src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 14 Jun 2013 16:25:09 +0100

author
vromero
date
Fri, 14 Jun 2013 16:25:09 +0100
changeset 1820
6b48ebae2569
parent 1755
ddb4a2bfcd82
child 1824
455be95bd1b5
permissions
-rw-r--r--

8016569: javac, add new flag for polymorphic method signatures
Reviewed-by: jjg
Contributed-by: maurizio.cimadamore@oracle.com

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.HashSet;
    30 import java.util.HashMap;
    31 import java.util.Locale;
    32 import java.util.Map;
    33 import java.util.Set;
    34 import java.util.WeakHashMap;
    36 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    37 import com.sun.tools.javac.code.Lint.LintCategory;
    38 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    39 import com.sun.tools.javac.comp.Check;
    40 import com.sun.tools.javac.jvm.ClassReader;
    41 import com.sun.tools.javac.util.*;
    42 import static com.sun.tools.javac.code.BoundKind.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.Scope.*;
    45 import static com.sun.tools.javac.code.Symbol.*;
    46 import static com.sun.tools.javac.code.Type.*;
    47 import static com.sun.tools.javac.code.TypeTag.*;
    48 import static com.sun.tools.javac.jvm.ClassFile.externalize;
    49 import static com.sun.tools.javac.util.ListBuffer.lb;
    51 /**
    52  * Utility class containing various operations on types.
    53  *
    54  * <p>Unless other names are more illustrative, the following naming
    55  * conventions should be observed in this file:
    56  *
    57  * <dl>
    58  * <dt>t</dt>
    59  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    60  * <dt>s</dt>
    61  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    62  * <dt>ts</dt>
    63  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    64  * <dt>ss</dt>
    65  * <dd>A second list of types should be named ss.</dd>
    66  * </dl>
    67  *
    68  * <p><b>This is NOT part of any supported API.
    69  * If you write code that depends on this, you do so at your own risk.
    70  * This code and its internal interfaces are subject to change or
    71  * deletion without notice.</b>
    72  */
    73 public class Types {
    74     protected static final Context.Key<Types> typesKey =
    75         new Context.Key<Types>();
    77     final Symtab syms;
    78     final JavacMessages messages;
    79     final Names names;
    80     final boolean allowBoxing;
    81     final boolean allowCovariantReturns;
    82     final boolean allowObjectToPrimitiveCast;
    83     final boolean allowDefaultMethods;
    84     final ClassReader reader;
    85     final Check chk;
    86     JCDiagnostic.Factory diags;
    87     List<Warner> warnStack = List.nil();
    88     final Name capturedName;
    89     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    91     public final Warner noWarnings;
    93     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    94     public static Types instance(Context context) {
    95         Types instance = context.get(typesKey);
    96         if (instance == null)
    97             instance = new Types(context);
    98         return instance;
    99     }
   101     protected Types(Context context) {
   102         context.put(typesKey, this);
   103         syms = Symtab.instance(context);
   104         names = Names.instance(context);
   105         Source source = Source.instance(context);
   106         allowBoxing = source.allowBoxing();
   107         allowCovariantReturns = source.allowCovariantReturns();
   108         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   109         allowDefaultMethods = source.allowDefaultMethods();
   110         reader = ClassReader.instance(context);
   111         chk = Check.instance(context);
   112         capturedName = names.fromString("<captured wildcard>");
   113         messages = JavacMessages.instance(context);
   114         diags = JCDiagnostic.Factory.instance(context);
   115         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   116         noWarnings = new Warner(null);
   117     }
   118     // </editor-fold>
   120     // <editor-fold defaultstate="collapsed" desc="upperBound">
   121     /**
   122      * The "rvalue conversion".<br>
   123      * The upper bound of most types is the type
   124      * itself.  Wildcards, on the other hand have upper
   125      * and lower bounds.
   126      * @param t a type
   127      * @return the upper bound of the given type
   128      */
   129     public Type upperBound(Type t) {
   130         return upperBound.visit(t);
   131     }
   132     // where
   133         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   135             @Override
   136             public Type visitWildcardType(WildcardType t, Void ignored) {
   137                 if (t.isSuperBound())
   138                     return t.bound == null ? syms.objectType : t.bound.bound;
   139                 else
   140                     return visit(t.type);
   141             }
   143             @Override
   144             public Type visitCapturedType(CapturedType t, Void ignored) {
   145                 return visit(t.bound);
   146             }
   147         };
   148     // </editor-fold>
   150     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   151     /**
   152      * The "lvalue conversion".<br>
   153      * The lower bound of most types is the type
   154      * itself.  Wildcards, on the other hand have upper
   155      * and lower bounds.
   156      * @param t a type
   157      * @return the lower bound of the given type
   158      */
   159     public Type lowerBound(Type t) {
   160         return lowerBound.visit(t);
   161     }
   162     // where
   163         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   165             @Override
   166             public Type visitWildcardType(WildcardType t, Void ignored) {
   167                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   168             }
   170             @Override
   171             public Type visitCapturedType(CapturedType t, Void ignored) {
   172                 return visit(t.getLowerBound());
   173             }
   174         };
   175     // </editor-fold>
   177     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   178     /**
   179      * Checks that all the arguments to a class are unbounded
   180      * wildcards or something else that doesn't make any restrictions
   181      * on the arguments. If a class isUnbounded, a raw super- or
   182      * subclass can be cast to it without a warning.
   183      * @param t a type
   184      * @return true iff the given type is unbounded or raw
   185      */
   186     public boolean isUnbounded(Type t) {
   187         return isUnbounded.visit(t);
   188     }
   189     // where
   190         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   192             public Boolean visitType(Type t, Void ignored) {
   193                 return true;
   194             }
   196             @Override
   197             public Boolean visitClassType(ClassType t, Void ignored) {
   198                 List<Type> parms = t.tsym.type.allparams();
   199                 List<Type> args = t.allparams();
   200                 while (parms.nonEmpty()) {
   201                     WildcardType unb = new WildcardType(syms.objectType,
   202                                                         BoundKind.UNBOUND,
   203                                                         syms.boundClass,
   204                                                         (TypeVar)parms.head.unannotatedType());
   205                     if (!containsType(args.head, unb))
   206                         return false;
   207                     parms = parms.tail;
   208                     args = args.tail;
   209                 }
   210                 return true;
   211             }
   212         };
   213     // </editor-fold>
   215     // <editor-fold defaultstate="collapsed" desc="asSub">
   216     /**
   217      * Return the least specific subtype of t that starts with symbol
   218      * sym.  If none exists, return null.  The least specific subtype
   219      * is determined as follows:
   220      *
   221      * <p>If there is exactly one parameterized instance of sym that is a
   222      * subtype of t, that parameterized instance is returned.<br>
   223      * Otherwise, if the plain type or raw type `sym' is a subtype of
   224      * type t, the type `sym' itself is returned.  Otherwise, null is
   225      * returned.
   226      */
   227     public Type asSub(Type t, Symbol sym) {
   228         return asSub.visit(t, sym);
   229     }
   230     // where
   231         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   233             public Type visitType(Type t, Symbol sym) {
   234                 return null;
   235             }
   237             @Override
   238             public Type visitClassType(ClassType t, Symbol sym) {
   239                 if (t.tsym == sym)
   240                     return t;
   241                 Type base = asSuper(sym.type, t.tsym);
   242                 if (base == null)
   243                     return null;
   244                 ListBuffer<Type> from = new ListBuffer<Type>();
   245                 ListBuffer<Type> to = new ListBuffer<Type>();
   246                 try {
   247                     adapt(base, t, from, to);
   248                 } catch (AdaptFailure ex) {
   249                     return null;
   250                 }
   251                 Type res = subst(sym.type, from.toList(), to.toList());
   252                 if (!isSubtype(res, t))
   253                     return null;
   254                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   255                 for (List<Type> l = sym.type.allparams();
   256                      l.nonEmpty(); l = l.tail)
   257                     if (res.contains(l.head) && !t.contains(l.head))
   258                         openVars.append(l.head);
   259                 if (openVars.nonEmpty()) {
   260                     if (t.isRaw()) {
   261                         // The subtype of a raw type is raw
   262                         res = erasure(res);
   263                     } else {
   264                         // Unbound type arguments default to ?
   265                         List<Type> opens = openVars.toList();
   266                         ListBuffer<Type> qs = new ListBuffer<Type>();
   267                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   268                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
   269                         }
   270                         res = subst(res, opens, qs.toList());
   271                     }
   272                 }
   273                 return res;
   274             }
   276             @Override
   277             public Type visitErrorType(ErrorType t, Symbol sym) {
   278                 return t;
   279             }
   280         };
   281     // </editor-fold>
   283     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   284     /**
   285      * Is t a subtype of or convertible via boxing/unboxing
   286      * conversion to s?
   287      */
   288     public boolean isConvertible(Type t, Type s, Warner warn) {
   289         if (t.tag == ERROR)
   290             return true;
   291         boolean tPrimitive = t.isPrimitive();
   292         boolean sPrimitive = s.isPrimitive();
   293         if (tPrimitive == sPrimitive) {
   294             return isSubtypeUnchecked(t, s, warn);
   295         }
   296         if (!allowBoxing) return false;
   297         return tPrimitive
   298             ? isSubtype(boxedClass(t).type, s)
   299             : isSubtype(unboxedType(t), s);
   300     }
   302     /**
   303      * Is t a subtype of or convertiable via boxing/unboxing
   304      * convertions to s?
   305      */
   306     public boolean isConvertible(Type t, Type s) {
   307         return isConvertible(t, s, noWarnings);
   308     }
   309     // </editor-fold>
   311     // <editor-fold defaultstate="collapsed" desc="findSam">
   313     /**
   314      * Exception used to report a function descriptor lookup failure. The exception
   315      * wraps a diagnostic that can be used to generate more details error
   316      * messages.
   317      */
   318     public static class FunctionDescriptorLookupError extends RuntimeException {
   319         private static final long serialVersionUID = 0;
   321         JCDiagnostic diagnostic;
   323         FunctionDescriptorLookupError() {
   324             this.diagnostic = null;
   325         }
   327         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   328             this.diagnostic = diag;
   329             return this;
   330         }
   332         public JCDiagnostic getDiagnostic() {
   333             return diagnostic;
   334         }
   335     }
   337     /**
   338      * A cache that keeps track of function descriptors associated with given
   339      * functional interfaces.
   340      */
   341     class DescriptorCache {
   343         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   345         class FunctionDescriptor {
   346             Symbol descSym;
   348             FunctionDescriptor(Symbol descSym) {
   349                 this.descSym = descSym;
   350             }
   352             public Symbol getSymbol() {
   353                 return descSym;
   354             }
   356             public Type getType(Type site) {
   357                 site = removeWildcards(site);
   358                 if (!chk.checkValidGenericType(site)) {
   359                     //if the inferred functional interface type is not well-formed,
   360                     //or if it's not a subtype of the original target, issue an error
   361                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   362                 }
   363                 return memberType(site, descSym);
   364             }
   365         }
   367         class Entry {
   368             final FunctionDescriptor cachedDescRes;
   369             final int prevMark;
   371             public Entry(FunctionDescriptor cachedDescRes,
   372                     int prevMark) {
   373                 this.cachedDescRes = cachedDescRes;
   374                 this.prevMark = prevMark;
   375             }
   377             boolean matches(int mark) {
   378                 return  this.prevMark == mark;
   379             }
   380         }
   382         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   383             Entry e = _map.get(origin);
   384             CompoundScope members = membersClosure(origin.type, false);
   385             if (e == null ||
   386                     !e.matches(members.getMark())) {
   387                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   388                 _map.put(origin, new Entry(descRes, members.getMark()));
   389                 return descRes;
   390             }
   391             else {
   392                 return e.cachedDescRes;
   393             }
   394         }
   396         /**
   397          * Compute the function descriptor associated with a given functional interface
   398          */
   399         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   400             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   401                 //t must be an interface
   402                 throw failure("not.a.functional.intf", origin);
   403             }
   405             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   406             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   407                 Type mtype = memberType(origin.type, sym);
   408                 if (abstracts.isEmpty() ||
   409                         (sym.name == abstracts.first().name &&
   410                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   411                     abstracts.append(sym);
   412                 } else {
   413                     //the target method(s) should be the only abstract members of t
   414                     throw failure("not.a.functional.intf.1",  origin,
   415                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   416                 }
   417             }
   418             if (abstracts.isEmpty()) {
   419                 //t must define a suitable non-generic method
   420                 throw failure("not.a.functional.intf.1", origin,
   421                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   422             } else if (abstracts.size() == 1) {
   423                 return new FunctionDescriptor(abstracts.first());
   424             } else { // size > 1
   425                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   426                 if (descRes == null) {
   427                     //we can get here if the functional interface is ill-formed
   428                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   429                     for (Symbol desc : abstracts) {
   430                         String key = desc.type.getThrownTypes().nonEmpty() ?
   431                                 "descriptor.throws" : "descriptor";
   432                         descriptors.append(diags.fragment(key, desc.name,
   433                                 desc.type.getParameterTypes(),
   434                                 desc.type.getReturnType(),
   435                                 desc.type.getThrownTypes()));
   436                     }
   437                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   438                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   439                             Kinds.kindName(origin), origin), descriptors.toList());
   440                     throw failure(incompatibleDescriptors);
   441                 }
   442                 return descRes;
   443             }
   444         }
   446         /**
   447          * Compute a synthetic type for the target descriptor given a list
   448          * of override-equivalent methods in the functional interface type.
   449          * The resulting method type is a method type that is override-equivalent
   450          * and return-type substitutable with each method in the original list.
   451          */
   452         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   453             //pick argument types - simply take the signature that is a
   454             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   455             List<Symbol> mostSpecific = List.nil();
   456             outer: for (Symbol msym1 : methodSyms) {
   457                 Type mt1 = memberType(origin.type, msym1);
   458                 for (Symbol msym2 : methodSyms) {
   459                     Type mt2 = memberType(origin.type, msym2);
   460                     if (!isSubSignature(mt1, mt2)) {
   461                         continue outer;
   462                     }
   463                 }
   464                 mostSpecific = mostSpecific.prepend(msym1);
   465             }
   466             if (mostSpecific.isEmpty()) {
   467                 return null;
   468             }
   471             //pick return types - this is done in two phases: (i) first, the most
   472             //specific return type is chosen using strict subtyping; if this fails,
   473             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   474             boolean phase2 = false;
   475             Symbol bestSoFar = null;
   476             while (bestSoFar == null) {
   477                 outer: for (Symbol msym1 : mostSpecific) {
   478                     Type mt1 = memberType(origin.type, msym1);
   479                     for (Symbol msym2 : methodSyms) {
   480                         Type mt2 = memberType(origin.type, msym2);
   481                         if (phase2 ?
   482                                 !returnTypeSubstitutable(mt1, mt2) :
   483                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   484                             continue outer;
   485                         }
   486                     }
   487                     bestSoFar = msym1;
   488                 }
   489                 if (phase2) {
   490                     break;
   491                 } else {
   492                     phase2 = true;
   493                 }
   494             }
   495             if (bestSoFar == null) return null;
   497             //merge thrown types - form the intersection of all the thrown types in
   498             //all the signatures in the list
   499             List<Type> thrown = null;
   500             for (Symbol msym1 : methodSyms) {
   501                 Type mt1 = memberType(origin.type, msym1);
   502                 thrown = (thrown == null) ?
   503                     mt1.getThrownTypes() :
   504                     chk.intersect(mt1.getThrownTypes(), thrown);
   505             }
   507             final List<Type> thrown1 = thrown;
   508             return new FunctionDescriptor(bestSoFar) {
   509                 @Override
   510                 public Type getType(Type origin) {
   511                     Type mt = memberType(origin, getSymbol());
   512                     return createMethodTypeWithThrown(mt, thrown1);
   513                 }
   514             };
   515         }
   517         boolean isSubtypeInternal(Type s, Type t) {
   518             return (s.isPrimitive() && t.isPrimitive()) ?
   519                     isSameType(t, s) :
   520                     isSubtype(s, t);
   521         }
   523         FunctionDescriptorLookupError failure(String msg, Object... args) {
   524             return failure(diags.fragment(msg, args));
   525         }
   527         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   528             return functionDescriptorLookupError.setMessage(diag);
   529         }
   530     }
   532     private DescriptorCache descCache = new DescriptorCache();
   534     /**
   535      * Find the method descriptor associated to this class symbol - if the
   536      * symbol 'origin' is not a functional interface, an exception is thrown.
