src/share/classes/com/sun/tools/javac/comp/Attr.java

Wed, 25 Sep 2013 11:07:05 -0700

author
jjg
date
Wed, 25 Sep 2013 11:07:05 -0700
changeset 2056
5043e7056be8
parent 2049
64e79d38bd07
child 2070
b7d8b71e1658
permissions
-rw-r--r--

8025407: TypeAnnotations does not use Context
Reviewed-by: jfranck

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.lang.model.type.TypeKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.tree.*;
    49 import com.sun.tools.javac.tree.JCTree.*;
    50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTag.*;
    60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    63 /** This is the main context-dependent analysis phase in GJC. It
    64  *  encompasses name resolution, type checking and constant folding as
    65  *  subtasks. Some subtasks involve auxiliary classes.
    66  *  @see Check
    67  *  @see Resolve
    68  *  @see ConstFold
    69  *  @see Infer
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Attr extends JCTree.Visitor {
    77     protected static final Context.Key<Attr> attrKey =
    78         new Context.Key<Attr>();
    80     final Names names;
    81     final Log log;
    82     final Symtab syms;
    83     final Resolve rs;
    84     final Infer infer;
    85     final DeferredAttr deferredAttr;
    86     final Check chk;
    87     final Flow flow;
    88     final MemberEnter memberEnter;
    89     final TreeMaker make;
    90     final ConstFold cfolder;
    91     final Enter enter;
    92     final Target target;
    93     final Types types;
    94     final JCDiagnostic.Factory diags;
    95     final Annotate annotate;
    96     final TypeAnnotations typeAnnotations;
    97     final DeferredLintHandler deferredLintHandler;
    99     public static Attr instance(Context context) {
   100         Attr instance = context.get(attrKey);
   101         if (instance == null)
   102             instance = new Attr(context);
   103         return instance;
   104     }
   106     protected Attr(Context context) {
   107         context.put(attrKey, this);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         syms = Symtab.instance(context);
   112         rs = Resolve.instance(context);
   113         chk = Check.instance(context);
   114         flow = Flow.instance(context);
   115         memberEnter = MemberEnter.instance(context);
   116         make = TreeMaker.instance(context);
   117         enter = Enter.instance(context);
   118         infer = Infer.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         cfolder = ConstFold.instance(context);
   121         target = Target.instance(context);
   122         types = Types.instance(context);
   123         diags = JCDiagnostic.Factory.instance(context);
   124         annotate = Annotate.instance(context);
   125         typeAnnotations = TypeAnnotations.instance(context);
   126         deferredLintHandler = DeferredLintHandler.instance(context);
   128         Options options = Options.instance(context);
   130         Source source = Source.instance(context);
   131         allowGenerics = source.allowGenerics();
   132         allowVarargs = source.allowVarargs();
   133         allowEnums = source.allowEnums();
   134         allowBoxing = source.allowBoxing();
   135         allowCovariantReturns = source.allowCovariantReturns();
   136         allowAnonOuterThis = source.allowAnonOuterThis();
   137         allowStringsInSwitch = source.allowStringsInSwitch();
   138         allowPoly = source.allowPoly();
   139         allowTypeAnnos = source.allowTypeAnnotations();
   140         allowLambda = source.allowLambda();
   141         allowDefaultMethods = source.allowDefaultMethods();
   142         sourceName = source.name;
   143         relax = (options.isSet("-retrofit") ||
   144                  options.isSet("-relax"));
   145         findDiamonds = options.get("findDiamond") != null &&
   146                  source.allowDiamond();
   147         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   148         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   150         statInfo = new ResultInfo(NIL, Type.noType);
   151         varInfo = new ResultInfo(VAR, Type.noType);
   152         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   153         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   154         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   155         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   156         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   157     }
   159     /** Switch: relax some constraints for retrofit mode.
   160      */
   161     boolean relax;
   163     /** Switch: support target-typing inference
   164      */
   165     boolean allowPoly;
   167     /** Switch: support type annotations.
   168      */
   169     boolean allowTypeAnnos;
   171     /** Switch: support generics?
   172      */
   173     boolean allowGenerics;
   175     /** Switch: allow variable-arity methods.
   176      */
   177     boolean allowVarargs;
   179     /** Switch: support enums?
