                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2879         } finally {
  2880             tree.sym.flags_field &= ~LOCKED;
  2881             tree.sym.flags_field |= ACYCLIC_ANN;
  2885     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2886         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2887             return;
  2888         if ((tsym.flags_field & LOCKED) != 0) {
  2889             log.error(pos, "cyclic.annotation.element");
  2890             return;
  2892         try {
  2893             tsym.flags_field |= LOCKED;
  2894             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2895                 Symbol s = e.sym;
  2896                 if (s.kind != Kinds.MTH)
  2897                     continue;
  2898                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2900         } finally {
  2901             tsym.flags_field &= ~LOCKED;
  2902             tsym.flags_field |= ACYCLIC_ANN;
  2906     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2907         switch (type.tag) {
  2908         case TypeTags.CLASS:
  2909             if ((type.tsym.flags() & ANNOTATION) != 0)
  2910                 checkNonCyclicElementsInternal(pos, type.tsym);
  2911             break;
  2912         case TypeTags.ARRAY:
  2913             checkAnnotationResType(pos, types.elemtype(type));
  2914             break;
  2915         default:
  2916             break; // int etc
  2920 /* *************************************************************************
  2921  * Check for cycles in the constructor call graph.
  2922  **************************************************************************/
  2924     /** Check for cycles in the graph of constructors calling other
  2925      *  constructors.
  2926      */
  2927     void checkCyclicConstructors(JCClassDecl tree) {
  2928         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2930         // enter each constructor this-call into the map
  2931         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2932             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2933             if (app == null) continue;
  2934             JCMethodDecl meth = (JCMethodDecl) l.head;
  2935             if (TreeInfo.name(app.meth) == names._this) {
  2936                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2937             } else {
  2938                 meth.sym.flags_field |= ACYCLIC;
  2942         // Check for cycles in the map
  2943         Symbol[] ctors = new Symbol[0];
  2944         ctors = callMap.keySet().toArray(ctors);
  2945         for (Symbol caller : ctors) {
  2946             checkCyclicConstructor(tree, caller, callMap);
  2950     /** Look in the map to see if the given constructor is part of a
  2951      *  call cycle.
  2952      */
  2953     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2954                                         Map<Symbol,Symbol> callMap) {
  2955         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2956             if ((ctor.flags_field & LOCKED) != 0) {
  2957                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2958                           "recursive.ctor.invocation");
  2959             } else {
  2960                 ctor.flags_field |= LOCKED;
  2961                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2962                 ctor.flags_field &= ~LOCKED;
  2964             ctor.flags_field |= ACYCLIC;
  2968 /* *************************************************************************
  2969  * Miscellaneous
  2970  **************************************************************************/
  2972     /**
  2973      * Return the opcode of the operator but emit an error if it is an
  2974      * error.
  2975      * @param pos        position for error reporting.
  2976      * @param operator   an operator
  2977      * @param tag        a tree tag
  2978      * @param left       type of left hand side
  2979      * @param right      type of right hand side
  2980      */
  2981     int checkOperator(DiagnosticPosition pos,
  2982                        OperatorSymbol operator,
  2983                        JCTree.Tag tag,
  2984                        Type left,
  2985                        Type right) {
  2986         if (operator.opcode == ByteCodes.error) {
  2987             log.error(pos,
  2988                       "operator.cant.be.applied.1",
  2989                       treeinfo.operatorName(tag),
  2990                       left, right);
  2992         return operator.opcode;
  2996     /**
  2997      *  Check for division by integer constant zero
  2998      *  @param pos           Position for error reporting.
  2999      *  @param operator      The operator for the expression
  3000      *  @param operand       The right hand operand for the expression
  3001      */
  3002     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3003         if (operand.constValue() != null
  3004             && lint.isEnabled(LintCategory.DIVZERO)
  3005             && operand.tag <= LONG
  3006             && ((Number) (operand.constValue())).longValue() == 0) {
  3007             int opc = ((OperatorSymbol)operator).opcode;
  3008             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3009                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3010                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3015     /**
  3016      * Check for empty statements after if
  3017      */
  3018     void checkEmptyIf(JCIf tree) {
  3019         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3020                 lint.isEnabled(LintCategory.EMPTY))
  3021             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3024     /** Check that symbol is unique in given scope.
  3025      *  @param pos           Position for error reporting.
