src/share/classes/com/sun/tools/javac/comp/Resolve.java

Thu, 06 Jun 2013 15:30:14 +0100

author
mcimadamore
date
Thu, 06 Jun 2013 15:30:14 +0100
changeset 1809
6e30a513c945
parent 1790
9f11c7676cd5
child 1820
6b48ebae2569
permissions
-rw-r--r--

6360970: javac erroneously accept ambiguous field reference
Summary: clash between ambiguous fields in superinterface and unambiguous field in subinterface is erroneously marked as unambiguous
Reviewed-by: jjg, vromero

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
    41 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
    42 import com.sun.tools.javac.jvm.*;
    43 import com.sun.tools.javac.main.Option;
    44 import com.sun.tools.javac.tree.*;
    45 import com.sun.tools.javac.tree.JCTree.*;
    46 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    47 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    48 import com.sun.tools.javac.util.*;
    49 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    53 import java.util.Arrays;
    54 import java.util.Collection;
    55 import java.util.EnumMap;
    56 import java.util.EnumSet;
    57 import java.util.Iterator;
    58 import java.util.LinkedHashMap;
    59 import java.util.LinkedHashSet;
    60 import java.util.Map;
    62 import javax.lang.model.element.ElementVisitor;
    64 import static com.sun.tools.javac.code.Flags.*;
    65 import static com.sun.tools.javac.code.Flags.BLOCK;
    66 import static com.sun.tools.javac.code.Kinds.*;
    67 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    68 import static com.sun.tools.javac.code.TypeTag.*;
    69 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    70 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    72 /** Helper class for name resolution, used mostly by the attribution phase.
    73  *
    74  *  <p><b>This is NOT part of any supported API.
    75  *  If you write code that depends on this, you do so at your own risk.
    76  *  This code and its internal interfaces are subject to change or
    77  *  deletion without notice.</b>
    78  */
    79 public class Resolve {
    80     protected static final Context.Key<Resolve> resolveKey =
    81         new Context.Key<Resolve>();
    83     Names names;
    84     Log log;
    85     Symtab syms;
    86     Attr attr;
    87     DeferredAttr deferredAttr;
    88     Check chk;
    89     Infer infer;
    90     ClassReader reader;
    91     TreeInfo treeinfo;
    92     Types types;
    93     JCDiagnostic.Factory diags;
    94     public final boolean boxingEnabled; // = source.allowBoxing();
    95     public final boolean varargsEnabled; // = source.allowVarargs();
    96     public final boolean allowMethodHandles;
    97     public final boolean allowDefaultMethods;
    98     public final boolean allowStructuralMostSpecific;
    99     private final boolean debugResolve;
   100     private final boolean compactMethodDiags;
   101     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
   103     Scope polymorphicSignatureScope;
   105     protected Resolve(Context context) {
   106         context.put(resolveKey, this);
   107         syms = Symtab.instance(context);
   109         varNotFound = new
   110             SymbolNotFoundError(ABSENT_VAR);
   111         methodNotFound = new
   112             SymbolNotFoundError(ABSENT_MTH);
   113         typeNotFound = new
   114             SymbolNotFoundError(ABSENT_TYP);
   116         names = Names.instance(context);
   117         log = Log.instance(context);
   118         attr = Attr.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         chk = Check.instance(context);
   121         infer = Infer.instance(context);
   122         reader = ClassReader.instance(context);
   123         treeinfo = TreeInfo.instance(context);
   124         types = Types.instance(context);
   125         diags = JCDiagnostic.Factory.instance(context);
   126         Source source = Source.instance(context);
   127         boxingEnabled = source.allowBoxing();
   128         varargsEnabled = source.allowVarargs();
   129         Options options = Options.instance(context);
   130         debugResolve = options.isSet("debugresolve");
   131         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
   132                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
   133         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   134         Target target = Target.instance(context);
   135         allowMethodHandles = target.hasMethodHandles();
   136         allowDefaultMethods = source.allowDefaultMethods();
   137         allowStructuralMostSpecific = source.allowStructuralMostSpecific();
   138         polymorphicSignatureScope = new Scope(syms.noSymbol);
   140         inapplicableMethodException = new InapplicableMethodException(diags);
   141     }
   143     /** error symbols, which are returned when resolution fails
   144      */
   145     private final SymbolNotFoundError varNotFound;
   146     private final SymbolNotFoundError methodNotFound;
   147     private final SymbolNotFoundError typeNotFound;
   149     public static Resolve instance(Context context) {
   150         Resolve instance = context.get(resolveKey);
   151         if (instance == null)
   152             instance = new Resolve(context);
   153         return instance;
   154     }
   156     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   157     enum VerboseResolutionMode {
   158         SUCCESS("success"),
   159         FAILURE("failure"),
   160         APPLICABLE("applicable"),
   161         INAPPLICABLE("inapplicable"),
   162         DEFERRED_INST("deferred-inference"),
   163         PREDEF("predef"),
   164         OBJECT_INIT("object-init"),
   165         INTERNAL("internal");
   167         final String opt;
   169         private VerboseResolutionMode(String opt) {
   170             this.opt = opt;
   171         }
   173         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   174             String s = opts.get("verboseResolution");
   175             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   176             if (s == null) return res;
   177             if (s.contains("all")) {
   178                 res = EnumSet.allOf(VerboseResolutionMode.class);
   179             }
   180             Collection<String> args = Arrays.asList(s.split(","));
   181             for (VerboseResolutionMode mode : values()) {
   182                 if (args.contains(mode.opt)) {
   183                     res.add(mode);
   184                 } else if (args.contains("-" + mode.opt)) {
   185                     res.remove(mode);
   186                 }
   187             }
   188             return res;
   189         }
   190     }
   192     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   193             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   194         boolean success = bestSoFar.kind < ERRONEOUS;
   196         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   197             return;
   198         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   199             return;
   200         }
   202         if (bestSoFar.name == names.init &&
   203                 bestSoFar.owner == syms.objectType.tsym &&
   204                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   205             return; //skip diags for Object constructor resolution
   206         } else if (site == syms.predefClass.type &&
   207                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   208             return; //skip spurious diags for predef symbols (i.e. operators)
   209         } else if (currentResolutionContext.internalResolution &&
   210                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   211             return;
   212         }
   214         int pos = 0;
   215         int mostSpecificPos = -1;
   216         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   217         for (Candidate c : currentResolutionContext.candidates) {
   218             if (currentResolutionContext.step != c.step ||
   219                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   220                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   221                 continue;
   222             } else {
   223                 subDiags.append(c.isApplicable() ?
   224                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   225                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   226                 if (c.sym == bestSoFar)
   227                     mostSpecificPos = pos;
   228                 pos++;
   229             }
   230         }
   231         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   232         List<Type> argtypes2 = Type.map(argtypes,
   233                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   234         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   235                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   236                 methodArguments(argtypes2),
   237                 methodArguments(typeargtypes));
   238         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   239         log.report(d);
   240     }
   242     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   243         JCDiagnostic subDiag = null;
   244         if (sym.type.hasTag(FORALL)) {
   245             subDiag = diags.fragment("partial.inst.sig", inst);
   246         }
   248         String key = subDiag == null ?
   249                 "applicable.method.found" :
   250                 "applicable.method.found.1";
   252         return diags.fragment(key, pos, sym, subDiag);
   253     }
   255     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   256         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   257     }
   258     // </editor-fold>
   260 /* ************************************************************************
   261  * Identifier resolution
   262  *************************************************************************/
   264     /** An environment is "static" if its static level is greater than
   265      *  the one of its outer environment
   266      */
   267     protected static boolean isStatic(Env<AttrContext> env) {
   268         return env.info.staticLevel > env.outer.info.staticLevel;
   269     }
   271     /** An environment is an "initializer" if it is a constructor or
   272      *  an instance initializer.
   273      */
   274     static boolean isInitializer(Env<AttrContext> env) {
   275         Symbol owner = env.info.scope.owner;
   276         return owner.isConstructor() ||
   277             owner.owner.kind == TYP &&
   278             (owner.kind == VAR ||
   279              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   280             (owner.flags() & STATIC) == 0;
   281     }
   283     /** Is class accessible in given evironment?
   284      *  @param env    The current environment.
   285      *  @param c      The class whose accessibility is checked.
   286      */
   287     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   288         return isAccessible(env, c, false);
   289     }
   291     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   292         boolean isAccessible = false;
   293         switch ((short)(c.flags() & AccessFlags)) {
   294             case PRIVATE:
   295                 isAccessible =
   296                     env.enclClass.sym.outermostClass() ==
   297                     c.owner.outermostClass();
   298                 break;
   299             case 0:
   300                 isAccessible =
   301                     env.toplevel.packge == c.owner // fast special case
   302                     ||
   303                     env.toplevel.packge == c.packge()
   304                     ||
   305                     // Hack: this case is added since synthesized default constructors
   306                     // of anonymous classes should be allowed to access
   307                     // classes which would be inaccessible otherwise.
   308                     env.enclMethod != null &&
   309                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   310                 break;
   311             default: // error recovery
   312             case PUBLIC:
   313                 isAccessible = true;
   314                 break;
   315             case PROTECTED:
   316                 isAccessible =
   317                     env.toplevel.packge == c.owner // fast special case
   318                     ||
   319                     env.toplevel.packge == c.packge()
   320                     ||
   321                     isInnerSubClass(env.enclClass.sym, c.owner);
   322                 break;
   323         }
   324         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   325             isAccessible :
   326             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   327     }
   328     //where
   329         /** Is given class a subclass of given base class, or an inner class
   330          *  of a subclass?
   331          *  Return null if no such class exists.
   332          *  @param c     The class which is the subclass or is contained in it.
   333          *  @param base  The base class
   334          */
   335         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   336             while (c != null && !c.isSubClass(base, types)) {
   337                 c = c.owner.enclClass();
   338             }
   339             return c != null;
   340         }
   342     boolean isAccessible(Env<AttrContext> env, Type t) {
   343         return isAccessible(env, t, false);
   344     }
   346     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   347         return (t.hasTag(ARRAY))
   348             ? isAccessible(env, types.elemtype(t))
   349             : isAccessible(env, t.tsym, checkInner);
   350     }
   352     /** Is symbol accessible as a member of given type in given environment?
   353      *  @param env    The current environment.
   354      *  @param site   The type of which the tested symbol is regarded
   355      *                as a member.
   356      *  @param sym    The symbol.
   357      */
   358     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   359         return isAccessible(env, site, sym, false);
   360     }
   361     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   362         if (sym.name == names.init && sym.owner != site.tsym) return false;
   363         switch ((short)(sym.flags() & AccessFlags)) {
   364         case PRIVATE:
   365             return
   366                 (env.enclClass.sym == sym.owner // fast special case
   367                  ||
   368                  env.enclClass.sym.outermostClass() ==
   369                  sym.owner.outermostClass())
   370                 &&
   371                 sym.isInheritedIn(site.tsym, types);
   372         case 0:
   373             return
   374                 (env.toplevel.packge == sym.owner.owner // fast special case
   375                  ||
   376                  env.toplevel.packge == sym.packge())
   377                 &&
   378                 isAccessible(env, site, checkInner)
   379                 &&
   380                 sym.isInheritedIn(site.tsym, types)
   381                 &&
   382                 notOverriddenIn(site, sym);
   383         case PROTECTED:
   384             return
   385                 (env.toplevel.packge == sym.owner.owner // fast special case
   386                  ||
   387                  env.toplevel.packge == sym.packge()
   388                  ||
   389                  isProtectedAccessible(sym, env.enclClass.sym, site)
   390                  ||
   391                  // OK to select instance method or field from 'super' or type name
   392                  // (but type names should be disallowed elsewhere!)
   393                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   394                 &&
   395                 isAccessible(env, site, checkInner)
   396                 &&
   397                 notOverriddenIn(site, sym);
   398         default: // this case includes erroneous combinations as well
   399             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   400         }
   401     }
   402     //where
   403     /* `sym' is accessible only if not overridden by
   404      * another symbol which is a member of `site'
   405      * (because, if it is overridden, `sym' is not strictly
   406      * speaking a member of `site'). A polymorphic signature method
   407      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   408      */
   409     private boolean notOverriddenIn(Type site, Symbol sym) {
   410         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   411             return true;
   412         else {
   413             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   414             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   415                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   416         }
   417     }
   418     //where
   419         /** Is given protected symbol accessible if it is selected from given site
   420          *  and the selection takes place in given class?
   421          *  @param sym     The symbol with protected access
   422          *  @param c       The class where the access takes place
   423          *  @site          The type of the qualifier
   424          */
   425         private
   426         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   427             while (c != null &&
   428                    !(c.isSubClass(sym.owner, types) &&
   429                      (c.flags() & INTERFACE) == 0 &&
   430                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   431                      // only to instance fields and methods -- types are excluded
   432                      // regardless of whether they are declared 'static' or not.
   433                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   434                 c = c.owner.enclClass();
   435             return c != null;
   436         }
   438     /**
   439      * Performs a recursive scan of a type looking for accessibility problems
   440      * from current attribution environment
   441      */
   442     void checkAccessibleType(Env<AttrContext> env, Type t) {
   443         accessibilityChecker.visit(t, env);
   444     }
   446     /**
   447      * Accessibility type-visitor
   448      */
   449     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   450             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   452         void visit(List<Type> ts, Env<AttrContext> env) {
   453             for (Type t : ts) {
   454                 visit(t, env);
   455             }
   456         }
   458         public Void visitType(Type t, Env<AttrContext> env) {
   459             return null;
   460         }
   462         @Override
   463         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   464             visit(t.elemtype, env);
   465             return null;
   466         }
   468         @Override
   469         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   470             visit(t.getTypeArguments(), env);
   471             if (!isAccessible(env, t, true)) {
   472                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   473             }
   474             return null;
   475         }
   477         @Override
   478         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   479             visit(t.type, env);
   480             return null;
   481         }
   483         @Override
   484         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   485             visit(t.getParameterTypes(), env);
   486             visit(t.getReturnType(), env);
   487             visit(t.getThrownTypes(), env);
   488             return null;
   489         }
   490     };
   492     /** Try to instantiate the type of a method so that it fits
   493      *  given type arguments and argument types. If successful, return
   494      *  the method's instantiated type, else return null.
   495      *  The instantiation will take into account an additional leading
   496      *  formal parameter if the method is an instance method seen as a member
   497      *  of an under determined site. In this case, we treat site as an additional
   498      *  parameter and the parameters of the class containing the method as
   499      *  additional type variables that get instantiated.
   500      *
   501      *  @param env         The current environment
   502      *  @param site        The type of which the method is a member.
   503      *  @param m           The method symbol.
   504      *  @param argtypes    The invocation's given value arguments.
   505      *  @param typeargtypes    The invocation's given type arguments.
   506      *  @param allowBoxing Allow boxing conversions of arguments.
   507      *  @param useVarargs Box trailing arguments into an array for varargs.