   180      */
   181     boolean allowEnums;
   183     /** Switch: support boxing and unboxing?
   184      */
   185     boolean allowBoxing;
   187     /** Switch: support covariant result types?
   188      */
   189     boolean allowCovariantReturns;
   191     /** Switch: support lambda expressions ?
   192      */
   193     boolean allowLambda;
   195     /** Switch: support default methods ?
   196      */
   197     boolean allowDefaultMethods;
   199     /** Switch: allow references to surrounding object from anonymous
   200      * objects during constructor call?
   201      */
   202     boolean allowAnonOuterThis;
   204     /** Switch: generates a warning if diamond can be safely applied
   205      *  to a given new expression
   206      */
   207     boolean findDiamonds;
   209     /**
   210      * Internally enables/disables diamond finder feature
   211      */
   212     static final boolean allowDiamondFinder = true;
   214     /**
   215      * Switch: warn about use of variable before declaration?
   216      * RFE: 6425594
   217      */
   218     boolean useBeforeDeclarationWarning;
   220     /**
   221      * Switch: generate warnings whenever an anonymous inner class that is convertible
   222      * to a lambda expression is found
   223      */
   224     boolean identifyLambdaCandidate;
   226     /**
   227      * Switch: allow strings in switch?
   228      */
   229     boolean allowStringsInSwitch;
   231     /**
   232      * Switch: name of source level; used for error reporting.
   233      */
   234     String sourceName;
   236     /** Check kind and type of given tree against protokind and prototype.
   237      *  If check succeeds, store type in tree and return it.
   238      *  If check fails, store errType in tree and return it.
   239      *  No checks are performed if the prototype is a method type.
   240      *  It is not necessary in this case since we know that kind and type
   241      *  are correct.
   242      *
   243      *  @param tree     The tree whose kind and type is checked
   244      *  @param ownkind  The computed kind of the tree
   245      *  @param resultInfo  The expected result of the tree
   246      */
   247     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   248         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   249         Type owntype = found;
   250         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   251             if (allowPoly && inferenceContext.free(found)) {
   252                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   253                     @Override
   254                     public void typesInferred(InferenceContext inferenceContext) {
   255                         ResultInfo pendingResult =
   256                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   257                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   258                     }
   259                 });
   260                 return tree.type = resultInfo.pt;
   261             } else {
   262                 if ((ownkind & ~resultInfo.pkind) == 0) {
   263                     owntype = resultInfo.check(tree, owntype);
   264                 } else {
   265                     log.error(tree.pos(), "unexpected.type",
   266                             kindNames(resultInfo.pkind),
   267                             kindName(ownkind));
   268                     owntype = types.createErrorType(owntype);
   269                 }
   270             }
   271         }
   272         tree.type = owntype;
   273         return owntype;
   274     }
   276     /** Is given blank final variable assignable, i.e. in a scope where it
   277      *  may be assigned to even though it is final?
   278      *  @param v      The blank final variable.
   279      *  @param env    The current environment.
   280      */
   281     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   282         Symbol owner = owner(env);
   283            // owner refers to the innermost variable, method or
   284            // initializer block declaration at this point.
   285         return
   286             v.owner == owner
   287             ||
   288             ((owner.name == names.init ||    // i.e. we are in a constructor
   289               owner.kind == VAR ||           // i.e. we are in a variable initializer
   290               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   291              &&
   292              v.owner == owner.owner
   293              &&
   294              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   295     }
   297     /**
   298      * Return the innermost enclosing owner symbol in a given attribution context
   299      */
   300     Symbol owner(Env<AttrContext> env) {
   301         while (true) {
   302             switch (env.tree.getTag()) {
   303                 case VARDEF:
   304                     //a field can be owner
   305                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   306                     if (vsym.owner.kind == TYP) {
   307                         return vsym;
   308                     }
   309                     break;
   310                 case METHODDEF:
   311                     //method def is always an owner
   312                     return ((JCMethodDecl)env.tree).sym;
   313                 case CLASSDEF:
   314                     //class def is always an owner
   315                     return ((JCClassDecl)env.tree).sym;
   316                 case LAMBDA:
   317                     //a lambda is an owner - return a fresh synthetic method symbol
   318                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   319                 case BLOCK:
   320                     //static/instance init blocks are owner
   321                     Symbol blockSym = env.info.scope.owner;
   322                     if ((blockSym.flags() & BLOCK) != 0) {
   323                         return blockSym;
   324                     }
   325                     break;
   326                 case TOPLEVEL:
   327                     //toplevel is always an owner (for pkge decls)
   328                     return env.info.scope.owner;
   329             }
   330             Assert.checkNonNull(env.next);
   331             env = env.next;
   332         }
   333     }
   335     /** Check that variable can be assigned to.