   537      */
   538     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   539         return descCache.get(origin).getSymbol();
   540     }
   542     /**
   543      * Find the type of the method descriptor associated to this class symbol -
   544      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   545      */
   546     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   547         return descCache.get(origin.tsym).getType(origin);
   548     }
   550     /**
   551      * Is given type a functional interface?
   552      */
   553     public boolean isFunctionalInterface(TypeSymbol tsym) {
   554         try {
   555             findDescriptorSymbol(tsym);
   556             return true;
   557         } catch (FunctionDescriptorLookupError ex) {
   558             return false;
   559         }
   560     }
   562     public boolean isFunctionalInterface(Type site) {
   563         try {
   564             findDescriptorType(site);
   565             return true;
   566         } catch (FunctionDescriptorLookupError ex) {
   567             return false;
   568         }
   569     }
   571     public Type removeWildcards(Type site) {
   572         Type capturedSite = capture(site);
   573         if (capturedSite != site) {
   574             Type formalInterface = site.tsym.type;
   575             ListBuffer<Type> typeargs = ListBuffer.lb();
   576             List<Type> actualTypeargs = site.getTypeArguments();
   577             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
   578             //simply replace the wildcards with its bound
   579             for (Type t : formalInterface.getTypeArguments()) {
   580                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   581                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
   582                     Type bound;
   583                     switch (wt.kind) {
   584                         case EXTENDS:
   585                         case UNBOUND:
   586                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
   587                             //use declared bound if it doesn't depend on formal type-args
   588                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
   589                                     wt.type : capVar.bound;
   590                             break;
   591                         default:
   592                             bound = wt.type;
   593                     }
   594                     typeargs.append(bound);
   595                 } else {
   596                     typeargs.append(actualTypeargs.head);
   597                 }
   598                 actualTypeargs = actualTypeargs.tail;
   599                 capturedTypeargs = capturedTypeargs.tail;
   600             }
   601             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   602         } else {
   603             return site;
   604         }
   605     }
   606     // </editor-fold>
   608    /**
   609     * Scope filter used to skip methods that should be ignored (such as methods
   610     * overridden by j.l.Object) during function interface conversion interface check
   611     */
   612     class DescriptorFilter implements Filter<Symbol> {
   614        TypeSymbol origin;
   616        DescriptorFilter(TypeSymbol origin) {
   617            this.origin = origin;
   618        }
   620        @Override
   621        public boolean accepts(Symbol sym) {
   622            return sym.kind == Kinds.MTH &&
   623                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   624                    !overridesObjectMethod(origin, sym) &&
   625                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   626        }
   627     };
   629     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   630     /**
   631      * Is t an unchecked subtype of s?
   632      */
   633     public boolean isSubtypeUnchecked(Type t, Type s) {
   634         return isSubtypeUnchecked(t, s, noWarnings);
   635     }
   636     /**
   637      * Is t an unchecked subtype of s?
   638      */
   639     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   640         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   641         if (result) {
   642             checkUnsafeVarargsConversion(t, s, warn);
   643         }
   644         return result;
   645     }
   646     //where
   647         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   648             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   649                 t = t.unannotatedType();
   650                 s = s.unannotatedType();
   651                 if (((ArrayType)t).elemtype.isPrimitive()) {
   652                     return isSameType(elemtype(t), elemtype(s));
   653                 } else {
   654                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   655                 }
   656             } else if (isSubtype(t, s)) {
   657                 return true;
   658             }
   659             else if (t.tag == TYPEVAR) {
   660                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   661             }
   662             else if (!s.isRaw()) {
   663                 Type t2 = asSuper(t, s.tsym);
   664                 if (t2 != null && t2.isRaw()) {
   665                     if (isReifiable(s))
   666                         warn.silentWarn(LintCategory.UNCHECKED);
   667                     else
   668                         warn.warn(LintCategory.UNCHECKED);
   669                     return true;
   670                 }
   671             }
   672             return false;
   673         }
   675         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   676             if (t.tag != ARRAY || isReifiable(t))
   677                 return;
   678             t = t.unannotatedType();
   679             s = s.unannotatedType();
   680             ArrayType from = (ArrayType)t;
   681             boolean shouldWarn = false;
   682             switch (s.tag) {
   683                 case ARRAY:
   684                     ArrayType to = (ArrayType)s;
   685                     shouldWarn = from.isVarargs() &&
   686                             !to.isVarargs() &&
   687                             !isReifiable(from);
   688                     break;
   689                 case CLASS:
   690                     shouldWarn = from.isVarargs();
   691                     break;
   692             }
   693             if (shouldWarn) {
   694                 warn.warn(LintCategory.VARARGS);
   695             }
   696         }
   698     /**
   699      * Is t a subtype of s?<br>
   700      * (not defined for Method and ForAll types)
   701      */
   702     final public boolean isSubtype(Type t, Type s) {
   703         return isSubtype(t, s, true);
   704     }
   705     final public boolean isSubtypeNoCapture(Type t, Type s) {
   706         return isSubtype(t, s, false);
   707     }
   708     public boolean isSubtype(Type t, Type s, boolean capture) {
   709         if (t == s)
   710             return true;
   712         t = t.unannotatedType();
   713         s = s.unannotatedType();
   715         if (t == s)
   716             return true;
   718         if (s.isPartial())
   719             return isSuperType(s, t);
   721         if (s.isCompound()) {
   722             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   723                 if (!isSubtype(t, s2, capture))
   724                     return false;
   725             }
   726             return true;
   727         }
   729         Type lower = lowerBound(s);
   730         if (s != lower)
   731             return isSubtype(capture ? capture(t) : t, lower, false);
   733         return isSubtype.visit(capture ? capture(t) : t, s);
   734     }
   735     // where
   736         private TypeRelation isSubtype = new TypeRelation()
   737         {
   738             public Boolean visitType(Type t, Type s) {
   739                 switch (t.tag) {
   740                  case BYTE:
   741                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   742                  case CHAR:
   743                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   744                  case SHORT: case INT: case LONG:
   745                  case FLOAT: case DOUBLE:
   746                      return t.getTag().isSubRangeOf(s.getTag());
   747                  case BOOLEAN: case VOID:
   748                      return t.hasTag(s.getTag());
   749                  case TYPEVAR:
   750                      return isSubtypeNoCapture(t.getUpperBound(), s);
   751                  case BOT:
   752                      return
   753                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   754                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   755                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   756                  case NONE:
   757                      return false;
   758                  default:
   759                      throw new AssertionError("isSubtype " + t.tag);
   760                  }
   761             }
   763             private Set<TypePair> cache = new HashSet<TypePair>();
   765             private boolean containsTypeRecursive(Type t, Type s) {
   766                 TypePair pair = new TypePair(t, s);
   767                 if (cache.add(pair)) {
   768                     try {
   769                         return containsType(t.getTypeArguments(),
   770                                             s.getTypeArguments());
   771                     } finally {
   772                         cache.remove(pair);
   773                     }
   774                 } else {
   775                     return containsType(t.getTypeArguments(),
   776                                         rewriteSupers(s).getTypeArguments());
   777                 }
   778             }
   780             private Type rewriteSupers(Type t) {
   781                 if (!t.isParameterized())
   782                     return t;
   783                 ListBuffer<Type> from = lb();
   784                 ListBuffer<Type> to = lb();
   785                 adaptSelf(t, from, to);
   786                 if (from.isEmpty())
   787                     return t;
   788                 ListBuffer<Type> rewrite = lb();
   789                 boolean changed = false;
   790                 for (Type orig : to.toList()) {
   791                     Type s = rewriteSupers(orig);
   792                     if (s.isSuperBound() && !s.isExtendsBound()) {
   793                         s = new WildcardType(syms.objectType,
   794                                              BoundKind.UNBOUND,
   795                                              syms.boundClass);
   796                         changed = true;
   797                     } else if (s != orig) {
   798                         s = new WildcardType(upperBound(s),
   799                                              BoundKind.EXTENDS,
   800                                              syms.boundClass);
   801                         changed = true;
   802                     }
   803                     rewrite.append(s);
   804                 }
   805                 if (changed)
   806                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   807                 else
   808                     return t;
   809             }
   811             @Override
   812             public Boolean visitClassType(ClassType t, Type s) {
   813                 Type sup = asSuper(t, s.tsym);
   814                 return sup != null
   815                     && sup.tsym == s.tsym
   816                     // You're not allowed to write
   817                     //     Vector<Object> vec = new Vector<String>();
   818                     // But with wildcards you can write
   819                     //     Vector<? extends Object> vec = new Vector<String>();
   820                     // which means that subtype checking must be done
   821                     // here instead of same-type checking (via containsType).
   822                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   823                     && isSubtypeNoCapture(sup.getEnclosingType(),
   824                                           s.getEnclosingType());
   825             }
   827             @Override
   828             public Boolean visitArrayType(ArrayType t, Type s) {
   829                 if (s.tag == ARRAY) {
   830                     if (t.elemtype.isPrimitive())
   831                         return isSameType(t.elemtype, elemtype(s));
   832                     else
   833                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   834                 }
   836                 if (s.tag == CLASS) {
   837                     Name sname = s.tsym.getQualifiedName();
   838                     return sname == names.java_lang_Object
   839                         || sname == names.java_lang_Cloneable
   840                         || sname == names.java_io_Serializable;
   841                 }
   843                 return false;
   844             }
   846             @Override
   847             public Boolean visitUndetVar(UndetVar t, Type s) {
   848                 //todo: test against origin needed? or replace with substitution?
   849                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   850                     return true;
   851                 } else if (s.tag == BOT) {
   852                     //if 's' is 'null' there's no instantiated type U for which
   853                     //U <: s (but 'null' itself, which is not a valid type)
   854                     return false;
   855                 }
   857                 t.addBound(InferenceBound.UPPER, s, Types.this);
   858                 return true;
   859             }
   861             @Override
   862             public Boolean visitErrorType(ErrorType t, Type s) {
   863                 return true;
   864             }
   865         };
   867     /**
   868      * Is t a subtype of every type in given list `ts'?<br>
   869      * (not defined for Method and ForAll types)<br>
   870      * Allows unchecked conversions.
   871      */
   872     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   873         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   874             if (!isSubtypeUnchecked(t, l.head, warn))
   875                 return false;
   876         return true;
   877     }
   879     /**
   880      * Are corresponding elements of ts subtypes of ss?  If lists are
   881      * of different length, return false.
   882      */
   883     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   884         while (ts.tail != null && ss.tail != null
   885                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   886                isSubtype(ts.head, ss.head)) {
   887             ts = ts.tail;
   888             ss = ss.tail;
   889         }
   890         return ts.tail == null && ss.tail == null;
   891         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   892     }
   894     /**
   895      * Are corresponding elements of ts subtypes of ss, allowing
   896      * unchecked conversions?  If lists are of different length,
   897      * return false.
   898      **/
   899     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   900         while (ts.tail != null && ss.tail != null
   901                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   902                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   903             ts = ts.tail;
   904             ss = ss.tail;
   905         }
   906         return ts.tail == null && ss.tail == null;
   907         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   908     }
   909     // </editor-fold>
   911     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   912     /**
   913      * Is t a supertype of s?
   914      */
   915     public boolean isSuperType(Type t, Type s) {
   916         switch (t.tag) {
   917         case ERROR:
   918             return true;
   919         case UNDETVAR: {
   920             UndetVar undet = (UndetVar)t;
   921             if (t == s ||
   922                 undet.qtype == s ||
   923                 s.tag == ERROR ||
   924                 s.tag == BOT) return true;
   925             undet.addBound(InferenceBound.LOWER, s, this);
   926             return true;
   927         }
   928         default:
   929             return isSubtype(s, t);
   930         }
   931     }
   932     // </editor-fold>
   934     // <editor-fold defaultstate="collapsed" desc="isSameType">
   935     /**
   936      * Are corresponding elements of the lists the same type?  If
   937      * lists are of different length, return false.
   938      */
   939     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   940         return isSameTypes(ts, ss, false);
   941     }
   942     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
   943         while (ts.tail != null && ss.tail != null
   944                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   945                isSameType(ts.head, ss.head, strict)) {
   946             ts = ts.tail;
   947             ss = ss.tail;
   948         }
   949         return ts.tail == null && ss.tail == null;
   950         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   951     }
   953     /**
   954     * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
   955     * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
   956     * a single variable arity parameter (iii) whose declared type is Object[],
   957     * (iv) has a return type of Object and (v) is native.
   958     */
   959    public boolean isSignaturePolymorphic(MethodSymbol msym) {
   960        List<Type> argtypes = msym.type.getParameterTypes();
   961        return (msym.flags_field & NATIVE) != 0 &&
   962                msym.owner == syms.methodHandleType.tsym &&
   963                argtypes.tail.tail == null &&
   964                argtypes.head.hasTag(TypeTag.ARRAY) &&
   965                msym.type.getReturnType().tsym == syms.objectType.tsym &&
   966                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
   967    }
   969     /**
   970      * Is t the same type as s?
   971      */
   972     public boolean isSameType(Type t, Type s) {
   973         return isSameType(t, s, false);
   974     }
   975     public boolean isSameType(Type t, Type s, boolean strict) {
   976         return strict ?
   977                 isSameTypeStrict.visit(t, s) :
   978                 isSameTypeLoose.visit(t, s);
   979     }
   980     public boolean isSameAnnotatedType(Type t, Type s) {
   981         return isSameAnnotatedType.visit(t, s);
   982     }
   983     // where
   984         abstract class SameTypeVisitor extends TypeRelation {
   986             public Boolean visitType(Type t, Type s) {
   987                 if (t == s)
   988                     return true;
   990                 if (s.isPartial())
   991                     return visit(s, t);
   993                 switch (t.tag) {
   994                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   995                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   996                     return t.tag == s.tag;
   997                 case TYPEVAR: {
   998                     if (s.tag == TYPEVAR) {
   999                         //type-substitution does not preserve type-var types
  1000                         //check that type var symbols and bounds are indeed the same
  1001                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
  1003                     else {
  1004                         //special case for s == ? super X, where upper(s) = u
  1005                         //check that u == t, where u has been set by Type.withTypeVar
  1006                         return s.isSuperBound() &&
  1007                                 !s.isExtendsBound() &&
  1008                                 visit(t, upperBound(s));
  1011                 default:
  1012                     throw new AssertionError("isSameType " + t.tag);
  1016             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1018             @Override
  1019             public Boolean visitWildcardType(WildcardType t, Type s) {
  1020                 if (s.isPartial())
  1021                     return visit(s, t);
  1022                 else
  1023                     return false;
  1026             @Override
  1027             public Boolean visitClassType(ClassType t, Type s) {
  1028                 if (t == s)
  1029                     return true;
  1031                 if (s.isPartial())
  1032                     return visit(s, t);
  1034                 if (s.isSuperBound() && !s.isExtendsBound())
  1035                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1037                 if (t.isCompound() && s.isCompound()) {
  1038                     if (!visit(supertype(t), supertype(s)))
  1039                         return false;
  1041                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1042                     for (Type x : interfaces(t))
  1043                         set.add(new UniqueType(x, Types.this));
  1044                     for (Type x : interfaces(s)) {
  1045                         if (!set.remove(new UniqueType(x, Types.this)))
  1046                             return false;
  1048                     return (set.isEmpty());
  1050                 return t.tsym == s.tsym
  1051                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1052                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1055             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1057             @Override
  1058             public Boolean visitArrayType(ArrayType t, Type s) {
  1059                 if (t == s)
  1060                     return true;
  1062                 if (s.isPartial())
  1063                     return visit(s, t);
  1065                 return s.hasTag(ARRAY)
  1066                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1069             @Override
  1070             public Boolean visitMethodType(MethodType t, Type s) {
  1071                 // isSameType for methods does not take thrown
  1072                 // exceptions into account!