   508      */
   509     Type rawInstantiate(Env<AttrContext> env,
   510                         Type site,
   511                         Symbol m,
   512                         ResultInfo resultInfo,
   513                         List<Type> argtypes,
   514                         List<Type> typeargtypes,
   515                         boolean allowBoxing,
   516                         boolean useVarargs,
   517                         Warner warn) throws Infer.InferenceException {
   519         Type mt = types.memberType(site, m);
   520         // tvars is the list of formal type variables for which type arguments
   521         // need to inferred.
   522         List<Type> tvars = List.nil();
   523         if (typeargtypes == null) typeargtypes = List.nil();
   524         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   525             // This is not a polymorphic method, but typeargs are supplied
   526             // which is fine, see JLS 15.12.2.1
   527         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   528             ForAll pmt = (ForAll) mt;
   529             if (typeargtypes.length() != pmt.tvars.length())
   530                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   531             // Check type arguments are within bounds
   532             List<Type> formals = pmt.tvars;
   533             List<Type> actuals = typeargtypes;
   534             while (formals.nonEmpty() && actuals.nonEmpty()) {
   535                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   536                                                 pmt.tvars, typeargtypes);
   537                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   538                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   539                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   540                 formals = formals.tail;
   541                 actuals = actuals.tail;
   542             }
   543             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   544         } else if (mt.hasTag(FORALL)) {
   545             ForAll pmt = (ForAll) mt;
   546             List<Type> tvars1 = types.newInstances(pmt.tvars);
   547             tvars = tvars.appendList(tvars1);
   548             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   549         }
   551         // find out whether we need to go the slow route via infer
   552         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   553         for (List<Type> l = argtypes;
   554              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   555              l = l.tail) {
   556             if (l.head.hasTag(FORALL)) instNeeded = true;
   557         }
   559         if (instNeeded)
   560             return infer.instantiateMethod(env,
   561                                     tvars,
   562                                     (MethodType)mt,
   563                                     resultInfo,
   564                                     m,
   565                                     argtypes,
   566                                     allowBoxing,
   567                                     useVarargs,
   568                                     currentResolutionContext,
   569                                     warn);
   571         currentResolutionContext.methodCheck.argumentsAcceptable(env, currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn),
   572                                 argtypes, mt.getParameterTypes(), warn);
   573         return mt;
   574     }
   576     Type checkMethod(Env<AttrContext> env,
   577                      Type site,
   578                      Symbol m,
   579                      ResultInfo resultInfo,
   580                      List<Type> argtypes,
   581                      List<Type> typeargtypes,
   582                      Warner warn) {
   583         MethodResolutionContext prevContext = currentResolutionContext;
   584         try {
   585             currentResolutionContext = new MethodResolutionContext();
   586             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   587             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   588             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   589                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   590         }
   591         finally {
   592             currentResolutionContext = prevContext;
   593         }
   594     }
   596     /** Same but returns null instead throwing a NoInstanceException
   597      */
   598     Type instantiate(Env<AttrContext> env,
   599                      Type site,
   600                      Symbol m,
   601                      ResultInfo resultInfo,
   602                      List<Type> argtypes,
   603                      List<Type> typeargtypes,
   604                      boolean allowBoxing,
   605                      boolean useVarargs,
   606                      Warner warn) {
   607         try {
   608             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   609                                   allowBoxing, useVarargs, warn);
   610         } catch (InapplicableMethodException ex) {
   611             return null;
   612         }
   613     }
   615     /**
   616      * This interface defines an entry point that should be used to perform a
   617      * method check. A method check usually consist in determining as to whether
   618      * a set of types (actuals) is compatible with another set of types (formals).
   619      * Since the notion of compatibility can vary depending on the circumstances,
   620      * this interfaces allows to easily add new pluggable method check routines.
   621      */
   622     interface MethodCheck {
   623         /**
   624          * Main method check routine. A method check usually consist in determining
   625          * as to whether a set of types (actuals) is compatible with another set of
   626          * types (formals). If an incompatibility is found, an unchecked exception
   627          * is assumed to be thrown.
   628          */
   629         void argumentsAcceptable(Env<AttrContext> env,
   630                                 DeferredAttrContext deferredAttrContext,
   631                                 List<Type> argtypes,
   632                                 List<Type> formals,
   633                                 Warner warn);
   635         /**
   636          * Retrieve the method check object that will be used during a
   637          * most specific check.
   638          */
   639         MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
   640     }
   642     /**
   643      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   644      */
   645     enum MethodCheckDiag {
   646         /**
   647          * Actuals and formals differs in length.
   648          */
   649         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   650         /**
   651          * An actual is incompatible with a formal.
   652          */
   653         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   654         /**
   655          * An actual is incompatible with the varargs element type.
   656          */
   657         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   658         /**
   659          * The varargs element type is inaccessible.
   660          */
   661         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   663         final String basicKey;
   664         final String inferKey;
   666         MethodCheckDiag(String basicKey, String inferKey) {
   667             this.basicKey = basicKey;
   668             this.inferKey = inferKey;
   669         }
   671         String regex() {
   672             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
   673         }
   674     }
   676     /**
   677      * Dummy method check object. All methods are deemed applicable, regardless
   678      * of their formal parameter types.
   679      */
   680     MethodCheck nilMethodCheck = new MethodCheck() {
   681         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
   682             //do nothing - method always applicable regardless of actuals
   683         }
   685         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   686             return this;
   687         }
   688     };
   690     /**
   691      * Base class for 'real' method checks. The class defines the logic for
   692      * iterating through formals and actuals and provides and entry point
   693      * that can be used by subclasses in order to define the actual check logic.
   694      */
   695     abstract class AbstractMethodCheck implements MethodCheck {
   696         @Override
   697         public void argumentsAcceptable(final Env<AttrContext> env,
   698                                     DeferredAttrContext deferredAttrContext,
   699                                     List<Type> argtypes,
   700                                     List<Type> formals,
   701                                     Warner warn) {
   702             //should we expand formals?
   703             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   704             List<JCExpression> trees = TreeInfo.args(env.tree);
   706             //inference context used during this method check
   707             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   709             Type varargsFormal = useVarargs ? formals.last() : null;
   711             if (varargsFormal == null &&
   712                     argtypes.size() != formals.size()) {
   713                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   714             }
   716             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   717                 DiagnosticPosition pos = trees != null ? trees.head : null;
   718                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
   719                 argtypes = argtypes.tail;
   720                 formals = formals.tail;
   721                 trees = trees != null ? trees.tail : trees;
   722             }
   724             if (formals.head != varargsFormal) {
   725                 reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   726             }
   728             if (useVarargs) {
   729                 //note: if applicability check is triggered by most specific test,
   730                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   731                 final Type elt = types.elemtype(varargsFormal);
   732                 while (argtypes.nonEmpty()) {
   733                     DiagnosticPosition pos = trees != null ? trees.head : null;
   734                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
   735                     argtypes = argtypes.tail;
   736                     trees = trees != null ? trees.tail : trees;
   737                 }
   738             }
   739         }
   741         /**
   742          * Does the actual argument conforms to the corresponding formal?
   743          */
   744         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
   746         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   747             boolean inferDiag = inferenceContext != infer.emptyContext;
   748             InapplicableMethodException ex = inferDiag ?
   749                     infer.inferenceException : inapplicableMethodException;
   750             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   751                 Object[] args2 = new Object[args.length + 1];
   752                 System.arraycopy(args, 0, args2, 1, args.length);
   753                 args2[0] = inferenceContext.inferenceVars();
   754                 args = args2;
   755             }
   756             String key = inferDiag ? diag.inferKey : diag.basicKey;
   757             throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
   758         }
   760         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   761             return nilMethodCheck;
   762         }
   763     }
   765     /**
   766      * Arity-based method check. A method is applicable if the number of actuals
   767      * supplied conforms to the method signature.
   768      */
   769     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
   770         @Override
   771         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   772             //do nothing - actual always compatible to formals
   773         }
   774     };
   776     /**
   777      * Main method applicability routine. Given a list of actual types A,
   778      * a list of formal types F, determines whether the types in A are
   779      * compatible (by method invocation conversion) with the types in F.
   780      *
   781      * Since this routine is shared between overload resolution and method
   782      * type-inference, a (possibly empty) inference context is used to convert
   783      * formal types to the corresponding 'undet' form ahead of a compatibility
   784      * check so that constraints can be propagated and collected.
   785      *
   786      * Moreover, if one or more types in A is a deferred type, this routine uses
   787      * DeferredAttr in order to perform deferred attribution. If one or more actual
   788      * deferred types are stuck, they are placed in a queue and revisited later
   789      * after the remainder of the arguments have been seen. If this is not sufficient
   790      * to 'unstuck' the argument, a cyclic inference error is called out.
   791      *
   792      * A method check handler (see above) is used in order to report errors.
   793      */
   794     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
   796         @Override
   797         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   798             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   799             mresult.check(pos, actual);
   800         }
   802         @Override
   803         public void argumentsAcceptable(final Env<AttrContext> env,
   804                                     DeferredAttrContext deferredAttrContext,
   805                                     List<Type> argtypes,
   806                                     List<Type> formals,
   807                                     Warner warn) {
   808             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
   809             //should we expand formals?
   810             if (deferredAttrContext.phase.isVarargsRequired()) {
   811                 //check varargs element type accessibility
   812                 varargsAccessible(env, types.elemtype(formals.last()),
   813                         deferredAttrContext.inferenceContext);
   814             }
   815         }
   817         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   818             if (inferenceContext.free(t)) {
   819                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   820                     @Override
   821                     public void typesInferred(InferenceContext inferenceContext) {
   822                         varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
   823                     }
   824                 });
   825             } else {
   826                 if (!isAccessible(env, t)) {
   827                     Symbol location = env.enclClass.sym;
   828                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   829                 }
   830             }
   831         }
   833         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   834                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   835             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   836                 MethodCheckDiag methodDiag = varargsCheck ?
   837                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   839                 @Override
   840                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   841                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   842                 }
   843             };
   844             return new MethodResultInfo(to, checkContext);
   845         }
   847         @Override
   848         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   849             return new MostSpecificCheck(strict, actuals);
   850         }
   851     };
   853     /**
   854      * Check context to be used during method applicability checks. A method check
   855      * context might contain inference variables.
   856      */
   857     abstract class MethodCheckContext implements CheckContext {
   859         boolean strict;
   860         DeferredAttrContext deferredAttrContext;
   861         Warner rsWarner;
   863         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   864            this.strict = strict;
   865            this.deferredAttrContext = deferredAttrContext;
   866            this.rsWarner = rsWarner;
   867         }
   869         public boolean compatible(Type found, Type req, Warner warn) {
   870             return strict ?
   871                     types.isSubtypeUnchecked(found, deferredAttrContext.inferenceContext.asFree(req), warn) :
   872                     types.isConvertible(found, deferredAttrContext.inferenceContext.asFree(req), warn);
   873         }
   875         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   876             throw inapplicableMethodException.setMessage(details);
   877         }
   879         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   880             return rsWarner;
   881         }
   883         public InferenceContext inferenceContext() {
   884             return deferredAttrContext.inferenceContext;
   885         }
   887         public DeferredAttrContext deferredAttrContext() {
   888             return deferredAttrContext;
   889         }
   890     }
   892     /**
   893      * ResultInfo class to be used during method applicability checks. Check
   894      * for deferred types goes through special path.
   895      */
   896     class MethodResultInfo extends ResultInfo {
   898         public MethodResultInfo(Type pt, CheckContext checkContext) {
   899             attr.super(VAL, pt, checkContext);
   900         }
   902         @Override
   903         protected Type check(DiagnosticPosition pos, Type found) {
   904             if (found.hasTag(DEFERRED)) {
   905                 DeferredType dt = (DeferredType)found;
   906                 return dt.check(this);
   907             } else {
   908                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   909             }
   910         }
   912         @Override
   913         protected MethodResultInfo dup(Type newPt) {
   914             return new MethodResultInfo(newPt, checkContext);
   915         }
   917         @Override
   918         protected ResultInfo dup(CheckContext newContext) {
   919             return new MethodResultInfo(pt, newContext);
   920         }
   921     }
   923     /**
   924      * Most specific method applicability routine. Given a list of actual types A,
   925      * a list of formal types F1, and a list of formal types F2, the routine determines
   926      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
   927      * argument types A.
   928      */
   929     class MostSpecificCheck implements MethodCheck {
   931         boolean strict;
   932         List<Type> actuals;
   934         MostSpecificCheck(boolean strict, List<Type> actuals) {
   935             this.strict = strict;
   936             this.actuals = actuals;
   937         }
   939         @Override
   940         public void argumentsAcceptable(final Env<AttrContext> env,
   941                                     DeferredAttrContext deferredAttrContext,
   942                                     List<Type> formals1,
   943                                     List<Type> formals2,
   944                                     Warner warn) {
   945             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
   946             while (formals2.nonEmpty()) {
   947                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
   948                 mresult.check(null, formals1.head);
   949                 formals1 = formals1.tail;
   950                 formals2 = formals2.tail;
   951                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
   952             }
   953         }
   955        /**
   956         * Create a method check context to be used during the most specific applicability check
   957         */
   958         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
   959                Warner rsWarner, Type actual) {
   960            return attr.new ResultInfo(Kinds.VAL, to,
   961                    new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
   962         }
   964         /**
   965          * Subclass of method check context class that implements most specific
   966          * method conversion. If the actual type under analysis is a deferred type
   967          * a full blown structural analysis is carried out.
   968          */
   969         class MostSpecificCheckContext extends MethodCheckContext {
   971             Type actual;
   973             public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
   974                 super(strict, deferredAttrContext, rsWarner);
   975                 this.actual = actual;
   976             }
   978             public boolean compatible(Type found, Type req, Warner warn) {
   979                 if (!allowStructuralMostSpecific || actual == null) {
   980                     return super.compatible(found, req, warn);
   981                 } else {
   982                     switch (actual.getTag()) {
   983                         case DEFERRED:
   984                             DeferredType dt = (DeferredType) actual;
   985                             DeferredType.SpeculativeCache.Entry e = dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
   986                             return (e == null || e.speculativeTree == deferredAttr.stuckTree)
   987                                     ? false : mostSpecific(found, req, e.speculativeTree, warn);
   988                         default:
   989                             return standaloneMostSpecific(found, req, actual, warn);
   990                     }
   991                 }
   992             }
   994             private boolean mostSpecific(Type t, Type s, JCTree tree, Warner warn) {
   995                 MostSpecificChecker msc = new MostSpecificChecker(t, s, warn);
   996                 msc.scan(tree);
   997                 return msc.result;
   998             }
  1000             boolean polyMostSpecific(Type t1, Type t2, Warner warn) {
  1001                 return (!t1.isPrimitive() && t2.isPrimitive())
  1002                         ? true : super.compatible(t1, t2, warn);
  1005             boolean standaloneMostSpecific(Type t1, Type t2, Type exprType, Warner warn) {
  1006                 return (exprType.isPrimitive() == t1.isPrimitive()
  1007                         && exprType.isPrimitive() != t2.isPrimitive())
  1008                         ? true : super.compatible(t1, t2, warn);
  1011             /**
  1012              * Structural checker for most specific.