   336      *  @param pos    The current source code position.
   337      *  @param v      The assigned varaible
   338      *  @param base   If the variable is referred to in a Select, the part
   339      *                to the left of the `.', null otherwise.
   340      *  @param env    The current environment.
   341      */
   342     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   343         if ((v.flags() & FINAL) != 0 &&
   344             ((v.flags() & HASINIT) != 0
   345              ||
   346              !((base == null ||
   347                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   348                isAssignableAsBlankFinal(v, env)))) {
   349             if (v.isResourceVariable()) { //TWR resource
   350                 log.error(pos, "try.resource.may.not.be.assigned", v);
   351             } else {
   352                 log.error(pos, "cant.assign.val.to.final.var", v);
   353             }
   354         }
   355     }
   357     /** Does tree represent a static reference to an identifier?
   358      *  It is assumed that tree is either a SELECT or an IDENT.
   359      *  We have to weed out selects from non-type names here.
   360      *  @param tree    The candidate tree.
   361      */
   362     boolean isStaticReference(JCTree tree) {
   363         if (tree.hasTag(SELECT)) {
   364             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   365             if (lsym == null || lsym.kind != TYP) {
   366                 return false;
   367             }
   368         }
   369         return true;
   370     }
   372     /** Is this symbol a type?
   373      */
   374     static boolean isType(Symbol sym) {
   375         return sym != null && sym.kind == TYP;
   376     }
   378     /** The current `this' symbol.
   379      *  @param env    The current environment.
   380      */
   381     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   382         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   383     }
   385     /** Attribute a parsed identifier.
   386      * @param tree Parsed identifier name
   387      * @param topLevel The toplevel to use
   388      */
   389     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   390         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   391         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   392                                            syms.errSymbol.name,
   393                                            null, null, null, null);
   394         localEnv.enclClass.sym = syms.errSymbol;
   395         return tree.accept(identAttributer, localEnv);
   396     }
   397     // where
   398         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   399         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   400             @Override
   401             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   402                 Symbol site = visit(node.getExpression(), env);
   403                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   404                     return site;
   405                 Name name = (Name)node.getIdentifier();
   406                 if (site.kind == PCK) {
   407                     env.toplevel.packge = (PackageSymbol)site;
   408                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   409                 } else {
   410                     env.enclClass.sym = (ClassSymbol)site;
   411                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   412                 }
   413             }
   415             @Override
   416             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   417                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   418             }
   419         }
   421     public Type coerce(Type etype, Type ttype) {
   422         return cfolder.coerce(etype, ttype);
   423     }
   425     public Type attribType(JCTree node, TypeSymbol sym) {
   426         Env<AttrContext> env = enter.typeEnvs.get(sym);
   427         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   428         return attribTree(node, localEnv, unknownTypeInfo);
   429     }
   431     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   432         // Attribute qualifying package or class.