  3026      *  @param sym           The symbol.
  3027      *  @param s             The scope.
  3028      */
  3029     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3030         if (sym.type.isErroneous())
  3031             return true;
  3032         if (sym.owner.name == names.any) return false;
  3033         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3034             if (sym != e.sym &&
  3035                     (e.sym.flags() & CLASH) == 0 &&
  3036                     sym.kind == e.sym.kind &&
  3037                     sym.name != names.error &&
  3038                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3039                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3040                     varargsDuplicateError(pos, sym, e.sym);
  3041                     return true;
  3042                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3043                     duplicateErasureError(pos, sym, e.sym);
  3044                     sym.flags_field |= CLASH;
  3045                     return true;
  3046                 } else {
  3047                     duplicateError(pos, e.sym);
  3048                     return false;
  3052         return true;
  3055     /** Report duplicate declaration error.
  3056      */
  3057     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3058         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3059             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3063     /** Check that single-type import is not already imported or top-level defined,
  3064      *  but make an exception for two single-type imports which denote the same type.
  3065      *  @param pos           Position for error reporting.
  3066      *  @param sym           The symbol.
  3067      *  @param s             The scope
  3068      */
  3069     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3070         return checkUniqueImport(pos, sym, s, false);
  3073     /** Check that static single-type import is not already imported or top-level defined,
  3074      *  but make an exception for two single-type imports which denote the same type.
  3075      *  @param pos           Position for error reporting.
  3076      *  @param sym           The symbol.
  3077      *  @param s             The scope
  3078      *  @param staticImport  Whether or not this was a static import
  3079      */
  3080     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3081         return checkUniqueImport(pos, sym, s, true);
  3084     /** Check that single-type import is not already imported or top-level defined,
  3085      *  but make an exception for two single-type imports which denote the same type.
  3086      *  @param pos           Position for error reporting.
  3087      *  @param sym           The symbol.
  3088      *  @param s             The scope.
  3089      *  @param staticImport  Whether or not this was a static import
  3090      */
  3091     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3092         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3093             // is encountered class entered via a class declaration?
  3094             boolean isClassDecl = e.scope == s;
  3095             if ((isClassDecl || sym != e.sym) &&
  3096                 sym.kind == e.sym.kind &&
  3097                 sym.name != names.error) {
  3098                 if (!e.sym.type.isErroneous()) {
  3099                     String what = e.sym.toString();
  3100                     if (!isClassDecl) {
  3101                         if (staticImport)
  3102                             log.error(pos, "already.defined.static.single.import", what);
  3103                         else
  3104                             log.error(pos, "already.defined.single.import", what);
  3106                     else if (sym != e.sym)
  3107                         log.error(pos, "already.defined.this.unit", what);
  3109                 return false;
  3112         return true;
  3115     /** Check that a qualified name is in canonical form (for import decls).
  3116      */
  3117     public void checkCanonical(JCTree tree) {
  3118         if (!isCanonical(tree))
  3119             log.error(tree.pos(), "import.requires.canonical",
  3120                       TreeInfo.symbol(tree));
  3122         // where
  3123         private boolean isCanonical(JCTree tree) {
  3124             while (tree.hasTag(SELECT)) {
  3125                 JCFieldAccess s = (JCFieldAccess) tree;
  3126                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3127                     return false;
  3128                 tree = s.selected;
  3130             return true;
  3133     private class ConversionWarner extends Warner {
  3134         final String uncheckedKey;
  3135         final Type found;
  3136         final Type expected;
  3137         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3138             super(pos);
  3139             this.uncheckedKey = uncheckedKey;
  3140             this.found = found;
  3141             this.expected = expected;
  3144         @Override
  3145         public void warn(LintCategory lint) {
  3146             boolean warned = this.warned;
  3147             super.warn(lint);
  3148             if (warned) return; // suppress redundant diagnostics
  3149             switch (lint) {
  3150                 case UNCHECKED:
  3151                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3152                     break;
  3153                 case VARARGS:
  3154                     if (method != null &&
  3155                             method.attribute(syms.trustMeType.tsym) != null &&
  3156                             isTrustMeAllowedOnMethod(method) &&
  3157                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3158                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3160                     break;
  3161                 default:
  3162                     throw new AssertionError("Unexpected lint: " + lint);
  3167     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3168         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3171     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3172         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial