src/share/classes/com/sun/tools/javac/comp/Attr.java

Thu, 21 Feb 2013 17:49:56 -0800

author
lana
date
Thu, 21 Feb 2013 17:49:56 -0800
changeset 1603
6118072811e5
parent 1588
2620c953e9fe
parent 1571
af8417e590f4
child 1607
bd49e0304281
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.lang.model.type.TypeKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.tree.*;
    49 import com.sun.tools.javac.tree.JCTree.*;
    50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTag.*;
    60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    63 /** This is the main context-dependent analysis phase in GJC. It
    64  *  encompasses name resolution, type checking and constant folding as
    65  *  subtasks. Some subtasks involve auxiliary classes.
    66  *  @see Check
    67  *  @see Resolve
    68  *  @see ConstFold
    69  *  @see Infer
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Attr extends JCTree.Visitor {
    77     protected static final Context.Key<Attr> attrKey =
    78         new Context.Key<Attr>();
    80     final Names names;
    81     final Log log;
    82     final Symtab syms;
    83     final Resolve rs;
    84     final Infer infer;
    85     final DeferredAttr deferredAttr;
    86     final Check chk;
    87     final Flow flow;
    88     final MemberEnter memberEnter;
    89     final TreeMaker make;
    90     final ConstFold cfolder;
    91     final Enter enter;
    92     final Target target;
    93     final Types types;
    94     final JCDiagnostic.Factory diags;
    95     final Annotate annotate;
    96     final DeferredLintHandler deferredLintHandler;
    98     public static Attr instance(Context context) {
    99         Attr instance = context.get(attrKey);
   100         if (instance == null)
   101             instance = new Attr(context);
   102         return instance;
   103     }
   105     protected Attr(Context context) {
   106         context.put(attrKey, this);
   108         names = Names.instance(context);
   109         log = Log.instance(context);
   110         syms = Symtab.instance(context);
   111         rs = Resolve.instance(context);
   112         chk = Check.instance(context);
   113         flow = Flow.instance(context);
   114         memberEnter = MemberEnter.instance(context);
   115         make = TreeMaker.instance(context);
   116         enter = Enter.instance(context);
   117         infer = Infer.instance(context);
   118         deferredAttr = DeferredAttr.instance(context);
   119         cfolder = ConstFold.instance(context);
   120         target = Target.instance(context);
   121         types = Types.instance(context);
   122         diags = JCDiagnostic.Factory.instance(context);
   123         annotate = Annotate.instance(context);
   124         deferredLintHandler = DeferredLintHandler.instance(context);
   126         Options options = Options.instance(context);
   128         Source source = Source.instance(context);
   129         allowGenerics = source.allowGenerics();
   130         allowVarargs = source.allowVarargs();
   131         allowEnums = source.allowEnums();
   132         allowBoxing = source.allowBoxing();
   133         allowCovariantReturns = source.allowCovariantReturns();
   134         allowAnonOuterThis = source.allowAnonOuterThis();
   135         allowStringsInSwitch = source.allowStringsInSwitch();
   136         allowPoly = source.allowPoly();
   137         allowLambda = source.allowLambda();
   138         allowDefaultMethods = source.allowDefaultMethods();
   139         sourceName = source.name;
   140         relax = (options.isSet("-retrofit") ||
   141                  options.isSet("-relax"));
   142         findDiamonds = options.get("findDiamond") != null &&
   143                  source.allowDiamond();
   144         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   145         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   147         statInfo = new ResultInfo(NIL, Type.noType);
   148         varInfo = new ResultInfo(VAR, Type.noType);
   149         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   150         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   151         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   152     }
   154     /** Switch: relax some constraints for retrofit mode.
   155      */
   156     boolean relax;
   158     /** Switch: support target-typing inference
   159      */
   160     boolean allowPoly;
   162     /** Switch: support generics?
   163      */
   164     boolean allowGenerics;
   166     /** Switch: allow variable-arity methods.
   167      */
   168     boolean allowVarargs;
   170     /** Switch: support enums?
   171      */
   172     boolean allowEnums;
   174     /** Switch: support boxing and unboxing?
   175      */
   176     boolean allowBoxing;
   178     /** Switch: support covariant result types?
   179      */
   180     boolean allowCovariantReturns;
   182     /** Switch: support lambda expressions ?
   183      */
   184     boolean allowLambda;
   186     /** Switch: support default methods ?
   187      */
   188     boolean allowDefaultMethods;
   190     /** Switch: allow references to surrounding object from anonymous
   191      * objects during constructor call?
   192      */
   193     boolean allowAnonOuterThis;
   195     /** Switch: generates a warning if diamond can be safely applied
   196      *  to a given new expression
   197      */
   198     boolean findDiamonds;
   200     /**
   201      * Internally enables/disables diamond finder feature
   202      */
   203     static final boolean allowDiamondFinder = true;
   205     /**
   206      * Switch: warn about use of variable before declaration?
   207      * RFE: 6425594
   208      */
   209     boolean useBeforeDeclarationWarning;
   211     /**
   212      * Switch: generate warnings whenever an anonymous inner class that is convertible
   213      * to a lambda expression is found
   214      */
   215     boolean identifyLambdaCandidate;
   217     /**
   218      * Switch: allow strings in switch?
   219      */
   220     boolean allowStringsInSwitch;
   222     /**
   223      * Switch: name of source level; used for error reporting.
   224      */
   225     String sourceName;
   227     /** Check kind and type of given tree against protokind and prototype.
   228      *  If check succeeds, store type in tree and return it.
   229      *  If check fails, store errType in tree and return it.
   230      *  No checks are performed if the prototype is a method type.
   231      *  It is not necessary in this case since we know that kind and type
   232      *  are correct.
   233      *
   234      *  @param tree     The tree whose kind and type is checked
   235      *  @param ownkind  The computed kind of the tree
   236      *  @param resultInfo  The expected result of the tree
   237      */
   238     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   239         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   240         Type owntype = found;
   241         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   242             if (inferenceContext.free(found)) {
   243                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   244                     @Override
   245                     public void typesInferred(InferenceContext inferenceContext) {
   246                         ResultInfo pendingResult =
   247                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   248                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   249                     }
   250                 });
   251                 return tree.type = resultInfo.pt;
   252             } else {
   253                 if ((ownkind & ~resultInfo.pkind) == 0) {
   254                     owntype = resultInfo.check(tree, owntype);
   255                 } else {
   256                     log.error(tree.pos(), "unexpected.type",
   257                             kindNames(resultInfo.pkind),
   258                             kindName(ownkind));
   259                     owntype = types.createErrorType(owntype);
   260                 }
   261             }
   262         }
   263         tree.type = owntype;
   264         return owntype;
   265     }
   267     /** Is given blank final variable assignable, i.e. in a scope where it
   268      *  may be assigned to even though it is final?
   269      *  @param v      The blank final variable.
   270      *  @param env    The current environment.
   271      */
   272     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   273         Symbol owner = owner(env);
   274            // owner refers to the innermost variable, method or
   275            // initializer block declaration at this point.
   276         return
   277             v.owner == owner
   278             ||
   279             ((owner.name == names.init ||    // i.e. we are in a constructor
   280               owner.kind == VAR ||           // i.e. we are in a variable initializer
   281               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   282              &&
   283              v.owner == owner.owner
   284              &&
   285              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   286     }
   288     /**
   289      * Return the innermost enclosing owner symbol in a given attribution context
   290      */
   291     Symbol owner(Env<AttrContext> env) {
   292         while (true) {
   293             switch (env.tree.getTag()) {
   294                 case VARDEF:
   295                     //a field can be owner
   296                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   297                     if (vsym.owner.kind == TYP) {
   298                         return vsym;
   299                     }
   300                     break;
   301                 case METHODDEF:
   302                     //method def is always an owner
   303                     return ((JCMethodDecl)env.tree).sym;
   304                 case CLASSDEF:
   305                     //class def is always an owner
   306                     return ((JCClassDecl)env.tree).sym;
   307                 case LAMBDA:
   308                     //a lambda is an owner - return a fresh synthetic method symbol
   309                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   310                 case BLOCK:
   311                     //static/instance init blocks are owner
   312                     Symbol blockSym = env.info.scope.owner;
   313                     if ((blockSym.flags() & BLOCK) != 0) {
   314                         return blockSym;
   315                     }
   316                     break;
   317                 case TOPLEVEL:
   318                     //toplevel is always an owner (for pkge decls)
   319                     return env.info.scope.owner;
   320             }
   321             Assert.checkNonNull(env.next);
   322             env = env.next;
   323         }
   324     }
   326     /** Check that variable can be assigned to.
   327      *  @param pos    The current source code position.
   328      *  @param v      The assigned varaible
   329      *  @param base   If the variable is referred to in a Select, the part
   330      *                to the left of the `.', null otherwise.
   331      *  @param env    The current environment.
   332      */
   333     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   334         if ((v.flags() & FINAL) != 0 &&
   335             ((v.flags() & HASINIT) != 0
   336              ||
   337              !((base == null ||
   338                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   339                isAssignableAsBlankFinal(v, env)))) {
   340             if (v.isResourceVariable()) { //TWR resource
   341                 log.error(pos, "try.resource.may.not.be.assigned", v);
   342             } else {
   343                 log.error(pos, "cant.assign.val.to.final.var", v);
   344             }
   345         }
   346     }
   348     /** Does tree represent a static reference to an identifier?
   349      *  It is assumed that tree is either a SELECT or an IDENT.
   350      *  We have to weed out selects from non-type names here.
   351      *  @param tree    The candidate tree.
   352      */
   353     boolean isStaticReference(JCTree tree) {
   354         if (tree.hasTag(SELECT)) {
   355             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   356             if (lsym == null || lsym.kind != TYP) {
   357                 return false;
   358             }
   359         }
   360         return true;
   361     }
   363     /** Is this symbol a type?
   364      */
   365     static boolean isType(Symbol sym) {
   366         return sym != null && sym.kind == TYP;
   367     }
   369     /** The current `this' symbol.
   370      *  @param env    The current environment.
   371      */
   372     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   373         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   374     }
   376     /** Attribute a parsed identifier.
   377      * @param tree Parsed identifier name
   378      * @param topLevel The toplevel to use
   379      */
   380     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   381         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   382         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   383                                            syms.errSymbol.name,
   384                                            null, null, null, null);
   385         localEnv.enclClass.sym = syms.errSymbol;
   386         return tree.accept(identAttributer, localEnv);
   387     }
   388     // where
   389         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   390         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   391             @Override
   392             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   393                 Symbol site = visit(node.getExpression(), env);
   394                 if (site.kind == ERR)
   395                     return site;
   396                 Name name = (Name)node.getIdentifier();
   397                 if (site.kind == PCK) {
   398                     env.toplevel.packge = (PackageSymbol)site;
   399                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   400                 } else {
   401                     env.enclClass.sym = (ClassSymbol)site;
   402                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   403                 }
   404             }
   406             @Override
   407             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   408                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   409             }
   410         }
   412     public Type coerce(Type etype, Type ttype) {
   413         return cfolder.coerce(etype, ttype);
   414     }
   416     public Type attribType(JCTree node, TypeSymbol sym) {
   417         Env<AttrContext> env = enter.typeEnvs.get(sym);
   418         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   419         return attribTree(node, localEnv, unknownTypeInfo);
   420     }
   422     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   423         // Attribute qualifying package or class.
   424         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   425         return attribTree(s.selected,
   426                        env,
   427                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   428                        Type.noType));
   429     }
   431     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   432         breakTree = tree;
   433         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   434         try {
   435             attribExpr(expr, env);
   436         } catch (BreakAttr b) {
   437             return b.env;
   438         } catch (AssertionError ae) {
   439             if (ae.getCause() instanceof BreakAttr) {
   440                 return ((BreakAttr)(ae.getCause())).env;
   441             } else {
   442                 throw ae;
   443             }
   444         } finally {
   445             breakTree = null;
   446             log.useSource(prev);
   447         }
   448         return env;
   449     }
   451     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   452         breakTree = tree;
   453         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   454         try {
   455             attribStat(stmt, env);
   456         } catch (BreakAttr b) {
   457             return b.env;
   458         } catch (AssertionError ae) {
   459             if (ae.getCause() instanceof BreakAttr) {
   460                 return ((BreakAttr)(ae.getCause())).env;
   461             } else {
   462                 throw ae;
   463             }
   464         } finally {
   465             breakTree = null;
   466             log.useSource(prev);
   467         }
   468         return env;
   469     }
   471     private JCTree breakTree = null;
   473     private static class BreakAttr extends RuntimeException {
   474         static final long serialVersionUID = -6924771130405446405L;
   475         private Env<AttrContext> env;
   476         private BreakAttr(Env<AttrContext> env) {
   477             this.env = copyEnv(env);
   478         }
   480         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
   481             Env<AttrContext> newEnv =
   482                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   483             if (newEnv.outer != null) {
   484                 newEnv.outer = copyEnv(newEnv.outer);
   485             }
   486             return newEnv;
   487         }
   489         private Scope copyScope(Scope sc) {
   490             Scope newScope = new Scope(sc.owner);
   491             List<Symbol> elemsList = List.nil();
   492             while (sc != null) {
   493                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   494                     elemsList = elemsList.prepend(e.sym);
   495                 }
   496                 sc = sc.next;
   497             }
   498             for (Symbol s : elemsList) {
   499                 newScope.enter(s);
   500             }
   501             return newScope;
   502         }
   503     }
   505     class ResultInfo {
   506         final int pkind;
   507         final Type pt;
   508         final CheckContext checkContext;
   510         ResultInfo(int pkind, Type pt) {
   511             this(pkind, pt, chk.basicHandler);
   512         }
   514         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   515             this.pkind = pkind;
   516             this.pt = pt;
   517             this.checkContext = checkContext;
   518         }
   520         protected Type check(final DiagnosticPosition pos, final Type found) {
   521             return chk.checkType(pos, found, pt, checkContext);
   522         }
   524         protected ResultInfo dup(Type newPt) {
   525             return new ResultInfo(pkind, newPt, checkContext);
   526         }
   528         protected ResultInfo dup(CheckContext newContext) {
   529             return new ResultInfo(pkind, pt, newContext);
   530         }
   531     }
   533     class RecoveryInfo extends ResultInfo {
   535         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   536             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   537                 @Override
   538                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   539                     return deferredAttrContext;
   540                 }
   541                 @Override
   542                 public boolean compatible(Type found, Type req, Warner warn) {
   543                     return true;
   544                 }
   545                 @Override
   546                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   547                     chk.basicHandler.report(pos, details);
   548                 }
   549             });
   550         }
   552         @Override
   553         protected Type check(DiagnosticPosition pos, Type found) {
   554             return chk.checkNonVoid(pos, super.check(pos, found));
   555         }
   556     }
   558     final ResultInfo statInfo;
   559     final ResultInfo varInfo;
   560     final ResultInfo unknownExprInfo;
   561     final ResultInfo unknownTypeInfo;
   562     final ResultInfo recoveryInfo;
   564     Type pt() {
   565         return resultInfo.pt;
   566     }
   568     int pkind() {
   569         return resultInfo.pkind;
   570     }
   572 /* ************************************************************************
   573  * Visitor methods
   574  *************************************************************************/
   576     /** Visitor argument: the current environment.
   577      */
   578     Env<AttrContext> env;
   580     /** Visitor argument: the currently expected attribution result.
   581      */
   582     ResultInfo resultInfo;
   584     /** Visitor result: the computed type.
   585      */
   586     Type result;
   588     /** Visitor method: attribute a tree, catching any completion failure
   589      *  exceptions. Return the tree's type.
   590      *
   591      *  @param tree    The tree to be visited.
   592      *  @param env     The environment visitor argument.
   593      *  @param resultInfo   The result info visitor argument.
   594      */
   595     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   596         Env<AttrContext> prevEnv = this.env;
   597         ResultInfo prevResult = this.resultInfo;
   598         try {
   599             this.env = env;
   600             this.resultInfo = resultInfo;
   601             tree.accept(this);
   602             if (tree == breakTree &&
   603                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   604                 throw new BreakAttr(env);
   605             }
   606             return result;
   607         } catch (CompletionFailure ex) {
   608             tree.type = syms.errType;
   609             return chk.completionError(tree.pos(), ex);
   610         } finally {
   611             this.env = prevEnv;
   612             this.resultInfo = prevResult;
   613         }
   614     }
   616     /** Derived visitor method: attribute an expression tree.
   617      */
   618     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   619         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   620     }
   622     /** Derived visitor method: attribute an expression tree with
   623      *  no constraints on the computed type.
   624      */
   625     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   626         return attribTree(tree, env, unknownExprInfo);
   627     }
   629     /** Derived visitor method: attribute a type tree.
   630      */
   631     public Type attribType(JCTree tree, Env<AttrContext> env) {
   632         Type result = attribType(tree, env, Type.noType);
   633         return result;
   634     }
   636     /** Derived visitor method: attribute a type tree.
   637      */
   638     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   639         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   640         return result;
   641     }
   643     /** Derived visitor method: attribute a statement or definition tree.
   644      */
   645     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   646         return attribTree(tree, env, statInfo);
   647     }
   649     /** Attribute a list of expressions, returning a list of types.
   650      */
   651     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   652         ListBuffer<Type> ts = new ListBuffer<Type>();
   653         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   654             ts.append(attribExpr(l.head, env, pt));
   655         return ts.toList();
   656     }
   658     /** Attribute a list of statements, returning nothing.
   659      */
   660     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   661         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   662             attribStat(l.head, env);
   663     }
   665     /** Attribute the arguments in a method call, returning a list of types.
   666      */
   667     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   668         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   669         for (JCExpression arg : trees) {
   670             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
   671                     deferredAttr.new DeferredType(arg, env) :
   672                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
   673             argtypes.append(argtype);
   674         }
   675         return argtypes.toList();
   676     }
   678     /** Attribute a type argument list, returning a list of types.
   679      *  Caller is responsible for calling checkRefTypes.
   680      */
   681     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   682         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   683         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   684             argtypes.append(attribType(l.head, env));
   685         return argtypes.toList();
   686     }
   688     /** Attribute a type argument list, returning a list of types.
   689      *  Check that all the types are references.
   690      */
   691     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   692         List<Type> types = attribAnyTypes(trees, env);
   693         return chk.checkRefTypes(trees, types);
   694     }
   696     /**
   697      * Attribute type variables (of generic classes or methods).
   698      * Compound types are attributed later in attribBounds.
   699      * @param typarams the type variables to enter
   700      * @param env      the current environment
   701      */
   702     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   703         for (JCTypeParameter tvar : typarams) {
   704             TypeVar a = (TypeVar)tvar.type;
   705             a.tsym.flags_field |= UNATTRIBUTED;
   706             a.bound = Type.noType;
   707             if (!tvar.bounds.isEmpty()) {
   708                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   709                 for (JCExpression bound : tvar.bounds.tail)
   710                     bounds = bounds.prepend(attribType(bound, env));
   711                 types.setBounds(a, bounds.reverse());
   712             } else {
   713                 // if no bounds are given, assume a single bound of
   714                 // java.lang.Object.
   715                 types.setBounds(a, List.of(syms.objectType));
   716             }
   717             a.tsym.flags_field &= ~UNATTRIBUTED;
   718         }
   719         for (JCTypeParameter tvar : typarams) {
   720             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   721         }
   722     }
   724     /**
   725      * Attribute the type references in a list of annotations.
   726      */
   727     void attribAnnotationTypes(List<JCAnnotation> annotations,
   728                                Env<AttrContext> env) {
   729         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   730             JCAnnotation a = al.head;
   731             attribType(a.annotationType, env);
   732         }
   733     }
   735     /**
   736      * Attribute a "lazy constant value".
   737      *  @param env         The env for the const value
   738      *  @param initializer The initializer for the const value
   739      *  @param type        The expected type, or null
   740      *  @see VarSymbol#setLazyConstValue
   741      */
   742     public Object attribLazyConstantValue(Env<AttrContext> env,
   743                                       JCTree.JCExpression initializer,
   744                                       Type type) {
   746         // in case no lint value has been set up for this env, scan up
   747         // env stack looking for smallest enclosing env for which it is set.
   748         Env<AttrContext> lintEnv = env;
   749         while (lintEnv.info.lint == null)
   750             lintEnv = lintEnv.next;
   752         // Having found the enclosing lint value, we can initialize the lint value for this class
   753         // ... but ...
   754         // There's a problem with evaluating annotations in the right order, such that
   755         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
   756         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
   757         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
   758         if (env.info.enclVar.annotations.pendingCompletion()) {
   759             env.info.lint = lintEnv.info.lint;
   760         } else {
   761             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
   762                                                       env.info.enclVar.flags());
   763         }
   765         Lint prevLint = chk.setLint(env.info.lint);
   766         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   768         try {
   769             memberEnter.typeAnnotate(initializer, env, env.info.enclVar);
   770             annotate.flush();
   771             Type itype = attribExpr(initializer, env, type);
   772             if (itype.constValue() != null)
   773                 return coerce(itype, type).constValue();
   774             else
   775                 return null;
   776         } finally {
   777             env.info.lint = prevLint;
   778             log.useSource(prevSource);
   779         }
   780     }
   782     /** Attribute type reference in an `extends' or `implements' clause.
   783      *  Supertypes of anonymous inner classes are usually already attributed.
   784      *
   785      *  @param tree              The tree making up the type reference.
   786      *  @param env               The environment current at the reference.
   787      *  @param classExpected     true if only a class is expected here.
   788      *  @param interfaceExpected true if only an interface is expected here.
   789      */
   790     Type attribBase(JCTree tree,
   791                     Env<AttrContext> env,
   792                     boolean classExpected,
   793                     boolean interfaceExpected,
   794                     boolean checkExtensible) {
   795         Type t = tree.type != null ?
   796             tree.type :
   797             attribType(tree, env);
   798         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   799     }
   800     Type checkBase(Type t,
   801                    JCTree tree,
   802                    Env<AttrContext> env,
   803                    boolean classExpected,
   804                    boolean interfaceExpected,
   805                    boolean checkExtensible) {
   806         if (t.isErroneous())
   807             return t;
   808         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   809             // check that type variable is already visible
   810             if (t.getUpperBound() == null) {
   811                 log.error(tree.pos(), "illegal.forward.ref");
   812                 return types.createErrorType(t);
   813             }
   814         } else {
   815             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   816         }
   817         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   818             log.error(tree.pos(), "intf.expected.here");
   819             // return errType is necessary since otherwise there might
   820             // be undetected cycles which cause attribution to loop
   821             return types.createErrorType(t);
   822         } else if (checkExtensible &&
   823                    classExpected &&
   824                    (t.tsym.flags() & INTERFACE) != 0) {
   825                 log.error(tree.pos(), "no.intf.expected.here");
   826             return types.createErrorType(t);
   827         }
   828         if (checkExtensible &&
   829             ((t.tsym.flags() & FINAL) != 0)) {
   830             log.error(tree.pos(),
   831                       "cant.inherit.from.final", t.tsym);
   832         }
   833         chk.checkNonCyclic(tree.pos(), t);
   834         return t;
   835     }
   837     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   838         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   839         id.type = env.info.scope.owner.type;
   840         id.sym = env.info.scope.owner;
   841         return id.type;
   842     }
   844     public void visitClassDef(JCClassDecl tree) {
   845         // Local classes have not been entered yet, so we need to do it now:
   846         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   847             enter.classEnter(tree, env);
   849         ClassSymbol c = tree.sym;
   850         if (c == null) {
   851             // exit in case something drastic went wrong during enter.
   852             result = null;
   853         } else {
   854             // make sure class has been completed:
   855             c.complete();
   857             // If this class appears as an anonymous class
   858             // in a superclass constructor call where
   859             // no explicit outer instance is given,
   860             // disable implicit outer instance from being passed.
   861             // (This would be an illegal access to "this before super").
   862             if (env.info.isSelfCall &&
   863                 env.tree.hasTag(NEWCLASS) &&
   864                 ((JCNewClass) env.tree).encl == null)
   865             {
   866                 c.flags_field |= NOOUTERTHIS;
   867             }
   868             attribClass(tree.pos(), c);
   869             result = tree.type = c.type;
   870         }
   871     }
   873     public void visitMethodDef(JCMethodDecl tree) {
   874         MethodSymbol m = tree.sym;
   875         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   877         Lint lint = env.info.lint.augment(m.annotations, m.flags());
   878         Lint prevLint = chk.setLint(lint);
   879         MethodSymbol prevMethod = chk.setMethod(m);
   880         try {
   881             deferredLintHandler.flush(tree.pos());
   882             chk.checkDeprecatedAnnotation(tree.pos(), m);
   885             // Create a new environment with local scope
   886             // for attributing the method.
   887             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   888             localEnv.info.lint = lint;
   890             attribStats(tree.typarams, localEnv);
   892             // If we override any other methods, check that we do so properly.
   893             // JLS ???
   894             if (m.isStatic()) {
   895                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   896             } else {
   897                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   898             }
   899             chk.checkOverride(tree, m);
   901             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   902                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   903             }
   905             // Enter all type parameters into the local method scope.
   906             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   907                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   909             ClassSymbol owner = env.enclClass.sym;
   910             if ((owner.flags() & ANNOTATION) != 0 &&
   911                 tree.params.nonEmpty())
   912                 log.error(tree.params.head.pos(),
   913                           "intf.annotation.members.cant.have.params");
   915             // Attribute all value parameters.
   916             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   917                 attribStat(l.head, localEnv);
   918             }
   920             chk.checkVarargsMethodDecl(localEnv, tree);
   922             // Check that type parameters are well-formed.
   923             chk.validate(tree.typarams, localEnv);
   925             // Check that result type is well-formed.
   926             chk.validate(tree.restype, localEnv);
   928             // Check that receiver type is well-formed.
   929             if (tree.recvparam != null) {
   930                 // Use a new environment to check the receiver parameter.
   931                 // Otherwise I get "might not have been initialized" errors.
   932                 // Is there a better way?
   933                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   934                 attribType(tree.recvparam, newEnv);
   935                 chk.validate(tree.recvparam, newEnv);
   936                 if (!(tree.recvparam.type == m.owner.type || types.isSameType(tree.recvparam.type, m.owner.type))) {
   937                     // The == covers the common non-generic case, but for generic classes we need isSameType;
   938                     // note that equals didn't work.
   939                     log.error(tree.recvparam.pos(), "incorrect.receiver.type");
   940                 }
   941             }
   943             // annotation method checks
   944             if ((owner.flags() & ANNOTATION) != 0) {
   945                 // annotation method cannot have throws clause
   946                 if (tree.thrown.nonEmpty()) {
   947                     log.error(tree.thrown.head.pos(),
   948                             "throws.not.allowed.in.intf.annotation");
   949                 }
   950                 // annotation method cannot declare type-parameters
   951                 if (tree.typarams.nonEmpty()) {
   952                     log.error(tree.typarams.head.pos(),
   953                             "intf.annotation.members.cant.have.type.params");
   954                 }
   955                 // validate annotation method's return type (could be an annotation type)
   956                 chk.validateAnnotationType(tree.restype);
   957                 // ensure that annotation method does not clash with members of Object/Annotation
   958                 chk.validateAnnotationMethod(tree.pos(), m);
   960                 if (tree.defaultValue != null) {
   961                     // if default value is an annotation, check it is a well-formed
   962                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   963                     chk.validateAnnotationTree(tree.defaultValue);
   964                 }
   965             }
   967             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   968                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   970             if (tree.body == null) {
   971                 // Empty bodies are only allowed for
   972                 // abstract, native, or interface methods, or for methods
   973                 // in a retrofit signature class.
   974                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   975                     !relax)
   976                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   977                 if (tree.defaultValue != null) {
   978                     if ((owner.flags() & ANNOTATION) == 0)
   979                         log.error(tree.pos(),
   980                                   "default.allowed.in.intf.annotation.member");
   981                 }
   982             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   983                 if ((owner.flags() & INTERFACE) != 0) {
   984                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   985                 } else {
   986                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   987                 }
   988             } else if ((tree.mods.flags & NATIVE) != 0) {
   989                 log.error(tree.pos(), "native.meth.cant.have.body");
   990             } else {
   991                 // Add an implicit super() call unless an explicit call to
   992                 // super(...) or this(...) is given
   993                 // or we are compiling class java.lang.Object.
   994                 if (tree.name == names.init && owner.type != syms.objectType) {
   995                     JCBlock body = tree.body;
   996                     if (body.stats.isEmpty() ||
   997                         !TreeInfo.isSelfCall(body.stats.head)) {
   998                         body.stats = body.stats.
   999                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1000                                                           List.<Type>nil(),
  1001                                                           List.<JCVariableDecl>nil(),
  1002                                                           false));
  1003                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1004                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1005                                TreeInfo.isSuperCall(body.stats.head)) {
  1006                         // enum constructors are not allowed to call super
  1007                         // directly, so make sure there aren't any super calls
  1008                         // in enum constructors, except in the compiler
  1009                         // generated one.
  1010                         log.error(tree.body.stats.head.pos(),
  1011                                   "call.to.super.not.allowed.in.enum.ctor",
  1012                                   env.enclClass.sym);
  1016                 // Attribute all type annotations in the body
  1017                 memberEnter.typeAnnotate(tree.body, localEnv, m);
  1018                 annotate.flush();
  1020                 // Attribute method body.
  1021                 attribStat(tree.body, localEnv);
  1024             localEnv.info.scope.leave();
  1025             result = tree.type = m.type;
  1026             chk.validateAnnotations(tree.mods.annotations, m);
  1028         finally {
  1029             chk.setLint(prevLint);
  1030             chk.setMethod(prevMethod);
  1034     public void visitVarDef(JCVariableDecl tree) {
  1035         // Local variables have not been entered yet, so we need to do it now:
  1036         if (env.info.scope.owner.kind == MTH) {
  1037             if (tree.sym != null) {
  1038                 // parameters have already been entered
  1039                 env.info.scope.enter(tree.sym);
  1040             } else {
  1041                 memberEnter.memberEnter(tree, env);
  1042                 annotate.flush();
  1044         } else {
  1045             if (tree.init != null) {
  1046                 // Field initializer expression need to be entered.
  1047                 memberEnter.typeAnnotate(tree.init, env, tree.sym);
  1048                 annotate.flush();
  1052         VarSymbol v = tree.sym;
  1053         Lint lint = env.info.lint.augment(v.annotations, v.flags());
  1054         Lint prevLint = chk.setLint(lint);
  1056         // Check that the variable's declared type is well-formed.
  1057         chk.validate(tree.vartype, env);
  1058         deferredLintHandler.flush(tree.pos());
  1060         try {
  1061             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1063             if (tree.init != null) {
  1064                 if ((v.flags_field & FINAL) != 0 &&
  1065                         !tree.init.hasTag(NEWCLASS) &&
  1066                         !tree.init.hasTag(LAMBDA) &&
  1067                         !tree.init.hasTag(REFERENCE)) {
  1068                     // In this case, `v' is final.  Ensure that it's initializer is
  1069                     // evaluated.
  1070                     v.getConstValue(); // ensure initializer is evaluated
  1071                 } else {
  1072                     // Attribute initializer in a new environment
  1073                     // with the declared variable as owner.
  1074                     // Check that initializer conforms to variable's declared type.
  1075                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1076                     initEnv.info.lint = lint;
  1077                     // In order to catch self-references, we set the variable's
  1078                     // declaration position to maximal possible value, effectively
  1079                     // marking the variable as undefined.
  1080                     initEnv.info.enclVar = v;
  1081                     attribExpr(tree.init, initEnv, v.type);
  1084             result = tree.type = v.type;
  1085             chk.validateAnnotations(tree.mods.annotations, v);
  1087         finally {
  1088             chk.setLint(prevLint);
  1092     public void visitSkip(JCSkip tree) {
  1093         result = null;
  1096     public void visitBlock(JCBlock tree) {
  1097         if (env.info.scope.owner.kind == TYP) {
  1098             // Block is a static or instance initializer;
  1099             // let the owner of the environment be a freshly
  1100             // created BLOCK-method.
  1101             Env<AttrContext> localEnv =
  1102                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1103             localEnv.info.scope.owner =
  1104                 new MethodSymbol(tree.flags | BLOCK |
  1105                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1106                     env.info.scope.owner);
  1107             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1109             // Attribute all type annotations in the block
  1110             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner);
  1111             annotate.flush();
  1113             attribStats(tree.stats, localEnv);
  1114         } else {
  1115             // Create a new local environment with a local scope.
  1116             Env<AttrContext> localEnv =
  1117                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1118             try {
  1119                 attribStats(tree.stats, localEnv);
  1120             } finally {
  1121                 localEnv.info.scope.leave();
  1124         result = null;
  1127     public void visitDoLoop(JCDoWhileLoop tree) {
  1128         attribStat(tree.body, env.dup(tree));
  1129         attribExpr(tree.cond, env, syms.booleanType);
  1130         result = null;
  1133     public void visitWhileLoop(JCWhileLoop tree) {
  1134         attribExpr(tree.cond, env, syms.booleanType);
  1135         attribStat(tree.body, env.dup(tree));
  1136         result = null;
  1139     public void visitForLoop(JCForLoop tree) {
  1140         Env<AttrContext> loopEnv =
  1141             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1142         try {
  1143             attribStats(tree.init, loopEnv);
  1144             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1145             loopEnv.tree = tree; // before, we were not in loop!
  1146             attribStats(tree.step, loopEnv);
  1147             attribStat(tree.body, loopEnv);
  1148             result = null;
  1150         finally {
  1151             loopEnv.info.scope.leave();
  1155     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1156         Env<AttrContext> loopEnv =
  1157             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1158         try {
  1159             attribStat(tree.var, loopEnv);
  1160             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1161             chk.checkNonVoid(tree.pos(), exprType);
  1162             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1163             if (elemtype == null) {
  1164                 // or perhaps expr implements Iterable<T>?
  1165                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1166                 if (base == null) {
  1167                     log.error(tree.expr.pos(),
  1168                             "foreach.not.applicable.to.type",
  1169                             exprType,
  1170                             diags.fragment("type.req.array.or.iterable"));
  1171                     elemtype = types.createErrorType(exprType);
  1172                 } else {
  1173                     List<Type> iterableParams = base.allparams();
  1174                     elemtype = iterableParams.isEmpty()
  1175                         ? syms.objectType
  1176                         : types.upperBound(iterableParams.head);
  1179             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1180             loopEnv.tree = tree; // before, we were not in loop!
  1181             attribStat(tree.body, loopEnv);
  1182             result = null;
  1184         finally {
  1185             loopEnv.info.scope.leave();
  1189     public void visitLabelled(JCLabeledStatement tree) {
  1190         // Check that label is not used in an enclosing statement
  1191         Env<AttrContext> env1 = env;
  1192         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1193             if (env1.tree.hasTag(LABELLED) &&
  1194                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1195                 log.error(tree.pos(), "label.already.in.use",
  1196                           tree.label);
  1197                 break;
  1199             env1 = env1.next;
  1202         attribStat(tree.body, env.dup(tree));
  1203         result = null;
  1206     public void visitSwitch(JCSwitch tree) {
  1207         Type seltype = attribExpr(tree.selector, env);
  1209         Env<AttrContext> switchEnv =
  1210             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1212         try {
  1214             boolean enumSwitch =
  1215                 allowEnums &&
  1216                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1217             boolean stringSwitch = false;
  1218             if (types.isSameType(seltype, syms.stringType)) {
  1219                 if (allowStringsInSwitch) {
  1220                     stringSwitch = true;
  1221                 } else {
  1222                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1225             if (!enumSwitch && !stringSwitch)
  1226                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1228             // Attribute all cases and
  1229             // check that there are no duplicate case labels or default clauses.
  1230             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1231             boolean hasDefault = false;      // Is there a default label?
  1232             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1233                 JCCase c = l.head;
  1234                 Env<AttrContext> caseEnv =
  1235                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1236                 try {
  1237                     if (c.pat != null) {
  1238                         if (enumSwitch) {
  1239                             Symbol sym = enumConstant(c.pat, seltype);
  1240                             if (sym == null) {
  1241                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1242                             } else if (!labels.add(sym)) {
  1243                                 log.error(c.pos(), "duplicate.case.label");
  1245                         } else {
  1246                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1247                             if (!pattype.hasTag(ERROR)) {
  1248                                 if (pattype.constValue() == null) {
  1249                                     log.error(c.pat.pos(),
  1250                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1251                                 } else if (labels.contains(pattype.constValue())) {
  1252                                     log.error(c.pos(), "duplicate.case.label");
  1253                                 } else {
  1254                                     labels.add(pattype.constValue());
  1258                     } else if (hasDefault) {
  1259                         log.error(c.pos(), "duplicate.default.label");
  1260                     } else {
  1261                         hasDefault = true;
  1263                     attribStats(c.stats, caseEnv);
  1264                 } finally {
  1265                     caseEnv.info.scope.leave();
  1266                     addVars(c.stats, switchEnv.info.scope);
  1270             result = null;
  1272         finally {
  1273             switchEnv.info.scope.leave();
  1276     // where
  1277         /** Add any variables defined in stats to the switch scope. */
  1278         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1279             for (;stats.nonEmpty(); stats = stats.tail) {
  1280                 JCTree stat = stats.head;
  1281                 if (stat.hasTag(VARDEF))
  1282                     switchScope.enter(((JCVariableDecl) stat).sym);
  1285     // where
  1286     /** Return the selected enumeration constant symbol, or null. */
  1287     private Symbol enumConstant(JCTree tree, Type enumType) {
  1288         if (!tree.hasTag(IDENT)) {
  1289             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1290             return syms.errSymbol;
  1292         JCIdent ident = (JCIdent)tree;
  1293         Name name = ident.name;
  1294         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1295              e.scope != null; e = e.next()) {
  1296             if (e.sym.kind == VAR) {
  1297                 Symbol s = ident.sym = e.sym;
  1298                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1299                 ident.type = s.type;
  1300                 return ((s.flags_field & Flags.ENUM) == 0)
  1301                     ? null : s;
  1304         return null;
  1307     public void visitSynchronized(JCSynchronized tree) {
  1308         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1309         attribStat(tree.body, env);
  1310         result = null;
  1313     public void visitTry(JCTry tree) {
  1314         // Create a new local environment with a local
  1315         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1316         try {
  1317             boolean isTryWithResource = tree.resources.nonEmpty();
  1318             // Create a nested environment for attributing the try block if needed
  1319             Env<AttrContext> tryEnv = isTryWithResource ?
  1320                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1321                 localEnv;
  1322             try {
  1323                 // Attribute resource declarations
  1324                 for (JCTree resource : tree.resources) {
  1325                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1326                         @Override
  1327                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1328                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1330                     };
  1331                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1332                     if (resource.hasTag(VARDEF)) {
  1333                         attribStat(resource, tryEnv);
  1334                         twrResult.check(resource, resource.type);
  1336                         //check that resource type cannot throw InterruptedException
  1337                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1339                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1340                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1341                     } else {
  1342                         attribTree(resource, tryEnv, twrResult);
  1345                 // Attribute body
  1346                 attribStat(tree.body, tryEnv);
  1347             } finally {
  1348                 if (isTryWithResource)
  1349                     tryEnv.info.scope.leave();
  1352             // Attribute catch clauses
  1353             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1354                 JCCatch c = l.head;
  1355                 Env<AttrContext> catchEnv =
  1356                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1357                 try {
  1358                     Type ctype = attribStat(c.param, catchEnv);
  1359                     if (TreeInfo.isMultiCatch(c)) {
  1360                         //multi-catch parameter is implicitly marked as final
  1361                         c.param.sym.flags_field |= FINAL | UNION;
  1363                     if (c.param.sym.kind == Kinds.VAR) {
  1364                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1366                     chk.checkType(c.param.vartype.pos(),
  1367                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1368                                   syms.throwableType);
  1369                     attribStat(c.body, catchEnv);
  1370                 } finally {
  1371                     catchEnv.info.scope.leave();
  1375             // Attribute finalizer
  1376             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1377             result = null;
  1379         finally {
  1380             localEnv.info.scope.leave();
  1384     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1385         if (!resource.isErroneous() &&
  1386             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1387             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1388             Symbol close = syms.noSymbol;
  1389             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1390             try {
  1391                 close = rs.resolveQualifiedMethod(pos,
  1392                         env,
  1393                         resource,
  1394                         names.close,
  1395                         List.<Type>nil(),
  1396                         List.<Type>nil());
  1398             finally {
  1399                 log.popDiagnosticHandler(discardHandler);
  1401             if (close.kind == MTH &&
  1402                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1403                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1404                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1405                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1410     public void visitConditional(JCConditional tree) {
  1411         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1413         tree.polyKind = (!allowPoly ||
  1414                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1415                 isBooleanOrNumeric(env, tree)) ?
  1416                 PolyKind.STANDALONE : PolyKind.POLY;
  1418         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1419             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1420             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1421             result = tree.type = types.createErrorType(resultInfo.pt);
  1422             return;
  1425         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1426                 unknownExprInfo :
  1427                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1428                     //this will use enclosing check context to check compatibility of
  1429                     //subexpression against target type; if we are in a method check context,
  1430                     //depending on whether boxing is allowed, we could have incompatibilities
  1431                     @Override
  1432                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1433                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1435                 });
  1437         Type truetype = attribTree(tree.truepart, env, condInfo);
  1438         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1440         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1441         if (condtype.constValue() != null &&
  1442                 truetype.constValue() != null &&
  1443                 falsetype.constValue() != null &&
  1444                 !owntype.hasTag(NONE)) {
  1445             //constant folding
  1446             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1448         result = check(tree, owntype, VAL, resultInfo);
  1450     //where
  1451         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1452             switch (tree.getTag()) {
  1453                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1454                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1455                               ((JCLiteral)tree).typetag == BOT;
  1456                 case LAMBDA: case REFERENCE: return false;
  1457                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1458                 case CONDEXPR:
  1459                     JCConditional condTree = (JCConditional)tree;
  1460                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1461                             isBooleanOrNumeric(env, condTree.falsepart);
  1462                 case APPLY:
  1463                     JCMethodInvocation speculativeMethodTree =
  1464                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1465                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1466                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1467                 case NEWCLASS:
  1468                     JCExpression className =
  1469                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1470                     JCExpression speculativeNewClassTree =
  1471                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1472                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1473                 default:
  1474                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1475                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1476                     return speculativeType.isPrimitive();
  1479         //where
  1480             TreeTranslator removeClassParams = new TreeTranslator() {
  1481                 @Override
  1482                 public void visitTypeApply(JCTypeApply tree) {
  1483                     result = translate(tree.clazz);
  1485             };
  1487         /** Compute the type of a conditional expression, after
  1488          *  checking that it exists.  See JLS 15.25. Does not take into
  1489          *  account the special case where condition and both arms
  1490          *  are constants.
  1492          *  @param pos      The source position to be used for error
  1493          *                  diagnostics.
  1494          *  @param thentype The type of the expression's then-part.
  1495          *  @param elsetype The type of the expression's else-part.
  1496          */
  1497         private Type condType(DiagnosticPosition pos,
  1498                                Type thentype, Type elsetype) {
  1499             // If same type, that is the result
  1500             if (types.isSameType(thentype, elsetype))
  1501                 return thentype.baseType();
  1503             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1504                 ? thentype : types.unboxedType(thentype);
  1505             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1506                 ? elsetype : types.unboxedType(elsetype);
  1508             // Otherwise, if both arms can be converted to a numeric
  1509             // type, return the least numeric type that fits both arms
  1510             // (i.e. return larger of the two, or return int if one
  1511             // arm is short, the other is char).
  1512             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1513                 // If one arm has an integer subrange type (i.e., byte,
  1514                 // short, or char), and the other is an integer constant
  1515                 // that fits into the subrange, return the subrange type.
  1516                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
  1517                     types.isAssignable(elseUnboxed, thenUnboxed))
  1518                     return thenUnboxed.baseType();
  1519                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
  1520                     types.isAssignable(thenUnboxed, elseUnboxed))
  1521                     return elseUnboxed.baseType();
  1523                 for (TypeTag tag : TypeTag.values()) {
  1524                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
  1525                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1526                     if (candidate != null &&
  1527                         candidate.isPrimitive() &&
  1528                         types.isSubtype(thenUnboxed, candidate) &&
  1529                         types.isSubtype(elseUnboxed, candidate))
  1530                         return candidate;
  1534             // Those were all the cases that could result in a primitive
  1535             if (allowBoxing) {
  1536                 if (thentype.isPrimitive())
  1537                     thentype = types.boxedClass(thentype).type;
  1538                 if (elsetype.isPrimitive())
  1539                     elsetype = types.boxedClass(elsetype).type;
  1542             if (types.isSubtype(thentype, elsetype))
  1543                 return elsetype.baseType();
  1544             if (types.isSubtype(elsetype, thentype))
  1545                 return thentype.baseType();
  1547             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1548                 log.error(pos, "neither.conditional.subtype",
  1549                           thentype, elsetype);
  1550                 return thentype.baseType();
  1553             // both are known to be reference types.  The result is
  1554             // lub(thentype,elsetype). This cannot fail, as it will
  1555             // always be possible to infer "Object" if nothing better.
  1556             return types.lub(thentype.baseType(), elsetype.baseType());
  1559     public void visitIf(JCIf tree) {
  1560         attribExpr(tree.cond, env, syms.booleanType);
  1561         attribStat(tree.thenpart, env);
  1562         if (tree.elsepart != null)
  1563             attribStat(tree.elsepart, env);
  1564         chk.checkEmptyIf(tree);
  1565         result = null;
  1568     public void visitExec(JCExpressionStatement tree) {
  1569         //a fresh environment is required for 292 inference to work properly ---
  1570         //see Infer.instantiatePolymorphicSignatureInstance()
  1571         Env<AttrContext> localEnv = env.dup(tree);
  1572         attribExpr(tree.expr, localEnv);
  1573         result = null;
  1576     public void visitBreak(JCBreak tree) {
  1577         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1578         result = null;
  1581     public void visitContinue(JCContinue tree) {
  1582         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1583         result = null;
  1585     //where
  1586         /** Return the target of a break or continue statement, if it exists,
  1587          *  report an error if not.
  1588          *  Note: The target of a labelled break or continue is the
  1589          *  (non-labelled) statement tree referred to by the label,
  1590          *  not the tree representing the labelled statement itself.
  1592          *  @param pos     The position to be used for error diagnostics
  1593          *  @param tag     The tag of the jump statement. This is either
  1594          *                 Tree.BREAK or Tree.CONTINUE.
  1595          *  @param label   The label of the jump statement, or null if no
  1596          *                 label is given.
  1597          *  @param env     The environment current at the jump statement.
  1598          */
  1599         private JCTree findJumpTarget(DiagnosticPosition pos,
  1600                                     JCTree.Tag tag,
  1601                                     Name label,
  1602                                     Env<AttrContext> env) {
  1603             // Search environments outwards from the point of jump.
  1604             Env<AttrContext> env1 = env;
  1605             LOOP:
  1606             while (env1 != null) {
  1607                 switch (env1.tree.getTag()) {
  1608                     case LABELLED:
  1609                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1610                         if (label == labelled.label) {
  1611                             // If jump is a continue, check that target is a loop.
  1612                             if (tag == CONTINUE) {
  1613                                 if (!labelled.body.hasTag(DOLOOP) &&
  1614                                         !labelled.body.hasTag(WHILELOOP) &&
  1615                                         !labelled.body.hasTag(FORLOOP) &&
  1616                                         !labelled.body.hasTag(FOREACHLOOP))
  1617                                     log.error(pos, "not.loop.label", label);
  1618                                 // Found labelled statement target, now go inwards
  1619                                 // to next non-labelled tree.
  1620                                 return TreeInfo.referencedStatement(labelled);
  1621                             } else {
  1622                                 return labelled;
  1625                         break;
  1626                     case DOLOOP:
  1627                     case WHILELOOP:
  1628                     case FORLOOP:
  1629                     case FOREACHLOOP:
  1630                         if (label == null) return env1.tree;
  1631                         break;
  1632                     case SWITCH:
  1633                         if (label == null && tag == BREAK) return env1.tree;
  1634                         break;
  1635                     case LAMBDA:
  1636                     case METHODDEF:
  1637                     case CLASSDEF:
  1638                         break LOOP;
  1639                     default:
  1641                 env1 = env1.next;
  1643             if (label != null)
  1644                 log.error(pos, "undef.label", label);
  1645             else if (tag == CONTINUE)
  1646                 log.error(pos, "cont.outside.loop");
  1647             else
  1648                 log.error(pos, "break.outside.switch.loop");
  1649             return null;
  1652     public void visitReturn(JCReturn tree) {
  1653         // Check that there is an enclosing method which is
  1654         // nested within than the enclosing class.
  1655         if (env.info.returnResult == null) {
  1656             log.error(tree.pos(), "ret.outside.meth");
  1657         } else {
  1658             // Attribute return expression, if it exists, and check that
  1659             // it conforms to result type of enclosing method.
  1660             if (tree.expr != null) {
  1661                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1662                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1663                               diags.fragment("unexpected.ret.val"));
  1665                 attribTree(tree.expr, env, env.info.returnResult);
  1666             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
  1667                 env.info.returnResult.checkContext.report(tree.pos(),
  1668                               diags.fragment("missing.ret.val"));
  1671         result = null;
  1674     public void visitThrow(JCThrow tree) {
  1675         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1676         if (allowPoly) {
  1677             chk.checkType(tree, owntype, syms.throwableType);
  1679         result = null;
  1682     public void visitAssert(JCAssert tree) {
  1683         attribExpr(tree.cond, env, syms.booleanType);
  1684         if (tree.detail != null) {
  1685             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1687         result = null;
  1690      /** Visitor method for method invocations.
  1691      *  NOTE: The method part of an application will have in its type field
  1692      *        the return type of the method, not the method's type itself!
  1693      */
  1694     public void visitApply(JCMethodInvocation tree) {
  1695         // The local environment of a method application is
  1696         // a new environment nested in the current one.
  1697         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1699         // The types of the actual method arguments.
  1700         List<Type> argtypes;
  1702         // The types of the actual method type arguments.
  1703         List<Type> typeargtypes = null;
  1705         Name methName = TreeInfo.name(tree.meth);
  1707         boolean isConstructorCall =
  1708             methName == names._this || methName == names._super;
  1710         if (isConstructorCall) {
  1711             // We are seeing a ...this(...) or ...super(...) call.
  1712             // Check that this is the first statement in a constructor.
  1713             if (checkFirstConstructorStat(tree, env)) {
  1715                 // Record the fact
  1716                 // that this is a constructor call (using isSelfCall).
  1717                 localEnv.info.isSelfCall = true;
  1719                 // Attribute arguments, yielding list of argument types.
  1720                 argtypes = attribArgs(tree.args, localEnv);
  1721                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1723                 // Variable `site' points to the class in which the called
  1724                 // constructor is defined.