   433         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   434         return attribTree(s.selected,
   435                        env,
   436                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   437                        Type.noType));
   438     }
   440     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   441         breakTree = tree;
   442         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   443         try {
   444             attribExpr(expr, env);
   445         } catch (BreakAttr b) {
   446             return b.env;
   447         } catch (AssertionError ae) {
   448             if (ae.getCause() instanceof BreakAttr) {
   449                 return ((BreakAttr)(ae.getCause())).env;
   450             } else {
   451                 throw ae;
   452             }
   453         } finally {
   454             breakTree = null;
   455             log.useSource(prev);
   456         }
   457         return env;
   458     }
   460     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   461         breakTree = tree;
   462         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   463         try {
   464             attribStat(stmt, env);
   465         } catch (BreakAttr b) {
   466             return b.env;
   467         } catch (AssertionError ae) {
   468             if (ae.getCause() instanceof BreakAttr) {
   469                 return ((BreakAttr)(ae.getCause())).env;
   470             } else {
   471                 throw ae;
   472             }
   473         } finally {
   474             breakTree = null;
   475             log.useSource(prev);
   476         }
   477         return env;
   478     }
   480     private JCTree breakTree = null;
   482     private static class BreakAttr extends RuntimeException {
   483         static final long serialVersionUID = -6924771130405446405L;
   484         private Env<AttrContext> env;
   485         private BreakAttr(Env<AttrContext> env) {
   486             this.env = env;
   487         }
   488     }
   490     class ResultInfo {
   491         final int pkind;
   492         final Type pt;
   493         final CheckContext checkContext;
   495         ResultInfo(int pkind, Type pt) {
   496             this(pkind, pt, chk.basicHandler);
   497         }
   499         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   500             this.pkind = pkind;
   501             this.pt = pt;
   502             this.checkContext = checkContext;
   503         }
   505         protected Type check(final DiagnosticPosition pos, final Type found) {
   506             return chk.checkType(pos, found, pt, checkContext);
   507         }
   509         protected ResultInfo dup(Type newPt) {
   510             return new ResultInfo(pkind, newPt, checkContext);
   511         }
   513         protected ResultInfo dup(CheckContext newContext) {
   514             return new ResultInfo(pkind, pt, newContext);
   515         }
   516     }
   518     class RecoveryInfo extends ResultInfo {
   520         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   521             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   522                 @Override
   523                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   524                     return deferredAttrContext;
   525                 }
   526                 @Override
   527                 public boolean compatible(Type found, Type req, Warner warn) {
   528                     return true;
   529                 }
   530                 @Override
   531                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   532                     chk.basicHandler.report(pos, details);
   533                 }
   534             });
   535         }
   536     }
   538     final ResultInfo statInfo;
   539     final ResultInfo varInfo;
   540     final ResultInfo unknownAnyPolyInfo;
   541     final ResultInfo unknownExprInfo;
   542     final ResultInfo unknownTypeInfo;
   543     final ResultInfo unknownTypeExprInfo;
   544     final ResultInfo recoveryInfo;
   546     Type pt() {
   547         return resultInfo.pt;
   548     }
   550     int pkind() {
   551         return resultInfo.pkind;
   552     }
   554 /* ************************************************************************
   555  * Visitor methods
   556  *************************************************************************/
   558     /** Visitor argument: the current environment.
   559      */
   560     Env<AttrContext> env;
   562     /** Visitor argument: the currently expected attribution result.
   563      */
   564     ResultInfo resultInfo;
   566     /** Visitor result: the computed type.
   567      */
   568     Type result;
   570     /** Visitor method: attribute a tree, catching any completion failure
   571      *  exceptions. Return the tree's type.
   572      *
   573      *  @param tree    The tree to be visited.
   574      *  @param env     The environment visitor argument.
   575      *  @param resultInfo   The result info visitor argument.
   576      */
   577     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   578         Env<AttrContext> prevEnv = this.env;
   579         ResultInfo prevResult = this.resultInfo;
   580         try {
   581             this.env = env;
   582             this.resultInfo = resultInfo;
   583             tree.accept(this);
   584             if (tree == breakTree &&
   585                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   586                 throw new BreakAttr(copyEnv(env));
   587             }
   588             return result;
   589         } catch (CompletionFailure ex) {
   590             tree.type = syms.errType;
   591             return chk.completionError(tree.pos(), ex);
   592         } finally {
   593             this.env = prevEnv;
   594             this.resultInfo = prevResult;
   595         }
   596     }
   598     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   599         Env<AttrContext> newEnv =
   600                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   601         if (newEnv.outer != null) {
   602             newEnv.outer = copyEnv(newEnv.outer);
   603         }
   604         return newEnv;
   605     }
   607     Scope copyScope(Scope sc) {
   608         Scope newScope = new Scope(sc.owner);
   609         List<Symbol> elemsList = List.nil();
   610         while (sc != null) {
   611             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   612                 elemsList = elemsList.prepend(e.sym);
   613             }
   614             sc = sc.next;
   615         }
   616         for (Symbol s : elemsList) {
   617             newScope.enter(s);
   618         }
   619         return newScope;
   620     }
   622     /** Derived visitor method: attribute an expression tree.
   623      */
   624     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   625         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   626     }
   628     /** Derived visitor method: attribute an expression tree with
   629      *  no constraints on the computed type.