  1073                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1076             @Override
  1077             public Boolean visitPackageType(PackageType t, Type s) {
  1078                 return t == s;
  1081             @Override
  1082             public Boolean visitForAll(ForAll t, Type s) {
  1083                 if (s.tag != FORALL)
  1084                     return false;
  1086                 ForAll forAll = (ForAll)s;
  1087                 return hasSameBounds(t, forAll)
  1088                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1091             @Override
  1092             public Boolean visitUndetVar(UndetVar t, Type s) {
  1093                 if (s.tag == WILDCARD)
  1094                     // FIXME, this might be leftovers from before capture conversion
  1095                     return false;
  1097                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1098                     return true;
  1100                 t.addBound(InferenceBound.EQ, s, Types.this);
  1102                 return true;
  1105             @Override
  1106             public Boolean visitErrorType(ErrorType t, Type s) {
  1107                 return true;
  1111         /**
  1112          * Standard type-equality relation - type variables are considered
  1113          * equals if they share the same type symbol.
  1114          */
  1115         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
  1117         private class LooseSameTypeVisitor extends SameTypeVisitor {
  1118             @Override
  1119             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1120                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
  1122             @Override
  1123             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1124                 return containsTypeEquivalent(ts1, ts2);
  1126         };
  1128         /**
  1129          * Strict type-equality relation - type variables are considered
  1130          * equals if they share the same object identity.
  1131          */
  1132         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1133             @Override
  1134             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1135                 return tv1 == tv2;
  1137             @Override
  1138             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1139                 return isSameTypes(ts1, ts2, true);
  1142             @Override
  1143             public Boolean visitWildcardType(WildcardType t, Type s) {
  1144                 if (!s.hasTag(WILDCARD)) {
  1145                     return false;
  1146                 } else {
  1147                     WildcardType t2 = (WildcardType)s.unannotatedType();
  1148                     return t.kind == t2.kind &&
  1149                             isSameType(t.type, t2.type, true);
  1152         };
  1154         /**
  1155          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
  1156          * into account.
  1157          */
  1158         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
  1159             @Override
  1160             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
  1161                 if (!s.isAnnotated())
  1162                     return false;
  1163                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
  1164                     return false;
  1165                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
  1166                     return false;
  1167                 return visit(t.underlyingType, s);
  1169         };
  1170     // </editor-fold>
  1172     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1173     public boolean containedBy(Type t, Type s) {
  1174         switch (t.tag) {
  1175         case UNDETVAR:
  1176             if (s.tag == WILDCARD) {
  1177                 UndetVar undetvar = (UndetVar)t;
  1178                 WildcardType wt = (WildcardType)s.unannotatedType();
  1179                 switch(wt.kind) {
  1180                     case UNBOUND: //similar to ? extends Object
  1181                     case EXTENDS: {
  1182                         Type bound = upperBound(s);
  1183                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1184                         break;
  1186                     case SUPER: {
  1187                         Type bound = lowerBound(s);
  1188                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1189                         break;
  1192                 return true;
  1193             } else {
  1194                 return isSameType(t, s);
  1196         case ERROR:
  1197             return true;
  1198         default:
  1199             return containsType(s, t);
  1203     boolean containsType(List<Type> ts, List<Type> ss) {
  1204         while (ts.nonEmpty() && ss.nonEmpty()
  1205                && containsType(ts.head, ss.head)) {
  1206             ts = ts.tail;
  1207             ss = ss.tail;
  1209         return ts.isEmpty() && ss.isEmpty();
  1212     /**
  1213      * Check if t contains s.
  1215      * <p>T contains S if:
  1217      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1219      * <p>This relation is only used by ClassType.isSubtype(), that
  1220      * is,
  1222      * <p>{@code C<S> <: C<T> if T contains S.}
  1224      * <p>Because of F-bounds, this relation can lead to infinite
  1225      * recursion.  Thus we must somehow break that recursion.  Notice
  1226      * that containsType() is only called from ClassType.isSubtype().
  1227      * Since the arguments have already been checked against their
  1228      * bounds, we know:
  1230      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1232      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1234      * @param t a type
  1235      * @param s a type
  1236      */
  1237     public boolean containsType(Type t, Type s) {
  1238         return containsType.visit(t, s);
  1240     // where
  1241         private TypeRelation containsType = new TypeRelation() {
  1243             private Type U(Type t) {
  1244                 while (t.tag == WILDCARD) {
  1245                     WildcardType w = (WildcardType)t.unannotatedType();
  1246                     if (w.isSuperBound())
  1247                         return w.bound == null ? syms.objectType : w.bound.bound;
  1248                     else
  1249                         t = w.type;
  1251                 return t;
  1254             private Type L(Type t) {
  1255                 while (t.tag == WILDCARD) {
  1256                     WildcardType w = (WildcardType)t.unannotatedType();
  1257                     if (w.isExtendsBound())
  1258                         return syms.botType;
  1259                     else
  1260                         t = w.type;
  1262                 return t;
  1265             public Boolean visitType(Type t, Type s) {
  1266                 if (s.isPartial())
  1267                     return containedBy(s, t);
  1268                 else
  1269                     return isSameType(t, s);
  1272 //            void debugContainsType(WildcardType t, Type s) {
  1273 //                System.err.println();
  1274 //                System.err.format(" does %s contain %s?%n", t, s);
  1275 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1276 //                                  upperBound(s), s, t, U(t),
  1277 //                                  t.isSuperBound()
  1278 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1279 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1280 //                                  L(t), t, s, lowerBound(s),
  1281 //                                  t.isExtendsBound()
  1282 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1283 //                System.err.println();
  1284 //            }
  1286             @Override
  1287             public Boolean visitWildcardType(WildcardType t, Type s) {
  1288                 if (s.isPartial())
  1289                     return containedBy(s, t);
  1290                 else {
  1291 //                    debugContainsType(t, s);
  1292                     return isSameWildcard(t, s)
  1293                         || isCaptureOf(s, t)
  1294                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1295                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1299             @Override
  1300             public Boolean visitUndetVar(UndetVar t, Type s) {
  1301                 if (s.tag != WILDCARD)
  1302                     return isSameType(t, s);
  1303                 else
  1304                     return false;
  1307             @Override
  1308             public Boolean visitErrorType(ErrorType t, Type s) {
  1309                 return true;
  1311         };
  1313     public boolean isCaptureOf(Type s, WildcardType t) {
  1314         if (s.tag != TYPEVAR || !((TypeVar)s.unannotatedType()).isCaptured())
  1315             return false;
  1316         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
  1319     public boolean isSameWildcard(WildcardType t, Type s) {
  1320         if (s.tag != WILDCARD)
  1321             return false;
  1322         WildcardType w = (WildcardType)s.unannotatedType();
  1323         return w.kind == t.kind && w.type == t.type;
  1326     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1327         while (ts.nonEmpty() && ss.nonEmpty()
  1328                && containsTypeEquivalent(ts.head, ss.head)) {
  1329             ts = ts.tail;
  1330             ss = ss.tail;
  1332         return ts.isEmpty() && ss.isEmpty();
  1334     // </editor-fold>
  1336     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1337     public boolean isCastable(Type t, Type s) {
  1338         return isCastable(t, s, noWarnings);
  1341     /**
  1342      * Is t is castable to s?<br>
  1343      * s is assumed to be an erased type.<br>
  1344      * (not defined for Method and ForAll types).
  1345      */
  1346     public boolean isCastable(Type t, Type s, Warner warn) {
  1347         if (t == s)
  1348             return true;
  1350         if (t.isPrimitive() != s.isPrimitive())
  1351             return allowBoxing && (
  1352                     isConvertible(t, s, warn)
  1353                     || (allowObjectToPrimitiveCast &&
  1354                         s.isPrimitive() &&
  1355                         isSubtype(boxedClass(s).type, t)));
  1356         if (warn != warnStack.head) {
  1357             try {
  1358                 warnStack = warnStack.prepend(warn);
  1359                 checkUnsafeVarargsConversion(t, s, warn);
  1360                 return isCastable.visit(t,s);
  1361             } finally {
  1362                 warnStack = warnStack.tail;
  1364         } else {
  1365             return isCastable.visit(t,s);
  1368     // where
  1369         private TypeRelation isCastable = new TypeRelation() {
  1371             public Boolean visitType(Type t, Type s) {
  1372                 if (s.tag == ERROR)
  1373                     return true;
  1375                 switch (t.tag) {
  1376                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1377                 case DOUBLE:
  1378                     return s.isNumeric();
  1379                 case BOOLEAN:
  1380                     return s.tag == BOOLEAN;
  1381                 case VOID:
  1382                     return false;
  1383                 case BOT:
  1384                     return isSubtype(t, s);
  1385                 default:
  1386                     throw new AssertionError();
  1390             @Override
  1391             public Boolean visitWildcardType(WildcardType t, Type s) {
  1392                 return isCastable(upperBound(t), s, warnStack.head);
  1395             @Override
  1396             public Boolean visitClassType(ClassType t, Type s) {
  1397                 if (s.tag == ERROR || s.tag == BOT)
  1398                     return true;
  1400                 if (s.tag == TYPEVAR) {
  1401                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1402                         warnStack.head.warn(LintCategory.UNCHECKED);
  1403                         return true;
  1404                     } else {
  1405                         return false;
  1409                 if (t.isCompound() || s.isCompound()) {
  1410                     return !t.isCompound() ?
  1411                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
  1412                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
  1415                 if (s.tag == CLASS || s.tag == ARRAY) {
  1416                     boolean upcast;
  1417                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1418                         || isSubtype(erasure(s), erasure(t))) {
  1419                         if (!upcast && s.tag == ARRAY) {
  1420                             if (!isReifiable(s))
  1421                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1422                             return true;
  1423                         } else if (s.isRaw()) {
  1424                             return true;
  1425                         } else if (t.isRaw()) {
  1426                             if (!isUnbounded(s))
  1427                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1428                             return true;
  1430                         // Assume |a| <: |b|
  1431                         final Type a = upcast ? t : s;
  1432                         final Type b = upcast ? s : t;
  1433                         final boolean HIGH = true;
  1434                         final boolean LOW = false;
  1435                         final boolean DONT_REWRITE_TYPEVARS = false;
  1436                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1437                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1438                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1439                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1440                         Type lowSub = asSub(bLow, aLow.tsym);
  1441                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1442                         if (highSub == null) {
  1443                             final boolean REWRITE_TYPEVARS = true;
  1444                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1445                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1446                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1447                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1448                             lowSub = asSub(bLow, aLow.tsym);
  1449                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1451                         if (highSub != null) {
  1452                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1453                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1455                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1456                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1457                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1458                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1459                                 if (upcast ? giveWarning(a, b) :
  1460                                     giveWarning(b, a))
  1461                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1462                                 return true;
  1465                         if (isReifiable(s))
  1466                             return isSubtypeUnchecked(a, b);
  1467                         else
  1468                             return isSubtypeUnchecked(a, b, warnStack.head);
  1471                     // Sidecast
  1472                     if (s.tag == CLASS) {
  1473                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1474                             return ((t.tsym.flags() & FINAL) == 0)
  1475                                 ? sideCast(t, s, warnStack.head)
  1476                                 : sideCastFinal(t, s, warnStack.head);
  1477                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1478                             return ((s.tsym.flags() & FINAL) == 0)
  1479                                 ? sideCast(t, s, warnStack.head)
  1480                                 : sideCastFinal(t, s, warnStack.head);
  1481                         } else {
  1482                             // unrelated class types
  1483                             return false;
  1487                 return false;
  1490             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
  1491                 Warner warn = noWarnings;
  1492                 for (Type c : ict.getComponents()) {
  1493                     warn.clear();
  1494                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
  1495                         return false;
  1497                 if (warn.hasLint(LintCategory.UNCHECKED))
  1498                     warnStack.head.warn(LintCategory.UNCHECKED);
  1499                 return true;
  1502             @Override
  1503             public Boolean visitArrayType(ArrayType t, Type s) {
  1504                 switch (s.tag) {
  1505                 case ERROR:
  1506                 case BOT:
  1507                     return true;
  1508                 case TYPEVAR:
  1509                     if (isCastable(s, t, noWarnings)) {
  1510                         warnStack.head.warn(LintCategory.UNCHECKED);
  1511                         return true;
  1512                     } else {
  1513                         return false;
  1515                 case CLASS:
  1516                     return isSubtype(t, s);
  1517                 case ARRAY:
  1518                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1519                         return elemtype(t).tag == elemtype(s).tag;
  1520                     } else {
  1521                         return visit(elemtype(t), elemtype(s));
  1523                 default:
  1524                     return false;
  1528             @Override
  1529             public Boolean visitTypeVar(TypeVar t, Type s) {
  1530                 switch (s.tag) {
  1531                 case ERROR:
  1532                 case BOT:
  1533                     return true;
  1534                 case TYPEVAR:
  1535                     if (isSubtype(t, s)) {
  1536                         return true;
  1537                     } else if (isCastable(t.bound, s, noWarnings)) {
  1538                         warnStack.head.warn(LintCategory.UNCHECKED);
  1539                         return true;
  1540                     } else {
  1541                         return false;
  1543                 default:
  1544                     return isCastable(t.bound, s, warnStack.head);
  1548             @Override
  1549             public Boolean visitErrorType(ErrorType t, Type s) {
  1550                 return true;
  1552         };
  1553     // </editor-fold>
  1555     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1556     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1557         while (ts.tail != null && ss.tail != null) {
  1558             if (disjointType(ts.head, ss.head)) return true;
  1559             ts = ts.tail;
  1560             ss = ss.tail;
  1562         return false;
  1565     /**
  1566      * Two types or wildcards are considered disjoint if it can be
  1567      * proven that no type can be contained in both. It is
  1568      * conservative in that it is allowed to say that two types are
  1569      * not disjoint, even though they actually are.
  1571      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1572      * {@code X} and {@code Y} are not disjoint.
  1573      */
  1574     public boolean disjointType(Type t, Type s) {
  1575         return disjointType.visit(t, s);
  1577     // where
  1578         private TypeRelation disjointType = new TypeRelation() {
  1580             private Set<TypePair> cache = new HashSet<TypePair>();
  1582             public Boolean visitType(Type t, Type s) {
  1583                 if (s.tag == WILDCARD)
  1584                     return visit(s, t);
  1585                 else
  1586                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1589             private boolean isCastableRecursive(Type t, Type s) {
  1590                 TypePair pair = new TypePair(t, s);
  1591                 if (cache.add(pair)) {
  1592                     try {
  1593                         return Types.this.isCastable(t, s);
  1594                     } finally {
  1595                         cache.remove(pair);
  1597                 } else {
  1598                     return true;
  1602             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1603                 TypePair pair = new TypePair(t, s);
  1604                 if (cache.add(pair)) {
  1605                     try {
  1606                         return Types.this.notSoftSubtype(t, s);
  1607                     } finally {
  1608                         cache.remove(pair);
  1610                 } else {
  1611                     return false;
  1615             @Override
  1616             public Boolean visitWildcardType(WildcardType t, Type s) {
  1617                 if (t.isUnbound())
  1618                     return false;
  1620                 if (s.tag != WILDCARD) {
  1621                     if (t.isExtendsBound())
  1622                         return notSoftSubtypeRecursive(s, t.type);
  1623                     else // isSuperBound()
  1624                         return notSoftSubtypeRecursive(t.type, s);
  1627                 if (s.isUnbound())
  1628                     return false;
  1630                 if (t.isExtendsBound()) {
  1631                     if (s.isExtendsBound())
  1632                         return !isCastableRecursive(t.type, upperBound(s));
  1633                     else if (s.isSuperBound())
  1634                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1635                 } else if (t.isSuperBound()) {
  1636                     if (s.isExtendsBound())
  1637                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1639                 return false;
  1641         };
  1642     // </editor-fold>
  1644     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1645     /**
  1646      * Returns the lower bounds of the formals of a method.
  1647      */
  1648     public List<Type> lowerBoundArgtypes(Type t) {
  1649         return lowerBounds(t.getParameterTypes());
  1651     public List<Type> lowerBounds(List<Type> ts) {
  1652         return map(ts, lowerBoundMapping);
  1654     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1655             public Type apply(Type t) {
  1656                 return lowerBound(t);
  1658         };
  1659     // </editor-fold>
  1661     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1662     /**
  1663      * This relation answers the question: is impossible that
  1664      * something of type `t' can be a subtype of `s'? This is
  1665      * different from the question "is `t' not a subtype of `s'?"
  1666      * when type variables are involved: Integer is not a subtype of T
  1667      * where {@code <T extends Number>} but it is not true that Integer cannot
  1668      * possibly be a subtype of T.
  1669      */
  1670     public boolean notSoftSubtype(Type t, Type s) {
  1671         if (t == s) return false;
  1672         if (t.tag == TYPEVAR) {
  1673             TypeVar tv = (TypeVar) t;
  1674             return !isCastable(tv.bound,
  1675                                relaxBound(s),
  1676                                noWarnings);
  1678         if (s.tag != WILDCARD)
  1679             s = upperBound(s);
  1681         return !isSubtype(t, relaxBound(s));
  1684     private Type relaxBound(Type t) {
  1685         if (t.tag == TYPEVAR) {
  1686             while (t.tag == TYPEVAR)
  1687                 t = t.getUpperBound();
  1688             t = rewriteQuantifiers(t, true, true);
  1690         return t;
  1692     // </editor-fold>
  1694     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1695     public boolean isReifiable(Type t) {
  1696         return isReifiable.visit(t);
  1698     // where
  1699         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1701             public Boolean visitType(Type t, Void ignored) {
  1702                 return true;
  1705             @Override
  1706             public Boolean visitClassType(ClassType t, Void ignored) {
  1707                 if (t.isCompound())
  1708                     return false;
  1709                 else {
  1710                     if (!t.isParameterized())
  1711                         return true;
  1713                     for (Type param : t.allparams()) {
  1714                         if (!param.isUnbound())
  1715                             return false;
  1717                     return true;
  1721             @Override
  1722             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1723                 return visit(t.elemtype);
  1726             @Override
  1727             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1728                 return false;
  1730         };
  1731     // </editor-fold>
  1733     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1734     public boolean isArray(Type t) {
  1735         while (t.tag == WILDCARD)
  1736             t = upperBound(t);
  1737         return t.tag == ARRAY;
  1740     /**
  1741      * The element type of an array.
  1742      */
  1743     public Type elemtype(Type t) {
  1744         switch (t.tag) {
  1745         case WILDCARD:
  1746             return elemtype(upperBound(t));
  1747         case ARRAY:
  1748             t = t.unannotatedType();
  1749             return ((ArrayType)t).elemtype;
  1750         case FORALL:
  1751             return elemtype(((ForAll)t).qtype);
  1752         case ERROR:
  1753             return t;
  1754         default:
  1755             return null;
  1759     public Type elemtypeOrType(Type t) {
  1760         Type elemtype = elemtype(t);
  1761         return elemtype != null ?
  1762             elemtype :
  1763             t;
  1766     /**
  1767      * Mapping to take element type of an arraytype
  1768      */
  1769     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1770         public Type apply(Type t) { return elemtype(t); }
  1771     };
  1773     /**
  1774      * The number of dimensions of an array type.
  1775      */
  1776     public int dimensions(Type t) {
  1777         int result = 0;
  1778         while (t.tag == ARRAY) {
  1779             result++;
  1780             t = elemtype(t);
  1782         return result;
  1785     /**
  1786      * Returns an ArrayType with the component type t
  1788      * @param t The component type of the ArrayType
  1789      * @return the ArrayType for the given component
  1790      */
  1791     public ArrayType makeArrayType(Type t) {
  1792         if (t.tag == VOID ||
  1793             t.tag == PACKAGE) {
  1794             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1796         return new ArrayType(t, syms.arrayClass);
  1798     // </editor-fold>
  1800     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1801     /**
  1802      * Return the (most specific) base type of t that starts with the
  1803      * given symbol.  If none exists, return null.
  1805      * @param t a type
  1806      * @param sym a symbol
  1807      */
  1808     public Type asSuper(Type t, Symbol sym) {
  1809         return asSuper.visit(t, sym);
  1811     // where
  1812         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1814             public Type visitType(Type t, Symbol sym) {
  1815                 return null;
  1818             @Override
  1819             public Type visitClassType(ClassType t, Symbol sym) {
  1820                 if (t.tsym == sym)
  1821                     return t;
  1823                 Type st = supertype(t);
  1824                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1825                     Type x = asSuper(st, sym);
  1826                     if (x != null)
  1827                         return x;
  1829                 if ((sym.flags() & INTERFACE) != 0) {
  1830                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1831                         Type x = asSuper(l.head, sym);
  1832                         if (x != null)
  1833                             return x;
  1836                 return null;
  1839             @Override
  1840             public Type visitArrayType(ArrayType t, Symbol sym) {
  1841                 return isSubtype(t, sym.type) ? sym.type : null;
  1844             @Override
  1845             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1846                 if (t.tsym == sym)
  1847                     return t;
  1848                 else
  1849                     return asSuper(t.bound, sym);
  1852             @Override
  1853             public Type visitErrorType(ErrorType t, Symbol sym) {
  1854                 return t;
  1856         };
  1858     /**
  1859      * Return the base type of t or any of its outer types that starts
  1860      * with the given symbol.  If none exists, return null.
  1862      * @param t a type
  1863      * @param sym a symbol
  1864      */
  1865     public Type asOuterSuper(Type t, Symbol sym) {
  1866         switch (t.tag) {
  1867         case CLASS:
  1868             do {
  1869                 Type s = asSuper(t, sym);
  1870                 if (s != null) return s;
  1871                 t = t.getEnclosingType();
  1872             } while (t.tag == CLASS);
  1873             return null;
  1874         case ARRAY:
  1875             return isSubtype(t, sym.type) ? sym.type : null;
  1876         case TYPEVAR:
  1877             return asSuper(t, sym);
  1878         case ERROR:
  1879             return t;
  1880         default:
  1881             return null;
  1885     /**
  1886      * Return the base type of t or any of its enclosing types that
  1887      * starts with the given symbol.  If none exists, return null.
  1889      * @param t a type
  1890      * @param sym a symbol
  1891      */
  1892     public Type asEnclosingSuper(Type t, Symbol sym) {
  1893         switch (t.tag) {
  1894         case CLASS:
  1895             do {
  1896                 Type s = asSuper(t, sym);
  1897                 if (s != null) return s;
  1898                 Type outer = t.getEnclosingType();
  1899                 t = (outer.tag == CLASS) ? outer :
  1900                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1901                     Type.noType;
  1902             } while (t.tag == CLASS);
  1903             return null;
  1904         case ARRAY:
  1905             return isSubtype(t, sym.type) ? sym.type : null;
  1906         case TYPEVAR:
  1907             return asSuper(t, sym);
  1908         case ERROR:
  1909             return t;
  1910         default:
  1911             return null;
  1914     // </editor-fold>
  1916     // <editor-fold defaultstate="collapsed" desc="memberType">
  1917     /**
  1918      * The type of given symbol, seen as a member of t.
  1920      * @param t a type
  1921      * @param sym a symbol
  1922      */
  1923     public Type memberType(Type t, Symbol sym) {
  1924         return (sym.flags() & STATIC) != 0
  1925             ? sym.type
  1926             : memberType.visit(t, sym);
  1928     // where
  1929         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1931             public Type visitType(Type t, Symbol sym) {
  1932                 return sym.type;
  1935             @Override
  1936             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1937                 return memberType(upperBound(t), sym);
  1940             @Override
  1941             public Type visitClassType(ClassType t, Symbol sym) {
  1942                 Symbol owner = sym.owner;
  1943                 long flags = sym.flags();
  1944                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1945                     Type base = asOuterSuper(t, owner);
  1946                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1947                     //its supertypes CT, I1, ... In might contain wildcards
  1948                     //so we need to go through capture conversion
  1949                     base = t.isCompound() ? capture(base) : base;
  1950                     if (base != null) {
  1951                         List<Type> ownerParams = owner.type.allparams();
  1952                         List<Type> baseParams = base.allparams();
  1953                         if (ownerParams.nonEmpty()) {
  1954                             if (baseParams.isEmpty()) {
  1955                                 // then base is a raw type
  1956                                 return erasure(sym.type);
  1957                             } else {
  1958                                 return subst(sym.type, ownerParams, baseParams);
  1963                 return sym.type;
  1966             @Override
  1967             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1968                 return memberType(t.bound, sym);
  1971             @Override
  1972             public Type visitErrorType(ErrorType t, Symbol sym) {
  1973                 return t;
  1975         };
  1976     // </editor-fold>
  1978     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1979     public boolean isAssignable(Type t, Type s) {
  1980         return isAssignable(t, s, noWarnings);
  1983     /**
  1984      * Is t assignable to s?<br>
  1985      * Equivalent to subtype except for constant values and raw
  1986      * types.<br>
  1987      * (not defined for Method and ForAll types)
  1988      */
  1989     public boolean isAssignable(Type t, Type s, Warner warn) {
  1990         if (t.tag == ERROR)
  1991             return true;
  1992         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  1993             int value = ((Number)t.constValue()).intValue();
  1994             switch (s.tag) {
  1995             case BYTE:
  1996                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1997                     return true;
  1998                 break;
  1999             case CHAR:
  2000                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  2001                     return true;
  2002                 break;
  2003             case SHORT:
  2004                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2005                     return true;
  2006                 break;
  2007             case INT:
  2008                 return true;
  2009             case CLASS:
  2010                 switch (unboxedType(s).tag) {
  2011                 case BYTE:
  2012                 case CHAR:
  2013                 case SHORT:
  2014                     return isAssignable(t, unboxedType(s), warn);
  2016                 break;
  2019         return isConvertible(t, s, warn);
  2021     // </editor-fold>
  2023     // <editor-fold defaultstate="collapsed" desc="erasure">
  2024     /**
  2025      * The erasure of t {@code |t|} -- the type that results when all
  2026      * type parameters in t are deleted.
  2027      */
  2028     public Type erasure(Type t) {
  2029         return eraseNotNeeded(t)? t : erasure(t, false);
  2031     //where
  2032     private boolean eraseNotNeeded(Type t) {
  2033         // We don't want to erase primitive types and String type as that
  2034         // operation is idempotent. Also, erasing these could result in loss
  2035         // of information such as constant values attached to such types.
  2036         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2039     private Type erasure(Type t, boolean recurse) {
  2040         if (t.isPrimitive())
  2041             return t; /* fast special case */
  2042         else
  2043             return erasure.visit(t, recurse);
  2045     // where
  2046         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2047             public Type visitType(Type t, Boolean recurse) {
  2048                 if (t.isPrimitive())
  2049                     return t; /*fast special case*/
  2050                 else
  2051                     return t.map(recurse ? erasureRecFun : erasureFun);
  2054             @Override
  2055             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2056                 return erasure(upperBound(t), recurse);
  2059             @Override
  2060             public Type visitClassType(ClassType t, Boolean recurse) {
  2061                 Type erased = t.tsym.erasure(Types.this);
  2062                 if (recurse) {
  2063                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2065                 return erased;
  2068             @Override
  2069             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2070                 return erasure(t.bound, recurse);
  2073             @Override
  2074             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2075                 return t;
  2078             @Override
  2079             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2080                 Type erased = erasure(t.underlyingType, recurse);
  2081                 if (erased.isAnnotated()) {
  2082                     // This can only happen when the underlying type is a
  2083                     // type variable and the upper bound of it is annotated.
  2084                     // The annotation on the type variable overrides the one
  2085                     // on the bound.
  2086                     erased = ((AnnotatedType)erased).underlyingType;
  2088                 return new AnnotatedType(t.typeAnnotations, erased);
  2090         };
  2092     private Mapping erasureFun = new Mapping ("erasure") {
  2093             public Type apply(Type t) { return erasure(t); }
  2094         };
  2096     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2097         public Type apply(Type t) { return erasureRecursive(t); }
  2098     };
  2100     public List<Type> erasure(List<Type> ts) {
  2101         return Type.map(ts, erasureFun);
  2104     public Type erasureRecursive(Type t) {
  2105         return erasure(t, true);
  2108     public List<Type> erasureRecursive(List<Type> ts) {
  2109         return Type.map(ts, erasureRecFun);
  2111     // </editor-fold>
  2113     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2114     /**
  2115      * Make a compound type from non-empty list of types
  2117      * @param bounds            the types from which the compound type is formed
  2118      * @param supertype         is objectType if all bounds are interfaces,
  2119      *                          null otherwise.
  2120      */
  2121     public Type makeCompoundType(List<Type> bounds) {
  2122         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2124     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2125         Assert.check(bounds.nonEmpty());
  2126         Type firstExplicitBound = bounds.head;
  2127         if (allInterfaces) {
  2128             bounds = bounds.prepend(syms.objectType);
  2130         ClassSymbol bc =
  2131             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2132                             Type.moreInfo
  2133                                 ? names.fromString(bounds.toString())
  2134                                 : names.empty,
  2135                             null,
  2136                             syms.noSymbol);
  2137         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2138         bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
  2139                 syms.objectType : // error condition, recover
  2140                 erasure(firstExplicitBound);
  2141         bc.members_field = new Scope(bc);
  2142         return bc.type;
  2145     /**
  2146      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2147      * arguments are converted to a list and passed to the other
  2148      * method.  Note that this might cause a symbol completion.
  2149      * Hence, this version of makeCompoundType may not be called
  2150      * during a classfile read.
  2151      */
  2152     public Type makeCompoundType(Type bound1, Type bound2) {
  2153         return makeCompoundType(List.of(bound1, bound2));
  2155     // </editor-fold>
  2157     // <editor-fold defaultstate="collapsed" desc="supertype">
  2158     public Type supertype(Type t) {
  2159         return supertype.visit(t);
  2161     // where
  2162         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2164             public Type visitType(Type t, Void ignored) {
  2165                 // A note on wildcards: there is no good way to
  2166                 // determine a supertype for a super bounded wildcard.
  2167                 return null;
  2170             @Override
  2171             public Type visitClassType(ClassType t, Void ignored) {
  2172                 if (t.supertype_field == null) {
  2173                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2174                     // An interface has no superclass; its supertype is Object.
  2175                     if (t.isInterface())
  2176                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2177                     if (t.supertype_field == null) {
  2178                         List<Type> actuals = classBound(t).allparams();
  2179                         List<Type> formals = t.tsym.type.allparams();
  2180                         if (t.hasErasedSupertypes()) {
  2181                             t.supertype_field = erasureRecursive(supertype);
  2182                         } else if (formals.nonEmpty()) {
  2183                             t.supertype_field = subst(supertype, formals, actuals);
  2185                         else {
  2186                             t.supertype_field = supertype;
  2190                 return t.supertype_field;
  2193             /**
  2194              * The supertype is always a class type. If the type
  2195              * variable's bounds start with a class type, this is also
  2196              * the supertype.  Otherwise, the supertype is
  2197              * java.lang.Object.
  2198              */
  2199             @Override
  2200             public Type visitTypeVar(TypeVar t, Void ignored) {
  2201                 if (t.bound.tag == TYPEVAR ||
  2202                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2203                     return t.bound;
  2204                 } else {
  2205                     return supertype(t.bound);
  2209             @Override
  2210             public Type visitArrayType(ArrayType t, Void ignored) {
  2211                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2212                     return arraySuperType();
  2213                 else
  2214                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2217             @Override
  2218             public Type visitErrorType(ErrorType t, Void ignored) {
  2219                 return t;
  2221         };
  2222     // </editor-fold>
  2224     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2225     /**
  2226      * Return the interfaces implemented by this class.
  2227      */
  2228     public List<Type> interfaces(Type t) {
  2229         return interfaces.visit(t);
  2231     // where
  2232         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2234             public List<Type> visitType(Type t, Void ignored) {
  2235                 return List.nil();
  2238             @Override
  2239             public List<Type> visitClassType(ClassType t, Void ignored) {
  2240                 if (t.interfaces_field == null) {
  2241                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2242                     if (t.interfaces_field == null) {
  2243                         // If t.interfaces_field is null, then t must
  2244                         // be a parameterized type (not to be confused
  2245                         // with a generic type declaration).
  2246                         // Terminology:
  2247                         //    Parameterized type: List<String>
  2248                         //    Generic type declaration: class List<E> { ... }
  2249                         // So t corresponds to List<String> and
  2250                         // t.tsym.type corresponds to List<E>.
  2251                         // The reason t must be parameterized type is
  2252                         // that completion will happen as a side
  2253                         // effect of calling
  2254                         // ClassSymbol.getInterfaces.  Since
  2255                         // t.interfaces_field is null after
  2256                         // completion, we can assume that t is not the
  2257                         // type of a class/interface declaration.
  2258                         Assert.check(t != t.tsym.type, t);
  2259                         List<Type> actuals = t.allparams();
  2260                         List<Type> formals = t.tsym.type.allparams();
  2261                         if (t.hasErasedSupertypes()) {
  2262                             t.interfaces_field = erasureRecursive(interfaces);
  2263                         } else if (formals.nonEmpty()) {
  2264                             t.interfaces_field =
  2265                                 upperBounds(subst(interfaces, formals, actuals));
  2267                         else {
  2268                             t.interfaces_field = interfaces;
  2272                 return t.interfaces_field;
  2275             @Override
  2276             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2277                 if (t.bound.isCompound())
  2278                     return interfaces(t.bound);
  2280                 if (t.bound.isInterface())
  2281                     return List.of(t.bound);
  2283                 return List.nil();
  2285         };
  2287     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2288         for (Type i2 : interfaces(origin.type)) {
  2289             if (isym == i2.tsym) return true;
  2291         return false;
  2293     // </editor-fold>
  2295     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2296     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2298     public boolean isDerivedRaw(Type t) {
  2299         Boolean result = isDerivedRawCache.get(t);
  2300         if (result == null) {
  2301             result = isDerivedRawInternal(t);
  2302             isDerivedRawCache.put(t, result);
  2304         return result;
  2307     public boolean isDerivedRawInternal(Type t) {
  2308         if (t.isErroneous())
  2309             return false;
  2310         return
  2311             t.isRaw() ||
  2312             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2313             isDerivedRaw(interfaces(t));
  2316     public boolean isDerivedRaw(List<Type> ts) {
  2317         List<Type> l = ts;
  2318         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2319         return l.nonEmpty();
  2321     // </editor-fold>
  2323     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2324     /**
  2325      * Set the bounds field of the given type variable to reflect a
  2326      * (possibly multiple) list of bounds.
  2327      * @param t                 a type variable
  2328      * @param bounds            the bounds, must be nonempty
  2329      * @param supertype         is objectType if all bounds are interfaces,
  2330      *                          null otherwise.
  2331      */
  2332     public void setBounds(TypeVar t, List<Type> bounds) {
  2333         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2336     /**
  2337      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2338      * third parameter is computed directly, as follows: if all
  2339      * all bounds are interface types, the computed supertype is Object,
  2340      * otherwise the supertype is simply left null (in this case, the supertype
  2341      * is assumed to be the head of the bound list passed as second argument).
  2342      * Note that this check might cause a symbol completion. Hence, this version of
  2343      * setBounds may not be called during a classfile read.
  2344      */
  2345     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2346         t.bound = bounds.tail.isEmpty() ?
  2347                 bounds.head :
  2348                 makeCompoundType(bounds, allInterfaces);
  2349         t.rank_field = -1;
  2351     // </editor-fold>
  2353     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2354     /**
  2355      * Return list of bounds of the given type variable.
  2356      */
  2357     public List<Type> getBounds(TypeVar t) {
  2358         if (t.bound.hasTag(NONE))
  2359             return List.nil();
  2360         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2361             return List.of(t.bound);
  2362         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2363             return interfaces(t).prepend(supertype(t));
  2364         else
  2365             // No superclass was given in bounds.
  2366             // In this case, supertype is Object, erasure is first interface.
  2367             return interfaces(t);
  2369     // </editor-fold>
  2371     // <editor-fold defaultstate="collapsed" desc="classBound">
  2372     /**
  2373      * If the given type is a (possibly selected) type variable,
  2374      * return the bounding class of this type, otherwise return the
  2375      * type itself.
  2376      */
  2377     public Type classBound(Type t) {
  2378         return classBound.visit(t);
  2380     // where
  2381         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2383             public Type visitType(Type t, Void ignored) {
  2384                 return t;
  2387             @Override
  2388             public Type visitClassType(ClassType t, Void ignored) {
  2389                 Type outer1 = classBound(t.getEnclosingType());
  2390                 if (outer1 != t.getEnclosingType())
  2391                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2392                 else
  2393                     return t;
  2396             @Override
  2397             public Type visitTypeVar(TypeVar t, Void ignored) {
  2398                 return classBound(supertype(t));
  2401             @Override
  2402             public Type visitErrorType(ErrorType t, Void ignored) {
  2403                 return t;
  2405         };
  2406     // </editor-fold>
  2408     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2409     /**
  2410      * Returns true iff the first signature is a <em>sub
  2411      * signature</em> of the other.  This is <b>not</b> an equivalence
  2412      * relation.
  2414      * @jls section 8.4.2.
  2415      * @see #overrideEquivalent(Type t, Type s)
  2416      * @param t first signature (possibly raw).
  2417      * @param s second signature (could be subjected to erasure).
  2418      * @return true if t is a sub signature of s.
  2419      */
  2420     public boolean isSubSignature(Type t, Type s) {
  2421         return isSubSignature(t, s, true);
  2424     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2425         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2428     /**
  2429      * Returns true iff these signatures are related by <em>override
  2430      * equivalence</em>.  This is the natural extension of
  2431      * isSubSignature to an equivalence relation.
  2433      * @jls section 8.4.2.
  2434      * @see #isSubSignature(Type t, Type s)
  2435      * @param t a signature (possible raw, could be subjected to
  2436      * erasure).
  2437      * @param s a signature (possible raw, could be subjected to
  2438      * erasure).
  2439      * @return true if either argument is a sub signature of the other.
  2440      */
  2441     public boolean overrideEquivalent(Type t, Type s) {
  2442         return hasSameArgs(t, s) ||
  2443             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2446     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2447         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2448             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2449                 return true;
  2452         return false;
  2455     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2456     class ImplementationCache {
  2458         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2459                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2461         class Entry {
  2462             final MethodSymbol cachedImpl;
  2463             final Filter<Symbol> implFilter;
  2464             final boolean checkResult;
  2465             final int prevMark;
  2467             public Entry(MethodSymbol cachedImpl,
  2468                     Filter<Symbol> scopeFilter,
  2469                     boolean checkResult,
  2470                     int prevMark) {
  2471                 this.cachedImpl = cachedImpl;
  2472                 this.implFilter = scopeFilter;
  2473                 this.checkResult = checkResult;
  2474                 this.prevMark = prevMark;
  2477             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2478                 return this.implFilter == scopeFilter &&
  2479                         this.checkResult == checkResult &&
  2480                         this.prevMark == mark;
  2484         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2485             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2486             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2487             if (cache == null) {
  2488                 cache = new HashMap<TypeSymbol, Entry>();
  2489                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2491             Entry e = cache.get(origin);
  2492             CompoundScope members = membersClosure(origin.type, true);
  2493             if (e == null ||
  2494                     !e.matches(implFilter, checkResult, members.getMark())) {
  2495                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2496                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2497                 return impl;
  2499             else {
  2500                 return e.cachedImpl;
  2504         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2505             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2506                 while (t.tag == TYPEVAR)
  2507                     t = t.getUpperBound();
  2508                 TypeSymbol c = t.tsym;
  2509                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2510                      e.scope != null;
  2511                      e = e.next(implFilter)) {
  2512                     if (e.sym != null &&
  2513                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2514                         return (MethodSymbol)e.sym;
  2517             return null;
  2521     private ImplementationCache implCache = new ImplementationCache();
  2523     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2524         return implCache.get(ms, origin, checkResult, implFilter);
  2526     // </editor-fold>
  2528     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2529     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2531         private WeakHashMap<TypeSymbol, Entry> _map =
  2532                 new WeakHashMap<TypeSymbol, Entry>();
  2534         class Entry {
  2535             final boolean skipInterfaces;
  2536             final CompoundScope compoundScope;
  2538             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2539                 this.skipInterfaces = skipInterfaces;
  2540                 this.compoundScope = compoundScope;
  2543             boolean matches(boolean skipInterfaces) {
  2544                 return this.skipInterfaces == skipInterfaces;
  2548         List<TypeSymbol> seenTypes = List.nil();
  2550         /** members closure visitor methods **/
  2552         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2553             return null;
  2556         @Override
  2557         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2558             if (seenTypes.contains(t.tsym)) {
  2559                 //this is possible when an interface is implemented in multiple
  2560                 //superclasses, or when a classs hierarchy is circular - in such
  2561                 //cases we don't need to recurse (empty scope is returned)
  2562                 return new CompoundScope(t.tsym);
  2564             try {
  2565                 seenTypes = seenTypes.prepend(t.tsym);
  2566                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2567                 Entry e = _map.get(csym);
  2568                 if (e == null || !e.matches(skipInterface)) {
  2569                     CompoundScope membersClosure = new CompoundScope(csym);
  2570                     if (!skipInterface) {
  2571                         for (Type i : interfaces(t)) {
  2572                             membersClosure.addSubScope(visit(i, skipInterface));
  2575                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2576                     membersClosure.addSubScope(csym.members());
  2577                     e = new Entry(skipInterface, membersClosure);
  2578                     _map.put(csym, e);
  2580                 return e.compoundScope;
  2582             finally {
  2583                 seenTypes = seenTypes.tail;
  2587         @Override
  2588         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2589             return visit(t.getUpperBound(), skipInterface);
  2593     private MembersClosureCache membersCache = new MembersClosureCache();
  2595     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2596         return membersCache.visit(site, skipInterface);
  2598     // </editor-fold>
  2601     //where
  2602     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2603         Filter<Symbol> filter = new MethodFilter(ms, site);
  2604         List<MethodSymbol> candidates = List.nil();
  2605             for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2606                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2607                     return List.of((MethodSymbol)s);
  2608                 } else if (!candidates.contains(s)) {
  2609                     candidates = candidates.prepend((MethodSymbol)s);
  2612             return prune(candidates);
  2615     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2616         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2617         for (MethodSymbol m1 : methods) {
  2618             boolean isMin_m1 = true;
  2619             for (MethodSymbol m2 : methods) {
  2620                 if (m1 == m2) continue;
  2621                 if (m2.owner != m1.owner &&
  2622                         asSuper(m2.owner.type, m1.owner) != null) {
  2623                     isMin_m1 = false;
  2624                     break;
  2627             if (isMin_m1)
  2628                 methodsMin.append(m1);
  2630         return methodsMin.toList();
  2632     // where
  2633             private class MethodFilter implements Filter<Symbol> {
  2635                 Symbol msym;
  2636                 Type site;
  2638                 MethodFilter(Symbol msym, Type site) {
  2639                     this.msym = msym;
  2640                     this.site = site;
  2643                 public boolean accepts(Symbol s) {
  2644                     return s.kind == Kinds.MTH &&
  2645                             s.name == msym.name &&
  2646                             s.isInheritedIn(site.tsym, Types.this) &&
  2647                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2649             };
  2650     // </editor-fold>
  2652     /**
  2653      * Does t have the same arguments as s?  It is assumed that both
  2654      * types are (possibly polymorphic) method types.  Monomorphic
  2655      * method types "have the same arguments", if their argument lists
  2656      * are equal.  Polymorphic method types "have the same arguments",
  2657      * if they have the same arguments after renaming all type
  2658      * variables of one to corresponding type variables in the other,
  2659      * where correspondence is by position in the type parameter list.
  2660      */
  2661     public boolean hasSameArgs(Type t, Type s) {
  2662         return hasSameArgs(t, s, true);
  2665     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2666         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2669     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2670         return hasSameArgs.visit(t, s);
  2672     // where
  2673         private class HasSameArgs extends TypeRelation {
  2675             boolean strict;
  2677             public HasSameArgs(boolean strict) {
  2678                 this.strict = strict;
  2681             public Boolean visitType(Type t, Type s) {
  2682                 throw new AssertionError();
  2685             @Override
  2686             public Boolean visitMethodType(MethodType t, Type s) {
  2687                 return s.tag == METHOD
  2688                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2691             @Override
  2692             public Boolean visitForAll(ForAll t, Type s) {
  2693                 if (s.tag != FORALL)
  2694                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2696                 ForAll forAll = (ForAll)s;
  2697                 return hasSameBounds(t, forAll)
  2698                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2701             @Override
  2702             public Boolean visitErrorType(ErrorType t, Type s) {
  2703                 return false;
  2705         };
  2707         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2708         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2710     // </editor-fold>
  2712     // <editor-fold defaultstate="collapsed" desc="subst">
  2713     public List<Type> subst(List<Type> ts,
  2714                             List<Type> from,
  2715                             List<Type> to) {
  2716         return new Subst(from, to).subst(ts);
  2719     /**
  2720      * Substitute all occurrences of a type in `from' with the
  2721      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2722      * from the right: If lists have different length, discard leading
  2723      * elements of the longer list.
  2724      */
  2725     public Type subst(Type t, List<Type> from, List<Type> to) {
  2726         return new Subst(from, to).subst(t);
  2729     private class Subst extends UnaryVisitor<Type> {
  2730         List<Type> from;
  2731         List<Type> to;
  2733         public Subst(List<Type> from, List<Type> to) {
  2734             int fromLength = from.length();
  2735             int toLength = to.length();
  2736             while (fromLength > toLength) {
  2737                 fromLength--;
  2738                 from = from.tail;
  2740             while (fromLength < toLength) {
  2741                 toLength--;
  2742                 to = to.tail;
  2744             this.from = from;
  2745             this.to = to;
  2748         Type subst(Type t) {
  2749             if (from.tail == null)
  2750                 return t;
  2751             else
  2752                 return visit(t);
  2755         List<Type> subst(List<Type> ts) {
  2756             if (from.tail == null)
  2757                 return ts;
  2758             boolean wild = false;
  2759             if (ts.nonEmpty() && from.nonEmpty()) {
  2760                 Type head1 = subst(ts.head);
  2761                 List<Type> tail1 = subst(ts.tail);
  2762                 if (head1 != ts.head || tail1 != ts.tail)
  2763                     return tail1.prepend(head1);
  2765             return ts;
  2768         public Type visitType(Type t, Void ignored) {
  2769             return t;
  2772         @Override
  2773         public Type visitMethodType(MethodType t, Void ignored) {
  2774             List<Type> argtypes = subst(t.argtypes);
  2775             Type restype = subst(t.restype);
  2776             List<Type> thrown = subst(t.thrown);
  2777             if (argtypes == t.argtypes &&
  2778                 restype == t.restype &&
  2779                 thrown == t.thrown)
  2780                 return t;
  2781             else
  2782                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2785         @Override
  2786         public Type visitTypeVar(TypeVar t, Void ignored) {
  2787             for (List<Type> from = this.from, to = this.to;
  2788                  from.nonEmpty();
  2789                  from = from.tail, to = to.tail) {
  2790                 if (t == from.head) {
  2791                     return to.head.withTypeVar(t);
  2794             return t;
  2797         @Override
  2798         public Type visitClassType(ClassType t, Void ignored) {
  2799             if (!t.isCompound()) {
  2800                 List<Type> typarams = t.getTypeArguments();
  2801                 List<Type> typarams1 = subst(typarams);
  2802                 Type outer = t.getEnclosingType();
  2803                 Type outer1 = subst(outer);
  2804                 if (typarams1 == typarams && outer1 == outer)
  2805                     return t;
  2806                 else
  2807                     return new ClassType(outer1, typarams1, t.tsym);
  2808             } else {
  2809                 Type st = subst(supertype(t));
  2810                 List<Type> is = upperBounds(subst(interfaces(t)));
  2811                 if (st == supertype(t) && is == interfaces(t))
  2812                     return t;
  2813                 else
  2814                     return makeCompoundType(is.prepend(st));
  2818         @Override
  2819         public Type visitWildcardType(WildcardType t, Void ignored) {
  2820             Type bound = t.type;
  2821             if (t.kind != BoundKind.UNBOUND)
  2822                 bound = subst(bound);
  2823             if (bound == t.type) {
  2824                 return t;
  2825             } else {
  2826                 if (t.isExtendsBound() && bound.isExtendsBound())
  2827                     bound = upperBound(bound);
  2828                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2832         @Override
  2833         public Type visitArrayType(ArrayType t, Void ignored) {
  2834             Type elemtype = subst(t.elemtype);
  2835             if (elemtype == t.elemtype)
  2836                 return t;
  2837             else
  2838                 return new ArrayType(upperBound(elemtype), t.tsym);
  2841         @Override
  2842         public Type visitForAll(ForAll t, Void ignored) {
  2843             if (Type.containsAny(to, t.tvars)) {
  2844                 //perform alpha-renaming of free-variables in 't'
  2845                 //if 'to' types contain variables that are free in 't'
  2846                 List<Type> freevars = newInstances(t.tvars);
  2847                 t = new ForAll(freevars,
  2848                         Types.this.subst(t.qtype, t.tvars, freevars));
  2850             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2851             Type qtype1 = subst(t.qtype);
  2852             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2853                 return t;
  2854             } else if (tvars1 == t.tvars) {
  2855                 return new ForAll(tvars1, qtype1);
  2856             } else {
  2857                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2861         @Override
  2862         public Type visitErrorType(ErrorType t, Void ignored) {
  2863             return t;
  2867     public List<Type> substBounds(List<Type> tvars,
  2868                                   List<Type> from,
  2869                                   List<Type> to) {
  2870         if (tvars.isEmpty())
  2871             return tvars;
  2872         ListBuffer<Type> newBoundsBuf = lb();
  2873         boolean changed = false;
  2874         // calculate new bounds
  2875         for (Type t : tvars) {
  2876             TypeVar tv = (TypeVar) t;
  2877             Type bound = subst(tv.bound, from, to);
  2878             if (bound != tv.bound)
  2879                 changed = true;
  2880             newBoundsBuf.append(bound);
  2882         if (!changed)
  2883             return tvars;
  2884         ListBuffer<Type> newTvars = lb();
  2885         // create new type variables without bounds
  2886         for (Type t : tvars) {
  2887             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2889         // the new bounds should use the new type variables in place
  2890         // of the old
  2891         List<Type> newBounds = newBoundsBuf.toList();
  2892         from = tvars;
  2893         to = newTvars.toList();
  2894         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2895             newBounds.head = subst(newBounds.head, from, to);
  2897         newBounds = newBoundsBuf.toList();
  2898         // set the bounds of new type variables to the new bounds
  2899         for (Type t : newTvars.toList()) {
  2900             TypeVar tv = (TypeVar) t;
  2901             tv.bound = newBounds.head;
  2902             newBounds = newBounds.tail;
  2904         return newTvars.toList();
  2907     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2908         Type bound1 = subst(t.bound, from, to);
  2909         if (bound1 == t.bound)
  2910             return t;
  2911         else {
  2912             // create new type variable without bounds
  2913             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2914             // the new bound should use the new type variable in place
  2915             // of the old
  2916             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2917             return tv;
  2920     // </editor-fold>
  2922     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2923     /**
  2924      * Does t have the same bounds for quantified variables as s?
  2925      */
  2926     boolean hasSameBounds(ForAll t, ForAll s) {
  2927         List<Type> l1 = t.tvars;
  2928         List<Type> l2 = s.tvars;
  2929         while (l1.nonEmpty() && l2.nonEmpty() &&
  2930                isSameType(l1.head.getUpperBound(),
  2931                           subst(l2.head.getUpperBound(),
  2932                                 s.tvars,
  2933                                 t.tvars))) {
  2934             l1 = l1.tail;
  2935             l2 = l2.tail;
  2937         return l1.isEmpty() && l2.isEmpty();
  2939     // </editor-fold>
  2941     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2942     /** Create new vector of type variables from list of variables
  2943      *  changing all recursive bounds from old to new list.
  2944      */
  2945     public List<Type> newInstances(List<Type> tvars) {
  2946         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2947         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2948             TypeVar tv = (TypeVar) l.head;
  2949             tv.bound = subst(tv.bound, tvars, tvars1);
  2951         return tvars1;
  2953     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2954             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2955         };
  2956     // </editor-fold>
  2958     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2959         return original.accept(methodWithParameters, newParams);
  2961     // where
  2962         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2963             public Type visitType(Type t, List<Type> newParams) {
  2964                 throw new IllegalArgumentException("Not a method type: " + t);
  2966             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2967                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2969             public Type visitForAll(ForAll t, List<Type> newParams) {
  2970                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2972         };
  2974     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2975         return original.accept(methodWithThrown, newThrown);
  2977     // where
  2978         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2979             public Type visitType(Type t, List<Type> newThrown) {
  2980                 throw new IllegalArgumentException("Not a method type: " + t);
  2982             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2983                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2985             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2986                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2988         };
  2990     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2991         return original.accept(methodWithReturn, newReturn);
  2993     // where
  2994         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2995             public Type visitType(Type t, Type newReturn) {
  2996                 throw new IllegalArgumentException("Not a method type: " + t);
  2998             public Type visitMethodType(MethodType t, Type newReturn) {
  2999                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  3001             public Type visitForAll(ForAll t, Type newReturn) {
  3002                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3004         };
  3006     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3007     public Type createErrorType(Type originalType) {
  3008         return new ErrorType(originalType, syms.errSymbol);
  3011     public Type createErrorType(ClassSymbol c, Type originalType) {
  3012         return new ErrorType(c, originalType);
  3015     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3016         return new ErrorType(name, container, originalType);
  3018     // </editor-fold>
  3020     // <editor-fold defaultstate="collapsed" desc="rank">
  3021     /**
  3022      * The rank of a class is the length of the longest path between
  3023      * the class and java.lang.Object in the class inheritance
  3024      * graph. Undefined for all but reference types.
  3025      */
  3026     public int rank(Type t) {
  3027         t = t.unannotatedType();
  3028         switch(t.tag) {
  3029         case CLASS: {
  3030             ClassType cls = (ClassType)t;
  3031             if (cls.rank_field < 0) {
  3032                 Name fullname = cls.tsym.getQualifiedName();
  3033                 if (fullname == names.java_lang_Object)
  3034                     cls.rank_field = 0;
  3035                 else {
  3036                     int r = rank(supertype(cls));
  3037                     for (List<Type> l = interfaces(cls);
  3038                          l.nonEmpty();
  3039                          l = l.tail) {
  3040                         if (rank(l.head) > r)
  3041                             r = rank(l.head);
  3043                     cls.rank_field = r + 1;
  3046             return cls.rank_field;
  3048         case TYPEVAR: {
  3049             TypeVar tvar = (TypeVar)t;
  3050             if (tvar.rank_field < 0) {
  3051                 int r = rank(supertype(tvar));
  3052                 for (List<Type> l = interfaces(tvar);
  3053                      l.nonEmpty();
  3054                      l = l.tail) {
  3055                     if (rank(l.head) > r) r = rank(l.head);
  3057                 tvar.rank_field = r + 1;
  3059             return tvar.rank_field;
  3061         case ERROR:
  3062             return 0;
  3063         default:
  3064             throw new AssertionError();
  3067     // </editor-fold>
  3069     /**
  3070      * Helper method for generating a string representation of a given type
  3071      * accordingly to a given locale
  3072      */
  3073     public String toString(Type t, Locale locale) {
  3074         return Printer.createStandardPrinter(messages).visit(t, locale);
  3077     /**
  3078      * Helper method for generating a string representation of a given type
  3079      * accordingly to a given locale
  3080      */
  3081     public String toString(Symbol t, Locale locale) {
  3082         return Printer.createStandardPrinter(messages).visit(t, locale);
  3085     // <editor-fold defaultstate="collapsed" desc="toString">
  3086     /**
  3087      * This toString is slightly more descriptive than the one on Type.
  3089      * @deprecated Types.toString(Type t, Locale l) provides better support
  3090      * for localization
  3091      */
  3092     @Deprecated
  3093     public String toString(Type t) {
  3094         if (t.tag == FORALL) {
  3095             ForAll forAll = (ForAll)t;
  3096             return typaramsString(forAll.tvars) + forAll.qtype;
  3098         return "" + t;
  3100     // where
  3101         private String typaramsString(List<Type> tvars) {
  3102             StringBuilder s = new StringBuilder();
  3103             s.append('<');
  3104             boolean first = true;
  3105             for (Type t : tvars) {
  3106                 if (!first) s.append(", ");
  3107                 first = false;
  3108                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
  3110             s.append('>');
  3111             return s.toString();
  3113         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3114             buf.append(t);
  3115             if (t.bound == null ||
  3116                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3117                 return;
  3118             buf.append(" extends "); // Java syntax; no need for i18n
  3119             Type bound = t.bound;
  3120             if (!bound.isCompound()) {
  3121                 buf.append(bound);
  3122             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3123                 buf.append(supertype(t));
  3124                 for (Type intf : interfaces(t)) {
  3125                     buf.append('&');
  3126                     buf.append(intf);
  3128             } else {
  3129                 // No superclass was given in bounds.
  3130                 // In this case, supertype is Object, erasure is first interface.
  3131                 boolean first = true;
  3132                 for (Type intf : interfaces(t)) {
  3133                     if (!first) buf.append('&');
  3134                     first = false;
  3135                     buf.append(intf);
  3139     // </editor-fold>
  3141     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3142     /**
  3143      * A cache for closures.
  3145      * <p>A closure is a list of all the supertypes and interfaces of
  3146      * a class or interface type, ordered by ClassSymbol.precedes
  3147      * (that is, subclasses come first, arbitrary but fixed
  3148      * otherwise).
  3149      */
  3150     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3152     /**
  3153      * Returns the closure of a class or interface type.
  3154      */
  3155     public List<Type> closure(Type t) {
  3156         List<Type> cl = closureCache.get(t);
  3157         if (cl == null) {
  3158             Type st = supertype(t);
  3159             if (!t.isCompound()) {
  3160                 if (st.tag == CLASS) {
  3161                     cl = insert(closure(st), t);
  3162                 } else if (st.tag == TYPEVAR) {
  3163                     cl = closure(st).prepend(t);
  3164                 } else {
  3165                     cl = List.of(t);
  3167             } else {
  3168                 cl = closure(supertype(t));
  3170             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3171                 cl = union(cl, closure(l.head));
  3172             closureCache.put(t, cl);
  3174         return cl;
  3177     /**
  3178      * Insert a type in a closure
  3179      */
  3180     public List<Type> insert(List<Type> cl, Type t) {
  3181         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3182             return cl.prepend(t);
  3183         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3184             return insert(cl.tail, t).prepend(cl.head);
  3185         } else {
  3186             return cl;
  3190     /**
  3191      * Form the union of two closures
  3192      */
  3193     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3194         if (cl1.isEmpty()) {
  3195             return cl2;
  3196         } else if (cl2.isEmpty()) {
  3197             return cl1;
  3198         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3199             return union(cl1.tail, cl2).prepend(cl1.head);
  3200         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3201             return union(cl1, cl2.tail).prepend(cl2.head);
  3202         } else {
  3203             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3207     /**
  3208      * Intersect two closures
  3209      */
  3210     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3211         if (cl1 == cl2)
  3212             return cl1;
  3213         if (cl1.isEmpty() || cl2.isEmpty())
  3214             return List.nil();
  3215         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3216             return intersect(cl1.tail, cl2);
  3217         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3218             return intersect(cl1, cl2.tail);
  3219         if (isSameType(cl1.head, cl2.head))
  3220             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3221         if (cl1.head.tsym == cl2.head.tsym &&
  3222             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3223             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3224                 Type merge = merge(cl1.head,cl2.head);
  3225                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3227             if (cl1.head.isRaw() || cl2.head.isRaw())
  3228                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3230         return intersect(cl1.tail, cl2.tail);
  3232     // where
  3233         class TypePair {
  3234             final Type t1;
  3235             final Type t2;
  3236             TypePair(Type t1, Type t2) {
  3237                 this.t1 = t1;
  3238                 this.t2 = t2;
  3240             @Override
  3241             public int hashCode() {
  3242                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3244             @Override
  3245             public boolean equals(Object obj) {
  3246                 if (!(obj instanceof TypePair))
  3247                     return false;
  3248                 TypePair typePair = (TypePair)obj;
  3249                 return isSameType(t1, typePair.t1)
  3250                     && isSameType(t2, typePair.t2);
  3253         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3254         private Type merge(Type c1, Type c2) {
  3255             ClassType class1 = (ClassType) c1;
  3256             List<Type> act1 = class1.getTypeArguments();
  3257             ClassType class2 = (ClassType) c2;
  3258             List<Type> act2 = class2.getTypeArguments();
  3259             ListBuffer<Type> merged = new ListBuffer<Type>();
  3260             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3262             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3263                 if (containsType(act1.head, act2.head)) {
  3264                     merged.append(act1.head);
  3265                 } else if (containsType(act2.head, act1.head)) {
  3266                     merged.append(act2.head);
  3267                 } else {
  3268                     TypePair pair = new TypePair(c1, c2);
  3269                     Type m;
  3270                     if (mergeCache.add(pair)) {
  3271                         m = new WildcardType(lub(upperBound(act1.head),
  3272                                                  upperBound(act2.head)),
  3273                                              BoundKind.EXTENDS,
  3274                                              syms.boundClass);
  3275                         mergeCache.remove(pair);
  3276                     } else {
  3277                         m = new WildcardType(syms.objectType,
  3278                                              BoundKind.UNBOUND,
  3279                                              syms.boundClass);
  3281                     merged.append(m.withTypeVar(typarams.head));
  3283                 act1 = act1.tail;
  3284                 act2 = act2.tail;
  3285                 typarams = typarams.tail;
  3287             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3288             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3291     /**
  3292      * Return the minimum type of a closure, a compound type if no
  3293      * unique minimum exists.
  3294      */
  3295     private Type compoundMin(List<Type> cl) {
  3296         if (cl.isEmpty()) return syms.objectType;
  3297         List<Type> compound = closureMin(cl);
  3298         if (compound.isEmpty())
  3299             return null;
  3300         else if (compound.tail.isEmpty())
  3301             return compound.head;
  3302         else
  3303             return makeCompoundType(compound);
  3306     /**
  3307      * Return the minimum types of a closure, suitable for computing
  3308      * compoundMin or glb.
  3309      */
  3310     private List<Type> closureMin(List<Type> cl) {
  3311         ListBuffer<Type> classes = lb();
  3312         ListBuffer<Type> interfaces = lb();
  3313         while (!cl.isEmpty()) {
  3314             Type current = cl.head;
  3315             if (current.isInterface())
  3316                 interfaces.append(current);
  3317             else
  3318                 classes.append(current);
  3319             ListBuffer<Type> candidates = lb();
  3320             for (Type t : cl.tail) {
  3321                 if (!isSubtypeNoCapture(current, t))
  3322                     candidates.append(t);
  3324             cl = candidates.toList();
  3326         return classes.appendList(interfaces).toList();
  3329     /**
  3330      * Return the least upper bound of pair of types.  if the lub does
  3331      * not exist return null.
  3332      */
  3333     public Type lub(Type t1, Type t2) {
  3334         return lub(List.of(t1, t2));
  3337     /**
  3338      * Return the least upper bound (lub) of set of types.  If the lub
  3339      * does not exist return the type of null (bottom).
  3340      */
  3341     public Type lub(List<Type> ts) {
  3342         final int ARRAY_BOUND = 1;
  3343         final int CLASS_BOUND = 2;
  3344         int boundkind = 0;
  3345         for (Type t : ts) {
  3346             switch (t.tag) {
  3347             case CLASS:
  3348                 boundkind |= CLASS_BOUND;
  3349                 break;
  3350             case ARRAY:
  3351                 boundkind |= ARRAY_BOUND;
  3352                 break;
  3353             case  TYPEVAR:
  3354                 do {
  3355                     t = t.getUpperBound();
  3356                 } while (t.tag == TYPEVAR);
  3357                 if (t.tag == ARRAY) {
  3358                     boundkind |= ARRAY_BOUND;
  3359                 } else {
  3360                     boundkind |= CLASS_BOUND;
  3362                 break;
  3363             default:
  3364                 if (t.isPrimitive())
  3365                     return syms.errType;
  3368         switch (boundkind) {
  3369         case 0:
  3370             return syms.botType;
  3372         case ARRAY_BOUND:
  3373             // calculate lub(A[], B[])
  3374             List<Type> elements = Type.map(ts, elemTypeFun);
  3375             for (Type t : elements) {
  3376                 if (t.isPrimitive()) {
  3377                     // if a primitive type is found, then return
  3378                     // arraySuperType unless all the types are the
  3379                     // same
  3380                     Type first = ts.head;
  3381                     for (Type s : ts.tail) {
  3382                         if (!isSameType(first, s)) {
  3383                              // lub(int[], B[]) is Cloneable & Serializable
  3384                             return arraySuperType();
  3387                     // all the array types are the same, return one
  3388                     // lub(int[], int[]) is int[]
  3389                     return first;
  3392             // lub(A[], B[]) is lub(A, B)[]
  3393             return new ArrayType(lub(elements), syms.arrayClass);
  3395         case CLASS_BOUND:
  3396             // calculate lub(A, B)
  3397             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3398                 ts = ts.tail;
  3399             Assert.check(!ts.isEmpty());
  3400             //step 1 - compute erased candidate set (EC)
  3401             List<Type> cl = erasedSupertypes(ts.head);
  3402             for (Type t : ts.tail) {
  3403                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3404                     cl = intersect(cl, erasedSupertypes(t));
  3406             //step 2 - compute minimal erased candidate set (MEC)
  3407             List<Type> mec = closureMin(cl);
  3408             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3409             List<Type> candidates = List.nil();
  3410             for (Type erasedSupertype : mec) {
  3411                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3412                 for (Type t : ts) {
  3413                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3415                 candidates = candidates.appendList(lci);
  3417             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3418             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3419             return compoundMin(candidates);
  3421         default:
  3422             // calculate lub(A, B[])
  3423             List<Type> classes = List.of(arraySuperType());
  3424             for (Type t : ts) {
  3425                 if (t.tag != ARRAY) // Filter out any arrays
  3426                     classes = classes.prepend(t);
  3428             // lub(A, B[]) is lub(A, arraySuperType)
  3429             return lub(classes);
  3432     // where
  3433         List<Type> erasedSupertypes(Type t) {
  3434             ListBuffer<Type> buf = lb();
  3435             for (Type sup : closure(t)) {
  3436                 if (sup.tag == TYPEVAR) {
  3437                     buf.append(sup);
  3438                 } else {
  3439                     buf.append(erasure(sup));
  3442             return buf.toList();
  3445         private Type arraySuperType = null;
  3446         private Type arraySuperType() {
  3447             // initialized lazily to avoid problems during compiler startup
  3448             if (arraySuperType == null) {
  3449                 synchronized (this) {
  3450                     if (arraySuperType == null) {
  3451                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3452                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3453                                                                   syms.cloneableType), true);
  3457             return arraySuperType;
  3459     // </editor-fold>
  3461     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3462     public Type glb(List<Type> ts) {
  3463         Type t1 = ts.head;
  3464         for (Type t2 : ts.tail) {
  3465             if (t1.isErroneous())
  3466                 return t1;
  3467             t1 = glb(t1, t2);
  3469         return t1;
  3471     //where
  3472     public Type glb(Type t, Type s) {
  3473         if (s == null)
  3474             return t;
  3475         else if (t.isPrimitive() || s.isPrimitive())
  3476             return syms.errType;
  3477         else if (isSubtypeNoCapture(t, s))
  3478             return t;
  3479         else if (isSubtypeNoCapture(s, t))
  3480             return s;
  3482         List<Type> closure = union(closure(t), closure(s));
  3483         List<Type> bounds = closureMin(closure);
  3485         if (bounds.isEmpty()) {             // length == 0
  3486             return syms.objectType;
  3487         } else if (bounds.tail.isEmpty()) { // length == 1
  3488             return bounds.head;
  3489         } else {                            // length > 1
  3490             int classCount = 0;
  3491             for (Type bound : bounds)
  3492                 if (!bound.isInterface())
  3493                     classCount++;
  3494             if (classCount > 1)
  3495                 return createErrorType(t);
  3497         return makeCompoundType(bounds);
  3499     // </editor-fold>
  3501     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3502     /**
  3503      * Compute a hash code on a type.
  3504      */
  3505     public int hashCode(Type t) {
  3506         return hashCode.visit(t);
  3508     // where
  3509         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3511             public Integer visitType(Type t, Void ignored) {
  3512                 return t.tag.ordinal();
  3515             @Override
  3516             public Integer visitClassType(ClassType t, Void ignored) {
  3517                 int result = visit(t.getEnclosingType());
  3518                 result *= 127;
  3519                 result += t.tsym.flatName().hashCode();
  3520                 for (Type s : t.getTypeArguments()) {
  3521                     result *= 127;
  3522                     result += visit(s);
  3524                 return result;
  3527             @Override
  3528             public Integer visitMethodType(MethodType t, Void ignored) {
  3529                 int h = METHOD.ordinal();
  3530                 for (List<Type> thisargs = t.argtypes;
  3531                      thisargs.tail != null;
  3532                      thisargs = thisargs.tail)
  3533                     h = (h << 5) + visit(thisargs.head);
  3534                 return (h << 5) + visit(t.restype);
  3537             @Override
  3538             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3539                 int result = t.kind.hashCode();
  3540                 if (t.type != null) {
  3541                     result *= 127;
  3542                     result += visit(t.type);
  3544                 return result;
  3547             @Override
  3548             public Integer visitArrayType(ArrayType t, Void ignored) {
  3549                 return visit(t.elemtype) + 12;
  3552             @Override
  3553             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3554                 return System.identityHashCode(t.tsym);
  3557             @Override
  3558             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3559                 return System.identityHashCode(t);
  3562             @Override
  3563             public Integer visitErrorType(ErrorType t, Void ignored) {
  3564                 return 0;
  3566         };
  3567     // </editor-fold>
  3569     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3570     /**
  3571      * Does t have a result that is a subtype of the result type of s,
  3572      * suitable for covariant returns?  It is assumed that both types
  3573      * are (possibly polymorphic) method types.  Monomorphic method
  3574      * types are handled in the obvious way.  Polymorphic method types
  3575      * require renaming all type variables of one to corresponding
  3576      * type variables in the other, where correspondence is by
  3577      * position in the type parameter list. */
  3578     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3579         List<Type> tvars = t.getTypeArguments();
  3580         List<Type> svars = s.getTypeArguments();
  3581         Type tres = t.getReturnType();
  3582         Type sres = subst(s.getReturnType(), svars, tvars);
  3583         return covariantReturnType(tres, sres, warner);
  3586     /**
  3587      * Return-Type-Substitutable.
  3588      * @jls section 8.4.5
  3589      */
  3590     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3591         if (hasSameArgs(r1, r2))
  3592             return resultSubtype(r1, r2, noWarnings);
  3593         else
  3594             return covariantReturnType(r1.getReturnType(),
  3595                                        erasure(r2.getReturnType()),
  3596                                        noWarnings);
  3599     public boolean returnTypeSubstitutable(Type r1,
  3600                                            Type r2, Type r2res,
  3601                                            Warner warner) {
  3602         if (isSameType(r1.getReturnType(), r2res))
  3603             return true;
  3604         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3605             return false;
  3607         if (hasSameArgs(r1, r2))
  3608             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3609         if (!allowCovariantReturns)
  3610             return false;
  3611         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3612             return true;
  3613         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3614             return false;
  3615         warner.warn(LintCategory.UNCHECKED);
  3616         return true;
  3619     /**
  3620      * Is t an appropriate return type in an overrider for a
  3621      * method that returns s?
  3622      */
  3623     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3624         return
  3625             isSameType(t, s) ||
  3626             allowCovariantReturns &&
  3627             !t.isPrimitive() &&
  3628             !s.isPrimitive() &&
  3629             isAssignable(t, s, warner);
  3631     // </editor-fold>
  3633     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3634     /**
  3635      * Return the class that boxes the given primitive.
  3636      */
  3637     public ClassSymbol boxedClass(Type t) {
  3638         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3641     /**
  3642      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3643      */
  3644     public Type boxedTypeOrType(Type t) {
  3645         return t.isPrimitive() ?
  3646             boxedClass(t).type :
  3647             t;
  3650     /**
  3651      * Return the primitive type corresponding to a boxed type.
  3652      */
  3653     public Type unboxedType(Type t) {
  3654         if (allowBoxing) {
  3655             for (int i=0; i<syms.boxedName.length; i++) {
  3656                 Name box = syms.boxedName[i];
  3657                 if (box != null &&
  3658                     asSuper(t, reader.enterClass(box)) != null)
  3659                     return syms.typeOfTag[i];
  3662         return Type.noType;
  3665     /**
  3666      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3667      */
  3668     public Type unboxedTypeOrType(Type t) {
  3669         Type unboxedType = unboxedType(t);
  3670         return unboxedType.tag == NONE ? t : unboxedType;
  3672     // </editor-fold>
  3674     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3675     /*
  3676      * JLS 5.1.10 Capture Conversion:
  3678      * Let G name a generic type declaration with n formal type
  3679      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3680      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3681      * where, for 1 <= i <= n:
  3683      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3684      *   Si is a fresh type variable whose upper bound is
  3685      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3686      *   type.
  3688      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3689      *   then Si is a fresh type variable whose upper bound is
  3690      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3691      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3692      *   a compile-time error if for any two classes (not interfaces)
  3693      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3695      * + If Ti is a wildcard type argument of the form ? super Bi,
  3696      *   then Si is a fresh type variable whose upper bound is
  3697      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3699      * + Otherwise, Si = Ti.
  3701      * Capture conversion on any type other than a parameterized type
  3702      * (4.5) acts as an identity conversion (5.1.1). Capture
  3703      * conversions never require a special action at run time and
  3704      * therefore never throw an exception at run time.
  3706      * Capture conversion is not applied recursively.
  3707      */
  3708     /**
  3709      * Capture conversion as specified by the JLS.
  3710      */
  3712     public List<Type> capture(List<Type> ts) {
  3713         List<Type> buf = List.nil();
  3714         for (Type t : ts) {
  3715             buf = buf.prepend(capture(t));
  3717         return buf.reverse();
  3719     public Type capture(Type t) {
  3720         if (t.tag != CLASS)
  3721             return t;
  3722         if (t.getEnclosingType() != Type.noType) {
  3723             Type capturedEncl = capture(t.getEnclosingType());
  3724             if (capturedEncl != t.getEnclosingType()) {
  3725                 Type type1 = memberType(capturedEncl, t.tsym);
  3726                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3729         t = t.unannotatedType();
  3730         ClassType cls = (ClassType)t;
  3731         if (cls.isRaw() || !cls.isParameterized())
  3732             return cls;
  3734         ClassType G = (ClassType)cls.asElement().asType();
  3735         List<Type> A = G.getTypeArguments();
  3736         List<Type> T = cls.getTypeArguments();
  3737         List<Type> S = freshTypeVariables(T);
  3739         List<Type> currentA = A;
  3740         List<Type> currentT = T;
  3741         List<Type> currentS = S;
  3742         boolean captured = false;
  3743         while (!currentA.isEmpty() &&
  3744                !currentT.isEmpty() &&
  3745                !currentS.isEmpty()) {
  3746             if (currentS.head != currentT.head) {
  3747                 captured = true;
  3748                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
  3749                 Type Ui = currentA.head.getUpperBound();
  3750                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
  3751                 if (Ui == null)
  3752                     Ui = syms.objectType;
  3753                 switch (Ti.kind) {
  3754                 case UNBOUND:
  3755                     Si.bound = subst(Ui, A, S);
  3756                     Si.lower = syms.botType;
  3757                     break;
  3758                 case EXTENDS:
  3759                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3760                     Si.lower = syms.botType;
  3761                     break;
  3762                 case SUPER:
  3763                     Si.bound = subst(Ui, A, S);
  3764                     Si.lower = Ti.getSuperBound();
  3765                     break;
  3767                 if (Si.bound == Si.lower)
  3768                     currentS.head = Si.bound;
  3770             currentA = currentA.tail;
  3771             currentT = currentT.tail;
  3772             currentS = currentS.tail;
  3774         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3775             return erasure(t); // some "rare" type involved
  3777         if (captured)
  3778             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3779         else
  3780             return t;
  3782     // where
  3783         public List<Type> freshTypeVariables(List<Type> types) {
  3784             ListBuffer<Type> result = lb();
  3785             for (Type t : types) {
  3786                 if (t.tag == WILDCARD) {
  3787                     t = t.unannotatedType();
  3788                     Type bound = ((WildcardType)t).getExtendsBound();
  3789                     if (bound == null)
  3790                         bound = syms.objectType;
  3791                     result.append(new CapturedType(capturedName,
  3792                                                    syms.noSymbol,
  3793                                                    bound,
  3794                                                    syms.botType,
  3795                                                    (WildcardType)t));
  3796                 } else {
  3797                     result.append(t);
  3800             return result.toList();
  3802     // </editor-fold>
  3804     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3805     private List<Type> upperBounds(List<Type> ss) {
  3806         if (ss.isEmpty()) return ss;
  3807         Type head = upperBound(ss.head);
  3808         List<Type> tail = upperBounds(ss.tail);
  3809         if (head != ss.head || tail != ss.tail)
  3810             return tail.prepend(head);
  3811         else
  3812             return ss;
  3815     private boolean sideCast(Type from, Type to, Warner warn) {
  3816         // We are casting from type $from$ to type $to$, which are
  3817         // non-final unrelated types.  This method
  3818         // tries to reject a cast by transferring type parameters
  3819         // from $to$ to $from$ by common superinterfaces.
  3820         boolean reverse = false;
  3821         Type target = to;
  3822         if ((to.tsym.flags() & INTERFACE) == 0) {
  3823             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3824             reverse = true;
  3825             to = from;
  3826             from = target;
  3828         List<Type> commonSupers = superClosure(to, erasure(from));
  3829         boolean giveWarning = commonSupers.isEmpty();
  3830         // The arguments to the supers could be unified here to
  3831         // get a more accurate analysis
  3832         while (commonSupers.nonEmpty()) {
  3833             Type t1 = asSuper(from, commonSupers.head.tsym);
  3834             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3835             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3836                 return false;
  3837             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3838             commonSupers = commonSupers.tail;
  3840         if (giveWarning && !isReifiable(reverse ? from : to))
  3841             warn.warn(LintCategory.UNCHECKED);
  3842         if (!allowCovariantReturns)
  3843             // reject if there is a common method signature with
  3844             // incompatible return types.
  3845             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3846         return true;
  3849     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3850         // We are casting from type $from$ to type $to$, which are
  3851         // unrelated types one of which is final and the other of
  3852         // which is an interface.  This method
  3853         // tries to reject a cast by transferring type parameters
  3854         // from the final class to the interface.
  3855         boolean reverse = false;
  3856         Type target = to;
  3857         if ((to.tsym.flags() & INTERFACE) == 0) {
  3858             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3859             reverse = true;
  3860             to = from;
  3861             from = target;
  3863         Assert.check((from.tsym.flags() & FINAL) != 0);
  3864         Type t1 = asSuper(from, to.tsym);
  3865         if (t1 == null) return false;
  3866         Type t2 = to;
  3867         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3868             return false;
  3869         if (!allowCovariantReturns)
  3870             // reject if there is a common method signature with
  3871             // incompatible return types.
  3872             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3873         if (!isReifiable(target) &&
  3874             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3875             warn.warn(LintCategory.UNCHECKED);
  3876         return true;
  3879     private boolean giveWarning(Type from, Type to) {
  3880         List<Type> bounds = to.isCompound() ?
  3881                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
  3882         for (Type b : bounds) {
  3883             Type subFrom = asSub(from, b.tsym);
  3884             if (b.isParameterized() &&
  3885                     (!(isUnbounded(b) ||
  3886                     isSubtype(from, b) ||
  3887                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
  3888                 return true;
  3891         return false;
  3894     private List<Type> superClosure(Type t, Type s) {
  3895         List<Type> cl = List.nil();
  3896         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3897             if (isSubtype(s, erasure(l.head))) {
  3898                 cl = insert(cl, l.head);
  3899             } else {
  3900                 cl = union(cl, superClosure(l.head, s));
  3903         return cl;
  3906     private boolean containsTypeEquivalent(Type t, Type s) {
  3907         return
  3908             isSameType(t, s) || // shortcut
  3909             containsType(t, s) && containsType(s, t);
  3912     // <editor-fold defaultstate="collapsed" desc="adapt">
  3913     /**
  3914      * Adapt a type by computing a substitution which maps a source
  3915      * type to a target type.
  3917      * @param source    the source type
  3918      * @param target    the target type
  3919      * @param from      the type variables of the computed substitution
  3920      * @param to        the types of the computed substitution.