  1013              */
  1014             class MostSpecificChecker extends DeferredAttr.PolyScanner {
  1016                 final Type t;
  1017                 final Type s;
  1018                 final Warner warn;
  1019                 boolean result;
  1021                 MostSpecificChecker(Type t, Type s, Warner warn) {
  1022                     this.t = t;
  1023                     this.s = s;
  1024                     this.warn = warn;
  1025                     result = true;
  1028                 @Override
  1029                 void skip(JCTree tree) {
  1030                     result &= standaloneMostSpecific(t, s, tree.type, warn);
  1033                 @Override
  1034                 public void visitConditional(JCConditional tree) {
  1035                     if (tree.polyKind == PolyKind.STANDALONE) {
  1036                         result &= standaloneMostSpecific(t, s, tree.type, warn);
  1037                     } else {
  1038                         super.visitConditional(tree);
  1042                 @Override
  1043                 public void visitApply(JCMethodInvocation tree) {
  1044                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1045                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1046                             : polyMostSpecific(t, s, warn);
  1049                 @Override
  1050                 public void visitNewClass(JCNewClass tree) {
  1051                     result &= (tree.polyKind == PolyKind.STANDALONE)
  1052                             ? standaloneMostSpecific(t, s, tree.type, warn)
  1053                             : polyMostSpecific(t, s, warn);
  1056                 @Override
  1057                 public void visitReference(JCMemberReference tree) {
  1058                     if (types.isFunctionalInterface(t.tsym) &&
  1059                             types.isFunctionalInterface(s.tsym) &&
  1060                             types.asSuper(t, s.tsym) == null &&
  1061                             types.asSuper(s, t.tsym) == null) {
  1062                         Type desc_t = types.findDescriptorType(t);
  1063                         Type desc_s = types.findDescriptorType(s);
  1064                         if (types.isSameTypes(desc_t.getParameterTypes(), desc_s.getParameterTypes())) {
  1065                             if (!desc_s.getReturnType().hasTag(VOID)) {
  1066                                 //perform structural comparison
  1067                                 Type ret_t = desc_t.getReturnType();
  1068                                 Type ret_s = desc_s.getReturnType();
  1069                                 result &= ((tree.refPolyKind == PolyKind.STANDALONE)
  1070                                         ? standaloneMostSpecific(ret_t, ret_s, tree.sym.type.getReturnType(), warn)
  1071                                         : polyMostSpecific(ret_t, ret_s, warn));
  1072                             } else {
  1073                                 return;
  1075                         } else {
  1076                             result &= false;
  1078                     } else {
  1079                         result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1083                 @Override
  1084                 public void visitLambda(JCLambda tree) {
  1085                     if (types.isFunctionalInterface(t.tsym) &&
  1086                             types.isFunctionalInterface(s.tsym) &&
  1087                             types.asSuper(t, s.tsym) == null &&
  1088                             types.asSuper(s, t.tsym) == null) {
  1089                         Type desc_t = types.findDescriptorType(t);
  1090                         Type desc_s = types.findDescriptorType(s);
  1091                         if (tree.paramKind == JCLambda.ParameterKind.EXPLICIT
  1092                                 || types.isSameTypes(desc_t.getParameterTypes(), desc_s.getParameterTypes())) {
  1093                             if (!desc_s.getReturnType().hasTag(VOID)) {
  1094                                 //perform structural comparison
  1095                                 Type ret_t = desc_t.getReturnType();
  1096                                 Type ret_s = desc_s.getReturnType();
  1097                                 scanLambdaBody(tree, ret_t, ret_s);
  1098                             } else {
  1099                                 return;
  1101                         } else {
  1102                             result &= false;
  1104                     } else {
  1105                         result &= MostSpecificCheckContext.super.compatible(t, s, warn);
  1108                 //where
  1110                 void scanLambdaBody(JCLambda lambda, final Type t, final Type s) {
  1111                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
  1112                         result &= MostSpecificCheckContext.this.mostSpecific(t, s, lambda.body, warn);
  1113                     } else {
  1114                         DeferredAttr.LambdaReturnScanner lambdaScanner =
  1115                                 new DeferredAttr.LambdaReturnScanner() {
  1116                                     @Override
  1117                                     public void visitReturn(JCReturn tree) {
  1118                                         if (tree.expr != null) {
  1119                                             result &= MostSpecificCheckContext.this.mostSpecific(t, s, tree.expr, warn);
  1122                                 };
  1123                         lambdaScanner.scan(lambda.body);
  1129         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
  1130             Assert.error("Cannot get here!");
  1131             return null;
  1135     public static class InapplicableMethodException extends RuntimeException {
  1136         private static final long serialVersionUID = 0;
  1138         JCDiagnostic diagnostic;
  1139         JCDiagnostic.Factory diags;
  1141         InapplicableMethodException(JCDiagnostic.Factory diags) {
  1142             this.diagnostic = null;
  1143             this.diags = diags;
  1145         InapplicableMethodException setMessage() {
  1146             return setMessage((JCDiagnostic)null);
  1148         InapplicableMethodException setMessage(String key) {
  1149             return setMessage(key != null ? diags.fragment(key) : null);
  1151         InapplicableMethodException setMessage(String key, Object... args) {
  1152             return setMessage(key != null ? diags.fragment(key, args) : null);
  1154         InapplicableMethodException setMessage(JCDiagnostic diag) {
  1155             this.diagnostic = diag;
  1156             return this;
  1159         public JCDiagnostic getDiagnostic() {
  1160             return diagnostic;
  1163     private final InapplicableMethodException inapplicableMethodException;
  1165 /* ***************************************************************************
  1166  *  Symbol lookup
  1167  *  the following naming conventions for arguments are used
  1169  *       env      is the environment where the symbol was mentioned
  1170  *       site     is the type of which the symbol is a member
  1171  *       name     is the symbol's name
  1172  *                if no arguments are given
  1173  *       argtypes are the value arguments, if we search for a method
  1175  *  If no symbol was found, a ResolveError detailing the problem is returned.
  1176  ****************************************************************************/
  1178     /** Find field. Synthetic fields are always skipped.
  1179      *  @param env     The current environment.
  1180      *  @param site    The original type from where the selection takes place.
  1181      *  @param name    The name of the field.
  1182      *  @param c       The class to search for the field. This is always
  1183      *                 a superclass or implemented interface of site's class.
  1184      */
  1185     Symbol findField(Env<AttrContext> env,
  1186                      Type site,
  1187                      Name name,
  1188                      TypeSymbol c) {
  1189         while (c.type.hasTag(TYPEVAR))
  1190             c = c.type.getUpperBound().tsym;
  1191         Symbol bestSoFar = varNotFound;
  1192         Symbol sym;
  1193         Scope.Entry e = c.members().lookup(name);
  1194         while (e.scope != null) {
  1195             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
  1196                 return isAccessible(env, site, e.sym)
  1197                     ? e.sym : new AccessError(env, site, e.sym);
  1199             e = e.next();
  1201         Type st = types.supertype(c.type);
  1202         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
  1203             sym = findField(env, site, name, st.tsym);
  1204             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1206         for (List<Type> l = types.interfaces(c.type);
  1207              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1208              l = l.tail) {
  1209             sym = findField(env, site, name, l.head.tsym);
  1210             if (bestSoFar.exists() && sym.exists() &&
  1211                 sym.owner != bestSoFar.owner)
  1212                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1213             else if (sym.kind < bestSoFar.kind)
  1214                 bestSoFar = sym;
  1216         return bestSoFar;
  1219     /** Resolve a field identifier, throw a fatal error if not found.
  1220      *  @param pos       The position to use for error reporting.
  1221      *  @param env       The environment current at the method invocation.
  1222      *  @param site      The type of the qualifying expression, in which
  1223      *                   identifier is searched.
  1224      *  @param name      The identifier's name.
  1225      */
  1226     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
  1227                                           Type site, Name name) {
  1228         Symbol sym = findField(env, site, name, site.tsym);
  1229         if (sym.kind == VAR) return (VarSymbol)sym;
  1230         else throw new FatalError(
  1231                  diags.fragment("fatal.err.cant.locate.field",
  1232                                 name));
  1235     /** Find unqualified variable or field with given name.
  1236      *  Synthetic fields always skipped.
  1237      *  @param env     The current environment.
  1238      *  @param name    The name of the variable or field.
  1239      */
  1240     Symbol findVar(Env<AttrContext> env, Name name) {
  1241         Symbol bestSoFar = varNotFound;
  1242         Symbol sym;
  1243         Env<AttrContext> env1 = env;
  1244         boolean staticOnly = false;
  1245         while (env1.outer != null) {
  1246             if (isStatic(env1)) staticOnly = true;
  1247             Scope.Entry e = env1.info.scope.lookup(name);
  1248             while (e.scope != null &&
  1249                    (e.sym.kind != VAR ||
  1250                     (e.sym.flags_field & SYNTHETIC) != 0))
  1251                 e = e.next();
  1252             sym = (e.scope != null)
  1253                 ? e.sym
  1254                 : findField(
  1255                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
  1256             if (sym.exists()) {
  1257                 if (staticOnly &&
  1258                     sym.kind == VAR &&
  1259                     sym.owner.kind == TYP &&
  1260                     (sym.flags() & STATIC) == 0)
  1261                     return new StaticError(sym);
  1262                 else
  1263                     return sym;
  1264             } else if (sym.kind < bestSoFar.kind) {
  1265                 bestSoFar = sym;
  1268             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1269             env1 = env1.outer;
  1272         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
  1273         if (sym.exists())
  1274             return sym;
  1275         if (bestSoFar.exists())
  1276             return bestSoFar;
  1278         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1279         for (; e.scope != null; e = e.next()) {
  1280             sym = e.sym;
  1281             Type origin = e.getOrigin().owner.type;
  1282             if (sym.kind == VAR) {
  1283                 if (e.sym.owner.type != origin)
  1284                     sym = sym.clone(e.getOrigin().owner);
  1285                 return isAccessible(env, origin, sym)
  1286                     ? sym : new AccessError(env, origin, sym);
  1290         Symbol origin = null;
  1291         e = env.toplevel.starImportScope.lookup(name);
  1292         for (; e.scope != null; e = e.next()) {
  1293             sym = e.sym;
  1294             if (sym.kind != VAR)
  1295                 continue;
  1296             // invariant: sym.kind == VAR
  1297             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1298                 return new AmbiguityError(bestSoFar, sym);
  1299             else if (bestSoFar.kind >= VAR) {
  1300                 origin = e.getOrigin().owner;
  1301                 bestSoFar = isAccessible(env, origin.type, sym)
  1302                     ? sym : new AccessError(env, origin.type, sym);
  1305         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1306             return bestSoFar.clone(origin);
  1307         else
  1308             return bestSoFar;
  1311     Warner noteWarner = new Warner();
  1313     /** Select the best method for a call site among two choices.
  1314      *  @param env              The current environment.
  1315      *  @param site             The original type from where the
  1316      *                          selection takes place.
  1317      *  @param argtypes         The invocation's value arguments,
  1318      *  @param typeargtypes     The invocation's type arguments,
  1319      *  @param sym              Proposed new best match.
  1320      *  @param bestSoFar        Previously found best match.
  1321      *  @param allowBoxing Allow boxing conversions of arguments.
  1322      *  @param useVarargs Box trailing arguments into an array for varargs.
  1323      */
  1324     @SuppressWarnings("fallthrough")
  1325     Symbol selectBest(Env<AttrContext> env,
  1326                       Type site,
  1327                       List<Type> argtypes,
  1328                       List<Type> typeargtypes,
  1329                       Symbol sym,
  1330                       Symbol bestSoFar,
  1331                       boolean allowBoxing,
  1332                       boolean useVarargs,
  1333                       boolean operator) {
  1334         if (sym.kind == ERR ||
  1335                 !sym.isInheritedIn(site.tsym, types)) {
  1336             return bestSoFar;
  1337         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
  1338             return bestSoFar.kind >= ERRONEOUS ?
  1339                     new BadVarargsMethod((ResolveError)bestSoFar) :
  1340                     bestSoFar;
  1342         Assert.check(sym.kind < AMBIGUOUS);
  1343         try {
  1344             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1345                                allowBoxing, useVarargs, types.noWarnings);
  1346             if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
  1347                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1348         } catch (InapplicableMethodException ex) {
  1349             if (!operator)
  1350                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1351             switch (bestSoFar.kind) {
  1352                 case ABSENT_MTH:
  1353                     return new InapplicableSymbolError(currentResolutionContext);
  1354                 case WRONG_MTH:
  1355                     if (operator) return bestSoFar;
  1356                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1357                 default:
  1358                     return bestSoFar;
  1361         if (!isAccessible(env, site, sym)) {
  1362             return (bestSoFar.kind == ABSENT_MTH)
  1363                 ? new AccessError(env, site, sym)
  1364                 : bestSoFar;
  1366         return (bestSoFar.kind > AMBIGUOUS)
  1367             ? sym
  1368             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1369                            allowBoxing && operator, useVarargs);
  1372     /* Return the most specific of the two methods for a call,
  1373      *  given that both are accessible and applicable.
  1374      *  @param m1               A new candidate for most specific.
  1375      *  @param m2               The previous most specific candidate.
  1376      *  @param env              The current environment.
  1377      *  @param site             The original type from where the selection
  1378      *                          takes place.
  1379      *  @param allowBoxing Allow boxing conversions of arguments.
  1380      *  @param useVarargs Box trailing arguments into an array for varargs.
  1381      */
  1382     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1383                         Symbol m2,
  1384                         Env<AttrContext> env,
  1385                         final Type site,
  1386                         boolean allowBoxing,
  1387                         boolean useVarargs) {
  1388         switch (m2.kind) {
  1389         case MTH:
  1390             if (m1 == m2) return m1;
  1391             boolean m1SignatureMoreSpecific =
  1392                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1393             boolean m2SignatureMoreSpecific =
  1394                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1395             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1396                 Type mt1 = types.memberType(site, m1);
  1397                 Type mt2 = types.memberType(site, m2);
  1398                 if (!types.overrideEquivalent(mt1, mt2))
  1399                     return ambiguityError(m1, m2);
  1401                 // same signature; select (a) the non-bridge method, or
  1402                 // (b) the one that overrides the other, or (c) the concrete
  1403                 // one, or (d) merge both abstract signatures
  1404                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1405                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1407                 // if one overrides or hides the other, use it
  1408                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1409                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1410                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1411                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1412                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1413                     m1.overrides(m2, m1Owner, types, false))
  1414                     return m1;
  1415                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1416                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1417                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1418                     m2.overrides(m1, m2Owner, types, false))
  1419                     return m2;
  1420                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1421                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1422                 if (m1Abstract && !m2Abstract) return m2;
  1423                 if (m2Abstract && !m1Abstract) return m1;
  1424                 // both abstract or both concrete
  1425                 return ambiguityError(m1, m2);
  1427             if (m1SignatureMoreSpecific) return m1;
  1428             if (m2SignatureMoreSpecific) return m2;
  1429             return ambiguityError(m1, m2);
  1430         case AMBIGUOUS:
  1431             //check if m1 is more specific than all ambiguous methods in m2
  1432             AmbiguityError e = (AmbiguityError)m2;
  1433             for (Symbol s : e.ambiguousSyms) {
  1434                 if (mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs) != m1) {
  1435                     return e.addAmbiguousSymbol(m1);
  1438             return m1;
  1439         default:
  1440             throw new AssertionError();
  1443     //where
  1444     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1445         noteWarner.clear();
  1446         int maxLength = Math.max(
  1447                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
  1448                             m2.type.getParameterTypes().length());
  1449         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1450         try {
  1451             currentResolutionContext = new MethodResolutionContext();
  1452             currentResolutionContext.step = prevResolutionContext.step;
  1453             currentResolutionContext.methodCheck =
  1454                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
  1455             Type mst = instantiate(env, site, m2, null,
  1456                     adjustArgs(types.lowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
  1457                     allowBoxing, useVarargs, noteWarner);
  1458             return mst != null &&
  1459                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1460         } finally {
  1461             currentResolutionContext = prevResolutionContext;
  1464     private List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
  1465         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
  1466             Type varargsElem = types.elemtype(args.last());
  1467             if (varargsElem == null) {
  1468                 Assert.error("Bad varargs = " + args.last() + " " + msym);
  1470             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
  1471             while (newArgs.length() < length) {
  1472                 newArgs = newArgs.append(newArgs.last());
  1474             return newArgs;
  1475         } else {
  1476             return args;
  1479     //where
  1480     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1481         Type rt1 = mt1.getReturnType();
  1482         Type rt2 = mt2.getReturnType();
  1484         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1485             //if both are generic methods, adjust return type ahead of subtyping check
  1486             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1488         //first use subtyping, then return type substitutability
  1489         if (types.isSubtype(rt1, rt2)) {
  1490             return mt1;
  1491         } else if (types.isSubtype(rt2, rt1)) {
  1492             return mt2;
  1493         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1494             return mt1;
  1495         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1496             return mt2;
  1497         } else {
  1498             return null;
  1501     //where
  1502     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1503         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1504             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1505         } else {
  1506             return new AmbiguityError(m1, m2);
  1510     Symbol findMethodInScope(Env<AttrContext> env,
  1511             Type site,
  1512             Name name,
  1513             List<Type> argtypes,
  1514             List<Type> typeargtypes,
  1515             Scope sc,
  1516             Symbol bestSoFar,
  1517             boolean allowBoxing,
  1518             boolean useVarargs,
  1519             boolean operator,
  1520             boolean abstractok) {
  1521         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1522             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1523                     bestSoFar, allowBoxing, useVarargs, operator);
  1525         return bestSoFar;
  1527     //where
  1528         class LookupFilter implements Filter<Symbol> {
  1530             boolean abstractOk;
  1532             LookupFilter(boolean abstractOk) {
  1533                 this.abstractOk = abstractOk;
  1536             public boolean accepts(Symbol s) {
  1537                 long flags = s.flags();
  1538                 return s.kind == MTH &&
  1539                         (flags & SYNTHETIC) == 0 &&
  1540                         (abstractOk ||
  1541                         (flags & DEFAULT) != 0 ||
  1542                         (flags & ABSTRACT) == 0);
  1544         };
  1546     /** Find best qualified method matching given name, type and value
  1547      *  arguments.
  1548      *  @param env       The current environment.
  1549      *  @param site      The original type from where the selection
  1550      *                   takes place.
  1551      *  @param name      The method's name.
  1552      *  @param argtypes  The method's value arguments.
  1553      *  @param typeargtypes The method's type arguments
  1554      *  @param allowBoxing Allow boxing conversions of arguments.
  1555      *  @param useVarargs Box trailing arguments into an array for varargs.
  1556      */
  1557     Symbol findMethod(Env<AttrContext> env,
  1558                       Type site,
  1559                       Name name,
  1560                       List<Type> argtypes,
  1561                       List<Type> typeargtypes,
  1562                       boolean allowBoxing,
  1563                       boolean useVarargs,
  1564                       boolean operator) {
  1565         Symbol bestSoFar = methodNotFound;
  1566         bestSoFar = findMethod(env,
  1567                           site,
  1568                           name,
  1569                           argtypes,
  1570                           typeargtypes,
  1571                           site.tsym.type,
  1572                           bestSoFar,
  1573                           allowBoxing,
  1574                           useVarargs,
  1575                           operator);
  1576         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1577         return bestSoFar;
  1579     // where
  1580     private Symbol findMethod(Env<AttrContext> env,
  1581                               Type site,
  1582                               Name name,
  1583                               List<Type> argtypes,
  1584                               List<Type> typeargtypes,
  1585                               Type intype,
  1586                               Symbol bestSoFar,
  1587                               boolean allowBoxing,
  1588                               boolean useVarargs,
  1589                               boolean operator) {
  1590         @SuppressWarnings({"unchecked","rawtypes"})
  1591         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1592         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1593         for (TypeSymbol s : superclasses(intype)) {
  1594             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1595                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1596             if (name == names.init) return bestSoFar;
  1597             iphase = (iphase == null) ? null : iphase.update(s, this);
  1598             if (iphase != null) {
  1599                 for (Type itype : types.interfaces(s.type)) {
  1600                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1605         Symbol concrete = bestSoFar.kind < ERR &&
  1606                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1607                 bestSoFar : methodNotFound;
  1609         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1610             if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && !allowDefaultMethods) break;
  1611             //keep searching for abstract methods
  1612             for (Type itype : itypes[iphase2.ordinal()]) {
  1613                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1614                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1615                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1616                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1617                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1618                 if (concrete != bestSoFar &&
  1619                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1620                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1621                     //this is an hack - as javac does not do full membership checks
  1622                     //most specific ends up comparing abstract methods that might have
  1623                     //been implemented by some concrete method in a subclass and,
  1624                     //because of raw override, it is possible for an abstract method
  1625                     //to be more specific than the concrete method - so we need
  1626                     //to explicitly call that out (see CR 6178365)
  1627                     bestSoFar = concrete;
  1631         return bestSoFar;
  1634     enum InterfaceLookupPhase {
  1635         ABSTRACT_OK() {
  1636             @Override
  1637             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1638                 //We should not look for abstract methods if receiver is a concrete class
  1639                 //(as concrete classes are expected to implement all abstracts coming
  1640                 //from superinterfaces)
  1641                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1642                     return this;
  1643                 } else if (rs.allowDefaultMethods) {
  1644                     return DEFAULT_OK;
  1645                 } else {
  1646                     return null;
  1649         },
  1650         DEFAULT_OK() {
  1651             @Override
  1652             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1653                 return this;
  1655         };
  1657         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1660     /**
  1661      * Return an Iterable object to scan the superclasses of a given type.
  1662      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1663      * access more supertypes than strictly needed (as this could trigger completion
  1664      * errors if some of the not-needed supertypes are missing/ill-formed).
  1665      */
  1666     Iterable<TypeSymbol> superclasses(final Type intype) {
  1667         return new Iterable<TypeSymbol>() {
  1668             public Iterator<TypeSymbol> iterator() {
  1669                 return new Iterator<TypeSymbol>() {
  1671                     List<TypeSymbol> seen = List.nil();
  1672                     TypeSymbol currentSym = symbolFor(intype);
  1673                     TypeSymbol prevSym = null;
  1675                     public boolean hasNext() {
  1676                         if (currentSym == syms.noSymbol) {
  1677                             currentSym = symbolFor(types.supertype(prevSym.type));
  1679                         return currentSym != null;
  1682                     public TypeSymbol next() {
  1683                         prevSym = currentSym;
  1684                         currentSym = syms.noSymbol;
  1685                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1686                         return prevSym;
  1689                     public void remove() {
  1690                         throw new UnsupportedOperationException();
  1693                     TypeSymbol symbolFor(Type t) {
  1694                         if (!t.hasTag(CLASS) &&
  1695                                 !t.hasTag(TYPEVAR)) {
  1696                             return null;
  1698                         while (t.hasTag(TYPEVAR))
  1699                             t = t.getUpperBound();
  1700                         if (seen.contains(t.tsym)) {
  1701                             //degenerate case in which we have a circular
  1702                             //class hierarchy - because of ill-formed classfiles
  1703                             return null;
  1705                         seen = seen.prepend(t.tsym);
  1706                         return t.tsym;
  1708                 };
  1710         };
  1713     /** Find unqualified method matching given name, type and value arguments.
  1714      *  @param env       The current environment.
  1715      *  @param name      The method's name.
  1716      *  @param argtypes  The method's value arguments.
  1717      *  @param typeargtypes  The method's type arguments.
  1718      *  @param allowBoxing Allow boxing conversions of arguments.
  1719      *  @param useVarargs Box trailing arguments into an array for varargs.
  1720      */
  1721     Symbol findFun(Env<AttrContext> env, Name name,
  1722                    List<Type> argtypes, List<Type> typeargtypes,
  1723                    boolean allowBoxing, boolean useVarargs) {
  1724         Symbol bestSoFar = methodNotFound;
  1725         Symbol sym;
  1726         Env<AttrContext> env1 = env;
  1727         boolean staticOnly = false;
  1728         while (env1.outer != null) {
  1729             if (isStatic(env1)) staticOnly = true;
  1730             sym = findMethod(
  1731                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1732                 allowBoxing, useVarargs, false);
  1733             if (sym.exists()) {
  1734                 if (staticOnly &&
  1735                     sym.kind == MTH &&
  1736                     sym.owner.kind == TYP &&
  1737                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1738                 else return sym;
  1739             } else if (sym.kind < bestSoFar.kind) {
  1740                 bestSoFar = sym;
  1742             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1743             env1 = env1.outer;
  1746         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1747                          typeargtypes, allowBoxing, useVarargs, false);
  1748         if (sym.exists())
  1749             return sym;
  1751         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1752         for (; e.scope != null; e = e.next()) {
  1753             sym = e.sym;
  1754             Type origin = e.getOrigin().owner.type;
  1755             if (sym.kind == MTH) {
  1756                 if (e.sym.owner.type != origin)
  1757                     sym = sym.clone(e.getOrigin().owner);
  1758                 if (!isAccessible(env, origin, sym))
  1759                     sym = new AccessError(env, origin, sym);
  1760                 bestSoFar = selectBest(env, origin,
  1761                                        argtypes, typeargtypes,
  1762                                        sym, bestSoFar,
  1763                                        allowBoxing, useVarargs, false);
  1766         if (bestSoFar.exists())
  1767             return bestSoFar;
  1769         e = env.toplevel.starImportScope.lookup(name);
  1770         for (; e.scope != null; e = e.next()) {
  1771             sym = e.sym;
  1772             Type origin = e.getOrigin().owner.type;
  1773             if (sym.kind == MTH) {
  1774                 if (e.sym.owner.type != origin)
  1775                     sym = sym.clone(e.getOrigin().owner);
  1776                 if (!isAccessible(env, origin, sym))
  1777                     sym = new AccessError(env, origin, sym);
  1778                 bestSoFar = selectBest(env, origin,
  1779                                        argtypes, typeargtypes,
  1780                                        sym, bestSoFar,
  1781                                        allowBoxing, useVarargs, false);
  1784         return bestSoFar;
  1787     /** Load toplevel or member class with given fully qualified name and
  1788      *  verify that it is accessible.
  1789      *  @param env       The current environment.
  1790      *  @param name      The fully qualified name of the class to be loaded.
  1791      */
  1792     Symbol loadClass(Env<AttrContext> env, Name name) {
  1793         try {
  1794             ClassSymbol c = reader.loadClass(name);
  1795             return isAccessible(env, c) ? c : new AccessError(c);
  1796         } catch (ClassReader.BadClassFile err) {
  1797             throw err;
  1798         } catch (CompletionFailure ex) {
  1799             return typeNotFound;
  1803     /** Find qualified member type.
  1804      *  @param env       The current environment.
  1805      *  @param site      The original type from where the selection takes
  1806      *                   place.
  1807      *  @param name      The type's name.
  1808      *  @param c         The class to search for the member type. This is
  1809      *                   always a superclass or implemented interface of
  1810      *                   site's class.
  1811      */
  1812     Symbol findMemberType(Env<AttrContext> env,
  1813                           Type site,
  1814                           Name name,
  1815                           TypeSymbol c) {
  1816         Symbol bestSoFar = typeNotFound;
  1817         Symbol sym;
  1818         Scope.Entry e = c.members().lookup(name);
  1819         while (e.scope != null) {
  1820             if (e.sym.kind == TYP) {
  1821                 return isAccessible(env, site, e.sym)
  1822                     ? e.sym
  1823                     : new AccessError(env, site, e.sym);
  1825             e = e.next();
  1827         Type st = types.supertype(c.type);
  1828         if (st != null && st.hasTag(CLASS)) {
  1829             sym = findMemberType(env, site, name, st.tsym);
  1830             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1832         for (List<Type> l = types.interfaces(c.type);
  1833              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1834              l = l.tail) {
  1835             sym = findMemberType(env, site, name, l.head.tsym);
  1836             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1837                 sym.owner != bestSoFar.owner)
  1838                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1839             else if (sym.kind < bestSoFar.kind)
  1840                 bestSoFar = sym;
  1842         return bestSoFar;
  1845     /** Find a global type in given scope and load corresponding class.
  1846      *  @param env       The current environment.
  1847      *  @param scope     The scope in which to look for the type.
  1848      *  @param name      The type's name.
  1849      */
  1850     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1851         Symbol bestSoFar = typeNotFound;
  1852         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1853             Symbol sym = loadClass(env, e.sym.flatName());
  1854             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1855                 bestSoFar != sym)
  1856                 return new AmbiguityError(bestSoFar, sym);
  1857             else if (sym.kind < bestSoFar.kind)
  1858                 bestSoFar = sym;
  1860         return bestSoFar;
  1863     /** Find an unqualified type symbol.
  1864      *  @param env       The current environment.
  1865      *  @param name      The type's name.
  1866      */
  1867     Symbol findType(Env<AttrContext> env, Name name) {
  1868         Symbol bestSoFar = typeNotFound;
  1869         Symbol sym;
  1870         boolean staticOnly = false;
  1871         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1872             if (isStatic(env1)) staticOnly = true;
  1873             for (Scope.Entry e = env1.info.scope.lookup(name);
  1874                  e.scope != null;
  1875                  e = e.next()) {
  1876                 if (e.sym.kind == TYP) {
  1877                     if (staticOnly &&
  1878                         e.sym.type.hasTag(TYPEVAR) &&
  1879                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1880                     return e.sym;
  1884             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1885                                  env1.enclClass.sym);
  1886             if (staticOnly && sym.kind == TYP &&
  1887                 sym.type.hasTag(CLASS) &&
  1888                 sym.type.getEnclosingType().hasTag(CLASS) &&
  1889                 env1.enclClass.sym.type.isParameterized() &&
  1890                 sym.type.getEnclosingType().isParameterized())
  1891                 return new StaticError(sym);
  1892             else if (sym.exists()) return sym;
  1893             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1895             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1896             if ((encl.sym.flags() & STATIC) != 0)
  1897                 staticOnly = true;
  1900         if (!env.tree.hasTag(IMPORT)) {
  1901             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1902             if (sym.exists()) return sym;
  1903             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1905             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1906             if (sym.exists()) return sym;
  1907             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1909             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1910             if (sym.exists()) return sym;
  1911             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1914         return bestSoFar;
  1917     /** Find an unqualified identifier which matches a specified kind set.