  1725                 Type site = env.enclClass.sym.type;
  1726                 if (methName == names._super) {
  1727                     if (site == syms.objectType) {
  1728                         log.error(tree.meth.pos(), "no.superclass", site);
  1729                         site = types.createErrorType(syms.objectType);
  1730                     } else {
  1731                         site = types.supertype(site);
  1735                 if (site.hasTag(CLASS)) {
  1736                     Type encl = site.getEnclosingType();
  1737                     while (encl != null && encl.hasTag(TYPEVAR))
  1738                         encl = encl.getUpperBound();
  1739                     if (encl.hasTag(CLASS)) {
  1740                         // we are calling a nested class
  1742                         if (tree.meth.hasTag(SELECT)) {
  1743                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1745                             // We are seeing a prefixed call, of the form
  1746                             //     <expr>.super(...).
  1747                             // Check that the prefix expression conforms
  1748                             // to the outer instance type of the class.
  1749                             chk.checkRefType(qualifier.pos(),
  1750                                              attribExpr(qualifier, localEnv,
  1751                                                         encl));
  1752                         } else if (methName == names._super) {
  1753                             // qualifier omitted; check for existence
  1754                             // of an appropriate implicit qualifier.
  1755                             rs.resolveImplicitThis(tree.meth.pos(),
  1756                                                    localEnv, site, true);
  1758                     } else if (tree.meth.hasTag(SELECT)) {
  1759                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1760                                   site.tsym);
  1763                     // if we're calling a java.lang.Enum constructor,
  1764                     // prefix the implicit String and int parameters
  1765                     if (site.tsym == syms.enumSym && allowEnums)
  1766                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1768                     // Resolve the called constructor under the assumption
  1769                     // that we are referring to a superclass instance of the
  1770                     // current instance (JLS ???).
  1771                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1772                     localEnv.info.selectSuper = true;
  1773                     localEnv.info.pendingResolutionPhase = null;
  1774                     Symbol sym = rs.resolveConstructor(
  1775                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1776                     localEnv.info.selectSuper = selectSuperPrev;
  1778                     // Set method symbol to resolved constructor...
  1779                     TreeInfo.setSymbol(tree.meth, sym);
  1781                     // ...and check that it is legal in the current context.
  1782                     // (this will also set the tree's type)
  1783                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1784                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1786                 // Otherwise, `site' is an error type and we do nothing
  1788             result = tree.type = syms.voidType;
  1789         } else {
  1790             // Otherwise, we are seeing a regular method call.
  1791             // Attribute the arguments, yielding list of argument types, ...
  1792             argtypes = attribArgs(tree.args, localEnv);
  1793             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1795             // ... and attribute the method using as a prototype a methodtype
  1796             // whose formal argument types is exactly the list of actual
  1797             // arguments (this will also set the method symbol).
  1798             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1799             localEnv.info.pendingResolutionPhase = null;
  1800             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
  1802             // Compute the result type.
  1803             Type restype = mtype.getReturnType();
  1804             if (restype.hasTag(WILDCARD))
  1805                 throw new AssertionError(mtype);
  1807             Type qualifier = (tree.meth.hasTag(SELECT))
  1808                     ? ((JCFieldAccess) tree.meth).selected.type
  1809                     : env.enclClass.sym.type;
  1810             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1812             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1814             // Check that value of resulting type is admissible in the
  1815             // current context.  Also, capture the return type
  1816             result = check(tree, capture(restype), VAL, resultInfo);
  1818             if (localEnv.info.lastResolveVarargs())
  1819                 Assert.check(result.isErroneous() || tree.varargsElement != null);
  1821         chk.validate(tree.typeargs, localEnv);
  1823     //where
  1824         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1825             if (allowCovariantReturns &&
  1826                     methodName == names.clone &&
  1827                 types.isArray(qualifierType)) {
  1828                 // as a special case, array.clone() has a result that is
  1829                 // the same as static type of the array being cloned
  1830                 return qualifierType;
  1831             } else if (allowGenerics &&
  1832                     methodName == names.getClass &&
  1833                     argtypes.isEmpty()) {
  1834                 // as a special case, x.getClass() has type Class<? extends |X|>
  1835                 return new ClassType(restype.getEnclosingType(),
  1836                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1837                                                                BoundKind.EXTENDS,
  1838                                                                syms.boundClass)),
  1839                               restype.tsym);
  1840             } else {
  1841                 return restype;
  1845         /** Check that given application node appears as first statement
  1846          *  in a constructor call.
  1847          *  @param tree   The application node
  1848          *  @param env    The environment current at the application.
  1849          */
  1850         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1851             JCMethodDecl enclMethod = env.enclMethod;
  1852             if (enclMethod != null && enclMethod.name == names.init) {
  1853                 JCBlock body = enclMethod.body;
  1854                 if (body.stats.head.hasTag(EXEC) &&
  1855                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1856                     return true;
  1858             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1859                       TreeInfo.name(tree.meth));
  1860             return false;
  1863         /** Obtain a method type with given argument types.
  1864          */
  1865         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1866             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1867             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1870     public void visitNewClass(final JCNewClass tree) {
  1871         Type owntype = types.createErrorType(tree.type);
  1873         // The local environment of a class creation is
  1874         // a new environment nested in the current one.
  1875         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1877         // The anonymous inner class definition of the new expression,
  1878         // if one is defined by it.
  1879         JCClassDecl cdef = tree.def;
  1881         // If enclosing class is given, attribute it, and
  1882         // complete class name to be fully qualified
  1883         JCExpression clazz = tree.clazz; // Class field following new
  1884         JCExpression clazzid;            // Identifier in class field
  1885         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1886         annoclazzid = null;
  1888         if (clazz.hasTag(TYPEAPPLY)) {
  1889             clazzid = ((JCTypeApply) clazz).clazz;
  1890             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1891                 annoclazzid = (JCAnnotatedType) clazzid;
  1892                 clazzid = annoclazzid.underlyingType;
  1894         } else {
  1895             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1896                 annoclazzid = (JCAnnotatedType) clazz;
  1897                 clazzid = annoclazzid.underlyingType;
  1898             } else {
  1899                 clazzid = clazz;
  1903         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1905         if (tree.encl != null) {
  1906             // We are seeing a qualified new, of the form
  1907             //    <expr>.new C <...> (...) ...
  1908             // In this case, we let clazz stand for the name of the
  1909             // allocated class C prefixed with the type of the qualifier
  1910             // expression, so that we can
  1911             // resolve it with standard techniques later. I.e., if
  1912             // <expr> has type T, then <expr>.new C <...> (...)
  1913             // yields a clazz T.C.
  1914             Type encltype = chk.checkRefType(tree.encl.pos(),
  1915                                              attribExpr(tree.encl, env));
  1916             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1917             // from expr to the combined type, or not? Yes, do this.
  1918             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1919                                                  ((JCIdent) clazzid).name);
  1921             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1922                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1923                 List<JCAnnotation> annos = annoType.annotations;
  1925                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1926                     clazzid1 = make.at(tree.pos).
  1927                         TypeApply(clazzid1,
  1928                                   ((JCTypeApply) clazz).arguments);
  1931                 clazzid1 = make.at(tree.pos).
  1932                     AnnotatedType(annos, clazzid1);
  1933             } else if (clazz.hasTag(TYPEAPPLY)) {
  1934                 clazzid1 = make.at(tree.pos).
  1935                     TypeApply(clazzid1,
  1936                               ((JCTypeApply) clazz).arguments);
  1939             clazz = clazzid1;
  1942         // Attribute clazz expression and store
  1943         // symbol + type back into the attributed tree.
  1944         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1945             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1946             attribType(clazz, env);
  1948         clazztype = chk.checkDiamond(tree, clazztype);
  1949         chk.validate(clazz, localEnv);
  1950         if (tree.encl != null) {
  1951             // We have to work in this case to store
  1952             // symbol + type back into the attributed tree.
  1953             tree.clazz.type = clazztype;
  1954             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1955             clazzid.type = ((JCIdent) clazzid).sym.type;
  1956             if (annoclazzid != null) {
  1957                 annoclazzid.type = clazzid.type;
  1959             if (!clazztype.isErroneous()) {
  1960                 if (cdef != null && clazztype.tsym.isInterface()) {
  1961                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1962                 } else if (clazztype.tsym.isStatic()) {
  1963                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1966         } else if (!clazztype.tsym.isInterface() &&
  1967                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1968             // Check for the existence of an apropos outer instance
  1969             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1972         // Attribute constructor arguments.
  1973         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1974         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1976         // If we have made no mistakes in the class type...
  1977         if (clazztype.hasTag(CLASS)) {
  1978             // Enums may not be instantiated except implicitly
  1979             if (allowEnums &&
  1980                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1981                 (!env.tree.hasTag(VARDEF) ||
  1982                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1983                  ((JCVariableDecl) env.tree).init != tree))
  1984                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1985             // Check that class is not abstract
  1986             if (cdef == null &&
  1987                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1988                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1989                           clazztype.tsym);
  1990             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1991                 // Check that no constructor arguments are given to
  1992                 // anonymous classes implementing an interface
  1993                 if (!argtypes.isEmpty())
  1994                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1996                 if (!typeargtypes.isEmpty())
  1997                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1999                 // Error recovery: pretend no arguments were supplied.
  2000                 argtypes = List.nil();
  2001                 typeargtypes = List.nil();
  2002             } else if (TreeInfo.isDiamond(tree)) {
  2003                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2004                             clazztype.tsym.type.getTypeArguments(),
  2005                             clazztype.tsym);
  2007                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2008                 diamondEnv.info.selectSuper = cdef != null;
  2009                 diamondEnv.info.pendingResolutionPhase = null;
  2011                 //if the type of the instance creation expression is a class type
  2012                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2013                 //of the resolved constructor will be a partially instantiated type
  2014                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2015                             diamondEnv,
  2016                             site,
  2017                             argtypes,
  2018                             typeargtypes);
  2019                 tree.constructor = constructor.baseSymbol();
  2021                 final TypeSymbol csym = clazztype.tsym;
  2022                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2023                     @Override
  2024                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2025                         enclosingContext.report(tree.clazz,
  2026                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2028                 });
  2029                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2030                 constructorType = checkId(tree, site,
  2031                         constructor,
  2032                         diamondEnv,
  2033                         diamondResult);
  2035                 tree.clazz.type = types.createErrorType(clazztype);
  2036                 if (!constructorType.isErroneous()) {
  2037                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2038                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2040                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2043             // Resolve the called constructor under the assumption
  2044             // that we are referring to a superclass instance of the
  2045             // current instance (JLS ???).
  2046             else {
  2047                 //the following code alters some of the fields in the current
  2048                 //AttrContext - hence, the current context must be dup'ed in
  2049                 //order to avoid downstream failures
  2050                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2051                 rsEnv.info.selectSuper = cdef != null;
  2052                 rsEnv.info.pendingResolutionPhase = null;
  2053                 tree.constructor = rs.resolveConstructor(
  2054                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2055                 if (cdef == null) { //do not check twice!
  2056                     tree.constructorType = checkId(tree,
  2057                             clazztype,
  2058                             tree.constructor,
  2059                             rsEnv,
  2060                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2061                     if (rsEnv.info.lastResolveVarargs())
  2062                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2064                 findDiamondIfNeeded(localEnv, tree, clazztype);
  2067             if (cdef != null) {
  2068                 // We are seeing an anonymous class instance creation.
  2069                 // In this case, the class instance creation
  2070                 // expression
  2071                 //
  2072                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2073                 //
  2074                 // is represented internally as
  2075                 //
  2076                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2077                 //
  2078                 // This expression is then *transformed* as follows:
  2079                 //
  2080                 // (1) add a STATIC flag to the class definition
  2081                 //     if the current environment is static
  2082                 // (2) add an extends or implements clause
  2083                 // (3) add a constructor.
  2084                 //
  2085                 // For instance, if C is a class, and ET is the type of E,
  2086                 // the expression
  2087                 //
  2088                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2089                 //
  2090                 // is translated to (where X is a fresh name and typarams is the
  2091                 // parameter list of the super constructor):
  2092                 //
  2093                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2094                 //     X extends C<typargs2> {
  2095                 //       <typarams> X(ET e, args) {
  2096                 //         e.<typeargs1>super(args)
  2097                 //       }
  2098                 //       ...
  2099                 //     }
  2100                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2102                 if (clazztype.tsym.isInterface()) {
  2103                     cdef.implementing = List.of(clazz);
  2104                 } else {
  2105                     cdef.extending = clazz;
  2108                 attribStat(cdef, localEnv);
  2110                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2112                 // If an outer instance is given,
  2113                 // prefix it to the constructor arguments
  2114                 // and delete it from the new expression
  2115                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2116                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2117                     argtypes = argtypes.prepend(tree.encl.type);
  2118                     tree.encl = null;
  2121                 // Reassign clazztype and recompute constructor.
  2122                 clazztype = cdef.sym.type;
  2123                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2124                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2125                 Assert.check(sym.kind < AMBIGUOUS);
  2126                 tree.constructor = sym;
  2127                 tree.constructorType = checkId(tree,
  2128                     clazztype,
  2129                     tree.constructor,
  2130                     localEnv,
  2131                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2134             if (tree.constructor != null && tree.constructor.kind == MTH)
  2135                 owntype = clazztype;
  2137         result = check(tree, owntype, VAL, resultInfo);
  2138         chk.validate(tree.typeargs, localEnv);
  2140     //where
  2141         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2142             if (tree.def == null &&
  2143                     !clazztype.isErroneous() &&
  2144                     clazztype.getTypeArguments().nonEmpty() &&
  2145                     findDiamonds) {
  2146                 JCTypeApply ta = (JCTypeApply)tree.clazz;
  2147                 List<JCExpression> prevTypeargs = ta.arguments;
  2148                 try {
  2149                     //create a 'fake' diamond AST node by removing type-argument trees
  2150                     ta.arguments = List.nil();
  2151                     ResultInfo findDiamondResult = new ResultInfo(VAL,
  2152                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2153                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2154                     if (!inferred.isErroneous() &&
  2155                         types.isAssignable(inferred, pt().hasTag(NONE) ? syms.objectType : pt(), types.noWarnings)) {
  2156                         String key = types.isSameType(clazztype, inferred) ?
  2157                             "diamond.redundant.args" :
  2158                             "diamond.redundant.args.1";
  2159                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2161                 } finally {
  2162                     ta.arguments = prevTypeargs;
  2167             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2168                 if (allowLambda &&
  2169                         identifyLambdaCandidate &&
  2170                         clazztype.hasTag(CLASS) &&
  2171                         !pt().hasTag(NONE) &&
  2172                         types.isFunctionalInterface(clazztype.tsym)) {
  2173                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2174                     int count = 0;
  2175                     boolean found = false;
  2176                     for (Symbol sym : csym.members().getElements()) {
  2177                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2178                                 sym.isConstructor()) continue;
  2179                         count++;
  2180                         if (sym.kind != MTH ||
  2181                                 !sym.name.equals(descriptor.name)) continue;
  2182                         Type mtype = types.memberType(clazztype, sym);
  2183                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2184                             found = true;
  2187                     if (found && count == 1) {
  2188                         log.note(tree.def, "potential.lambda.found");
  2193     /** Make an attributed null check tree.
  2194      */
  2195     public JCExpression makeNullCheck(JCExpression arg) {
  2196         // optimization: X.this is never null; skip null check
  2197         Name name = TreeInfo.name(arg);
  2198         if (name == names._this || name == names._super) return arg;
  2200         JCTree.Tag optag = NULLCHK;
  2201         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2202         tree.operator = syms.nullcheck;
  2203         tree.type = arg.type;
  2204         return tree;
  2207     public void visitNewArray(JCNewArray tree) {
  2208         Type owntype = types.createErrorType(tree.type);
  2209         Env<AttrContext> localEnv = env.dup(tree);
  2210         Type elemtype;
  2211         if (tree.elemtype != null) {
  2212             elemtype = attribType(tree.elemtype, localEnv);
  2213             chk.validate(tree.elemtype, localEnv);
  2214             owntype = elemtype;
  2215             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2216                 attribExpr(l.head, localEnv, syms.intType);
  2217                 owntype = new ArrayType(owntype, syms.arrayClass);
  2219         } else {
  2220             // we are seeing an untyped aggregate { ... }
  2221             // this is allowed only if the prototype is an array
  2222             if (pt().hasTag(ARRAY)) {
  2223                 elemtype = types.elemtype(pt());
  2224             } else {
  2225                 if (!pt().hasTag(ERROR)) {
  2226                     log.error(tree.pos(), "illegal.initializer.for.type",
  2227                               pt());
  2229                 elemtype = types.createErrorType(pt());
  2232         if (tree.elems != null) {
  2233             attribExprs(tree.elems, localEnv, elemtype);
  2234             owntype = new ArrayType(elemtype, syms.arrayClass);
  2236         if (!types.isReifiable(elemtype))
  2237             log.error(tree.pos(), "generic.array.creation");
  2238         result = check(tree, owntype, VAL, resultInfo);
  2241     /*
  2242      * A lambda expression can only be attributed when a target-type is available.
  2243      * In addition, if the target-type is that of a functional interface whose
  2244      * descriptor contains inference variables in argument position the lambda expression
  2245      * is 'stuck' (see DeferredAttr).
  2246      */
  2247     @Override
  2248     public void visitLambda(final JCLambda that) {
  2249         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2250             if (pt().hasTag(NONE)) {
  2251                 //lambda only allowed in assignment or method invocation/cast context
  2252                 log.error(that.pos(), "unexpected.lambda");
  2254             result = that.type = types.createErrorType(pt());
  2255             return;
  2257         //create an environment for attribution of the lambda expression
  2258         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2259         boolean needsRecovery =
  2260                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2261         try {
  2262             Type target = pt();
  2263             List<Type> explicitParamTypes = null;
  2264             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2265                 //attribute lambda parameters
  2266                 attribStats(that.params, localEnv);
  2267                 explicitParamTypes = TreeInfo.types(that.params);
  2268                 target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext);
  2271             Type lambdaType;
  2272             if (pt() != Type.recoveryType) {
  2273                 target = checkIntersectionTarget(that, target, resultInfo.checkContext);
  2274                 lambdaType = types.findDescriptorType(target);
  2275                 chk.checkFunctionalInterface(that, target);
  2276             } else {
  2277                 target = Type.recoveryType;
  2278                 lambdaType = fallbackDescriptorType(that);
  2281             setFunctionalInfo(that, pt(), lambdaType, resultInfo.checkContext.inferenceContext());
  2283             if (lambdaType.hasTag(FORALL)) {
  2284                 //lambda expression target desc cannot be a generic method
  2285                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2286                         lambdaType, kindName(target.tsym), target.tsym));
  2287                 result = that.type = types.createErrorType(pt());
  2288                 return;
  2291             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2292                 //add param type info in the AST
  2293                 List<Type> actuals = lambdaType.getParameterTypes();
  2294                 List<JCVariableDecl> params = that.params;
  2296                 boolean arityMismatch = false;
  2298                 while (params.nonEmpty()) {
  2299                     if (actuals.isEmpty()) {
  2300                         //not enough actuals to perform lambda parameter inference
  2301                         arityMismatch = true;
  2303                     //reset previously set info
  2304                     Type argType = arityMismatch ?
  2305                             syms.errType :
  2306                             actuals.head;
  2307                     params.head.vartype = make.Type(argType);
  2308                     params.head.sym = null;
  2309                     actuals = actuals.isEmpty() ?
  2310                             actuals :
  2311                             actuals.tail;
  2312                     params = params.tail;
  2315                 //attribute lambda parameters
  2316                 attribStats(that.params, localEnv);
  2318                 if (arityMismatch) {
  2319                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2320                         result = that.type = types.createErrorType(target);
  2321                         return;
  2325             //from this point on, no recovery is needed; if we are in assignment context
  2326             //we will be able to attribute the whole lambda body, regardless of errors;
  2327             //if we are in a 'check' method context, and the lambda is not compatible
  2328             //with the target-type, it will be recovered anyway in Attr.checkId
  2329             needsRecovery = false;
  2331             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2332                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2333                     new FunctionalReturnContext(resultInfo.checkContext);
  2335             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2336                 recoveryInfo :
  2337                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2338             localEnv.info.returnResult = bodyResultInfo;
  2340             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2341                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2342             } else {
  2343                 JCBlock body = (JCBlock)that.body;
  2344                 attribStats(body.stats, localEnv);
  2347             result = check(that, target, VAL, resultInfo);
  2349             boolean isSpeculativeRound =
  2350                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2352             postAttr(that);
  2353             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2355             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
  2357             if (!isSpeculativeRound) {
  2358                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target);
  2360             result = check(that, target, VAL, resultInfo);
  2361         } catch (Types.FunctionDescriptorLookupError ex) {
  2362             JCDiagnostic cause = ex.getDiagnostic();
  2363             resultInfo.checkContext.report(that, cause);
  2364             result = that.type = types.createErrorType(pt());
  2365             return;
  2366         } finally {
  2367             localEnv.info.scope.leave();
  2368             if (needsRecovery) {
  2369                 attribTree(that, env, recoveryInfo);
  2374     private Type checkIntersectionTarget(DiagnosticPosition pos, Type pt, CheckContext checkContext) {
  2375         if (pt != Type.recoveryType && pt.isCompound()) {
  2376             IntersectionClassType ict = (IntersectionClassType)pt;
  2377             List<Type> bounds = ict.allInterfaces ?
  2378                     ict.getComponents().tail :
  2379                     ict.getComponents();
  2380             types.findDescriptorType(bounds.head); //propagate exception outwards!
  2381             for (Type bound : bounds.tail) {
  2382                 if (!types.isMarkerInterface(bound)) {
  2383                     checkContext.report(pos, diags.fragment("secondary.bound.must.be.marker.intf", bound));
  2386             //for now (translation doesn't support intersection types)
  2387             return bounds.head;
  2388         } else {
  2389             return pt;
  2392     //where
  2393         private Type fallbackDescriptorType(JCExpression tree) {
  2394             switch (tree.getTag()) {
  2395                 case LAMBDA:
  2396                     JCLambda lambda = (JCLambda)tree;
  2397                     List<Type> argtypes = List.nil();
  2398                     for (JCVariableDecl param : lambda.params) {
  2399                         argtypes = param.vartype != null ?
  2400                                 argtypes.append(param.vartype.type) :
  2401                                 argtypes.append(syms.errType);
  2403                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2404                 case REFERENCE:
  2405                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2406                 default:
  2407                     Assert.error("Cannot get here!");
  2409             return null;
  2412         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final Type... ts) {
  2413             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2416         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, final InferenceContext inferenceContext, final List<Type> ts) {
  2417             if (inferenceContext.free(ts)) {
  2418                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2419                     @Override
  2420                     public void typesInferred(InferenceContext inferenceContext) {
  2421                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2423                 });
  2424             } else {
  2425                 for (Type t : ts) {
  2426                     rs.checkAccessibleType(env, t);
  2431         /**
  2432          * Lambda/method reference have a special check context that ensures
  2433          * that i.e. a lambda return type is compatible with the expected
  2434          * type according to both the inherited context and the assignment
  2435          * context.
  2436          */
  2437         class FunctionalReturnContext extends Check.NestedCheckContext {
  2439             FunctionalReturnContext(CheckContext enclosingContext) {
  2440                 super(enclosingContext);
  2443             @Override
  2444             public boolean compatible(Type found, Type req, Warner warn) {
  2445                 //return type must be compatible in both current context and assignment context
  2446                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
  2449             @Override
  2450             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2451                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2455         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2457             JCExpression expr;
  2459             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2460                 super(enclosingContext);
  2461                 this.expr = expr;
  2464             @Override
  2465             public boolean compatible(Type found, Type req, Warner warn) {
  2466                 //a void return is compatible with an expression statement lambda
  2467                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2468                         super.compatible(found, req, warn);
  2472         /**
  2473         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2474         * are compatible with the expected functional interface descriptor. This means that:
  2475         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2476         * types must be compatible with the return type of the expected descriptor;
  2477         * (iii) thrown types must be 'included' in the thrown types list of the expected
  2478         * descriptor.
  2479         */
  2480         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
  2481             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2483             //return values have already been checked - but if lambda has no return
  2484             //values, we must ensure that void/value compatibility is correct;
  2485             //this amounts at checking that, if a lambda body can complete normally,
  2486             //the descriptor's return type must be void
  2487             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2488                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2489                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2490                         diags.fragment("missing.ret.val", returnType)));
  2493             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
  2494             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2495                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2498             if (!speculativeAttr) {
  2499                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2500                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
  2501                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
  2506         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2507             Env<AttrContext> lambdaEnv;
  2508             Symbol owner = env.info.scope.owner;
  2509             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2510                 //field initializer
  2511                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2512                 lambdaEnv.info.scope.owner =
  2513                     new MethodSymbol(0, names.empty, null,
  2514                                      env.info.scope.owner);
  2515             } else {
  2516                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2518             return lambdaEnv;
  2521     @Override
  2522     public void visitReference(final JCMemberReference that) {
  2523         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2524             if (pt().hasTag(NONE)) {
  2525                 //method reference only allowed in assignment or method invocation/cast context
  2526                 log.error(that.pos(), "unexpected.mref");
  2528             result = that.type = types.createErrorType(pt());
  2529             return;
  2531         final Env<AttrContext> localEnv = env.dup(that);
  2532         try {
  2533             //attribute member reference qualifier - if this is a constructor
  2534             //reference, the expected kind must be a type
  2535             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2537             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2538                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2541             if (exprType.isErroneous()) {
  2542                 //if the qualifier expression contains problems,
  2543                 //give up attribution of method reference
  2544                 result = that.type = exprType;
  2545                 return;
  2548             if (TreeInfo.isStaticSelector(that.expr, names) &&
  2549                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
  2550                 //if the qualifier is a type, validate it
  2551                 chk.validate(that.expr, env);
  2554             //attrib type-arguments
  2555             List<Type> typeargtypes = List.nil();
  2556             if (that.typeargs != null) {
  2557                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2560             Type target;
  2561             Type desc;
  2562             if (pt() != Type.recoveryType) {
  2563                 target = checkIntersectionTarget(that, pt(), resultInfo.checkContext);
  2564                 desc = types.findDescriptorType(target);
  2565                 chk.checkFunctionalInterface(that, target);
  2566             } else {
  2567                 target = Type.recoveryType;
  2568                 desc = fallbackDescriptorType(that);
  2571             setFunctionalInfo(that, pt(), desc, resultInfo.checkContext.inferenceContext());
  2572             List<Type> argtypes = desc.getParameterTypes();
  2574             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
  2575                     that.expr.type, that.name, argtypes, typeargtypes, true);
  2577             Symbol refSym = refResult.fst;
  2578             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2580             if (refSym.kind != MTH) {
  2581                 boolean targetError;
  2582                 switch (refSym.kind) {
  2583                     case ABSENT_MTH:
  2584                         targetError = false;
  2585                         break;
  2586                     case WRONG_MTH:
  2587                     case WRONG_MTHS:
  2588                     case AMBIGUOUS:
  2589                     case HIDDEN:
  2590                     case STATICERR:
  2591                     case MISSING_ENCL:
  2592                         targetError = true;
  2593                         break;
  2594                     default:
  2595                         Assert.error("unexpected result kind " + refSym.kind);
  2596                         targetError = false;
  2599                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2600                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2602                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2603                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2605                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2606                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2608                 if (targetError && target == Type.recoveryType) {
  2609                     //a target error doesn't make sense during recovery stage
  2610                     //as we don't know what actual parameter types are
  2611                     result = that.type = target;
  2612                     return;
  2613                 } else {
  2614                     if (targetError) {
  2615                         resultInfo.checkContext.report(that, diag);
  2616                     } else {
  2617                         log.report(diag);
  2619                     result = that.type = types.createErrorType(target);
  2620                     return;
  2624             that.sym = refSym.baseSymbol();
  2625             that.kind = lookupHelper.referenceKind(that.sym);
  2627             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2628                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2629                         exprType.getTypeArguments().nonEmpty()) {
  2630                     //static ref with class type-args
  2631                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2632                             diags.fragment("static.mref.with.targs"));
  2633                     result = that.type = types.createErrorType(target);
  2634                     return;
  2637                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2638                         !that.kind.isUnbound()) {
  2639                     //no static bound mrefs
  2640                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2641                             diags.fragment("static.bound.mref"));
  2642                     result = that.type = types.createErrorType(target);
  2643                     return;
  2646                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2647                     // Check that super-qualified symbols are not abstract (JLS)
  2648                     rs.checkNonAbstract(that.pos(), that.sym);
  2652             if (desc.getReturnType() == Type.recoveryType) {
  2653                 // stop here
  2654                 result = that.type = target;
  2655                 return;
  2658             that.sym = refSym.baseSymbol();
  2659             that.kind = lookupHelper.referenceKind(that.sym);
  2661             ResultInfo checkInfo =
  2662                     resultInfo.dup(newMethodTemplate(
  2663                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2664                         lookupHelper.argtypes,
  2665                         typeargtypes));
  2667             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2669             if (!refType.isErroneous()) {
  2670                 refType = types.createMethodTypeWithReturn(refType,
  2671                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2674             //go ahead with standard method reference compatibility check - note that param check
  2675             //is a no-op (as this has been taken care during method applicability)
  2676             boolean isSpeculativeRound =
  2677                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2678             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2679             if (!isSpeculativeRound) {
  2680                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2682             result = check(that, target, VAL, resultInfo);
  2683         } catch (Types.FunctionDescriptorLookupError ex) {
  2684             JCDiagnostic cause = ex.getDiagnostic();
  2685             resultInfo.checkContext.report(that, cause);
  2686             result = that.type = types.createErrorType(pt());
  2687             return;
  2690     //where
  2691         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2692             //if this is a constructor reference, the expected kind must be a type
  2693             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2697     @SuppressWarnings("fallthrough")
  2698     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2699         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2701         Type resType;
  2702         switch (tree.getMode()) {
  2703             case NEW:
  2704                 if (!tree.expr.type.isRaw()) {
  2705                     resType = tree.expr.type;
  2706                     break;
  2708             default:
  2709                 resType = refType.getReturnType();
  2712         Type incompatibleReturnType = resType;
  2714         if (returnType.hasTag(VOID)) {
  2715             incompatibleReturnType = null;
  2718         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2719             if (resType.isErroneous() ||
  2720                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2721                 incompatibleReturnType = null;
  2725         if (incompatibleReturnType != null) {
  2726             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2727                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2730         if (!speculativeAttr) {
  2731             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2732             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2733                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2738     /**
  2739      * Set functional type info on the underlying AST. Note: as the target descriptor
  2740      * might contain inference variables, we might need to register an hook in the
  2741      * current inference context.
  2742      */
  2743     private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt, final Type descriptorType, InferenceContext inferenceContext) {
  2744         if (inferenceContext.free(descriptorType)) {
  2745             inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2746                 public void typesInferred(InferenceContext inferenceContext) {
  2747                     setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType), inferenceContext);
  2749             });
  2750         } else {
  2751             ListBuffer<TypeSymbol> targets = ListBuffer.lb();
  2752             if (pt.hasTag(CLASS)) {
  2753                 if (pt.isCompound()) {
  2754                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2755                         targets.append(t.tsym);
  2757                 } else {
  2758                     targets.append(pt.tsym);
  2761             fExpr.targets = targets.toList();
  2762             fExpr.descriptorType = descriptorType;
  2766     public void visitParens(JCParens tree) {
  2767         Type owntype = attribTree(tree.expr, env, resultInfo);
  2768         result = check(tree, owntype, pkind(), resultInfo);
  2769         Symbol sym = TreeInfo.symbol(tree);
  2770         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2771             log.error(tree.pos(), "illegal.start.of.type");
  2774     public void visitAssign(JCAssign tree) {
  2775         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2776         Type capturedType = capture(owntype);
  2777         attribExpr(tree.rhs, env, owntype);
  2778         result = check(tree, capturedType, VAL, resultInfo);
  2781     public void visitAssignop(JCAssignOp tree) {
  2782         // Attribute arguments.
  2783         Type owntype = attribTree(tree.lhs, env, varInfo);
  2784         Type operand = attribExpr(tree.rhs, env);
  2785         // Find operator.
  2786         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2787             tree.pos(), tree.getTag().noAssignOp(), env,
  2788             owntype, operand);
  2790         if (operator.kind == MTH &&
  2791                 !owntype.isErroneous() &&
  2792                 !operand.isErroneous()) {
  2793             chk.checkOperator(tree.pos(),
  2794                               (OperatorSymbol)operator,
  2795                               tree.getTag().noAssignOp(),
  2796                               owntype,
  2797                               operand);
  2798             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2799             chk.checkCastable(tree.rhs.pos(),
  2800                               operator.type.getReturnType(),
  2801                               owntype);
  2803         result = check(tree, owntype, VAL, resultInfo);
  2806     public void visitUnary(JCUnary tree) {
  2807         // Attribute arguments.
  2808         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2809             ? attribTree(tree.arg, env, varInfo)
  2810             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2812         // Find operator.
  2813         Symbol operator = tree.operator =
  2814             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2816         Type owntype = types.createErrorType(tree.type);
  2817         if (operator.kind == MTH &&
  2818                 !argtype.isErroneous()) {
  2819             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2820                 ? tree.arg.type
  2821                 : operator.type.getReturnType();
  2822             int opc = ((OperatorSymbol)operator).opcode;
  2824             // If the argument is constant, fold it.
  2825             if (argtype.constValue() != null) {
  2826                 Type ctype = cfolder.fold1(opc, argtype);
  2827                 if (ctype != null) {
  2828                     owntype = cfolder.coerce(ctype, owntype);
  2830                     // Remove constant types from arguments to
  2831                     // conserve space. The parser will fold concatenations
  2832                     // of string literals; the code here also
  2833                     // gets rid of intermediate results when some of the
  2834                     // operands are constant identifiers.
  2835                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2836                         tree.arg.type = syms.stringType;
  2841         result = check(tree, owntype, VAL, resultInfo);
  2844     public void visitBinary(JCBinary tree) {
  2845         // Attribute arguments.
  2846         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2847         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2849         // Find operator.
  2850         Symbol operator = tree.operator =
  2851             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2853         Type owntype = types.createErrorType(tree.type);
  2854         if (operator.kind == MTH &&
  2855                 !left.isErroneous() &&
  2856                 !right.isErroneous()) {
  2857             owntype = operator.type.getReturnType();
  2858             int opc = chk.checkOperator(tree.lhs.pos(),
  2859                                         (OperatorSymbol)operator,
  2860                                         tree.getTag(),
  2861                                         left,
  2862                                         right);
  2864             // If both arguments are constants, fold them.
  2865             if (left.constValue() != null && right.constValue() != null) {
  2866                 Type ctype = cfolder.fold2(opc, left, right);
  2867                 if (ctype != null) {
  2868                     owntype = cfolder.coerce(ctype, owntype);
  2870                     // Remove constant types from arguments to
  2871                     // conserve space. The parser will fold concatenations
  2872                     // of string literals; the code here also
  2873                     // gets rid of intermediate results when some of the
  2874                     // operands are constant identifiers.
  2875                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2876                         tree.lhs.type = syms.stringType;
  2878                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2879                         tree.rhs.type = syms.stringType;
  2884             // Check that argument types of a reference ==, != are
  2885             // castable to each other, (JLS???).
  2886             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2887                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2888                     log.error(tree.pos(), "incomparable.types", left, right);
  2892             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2894         result = check(tree, owntype, VAL, resultInfo);
  2897     public void visitTypeCast(final JCTypeCast tree) {
  2898         Type clazztype = attribType(tree.clazz, env);
  2899         chk.validate(tree.clazz, env, false);
  2900         //a fresh environment is required for 292 inference to work properly ---
  2901         //see Infer.instantiatePolymorphicSignatureInstance()
  2902         Env<AttrContext> localEnv = env.dup(tree);
  2903         //should we propagate the target type?
  2904         final ResultInfo castInfo;
  2905         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
  2906         if (isPoly) {
  2907             //expression is a poly - we need to propagate target type info
  2908             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  2909                 @Override
  2910                 public boolean compatible(Type found, Type req, Warner warn) {
  2911                     return types.isCastable(found, req, warn);
  2913             });
  2914         } else {
  2915             //standalone cast - target-type info is not propagated
  2916             castInfo = unknownExprInfo;
  2918         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  2919         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2920         if (exprtype.constValue() != null)
  2921             owntype = cfolder.coerce(exprtype, owntype);
  2922         result = check(tree, capture(owntype), VAL, resultInfo);
  2923         if (!isPoly)
  2924             chk.checkRedundantCast(localEnv, tree);
  2927     public void visitTypeTest(JCInstanceOf tree) {
  2928         Type exprtype = chk.checkNullOrRefType(
  2929             tree.expr.pos(), attribExpr(tree.expr, env));
  2930         Type clazztype = chk.checkReifiableReferenceType(
  2931             tree.clazz.pos(), attribType(tree.clazz, env));
  2932         chk.validate(tree.clazz, env, false);
  2933         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2934         result = check(tree, syms.booleanType, VAL, resultInfo);
  2937     public void visitIndexed(JCArrayAccess tree) {
  2938         Type owntype = types.createErrorType(tree.type);
  2939         Type atype = attribExpr(tree.indexed, env);
  2940         attribExpr(tree.index, env, syms.intType);
  2941         if (types.isArray(atype))
  2942             owntype = types.elemtype(atype);
  2943         else if (!atype.hasTag(ERROR))
  2944             log.error(tree.pos(), "array.req.but.found", atype);
  2945         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  2946         result = check(tree, owntype, VAR, resultInfo);
  2949     public void visitIdent(JCIdent tree) {
  2950         Symbol sym;
  2952         // Find symbol
  2953         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  2954             // If we are looking for a method, the prototype `pt' will be a
  2955             // method type with the type of the call's arguments as parameters.
  2956             env.info.pendingResolutionPhase = null;
  2957             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  2958         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2959             sym = tree.sym;
  2960         } else {
  2961             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  2963         tree.sym = sym;
  2965         // (1) Also find the environment current for the class where
  2966         //     sym is defined (`symEnv').
  2967         // Only for pre-tiger versions (1.4 and earlier):
  2968         // (2) Also determine whether we access symbol out of an anonymous
  2969         //     class in a this or super call.  This is illegal for instance
  2970         //     members since such classes don't carry a this$n link.
  2971         //     (`noOuterThisPath').
  2972         Env<AttrContext> symEnv = env;
  2973         boolean noOuterThisPath = false;
  2974         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2975             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2976             sym.owner.kind == TYP &&
  2977             tree.name != names._this && tree.name != names._super) {
  2979             // Find environment in which identifier is defined.
  2980             while (symEnv.outer != null &&
  2981                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2982                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2983                     noOuterThisPath = !allowAnonOuterThis;
  2984                 symEnv = symEnv.outer;
  2988         // If symbol is a variable, ...
  2989         if (sym.kind == VAR) {
  2990             VarSymbol v = (VarSymbol)sym;
  2992             // ..., evaluate its initializer, if it has one, and check for
  2993             // illegal forward reference.
  2994             checkInit(tree, env, v, false);
  2996             // If we are expecting a variable (as opposed to a value), check
  2997             // that the variable is assignable in the current environment.
  2998             if (pkind() == VAR)
  2999                 checkAssignable(tree.pos(), v, null, env);
  3002         // In a constructor body,
  3003         // if symbol is a field or instance method, check that it is
  3004         // not accessed before the supertype constructor is called.
  3005         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3006             (sym.kind & (VAR | MTH)) != 0 &&
  3007             sym.owner.kind == TYP &&
  3008             (sym.flags() & STATIC) == 0) {
  3009             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3011         Env<AttrContext> env1 = env;
  3012         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3013             // If the found symbol is inaccessible, then it is
  3014             // accessed through an enclosing instance.  Locate this
  3015             // enclosing instance:
  3016             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3017                 env1 = env1.outer;
  3019         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3022     public void visitSelect(JCFieldAccess tree) {
  3023         // Determine the expected kind of the qualifier expression.
  3024         int skind = 0;
  3025         if (tree.name == names._this || tree.name == names._super ||
  3026             tree.name == names._class)
  3028             skind = TYP;
  3029         } else {
  3030             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3031             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3032             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3035         // Attribute the qualifier expression, and determine its symbol (if any).
  3036         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3037         if ((pkind() & (PCK | TYP)) == 0)
  3038             site = capture(site); // Capture field access
  3040         // don't allow T.class T[].class, etc
  3041         if (skind == TYP) {
  3042             Type elt = site;
  3043             while (elt.hasTag(ARRAY))
  3044                 elt = ((ArrayType)elt).elemtype;
  3045             if (elt.hasTag(TYPEVAR)) {
  3046                 log.error(tree.pos(), "type.var.cant.be.deref");
  3047                 result = types.createErrorType(tree.type);
  3048                 return;
  3052         // If qualifier symbol is a type or `super', assert `selectSuper'
  3053         // for the selection. This is relevant for determining whether
  3054         // protected symbols are accessible.
  3055         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3056         boolean selectSuperPrev = env.info.selectSuper;
  3057         env.info.selectSuper =
  3058             sitesym != null &&
  3059             sitesym.name == names._super;
  3061         // Determine the symbol represented by the selection.
  3062         env.info.pendingResolutionPhase = null;
  3063         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3064         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3065             site = capture(site);
  3066             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3068         boolean varArgs = env.info.lastResolveVarargs();
  3069         tree.sym = sym;
  3071         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3072             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3073             site = capture(site);
  3076         // If that symbol is a variable, ...
  3077         if (sym.kind == VAR) {
  3078             VarSymbol v = (VarSymbol)sym;
  3080             // ..., evaluate its initializer, if it has one, and check for
  3081             // illegal forward reference.
  3082             checkInit(tree, env, v, true);
  3084             // If we are expecting a variable (as opposed to a value), check
  3085             // that the variable is assignable in the current environment.
  3086             if (pkind() == VAR)
  3087                 checkAssignable(tree.pos(), v, tree.selected, env);
  3090         if (sitesym != null &&
  3091                 sitesym.kind == VAR &&
  3092                 ((VarSymbol)sitesym).isResourceVariable() &&
  3093                 sym.kind == MTH &&
  3094                 sym.name.equals(names.close) &&
  3095                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3096                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3097             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3100         // Disallow selecting a type from an expression
  3101         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3102             tree.type = check(tree.selected, pt(),
  3103                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3106         if (isType(sitesym)) {
  3107             if (sym.name == names._this) {
  3108                 // If `C' is the currently compiled class, check that
  3109                 // C.this' does not appear in a call to a super(...)
  3110                 if (env.info.isSelfCall &&
  3111                     site.tsym == env.enclClass.sym) {
  3112                     chk.earlyRefError(tree.pos(), sym);
  3114             } else {
  3115                 // Check if type-qualified fields or methods are static (JLS)
  3116                 if ((sym.flags() & STATIC) == 0 &&
  3117                     !env.next.tree.hasTag(REFERENCE) &&
  3118                     sym.name != names._super &&
  3119                     (sym.kind == VAR || sym.kind == MTH)) {
  3120                     rs.accessBase(rs.new StaticError(sym),
  3121                               tree.pos(), site, sym.name, true);
  3124         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3125             // If the qualified item is not a type and the selected item is static, report
  3126             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3127             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3130         // If we are selecting an instance member via a `super', ...
  3131         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3133             // Check that super-qualified symbols are not abstract (JLS)
  3134             rs.checkNonAbstract(tree.pos(), sym);
  3136             if (site.isRaw()) {
  3137                 // Determine argument types for site.
  3138                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3139                 if (site1 != null) site = site1;
  3143         env.info.selectSuper = selectSuperPrev;
  3144         result = checkId(tree, site, sym, env, resultInfo);
  3146     //where
  3147         /** Determine symbol referenced by a Select expression,
  3149          *  @param tree   The select tree.
  3150          *  @param site   The type of the selected expression,
  3151          *  @param env    The current environment.
  3152          *  @param resultInfo The current result.
  3153          */
  3154         private Symbol selectSym(JCFieldAccess tree,
  3155                                  Symbol location,
  3156                                  Type site,
  3157                                  Env<AttrContext> env,
  3158                                  ResultInfo resultInfo) {
  3159             DiagnosticPosition pos = tree.pos();
  3160             Name name = tree.name;
  3161             switch (site.getTag()) {
  3162             case PACKAGE:
  3163                 return rs.accessBase(
  3164                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3165                     pos, location, site, name, true);
  3166             case ARRAY:
  3167             case CLASS:
  3168                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3169                     return rs.resolveQualifiedMethod(
  3170                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3171                 } else if (name == names._this || name == names._super) {
  3172                     return rs.resolveSelf(pos, env, site.tsym, name);
  3173                 } else if (name == names._class) {
  3174                     // In this case, we have already made sure in
  3175                     // visitSelect that qualifier expression is a type.
  3176                     Type t = syms.classType;
  3177                     List<Type> typeargs = allowGenerics
  3178                         ? List.of(types.erasure(site))
  3179                         : List.<Type>nil();
  3180                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3181                     return new VarSymbol(
  3182                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3183                 } else {
  3184                     // We are seeing a plain identifier as selector.
  3185                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3186                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3187                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3188                     return sym;
  3190             case WILDCARD:
  3191                 throw new AssertionError(tree);
  3192             case TYPEVAR:
  3193                 // Normally, site.getUpperBound() shouldn't be null.
  3194                 // It should only happen during memberEnter/attribBase
  3195                 // when determining the super type which *must* beac
  3196                 // done before attributing the type variables.  In
  3197                 // other words, we are seeing this illegal program:
  3198                 // class B<T> extends A<T.foo> {}
  3199                 Symbol sym = (site.getUpperBound() != null)
  3200                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3201                     : null;
  3202                 if (sym == null) {
  3203                     log.error(pos, "type.var.cant.be.deref");
  3204                     return syms.errSymbol;
  3205                 } else {
  3206                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3207                         rs.new AccessError(env, site, sym) :
  3208                                 sym;
  3209                     rs.accessBase(sym2, pos, location, site, name, true);
  3210                     return sym;
  3212             case ERROR:
  3213                 // preserve identifier names through errors
  3214                 return types.createErrorType(name, site.tsym, site).tsym;
  3215             default:
  3216                 // The qualifier expression is of a primitive type -- only
  3217                 // .class is allowed for these.
  3218                 if (name == names._class) {
  3219                     // In this case, we have already made sure in Select that
  3220                     // qualifier expression is a type.
  3221                     Type t = syms.classType;
  3222                     Type arg = types.boxedClass(site).type;
  3223                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3224                     return new VarSymbol(
  3225                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3226                 } else {
  3227                     log.error(pos, "cant.deref", site);
  3228                     return syms.errSymbol;
  3233         /** Determine type of identifier or select expression and check that
  3234          *  (1) the referenced symbol is not deprecated
  3235          *  (2) the symbol's type is safe (@see checkSafe)
  3236          *  (3) if symbol is a variable, check that its type and kind are
  3237          *      compatible with the prototype and protokind.
  3238          *  (4) if symbol is an instance field of a raw type,
  3239          *      which is being assigned to, issue an unchecked warning if its
  3240          *      type changes under erasure.
  3241          *  (5) if symbol is an instance method of a raw type, issue an
  3242          *      unchecked warning if its argument types change under erasure.
  3243          *  If checks succeed:
  3244          *    If symbol is a constant, return its constant type
  3245          *    else if symbol is a method, return its result type
  3246          *    otherwise return its type.
  3247          *  Otherwise return errType.
  3249          *  @param tree       The syntax tree representing the identifier
  3250          *  @param site       If this is a select, the type of the selected
  3251          *                    expression, otherwise the type of the current class.
  3252          *  @param sym        The symbol representing the identifier.
  3253          *  @param env        The current environment.
  3254          *  @param resultInfo    The expected result
  3255          */
  3256         Type checkId(JCTree tree,
  3257                      Type site,
  3258                      Symbol sym,
  3259                      Env<AttrContext> env,
  3260                      ResultInfo resultInfo) {
  3261             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3262                     checkMethodId(tree, site, sym, env, resultInfo) :
  3263                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3266         Type checkMethodId(JCTree tree,
  3267                      Type site,
  3268                      Symbol sym,
  3269                      Env<AttrContext> env,
  3270                      ResultInfo resultInfo) {
  3271             boolean isPolymorhicSignature =
  3272                 sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types);
  3273             return isPolymorhicSignature ?
  3274                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3275                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3278         Type checkSigPolyMethodId(JCTree tree,
  3279                      Type site,
  3280                      Symbol sym,
  3281                      Env<AttrContext> env,
  3282                      ResultInfo resultInfo) {
  3283             //recover original symbol for signature polymorphic methods
  3284             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3285             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3286             return sym.type;
  3289         Type checkMethodIdInternal(JCTree tree,
  3290                      Type site,
  3291                      Symbol sym,
  3292                      Env<AttrContext> env,
  3293                      ResultInfo resultInfo) {
  3294             Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3295             Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3296             resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3297             return owntype;
  3300         Type checkIdInternal(JCTree tree,
  3301                      Type site,
  3302                      Symbol sym,
  3303                      Type pt,
  3304                      Env<AttrContext> env,
  3305                      ResultInfo resultInfo) {
  3306             if (pt.isErroneous()) {
  3307                 return types.createErrorType(site);
  3309             Type owntype; // The computed type of this identifier occurrence.
  3310             switch (sym.kind) {
  3311             case TYP:
  3312                 // For types, the computed type equals the symbol's type,
  3313                 // except for two situations:
  3314                 owntype = sym.type;
  3315                 if (owntype.hasTag(CLASS)) {
  3316                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3317                     Type ownOuter = owntype.getEnclosingType();
  3319                     // (a) If the symbol's type is parameterized, erase it
  3320                     // because no type parameters were given.
  3321                     // We recover generic outer type later in visitTypeApply.
  3322                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3323                         owntype = types.erasure(owntype);
  3326                     // (b) If the symbol's type is an inner class, then
  3327                     // we have to interpret its outer type as a superclass
  3328                     // of the site type. Example:
  3329                     //
  3330                     // class Tree<A> { class Visitor { ... } }
  3331                     // class PointTree extends Tree<Point> { ... }
  3332                     // ...PointTree.Visitor...
  3333                     //
  3334                     // Then the type of the last expression above is
  3335                     // Tree<Point>.Visitor.
  3336                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3337                         Type normOuter = site;
  3338                         if (normOuter.hasTag(CLASS)) {
  3339                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3340                             if (site.getKind() == TypeKind.ANNOTATED) {
  3341                                 // Propagate any type annotations.
  3342                                 // TODO: should asEnclosingSuper do this?
  3343                                 // Note that the type annotations in site will be updated
  3344                                 // by annotateType. Therefore, modify site instead
  3345                                 // of creating a new AnnotatedType.
  3346                                 ((AnnotatedType)site).underlyingType = normOuter;
  3347                                 normOuter = site;
  3350                         if (normOuter == null) // perhaps from an import
  3351                             normOuter = types.erasure(ownOuter);
  3352                         if (normOuter != ownOuter)
  3353                             owntype = new ClassType(
  3354                                 normOuter, List.<Type>nil(), owntype.tsym);
  3357                 break;
  3358             case VAR:
  3359                 VarSymbol v = (VarSymbol)sym;
  3360                 // Test (4): if symbol is an instance field of a raw type,
  3361                 // which is being assigned to, issue an unchecked warning if
  3362                 // its type changes under erasure.
  3363                 if (allowGenerics &&
  3364                     resultInfo.pkind == VAR &&
  3365                     v.owner.kind == TYP &&
  3366                     (v.flags() & STATIC) == 0 &&
  3367                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3368                     Type s = types.asOuterSuper(site, v.owner);
  3369                     if (s != null &&
  3370                         s.isRaw() &&
  3371                         !types.isSameType(v.type, v.erasure(types))) {
  3372                         chk.warnUnchecked(tree.pos(),
  3373                                           "unchecked.assign.to.var",
  3374                                           v, s);
  3377                 // The computed type of a variable is the type of the
  3378                 // variable symbol, taken as a member of the site type.
  3379                 owntype = (sym.owner.kind == TYP &&
  3380                            sym.name != names._this && sym.name != names._super)
  3381                     ? types.memberType(site, sym)
  3382                     : sym.type;
  3384                 // If the variable is a constant, record constant value in
  3385                 // computed type.
  3386                 if (v.getConstValue() != null && isStaticReference(tree))
  3387                     owntype = owntype.constType(v.getConstValue());
  3389                 if (resultInfo.pkind == VAL) {
  3390                     owntype = capture(owntype); // capture "names as expressions"
  3392                 break;
  3393             case MTH: {
  3394                 owntype = checkMethod(site, sym,
  3395                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3396                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3397                         resultInfo.pt.getTypeArguments());
  3398                 break;
  3400             case PCK: case ERR:
  3401                 owntype = sym.type;
  3402                 break;
  3403             default:
  3404                 throw new AssertionError("unexpected kind: " + sym.kind +
  3405                                          " in tree " + tree);
  3408             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3409             // (for constructors, the error was given when the constructor was
  3410             // resolved)
  3412             if (sym.name != names.init) {
  3413                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3414                 chk.checkSunAPI(tree.pos(), sym);
  3415                 chk.checkProfile(tree.pos(), sym);
  3418             // Test (3): if symbol is a variable, check that its type and
  3419             // kind are compatible with the prototype and protokind.
  3420             return check(tree, owntype, sym.kind, resultInfo);
  3423         /** Check that variable is initialized and evaluate the variable's
  3424          *  initializer, if not yet done. Also check that variable is not
  3425          *  referenced before it is defined.
  3426          *  @param tree    The tree making up the variable reference.
  3427          *  @param env     The current environment.
  3428          *  @param v       The variable's symbol.
  3429          */
  3430         private void checkInit(JCTree tree,
  3431                                Env<AttrContext> env,
  3432                                VarSymbol v,
  3433                                boolean onlyWarning) {
  3434 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3435 //                             tree.pos + " " + v.pos + " " +
  3436 //                             Resolve.isStatic(env));//DEBUG
  3438             // A forward reference is diagnosed if the declaration position
  3439             // of the variable is greater than the current tree position
  3440             // and the tree and variable definition occur in the same class
  3441             // definition.  Note that writes don't count as references.
  3442             // This check applies only to class and instance
  3443             // variables.  Local variables follow different scope rules,
  3444             // and are subject to definite assignment checking.
  3445             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3446                 v.owner.kind == TYP &&
  3447                 canOwnInitializer(owner(env)) &&
  3448                 v.owner == env.info.scope.owner.enclClass() &&
  3449                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3450                 (!env.tree.hasTag(ASSIGN) ||
  3451                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3452                 String suffix = (env.info.enclVar == v) ?
  3453                                 "self.ref" : "forward.ref";
  3454                 if (!onlyWarning || isStaticEnumField(v)) {
  3455                     log.error(tree.pos(), "illegal." + suffix);
  3456                 } else if (useBeforeDeclarationWarning) {
  3457                     log.warning(tree.pos(), suffix, v);
  3461             v.getConstValue(); // ensure initializer is evaluated
  3463             checkEnumInitializer(tree, env, v);
  3466         /**
  3467          * Check for illegal references to static members of enum.  In
  3468          * an enum type, constructors and initializers may not
  3469          * reference its static members unless they are constant.
  3471          * @param tree    The tree making up the variable reference.
  3472          * @param env     The current environment.
  3473          * @param v       The variable's symbol.
  3474          * @jls  section 8.9 Enums
  3475          */
  3476         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3477             // JLS:
  3478             //
  3479             // "It is a compile-time error to reference a static field
  3480             // of an enum type that is not a compile-time constant
  3481             // (15.28) from constructors, instance initializer blocks,
  3482             // or instance variable initializer expressions of that
  3483             // type. It is a compile-time error for the constructors,
  3484             // instance initializer blocks, or instance variable
  3485             // initializer expressions of an enum constant e to refer
  3486             // to itself or to an enum constant of the same type that
  3487             // is declared to the right of e."
  3488             if (isStaticEnumField(v)) {
  3489                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3491                 if (enclClass == null || enclClass.owner == null)
  3492                     return;
  3494                 // See if the enclosing class is the enum (or a
  3495                 // subclass thereof) declaring v.  If not, this
  3496                 // reference is OK.
  3497                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3498                     return;
  3500                 // If the reference isn't from an initializer, then
  3501                 // the reference is OK.
  3502                 if (!Resolve.isInitializer(env))
  3503                     return;
  3505                 log.error(tree.pos(), "illegal.enum.static.ref");
  3509         /** Is the given symbol a static, non-constant field of an Enum?
  3510          *  Note: enum literals should not be regarded as such
  3511          */
  3512         private boolean isStaticEnumField(VarSymbol v) {
  3513             return Flags.isEnum(v.owner) &&
  3514                    Flags.isStatic(v) &&
  3515                    !Flags.isConstant(v) &&
  3516                    v.name != names._class;
  3519         /** Can the given symbol be the owner of code which forms part
  3520          *  if class initialization? This is the case if the symbol is
  3521          *  a type or field, or if the symbol is the synthetic method.
  3522          *  owning a block.
  3523          */
  3524         private boolean canOwnInitializer(Symbol sym) {
  3525             return
  3526                 (sym.kind & (VAR | TYP)) != 0 ||
  3527                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3530     Warner noteWarner = new Warner();
  3532     /**
  3533      * Check that method arguments conform to its instantiation.
  3534      **/
  3535     public Type checkMethod(Type site,
  3536                             Symbol sym,
  3537                             ResultInfo resultInfo,
  3538                             Env<AttrContext> env,
  3539                             final List<JCExpression> argtrees,
  3540                             List<Type> argtypes,
  3541                             List<Type> typeargtypes) {
  3542         // Test (5): if symbol is an instance method of a raw type, issue
  3543         // an unchecked warning if its argument types change under erasure.
  3544         if (allowGenerics &&
  3545             (sym.flags() & STATIC) == 0 &&
  3546             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3547             Type s = types.asOuterSuper(site, sym.owner);
  3548             if (s != null && s.isRaw() &&
  3549                 !types.isSameTypes(sym.type.getParameterTypes(),
  3550                                    sym.erasure(types).getParameterTypes())) {
  3551                 chk.warnUnchecked(env.tree.pos(),
  3552                                   "unchecked.call.mbr.of.raw.type",
  3553                                   sym, s);
  3557         if (env.info.defaultSuperCallSite != null) {
  3558             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3559                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3560                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3561                 List<MethodSymbol> icand_sup =
  3562                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3563                 if (icand_sup.nonEmpty() &&
  3564                         icand_sup.head != sym &&
  3565                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3566                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3567                         diags.fragment("overridden.default", sym, sup));
  3568                     break;
  3571             env.info.defaultSuperCallSite = null;
  3574         if (sym.isStatic() && site.isInterface()) {
  3575             Assert.check(env.tree.hasTag(APPLY));
  3576             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3577             if (app.meth.hasTag(SELECT) &&
  3578                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3579                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3583         // Compute the identifier's instantiated type.
  3584         // For methods, we need to compute the instance type by
  3585         // Resolve.instantiate from the symbol's type as well as
  3586         // any type arguments and value arguments.
  3587         noteWarner.clear();
  3588         try {
  3589             Type owntype = rs.checkMethod(
  3590                     env,
  3591                     site,
  3592                     sym,
  3593                     resultInfo,
  3594                     argtypes,
  3595                     typeargtypes,
  3596                     noteWarner);
  3598             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3599                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
  3600         } catch (Infer.InferenceException ex) {
  3601             //invalid target type - propagate exception outwards or report error
  3602             //depending on the current check context
  3603             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3604             return types.createErrorType(site);
  3605         } catch (Resolve.InapplicableMethodException ex) {
  3606             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
  3607             return null;
  3611     public void visitLiteral(JCLiteral tree) {
  3612         result = check(
  3613             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3615     //where
  3616     /** Return the type of a literal with given type tag.
  3617      */
  3618     Type litType(TypeTag tag) {
  3619         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3622     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3623         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3626     public void visitTypeArray(JCArrayTypeTree tree) {
  3627         Type etype = attribType(tree.elemtype, env);
  3628         Type type = new ArrayType(etype, syms.arrayClass);
  3629         result = check(tree, type, TYP, resultInfo);
  3632     /** Visitor method for parameterized types.
  3633      *  Bound checking is left until later, since types are attributed
  3634      *  before supertype structure is completely known
  3635      */
  3636     public void visitTypeApply(JCTypeApply tree) {
  3637         Type owntype = types.createErrorType(tree.type);
  3639         // Attribute functor part of application and make sure it's a class.
  3640         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3642         // Attribute type parameters
  3643         List<Type> actuals = attribTypes(tree.arguments, env);
  3645         if (clazztype.hasTag(CLASS)) {
  3646             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3647             if (actuals.isEmpty()) //diamond
  3648                 actuals = formals;
  3650             if (actuals.length() == formals.length()) {
  3651                 List<Type> a = actuals;
  3652                 List<Type> f = formals;
  3653                 while (a.nonEmpty()) {
  3654                     a.head = a.head.withTypeVar(f.head);
  3655                     a = a.tail;
  3656                     f = f.tail;
  3658                 // Compute the proper generic outer
  3659                 Type clazzOuter = clazztype.getEnclosingType();
  3660                 if (clazzOuter.hasTag(CLASS)) {
  3661                     Type site;
  3662                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3663                     if (clazz.hasTag(IDENT)) {
  3664                         site = env.enclClass.sym.type;
  3665                     } else if (clazz.hasTag(SELECT)) {
  3666                         site = ((JCFieldAccess) clazz).selected.type;
  3667                     } else throw new AssertionError(""+tree);
  3668                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3669                         if (site.hasTag(CLASS))
  3670                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3671                         if (site == null)
  3672                             site = types.erasure(clazzOuter);
  3673                         clazzOuter = site;
  3676                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3677             } else {
  3678                 if (formals.length() != 0) {
  3679                     log.error(tree.pos(), "wrong.number.type.args",
  3680                               Integer.toString(formals.length()));
  3681                 } else {
  3682                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3684                 owntype = types.createErrorType(tree.type);
  3687         result = check(tree, owntype, TYP, resultInfo);
  3690     public void visitTypeUnion(JCTypeUnion tree) {
  3691         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  3692         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3693         for (JCExpression typeTree : tree.alternatives) {
  3694             Type ctype = attribType(typeTree, env);
  3695             ctype = chk.checkType(typeTree.pos(),
  3696                           chk.checkClassType(typeTree.pos(), ctype),
  3697                           syms.throwableType);
  3698             if (!ctype.isErroneous()) {
  3699                 //check that alternatives of a union type are pairwise
  3700                 //unrelated w.r.t. subtyping
  3701                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3702                     for (Type t : multicatchTypes) {
  3703                         boolean sub = types.isSubtype(ctype, t);
  3704                         boolean sup = types.isSubtype(t, ctype);
  3705                         if (sub || sup) {
  3706                             //assume 'a' <: 'b'
  3707                             Type a = sub ? ctype : t;
  3708                             Type b = sub ? t : ctype;
  3709                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3713                 multicatchTypes.append(ctype);
  3714                 if (all_multicatchTypes != null)
  3715                     all_multicatchTypes.append(ctype);
  3716             } else {
  3717                 if (all_multicatchTypes == null) {
  3718                     all_multicatchTypes = ListBuffer.lb();
  3719                     all_multicatchTypes.appendList(multicatchTypes);
  3721                 all_multicatchTypes.append(ctype);
  3724         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3725         if (t.hasTag(CLASS)) {
  3726             List<Type> alternatives =
  3727                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3728             t = new UnionClassType((ClassType) t, alternatives);
  3730         tree.type = result = t;
  3733     public void visitTypeIntersection(JCTypeIntersection tree) {
  3734         attribTypes(tree.bounds, env);
  3735         tree.type = result = checkIntersection(tree, tree.bounds);
  3738     public void visitTypeParameter(JCTypeParameter tree) {
  3739         TypeVar typeVar = (TypeVar) tree.type;
  3741         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3742             AnnotatedType antype = new AnnotatedType(typeVar);
  3743             annotateType(antype, tree.annotations);
  3744             tree.type = antype;
  3747         if (!typeVar.bound.isErroneous()) {
  3748             //fixup type-parameter bound computed in 'attribTypeVariables'
  3749             typeVar.bound = checkIntersection(tree, tree.bounds);
  3753     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3754         Set<Type> boundSet = new HashSet<Type>();
  3755         if (bounds.nonEmpty()) {
  3756             // accept class or interface or typevar as first bound.
  3757             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  3758             boundSet.add(types.erasure(bounds.head.type));
  3759             if (bounds.head.type.isErroneous()) {
  3760                 return bounds.head.type;
  3762             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3763                 // if first bound was a typevar, do not accept further bounds.
  3764                 if (bounds.tail.nonEmpty()) {
  3765                     log.error(bounds.tail.head.pos(),
  3766                               "type.var.may.not.be.followed.by.other.bounds");
  3767                     return bounds.head.type;
  3769             } else {
  3770                 // if first bound was a class or interface, accept only interfaces
  3771                 // as further bounds.
  3772                 for (JCExpression bound : bounds.tail) {
  3773                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  3774                     if (bound.type.isErroneous()) {
  3775                         bounds = List.of(bound);
  3777                     else if (bound.type.hasTag(CLASS)) {
  3778                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  3784         if (bounds.length() == 0) {
  3785             return syms.objectType;
  3786         } else if (bounds.length() == 1) {
  3787             return bounds.head.type;
  3788         } else {
  3789             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  3790             if (tree.hasTag(TYPEINTERSECTION)) {
  3791                 ((IntersectionClassType)owntype).intersectionKind =
  3792                         IntersectionClassType.IntersectionKind.EXPLICIT;
  3794             // ... the variable's bound is a class type flagged COMPOUND
  3795             // (see comment for TypeVar.bound).
  3796             // In this case, generate a class tree that represents the
  3797             // bound class, ...
  3798             JCExpression extending;
  3799             List<JCExpression> implementing;
  3800             if (!bounds.head.type.isInterface()) {
  3801                 extending = bounds.head;
  3802                 implementing = bounds.tail;
  3803             } else {
  3804                 extending = null;
  3805                 implementing = bounds;
  3807             JCClassDecl cd = make.at(tree).ClassDef(
  3808                 make.Modifiers(PUBLIC | ABSTRACT),
  3809                 names.empty, List.<JCTypeParameter>nil(),
  3810                 extending, implementing, List.<JCTree>nil());
  3812             ClassSymbol c = (ClassSymbol)owntype.tsym;
  3813             Assert.check((c.flags() & COMPOUND) != 0);
  3814             cd.sym = c;
  3815             c.sourcefile = env.toplevel.sourcefile;
  3817             // ... and attribute the bound class
  3818             c.flags_field |= UNATTRIBUTED;
  3819             Env<AttrContext> cenv = enter.classEnv(cd, env);
  3820             enter.typeEnvs.put(c, cenv);
  3821             attribClass(c);
  3822             return owntype;
  3826     public void visitWildcard(JCWildcard tree) {
  3827         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  3828         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  3829             ? syms.objectType
  3830             : attribType(tree.inner, env);
  3831         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  3832                                               tree.kind.kind,
  3833                                               syms.boundClass),
  3834                        TYP, resultInfo);
  3837     public void visitAnnotation(JCAnnotation tree) {
  3838         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  3839         result = tree.type = syms.errType;
  3842     public void visitAnnotatedType(JCAnnotatedType tree) {
  3843         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  3844         this.attribAnnotationTypes(tree.annotations, env);
  3845         AnnotatedType antype = new AnnotatedType(underlyingType);
  3846         annotateType(antype, tree.annotations);
  3847         result = tree.type = antype;
  3850     /**
  3851      * Apply the annotations to the particular type.
  3852      */
  3853     public void annotateType(final AnnotatedType type, final List<JCAnnotation> annotations) {
  3854         if (annotations.isEmpty())
  3855             return;
  3856         annotate.typeAnnotation(new Annotate.Annotator() {
  3857             @Override
  3858             public String toString() {
  3859                 return "annotate " + annotations + " onto " + type;
  3861             @Override
  3862             public void enterAnnotation() {
  3863                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  3864                 type.typeAnnotations = compounds;
  3866         });
  3869     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  3870         if (annotations.isEmpty())
  3871             return List.nil();
  3873         ListBuffer<Attribute.TypeCompound> buf = ListBuffer.lb();
  3874         for (JCAnnotation anno : annotations) {
  3875             buf.append((Attribute.TypeCompound) anno.attribute);
  3877         return buf.toList();
  3880     public void visitErroneous(JCErroneous tree) {
  3881         if (tree.errs != null)
  3882             for (JCTree err : tree.errs)
  3883                 attribTree(err, env, new ResultInfo(ERR, pt()));
  3884         result = tree.type = syms.errType;
  3887     /** Default visitor method for all other trees.
  3888      */
  3889     public void visitTree(JCTree tree) {
  3890         throw new AssertionError();
  3893     /**
  3894      * Attribute an env for either a top level tree or class declaration.
  3895      */
  3896     public void attrib(Env<AttrContext> env) {
  3897         if (env.tree.hasTag(TOPLEVEL))
  3898             attribTopLevel(env);
  3899         else
  3900             attribClass(env.tree.pos(), env.enclClass.sym);
  3903     /**
  3904      * Attribute a top level tree. These trees are encountered when the
  3905      * package declaration has annotations.
  3906      */
  3907     public void attribTopLevel(Env<AttrContext> env) {
  3908         JCCompilationUnit toplevel = env.toplevel;
  3909         try {
  3910             annotate.flush();
  3911             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  3912         } catch (CompletionFailure ex) {
  3913             chk.completionError(toplevel.pos(), ex);
  3917     /** Main method: attribute class definition associated with given class symbol.
  3918      *  reporting completion failures at the given position.
  3919      *  @param pos The source position at which completion errors are to be
  3920      *             reported.
  3921      *  @param c   The class symbol whose definition will be attributed.
  3922      */
  3923     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3924         try {
  3925             annotate.flush();
  3926             attribClass(c);
  3927         } catch (CompletionFailure ex) {
  3928             chk.completionError(pos, ex);
  3932     /** Attribute class definition associated with given class symbol.
  3933      *  @param c   The class symbol whose definition will be attributed.
  3934      */
  3935     void attribClass(ClassSymbol c) throws CompletionFailure {
  3936         if (c.type.hasTag(ERROR)) return;
  3938         // Check for cycles in the inheritance graph, which can arise from
  3939         // ill-formed class files.
  3940         chk.checkNonCyclic(null, c.type);
  3942         Type st = types.supertype(c.type);
  3943         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3944             // First, attribute superclass.
  3945             if (st.hasTag(CLASS))
  3946                 attribClass((ClassSymbol)st.tsym);
  3948             // Next attribute owner, if it is a class.
  3949             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  3950                 attribClass((ClassSymbol)c.owner);
  3953         // The previous operations might have attributed the current class
  3954         // if there was a cycle. So we test first whether the class is still
  3955         // UNATTRIBUTED.
  3956         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3957             c.flags_field &= ~UNATTRIBUTED;
  3959             // Get environment current at the point of class definition.
  3960             Env<AttrContext> env = enter.typeEnvs.get(c);
  3962             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3963             // because the annotations were not available at the time the env was created. Therefore,
  3964             // we look up the environment chain for the first enclosing environment for which the
  3965             // lint value is set. Typically, this is the parent env, but might be further if there
  3966             // are any envs created as a result of TypeParameter nodes.
  3967             Env<AttrContext> lintEnv = env;
  3968             while (lintEnv.info.lint == null)
  3969                 lintEnv = lintEnv.next;
  3971             // Having found the enclosing lint value, we can initialize the lint value for this class
  3972             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
  3974             Lint prevLint = chk.setLint(env.info.lint);
  3975             JavaFileObject prev = log.useSource(c.sourcefile);
  3976             ResultInfo prevReturnRes = env.info.returnResult;
  3978             try {
  3979                 env.info.returnResult = null;
  3980                 // java.lang.Enum may not be subclassed by a non-enum
  3981                 if (st.tsym == syms.enumSym &&
  3982                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3983                     log.error(env.tree.pos(), "enum.no.subclassing");
  3985                 // Enums may not be extended by source-level classes
  3986                 if (st.tsym != null &&
  3987                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3988                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3989                     !target.compilerBootstrap(c)) {
  3990                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3992                 attribClassBody(env, c);
  3994                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3995                 chk.checkClassOverrideEqualsAndHash(c);
  3996             } finally {
  3997                 env.info.returnResult = prevReturnRes;
  3998                 log.useSource(prev);
  3999                 chk.setLint(prevLint);
  4005     public void visitImport(JCImport tree) {
  4006         // nothing to do
  4009     /** Finish the attribution of a class. */
  4010     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4011         JCClassDecl tree = (JCClassDecl)env.tree;
  4012         Assert.check(c == tree.sym);
  4014         // Validate annotations
  4015         chk.validateAnnotations(tree.mods.annotations, c);
  4017         // Validate type parameters, supertype and interfaces.
  4018         attribStats(tree.typarams, env);
  4019         if (!c.isAnonymous()) {
  4020             //already checked if anonymous
  4021             chk.validate(tree.typarams, env);
  4022             chk.validate(tree.extending, env);
  4023             chk.validate(tree.implementing, env);
  4026         // If this is a non-abstract class, check that it has no abstract
  4027         // methods or unimplemented methods of an implemented interface.
  4028         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4029             if (!relax)
  4030                 chk.checkAllDefined(tree.pos(), c);
  4033         if ((c.flags() & ANNOTATION) != 0) {
  4034             if (tree.implementing.nonEmpty())
  4035                 log.error(tree.implementing.head.pos(),
  4036                           "cant.extend.intf.annotation");
  4037             if (tree.typarams.nonEmpty())
  4038                 log.error(tree.typarams.head.pos(),
  4039                           "intf.annotation.cant.have.type.params");
  4041             // If this annotation has a @Repeatable, validate
  4042             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4043             if (repeatable != null) {
  4044                 // get diagnostic position for error reporting
  4045                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4046                 Assert.checkNonNull(cbPos);
  4048                 chk.validateRepeatable(c, repeatable, cbPos);
  4050         } else {
  4051             // Check that all extended classes and interfaces
  4052             // are compatible (i.e. no two define methods with same arguments
  4053             // yet different return types).  (JLS 8.4.6.3)
  4054             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4055             if (allowDefaultMethods) {
  4056                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4060         // Check that class does not import the same parameterized interface
  4061         // with two different argument lists.
  4062         chk.checkClassBounds(tree.pos(), c.type);
  4064         tree.type = c.type;
  4066         for (List<JCTypeParameter> l = tree.typarams;
  4067              l.nonEmpty(); l = l.tail) {
  4068              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4071         // Check that a generic class doesn't extend Throwable
  4072         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4073             log.error(tree.extending.pos(), "generic.throwable");
  4075         // Check that all methods which implement some
  4076         // method conform to the method they implement.
  4077         chk.checkImplementations(tree);
  4079         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4080         checkAutoCloseable(tree.pos(), env, c.type);
  4082         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4083             // Attribute declaration
  4084             attribStat(l.head, env);
  4085             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4086             // Make an exception for static constants.
  4087             if (c.owner.kind != PCK &&
  4088                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4089                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4090                 Symbol sym = null;
  4091                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4092                 if (sym == null ||
  4093                     sym.kind != VAR ||
  4094                     ((VarSymbol) sym).getConstValue() == null)
  4095                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4099         // Check for cycles among non-initial constructors.
  4100         chk.checkCyclicConstructors(tree);
  4102         // Check for cycles among annotation elements.
  4103         chk.checkNonCyclicElements(tree);
  4105         // Check for proper use of serialVersionUID
  4106         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4107             isSerializable(c) &&
  4108             (c.flags() & Flags.ENUM) == 0 &&
  4109             (c.flags() & ABSTRACT) == 0) {
  4110             checkSerialVersionUID(tree, c);
  4113         // Correctly organize the postions of the type annotations
  4114         TypeAnnotations.organizeTypeAnnotationsBodies(this.syms, this.names, this.log, tree);
  4116         // Check type annotations applicability rules
  4117         validateTypeAnnotations(tree);
  4119         // where
  4120         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4121         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4122             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4123                 if (types.isSameType(al.head.annotationType.type, t))
  4124                     return al.head.pos();
  4127             return null;
  4130         /** check if a class is a subtype of Serializable, if that is available. */
  4131         private boolean isSerializable(ClassSymbol c) {
  4132             try {
  4133                 syms.serializableType.complete();
  4135             catch (CompletionFailure e) {
  4136                 return false;
  4138             return types.isSubtype(c.type, syms.serializableType);
  4141         /** Check that an appropriate serialVersionUID member is defined. */
  4142         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4144             // check for presence of serialVersionUID
  4145             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4146             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4147             if (e.scope == null) {
  4148                 log.warning(LintCategory.SERIAL,
  4149                         tree.pos(), "missing.SVUID", c);
  4150                 return;
  4153             // check that it is static final
  4154             VarSymbol svuid = (VarSymbol)e.sym;
  4155             if ((svuid.flags() & (STATIC | FINAL)) !=
  4156                 (STATIC | FINAL))
  4157                 log.warning(LintCategory.SERIAL,
  4158                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4160             // check that it is long
  4161             else if (!svuid.type.hasTag(LONG))
  4162                 log.warning(LintCategory.SERIAL,
  4163                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4165             // check constant
  4166             else if (svuid.getConstValue() == null)
  4167                 log.warning(LintCategory.SERIAL,
  4168                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4171     private Type capture(Type type) {
  4172         //do not capture free types
  4173         return resultInfo.checkContext.inferenceContext().free(type) ?
  4174                 type : types.capture(type);
  4177     private void validateTypeAnnotations(JCTree tree) {
  4178         tree.accept(typeAnnotationsValidator);
  4180     //where
  4181     private final JCTree.Visitor typeAnnotationsValidator =
  4182         new TreeScanner() {
  4183         public void visitAnnotation(JCAnnotation tree) {
  4184             if (tree.hasTag(TYPE_ANNOTATION)) {
  4185                 // TODO: It seems to WMD as if the annotation in
  4186                 // parameters, in particular also the recvparam, are never
  4187                 // of type JCTypeAnnotation and therefore never checked!
  4188                 // Luckily this check doesn't really do anything that isn't
  4189                 // also done elsewhere.
  4190                 chk.validateTypeAnnotation(tree, false);
  4192             super.visitAnnotation(tree);
  4194         public void visitTypeParameter(JCTypeParameter tree) {
  4195             chk.validateTypeAnnotations(tree.annotations, true);
  4196             scan(tree.bounds);
  4197             // Don't call super.
  4198             // This is needed because above we call validateTypeAnnotation with
  4199             // false, which would forbid annotations on type parameters.
  4200             // super.visitTypeParameter(tree);
  4202         public void visitMethodDef(JCMethodDecl tree) {
  4203             // Static methods cannot have receiver type annotations.
  4204             // In test case FailOver15.java, the nested method getString has
  4205             // a null sym, because an unknown class is instantiated.
  4206             // I would say it's safe to skip.
  4207             if (tree.sym != null && (tree.sym.flags() & Flags.STATIC) != 0) {
  4208                 if (tree.recvparam != null) {
  4209                     // TODO: better error message. Is the pos good?
  4210                     log.error(tree.recvparam.pos(), "annotation.type.not.applicable");
  4213             if (tree.restype != null && tree.restype.type != null) {
  4214                 validateAnnotatedType(tree.restype, tree.restype.type);
  4216             super.visitMethodDef(tree);
  4218         public void visitVarDef(final JCVariableDecl tree) {
  4219             if (tree.sym != null && tree.sym.type != null)
  4220                 validateAnnotatedType(tree, tree.sym.type);
  4221             super.visitVarDef(tree);
  4223         public void visitTypeCast(JCTypeCast tree) {
  4224             if (tree.clazz != null && tree.clazz.type != null)
  4225                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4226             super.visitTypeCast(tree);
  4228         public void visitTypeTest(JCInstanceOf tree) {
  4229             if (tree.clazz != null && tree.clazz.type != null)
  4230                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4231             super.visitTypeTest(tree);
  4233         // TODO: what else do we need?
  4234         // public void visitNewClass(JCNewClass tree) {
  4235         // public void visitNewArray(JCNewArray tree) {
  4237         /* I would want to model this after
  4238          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4239          * and override visitSelect and visitTypeApply.
  4240          * However, we only set the annotated type in the top-level type
  4241          * of the symbol.
  4242          * Therefore, we need to override each individual location where a type
  4243          * can occur.
  4244          */
  4245         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4246             if (type.getEnclosingType() != null &&
  4247                     type != type.getEnclosingType()) {
  4248                 validateEnclosingAnnotatedType(errtree, type.getEnclosingType());
  4250             for (Type targ : type.getTypeArguments()) {
  4251                 validateAnnotatedType(errtree, targ);
  4254         private void validateEnclosingAnnotatedType(final JCTree errtree, final Type type) {
  4255             validateAnnotatedType(errtree, type);
  4256             if (type.tsym != null &&
  4257                     type.tsym.isStatic() &&
  4258                     type.getAnnotations().nonEmpty()) {
  4259                     // Enclosing static classes cannot have type annotations.
  4260                 log.error(errtree.pos(), "cant.annotate.static.class");
  4263     };
  4265     // <editor-fold desc="post-attribution visitor">
  4267     /**
  4268      * Handle missing types/symbols in an AST. This routine is useful when
  4269      * the compiler has encountered some errors (which might have ended up
  4270      * terminating attribution abruptly); if the compiler is used in fail-over
  4271      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4272      * prevents NPE to be progagated during subsequent compilation steps.
  4273      */
  4274     public void postAttr(JCTree tree) {
  4275         new PostAttrAnalyzer().scan(tree);
  4278     class PostAttrAnalyzer extends TreeScanner {
  4280         private void initTypeIfNeeded(JCTree that) {
  4281             if (that.type == null) {
  4282                 that.type = syms.unknownType;
  4286         @Override
  4287         public void scan(JCTree tree) {
  4288             if (tree == null) return;
  4289             if (tree instanceof JCExpression) {
  4290                 initTypeIfNeeded(tree);
  4292             super.scan(tree);
  4295         @Override
  4296         public void visitIdent(JCIdent that) {
  4297             if (that.sym == null) {
  4298                 that.sym = syms.unknownSymbol;
  4302         @Override
  4303         public void visitSelect(JCFieldAccess that) {
  4304             if (that.sym == null) {
  4305                 that.sym = syms.unknownSymbol;
  4307             super.visitSelect(that);
  4310         @Override
  4311         public void visitClassDef(JCClassDecl that) {
  4312             initTypeIfNeeded(that);
  4313             if (that.sym == null) {
  4314                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4316             super.visitClassDef(that);
  4319         @Override
  4320         public void visitMethodDef(JCMethodDecl that) {
  4321             initTypeIfNeeded(that);
  4322             if (that.sym == null) {
  4323                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4325             super.visitMethodDef(that);
  4328         @Override
  4329         public void visitVarDef(JCVariableDecl that) {
  4330             initTypeIfNeeded(that);
  4331             if (that.sym == null) {
  4332                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4333                 that.sym.adr = 0;
  4335             super.visitVarDef(that);
  4338         @Override
  4339         public void visitNewClass(JCNewClass that) {
  4340             if (that.constructor == null) {
  4341                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4343             if (that.constructorType == null) {
  4344                 that.constructorType = syms.unknownType;
  4346             super.visitNewClass(that);
  4349         @Override
  4350         public void visitAssignop(JCAssignOp that) {
  4351             if (that.operator == null)
  4352                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4353             super.visitAssignop(that);
  4356         @Override
  4357         public void visitBinary(JCBinary that) {
  4358             if (that.operator == null)
  4359                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4360             super.visitBinary(that);
  4363         @Override
  4364         public void visitUnary(JCUnary that) {
  4365             if (that.operator == null)
  4366                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4367             super.visitUnary(that);
  4370         @Override
  4371         public void visitLambda(JCLambda that) {
  4372             super.visitLambda(that);
  4373             if (that.descriptorType == null) {
  4374                 that.descriptorType = syms.unknownType;
  4376             if (that.targets == null) {
  4377                 that.targets = List.nil();
  4381         @Override
  4382         public void visitReference(JCMemberReference that) {
  4383             super.visitReference(that);
  4384             if (that.sym == null) {
  4385                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4387             if (that.descriptorType == null) {
  4388                 that.descriptorType = syms.unknownType;
  4390             if (that.targets == null) {
  4391                 that.targets = List.nil();
  4395     // </editor-fold>

mercurial