  3921      */
  3922     public void adapt(Type source,
  3923                        Type target,
  3924                        ListBuffer<Type> from,
  3925                        ListBuffer<Type> to) throws AdaptFailure {
  3926         new Adapter(from, to).adapt(source, target);
  3929     class Adapter extends SimpleVisitor<Void, Type> {
  3931         ListBuffer<Type> from;
  3932         ListBuffer<Type> to;
  3933         Map<Symbol,Type> mapping;
  3935         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3936             this.from = from;
  3937             this.to = to;
  3938             mapping = new HashMap<Symbol,Type>();
  3941         public void adapt(Type source, Type target) throws AdaptFailure {
  3942             visit(source, target);
  3943             List<Type> fromList = from.toList();
  3944             List<Type> toList = to.toList();
  3945             while (!fromList.isEmpty()) {
  3946                 Type val = mapping.get(fromList.head.tsym);
  3947                 if (toList.head != val)
  3948                     toList.head = val;
  3949                 fromList = fromList.tail;
  3950                 toList = toList.tail;
  3954         @Override
  3955         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3956             if (target.tag == CLASS)
  3957                 adaptRecursive(source.allparams(), target.allparams());
  3958             return null;
  3961         @Override
  3962         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3963             if (target.tag == ARRAY)
  3964                 adaptRecursive(elemtype(source), elemtype(target));
  3965             return null;
  3968         @Override
  3969         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3970             if (source.isExtendsBound())
  3971                 adaptRecursive(upperBound(source), upperBound(target));
  3972             else if (source.isSuperBound())
  3973                 adaptRecursive(lowerBound(source), lowerBound(target));
  3974             return null;
  3977         @Override
  3978         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3979             // Check to see if there is
  3980             // already a mapping for $source$, in which case
  3981             // the old mapping will be merged with the new
  3982             Type val = mapping.get(source.tsym);
  3983             if (val != null) {
  3984                 if (val.isSuperBound() && target.isSuperBound()) {
  3985                     val = isSubtype(lowerBound(val), lowerBound(target))
  3986                         ? target : val;
  3987                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3988                     val = isSubtype(upperBound(val), upperBound(target))
  3989                         ? val : target;
  3990                 } else if (!isSameType(val, target)) {
  3991                     throw new AdaptFailure();
  3993             } else {
  3994                 val = target;
  3995                 from.append(source);
  3996                 to.append(target);
  3998             mapping.put(source.tsym, val);
  3999             return null;
  4002         @Override
  4003         public Void visitType(Type source, Type target) {
  4004             return null;
  4007         private Set<TypePair> cache = new HashSet<TypePair>();
  4009         private void adaptRecursive(Type source, Type target) {
  4010             TypePair pair = new TypePair(source, target);
  4011             if (cache.add(pair)) {
  4012                 try {
  4013                     visit(source, target);
  4014                 } finally {
  4015                     cache.remove(pair);
  4020         private void adaptRecursive(List<Type> source, List<Type> target) {
  4021             if (source.length() == target.length()) {
  4022                 while (source.nonEmpty()) {
  4023                     adaptRecursive(source.head, target.head);
  4024                     source = source.tail;
  4025                     target = target.tail;
  4031     public static class AdaptFailure extends RuntimeException {
  4032         static final long serialVersionUID = -7490231548272701566L;
  4035     private void adaptSelf(Type t,
  4036                            ListBuffer<Type> from,
  4037                            ListBuffer<Type> to) {
  4038         try {
  4039             //if (t.tsym.type != t)
  4040                 adapt(t.tsym.type, t, from, to);
  4041         } catch (AdaptFailure ex) {
  4042             // Adapt should never fail calculating a mapping from
  4043             // t.tsym.type to t as there can be no merge problem.
  4044             throw new AssertionError(ex);
  4047     // </editor-fold>
  4049     /**
  4050      * Rewrite all type variables (universal quantifiers) in the given
  4051      * type to wildcards (existential quantifiers).  This is used to
  4052      * determine if a cast is allowed.  For example, if high is true
  4053      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4054      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4055      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4056      * List<Integer>} with a warning.
  4057      * @param t a type
  4058      * @param high if true return an upper bound; otherwise a lower
  4059      * bound
  4060      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4061      * otherwise rewrite all type variables
  4062      * @return the type rewritten with wildcards (existential
  4063      * quantifiers) only
  4064      */
  4065     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4066         return new Rewriter(high, rewriteTypeVars).visit(t);
  4069     class Rewriter extends UnaryVisitor<Type> {
  4071         boolean high;
  4072         boolean rewriteTypeVars;
  4074         Rewriter(boolean high, boolean rewriteTypeVars) {
  4075             this.high = high;
  4076             this.rewriteTypeVars = rewriteTypeVars;
  4079         @Override
  4080         public Type visitClassType(ClassType t, Void s) {
  4081             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4082             boolean changed = false;
  4083             for (Type arg : t.allparams()) {
  4084                 Type bound = visit(arg);
  4085                 if (arg != bound) {
  4086                     changed = true;
  4088                 rewritten.append(bound);
  4090             if (changed)
  4091                 return subst(t.tsym.type,
  4092                         t.tsym.type.allparams(),
  4093                         rewritten.toList());
  4094             else
  4095                 return t;
  4098         public Type visitType(Type t, Void s) {
  4099             return high ? upperBound(t) : lowerBound(t);
  4102         @Override
  4103         public Type visitCapturedType(CapturedType t, Void s) {
  4104             Type w_bound = t.wildcard.type;
  4105             Type bound = w_bound.contains(t) ?
  4106                         erasure(w_bound) :
  4107                         visit(w_bound);
  4108             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4111         @Override
  4112         public Type visitTypeVar(TypeVar t, Void s) {
  4113             if (rewriteTypeVars) {
  4114                 Type bound = t.bound.contains(t) ?
  4115                         erasure(t.bound) :
  4116                         visit(t.bound);
  4117                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4118             } else {
  4119                 return t;
  4123         @Override
  4124         public Type visitWildcardType(WildcardType t, Void s) {
  4125             Type bound2 = visit(t.type);
  4126             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4129         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4130             switch (bk) {
  4131                case EXTENDS: return high ?
  4132                        makeExtendsWildcard(B(bound), formal) :
  4133                        makeExtendsWildcard(syms.objectType, formal);
  4134                case SUPER: return high ?
  4135                        makeSuperWildcard(syms.botType, formal) :
  4136                        makeSuperWildcard(B(bound), formal);
  4137                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4138                default:
  4139                    Assert.error("Invalid bound kind " + bk);
  4140                    return null;
  4144         Type B(Type t) {
  4145             while (t.tag == WILDCARD) {
  4146                 WildcardType w = (WildcardType)t.unannotatedType();
  4147                 t = high ?
  4148                     w.getExtendsBound() :
  4149                     w.getSuperBound();
  4150                 if (t == null) {
  4151                     t = high ? syms.objectType : syms.botType;
  4154             return t;
  4159     /**
  4160      * Create a wildcard with the given upper (extends) bound; create
  4161      * an unbounded wildcard if bound is Object.
  4163      * @param bound the upper bound
  4164      * @param formal the formal type parameter that will be
  4165      * substituted by the wildcard
  4166      */
  4167     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4168         if (bound == syms.objectType) {
  4169             return new WildcardType(syms.objectType,
  4170                                     BoundKind.UNBOUND,
  4171                                     syms.boundClass,
  4172                                     formal);
  4173         } else {
  4174             return new WildcardType(bound,
  4175                                     BoundKind.EXTENDS,
  4176                                     syms.boundClass,
  4177                                     formal);
  4181     /**
  4182      * Create a wildcard with the given lower (super) bound; create an
  4183      * unbounded wildcard if bound is bottom (type of {@code null}).
  4185      * @param bound the lower bound
  4186      * @param formal the formal type parameter that will be
  4187      * substituted by the wildcard
  4188      */
  4189     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4190         if (bound.tag == BOT) {
  4191             return new WildcardType(syms.objectType,
  4192                                     BoundKind.UNBOUND,
  4193                                     syms.boundClass,
  4194                                     formal);
  4195         } else {
  4196             return new WildcardType(bound,
  4197                                     BoundKind.SUPER,
  4198                                     syms.boundClass,
  4199                                     formal);
  4203     /**
  4204      * A wrapper for a type that allows use in sets.
  4205      */
  4206     public static class UniqueType {
  4207         public final Type type;
  4208         final Types types;
  4210         public UniqueType(Type type, Types types) {
  4211             this.type = type;
  4212             this.types = types;
  4215         public int hashCode() {
  4216             return types.hashCode(type);
  4219         public boolean equals(Object obj) {
  4220             return (obj instanceof UniqueType) &&
  4221                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
  4224         public String toString() {
  4225             return type.toString();
  4229     // </editor-fold>
  4231     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4232     /**
  4233      * A default visitor for types.  All visitor methods except
  4234      * visitType are implemented by delegating to visitType.  Concrete
  4235      * subclasses must provide an implementation of visitType and can
  4236      * override other methods as needed.
  4238      * @param <R> the return type of the operation implemented by this
  4239      * visitor; use Void if no return type is needed.
  4240      * @param <S> the type of the second argument (the first being the
  4241      * type itself) of the operation implemented by this visitor; use
  4242      * Void if a second argument is not needed.
  4243      */
  4244     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4245         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4246         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4247         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4248         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4249         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4250         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4251         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4252         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4253         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4254         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4255         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4256         // Pretend annotations don't exist
  4257         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
  4260     /**
  4261      * A default visitor for symbols.  All visitor methods except
  4262      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4263      * subclasses must provide an implementation of visitSymbol and can
  4264      * override other methods as needed.
  4266      * @param <R> the return type of the operation implemented by this
  4267      * visitor; use Void if no return type is needed.
  4268      * @param <S> the type of the second argument (the first being the
  4269      * symbol itself) of the operation implemented by this visitor; use
  4270      * Void if a second argument is not needed.
  4271      */
  4272     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4273         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4274         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4275         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4276         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4277         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4278         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4279         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4282     /**
  4283      * A <em>simple</em> visitor for types.  This visitor is simple as
  4284      * captured wildcards, for-all types (generic methods), and
  4285      * undetermined type variables (part of inference) are hidden.
  4286      * Captured wildcards are hidden by treating them as type
  4287      * variables and the rest are hidden by visiting their qtypes.
  4289      * @param <R> the return type of the operation implemented by this
  4290      * visitor; use Void if no return type is needed.
  4291      * @param <S> the type of the second argument (the first being the
  4292      * type itself) of the operation implemented by this visitor; use
  4293      * Void if a second argument is not needed.
  4294      */
  4295     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4296         @Override
  4297         public R visitCapturedType(CapturedType t, S s) {
  4298             return visitTypeVar(t, s);
  4300         @Override
  4301         public R visitForAll(ForAll t, S s) {
  4302             return visit(t.qtype, s);
  4304         @Override
  4305         public R visitUndetVar(UndetVar t, S s) {
  4306             return visit(t.qtype, s);
  4310     /**
  4311      * A plain relation on types.  That is a 2-ary function on the
  4312      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4313      * <!-- In plain text: Type x Type -> Boolean -->
  4314      */
  4315     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4317     /**
  4318      * A convenience visitor for implementing operations that only
  4319      * require one argument (the type itself), that is, unary
  4320      * operations.
  4322      * @param <R> the return type of the operation implemented by this
  4323      * visitor; use Void if no return type is needed.
  4324      */
  4325     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4326         final public R visit(Type t) { return t.accept(this, null); }
  4329     /**
  4330      * A visitor for implementing a mapping from types to types.  The
  4331      * default behavior of this class is to implement the identity
  4332      * mapping (mapping a type to itself).  This can be overridden in
  4333      * subclasses.
  4335      * @param <S> the type of the second argument (the first being the
  4336      * type itself) of this mapping; use Void if a second argument is
  4337      * not needed.
  4338      */
  4339     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4340         final public Type visit(Type t) { return t.accept(this, null); }
  4341         public Type visitType(Type t, S s) { return t; }
  4343     // </editor-fold>
  4346     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4348     public RetentionPolicy getRetention(Attribute.Compound a) {
  4349         return getRetention(a.type.tsym);
  4352     public RetentionPolicy getRetention(Symbol sym) {
  4353         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4354         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4355         if (c != null) {
  4356             Attribute value = c.member(names.value);
  4357             if (value != null && value instanceof Attribute.Enum) {
  4358                 Name levelName = ((Attribute.Enum)value).value.name;
  4359                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4360                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4361                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4362                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4365         return vis;
  4367     // </editor-fold>
  4369     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
  4371     public static abstract class SignatureGenerator {
  4373         private final Types types;
  4375         protected abstract void append(char ch);
  4376         protected abstract void append(byte[] ba);
  4377         protected abstract void append(Name name);
  4378         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
  4380         protected SignatureGenerator(Types types) {
  4381             this.types = types;
  4384         /**
  4385          * Assemble signature of given type in string buffer.
  4386          */
  4387         public void assembleSig(Type type) {
  4388             type = type.unannotatedType();
  4389             switch (type.getTag()) {
  4390                 case BYTE:
  4391                     append('B');
  4392                     break;
  4393                 case SHORT:
  4394                     append('S');
  4395                     break;
  4396                 case CHAR:
  4397                     append('C');
  4398                     break;
  4399                 case INT:
  4400                     append('I');
  4401                     break;
  4402                 case LONG:
  4403                     append('J');
  4404                     break;
  4405                 case FLOAT:
  4406                     append('F');
  4407                     break;
  4408                 case DOUBLE:
  4409                     append('D');
  4410                     break;
  4411                 case BOOLEAN:
  4412                     append('Z');
  4413                     break;
  4414                 case VOID:
  4415                     append('V');
  4416                     break;
  4417                 case CLASS:
  4418                     append('L');
  4419                     assembleClassSig(type);
  4420                     append(';');
  4421                     break;
  4422                 case ARRAY:
  4423                     ArrayType at = (ArrayType) type;
  4424                     append('[');
  4425                     assembleSig(at.elemtype);
  4426                     break;
  4427                 case METHOD:
  4428                     MethodType mt = (MethodType) type;
  4429                     append('(');
  4430                     assembleSig(mt.argtypes);
  4431                     append(')');
  4432                     assembleSig(mt.restype);
  4433                     if (hasTypeVar(mt.thrown)) {
  4434                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
  4435                             append('^');
  4436                             assembleSig(l.head);
  4439                     break;
  4440                 case WILDCARD: {
  4441                     Type.WildcardType ta = (Type.WildcardType) type;
  4442                     switch (ta.kind) {
  4443                         case SUPER:
  4444                             append('-');
  4445                             assembleSig(ta.type);
  4446                             break;
  4447                         case EXTENDS:
  4448                             append('+');
  4449                             assembleSig(ta.type);
  4450                             break;
  4451                         case UNBOUND:
  4452                             append('*');
  4453                             break;
  4454                         default:
  4455                             throw new AssertionError(ta.kind);
  4457                     break;
  4459                 case TYPEVAR:
  4460                     append('T');
  4461                     append(type.tsym.name);
  4462                     append(';');
  4463                     break;
  4464                 case FORALL:
  4465                     Type.ForAll ft = (Type.ForAll) type;
  4466                     assembleParamsSig(ft.tvars);
  4467                     assembleSig(ft.qtype);
  4468                     break;
  4469                 default:
  4470                     throw new AssertionError("typeSig " + type.getTag());
  4474         public boolean hasTypeVar(List<Type> l) {
  4475             while (l.nonEmpty()) {
  4476                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
  4477                     return true;
  4479                 l = l.tail;
  4481             return false;
  4484         public void assembleClassSig(Type type) {
  4485             type = type.unannotatedType();
  4486             ClassType ct = (ClassType) type;
  4487             ClassSymbol c = (ClassSymbol) ct.tsym;
  4488             classReference(c);
  4489             Type outer = ct.getEnclosingType();
  4490             if (outer.allparams().nonEmpty()) {
  4491                 boolean rawOuter =
  4492                         c.owner.kind == Kinds.MTH || // either a local class
  4493                         c.name == types.names.empty; // or anonymous
  4494                 assembleClassSig(rawOuter
  4495                         ? types.erasure(outer)
  4496                         : outer);
  4497                 append('.');
  4498                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
  4499                 append(rawOuter
  4500                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
  4501                         : c.name);
  4502             } else {
  4503                 append(externalize(c.flatname));
  4505             if (ct.getTypeArguments().nonEmpty()) {
  4506                 append('<');
  4507                 assembleSig(ct.getTypeArguments());
  4508                 append('>');
  4512         public void assembleParamsSig(List<Type> typarams) {
  4513             append('<');
  4514             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
  4515                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
  4516                 append(tvar.tsym.name);
  4517                 List<Type> bounds = types.getBounds(tvar);
  4518                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
  4519                     append(':');
  4521                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
  4522                     append(':');
  4523                     assembleSig(l.head);
  4526             append('>');
  4529         private void assembleSig(List<Type> types) {
  4530             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
  4531                 assembleSig(ts.head);
  4535     // </editor-fold>

mercurial