  1918      *  @param env       The current environment.
  1919      *  @param name      The identifier's name.
  1920      *  @param kind      Indicates the possible symbol kinds
  1921      *                   (a subset of VAL, TYP, PCK).
  1922      */
  1923     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1924         Symbol bestSoFar = typeNotFound;
  1925         Symbol sym;
  1927         if ((kind & VAR) != 0) {
  1928             sym = findVar(env, name);
  1929             if (sym.exists()) return sym;
  1930             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1933         if ((kind & TYP) != 0) {
  1934             sym = findType(env, name);
  1935             if (sym.kind==TYP) {
  1936                  reportDependence(env.enclClass.sym, sym);
  1938             if (sym.exists()) return sym;
  1939             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1942         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1943         else return bestSoFar;
  1946     /** Report dependencies.
  1947      * @param from The enclosing class sym
  1948      * @param to   The found identifier that the class depends on.
  1949      */
  1950     public void reportDependence(Symbol from, Symbol to) {
  1951         // Override if you want to collect the reported dependencies.
  1954     /** Find an identifier in a package which matches a specified kind set.
  1955      *  @param env       The current environment.
  1956      *  @param name      The identifier's name.
  1957      *  @param kind      Indicates the possible symbol kinds
  1958      *                   (a nonempty subset of TYP, PCK).
  1959      */
  1960     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1961                               Name name, int kind) {
  1962         Name fullname = TypeSymbol.formFullName(name, pck);
  1963         Symbol bestSoFar = typeNotFound;
  1964         PackageSymbol pack = null;
  1965         if ((kind & PCK) != 0) {
  1966             pack = reader.enterPackage(fullname);
  1967             if (pack.exists()) return pack;
  1969         if ((kind & TYP) != 0) {
  1970             Symbol sym = loadClass(env, fullname);
  1971             if (sym.exists()) {
  1972                 // don't allow programs to use flatnames
  1973                 if (name == sym.name) return sym;
  1975             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1977         return (pack != null) ? pack : bestSoFar;
  1980     /** Find an identifier among the members of a given type `site'.
  1981      *  @param env       The current environment.
  1982      *  @param site      The type containing the symbol to be found.
  1983      *  @param name      The identifier's name.
  1984      *  @param kind      Indicates the possible symbol kinds
  1985      *                   (a subset of VAL, TYP).
  1986      */
  1987     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1988                            Name name, int kind) {
  1989         Symbol bestSoFar = typeNotFound;
  1990         Symbol sym;
  1991         if ((kind & VAR) != 0) {
  1992             sym = findField(env, site, name, site.tsym);
  1993             if (sym.exists()) return sym;
  1994             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1997         if ((kind & TYP) != 0) {
  1998             sym = findMemberType(env, site, name, site.tsym);
  1999             if (sym.exists()) return sym;
  2000             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2002         return bestSoFar;
  2005 /* ***************************************************************************
  2006  *  Access checking
  2007  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  2008  *  an error message in the process
  2009  ****************************************************************************/
  2011     /** If `sym' is a bad symbol: report error and return errSymbol
  2012      *  else pass through unchanged,
  2013      *  additional arguments duplicate what has been used in trying to find the
  2014      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  2015      *  expect misses to happen frequently.
  2017      *  @param sym       The symbol that was found, or a ResolveError.
  2018      *  @param pos       The position to use for error reporting.
  2019      *  @param location  The symbol the served as a context for this lookup
  2020      *  @param site      The original type from where the selection took place.
  2021      *  @param name      The symbol's name.
  2022      *  @param qualified Did we get here through a qualified expression resolution?
  2023      *  @param argtypes  The invocation's value arguments,
  2024      *                   if we looked for a method.
  2025      *  @param typeargtypes  The invocation's type arguments,
  2026      *                   if we looked for a method.
  2027      *  @param logResolveHelper helper class used to log resolve errors
  2028      */
  2029     Symbol accessInternal(Symbol sym,
  2030                   DiagnosticPosition pos,
  2031                   Symbol location,
  2032                   Type site,
  2033                   Name name,
  2034                   boolean qualified,
  2035                   List<Type> argtypes,
  2036                   List<Type> typeargtypes,
  2037                   LogResolveHelper logResolveHelper) {
  2038         if (sym.kind >= AMBIGUOUS) {
  2039             ResolveError errSym = (ResolveError)sym;
  2040             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  2041             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  2042             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  2043                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  2046         return sym;
  2049     /**
  2050      * Variant of the generalized access routine, to be used for generating method
  2051      * resolution diagnostics
  2052      */
  2053     Symbol accessMethod(Symbol sym,
  2054                   DiagnosticPosition pos,
  2055                   Symbol location,
  2056                   Type site,
  2057                   Name name,
  2058                   boolean qualified,
  2059                   List<Type> argtypes,
  2060                   List<Type> typeargtypes) {
  2061         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  2064     /** Same as original accessMethod(), but without location.
  2065      */
  2066     Symbol accessMethod(Symbol sym,
  2067                   DiagnosticPosition pos,
  2068                   Type site,
  2069                   Name name,
  2070                   boolean qualified,
  2071                   List<Type> argtypes,
  2072                   List<Type> typeargtypes) {
  2073         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  2076     /**
  2077      * Variant of the generalized access routine, to be used for generating variable,
  2078      * type resolution diagnostics
  2079      */
  2080     Symbol accessBase(Symbol sym,
  2081                   DiagnosticPosition pos,
  2082                   Symbol location,
  2083                   Type site,
  2084                   Name name,
  2085                   boolean qualified) {
  2086         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  2089     /** Same as original accessBase(), but without location.
  2090      */
  2091     Symbol accessBase(Symbol sym,
  2092                   DiagnosticPosition pos,
  2093                   Type site,
  2094                   Name name,
  2095                   boolean qualified) {
  2096         return accessBase(sym, pos, site.tsym, site, name, qualified);
  2099     interface LogResolveHelper {
  2100         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  2101         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  2104     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  2105         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2106             return !site.isErroneous();
  2108         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2109             return argtypes;
  2111     };
  2113     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  2114         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2115             return !site.isErroneous() &&
  2116                         !Type.isErroneous(argtypes) &&
  2117                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  2119         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2120             return (syms.operatorNames.contains(name)) ?
  2121                     argtypes :
  2122                     Type.map(argtypes, new ResolveDeferredRecoveryMap(accessedSym));
  2125         class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  2127             public ResolveDeferredRecoveryMap(Symbol msym) {
  2128                 deferredAttr.super(AttrMode.SPECULATIVE, msym, currentResolutionContext.step);
  2131             @Override
  2132             protected Type typeOf(DeferredType dt) {
  2133                 Type res = super.typeOf(dt);
  2134                 if (!res.isErroneous()) {
  2135                     switch (TreeInfo.skipParens(dt.tree).getTag()) {
  2136                         case LAMBDA:
  2137                         case REFERENCE:
  2138                             return dt;
  2139                         case CONDEXPR:
  2140                             return res == Type.recoveryType ?
  2141                                     dt : res;
  2144                 return res;
  2147     };
  2149     /** Check that sym is not an abstract method.
  2150      */
  2151     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  2152         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  2153             log.error(pos, "abstract.cant.be.accessed.directly",
  2154                       kindName(sym), sym, sym.location());
  2157 /* ***************************************************************************
  2158  *  Debugging
  2159  ****************************************************************************/
  2161     /** print all scopes starting with scope s and proceeding outwards.
  2162      *  used for debugging.
  2163      */
  2164     public void printscopes(Scope s) {
  2165         while (s != null) {
  2166             if (s.owner != null)
  2167                 System.err.print(s.owner + ": ");
  2168             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  2169                 if ((e.sym.flags() & ABSTRACT) != 0)
  2170                     System.err.print("abstract ");
  2171                 System.err.print(e.sym + " ");
  2173             System.err.println();
  2174             s = s.next;
  2178     void printscopes(Env<AttrContext> env) {
  2179         while (env.outer != null) {
  2180             System.err.println("------------------------------");
  2181             printscopes(env.info.scope);
  2182             env = env.outer;
  2186     public void printscopes(Type t) {
  2187         while (t.hasTag(CLASS)) {
  2188             printscopes(t.tsym.members());
  2189             t = types.supertype(t);
  2193 /* ***************************************************************************
  2194  *  Name resolution
  2195  *  Naming conventions are as for symbol lookup
  2196  *  Unlike the find... methods these methods will report access errors
  2197  ****************************************************************************/
  2199     /** Resolve an unqualified (non-method) identifier.
  2200      *  @param pos       The position to use for error reporting.
  2201      *  @param env       The environment current at the identifier use.
  2202      *  @param name      The identifier's name.
  2203      *  @param kind      The set of admissible symbol kinds for the identifier.
  2204      */
  2205     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2206                         Name name, int kind) {
  2207         return accessBase(
  2208             findIdent(env, name, kind),
  2209             pos, env.enclClass.sym.type, name, false);
  2212     /** Resolve an unqualified method identifier.
  2213      *  @param pos       The position to use for error reporting.
  2214      *  @param env       The environment current at the method invocation.
  2215      *  @param name      The identifier's name.
  2216      *  @param argtypes  The types of the invocation's value arguments.
  2217      *  @param typeargtypes  The types of the invocation's type arguments.
  2218      */
  2219     Symbol resolveMethod(DiagnosticPosition pos,
  2220                          Env<AttrContext> env,
  2221                          Name name,
  2222                          List<Type> argtypes,
  2223                          List<Type> typeargtypes) {
  2224         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
  2225                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2226                     @Override
  2227                     Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2228                         return findFun(env, name, argtypes, typeargtypes,
  2229                                 phase.isBoxingRequired(),
  2230                                 phase.isVarargsRequired());
  2231                     }});
  2234     /** Resolve a qualified method identifier
  2235      *  @param pos       The position to use for error reporting.
  2236      *  @param env       The environment current at the method invocation.
  2237      *  @param site      The type of the qualifying expression, in which
  2238      *                   identifier is searched.
  2239      *  @param name      The identifier's name.
  2240      *  @param argtypes  The types of the invocation's value arguments.
  2241      *  @param typeargtypes  The types of the invocation's type arguments.
  2242      */
  2243     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2244                                   Type site, Name name, List<Type> argtypes,
  2245                                   List<Type> typeargtypes) {
  2246         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2248     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2249                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2250                                   List<Type> typeargtypes) {
  2251         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2253     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2254                                   DiagnosticPosition pos, Env<AttrContext> env,
  2255                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2256                                   List<Type> typeargtypes) {
  2257         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2258             @Override
  2259             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2260                 return findMethod(env, site, name, argtypes, typeargtypes,
  2261                         phase.isBoxingRequired(),
  2262                         phase.isVarargsRequired(), false);
  2264             @Override
  2265             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2266                 if (sym.kind >= AMBIGUOUS) {
  2267                     sym = super.access(env, pos, location, sym);
  2268                 } else if (allowMethodHandles) {
  2269                     MethodSymbol msym = (MethodSymbol)sym;
  2270                     if (msym.isSignaturePolymorphic(types)) {
  2271                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2274                 return sym;
  2276         });
  2279     /** Find or create an implicit method of exactly the given type (after erasure).
  2280      *  Searches in a side table, not the main scope of the site.
  2281      *  This emulates the lookup process required by JSR 292 in JVM.
  2282      *  @param env       Attribution environment
  2283      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2284      *  @param argtypes  The required argument types
  2285      */
  2286     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2287                                             final Symbol spMethod,
  2288                                             List<Type> argtypes) {
  2289         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2290                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2291         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2292             if (types.isSameType(mtype, sym.type)) {
  2293                return sym;
  2297         // create the desired method
  2298         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2299         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2300             @Override
  2301             public Symbol baseSymbol() {
  2302                 return spMethod;
  2304         };
  2305         polymorphicSignatureScope.enter(msym);
  2306         return msym;
  2309     /** Resolve a qualified method identifier, throw a fatal error if not
  2310      *  found.
  2311      *  @param pos       The position to use for error reporting.
  2312      *  @param env       The environment current at the method invocation.
  2313      *  @param site      The type of the qualifying expression, in which
  2314      *                   identifier is searched.
  2315      *  @param name      The identifier's name.
  2316      *  @param argtypes  The types of the invocation's value arguments.
  2317      *  @param typeargtypes  The types of the invocation's type arguments.
  2318      */
  2319     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2320                                         Type site, Name name,
  2321                                         List<Type> argtypes,
  2322                                         List<Type> typeargtypes) {
  2323         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2324         resolveContext.internalResolution = true;
  2325         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2326                 site, name, argtypes, typeargtypes);
  2327         if (sym.kind == MTH) return (MethodSymbol)sym;
  2328         else throw new FatalError(
  2329                  diags.fragment("fatal.err.cant.locate.meth",
  2330                                 name));
  2333     /** Resolve constructor.
  2334      *  @param pos       The position to use for error reporting.
  2335      *  @param env       The environment current at the constructor invocation.
  2336      *  @param site      The type of class for which a constructor is searched.
  2337      *  @param argtypes  The types of the constructor invocation's value
  2338      *                   arguments.
  2339      *  @param typeargtypes  The types of the constructor invocation's type
  2340      *                   arguments.
  2341      */
  2342     Symbol resolveConstructor(DiagnosticPosition pos,
  2343                               Env<AttrContext> env,
  2344                               Type site,
  2345                               List<Type> argtypes,
  2346                               List<Type> typeargtypes) {
  2347         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2350     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2351                               final DiagnosticPosition pos,
  2352                               Env<AttrContext> env,
  2353                               Type site,
  2354                               List<Type> argtypes,
  2355                               List<Type> typeargtypes) {
  2356         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2357             @Override
  2358             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2359                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2360                         phase.isBoxingRequired(),
  2361                         phase.isVarargsRequired());
  2363         });
  2366     /** Resolve a constructor, throw a fatal error if not found.
  2367      *  @param pos       The position to use for error reporting.
  2368      *  @param env       The environment current at the method invocation.
  2369      *  @param site      The type to be constructed.
  2370      *  @param argtypes  The types of the invocation's value arguments.
  2371      *  @param typeargtypes  The types of the invocation's type arguments.
  2372      */
  2373     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2374                                         Type site,
  2375                                         List<Type> argtypes,
  2376                                         List<Type> typeargtypes) {
  2377         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2378         resolveContext.internalResolution = true;
  2379         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2380         if (sym.kind == MTH) return (MethodSymbol)sym;
  2381         else throw new FatalError(
  2382                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2385     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2386                               Type site, List<Type> argtypes,
  2387                               List<Type> typeargtypes,
  2388                               boolean allowBoxing,
  2389                               boolean useVarargs) {
  2390         Symbol sym = findMethod(env, site,
  2391                                     names.init, argtypes,
  2392                                     typeargtypes, allowBoxing,
  2393                                     useVarargs, false);
  2394         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2395         return sym;
  2398     /** Resolve constructor using diamond inference.
  2399      *  @param pos       The position to use for error reporting.
  2400      *  @param env       The environment current at the constructor invocation.
  2401      *  @param site      The type of class for which a constructor is searched.
  2402      *                   The scope of this class has been touched in attribution.
  2403      *  @param argtypes  The types of the constructor invocation's value
  2404      *                   arguments.
  2405      *  @param typeargtypes  The types of the constructor invocation's type
  2406      *                   arguments.
  2407      */
  2408     Symbol resolveDiamond(DiagnosticPosition pos,
  2409                               Env<AttrContext> env,
  2410                               Type site,
  2411                               List<Type> argtypes,
  2412                               List<Type> typeargtypes) {
  2413         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
  2414                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2415                     @Override
  2416                     Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2417                         return findDiamond(env, site, argtypes, typeargtypes,
  2418                                 phase.isBoxingRequired(),
  2419                                 phase.isVarargsRequired());
  2421                     @Override
  2422                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2423                         if (sym.kind >= AMBIGUOUS) {
  2424                             final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2425                                             ((InapplicableSymbolError)sym).errCandidate().details :
  2426                                             null;
  2427                             sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2428                                 @Override
  2429                                 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2430                                         Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2431                                     String key = details == null ?
  2432                                         "cant.apply.diamond" :
  2433                                         "cant.apply.diamond.1";
  2434                                     return diags.create(dkind, log.currentSource(), pos, key,
  2435                                             diags.fragment("diamond", site.tsym), details);
  2437                             };
  2438                             sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2439                             env.info.pendingResolutionPhase = currentResolutionContext.step;
  2441                         return sym;
  2442                     }});
  2445     /** This method scans all the constructor symbol in a given class scope -
  2446      *  assuming that the original scope contains a constructor of the kind:
  2447      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2448      *  a method check is executed against the modified constructor type:
  2449      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2450      *  inference. The inferred return type of the synthetic constructor IS
  2451      *  the inferred type for the diamond operator.
  2452      */
  2453     private Symbol findDiamond(Env<AttrContext> env,
  2454                               Type site,
  2455                               List<Type> argtypes,
  2456                               List<Type> typeargtypes,
  2457                               boolean allowBoxing,
  2458                               boolean useVarargs) {
  2459         Symbol bestSoFar = methodNotFound;
  2460         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2461              e.scope != null;
  2462              e = e.next()) {
  2463             final Symbol sym = e.sym;
  2464             //- System.out.println(" e " + e.sym);
  2465             if (sym.kind == MTH &&
  2466                 (sym.flags_field & SYNTHETIC) == 0) {
  2467                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2468                             ((ForAll)sym.type).tvars :
  2469                             List.<Type>nil();
  2470                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2471                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2472                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2473                         @Override
  2474                         public Symbol baseSymbol() {
  2475                             return sym;
  2477                     };
  2478                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2479                             newConstr,
  2480                             bestSoFar,
  2481                             allowBoxing,
  2482                             useVarargs,
  2483                             false);
  2486         return bestSoFar;
  2491     /** Resolve operator.
  2492      *  @param pos       The position to use for error reporting.
  2493      *  @param optag     The tag of the operation tree.
  2494      *  @param env       The environment current at the operation.
  2495      *  @param argtypes  The types of the operands.
  2496      */
  2497     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2498                            Env<AttrContext> env, List<Type> argtypes) {
  2499         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2500         try {
  2501             currentResolutionContext = new MethodResolutionContext();
  2502             Name name = treeinfo.operatorName(optag);
  2503             return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
  2504                     new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
  2505                 @Override
  2506                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2507                     return findMethod(env, site, name, argtypes, typeargtypes,
  2508                             phase.isBoxingRequired(),
  2509                             phase.isVarargsRequired(), true);
  2511                 @Override
  2512                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2513                     return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2514                           false, argtypes, null);
  2516             });
  2517         } finally {
  2518             currentResolutionContext = prevResolutionContext;
  2522     /** Resolve operator.
  2523      *  @param pos       The position to use for error reporting.
  2524      *  @param optag     The tag of the operation tree.
  2525      *  @param env       The environment current at the operation.
  2526      *  @param arg       The type of the operand.
  2527      */
  2528     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2529         return resolveOperator(pos, optag, env, List.of(arg));
  2532     /** Resolve binary operator.
  2533      *  @param pos       The position to use for error reporting.
  2534      *  @param optag     The tag of the operation tree.
  2535      *  @param env       The environment current at the operation.
  2536      *  @param left      The types of the left operand.
  2537      *  @param right     The types of the right operand.
  2538      */
  2539     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2540                                  JCTree.Tag optag,
  2541                                  Env<AttrContext> env,
  2542                                  Type left,
  2543                                  Type right) {
  2544         return resolveOperator(pos, optag, env, List.of(left, right));
  2547     /**
  2548      * Resolution of member references is typically done as a single
  2549      * overload resolution step, where the argument types A are inferred from
  2550      * the target functional descriptor.
  2552      * If the member reference is a method reference with a type qualifier,
  2553      * a two-step lookup process is performed. The first step uses the
  2554      * expected argument list A, while the second step discards the first
  2555      * type from A (which is treated as a receiver type).
  2557      * There are two cases in which inference is performed: (i) if the member
  2558      * reference is a constructor reference and the qualifier type is raw - in
  2559      * which case diamond inference is used to infer a parameterization for the
  2560      * type qualifier; (ii) if the member reference is an unbound reference
  2561      * where the type qualifier is raw - in that case, during the unbound lookup
  2562      * the receiver argument type is used to infer an instantiation for the raw
  2563      * qualifier type.
  2565      * When a multi-step resolution process is exploited, it is an error
  2566      * if two candidates are found (ambiguity).
  2568      * This routine returns a pair (T,S), where S is the member reference symbol,
  2569      * and T is the type of the class in which S is defined. This is necessary as
  2570      * the type T might be dynamically inferred (i.e. if constructor reference
  2571      * has a raw qualifier).
  2572      */
  2573     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(DiagnosticPosition pos,
  2574                                   Env<AttrContext> env,
  2575                                   JCMemberReference referenceTree,
  2576                                   Type site,
  2577                                   Name name, List<Type> argtypes,
  2578                                   List<Type> typeargtypes,
  2579                                   boolean boxingAllowed,
  2580                                   MethodCheck methodCheck) {
  2581         MethodResolutionPhase maxPhase = boxingAllowed ? VARARITY : BASIC;
  2583         ReferenceLookupHelper boundLookupHelper;
  2584         if (!name.equals(names.init)) {
  2585             //method reference
  2586             boundLookupHelper =
  2587                     new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2588         } else if (site.hasTag(ARRAY)) {
  2589             //array constructor reference
  2590             boundLookupHelper =
  2591                     new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2592         } else {
  2593             //class constructor reference
  2594             boundLookupHelper =
  2595                     new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2598         //step 1 - bound lookup
  2599         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2600         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym, methodCheck, boundLookupHelper);
  2602         //step 2 - unbound lookup
  2603         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup();
  2604         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2605         Symbol unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym, methodCheck, unboundLookupHelper);
  2607         //merge results
  2608         Pair<Symbol, ReferenceLookupHelper> res;
  2609         if (!lookupSuccess(unboundSym)) {
  2610             res = new Pair<Symbol, ReferenceLookupHelper>(boundSym, boundLookupHelper);
  2611             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2612         } else if (lookupSuccess(boundSym)) {
  2613             res = new Pair<Symbol, ReferenceLookupHelper>(ambiguityError(boundSym, unboundSym), boundLookupHelper);
  2614             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2615         } else {
  2616             res = new Pair<Symbol, ReferenceLookupHelper>(unboundSym, unboundLookupHelper);
  2617             env.info.pendingResolutionPhase = unboundEnv.info.pendingResolutionPhase;
  2620         return res;
  2622     //private
  2623         boolean lookupSuccess(Symbol s) {
  2624             return s.kind == MTH || s.kind == AMBIGUOUS;
  2627     /**
  2628      * Helper for defining custom method-like lookup logic; a lookup helper
  2629      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2630      * lookup result (this step might result in compiler diagnostics to be generated)
  2631      */
  2632     abstract class LookupHelper {
  2634         /** name of the symbol to lookup */
  2635         Name name;
  2637         /** location in which the lookup takes place */
  2638         Type site;
  2640         /** actual types used during the lookup */
  2641         List<Type> argtypes;
  2643         /** type arguments used during the lookup */
  2644         List<Type> typeargtypes;
  2646         /** Max overload resolution phase handled by this helper */
  2647         MethodResolutionPhase maxPhase;
  2649         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2650             this.name = name;
  2651             this.site = site;
  2652             this.argtypes = argtypes;
  2653             this.typeargtypes = typeargtypes;
  2654             this.maxPhase = maxPhase;
  2657         /**
  2658          * Should lookup stop at given phase with given result
  2659          */
  2660         protected boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  2661             return phase.ordinal() > maxPhase.ordinal() ||
  2662                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  2665         /**
  2666          * Search for a symbol under a given overload resolution phase - this method
  2667          * is usually called several times, once per each overload resolution phase
  2668          */
  2669         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2671         /**
  2672          * Validate the result of the lookup
  2673          */
  2674         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  2677     abstract class BasicLookupHelper extends LookupHelper {
  2679         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2680             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  2683         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2684             super(name, site, argtypes, typeargtypes, maxPhase);
  2687         @Override
  2688         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2689             if (sym.kind == AMBIGUOUS) {
  2690                 AmbiguityError a_err = (AmbiguityError)sym;
  2691                 sym = a_err.mergeAbstracts(site);
  2693             if (sym.kind >= AMBIGUOUS) {
  2694                 //if nothing is found return the 'first' error
  2695                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  2697             return sym;
  2701     /**
  2702      * Helper class for member reference lookup. A reference lookup helper
  2703      * defines the basic logic for member reference lookup; a method gives
  2704      * access to an 'unbound' helper used to perform an unbound member
  2705      * reference lookup.
  2706      */
  2707     abstract class ReferenceLookupHelper extends LookupHelper {
  2709         /** The member reference tree */
  2710         JCMemberReference referenceTree;
  2712         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2713                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2714             super(name, site, argtypes, typeargtypes, maxPhase);
  2715             this.referenceTree = referenceTree;
  2719         /**
  2720          * Returns an unbound version of this lookup helper. By default, this
  2721          * method returns an dummy lookup helper.
  2722          */
  2723         ReferenceLookupHelper unboundLookup() {
  2724             //dummy loopkup helper that always return 'methodNotFound'
  2725             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  2726                 @Override
  2727                 ReferenceLookupHelper unboundLookup() {
  2728                     return this;
  2730                 @Override
  2731                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2732                     return methodNotFound;
  2734                 @Override
  2735                 ReferenceKind referenceKind(Symbol sym) {
  2736                     Assert.error();
  2737                     return null;
  2739             };
  2742         /**
  2743          * Get the kind of the member reference
  2744          */
  2745         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  2747         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2748             if (sym.kind == AMBIGUOUS) {
  2749                 AmbiguityError a_err = (AmbiguityError)sym;
  2750                 sym = a_err.mergeAbstracts(site);
  2752             //skip error reporting
  2753             return sym;
  2757     /**
  2758      * Helper class for method reference lookup. The lookup logic is based
  2759      * upon Resolve.findMethod; in certain cases, this helper class has a
  2760      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  2761      * In such cases, non-static lookup results are thrown away.
  2762      */
  2763     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  2765         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2766                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2767             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2770         @Override
  2771         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2772             return findMethod(env, site, name, argtypes, typeargtypes,
  2773                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2776         @Override
  2777         ReferenceLookupHelper unboundLookup() {
  2778             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  2779                     argtypes.nonEmpty() &&
  2780                     (argtypes.head.hasTag(NONE) || types.isSubtypeUnchecked(argtypes.head, site))) {
  2781                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  2782                         site, argtypes, typeargtypes, maxPhase);
  2783             } else {
  2784                 return super.unboundLookup();
  2788         @Override
  2789         ReferenceKind referenceKind(Symbol sym) {
  2790             if (sym.isStatic()) {
  2791                 return ReferenceKind.STATIC;
  2792             } else {
  2793                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  2794                 return selName != null && selName == names._super ?
  2795                         ReferenceKind.SUPER :
  2796                         ReferenceKind.BOUND;
  2801     /**
  2802      * Helper class for unbound method reference lookup. Essentially the same
  2803      * as the basic method reference lookup helper; main difference is that static
  2804      * lookup results are thrown away. If qualifier type is raw, an attempt to
  2805      * infer a parameterized type is made using the first actual argument (that
  2806      * would otherwise be ignored during the lookup).
  2807      */
  2808     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  2810         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2811                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2812             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
  2813             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
  2814                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
  2815                 this.site = asSuperSite;
  2819         @Override
  2820         ReferenceLookupHelper unboundLookup() {
  2821             return this;
  2824         @Override
  2825         ReferenceKind referenceKind(Symbol sym) {
  2826             return ReferenceKind.UNBOUND;
  2830     /**
  2831      * Helper class for array constructor lookup; an array constructor lookup
  2832      * is simulated by looking up a method that returns the array type specified
  2833      * as qualifier, and that accepts a single int parameter (size of the array).
  2834      */
  2835     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2837         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2838                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2839             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  2842         @Override
  2843         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2844             Scope sc = new Scope(syms.arrayClass);
  2845             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
  2846             arrayConstr.type = new MethodType(List.of(syms.intType), site, List.<Type>nil(), syms.methodClass);
  2847             sc.enter(arrayConstr);
  2848             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
  2851         @Override
  2852         ReferenceKind referenceKind(Symbol sym) {
  2853             return ReferenceKind.ARRAY_CTOR;
  2857     /**
  2858      * Helper class for constructor reference lookup. The lookup logic is based
  2859      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  2860      * whether the constructor reference needs diamond inference (this is the case
  2861      * if the qualifier type is raw). A special erroneous symbol is returned
  2862      * if the lookup returns the constructor of an inner class and there's no
  2863      * enclosing instance in scope.
  2864      */
  2865     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2867         boolean needsInference;
  2869         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2870                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  2871             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  2872             if (site.isRaw()) {
  2873                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  2874                 needsInference = true;
  2878         @Override
  2879         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2880             Symbol sym = needsInference ?
  2881                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  2882                 findMethod(env, site, name, argtypes, typeargtypes,
  2883                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2884             return sym.kind != MTH ||
  2885                           site.getEnclosingType().hasTag(NONE) ||
  2886                           hasEnclosingInstance(env, site) ?
  2887                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  2888                     @Override
  2889                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2890                        return diags.create(dkind, log.currentSource(), pos,
  2891                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  2893                 };
  2896         @Override
  2897         ReferenceKind referenceKind(Symbol sym) {
  2898             return site.getEnclosingType().hasTag(NONE) ?
  2899                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  2903     /**
  2904      * Main overload resolution routine. On each overload resolution step, a
  2905      * lookup helper class is used to perform the method/constructor lookup;
  2906      * at the end of the lookup, the helper is used to validate the results
  2907      * (this last step might trigger overload resolution diagnostics).
