src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 08 Aug 2008 17:43:24 +0100

author
mcimadamore
date
Fri, 08 Aug 2008 17:43:24 +0100
changeset 94
6542933af8f4
parent 93
30a415f8667f
child 104
5e89c4ca637c
permissions
-rw-r--r--

6676362: Spurious forward reference error with final var + instance variable initializer
Summary: Some javac forward reference errors aren't compliant with the JLS
Reviewed-by: jjg

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.util.*;
    30 import com.sun.tools.javac.util.*;
    31 import com.sun.tools.javac.util.List;
    33 import com.sun.tools.javac.jvm.ClassReader;
    34 import com.sun.tools.javac.comp.Infer;
    35 import com.sun.tools.javac.comp.Check;
    37 import static com.sun.tools.javac.code.Type.*;
    38 import static com.sun.tools.javac.code.TypeTags.*;
    39 import static com.sun.tools.javac.code.Symbol.*;
    40 import static com.sun.tools.javac.code.Flags.*;
    41 import static com.sun.tools.javac.code.BoundKind.*;
    42 import static com.sun.tools.javac.util.ListBuffer.lb;
    44 /**
    45  * Utility class containing various operations on types.
    46  *
    47  * <p>Unless other names are more illustrative, the following naming
    48  * conventions should be observed in this file:
    49  *
    50  * <dl>
    51  * <dt>t</dt>
    52  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    53  * <dt>s</dt>
    54  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    55  * <dt>ts</dt>
    56  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    57  * <dt>ss</dt>
    58  * <dd>A second list of types should be named ss.</dd>
    59  * </dl>
    60  *
    61  * <p><b>This is NOT part of any API supported by Sun Microsystems.
    62  * If you write code that depends on this, you do so at your own risk.
    63  * This code and its internal interfaces are subject to change or
    64  * deletion without notice.</b>
    65  */
    66 public class Types {
    67     protected static final Context.Key<Types> typesKey =
    68         new Context.Key<Types>();
    70     final Symtab syms;
    71     final Name.Table names;
    72     final boolean allowBoxing;
    73     final ClassReader reader;
    74     final Source source;
    75     final Check chk;
    76     List<Warner> warnStack = List.nil();
    77     final Name capturedName;
    79     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    80     public static Types instance(Context context) {
    81         Types instance = context.get(typesKey);
    82         if (instance == null)
    83             instance = new Types(context);
    84         return instance;
    85     }
    87     protected Types(Context context) {
    88         context.put(typesKey, this);
    89         syms = Symtab.instance(context);
    90         names = Name.Table.instance(context);
    91         allowBoxing = Source.instance(context).allowBoxing();
    92         reader = ClassReader.instance(context);
    93         source = Source.instance(context);
    94         chk = Check.instance(context);
    95         capturedName = names.fromString("<captured wildcard>");
    96     }
    97     // </editor-fold>
    99     // <editor-fold defaultstate="collapsed" desc="upperBound">
   100     /**
   101      * The "rvalue conversion".<br>
   102      * The upper bound of most types is the type
   103      * itself.  Wildcards, on the other hand have upper
   104      * and lower bounds.
   105      * @param t a type
   106      * @return the upper bound of the given type
   107      */
   108     public Type upperBound(Type t) {
   109         return upperBound.visit(t);
   110     }
   111     // where
   112         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   114             @Override
   115             public Type visitWildcardType(WildcardType t, Void ignored) {
   116                 if (t.isSuperBound())
   117                     return t.bound == null ? syms.objectType : t.bound.bound;
   118                 else
   119                     return visit(t.type);
   120             }
   122             @Override
   123             public Type visitCapturedType(CapturedType t, Void ignored) {
   124                 return visit(t.bound);
   125             }
   126         };
   127     // </editor-fold>
   129     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   130     /**
   131      * The "lvalue conversion".<br>
   132      * The lower bound of most types is the type
   133      * itself.  Wildcards, on the other hand have upper
   134      * and lower bounds.
   135      * @param t a type
   136      * @return the lower bound of the given type
   137      */
   138     public Type lowerBound(Type t) {
   139         return lowerBound.visit(t);
   140     }
   141     // where
   142         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   144             @Override
   145             public Type visitWildcardType(WildcardType t, Void ignored) {
   146                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   147             }
   149             @Override
   150             public Type visitCapturedType(CapturedType t, Void ignored) {
   151                 return visit(t.getLowerBound());
   152             }
   153         };
   154     // </editor-fold>
   156     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   157     /**
   158      * Checks that all the arguments to a class are unbounded
   159      * wildcards or something else that doesn't make any restrictions
   160      * on the arguments. If a class isUnbounded, a raw super- or
   161      * subclass can be cast to it without a warning.
   162      * @param t a type
   163      * @return true iff the given type is unbounded or raw
   164      */
   165     public boolean isUnbounded(Type t) {
   166         return isUnbounded.visit(t);
   167     }
   168     // where
   169         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   171             public Boolean visitType(Type t, Void ignored) {
   172                 return true;
   173             }
   175             @Override
   176             public Boolean visitClassType(ClassType t, Void ignored) {
   177                 List<Type> parms = t.tsym.type.allparams();
   178                 List<Type> args = t.allparams();
   179                 while (parms.nonEmpty()) {
   180                     WildcardType unb = new WildcardType(syms.objectType,
   181                                                         BoundKind.UNBOUND,
   182                                                         syms.boundClass,
   183                                                         (TypeVar)parms.head);
   184                     if (!containsType(args.head, unb))
   185                         return false;
   186                     parms = parms.tail;
   187                     args = args.tail;
   188                 }
   189                 return true;
   190             }
   191         };
   192     // </editor-fold>
   194     // <editor-fold defaultstate="collapsed" desc="asSub">
   195     /**
   196      * Return the least specific subtype of t that starts with symbol
   197      * sym.  If none exists, return null.  The least specific subtype
   198      * is determined as follows:
   199      *
   200      * <p>If there is exactly one parameterized instance of sym that is a
   201      * subtype of t, that parameterized instance is returned.<br>
   202      * Otherwise, if the plain type or raw type `sym' is a subtype of
   203      * type t, the type `sym' itself is returned.  Otherwise, null is
   204      * returned.
   205      */
   206     public Type asSub(Type t, Symbol sym) {
   207         return asSub.visit(t, sym);
   208     }
   209     // where
   210         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   212             public Type visitType(Type t, Symbol sym) {
   213                 return null;
   214             }
   216             @Override
   217             public Type visitClassType(ClassType t, Symbol sym) {
   218                 if (t.tsym == sym)
   219                     return t;
   220                 Type base = asSuper(sym.type, t.tsym);
   221                 if (base == null)
   222                     return null;
   223                 ListBuffer<Type> from = new ListBuffer<Type>();
   224                 ListBuffer<Type> to = new ListBuffer<Type>();
   225                 try {
   226                     adapt(base, t, from, to);
   227                 } catch (AdaptFailure ex) {
   228                     return null;
   229                 }
   230                 Type res = subst(sym.type, from.toList(), to.toList());
   231                 if (!isSubtype(res, t))
   232                     return null;
   233                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   234                 for (List<Type> l = sym.type.allparams();
   235                      l.nonEmpty(); l = l.tail)
   236                     if (res.contains(l.head) && !t.contains(l.head))
   237                         openVars.append(l.head);
   238                 if (openVars.nonEmpty()) {
   239                     if (t.isRaw()) {
   240                         // The subtype of a raw type is raw
   241                         res = erasure(res);
   242                     } else {
   243                         // Unbound type arguments default to ?
   244                         List<Type> opens = openVars.toList();
   245                         ListBuffer<Type> qs = new ListBuffer<Type>();
   246                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   247                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   248                         }
   249                         res = subst(res, opens, qs.toList());
   250                     }
   251                 }
   252                 return res;
   253             }
   255             @Override
   256             public Type visitErrorType(ErrorType t, Symbol sym) {
   257                 return t;
   258             }
   259         };
   260     // </editor-fold>
   262     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   263     /**
   264      * Is t a subtype of or convertiable via boxing/unboxing
   265      * convertions to s?
   266      */
   267     public boolean isConvertible(Type t, Type s, Warner warn) {
   268         boolean tPrimitive = t.isPrimitive();
   269         boolean sPrimitive = s.isPrimitive();
   270         if (tPrimitive == sPrimitive)
   271             return isSubtypeUnchecked(t, s, warn);
   272         if (!allowBoxing) return false;
   273         return tPrimitive
   274             ? isSubtype(boxedClass(t).type, s)
   275             : isSubtype(unboxedType(t), s);
   276     }
   278     /**
   279      * Is t a subtype of or convertiable via boxing/unboxing
   280      * convertions to s?
   281      */
   282     public boolean isConvertible(Type t, Type s) {
   283         return isConvertible(t, s, Warner.noWarnings);
   284     }
   285     // </editor-fold>
   287     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   288     /**
   289      * Is t an unchecked subtype of s?
   290      */
   291     public boolean isSubtypeUnchecked(Type t, Type s) {
   292         return isSubtypeUnchecked(t, s, Warner.noWarnings);
   293     }
   294     /**
   295      * Is t an unchecked subtype of s?
   296      */
   297     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   298         if (t.tag == ARRAY && s.tag == ARRAY) {
   299             return (((ArrayType)t).elemtype.tag <= lastBaseTag)
   300                 ? isSameType(elemtype(t), elemtype(s))
   301                 : isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   302         } else if (isSubtype(t, s)) {
   303             return true;
   304         }
   305         else if (t.tag == TYPEVAR) {
   306             return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   307         }
   308         else if (s.tag == UNDETVAR) {
   309             UndetVar uv = (UndetVar)s;
   310             if (uv.inst != null)
   311                 return isSubtypeUnchecked(t, uv.inst, warn);
   312         }
   313         else if (!s.isRaw()) {
   314             Type t2 = asSuper(t, s.tsym);
   315             if (t2 != null && t2.isRaw()) {
   316                 if (isReifiable(s))
   317                     warn.silentUnchecked();
   318                 else
   319                     warn.warnUnchecked();
   320                 return true;
   321             }
   322         }
   323         return false;
   324     }
   326     /**
   327      * Is t a subtype of s?<br>
   328      * (not defined for Method and ForAll types)
   329      */
   330     final public boolean isSubtype(Type t, Type s) {
   331         return isSubtype(t, s, true);
   332     }
   333     final public boolean isSubtypeNoCapture(Type t, Type s) {
   334         return isSubtype(t, s, false);
   335     }
   336     public boolean isSubtype(Type t, Type s, boolean capture) {
   337         if (t == s)
   338             return true;
   340         if (s.tag >= firstPartialTag)
   341             return isSuperType(s, t);
   343         Type lower = lowerBound(s);
   344         if (s != lower)
   345             return isSubtype(capture ? capture(t) : t, lower, false);
   347         return isSubtype.visit(capture ? capture(t) : t, s);
   348     }
   349     // where
   350         private TypeRelation isSubtype = new TypeRelation()
   351         {
   352             public Boolean visitType(Type t, Type s) {
   353                 switch (t.tag) {
   354                 case BYTE: case CHAR:
   355                     return (t.tag == s.tag ||
   356                               t.tag + 2 <= s.tag && s.tag <= DOUBLE);
   357                 case SHORT: case INT: case LONG: case FLOAT: case DOUBLE:
   358                     return t.tag <= s.tag && s.tag <= DOUBLE;
   359                 case BOOLEAN: case VOID:
   360                     return t.tag == s.tag;
   361                 case TYPEVAR:
   362                     return isSubtypeNoCapture(t.getUpperBound(), s);
   363                 case BOT:
   364                     return
   365                         s.tag == BOT || s.tag == CLASS ||
   366                         s.tag == ARRAY || s.tag == TYPEVAR;
   367                 case NONE:
   368                     return false;
   369                 default:
   370                     throw new AssertionError("isSubtype " + t.tag);
   371                 }
   372             }
   374             private Set<TypePair> cache = new HashSet<TypePair>();
   376             private boolean containsTypeRecursive(Type t, Type s) {
   377                 TypePair pair = new TypePair(t, s);
   378                 if (cache.add(pair)) {
   379                     try {
   380                         return containsType(t.getTypeArguments(),
   381                                             s.getTypeArguments());
   382                     } finally {
   383                         cache.remove(pair);
   384                     }
   385                 } else {
   386                     return containsType(t.getTypeArguments(),
   387                                         rewriteSupers(s).getTypeArguments());
   388                 }
   389             }
   391             private Type rewriteSupers(Type t) {
   392                 if (!t.isParameterized())
   393                     return t;
   394                 ListBuffer<Type> from = lb();
   395                 ListBuffer<Type> to = lb();
   396                 adaptSelf(t, from, to);
   397                 if (from.isEmpty())
   398                     return t;
   399                 ListBuffer<Type> rewrite = lb();
   400                 boolean changed = false;
   401                 for (Type orig : to.toList()) {
   402                     Type s = rewriteSupers(orig);
   403                     if (s.isSuperBound() && !s.isExtendsBound()) {
   404                         s = new WildcardType(syms.objectType,
   405                                              BoundKind.UNBOUND,
   406                                              syms.boundClass);
   407                         changed = true;
   408                     } else if (s != orig) {
   409                         s = new WildcardType(upperBound(s),
   410                                              BoundKind.EXTENDS,
   411                                              syms.boundClass);
   412                         changed = true;
   413                     }
   414                     rewrite.append(s);
   415                 }
   416                 if (changed)
   417                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   418                 else
   419                     return t;
   420             }
   422             @Override
   423             public Boolean visitClassType(ClassType t, Type s) {
   424                 Type sup = asSuper(t, s.tsym);
   425                 return sup != null
   426                     && sup.tsym == s.tsym
   427                     // You're not allowed to write
   428                     //     Vector<Object> vec = new Vector<String>();
   429                     // But with wildcards you can write
   430                     //     Vector<? extends Object> vec = new Vector<String>();
   431                     // which means that subtype checking must be done
   432                     // here instead of same-type checking (via containsType).
   433                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   434                     && isSubtypeNoCapture(sup.getEnclosingType(),
   435                                           s.getEnclosingType());
   436             }
   438             @Override
   439             public Boolean visitArrayType(ArrayType t, Type s) {
   440                 if (s.tag == ARRAY) {
   441                     if (t.elemtype.tag <= lastBaseTag)
   442                         return isSameType(t.elemtype, elemtype(s));
   443                     else
   444                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   445                 }
   447                 if (s.tag == CLASS) {
   448                     Name sname = s.tsym.getQualifiedName();
   449                     return sname == names.java_lang_Object
   450                         || sname == names.java_lang_Cloneable
   451                         || sname == names.java_io_Serializable;
   452                 }
   454                 return false;
   455             }
   457             @Override
   458             public Boolean visitUndetVar(UndetVar t, Type s) {
   459                 //todo: test against origin needed? or replace with substitution?
   460                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   461                     return true;
   463                 if (t.inst != null)
   464                     return isSubtypeNoCapture(t.inst, s); // TODO: ", warn"?
   466                 t.hibounds = t.hibounds.prepend(s);
   467                 return true;
   468             }
   470             @Override
   471             public Boolean visitErrorType(ErrorType t, Type s) {
   472                 return true;
   473             }
   474         };
   476     /**
   477      * Is t a subtype of every type in given list `ts'?<br>
   478      * (not defined for Method and ForAll types)<br>
   479      * Allows unchecked conversions.
   480      */
   481     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   482         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   483             if (!isSubtypeUnchecked(t, l.head, warn))
   484                 return false;
   485         return true;
   486     }
   488     /**
   489      * Are corresponding elements of ts subtypes of ss?  If lists are
   490      * of different length, return false.
   491      */
   492     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   493         while (ts.tail != null && ss.tail != null
   494                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   495                isSubtype(ts.head, ss.head)) {
   496             ts = ts.tail;
   497             ss = ss.tail;
   498         }
   499         return ts.tail == null && ss.tail == null;
   500         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   501     }
   503     /**
   504      * Are corresponding elements of ts subtypes of ss, allowing
   505      * unchecked conversions?  If lists are of different length,
   506      * return false.
   507      **/
   508     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   509         while (ts.tail != null && ss.tail != null
   510                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   511                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   512             ts = ts.tail;
   513             ss = ss.tail;
   514         }
   515         return ts.tail == null && ss.tail == null;
   516         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   517     }
   518     // </editor-fold>
   520     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   521     /**
   522      * Is t a supertype of s?
   523      */
   524     public boolean isSuperType(Type t, Type s) {
   525         switch (t.tag) {
   526         case ERROR:
   527             return true;
   528         case UNDETVAR: {
   529             UndetVar undet = (UndetVar)t;
   530             if (t == s ||
   531                 undet.qtype == s ||
   532                 s.tag == ERROR ||
   533                 s.tag == BOT) return true;
   534             if (undet.inst != null)
   535                 return isSubtype(s, undet.inst);
   536             undet.lobounds = undet.lobounds.prepend(s);
   537             return true;
   538         }
   539         default:
   540             return isSubtype(s, t);
   541         }
   542     }
   543     // </editor-fold>
   545     // <editor-fold defaultstate="collapsed" desc="isSameType">
   546     /**
   547      * Are corresponding elements of the lists the same type?  If
   548      * lists are of different length, return false.
   549      */
   550     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   551         while (ts.tail != null && ss.tail != null
   552                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   553                isSameType(ts.head, ss.head)) {
   554             ts = ts.tail;
   555             ss = ss.tail;
   556         }
   557         return ts.tail == null && ss.tail == null;
   558         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   559     }
   561     /**
   562      * Is t the same type as s?
   563      */
   564     public boolean isSameType(Type t, Type s) {
   565         return isSameType.visit(t, s);
   566     }
   567     // where
   568         private TypeRelation isSameType = new TypeRelation() {
   570             public Boolean visitType(Type t, Type s) {
   571                 if (t == s)
   572                     return true;
   574                 if (s.tag >= firstPartialTag)
   575                     return visit(s, t);
   577                 switch (t.tag) {
   578                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   579                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   580                     return t.tag == s.tag;
   581                 case TYPEVAR:
   582                     return s.isSuperBound()
   583                         && !s.isExtendsBound()
   584                         && visit(t, upperBound(s));
   585                 default:
   586                     throw new AssertionError("isSameType " + t.tag);
   587                 }
   588             }
   590             @Override
   591             public Boolean visitWildcardType(WildcardType t, Type s) {
   592                 if (s.tag >= firstPartialTag)
   593                     return visit(s, t);
   594                 else
   595                     return false;
   596             }
   598             @Override
   599             public Boolean visitClassType(ClassType t, Type s) {
   600                 if (t == s)
   601                     return true;
   603                 if (s.tag >= firstPartialTag)
   604                     return visit(s, t);
   606                 if (s.isSuperBound() && !s.isExtendsBound())
   607                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   609                 if (t.isCompound() && s.isCompound()) {
   610                     if (!visit(supertype(t), supertype(s)))
   611                         return false;
   613                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   614                     for (Type x : interfaces(t))
   615                         set.add(new SingletonType(x));
   616                     for (Type x : interfaces(s)) {
   617                         if (!set.remove(new SingletonType(x)))
   618                             return false;
   619                     }
   620                     return (set.size() == 0);
   621                 }
   622                 return t.tsym == s.tsym
   623                     && visit(t.getEnclosingType(), s.getEnclosingType())
   624                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   625             }
   627             @Override
   628             public Boolean visitArrayType(ArrayType t, Type s) {
   629                 if (t == s)
   630                     return true;
   632                 if (s.tag >= firstPartialTag)
   633                     return visit(s, t);
   635                 return s.tag == ARRAY
   636                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   637             }
   639             @Override
   640             public Boolean visitMethodType(MethodType t, Type s) {
   641                 // isSameType for methods does not take thrown
   642                 // exceptions into account!
   643                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   644             }
   646             @Override
   647             public Boolean visitPackageType(PackageType t, Type s) {
   648                 return t == s;
   649             }
   651             @Override
   652             public Boolean visitForAll(ForAll t, Type s) {
   653                 if (s.tag != FORALL)
   654                     return false;
   656                 ForAll forAll = (ForAll)s;
   657                 return hasSameBounds(t, forAll)
   658                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   659             }
   661             @Override
   662             public Boolean visitUndetVar(UndetVar t, Type s) {
   663                 if (s.tag == WILDCARD)
   664                     // FIXME, this might be leftovers from before capture conversion
   665                     return false;
   667                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
   668                     return true;
   670                 if (t.inst != null)
   671                     return visit(t.inst, s);
   673                 t.inst = fromUnknownFun.apply(s);
   674                 for (List<Type> l = t.lobounds; l.nonEmpty(); l = l.tail) {
   675                     if (!isSubtype(l.head, t.inst))
   676                         return false;
   677                 }
   678                 for (List<Type> l = t.hibounds; l.nonEmpty(); l = l.tail) {
   679                     if (!isSubtype(t.inst, l.head))
   680                         return false;
   681                 }
   682                 return true;
   683             }
   685             @Override
   686             public Boolean visitErrorType(ErrorType t, Type s) {
   687                 return true;
   688             }
   689         };
   690     // </editor-fold>
   692     // <editor-fold defaultstate="collapsed" desc="fromUnknownFun">
   693     /**
   694      * A mapping that turns all unknown types in this type to fresh
   695      * unknown variables.
   696      */
   697     public Mapping fromUnknownFun = new Mapping("fromUnknownFun") {
   698             public Type apply(Type t) {
   699                 if (t.tag == UNKNOWN) return new UndetVar(t);
   700                 else return t.map(this);
   701             }
   702         };
   703     // </editor-fold>
   705     // <editor-fold defaultstate="collapsed" desc="Contains Type">
   706     public boolean containedBy(Type t, Type s) {
   707         switch (t.tag) {
   708         case UNDETVAR:
   709             if (s.tag == WILDCARD) {
   710                 UndetVar undetvar = (UndetVar)t;
   712                 // Because of wildcard capture, s must be on the left
   713                 // hand side of an assignment.  Furthermore, t is an
   714                 // underconstrained type variable, for example, one
   715                 // that is only used in the return type of a method.
   716                 // If the type variable is truly underconstrained, it
   717                 // cannot have any low bounds:
   718                 assert undetvar.lobounds.isEmpty() : undetvar;
   720                 undetvar.inst = glb(upperBound(s), undetvar.inst);
   721                 return true;
   722             } else {
   723                 return isSameType(t, s);
   724             }
   725         case ERROR:
   726             return true;
   727         default:
   728             return containsType(s, t);
   729         }
   730     }
   732     boolean containsType(List<Type> ts, List<Type> ss) {
   733         while (ts.nonEmpty() && ss.nonEmpty()
   734                && containsType(ts.head, ss.head)) {
   735             ts = ts.tail;
   736             ss = ss.tail;
   737         }
   738         return ts.isEmpty() && ss.isEmpty();
   739     }
   741     /**
   742      * Check if t contains s.
   743      *
   744      * <p>T contains S if:
   745      *
   746      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
   747      *
   748      * <p>This relation is only used by ClassType.isSubtype(), that
   749      * is,
   750      *
   751      * <p>{@code C<S> <: C<T> if T contains S.}
   752      *
   753      * <p>Because of F-bounds, this relation can lead to infinite
   754      * recursion.  Thus we must somehow break that recursion.  Notice
   755      * that containsType() is only called from ClassType.isSubtype().
   756      * Since the arguments have already been checked against their
   757      * bounds, we know:
   758      *
   759      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
   760      *
   761      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
   762      *
   763      * @param t a type
   764      * @param s a type
   765      */
   766     public boolean containsType(Type t, Type s) {
   767         return containsType.visit(t, s);
   768     }
   769     // where
   770         private TypeRelation containsType = new TypeRelation() {
   772             private Type U(Type t) {
   773                 while (t.tag == WILDCARD) {
   774                     WildcardType w = (WildcardType)t;
   775                     if (w.isSuperBound())
   776                         return w.bound == null ? syms.objectType : w.bound.bound;
   777                     else
   778                         t = w.type;
   779                 }
   780                 return t;
   781             }
   783             private Type L(Type t) {
   784                 while (t.tag == WILDCARD) {
   785                     WildcardType w = (WildcardType)t;
   786                     if (w.isExtendsBound())
   787                         return syms.botType;
   788                     else
   789                         t = w.type;
   790                 }
   791                 return t;
   792             }
   794             public Boolean visitType(Type t, Type s) {
   795                 if (s.tag >= firstPartialTag)
   796                     return containedBy(s, t);
   797                 else
   798                     return isSameType(t, s);
   799             }
   801             void debugContainsType(WildcardType t, Type s) {
   802                 System.err.println();
   803                 System.err.format(" does %s contain %s?%n", t, s);
   804                 System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
   805                                   upperBound(s), s, t, U(t),
   806                                   t.isSuperBound()
   807                                   || isSubtypeNoCapture(upperBound(s), U(t)));
   808                 System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
   809                                   L(t), t, s, lowerBound(s),
   810                                   t.isExtendsBound()
   811                                   || isSubtypeNoCapture(L(t), lowerBound(s)));
   812                 System.err.println();
   813             }
   815             @Override
   816             public Boolean visitWildcardType(WildcardType t, Type s) {
   817                 if (s.tag >= firstPartialTag)
   818                     return containedBy(s, t);
   819                 else {
   820                     // debugContainsType(t, s);
   821                     return isSameWildcard(t, s)
   822                         || isCaptureOf(s, t)
   823                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
   824                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
   825                 }
   826             }
   828             @Override
   829             public Boolean visitUndetVar(UndetVar t, Type s) {
   830                 if (s.tag != WILDCARD)
   831                     return isSameType(t, s);
   832                 else
   833                     return false;
   834             }
   836             @Override
   837             public Boolean visitErrorType(ErrorType t, Type s) {
   838                 return true;
   839             }
   840         };
   842     public boolean isCaptureOf(Type s, WildcardType t) {
   843         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
   844             return false;
   845         return isSameWildcard(t, ((CapturedType)s).wildcard);
   846     }
   848     public boolean isSameWildcard(WildcardType t, Type s) {
   849         if (s.tag != WILDCARD)
   850             return false;
   851         WildcardType w = (WildcardType)s;
   852         return w.kind == t.kind && w.type == t.type;
   853     }
   855     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
   856         while (ts.nonEmpty() && ss.nonEmpty()
   857                && containsTypeEquivalent(ts.head, ss.head)) {
   858             ts = ts.tail;
   859             ss = ss.tail;
   860         }
   861         return ts.isEmpty() && ss.isEmpty();
   862     }
   863     // </editor-fold>
   865     // <editor-fold defaultstate="collapsed" desc="isCastable">
   866     public boolean isCastable(Type t, Type s) {
   867         return isCastable(t, s, Warner.noWarnings);
   868     }
   870     /**
   871      * Is t is castable to s?<br>
   872      * s is assumed to be an erased type.<br>
   873      * (not defined for Method and ForAll types).
   874      */
   875     public boolean isCastable(Type t, Type s, Warner warn) {
   876         if (t == s)
   877             return true;
   879         if (t.isPrimitive() != s.isPrimitive())
   880             return allowBoxing && isConvertible(t, s, warn);
   882         if (warn != warnStack.head) {
   883             try {
   884                 warnStack = warnStack.prepend(warn);
   885                 return isCastable.visit(t, s);
   886             } finally {
   887                 warnStack = warnStack.tail;
   888             }
   889         } else {
   890             return isCastable.visit(t, s);
   891         }
   892     }
   893     // where
   894         private TypeRelation isCastable = new TypeRelation() {
   896             public Boolean visitType(Type t, Type s) {
   897                 if (s.tag == ERROR)
   898                     return true;
   900                 switch (t.tag) {
   901                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   902                 case DOUBLE:
   903                     return s.tag <= DOUBLE;
   904                 case BOOLEAN:
   905                     return s.tag == BOOLEAN;
   906                 case VOID:
   907                     return false;
   908                 case BOT:
   909                     return isSubtype(t, s);
   910                 default:
   911                     throw new AssertionError();
   912                 }
   913             }
   915             @Override
   916             public Boolean visitWildcardType(WildcardType t, Type s) {
   917                 return isCastable(upperBound(t), s, warnStack.head);
   918             }
   920             @Override
   921             public Boolean visitClassType(ClassType t, Type s) {
   922                 if (s.tag == ERROR || s.tag == BOT)
   923                     return true;
   925                 if (s.tag == TYPEVAR) {
   926                     if (isCastable(s.getUpperBound(), t, Warner.noWarnings)) {
   927                         warnStack.head.warnUnchecked();
   928                         return true;
   929                     } else {
   930                         return false;
   931                     }
   932                 }
   934                 if (t.isCompound()) {
   935                     if (!visit(supertype(t), s))
   936                         return false;
   937                     for (Type intf : interfaces(t)) {
   938                         if (!visit(intf, s))
   939                             return false;
   940                     }
   941                     return true;
   942                 }
   944                 if (s.isCompound()) {
   945                     // call recursively to reuse the above code
   946                     return visitClassType((ClassType)s, t);
   947                 }
   949                 if (s.tag == CLASS || s.tag == ARRAY) {
   950                     boolean upcast;
   951                     if ((upcast = isSubtype(erasure(t), erasure(s)))
   952                         || isSubtype(erasure(s), erasure(t))) {
   953                         if (!upcast && s.tag == ARRAY) {
   954                             if (!isReifiable(s))
   955                                 warnStack.head.warnUnchecked();
   956                             return true;
   957                         } else if (s.isRaw()) {
   958                             return true;
   959                         } else if (t.isRaw()) {
   960                             if (!isUnbounded(s))
   961                                 warnStack.head.warnUnchecked();
   962                             return true;
   963                         }
   964                         // Assume |a| <: |b|
   965                         final Type a = upcast ? t : s;
   966                         final Type b = upcast ? s : t;
   967                         final boolean HIGH = true;
   968                         final boolean LOW = false;
   969                         final boolean DONT_REWRITE_TYPEVARS = false;
   970                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
   971                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
   972                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
   973                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
   974                         Type lowSub = asSub(bLow, aLow.tsym);
   975                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
   976                         if (highSub == null) {
   977                             final boolean REWRITE_TYPEVARS = true;
   978                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
   979                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
   980                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
   981                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
   982                             lowSub = asSub(bLow, aLow.tsym);
   983                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
   984                         }
   985                         if (highSub != null) {
   986                             assert a.tsym == highSub.tsym && a.tsym == lowSub.tsym
   987                                 : a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym;
   988                             if (!disjointTypes(aHigh.getTypeArguments(), highSub.getTypeArguments())
   989                                 && !disjointTypes(aHigh.getTypeArguments(), lowSub.getTypeArguments())
   990                                 && !disjointTypes(aLow.getTypeArguments(), highSub.getTypeArguments())
   991                                 && !disjointTypes(aLow.getTypeArguments(), lowSub.getTypeArguments())) {
   992                                 if (upcast ? giveWarning(a, highSub) || giveWarning(a, lowSub)
   993                                            : giveWarning(highSub, a) || giveWarning(lowSub, a))
   994                                     warnStack.head.warnUnchecked();
   995                                 return true;
   996                             }
   997                         }
   998                         if (isReifiable(s))
   999                             return isSubtypeUnchecked(a, b);
  1000                         else
  1001                             return isSubtypeUnchecked(a, b, warnStack.head);
  1004                     // Sidecast
  1005                     if (s.tag == CLASS) {
  1006                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1007                             return ((t.tsym.flags() & FINAL) == 0)
  1008                                 ? sideCast(t, s, warnStack.head)
  1009                                 : sideCastFinal(t, s, warnStack.head);
  1010                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1011                             return ((s.tsym.flags() & FINAL) == 0)
  1012                                 ? sideCast(t, s, warnStack.head)
  1013                                 : sideCastFinal(t, s, warnStack.head);
  1014                         } else {
  1015                             // unrelated class types
  1016                             return false;
  1020                 return false;
  1023             @Override
  1024             public Boolean visitArrayType(ArrayType t, Type s) {
  1025                 switch (s.tag) {
  1026                 case ERROR:
  1027                 case BOT:
  1028                     return true;
  1029                 case TYPEVAR:
  1030                     if (isCastable(s, t, Warner.noWarnings)) {
  1031                         warnStack.head.warnUnchecked();
  1032                         return true;
  1033                     } else {
  1034                         return false;
  1036                 case CLASS:
  1037                     return isSubtype(t, s);
  1038                 case ARRAY:
  1039                     if (elemtype(t).tag <= lastBaseTag) {
  1040                         return elemtype(t).tag == elemtype(s).tag;
  1041                     } else {
  1042                         return visit(elemtype(t), elemtype(s));
  1044                 default:
  1045                     return false;
  1049             @Override
  1050             public Boolean visitTypeVar(TypeVar t, Type s) {
  1051                 switch (s.tag) {
  1052                 case ERROR:
  1053                 case BOT:
  1054                     return true;
  1055                 case TYPEVAR:
  1056                     if (isSubtype(t, s)) {
  1057                         return true;
  1058                     } else if (isCastable(t.bound, s, Warner.noWarnings)) {
  1059                         warnStack.head.warnUnchecked();
  1060                         return true;
  1061                     } else {
  1062                         return false;
  1064                 default:
  1065                     return isCastable(t.bound, s, warnStack.head);
  1069             @Override
  1070             public Boolean visitErrorType(ErrorType t, Type s) {
  1071                 return true;
  1073         };
  1074     // </editor-fold>
  1076     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1077     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1078         while (ts.tail != null && ss.tail != null) {
  1079             if (disjointType(ts.head, ss.head)) return true;
  1080             ts = ts.tail;
  1081             ss = ss.tail;
  1083         return false;
  1086     /**
  1087      * Two types or wildcards are considered disjoint if it can be
  1088      * proven that no type can be contained in both. It is
  1089      * conservative in that it is allowed to say that two types are
  1090      * not disjoint, even though they actually are.
  1092      * The type C<X> is castable to C<Y> exactly if X and Y are not
  1093      * disjoint.
  1094      */
  1095     public boolean disjointType(Type t, Type s) {
  1096         return disjointType.visit(t, s);
  1098     // where
  1099         private TypeRelation disjointType = new TypeRelation() {
  1101             private Set<TypePair> cache = new HashSet<TypePair>();
  1103             public Boolean visitType(Type t, Type s) {
  1104                 if (s.tag == WILDCARD)
  1105                     return visit(s, t);
  1106                 else
  1107                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1110             private boolean isCastableRecursive(Type t, Type s) {
  1111                 TypePair pair = new TypePair(t, s);
  1112                 if (cache.add(pair)) {
  1113                     try {
  1114                         return Types.this.isCastable(t, s);
  1115                     } finally {
  1116                         cache.remove(pair);
  1118                 } else {
  1119                     return true;
  1123             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1124                 TypePair pair = new TypePair(t, s);
  1125                 if (cache.add(pair)) {
  1126                     try {
  1127                         return Types.this.notSoftSubtype(t, s);
  1128                     } finally {
  1129                         cache.remove(pair);
  1131                 } else {
  1132                     return false;
  1136             @Override
  1137             public Boolean visitWildcardType(WildcardType t, Type s) {
  1138                 if (t.isUnbound())
  1139                     return false;
  1141                 if (s.tag != WILDCARD) {
  1142                     if (t.isExtendsBound())
  1143                         return notSoftSubtypeRecursive(s, t.type);
  1144                     else // isSuperBound()
  1145                         return notSoftSubtypeRecursive(t.type, s);
  1148                 if (s.isUnbound())
  1149                     return false;
  1151                 if (t.isExtendsBound()) {
  1152                     if (s.isExtendsBound())
  1153                         return !isCastableRecursive(t.type, upperBound(s));
  1154                     else if (s.isSuperBound())
  1155                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1156                 } else if (t.isSuperBound()) {
  1157                     if (s.isExtendsBound())
  1158                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1160                 return false;
  1162         };
  1163     // </editor-fold>
  1165     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1166     /**
  1167      * Returns the lower bounds of the formals of a method.
  1168      */
  1169     public List<Type> lowerBoundArgtypes(Type t) {
  1170         return map(t.getParameterTypes(), lowerBoundMapping);
  1172     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1173             public Type apply(Type t) {
  1174                 return lowerBound(t);
  1176         };
  1177     // </editor-fold>
  1179     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1180     /**
  1181      * This relation answers the question: is impossible that
  1182      * something of type `t' can be a subtype of `s'? This is
  1183      * different from the question "is `t' not a subtype of `s'?"
  1184      * when type variables are involved: Integer is not a subtype of T
  1185      * where <T extends Number> but it is not true that Integer cannot
  1186      * possibly be a subtype of T.
  1187      */
  1188     public boolean notSoftSubtype(Type t, Type s) {
  1189         if (t == s) return false;
  1190         if (t.tag == TYPEVAR) {
  1191             TypeVar tv = (TypeVar) t;
  1192             if (s.tag == TYPEVAR)
  1193                 s = s.getUpperBound();
  1194             return !isCastable(tv.bound,
  1195                                s,
  1196                                Warner.noWarnings);
  1198         if (s.tag != WILDCARD)
  1199             s = upperBound(s);
  1200         if (s.tag == TYPEVAR)
  1201             s = s.getUpperBound();
  1202         return !isSubtype(t, s);
  1204     // </editor-fold>
  1206     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1207     public boolean isReifiable(Type t) {
  1208         return isReifiable.visit(t);
  1210     // where
  1211         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1213             public Boolean visitType(Type t, Void ignored) {
  1214                 return true;
  1217             @Override
  1218             public Boolean visitClassType(ClassType t, Void ignored) {
  1219                 if (!t.isParameterized())
  1220                     return true;
  1222                 for (Type param : t.allparams()) {
  1223                     if (!param.isUnbound())
  1224                         return false;
  1226                 return true;
  1229             @Override
  1230             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1231                 return visit(t.elemtype);
  1234             @Override
  1235             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1236                 return false;
  1238         };
  1239     // </editor-fold>
  1241     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1242     public boolean isArray(Type t) {
  1243         while (t.tag == WILDCARD)
  1244             t = upperBound(t);
  1245         return t.tag == ARRAY;
  1248     /**
  1249      * The element type of an array.
  1250      */
  1251     public Type elemtype(Type t) {
  1252         switch (t.tag) {
  1253         case WILDCARD:
  1254             return elemtype(upperBound(t));
  1255         case ARRAY:
  1256             return ((ArrayType)t).elemtype;
  1257         case FORALL:
  1258             return elemtype(((ForAll)t).qtype);
  1259         case ERROR:
  1260             return t;
  1261         default:
  1262             return null;
  1266     /**
  1267      * Mapping to take element type of an arraytype
  1268      */
  1269     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1270         public Type apply(Type t) { return elemtype(t); }
  1271     };
  1273     /**
  1274      * The number of dimensions of an array type.
  1275      */
  1276     public int dimensions(Type t) {
  1277         int result = 0;
  1278         while (t.tag == ARRAY) {
  1279             result++;
  1280             t = elemtype(t);
  1282         return result;
  1284     // </editor-fold>
  1286     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1287     /**
  1288      * Return the (most specific) base type of t that starts with the
  1289      * given symbol.  If none exists, return null.
  1291      * @param t a type
  1292      * @param sym a symbol
  1293      */
  1294     public Type asSuper(Type t, Symbol sym) {
  1295         return asSuper.visit(t, sym);
  1297     // where
  1298         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1300             public Type visitType(Type t, Symbol sym) {
  1301                 return null;
  1304             @Override
  1305             public Type visitClassType(ClassType t, Symbol sym) {
  1306                 if (t.tsym == sym)
  1307                     return t;
  1309                 Type st = supertype(t);
  1310                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1311                     Type x = asSuper(st, sym);
  1312                     if (x != null)
  1313                         return x;
  1315                 if ((sym.flags() & INTERFACE) != 0) {
  1316                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1317                         Type x = asSuper(l.head, sym);
  1318                         if (x != null)
  1319                             return x;
  1322                 return null;
  1325             @Override
  1326             public Type visitArrayType(ArrayType t, Symbol sym) {
  1327                 return isSubtype(t, sym.type) ? sym.type : null;
  1330             @Override
  1331             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1332                 if (t.tsym == sym)
  1333                     return t;
  1334                 else
  1335                     return asSuper(t.bound, sym);
  1338             @Override
  1339             public Type visitErrorType(ErrorType t, Symbol sym) {
  1340                 return t;
  1342         };
  1344     /**
  1345      * Return the base type of t or any of its outer types that starts
  1346      * with the given symbol.  If none exists, return null.
  1348      * @param t a type
  1349      * @param sym a symbol
  1350      */
  1351     public Type asOuterSuper(Type t, Symbol sym) {
  1352         switch (t.tag) {
  1353         case CLASS:
  1354             do {
  1355                 Type s = asSuper(t, sym);
  1356                 if (s != null) return s;
  1357                 t = t.getEnclosingType();
  1358             } while (t.tag == CLASS);
  1359             return null;
  1360         case ARRAY:
  1361             return isSubtype(t, sym.type) ? sym.type : null;
  1362         case TYPEVAR:
  1363             return asSuper(t, sym);
  1364         case ERROR:
  1365             return t;
  1366         default:
  1367             return null;
  1371     /**
  1372      * Return the base type of t or any of its enclosing types that
  1373      * starts with the given symbol.  If none exists, return null.
  1375      * @param t a type
  1376      * @param sym a symbol
  1377      */
  1378     public Type asEnclosingSuper(Type t, Symbol sym) {
  1379         switch (t.tag) {
  1380         case CLASS:
  1381             do {
  1382                 Type s = asSuper(t, sym);
  1383                 if (s != null) return s;
  1384                 Type outer = t.getEnclosingType();
  1385                 t = (outer.tag == CLASS) ? outer :
  1386                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1387                     Type.noType;
  1388             } while (t.tag == CLASS);
  1389             return null;
  1390         case ARRAY:
  1391             return isSubtype(t, sym.type) ? sym.type : null;
  1392         case TYPEVAR:
  1393             return asSuper(t, sym);
  1394         case ERROR:
  1395             return t;
  1396         default:
  1397             return null;
  1400     // </editor-fold>
  1402     // <editor-fold defaultstate="collapsed" desc="memberType">
  1403     /**
  1404      * The type of given symbol, seen as a member of t.
  1406      * @param t a type
  1407      * @param sym a symbol
  1408      */
  1409     public Type memberType(Type t, Symbol sym) {
  1410         return (sym.flags() & STATIC) != 0
  1411             ? sym.type
  1412             : memberType.visit(t, sym);
  1414     // where
  1415         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1417             public Type visitType(Type t, Symbol sym) {
  1418                 return sym.type;
  1421             @Override
  1422             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1423                 return memberType(upperBound(t), sym);
  1426             @Override
  1427             public Type visitClassType(ClassType t, Symbol sym) {
  1428                 Symbol owner = sym.owner;
  1429                 long flags = sym.flags();
  1430                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1431                     Type base = asOuterSuper(t, owner);
  1432                     if (base != null) {
  1433                         List<Type> ownerParams = owner.type.allparams();
  1434                         List<Type> baseParams = base.allparams();
  1435                         if (ownerParams.nonEmpty()) {
  1436                             if (baseParams.isEmpty()) {
  1437                                 // then base is a raw type
  1438                                 return erasure(sym.type);
  1439                             } else {
  1440                                 return subst(sym.type, ownerParams, baseParams);
  1445                 return sym.type;
  1448             @Override
  1449             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1450                 return memberType(t.bound, sym);
  1453             @Override
  1454             public Type visitErrorType(ErrorType t, Symbol sym) {
  1455                 return t;
  1457         };
  1458     // </editor-fold>
  1460     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1461     public boolean isAssignable(Type t, Type s) {
  1462         return isAssignable(t, s, Warner.noWarnings);
  1465     /**
  1466      * Is t assignable to s?<br>
  1467      * Equivalent to subtype except for constant values and raw
  1468      * types.<br>
  1469      * (not defined for Method and ForAll types)
  1470      */
  1471     public boolean isAssignable(Type t, Type s, Warner warn) {
  1472         if (t.tag == ERROR)
  1473             return true;
  1474         if (t.tag <= INT && t.constValue() != null) {
  1475             int value = ((Number)t.constValue()).intValue();
  1476             switch (s.tag) {
  1477             case BYTE:
  1478                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1479                     return true;
  1480                 break;
  1481             case CHAR:
  1482                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1483                     return true;
  1484                 break;
  1485             case SHORT:
  1486                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1487                     return true;
  1488                 break;
  1489             case INT:
  1490                 return true;
  1491             case CLASS:
  1492                 switch (unboxedType(s).tag) {
  1493                 case BYTE:
  1494                 case CHAR:
  1495                 case SHORT:
  1496                     return isAssignable(t, unboxedType(s), warn);
  1498                 break;
  1501         return isConvertible(t, s, warn);
  1503     // </editor-fold>
  1505     // <editor-fold defaultstate="collapsed" desc="erasure">
  1506     /**
  1507      * The erasure of t {@code |t|} -- the type that results when all
  1508      * type parameters in t are deleted.
  1509      */
  1510     public Type erasure(Type t) {
  1511         return erasure(t, false);
  1513     //where
  1514     private Type erasure(Type t, boolean recurse) {
  1515         if (t.tag <= lastBaseTag)
  1516             return t; /* fast special case */
  1517         else
  1518             return erasure.visit(t, recurse);
  1520     // where
  1521         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1522             public Type visitType(Type t, Boolean recurse) {
  1523                 if (t.tag <= lastBaseTag)
  1524                     return t; /*fast special case*/
  1525                 else
  1526                     return t.map(recurse ? erasureRecFun : erasureFun);
  1529             @Override
  1530             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1531                 return erasure(upperBound(t), recurse);
  1534             @Override
  1535             public Type visitClassType(ClassType t, Boolean recurse) {
  1536                 Type erased = t.tsym.erasure(Types.this);
  1537                 if (recurse) {
  1538                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1540                 return erased;
  1543             @Override
  1544             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1545                 return erasure(t.bound, recurse);
  1548             @Override
  1549             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1550                 return t;
  1552         };
  1554     private Mapping erasureFun = new Mapping ("erasure") {
  1555             public Type apply(Type t) { return erasure(t); }
  1556         };
  1558     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1559         public Type apply(Type t) { return erasureRecursive(t); }
  1560     };
  1562     public List<Type> erasure(List<Type> ts) {
  1563         return Type.map(ts, erasureFun);
  1566     public Type erasureRecursive(Type t) {
  1567         return erasure(t, true);
  1570     public List<Type> erasureRecursive(List<Type> ts) {
  1571         return Type.map(ts, erasureRecFun);
  1573     // </editor-fold>
  1575     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1576     /**
  1577      * Make a compound type from non-empty list of types
  1579      * @param bounds            the types from which the compound type is formed
  1580      * @param supertype         is objectType if all bounds are interfaces,
  1581      *                          null otherwise.
  1582      */
  1583     public Type makeCompoundType(List<Type> bounds,
  1584                                  Type supertype) {
  1585         ClassSymbol bc =
  1586             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1587                             Type.moreInfo
  1588                                 ? names.fromString(bounds.toString())
  1589                                 : names.empty,
  1590                             syms.noSymbol);
  1591         if (bounds.head.tag == TYPEVAR)
  1592             // error condition, recover
  1593             bc.erasure_field = syms.objectType;
  1594         else
  1595             bc.erasure_field = erasure(bounds.head);
  1596         bc.members_field = new Scope(bc);
  1597         ClassType bt = (ClassType)bc.type;
  1598         bt.allparams_field = List.nil();
  1599         if (supertype != null) {
  1600             bt.supertype_field = supertype;
  1601             bt.interfaces_field = bounds;
  1602         } else {
  1603             bt.supertype_field = bounds.head;
  1604             bt.interfaces_field = bounds.tail;
  1606         assert bt.supertype_field.tsym.completer != null
  1607             || !bt.supertype_field.isInterface()
  1608             : bt.supertype_field;
  1609         return bt;
  1612     /**
  1613      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1614      * second parameter is computed directly. Note that this might
  1615      * cause a symbol completion.  Hence, this version of
  1616      * makeCompoundType may not be called during a classfile read.
  1617      */
  1618     public Type makeCompoundType(List<Type> bounds) {
  1619         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1620             supertype(bounds.head) : null;
  1621         return makeCompoundType(bounds, supertype);
  1624     /**
  1625      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  1626      * arguments are converted to a list and passed to the other
  1627      * method.  Note that this might cause a symbol completion.
  1628      * Hence, this version of makeCompoundType may not be called
  1629      * during a classfile read.
  1630      */
  1631     public Type makeCompoundType(Type bound1, Type bound2) {
  1632         return makeCompoundType(List.of(bound1, bound2));
  1634     // </editor-fold>
  1636     // <editor-fold defaultstate="collapsed" desc="supertype">
  1637     public Type supertype(Type t) {
  1638         return supertype.visit(t);
  1640     // where
  1641         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  1643             public Type visitType(Type t, Void ignored) {
  1644                 // A note on wildcards: there is no good way to
  1645                 // determine a supertype for a super bounded wildcard.
  1646                 return null;
  1649             @Override
  1650             public Type visitClassType(ClassType t, Void ignored) {
  1651                 if (t.supertype_field == null) {
  1652                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  1653                     // An interface has no superclass; its supertype is Object.
  1654                     if (t.isInterface())
  1655                         supertype = ((ClassType)t.tsym.type).supertype_field;
  1656                     if (t.supertype_field == null) {
  1657                         List<Type> actuals = classBound(t).allparams();
  1658                         List<Type> formals = t.tsym.type.allparams();
  1659                         if (t.hasErasedSupertypes()) {
  1660                             t.supertype_field = erasureRecursive(supertype);
  1661                         } else if (formals.nonEmpty()) {
  1662                             t.supertype_field = subst(supertype, formals, actuals);
  1664                         else {
  1665                             t.supertype_field = supertype;
  1669                 return t.supertype_field;
  1672             /**
  1673              * The supertype is always a class type. If the type
  1674              * variable's bounds start with a class type, this is also
  1675              * the supertype.  Otherwise, the supertype is
  1676              * java.lang.Object.
  1677              */
  1678             @Override
  1679             public Type visitTypeVar(TypeVar t, Void ignored) {
  1680                 if (t.bound.tag == TYPEVAR ||
  1681                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  1682                     return t.bound;
  1683                 } else {
  1684                     return supertype(t.bound);
  1688             @Override
  1689             public Type visitArrayType(ArrayType t, Void ignored) {
  1690                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  1691                     return arraySuperType();
  1692                 else
  1693                     return new ArrayType(supertype(t.elemtype), t.tsym);
  1696             @Override
  1697             public Type visitErrorType(ErrorType t, Void ignored) {
  1698                 return t;
  1700         };
  1701     // </editor-fold>
  1703     // <editor-fold defaultstate="collapsed" desc="interfaces">
  1704     /**
  1705      * Return the interfaces implemented by this class.
  1706      */
  1707     public List<Type> interfaces(Type t) {
  1708         return interfaces.visit(t);
  1710     // where
  1711         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  1713             public List<Type> visitType(Type t, Void ignored) {
  1714                 return List.nil();
  1717             @Override
  1718             public List<Type> visitClassType(ClassType t, Void ignored) {
  1719                 if (t.interfaces_field == null) {
  1720                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  1721                     if (t.interfaces_field == null) {
  1722                         // If t.interfaces_field is null, then t must
  1723                         // be a parameterized type (not to be confused
  1724                         // with a generic type declaration).
  1725                         // Terminology:
  1726                         //    Parameterized type: List<String>
  1727                         //    Generic type declaration: class List<E> { ... }
  1728                         // So t corresponds to List<String> and
  1729                         // t.tsym.type corresponds to List<E>.
  1730                         // The reason t must be parameterized type is
  1731                         // that completion will happen as a side
  1732                         // effect of calling
  1733                         // ClassSymbol.getInterfaces.  Since
  1734                         // t.interfaces_field is null after
  1735                         // completion, we can assume that t is not the
  1736                         // type of a class/interface declaration.
  1737                         assert t != t.tsym.type : t.toString();
  1738                         List<Type> actuals = t.allparams();
  1739                         List<Type> formals = t.tsym.type.allparams();
  1740                         if (t.hasErasedSupertypes()) {
  1741                             t.interfaces_field = erasureRecursive(interfaces);
  1742                         } else if (formals.nonEmpty()) {
  1743                             t.interfaces_field =
  1744                                 upperBounds(subst(interfaces, formals, actuals));
  1746                         else {
  1747                             t.interfaces_field = interfaces;
  1751                 return t.interfaces_field;
  1754             @Override
  1755             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  1756                 if (t.bound.isCompound())
  1757                     return interfaces(t.bound);
  1759                 if (t.bound.isInterface())
  1760                     return List.of(t.bound);
  1762                 return List.nil();
  1764         };
  1765     // </editor-fold>
  1767     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  1768     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  1770     public boolean isDerivedRaw(Type t) {
  1771         Boolean result = isDerivedRawCache.get(t);
  1772         if (result == null) {
  1773             result = isDerivedRawInternal(t);
  1774             isDerivedRawCache.put(t, result);
  1776         return result;
  1779     public boolean isDerivedRawInternal(Type t) {
  1780         if (t.isErroneous())
  1781             return false;
  1782         return
  1783             t.isRaw() ||
  1784             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  1785             isDerivedRaw(interfaces(t));
  1788     public boolean isDerivedRaw(List<Type> ts) {
  1789         List<Type> l = ts;
  1790         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  1791         return l.nonEmpty();
  1793     // </editor-fold>
  1795     // <editor-fold defaultstate="collapsed" desc="setBounds">
  1796     /**
  1797      * Set the bounds field of the given type variable to reflect a
  1798      * (possibly multiple) list of bounds.
  1799      * @param t                 a type variable
  1800      * @param bounds            the bounds, must be nonempty
  1801      * @param supertype         is objectType if all bounds are interfaces,
  1802      *                          null otherwise.
  1803      */
  1804     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  1805         if (bounds.tail.isEmpty())
  1806             t.bound = bounds.head;
  1807         else
  1808             t.bound = makeCompoundType(bounds, supertype);
  1809         t.rank_field = -1;
  1812     /**
  1813      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  1814      * third parameter is computed directly.  Note that this test
  1815      * might cause a symbol completion.  Hence, this version of
  1816      * setBounds may not be called during a classfile read.
  1817      */
  1818     public void setBounds(TypeVar t, List<Type> bounds) {
  1819         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1820             supertype(bounds.head) : null;
  1821         setBounds(t, bounds, supertype);
  1822         t.rank_field = -1;
  1824     // </editor-fold>
  1826     // <editor-fold defaultstate="collapsed" desc="getBounds">
  1827     /**
  1828      * Return list of bounds of the given type variable.
  1829      */
  1830     public List<Type> getBounds(TypeVar t) {
  1831         if (t.bound.isErroneous() || !t.bound.isCompound())
  1832             return List.of(t.bound);
  1833         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  1834             return interfaces(t).prepend(supertype(t));
  1835         else
  1836             // No superclass was given in bounds.
  1837             // In this case, supertype is Object, erasure is first interface.
  1838             return interfaces(t);
  1840     // </editor-fold>
  1842     // <editor-fold defaultstate="collapsed" desc="classBound">
  1843     /**
  1844      * If the given type is a (possibly selected) type variable,
  1845      * return the bounding class of this type, otherwise return the
  1846      * type itself.
  1847      */
  1848     public Type classBound(Type t) {
  1849         return classBound.visit(t);
  1851     // where
  1852         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  1854             public Type visitType(Type t, Void ignored) {
  1855                 return t;
  1858             @Override
  1859             public Type visitClassType(ClassType t, Void ignored) {
  1860                 Type outer1 = classBound(t.getEnclosingType());
  1861                 if (outer1 != t.getEnclosingType())
  1862                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  1863                 else
  1864                     return t;
  1867             @Override
  1868             public Type visitTypeVar(TypeVar t, Void ignored) {
  1869                 return classBound(supertype(t));
  1872             @Override
  1873             public Type visitErrorType(ErrorType t, Void ignored) {
  1874                 return t;
  1876         };
  1877     // </editor-fold>
  1879     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  1880     /**
  1881      * Returns true iff the first signature is a <em>sub
  1882      * signature</em> of the other.  This is <b>not</b> an equivalence
  1883      * relation.
  1885      * @see "The Java Language Specification, Third Ed. (8.4.2)."
  1886      * @see #overrideEquivalent(Type t, Type s)
  1887      * @param t first signature (possibly raw).
  1888      * @param s second signature (could be subjected to erasure).
  1889      * @return true if t is a sub signature of s.
  1890      */
  1891     public boolean isSubSignature(Type t, Type s) {
  1892         return hasSameArgs(t, s) || hasSameArgs(t, erasure(s));
  1895     /**
  1896      * Returns true iff these signatures are related by <em>override
  1897      * equivalence</em>.  This is the natural extension of
  1898      * isSubSignature to an equivalence relation.
  1900      * @see "The Java Language Specification, Third Ed. (8.4.2)."
  1901      * @see #isSubSignature(Type t, Type s)
  1902      * @param t a signature (possible raw, could be subjected to
  1903      * erasure).
  1904      * @param s a signature (possible raw, could be subjected to
  1905      * erasure).
  1906      * @return true if either argument is a sub signature of the other.
  1907      */
  1908     public boolean overrideEquivalent(Type t, Type s) {
  1909         return hasSameArgs(t, s) ||
  1910             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  1913     /**
  1914      * Does t have the same arguments as s?  It is assumed that both
  1915      * types are (possibly polymorphic) method types.  Monomorphic
  1916      * method types "have the same arguments", if their argument lists
  1917      * are equal.  Polymorphic method types "have the same arguments",
  1918      * if they have the same arguments after renaming all type
  1919      * variables of one to corresponding type variables in the other,
  1920      * where correspondence is by position in the type parameter list.
  1921      */
  1922     public boolean hasSameArgs(Type t, Type s) {
  1923         return hasSameArgs.visit(t, s);
  1925     // where
  1926         private TypeRelation hasSameArgs = new TypeRelation() {
  1928             public Boolean visitType(Type t, Type s) {
  1929                 throw new AssertionError();
  1932             @Override
  1933             public Boolean visitMethodType(MethodType t, Type s) {
  1934                 return s.tag == METHOD
  1935                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  1938             @Override
  1939             public Boolean visitForAll(ForAll t, Type s) {
  1940                 if (s.tag != FORALL)
  1941                     return false;
  1943                 ForAll forAll = (ForAll)s;
  1944                 return hasSameBounds(t, forAll)
  1945                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1948             @Override
  1949             public Boolean visitErrorType(ErrorType t, Type s) {
  1950                 return false;
  1952         };
  1953     // </editor-fold>
  1955     // <editor-fold defaultstate="collapsed" desc="subst">
  1956     public List<Type> subst(List<Type> ts,
  1957                             List<Type> from,
  1958                             List<Type> to) {
  1959         return new Subst(from, to).subst(ts);
  1962     /**
  1963      * Substitute all occurrences of a type in `from' with the
  1964      * corresponding type in `to' in 't'. Match lists `from' and `to'
  1965      * from the right: If lists have different length, discard leading
  1966      * elements of the longer list.
  1967      */
  1968     public Type subst(Type t, List<Type> from, List<Type> to) {
  1969         return new Subst(from, to).subst(t);
  1972     private class Subst extends UnaryVisitor<Type> {
  1973         List<Type> from;
  1974         List<Type> to;
  1976         public Subst(List<Type> from, List<Type> to) {
  1977             int fromLength = from.length();
  1978             int toLength = to.length();
  1979             while (fromLength > toLength) {
  1980                 fromLength--;
  1981                 from = from.tail;
  1983             while (fromLength < toLength) {
  1984                 toLength--;
  1985                 to = to.tail;
  1987             this.from = from;
  1988             this.to = to;
  1991         Type subst(Type t) {
  1992             if (from.tail == null)
  1993                 return t;
  1994             else
  1995                 return visit(t);
  1998         List<Type> subst(List<Type> ts) {
  1999             if (from.tail == null)
  2000                 return ts;
  2001             boolean wild = false;
  2002             if (ts.nonEmpty() && from.nonEmpty()) {
  2003                 Type head1 = subst(ts.head);
  2004                 List<Type> tail1 = subst(ts.tail);
  2005                 if (head1 != ts.head || tail1 != ts.tail)
  2006                     return tail1.prepend(head1);
  2008             return ts;
  2011         public Type visitType(Type t, Void ignored) {
  2012             return t;
  2015         @Override
  2016         public Type visitMethodType(MethodType t, Void ignored) {
  2017             List<Type> argtypes = subst(t.argtypes);
  2018             Type restype = subst(t.restype);
  2019             List<Type> thrown = subst(t.thrown);
  2020             if (argtypes == t.argtypes &&
  2021                 restype == t.restype &&
  2022                 thrown == t.thrown)
  2023                 return t;
  2024             else
  2025                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2028         @Override
  2029         public Type visitTypeVar(TypeVar t, Void ignored) {
  2030             for (List<Type> from = this.from, to = this.to;
  2031                  from.nonEmpty();
  2032                  from = from.tail, to = to.tail) {
  2033                 if (t == from.head) {
  2034                     return to.head.withTypeVar(t);
  2037             return t;
  2040         @Override
  2041         public Type visitClassType(ClassType t, Void ignored) {
  2042             if (!t.isCompound()) {
  2043                 List<Type> typarams = t.getTypeArguments();
  2044                 List<Type> typarams1 = subst(typarams);
  2045                 Type outer = t.getEnclosingType();
  2046                 Type outer1 = subst(outer);
  2047                 if (typarams1 == typarams && outer1 == outer)
  2048                     return t;
  2049                 else
  2050                     return new ClassType(outer1, typarams1, t.tsym);
  2051             } else {
  2052                 Type st = subst(supertype(t));
  2053                 List<Type> is = upperBounds(subst(interfaces(t)));
  2054                 if (st == supertype(t) && is == interfaces(t))
  2055                     return t;
  2056                 else
  2057                     return makeCompoundType(is.prepend(st));
  2061         @Override
  2062         public Type visitWildcardType(WildcardType t, Void ignored) {
  2063             Type bound = t.type;
  2064             if (t.kind != BoundKind.UNBOUND)
  2065                 bound = subst(bound);
  2066             if (bound == t.type) {
  2067                 return t;
  2068             } else {
  2069                 if (t.isExtendsBound() && bound.isExtendsBound())
  2070                     bound = upperBound(bound);
  2071                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2075         @Override
  2076         public Type visitArrayType(ArrayType t, Void ignored) {
  2077             Type elemtype = subst(t.elemtype);
  2078             if (elemtype == t.elemtype)
  2079                 return t;
  2080             else
  2081                 return new ArrayType(upperBound(elemtype), t.tsym);
  2084         @Override
  2085         public Type visitForAll(ForAll t, Void ignored) {
  2086             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2087             Type qtype1 = subst(t.qtype);
  2088             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2089                 return t;
  2090             } else if (tvars1 == t.tvars) {
  2091                 return new ForAll(tvars1, qtype1);
  2092             } else {
  2093                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2097         @Override
  2098         public Type visitErrorType(ErrorType t, Void ignored) {
  2099             return t;
  2103     public List<Type> substBounds(List<Type> tvars,
  2104                                   List<Type> from,
  2105                                   List<Type> to) {
  2106         if (tvars.isEmpty())
  2107             return tvars;
  2108         if (tvars.tail.isEmpty())
  2109             // fast common case
  2110             return List.<Type>of(substBound((TypeVar)tvars.head, from, to));
  2111         ListBuffer<Type> newBoundsBuf = lb();
  2112         boolean changed = false;
  2113         // calculate new bounds
  2114         for (Type t : tvars) {
  2115             TypeVar tv = (TypeVar) t;
  2116             Type bound = subst(tv.bound, from, to);
  2117             if (bound != tv.bound)
  2118                 changed = true;
  2119             newBoundsBuf.append(bound);
  2121         if (!changed)
  2122             return tvars;
  2123         ListBuffer<Type> newTvars = lb();
  2124         // create new type variables without bounds
  2125         for (Type t : tvars) {
  2126             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2128         // the new bounds should use the new type variables in place
  2129         // of the old
  2130         List<Type> newBounds = newBoundsBuf.toList();
  2131         from = tvars;
  2132         to = newTvars.toList();
  2133         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2134             newBounds.head = subst(newBounds.head, from, to);
  2136         newBounds = newBoundsBuf.toList();
  2137         // set the bounds of new type variables to the new bounds
  2138         for (Type t : newTvars.toList()) {
  2139             TypeVar tv = (TypeVar) t;
  2140             tv.bound = newBounds.head;
  2141             newBounds = newBounds.tail;
  2143         return newTvars.toList();
  2146     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2147         Type bound1 = subst(t.bound, from, to);
  2148         if (bound1 == t.bound)
  2149             return t;
  2150         else
  2151             return new TypeVar(t.tsym, bound1, syms.botType);
  2153     // </editor-fold>
  2155     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2156     /**
  2157      * Does t have the same bounds for quantified variables as s?
  2158      */
  2159     boolean hasSameBounds(ForAll t, ForAll s) {
  2160         List<Type> l1 = t.tvars;
  2161         List<Type> l2 = s.tvars;
  2162         while (l1.nonEmpty() && l2.nonEmpty() &&
  2163                isSameType(l1.head.getUpperBound(),
  2164                           subst(l2.head.getUpperBound(),
  2165                                 s.tvars,
  2166                                 t.tvars))) {
  2167             l1 = l1.tail;
  2168             l2 = l2.tail;
  2170         return l1.isEmpty() && l2.isEmpty();
  2172     // </editor-fold>
  2174     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2175     /** Create new vector of type variables from list of variables
  2176      *  changing all recursive bounds from old to new list.
  2177      */
  2178     public List<Type> newInstances(List<Type> tvars) {
  2179         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2180         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2181             TypeVar tv = (TypeVar) l.head;
  2182             tv.bound = subst(tv.bound, tvars, tvars1);
  2184         return tvars1;
  2186     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2187             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2188         };
  2189     // </editor-fold>
  2191     // <editor-fold defaultstate="collapsed" desc="rank">
  2192     /**
  2193      * The rank of a class is the length of the longest path between
  2194      * the class and java.lang.Object in the class inheritance
  2195      * graph. Undefined for all but reference types.
  2196      */
  2197     public int rank(Type t) {
  2198         switch(t.tag) {
  2199         case CLASS: {
  2200             ClassType cls = (ClassType)t;
  2201             if (cls.rank_field < 0) {
  2202                 Name fullname = cls.tsym.getQualifiedName();
  2203                 if (fullname == fullname.table.java_lang_Object)
  2204                     cls.rank_field = 0;
  2205                 else {
  2206                     int r = rank(supertype(cls));
  2207                     for (List<Type> l = interfaces(cls);
  2208                          l.nonEmpty();
  2209                          l = l.tail) {
  2210                         if (rank(l.head) > r)
  2211                             r = rank(l.head);
  2213                     cls.rank_field = r + 1;
  2216             return cls.rank_field;
  2218         case TYPEVAR: {
  2219             TypeVar tvar = (TypeVar)t;
  2220             if (tvar.rank_field < 0) {
  2221                 int r = rank(supertype(tvar));
  2222                 for (List<Type> l = interfaces(tvar);
  2223                      l.nonEmpty();
  2224                      l = l.tail) {
  2225                     if (rank(l.head) > r) r = rank(l.head);
  2227                 tvar.rank_field = r + 1;
  2229             return tvar.rank_field;
  2231         case ERROR:
  2232             return 0;
  2233         default:
  2234             throw new AssertionError();
  2237     // </editor-fold>
  2239     // <editor-fold defaultstate="collapsed" desc="toString">
  2240     /**
  2241      * This toString is slightly more descriptive than the one on Type.
  2242      */
  2243     public String toString(Type t) {
  2244         if (t.tag == FORALL) {
  2245             ForAll forAll = (ForAll)t;
  2246             return typaramsString(forAll.tvars) + forAll.qtype;
  2248         return "" + t;
  2250     // where
  2251         private String typaramsString(List<Type> tvars) {
  2252             StringBuffer s = new StringBuffer();
  2253             s.append('<');
  2254             boolean first = true;
  2255             for (Type t : tvars) {
  2256                 if (!first) s.append(", ");
  2257                 first = false;
  2258                 appendTyparamString(((TypeVar)t), s);
  2260             s.append('>');
  2261             return s.toString();
  2263         private void appendTyparamString(TypeVar t, StringBuffer buf) {
  2264             buf.append(t);
  2265             if (t.bound == null ||
  2266                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2267                 return;
  2268             buf.append(" extends "); // Java syntax; no need for i18n
  2269             Type bound = t.bound;
  2270             if (!bound.isCompound()) {
  2271                 buf.append(bound);
  2272             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2273                 buf.append(supertype(t));
  2274                 for (Type intf : interfaces(t)) {
  2275                     buf.append('&');
  2276                     buf.append(intf);
  2278             } else {
  2279                 // No superclass was given in bounds.
  2280                 // In this case, supertype is Object, erasure is first interface.
  2281                 boolean first = true;
  2282                 for (Type intf : interfaces(t)) {
  2283                     if (!first) buf.append('&');
  2284                     first = false;
  2285                     buf.append(intf);
  2289     // </editor-fold>
  2291     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  2292     /**
  2293      * A cache for closures.
  2295      * <p>A closure is a list of all the supertypes and interfaces of
  2296      * a class or interface type, ordered by ClassSymbol.precedes
  2297      * (that is, subclasses come first, arbitrary but fixed
  2298      * otherwise).
  2299      */
  2300     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  2302     /**
  2303      * Returns the closure of a class or interface type.
  2304      */
  2305     public List<Type> closure(Type t) {
  2306         List<Type> cl = closureCache.get(t);
  2307         if (cl == null) {
  2308             Type st = supertype(t);
  2309             if (!t.isCompound()) {
  2310                 if (st.tag == CLASS) {
  2311                     cl = insert(closure(st), t);
  2312                 } else if (st.tag == TYPEVAR) {
  2313                     cl = closure(st).prepend(t);
  2314                 } else {
  2315                     cl = List.of(t);
  2317             } else {
  2318                 cl = closure(supertype(t));
  2320             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  2321                 cl = union(cl, closure(l.head));
  2322             closureCache.put(t, cl);
  2324         return cl;
  2327     /**
  2328      * Insert a type in a closure
  2329      */
  2330     public List<Type> insert(List<Type> cl, Type t) {
  2331         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  2332             return cl.prepend(t);
  2333         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  2334             return insert(cl.tail, t).prepend(cl.head);
  2335         } else {
  2336             return cl;
  2340     /**
  2341      * Form the union of two closures
  2342      */
  2343     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  2344         if (cl1.isEmpty()) {
  2345             return cl2;
  2346         } else if (cl2.isEmpty()) {
  2347             return cl1;
  2348         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  2349             return union(cl1.tail, cl2).prepend(cl1.head);
  2350         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  2351             return union(cl1, cl2.tail).prepend(cl2.head);
  2352         } else {
  2353             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  2357     /**
  2358      * Intersect two closures
  2359      */
  2360     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  2361         if (cl1 == cl2)
  2362             return cl1;
  2363         if (cl1.isEmpty() || cl2.isEmpty())
  2364             return List.nil();
  2365         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  2366             return intersect(cl1.tail, cl2);
  2367         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  2368             return intersect(cl1, cl2.tail);
  2369         if (isSameType(cl1.head, cl2.head))
  2370             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  2371         if (cl1.head.tsym == cl2.head.tsym &&
  2372             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  2373             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  2374                 Type merge = merge(cl1.head,cl2.head);
  2375                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  2377             if (cl1.head.isRaw() || cl2.head.isRaw())
  2378                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  2380         return intersect(cl1.tail, cl2.tail);
  2382     // where
  2383         class TypePair {
  2384             final Type t1;
  2385             final Type t2;
  2386             TypePair(Type t1, Type t2) {
  2387                 this.t1 = t1;
  2388                 this.t2 = t2;
  2390             @Override
  2391             public int hashCode() {
  2392                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  2394             @Override
  2395             public boolean equals(Object obj) {
  2396                 if (!(obj instanceof TypePair))
  2397                     return false;
  2398                 TypePair typePair = (TypePair)obj;
  2399                 return isSameType(t1, typePair.t1)
  2400                     && isSameType(t2, typePair.t2);
  2403         Set<TypePair> mergeCache = new HashSet<TypePair>();
  2404         private Type merge(Type c1, Type c2) {
  2405             ClassType class1 = (ClassType) c1;
  2406             List<Type> act1 = class1.getTypeArguments();
  2407             ClassType class2 = (ClassType) c2;
  2408             List<Type> act2 = class2.getTypeArguments();
  2409             ListBuffer<Type> merged = new ListBuffer<Type>();
  2410             List<Type> typarams = class1.tsym.type.getTypeArguments();
  2412             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  2413                 if (containsType(act1.head, act2.head)) {
  2414                     merged.append(act1.head);
  2415                 } else if (containsType(act2.head, act1.head)) {
  2416                     merged.append(act2.head);
  2417                 } else {
  2418                     TypePair pair = new TypePair(c1, c2);
  2419                     Type m;
  2420                     if (mergeCache.add(pair)) {
  2421                         m = new WildcardType(lub(upperBound(act1.head),
  2422                                                  upperBound(act2.head)),
  2423                                              BoundKind.EXTENDS,
  2424                                              syms.boundClass);
  2425                         mergeCache.remove(pair);
  2426                     } else {
  2427                         m = new WildcardType(syms.objectType,
  2428                                              BoundKind.UNBOUND,
  2429                                              syms.boundClass);
  2431                     merged.append(m.withTypeVar(typarams.head));
  2433                 act1 = act1.tail;
  2434                 act2 = act2.tail;
  2435                 typarams = typarams.tail;
  2437             assert(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  2438             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  2441     /**
  2442      * Return the minimum type of a closure, a compound type if no
  2443      * unique minimum exists.
  2444      */
  2445     private Type compoundMin(List<Type> cl) {
  2446         if (cl.isEmpty()) return syms.objectType;
  2447         List<Type> compound = closureMin(cl);
  2448         if (compound.isEmpty())
  2449             return null;
  2450         else if (compound.tail.isEmpty())
  2451             return compound.head;
  2452         else
  2453             return makeCompoundType(compound);
  2456     /**
  2457      * Return the minimum types of a closure, suitable for computing
  2458      * compoundMin or glb.
  2459      */
  2460     private List<Type> closureMin(List<Type> cl) {
  2461         ListBuffer<Type> classes = lb();
  2462         ListBuffer<Type> interfaces = lb();
  2463         while (!cl.isEmpty()) {
  2464             Type current = cl.head;
  2465             if (current.isInterface())
  2466                 interfaces.append(current);
  2467             else
  2468                 classes.append(current);
  2469             ListBuffer<Type> candidates = lb();
  2470             for (Type t : cl.tail) {
  2471                 if (!isSubtypeNoCapture(current, t))
  2472                     candidates.append(t);
  2474             cl = candidates.toList();
  2476         return classes.appendList(interfaces).toList();
  2479     /**
  2480      * Return the least upper bound of pair of types.  if the lub does
  2481      * not exist return null.
  2482      */
  2483     public Type lub(Type t1, Type t2) {
  2484         return lub(List.of(t1, t2));
  2487     /**
  2488      * Return the least upper bound (lub) of set of types.  If the lub
  2489      * does not exist return the type of null (bottom).
  2490      */
  2491     public Type lub(List<Type> ts) {
  2492         final int ARRAY_BOUND = 1;
  2493         final int CLASS_BOUND = 2;
  2494         int boundkind = 0;
  2495         for (Type t : ts) {
  2496             switch (t.tag) {
  2497             case CLASS:
  2498                 boundkind |= CLASS_BOUND;
  2499                 break;
  2500             case ARRAY:
  2501                 boundkind |= ARRAY_BOUND;
  2502                 break;
  2503             case  TYPEVAR:
  2504                 do {
  2505                     t = t.getUpperBound();
  2506                 } while (t.tag == TYPEVAR);
  2507                 if (t.tag == ARRAY) {
  2508                     boundkind |= ARRAY_BOUND;
  2509                 } else {
  2510                     boundkind |= CLASS_BOUND;
  2512                 break;
  2513             default:
  2514                 if (t.isPrimitive())
  2515                     return syms.errType;
  2518         switch (boundkind) {
  2519         case 0:
  2520             return syms.botType;
  2522         case ARRAY_BOUND:
  2523             // calculate lub(A[], B[])
  2524             List<Type> elements = Type.map(ts, elemTypeFun);
  2525             for (Type t : elements) {
  2526                 if (t.isPrimitive()) {
  2527                     // if a primitive type is found, then return
  2528                     // arraySuperType unless all the types are the
  2529                     // same
  2530                     Type first = ts.head;
  2531                     for (Type s : ts.tail) {
  2532                         if (!isSameType(first, s)) {
  2533                              // lub(int[], B[]) is Cloneable & Serializable
  2534                             return arraySuperType();
  2537                     // all the array types are the same, return one
  2538                     // lub(int[], int[]) is int[]
  2539                     return first;
  2542             // lub(A[], B[]) is lub(A, B)[]
  2543             return new ArrayType(lub(elements), syms.arrayClass);
  2545         case CLASS_BOUND:
  2546             // calculate lub(A, B)
  2547             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  2548                 ts = ts.tail;
  2549             assert !ts.isEmpty();
  2550             List<Type> cl = closure(ts.head);
  2551             for (Type t : ts.tail) {
  2552                 if (t.tag == CLASS || t.tag == TYPEVAR)
  2553                     cl = intersect(cl, closure(t));
  2555             return compoundMin(cl);
  2557         default:
  2558             // calculate lub(A, B[])
  2559             List<Type> classes = List.of(arraySuperType());
  2560             for (Type t : ts) {
  2561                 if (t.tag != ARRAY) // Filter out any arrays
  2562                     classes = classes.prepend(t);
  2564             // lub(A, B[]) is lub(A, arraySuperType)
  2565             return lub(classes);
  2568     // where
  2569         private Type arraySuperType = null;
  2570         private Type arraySuperType() {
  2571             // initialized lazily to avoid problems during compiler startup
  2572             if (arraySuperType == null) {
  2573                 synchronized (this) {
  2574                     if (arraySuperType == null) {
  2575                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  2576                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  2577                                                                   syms.cloneableType),
  2578                                                           syms.objectType);
  2582             return arraySuperType;
  2584     // </editor-fold>
  2586     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  2587     public Type glb(Type t, Type s) {
  2588         if (s == null)
  2589             return t;
  2590         else if (isSubtypeNoCapture(t, s))
  2591             return t;
  2592         else if (isSubtypeNoCapture(s, t))
  2593             return s;
  2595         List<Type> closure = union(closure(t), closure(s));
  2596         List<Type> bounds = closureMin(closure);
  2598         if (bounds.isEmpty()) {             // length == 0
  2599             return syms.objectType;
  2600         } else if (bounds.tail.isEmpty()) { // length == 1
  2601             return bounds.head;
  2602         } else {                            // length > 1
  2603             int classCount = 0;
  2604             for (Type bound : bounds)
  2605                 if (!bound.isInterface())
  2606                     classCount++;
  2607             if (classCount > 1)
  2608                 return syms.errType;
  2610         return makeCompoundType(bounds);
  2612     // </editor-fold>
  2614     // <editor-fold defaultstate="collapsed" desc="hashCode">
  2615     /**
  2616      * Compute a hash code on a type.
  2617      */
  2618     public static int hashCode(Type t) {
  2619         return hashCode.visit(t);
  2621     // where
  2622         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  2624             public Integer visitType(Type t, Void ignored) {
  2625                 return t.tag;
  2628             @Override
  2629             public Integer visitClassType(ClassType t, Void ignored) {
  2630                 int result = visit(t.getEnclosingType());
  2631                 result *= 127;
  2632                 result += t.tsym.flatName().hashCode();
  2633                 for (Type s : t.getTypeArguments()) {
  2634                     result *= 127;
  2635                     result += visit(s);
  2637                 return result;
  2640             @Override
  2641             public Integer visitWildcardType(WildcardType t, Void ignored) {
  2642                 int result = t.kind.hashCode();
  2643                 if (t.type != null) {
  2644                     result *= 127;
  2645                     result += visit(t.type);
  2647                 return result;
  2650             @Override
  2651             public Integer visitArrayType(ArrayType t, Void ignored) {
  2652                 return visit(t.elemtype) + 12;
  2655             @Override
  2656             public Integer visitTypeVar(TypeVar t, Void ignored) {
  2657                 return System.identityHashCode(t.tsym);
  2660             @Override
  2661             public Integer visitUndetVar(UndetVar t, Void ignored) {
  2662                 return System.identityHashCode(t);
  2665             @Override
  2666             public Integer visitErrorType(ErrorType t, Void ignored) {
  2667                 return 0;
  2669         };
  2670     // </editor-fold>
  2672     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  2673     /**
  2674      * Does t have a result that is a subtype of the result type of s,
  2675      * suitable for covariant returns?  It is assumed that both types
  2676      * are (possibly polymorphic) method types.  Monomorphic method
  2677      * types are handled in the obvious way.  Polymorphic method types
  2678      * require renaming all type variables of one to corresponding
  2679      * type variables in the other, where correspondence is by
  2680      * position in the type parameter list. */
  2681     public boolean resultSubtype(Type t, Type s, Warner warner) {
  2682         List<Type> tvars = t.getTypeArguments();
  2683         List<Type> svars = s.getTypeArguments();
  2684         Type tres = t.getReturnType();
  2685         Type sres = subst(s.getReturnType(), svars, tvars);
  2686         return covariantReturnType(tres, sres, warner);
  2689     /**
  2690      * Return-Type-Substitutable.
  2691      * @see <a href="http://java.sun.com/docs/books/jls/">The Java
  2692      * Language Specification, Third Ed. (8.4.5)</a>
  2693      */
  2694     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  2695         if (hasSameArgs(r1, r2))
  2696             return resultSubtype(r1, r2, Warner.noWarnings);
  2697         else
  2698             return covariantReturnType(r1.getReturnType(),
  2699                                        erasure(r2.getReturnType()),
  2700                                        Warner.noWarnings);
  2703     public boolean returnTypeSubstitutable(Type r1,
  2704                                            Type r2, Type r2res,
  2705                                            Warner warner) {
  2706         if (isSameType(r1.getReturnType(), r2res))
  2707             return true;
  2708         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  2709             return false;
  2711         if (hasSameArgs(r1, r2))
  2712             return covariantReturnType(r1.getReturnType(), r2res, warner);
  2713         if (!source.allowCovariantReturns())
  2714             return false;
  2715         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  2716             return true;
  2717         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  2718             return false;
  2719         warner.warnUnchecked();
  2720         return true;
  2723     /**
  2724      * Is t an appropriate return type in an overrider for a
  2725      * method that returns s?
  2726      */
  2727     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  2728         return
  2729             isSameType(t, s) ||
  2730             source.allowCovariantReturns() &&
  2731             !t.isPrimitive() &&
  2732             !s.isPrimitive() &&
  2733             isAssignable(t, s, warner);
  2735     // </editor-fold>
  2737     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  2738     /**
  2739      * Return the class that boxes the given primitive.
  2740      */
  2741     public ClassSymbol boxedClass(Type t) {
  2742         return reader.enterClass(syms.boxedName[t.tag]);
  2745     /**
  2746      * Return the primitive type corresponding to a boxed type.
  2747      */
  2748     public Type unboxedType(Type t) {
  2749         if (allowBoxing) {
  2750             for (int i=0; i<syms.boxedName.length; i++) {
  2751                 Name box = syms.boxedName[i];
  2752                 if (box != null &&
  2753                     asSuper(t, reader.enterClass(box)) != null)
  2754                     return syms.typeOfTag[i];
  2757         return Type.noType;
  2759     // </editor-fold>
  2761     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  2762     /*
  2763      * JLS 3rd Ed. 5.1.10 Capture Conversion:
  2765      * Let G name a generic type declaration with n formal type
  2766      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  2767      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  2768      * where, for 1 <= i <= n:
  2770      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  2771      *   Si is a fresh type variable whose upper bound is
  2772      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  2773      *   type.
  2775      * + If Ti is a wildcard type argument of the form ? extends Bi,
  2776      *   then Si is a fresh type variable whose upper bound is
  2777      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  2778      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  2779      *   a compile-time error if for any two classes (not interfaces)
  2780      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  2782      * + If Ti is a wildcard type argument of the form ? super Bi,
  2783      *   then Si is a fresh type variable whose upper bound is
  2784      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  2786      * + Otherwise, Si = Ti.
  2788      * Capture conversion on any type other than a parameterized type
  2789      * (4.5) acts as an identity conversion (5.1.1). Capture
  2790      * conversions never require a special action at run time and
  2791      * therefore never throw an exception at run time.
  2793      * Capture conversion is not applied recursively.
  2794      */
  2795     /**
  2796      * Capture conversion as specified by JLS 3rd Ed.
  2797      */
  2798     public Type capture(Type t) {
  2799         if (t.tag != CLASS)
  2800             return t;
  2801         ClassType cls = (ClassType)t;
  2802         if (cls.isRaw() || !cls.isParameterized())
  2803             return cls;
  2805         ClassType G = (ClassType)cls.asElement().asType();
  2806         List<Type> A = G.getTypeArguments();
  2807         List<Type> T = cls.getTypeArguments();
  2808         List<Type> S = freshTypeVariables(T);
  2810         List<Type> currentA = A;
  2811         List<Type> currentT = T;
  2812         List<Type> currentS = S;
  2813         boolean captured = false;
  2814         while (!currentA.isEmpty() &&
  2815                !currentT.isEmpty() &&
  2816                !currentS.isEmpty()) {
  2817             if (currentS.head != currentT.head) {
  2818                 captured = true;
  2819                 WildcardType Ti = (WildcardType)currentT.head;
  2820                 Type Ui = currentA.head.getUpperBound();
  2821                 CapturedType Si = (CapturedType)currentS.head;
  2822                 if (Ui == null)
  2823                     Ui = syms.objectType;
  2824                 switch (Ti.kind) {
  2825                 case UNBOUND:
  2826                     Si.bound = subst(Ui, A, S);
  2827                     Si.lower = syms.botType;
  2828                     break;
  2829                 case EXTENDS:
  2830                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  2831                     Si.lower = syms.botType;
  2832                     break;
  2833                 case SUPER:
  2834                     Si.bound = subst(Ui, A, S);
  2835                     Si.lower = Ti.getSuperBound();
  2836                     break;
  2838                 if (Si.bound == Si.lower)
  2839                     currentS.head = Si.bound;
  2841             currentA = currentA.tail;
  2842             currentT = currentT.tail;
  2843             currentS = currentS.tail;
  2845         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  2846             return erasure(t); // some "rare" type involved
  2848         if (captured)
  2849             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  2850         else
  2851             return t;
  2853     // where
  2854         private List<Type> freshTypeVariables(List<Type> types) {
  2855             ListBuffer<Type> result = lb();
  2856             for (Type t : types) {
  2857                 if (t.tag == WILDCARD) {
  2858                     Type bound = ((WildcardType)t).getExtendsBound();
  2859                     if (bound == null)
  2860                         bound = syms.objectType;
  2861                     result.append(new CapturedType(capturedName,
  2862                                                    syms.noSymbol,
  2863                                                    bound,
  2864                                                    syms.botType,
  2865                                                    (WildcardType)t));
  2866                 } else {
  2867                     result.append(t);
  2870             return result.toList();
  2872     // </editor-fold>
  2874     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  2875     private List<Type> upperBounds(List<Type> ss) {
  2876         if (ss.isEmpty()) return ss;
  2877         Type head = upperBound(ss.head);
  2878         List<Type> tail = upperBounds(ss.tail);
  2879         if (head != ss.head || tail != ss.tail)
  2880             return tail.prepend(head);
  2881         else
  2882             return ss;
  2885     private boolean sideCast(Type from, Type to, Warner warn) {
  2886         // We are casting from type $from$ to type $to$, which are
  2887         // non-final unrelated types.  This method
  2888         // tries to reject a cast by transferring type parameters
  2889         // from $to$ to $from$ by common superinterfaces.
  2890         boolean reverse = false;
  2891         Type target = to;
  2892         if ((to.tsym.flags() & INTERFACE) == 0) {
  2893             assert (from.tsym.flags() & INTERFACE) != 0;
  2894             reverse = true;
  2895             to = from;
  2896             from = target;
  2898         List<Type> commonSupers = superClosure(to, erasure(from));
  2899         boolean giveWarning = commonSupers.isEmpty();
  2900         // The arguments to the supers could be unified here to
  2901         // get a more accurate analysis
  2902         while (commonSupers.nonEmpty()) {
  2903             Type t1 = asSuper(from, commonSupers.head.tsym);
  2904             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  2905             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  2906                 return false;
  2907             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  2908             commonSupers = commonSupers.tail;
  2910         if (giveWarning && !isReifiable(to))
  2911             warn.warnUnchecked();
  2912         if (!source.allowCovariantReturns())
  2913             // reject if there is a common method signature with
  2914             // incompatible return types.
  2915             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  2916         return true;
  2919     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  2920         // We are casting from type $from$ to type $to$, which are
  2921         // unrelated types one of which is final and the other of
  2922         // which is an interface.  This method
  2923         // tries to reject a cast by transferring type parameters
  2924         // from the final class to the interface.
  2925         boolean reverse = false;
  2926         Type target = to;
  2927         if ((to.tsym.flags() & INTERFACE) == 0) {
  2928             assert (from.tsym.flags() & INTERFACE) != 0;
  2929             reverse = true;
  2930             to = from;
  2931             from = target;
  2933         assert (from.tsym.flags() & FINAL) != 0;
  2934         Type t1 = asSuper(from, to.tsym);
  2935         if (t1 == null) return false;
  2936         Type t2 = to;
  2937         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  2938             return false;
  2939         if (!source.allowCovariantReturns())
  2940             // reject if there is a common method signature with
  2941             // incompatible return types.
  2942             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  2943         if (!isReifiable(target) &&
  2944             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  2945             warn.warnUnchecked();
  2946         return true;
  2949     private boolean giveWarning(Type from, Type to) {
  2950         // To and from are (possibly different) parameterizations
  2951         // of the same class or interface
  2952         return to.isParameterized() && !containsType(to.getTypeArguments(), from.getTypeArguments());
  2955     private List<Type> superClosure(Type t, Type s) {
  2956         List<Type> cl = List.nil();
  2957         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  2958             if (isSubtype(s, erasure(l.head))) {
  2959                 cl = insert(cl, l.head);
  2960             } else {
  2961                 cl = union(cl, superClosure(l.head, s));
  2964         return cl;
  2967     private boolean containsTypeEquivalent(Type t, Type s) {
  2968         return
  2969             isSameType(t, s) || // shortcut
  2970             containsType(t, s) && containsType(s, t);
  2973     /**
  2974      * Adapt a type by computing a substitution which maps a source
  2975      * type to a target type.
  2977      * @param source    the source type
  2978      * @param target    the target type
  2979      * @param from      the type variables of the computed substitution
  2980      * @param to        the types of the computed substitution.
  2981      */
  2982     public void adapt(Type source,
  2983                        Type target,
  2984                        ListBuffer<Type> from,
  2985                        ListBuffer<Type> to) throws AdaptFailure {
  2986         Map<Symbol,Type> mapping = new HashMap<Symbol,Type>();
  2987         adaptRecursive(source, target, from, to, mapping);
  2988         List<Type> fromList = from.toList();
  2989         List<Type> toList = to.toList();
  2990         while (!fromList.isEmpty()) {
  2991             Type val = mapping.get(fromList.head.tsym);
  2992             if (toList.head != val)
  2993                 toList.head = val;
  2994             fromList = fromList.tail;
  2995             toList = toList.tail;
  2998     // where
  2999         private void adaptRecursive(Type source,
  3000                                     Type target,
  3001                                     ListBuffer<Type> from,
  3002                                     ListBuffer<Type> to,
  3003                                     Map<Symbol,Type> mapping) throws AdaptFailure {
  3004             if (source.tag == TYPEVAR) {
  3005                 // Check to see if there is
  3006                 // already a mapping for $source$, in which case
  3007                 // the old mapping will be merged with the new
  3008                 Type val = mapping.get(source.tsym);
  3009                 if (val != null) {
  3010                     if (val.isSuperBound() && target.isSuperBound()) {
  3011                         val = isSubtype(lowerBound(val), lowerBound(target))
  3012                             ? target : val;
  3013                     } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3014                         val = isSubtype(upperBound(val), upperBound(target))
  3015                             ? val : target;
  3016                     } else if (!isSameType(val, target)) {
  3017                         throw new AdaptFailure();
  3019                 } else {
  3020                     val = target;
  3021                     from.append(source);
  3022                     to.append(target);
  3024                 mapping.put(source.tsym, val);
  3025             } else if (source.tag == target.tag) {
  3026                 switch (source.tag) {
  3027                     case CLASS:
  3028                         adapt(source.allparams(), target.allparams(),
  3029                               from, to, mapping);
  3030                         break;
  3031                     case ARRAY:
  3032                         adaptRecursive(elemtype(source), elemtype(target),
  3033                                        from, to, mapping);
  3034                         break;
  3035                     case WILDCARD:
  3036                         if (source.isExtendsBound()) {
  3037                             adaptRecursive(upperBound(source), upperBound(target),
  3038                                            from, to, mapping);
  3039                         } else if (source.isSuperBound()) {
  3040                             adaptRecursive(lowerBound(source), lowerBound(target),
  3041                                            from, to, mapping);
  3043                         break;
  3047         public static class AdaptFailure extends Exception {
  3048             static final long serialVersionUID = -7490231548272701566L;
  3051     /**
  3052      * Adapt a type by computing a substitution which maps a list of
  3053      * source types to a list of target types.
  3055      * @param source    the source type
  3056      * @param target    the target type
  3057      * @param from      the type variables of the computed substitution
  3058      * @param to        the types of the computed substitution.
  3059      */
  3060     private void adapt(List<Type> source,
  3061                        List<Type> target,
  3062                        ListBuffer<Type> from,
  3063                        ListBuffer<Type> to,
  3064                        Map<Symbol,Type> mapping) throws AdaptFailure {
  3065         if (source.length() == target.length()) {
  3066             while (source.nonEmpty()) {
  3067                 adaptRecursive(source.head, target.head, from, to, mapping);
  3068                 source = source.tail;
  3069                 target = target.tail;
  3074     private void adaptSelf(Type t,
  3075                            ListBuffer<Type> from,
  3076                            ListBuffer<Type> to) {
  3077         try {
  3078             //if (t.tsym.type != t)
  3079                 adapt(t.tsym.type, t, from, to);
  3080         } catch (AdaptFailure ex) {
  3081             // Adapt should never fail calculating a mapping from
  3082             // t.tsym.type to t as there can be no merge problem.
  3083             throw new AssertionError(ex);
  3087     /**
  3088      * Rewrite all type variables (universal quantifiers) in the given
  3089      * type to wildcards (existential quantifiers).  This is used to
  3090      * determine if a cast is allowed.  For example, if high is true
  3091      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3092      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3093      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3094      * List<Integer>} with a warning.
  3095      * @param t a type
  3096      * @param high if true return an upper bound; otherwise a lower
  3097      * bound
  3098      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3099      * otherwise rewrite all type variables
  3100      * @return the type rewritten with wildcards (existential
  3101      * quantifiers) only
  3102      */
  3103     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3104         ListBuffer<Type> from = new ListBuffer<Type>();
  3105         ListBuffer<Type> to = new ListBuffer<Type>();
  3106         adaptSelf(t, from, to);
  3107         ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3108         List<Type> formals = from.toList();
  3109         boolean changed = false;
  3110         for (Type arg : to.toList()) {
  3111             Type bound;
  3112             if (rewriteTypeVars && arg.tag == TYPEVAR) {
  3113                 TypeVar tv = (TypeVar)arg;
  3114                 bound = high ? tv.bound : syms.botType;
  3115             } else {
  3116                 bound = high ? upperBound(arg) : lowerBound(arg);
  3118             Type newarg = bound;
  3119             if (arg != bound) {
  3120                 changed = true;
  3121                 newarg = high ? makeExtendsWildcard(bound, (TypeVar)formals.head)
  3122                               : makeSuperWildcard(bound, (TypeVar)formals.head);
  3124             rewritten.append(newarg);
  3125             formals = formals.tail;
  3127         if (changed)
  3128             return subst(t.tsym.type, from.toList(), rewritten.toList());
  3129         else
  3130             return t;
  3133     /**
  3134      * Create a wildcard with the given upper (extends) bound; create
  3135      * an unbounded wildcard if bound is Object.
  3137      * @param bound the upper bound
  3138      * @param formal the formal type parameter that will be
  3139      * substituted by the wildcard
  3140      */
  3141     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  3142         if (bound == syms.objectType) {
  3143             return new WildcardType(syms.objectType,
  3144                                     BoundKind.UNBOUND,
  3145                                     syms.boundClass,
  3146                                     formal);
  3147         } else {
  3148             return new WildcardType(bound,
  3149                                     BoundKind.EXTENDS,
  3150                                     syms.boundClass,
  3151                                     formal);
  3155     /**
  3156      * Create a wildcard with the given lower (super) bound; create an
  3157      * unbounded wildcard if bound is bottom (type of {@code null}).
  3159      * @param bound the lower bound
  3160      * @param formal the formal type parameter that will be
  3161      * substituted by the wildcard
  3162      */
  3163     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  3164         if (bound.tag == BOT) {
  3165             return new WildcardType(syms.objectType,
  3166                                     BoundKind.UNBOUND,
  3167                                     syms.boundClass,
  3168                                     formal);
  3169         } else {
  3170             return new WildcardType(bound,
  3171                                     BoundKind.SUPER,
  3172                                     syms.boundClass,
  3173                                     formal);
  3177     /**
  3178      * A wrapper for a type that allows use in sets.
  3179      */
  3180     class SingletonType {
  3181         final Type t;
  3182         SingletonType(Type t) {
  3183             this.t = t;
  3185         public int hashCode() {
  3186             return Types.this.hashCode(t);
  3188         public boolean equals(Object obj) {
  3189             return (obj instanceof SingletonType) &&
  3190                 isSameType(t, ((SingletonType)obj).t);
  3192         public String toString() {
  3193             return t.toString();
  3196     // </editor-fold>
  3198     // <editor-fold defaultstate="collapsed" desc="Visitors">
  3199     /**
  3200      * A default visitor for types.  All visitor methods except
  3201      * visitType are implemented by delegating to visitType.  Concrete
  3202      * subclasses must provide an implementation of visitType and can
  3203      * override other methods as needed.
  3205      * @param <R> the return type of the operation implemented by this
  3206      * visitor; use Void if no return type is needed.
  3207      * @param <S> the type of the second argument (the first being the
  3208      * type itself) of the operation implemented by this visitor; use
  3209      * Void if a second argument is not needed.
  3210      */
  3211     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  3212         final public R visit(Type t, S s)               { return t.accept(this, s); }
  3213         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  3214         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  3215         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  3216         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  3217         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  3218         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  3219         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  3220         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  3221         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  3222         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  3225     /**
  3226      * A <em>simple</em> visitor for types.  This visitor is simple as
  3227      * captured wildcards, for-all types (generic methods), and
  3228      * undetermined type variables (part of inference) are hidden.
  3229      * Captured wildcards are hidden by treating them as type
  3230      * variables and the rest are hidden by visiting their qtypes.
  3232      * @param <R> the return type of the operation implemented by this
  3233      * visitor; use Void if no return type is needed.
  3234      * @param <S> the type of the second argument (the first being the
  3235      * type itself) of the operation implemented by this visitor; use
  3236      * Void if a second argument is not needed.
  3237      */
  3238     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  3239         @Override
  3240         public R visitCapturedType(CapturedType t, S s) {
  3241             return visitTypeVar(t, s);
  3243         @Override
  3244         public R visitForAll(ForAll t, S s) {
  3245             return visit(t.qtype, s);
  3247         @Override
  3248         public R visitUndetVar(UndetVar t, S s) {
  3249             return visit(t.qtype, s);
  3253     /**
  3254      * A plain relation on types.  That is a 2-ary function on the
  3255      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  3256      * <!-- In plain text: Type x Type -> Boolean -->
  3257      */
  3258     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  3260     /**
  3261      * A convenience visitor for implementing operations that only
  3262      * require one argument (the type itself), that is, unary
  3263      * operations.
  3265      * @param <R> the return type of the operation implemented by this
  3266      * visitor; use Void if no return type is needed.
  3267      */
  3268     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  3269         final public R visit(Type t) { return t.accept(this, null); }
  3272     /**
  3273      * A visitor for implementing a mapping from types to types.  The
  3274      * default behavior of this class is to implement the identity
  3275      * mapping (mapping a type to itself).  This can be overridden in
  3276      * subclasses.
  3278      * @param <S> the type of the second argument (the first being the
  3279      * type itself) of this mapping; use Void if a second argument is
  3280      * not needed.
  3281      */
  3282     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  3283         final public Type visit(Type t) { return t.accept(this, null); }
  3284         public Type visitType(Type t, S s) { return t; }
  3286     // </editor-fold>

mercurial