  2908      */
  2909     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
  2910         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2911         resolveContext.methodCheck = methodCheck;
  2912         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
  2915     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  2916             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  2917         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2918         try {
  2919             Symbol bestSoFar = methodNotFound;
  2920             currentResolutionContext = resolveContext;
  2921             for (MethodResolutionPhase phase : methodResolutionSteps) {
  2922                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  2923                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  2924                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  2925                 Symbol prevBest = bestSoFar;
  2926                 currentResolutionContext.step = phase;
  2927                 bestSoFar = phase.mergeResults(bestSoFar, lookupHelper.lookup(env, phase));
  2928                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  2930             return lookupHelper.access(env, pos, location, bestSoFar);
  2931         } finally {
  2932             currentResolutionContext = prevResolutionContext;
  2936     /**
  2937      * Resolve `c.name' where name == this or name == super.
  2938      * @param pos           The position to use for error reporting.
  2939      * @param env           The environment current at the expression.
  2940      * @param c             The qualifier.
  2941      * @param name          The identifier's name.
  2942      */
  2943     Symbol resolveSelf(DiagnosticPosition pos,
  2944                        Env<AttrContext> env,
  2945                        TypeSymbol c,
  2946                        Name name) {
  2947         Env<AttrContext> env1 = env;
  2948         boolean staticOnly = false;
  2949         while (env1.outer != null) {
  2950             if (isStatic(env1)) staticOnly = true;
  2951             if (env1.enclClass.sym == c) {
  2952                 Symbol sym = env1.info.scope.lookup(name).sym;
  2953                 if (sym != null) {
  2954                     if (staticOnly) sym = new StaticError(sym);
  2955                     return accessBase(sym, pos, env.enclClass.sym.type,
  2956                                   name, true);
  2959             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2960             env1 = env1.outer;
  2962         if (allowDefaultMethods && c.isInterface() &&
  2963                 name == names._super && !isStatic(env) &&
  2964                 types.isDirectSuperInterface(c, env.enclClass.sym)) {
  2965             //this might be a default super call if one of the superinterfaces is 'c'
  2966             for (Type t : pruneInterfaces(env.enclClass.type)) {
  2967                 if (t.tsym == c) {
  2968                     env.info.defaultSuperCallSite = t;
  2969                     return new VarSymbol(0, names._super,
  2970                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  2973             //find a direct superinterface that is a subtype of 'c'
  2974             for (Type i : types.interfaces(env.enclClass.type)) {
  2975                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  2976                     log.error(pos, "illegal.default.super.call", c,
  2977                             diags.fragment("redundant.supertype", c, i));
  2978                     return syms.errSymbol;
  2981             Assert.error();
  2983         log.error(pos, "not.encl.class", c);
  2984         return syms.errSymbol;
  2986     //where
  2987     private List<Type> pruneInterfaces(Type t) {
  2988         ListBuffer<Type> result = ListBuffer.lb();
  2989         for (Type t1 : types.interfaces(t)) {
  2990             boolean shouldAdd = true;
  2991             for (Type t2 : types.interfaces(t)) {
  2992                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  2993                     shouldAdd = false;
  2996             if (shouldAdd) {
  2997                 result.append(t1);
  3000         return result.toList();
  3004     /**
  3005      * Resolve `c.this' for an enclosing class c that contains the
  3006      * named member.
  3007      * @param pos           The position to use for error reporting.
  3008      * @param env           The environment current at the expression.
  3009      * @param member        The member that must be contained in the result.
  3010      */
  3011     Symbol resolveSelfContaining(DiagnosticPosition pos,
  3012                                  Env<AttrContext> env,
  3013                                  Symbol member,
  3014                                  boolean isSuperCall) {
  3015         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  3016         if (sym == null) {
  3017             log.error(pos, "encl.class.required", member);
  3018             return syms.errSymbol;
  3019         } else {
  3020             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  3024     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  3025         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  3026         return encl != null && encl.kind < ERRONEOUS;
  3029     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  3030                                  Symbol member,
  3031                                  boolean isSuperCall) {
  3032         Name name = names._this;
  3033         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  3034         boolean staticOnly = false;
  3035         if (env1 != null) {
  3036             while (env1 != null && env1.outer != null) {
  3037                 if (isStatic(env1)) staticOnly = true;
  3038                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  3039                     Symbol sym = env1.info.scope.lookup(name).sym;
  3040                     if (sym != null) {
  3041                         if (staticOnly) sym = new StaticError(sym);
  3042                         return sym;
  3045                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  3046                     staticOnly = true;
  3047                 env1 = env1.outer;
  3050         return null;
  3053     /**
  3054      * Resolve an appropriate implicit this instance for t's container.
  3055      * JLS 8.8.5.1 and 15.9.2
  3056      */
  3057     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  3058         return resolveImplicitThis(pos, env, t, false);
  3061     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  3062         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  3063                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  3064                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  3065         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  3066             log.error(pos, "cant.ref.before.ctor.called", "this");
  3067         return thisType;
  3070 /* ***************************************************************************
  3071  *  ResolveError classes, indicating error situations when accessing symbols
  3072  ****************************************************************************/
  3074     //used by TransTypes when checking target type of synthetic cast
  3075     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  3076         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  3077         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  3079     //where
  3080     private void logResolveError(ResolveError error,
  3081             DiagnosticPosition pos,
  3082             Symbol location,
  3083             Type site,
  3084             Name name,
  3085             List<Type> argtypes,
  3086             List<Type> typeargtypes) {
  3087         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3088                 pos, location, site, name, argtypes, typeargtypes);
  3089         if (d != null) {
  3090             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  3091             log.report(d);
  3095     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  3097     public Object methodArguments(List<Type> argtypes) {
  3098         if (argtypes == null || argtypes.isEmpty()) {
  3099             return noArgs;
  3100         } else {
  3101             ListBuffer<Object> diagArgs = ListBuffer.lb();
  3102             for (Type t : argtypes) {
  3103                 if (t.hasTag(DEFERRED)) {
  3104                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  3105                 } else {
  3106                     diagArgs.append(t);
  3109             return diagArgs;
  3113     /**
  3114      * Root class for resolution errors. Subclass of ResolveError
  3115      * represent a different kinds of resolution error - as such they must
  3116      * specify how they map into concrete compiler diagnostics.
  3117      */
  3118     abstract class ResolveError extends Symbol {
  3120         /** The name of the kind of error, for debugging only. */
  3121         final String debugName;
  3123         ResolveError(int kind, String debugName) {
  3124             super(kind, 0, null, null, null);
  3125             this.debugName = debugName;
  3128         @Override
  3129         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  3130             throw new AssertionError();
  3133         @Override
  3134         public String toString() {
  3135             return debugName;
  3138         @Override
  3139         public boolean exists() {
  3140             return false;
  3143         /**
  3144          * Create an external representation for this erroneous symbol to be
  3145          * used during attribution - by default this returns the symbol of a
  3146          * brand new error type which stores the original type found
  3147          * during resolution.
  3149          * @param name     the name used during resolution
  3150          * @param location the location from which the symbol is accessed
  3151          */
  3152         protected Symbol access(Name name, TypeSymbol location) {
  3153             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3156         /**
  3157          * Create a diagnostic representing this resolution error.
  3159          * @param dkind     The kind of the diagnostic to be created (e.g error).
  3160          * @param pos       The position to be used for error reporting.
  3161          * @param site      The original type from where the selection took place.
  3162          * @param name      The name of the symbol to be resolved.
  3163          * @param argtypes  The invocation's value arguments,
  3164          *                  if we looked for a method.
  3165          * @param typeargtypes  The invocation's type arguments,
  3166          *                      if we looked for a method.
  3167          */
  3168         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3169                 DiagnosticPosition pos,
  3170                 Symbol location,
  3171                 Type site,
  3172                 Name name,
  3173                 List<Type> argtypes,
  3174                 List<Type> typeargtypes);
  3177     /**
  3178      * This class is the root class of all resolution errors caused by
  3179      * an invalid symbol being found during resolution.
  3180      */
  3181     abstract class InvalidSymbolError extends ResolveError {
  3183         /** The invalid symbol found during resolution */
  3184         Symbol sym;
  3186         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  3187             super(kind, debugName);
  3188             this.sym = sym;
  3191         @Override
  3192         public boolean exists() {
  3193             return true;
  3196         @Override
  3197         public String toString() {
  3198              return super.toString() + " wrongSym=" + sym;
  3201         @Override
  3202         public Symbol access(Name name, TypeSymbol location) {
  3203             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3204                 return types.createErrorType(name, location, sym.type).tsym;
  3205             else
  3206                 return sym;
  3210     /**
  3211      * InvalidSymbolError error class indicating that a symbol matching a
  3212      * given name does not exists in a given site.
  3213      */
  3214     class SymbolNotFoundError extends ResolveError {
  3216         SymbolNotFoundError(int kind) {
  3217             super(kind, "symbol not found error");
  3220         @Override
  3221         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3222                 DiagnosticPosition pos,
  3223                 Symbol location,
  3224                 Type site,
  3225                 Name name,
  3226                 List<Type> argtypes,
  3227                 List<Type> typeargtypes) {
  3228             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3229             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3230             if (name == names.error)
  3231                 return null;
  3233             if (syms.operatorNames.contains(name)) {
  3234                 boolean isUnaryOp = argtypes.size() == 1;
  3235                 String key = argtypes.size() == 1 ?
  3236                     "operator.cant.be.applied" :
  3237                     "operator.cant.be.applied.1";
  3238                 Type first = argtypes.head;
  3239                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3240                 return diags.create(dkind, log.currentSource(), pos,
  3241                         key, name, first, second);
  3243             boolean hasLocation = false;
  3244             if (location == null) {
  3245                 location = site.tsym;
  3247             if (!location.name.isEmpty()) {
  3248                 if (location.kind == PCK && !site.tsym.exists()) {
  3249                     return diags.create(dkind, log.currentSource(), pos,
  3250                         "doesnt.exist", location);
  3252                 hasLocation = !location.name.equals(names._this) &&
  3253                         !location.name.equals(names._super);
  3255             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  3256             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3257             Name idname = isConstructor ? site.tsym.name : name;
  3258             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3259             if (hasLocation) {
  3260                 return diags.create(dkind, log.currentSource(), pos,
  3261                         errKey, kindname, idname, //symbol kindname, name
  3262                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3263                         getLocationDiag(location, site)); //location kindname, type
  3265             else {
  3266                 return diags.create(dkind, log.currentSource(), pos,
  3267                         errKey, kindname, idname, //symbol kindname, name
  3268                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3271         //where
  3272         private Object args(List<Type> args) {
  3273             return args.isEmpty() ? args : methodArguments(args);
  3276         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3277             String key = "cant.resolve";
  3278             String suffix = hasLocation ? ".location" : "";
  3279             switch (kindname) {
  3280                 case METHOD:
  3281                 case CONSTRUCTOR: {
  3282                     suffix += ".args";
  3283                     suffix += hasTypeArgs ? ".params" : "";
  3286             return key + suffix;
  3288         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3289             if (location.kind == VAR) {
  3290                 return diags.fragment("location.1",
  3291                     kindName(location),
  3292                     location,
  3293                     location.type);
  3294             } else {
  3295                 return diags.fragment("location",
  3296                     typeKindName(site),
  3297                     site,
  3298                     null);
  3303     /**
  3304      * InvalidSymbolError error class indicating that a given symbol
  3305      * (either a method, a constructor or an operand) is not applicable
  3306      * given an actual arguments/type argument list.
  3307      */
  3308     class InapplicableSymbolError extends ResolveError {
  3310         protected MethodResolutionContext resolveContext;
  3312         InapplicableSymbolError(MethodResolutionContext context) {
  3313             this(WRONG_MTH, "inapplicable symbol error", context);
  3316         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3317             super(kind, debugName);
  3318             this.resolveContext = context;
  3321         @Override
  3322         public String toString() {
  3323             return super.toString();
  3326         @Override
  3327         public boolean exists() {
  3328             return true;
  3331         @Override
  3332         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3333                 DiagnosticPosition pos,
  3334                 Symbol location,
  3335                 Type site,
  3336                 Name name,
  3337                 List<Type> argtypes,
  3338                 List<Type> typeargtypes) {
  3339             if (name == names.error)
  3340                 return null;
  3342             if (syms.operatorNames.contains(name)) {
  3343                 boolean isUnaryOp = argtypes.size() == 1;
  3344                 String key = argtypes.size() == 1 ?
  3345                     "operator.cant.be.applied" :
  3346                     "operator.cant.be.applied.1";
  3347                 Type first = argtypes.head;
  3348                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3349                 return diags.create(dkind, log.currentSource(), pos,
  3350                         key, name, first, second);
  3352             else {
  3353                 Candidate c = errCandidate();
  3354                 if (compactMethodDiags) {
  3355                     for (Map.Entry<Template, DiagnosticRewriter> _entry :
  3356                             MethodResolutionDiagHelper.rewriters.entrySet()) {
  3357                         if (_entry.getKey().matches(c.details)) {
  3358                             JCDiagnostic simpleDiag =
  3359                                     _entry.getValue().rewriteDiagnostic(diags, pos,
  3360                                         log.currentSource(), dkind, c.details);
  3361                             simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
  3362                             return simpleDiag;
  3366                 Symbol ws = c.sym.asMemberOf(site, types);
  3367                 return diags.create(dkind, log.currentSource(), pos,
  3368                           "cant.apply.symbol",
  3369                           kindName(ws),
  3370                           ws.name == names.init ? ws.owner.name : ws.name,
  3371                           methodArguments(ws.type.getParameterTypes()),
  3372                           methodArguments(argtypes),
  3373                           kindName(ws.owner),
  3374                           ws.owner.type,
  3375                           c.details);
  3379         @Override
  3380         public Symbol access(Name name, TypeSymbol location) {
  3381             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3384         private Candidate errCandidate() {
  3385             Candidate bestSoFar = null;
  3386             for (Candidate c : resolveContext.candidates) {
  3387                 if (c.isApplicable()) continue;
  3388                 bestSoFar = c;
  3390             Assert.checkNonNull(bestSoFar);
  3391             return bestSoFar;
  3395     /**
  3396      * ResolveError error class indicating that a set of symbols
  3397      * (either methods, constructors or operands) is not applicable
  3398      * given an actual arguments/type argument list.
  3399      */
  3400     class InapplicableSymbolsError extends InapplicableSymbolError {
  3402         InapplicableSymbolsError(MethodResolutionContext context) {
  3403             super(WRONG_MTHS, "inapplicable symbols", context);
  3406         @Override
  3407         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3408                 DiagnosticPosition pos,
  3409                 Symbol location,
  3410                 Type site,
  3411                 Name name,
  3412                 List<Type> argtypes,
  3413                 List<Type> typeargtypes) {
  3414             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
  3415             Map<Symbol, JCDiagnostic> filteredCandidates = filterCandidates(candidatesMap);
  3416             if (filteredCandidates.isEmpty()) {
  3417                 filteredCandidates = candidatesMap;
  3419             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
  3420             if (filteredCandidates.size() > 1) {
  3421                 JCDiagnostic err = diags.create(dkind,
  3422                         null,
  3423                         truncatedDiag ?
  3424                             EnumSet.of(DiagnosticFlag.COMPRESSED) :
  3425                             EnumSet.noneOf(DiagnosticFlag.class),
  3426                         log.currentSource(),
  3427                         pos,
  3428                         "cant.apply.symbols",
  3429                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3430                         name == names.init ? site.tsym.name : name,
  3431                         methodArguments(argtypes));
  3432                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
  3433             } else if (filteredCandidates.size() == 1) {
  3434                 JCDiagnostic d =  new InapplicableSymbolError(resolveContext).getDiagnostic(dkind, pos,
  3435                     location, site, name, argtypes, typeargtypes);
  3436                 if (truncatedDiag) {
  3437                     d.setFlag(DiagnosticFlag.COMPRESSED);
  3439                 return d;
  3440             } else {
  3441                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3442                     location, site, name, argtypes, typeargtypes);
  3445         //where
  3446             private Map<Symbol, JCDiagnostic> mapCandidates() {
  3447                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3448                 for (Candidate c : resolveContext.candidates) {
  3449                     if (c.isApplicable()) continue;
  3450                     candidates.put(c.sym, c.details);
  3452                 return candidates;
  3455             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
  3456                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3457                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3458                     JCDiagnostic d = _entry.getValue();
  3459                     if (!compactMethodDiags ||
  3460                             !new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
  3461                         candidates.put(_entry.getKey(), d);
  3464                 return candidates;
  3467             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
  3468                 List<JCDiagnostic> details = List.nil();
  3469                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3470                     Symbol sym = _entry.getKey();
  3471                     JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3472                             Kinds.kindName(sym),
  3473                             sym.location(site, types),
  3474                             sym.asMemberOf(site, types),
  3475                             _entry.getValue());
  3476                     details = details.prepend(detailDiag);
  3478                 //typically members are visited in reverse order (see Scope)
  3479                 //so we need to reverse the candidate list so that candidates
  3480                 //conform to source order
  3481                 return details;
  3485     /**
  3486      * An InvalidSymbolError error class indicating that a symbol is not
  3487      * accessible from a given site
  3488      */
  3489     class AccessError extends InvalidSymbolError {
  3491         private Env<AttrContext> env;
  3492         private Type site;
  3494         AccessError(Symbol sym) {
  3495             this(null, null, sym);
  3498         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3499             super(HIDDEN, sym, "access error");
  3500             this.env = env;
  3501             this.site = site;
  3502             if (debugResolve)
  3503                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3506         @Override
  3507         public boolean exists() {
  3508             return false;
  3511         @Override
  3512         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3513                 DiagnosticPosition pos,
  3514                 Symbol location,
  3515                 Type site,
  3516                 Name name,
  3517                 List<Type> argtypes,
  3518                 List<Type> typeargtypes) {
  3519             if (sym.owner.type.hasTag(ERROR))
  3520                 return null;
  3522             if (sym.name == names.init && sym.owner != site.tsym) {
  3523                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3524                         pos, location, site, name, argtypes, typeargtypes);
  3526             else if ((sym.flags() & PUBLIC) != 0
  3527                 || (env != null && this.site != null
  3528                     && !isAccessible(env, this.site))) {
  3529                 return diags.create(dkind, log.currentSource(),
  3530                         pos, "not.def.access.class.intf.cant.access",
  3531                     sym, sym.location());
  3533             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3534                 return diags.create(dkind, log.currentSource(),
  3535                         pos, "report.access", sym,
  3536                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3537                         sym.location());
  3539             else {
  3540                 return diags.create(dkind, log.currentSource(),
  3541                         pos, "not.def.public.cant.access", sym, sym.location());
  3546     /**
  3547      * InvalidSymbolError error class indicating that an instance member
  3548      * has erroneously been accessed from a static context.
  3549      */
  3550     class StaticError extends InvalidSymbolError {
  3552         StaticError(Symbol sym) {
  3553             super(STATICERR, sym, "static error");
  3556         @Override
  3557         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3558                 DiagnosticPosition pos,
  3559                 Symbol location,
  3560                 Type site,
  3561                 Name name,
  3562                 List<Type> argtypes,
  3563                 List<Type> typeargtypes) {
  3564             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3565                 ? types.erasure(sym.type).tsym
  3566                 : sym);
  3567             return diags.create(dkind, log.currentSource(), pos,
  3568                     "non-static.cant.be.ref", kindName(sym), errSym);
  3572     /**
  3573      * InvalidSymbolError error class indicating that a pair of symbols
  3574      * (either methods, constructors or operands) are ambiguous
  3575      * given an actual arguments/type argument list.
  3576      */
  3577     class AmbiguityError extends ResolveError {
  3579         /** The other maximally specific symbol */
  3580         List<Symbol> ambiguousSyms = List.nil();
  3582         @Override
  3583         public boolean exists() {
  3584             return true;
  3587         AmbiguityError(Symbol sym1, Symbol sym2) {
  3588             super(AMBIGUOUS, "ambiguity error");
  3589             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
  3592         private List<Symbol> flatten(Symbol sym) {
  3593             if (sym.kind == AMBIGUOUS) {
  3594                 return ((AmbiguityError)sym).ambiguousSyms;
  3595             } else {
  3596                 return List.of(sym);
  3600         AmbiguityError addAmbiguousSymbol(Symbol s) {
  3601             ambiguousSyms = ambiguousSyms.prepend(s);
  3602             return this;
  3605         @Override
  3606         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3607                 DiagnosticPosition pos,
  3608                 Symbol location,
  3609                 Type site,
  3610                 Name name,
  3611                 List<Type> argtypes,
  3612                 List<Type> typeargtypes) {
  3613             List<Symbol> diagSyms = ambiguousSyms.reverse();
  3614             Symbol s1 = diagSyms.head;
  3615             Symbol s2 = diagSyms.tail.head;
  3616             Name sname = s1.name;
  3617             if (sname == names.init) sname = s1.owner.name;
  3618             return diags.create(dkind, log.currentSource(),
  3619                       pos, "ref.ambiguous", sname,
  3620                       kindName(s1),
  3621                       s1,
  3622                       s1.location(site, types),
  3623                       kindName(s2),
  3624                       s2,
  3625                       s2.location(site, types));
  3628         /**
  3629          * If multiple applicable methods are found during overload and none of them
  3630          * is more specific than the others, attempt to merge their signatures.
  3631          */
  3632         Symbol mergeAbstracts(Type site) {
  3633             Symbol fst = ambiguousSyms.last();
  3634             Symbol res = fst;
  3635             for (Symbol s : ambiguousSyms.reverse()) {
  3636                 Type mt1 = types.memberType(site, res);
  3637                 Type mt2 = types.memberType(site, s);
  3638                 if ((s.flags() & ABSTRACT) == 0 ||
  3639                         !types.overrideEquivalent(mt1, mt2) ||
  3640                         !types.isSameTypes(fst.erasure(types).getParameterTypes(),
  3641                                        s.erasure(types).getParameterTypes())) {
  3642                     //ambiguity cannot be resolved
  3643                     return this;
  3644                 } else {
  3645                     Type mst = mostSpecificReturnType(mt1, mt2);
  3646                     if (mst == null) {
  3647                         // Theoretically, this can't happen, but it is possible
  3648                         // due to error recovery or mixing incompatible class files
  3649                         return this;
  3651                     Symbol mostSpecific = mst == mt1 ? res : s;
  3652                     List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  3653                     Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  3654                     res = new MethodSymbol(
  3655                             mostSpecific.flags(),
  3656                             mostSpecific.name,
  3657                             newSig,
  3658                             mostSpecific.owner);
  3661             return res;
  3664         @Override
  3665         protected Symbol access(Name name, TypeSymbol location) {
  3666             Symbol firstAmbiguity = ambiguousSyms.last();
  3667             return firstAmbiguity.kind == TYP ?
  3668                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
  3669                     firstAmbiguity;
  3673     class BadVarargsMethod extends ResolveError {
  3675         ResolveError delegatedError;
  3677         BadVarargsMethod(ResolveError delegatedError) {
  3678             super(delegatedError.kind, "badVarargs");
  3679             this.delegatedError = delegatedError;
  3682         @Override
  3683         public Symbol baseSymbol() {
  3684             return delegatedError.baseSymbol();
  3687         @Override
  3688         protected Symbol access(Name name, TypeSymbol location) {
  3689             return delegatedError.access(name, location);
  3692         @Override
  3693         public boolean exists() {
  3694             return true;
  3697         @Override
  3698         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  3699             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
  3703     /**
  3704      * Helper class for method resolution diagnostic simplification.
  3705      * Certain resolution diagnostic are rewritten as simpler diagnostic
  3706      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
  3707      * is stripped away, as it doesn't carry additional info. The logic
  3708      * for matching a given diagnostic is given in terms of a template
  3709      * hierarchy: a diagnostic template can be specified programmatically,
  3710      * so that only certain diagnostics are matched. Each templete is then
  3711      * associated with a rewriter object that carries out the task of rewtiting
  3712      * the diagnostic to a simpler one.
  3713      */
  3714     static class MethodResolutionDiagHelper {
  3716         /**
  3717          * A diagnostic rewriter transforms a method resolution diagnostic
  3718          * into a simpler one
  3719          */
  3720         interface DiagnosticRewriter {
  3721             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  3722                     DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  3723                     DiagnosticType preferredKind, JCDiagnostic d);
  3726         /**
  3727          * A diagnostic template is made up of two ingredients: (i) a regular
  3728          * expression for matching a diagnostic key and (ii) a list of sub-templates
  3729          * for matching diagnostic arguments.
  3730          */
  3731         static class Template {
  3733             /** regex used to match diag key */
  3734             String regex;
  3736             /** templates used to match diagnostic args */
  3737             Template[] subTemplates;
  3739             Template(String key, Template... subTemplates) {
  3740                 this.regex = key;
  3741                 this.subTemplates = subTemplates;
  3744             /**
  3745              * Returns true if the regex matches the diagnostic key and if
  3746              * all diagnostic arguments are matches by corresponding sub-templates.
  3747              */
  3748             boolean matches(Object o) {
  3749                 JCDiagnostic d = (JCDiagnostic)o;
  3750                 Object[] args = d.getArgs();
  3751                 if (!d.getCode().matches(regex) ||
  3752                         subTemplates.length != d.getArgs().length) {
  3753                     return false;
  3755                 for (int i = 0; i < args.length ; i++) {
  3756                     if (!subTemplates[i].matches(args[i])) {
  3757                         return false;
  3760                 return true;
  3764         /** a dummy template that match any diagnostic argument */
  3765         static final Template skip = new Template("") {
  3766             @Override
  3767             boolean matches(Object d) {
  3768                 return true;
  3770         };
  3772         /** rewriter map used for method resolution simplification */
  3773         static final Map<Template, DiagnosticRewriter> rewriters =
  3774                 new LinkedHashMap<Template, DiagnosticRewriter>();
  3776         static {
  3777             String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
  3778             rewriters.put(new Template(argMismatchRegex, new Template("(.*)(bad.arg.types.in.lambda)", skip, skip)),
  3779                     new DiagnosticRewriter() {
  3780                 @Override
  3781                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  3782                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  3783                         DiagnosticType preferredKind, JCDiagnostic d) {
  3784                     return (JCDiagnostic)((JCDiagnostic)d.getArgs()[0]).getArgs()[1];
  3786             });
  3788             rewriters.put(new Template(argMismatchRegex, skip),
  3789                     new DiagnosticRewriter() {
  3790                 @Override
  3791                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  3792                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  3793                         DiagnosticType preferredKind, JCDiagnostic d) {
  3794                     JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
  3795                     return diags.create(preferredKind, preferredSource, d.getDiagnosticPosition(),
  3796                             "prob.found.req", cause);
  3798             });
  3802     enum MethodResolutionPhase {
  3803         BASIC(false, false),
  3804         BOX(true, false),
  3805         VARARITY(true, true) {
  3806             @Override
  3807             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  3808                 switch (sym.kind) {
  3809                     case WRONG_MTH:
  3810                         return (bestSoFar.kind == WRONG_MTH || bestSoFar.kind == WRONG_MTHS) ?
  3811                             bestSoFar :
  3812                             sym;
  3813                     case ABSENT_MTH:
  3814                         return bestSoFar;
  3815                     default:
  3816                         return sym;
  3819         };
  3821         final boolean isBoxingRequired;
  3822         final boolean isVarargsRequired;
  3824         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  3825            this.isBoxingRequired = isBoxingRequired;
  3826            this.isVarargsRequired = isVarargsRequired;
  3829         public boolean isBoxingRequired() {
  3830             return isBoxingRequired;
  3833         public boolean isVarargsRequired() {
  3834             return isVarargsRequired;
  3837         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  3838             return (varargsEnabled || !isVarargsRequired) &&
  3839                    (boxingEnabled || !isBoxingRequired);
  3842         public Symbol mergeResults(Symbol prev, Symbol sym) {
  3843             return sym;
  3847     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  3849     /**
  3850      * A resolution context is used to keep track of intermediate results of
  3851      * overload resolution, such as list of method that are not applicable
  3852      * (used to generate more precise diagnostics) and so on. Resolution contexts
  3853      * can be nested - this means that when each overload resolution routine should
  3854      * work within the resolution context it created.
  3855      */
  3856     class MethodResolutionContext {
  3858         private List<Candidate> candidates = List.nil();
  3860         MethodResolutionPhase step = null;
  3862         MethodCheck methodCheck = resolveMethodCheck;
  3864         private boolean internalResolution = false;
  3865         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  3867         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  3868             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  3869             candidates = candidates.append(c);
  3872         void addApplicableCandidate(Symbol sym, Type mtype) {
  3873             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  3874             candidates = candidates.append(c);
  3877         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
  3878             return deferredAttr.new DeferredAttrContext(attrMode, sym, step, inferenceContext, pendingResult != null ? pendingResult.checkContext.deferredAttrContext() : deferredAttr.emptyDeferredAttrContext, warn);
  3881         /**
  3882          * This class represents an overload resolution candidate. There are two
  3883          * kinds of candidates: applicable methods and inapplicable methods;
  3884          * applicable methods have a pointer to the instantiated method type,
  3885          * while inapplicable candidates contain further details about the
  3886          * reason why the method has been considered inapplicable.
  3887          */
  3888         @SuppressWarnings("overrides")
  3889         class Candidate {
  3891             final MethodResolutionPhase step;
  3892             final Symbol sym;
  3893             final JCDiagnostic details;
  3894             final Type mtype;
  3896             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  3897                 this.step = step;
  3898                 this.sym = sym;
  3899                 this.details = details;
  3900                 this.mtype = mtype;
  3903             @Override
  3904             public boolean equals(Object o) {
  3905                 if (o instanceof Candidate) {
  3906                     Symbol s1 = this.sym;
  3907                     Symbol s2 = ((Candidate)o).sym;
  3908                     if  ((s1 != s2 &&
  3909                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  3910                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  3911                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  3912                         return true;
  3914                 return false;
  3917             boolean isApplicable() {
  3918                 return mtype != null;
  3922         DeferredAttr.AttrMode attrMode() {
  3923             return attrMode;
  3926         boolean internal() {
  3927             return internalResolution;
  3931     MethodResolutionContext currentResolutionContext = null;

mercurial