   630      */
   631     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   632         return attribTree(tree, env, unknownExprInfo);
   633     }
   635     /** Derived visitor method: attribute a type tree.
   636      */
   637     public Type attribType(JCTree tree, Env<AttrContext> env) {
   638         Type result = attribType(tree, env, Type.noType);
   639         return result;
   640     }
   642     /** Derived visitor method: attribute a type tree.
   643      */
   644     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   645         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   646         return result;
   647     }
   649     /** Derived visitor method: attribute a statement or definition tree.
   650      */
   651     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   652         return attribTree(tree, env, statInfo);
   653     }
   655     /** Attribute a list of expressions, returning a list of types.
   656      */
   657     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   658         ListBuffer<Type> ts = new ListBuffer<Type>();
   659         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   660             ts.append(attribExpr(l.head, env, pt));
   661         return ts.toList();
   662     }
   664     /** Attribute a list of statements, returning nothing.
   665      */
   666     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   667         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   668             attribStat(l.head, env);
   669     }
   671     /** Attribute the arguments in a method call, returning the method kind.
   672      */
   673     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   674         int kind = VAL;
   675         for (JCExpression arg : trees) {
   676             Type argtype;
   677             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   678                 argtype = deferredAttr.new DeferredType(arg, env);
   679                 kind |= POLY;
   680             } else {
   681                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   682             }
   683             argtypes.append(argtype);
   684         }
   685         return kind;
   686     }
   688     /** Attribute a type argument list, returning a list of types.
   689      *  Caller is responsible for calling checkRefTypes.
   690      */
   691     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   692         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   693         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   694             argtypes.append(attribType(l.head, env));
   695         return argtypes.toList();
   696     }
   698     /** Attribute a type argument list, returning a list of types.
   699      *  Check that all the types are references.
   700      */
   701     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   702         List<Type> types = attribAnyTypes(trees, env);
   703         return chk.checkRefTypes(trees, types);
   704     }
   706     /**
   707      * Attribute type variables (of generic classes or methods).
   708      * Compound types are attributed later in attribBounds.
   709      * @param typarams the type variables to enter
   710      * @param env      the current environment
   711      */
   712     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   713         for (JCTypeParameter tvar : typarams) {
   714             TypeVar a = (TypeVar)tvar.type;
   715             a.tsym.flags_field |= UNATTRIBUTED;
   716             a.bound = Type.noType;
   717             if (!tvar.bounds.isEmpty()) {
   718                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   719                 for (JCExpression bound : tvar.bounds.tail)
   720                     bounds = bounds.prepend(attribType(bound, env));
   721                 types.setBounds(a, bounds.reverse());
   722             } else {
   723                 // if no bounds are given, assume a single bound of
   724                 // java.lang.Object.
   725                 types.setBounds(a, List.of(syms.objectType));
   726             }
   727             a.tsym.flags_field &= ~UNATTRIBUTED;
   728         }
   729         for (JCTypeParameter tvar : typarams) {
   730             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   731         }
   732     }
   734     /**
   735      * Attribute the type references in a list of annotations.
   736      */
   737     void attribAnnotationTypes(List<JCAnnotation> annotations,
   738                                Env<AttrContext> env) {
   739         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   740             JCAnnotation a = al.head;
   741             attribType(a.annotationType, env);
   742         }
   743     }
   745     /**
   746      * Attribute a "lazy constant value".
   747      *  @param env         The env for the const value
   748      *  @param initializer The initializer for the const value
   749      *  @param type        The expected type, or null
   750      *  @see VarSymbol#setLazyConstValue
   751      */
   752     public Object attribLazyConstantValue(Env<AttrContext> env,
   753                                       JCVariableDecl variable,
   754                                       Type type) {
   756         DiagnosticPosition prevLintPos
   757                 = deferredLintHandler.setPos(variable.pos());
   759         try {
   760             // Use null as symbol to not attach the type annotation to any symbol.
   761             // The initializer will later also be visited and then we'll attach
   762             // to the symbol.
   763             // This prevents having multiple type annotations, just because of
   764             // lazy constant value evaluation.
   765             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   766             annotate.flush();
   767             Type itype = attribExpr(variable.init, env, type);
   768             if (itype.constValue() != null) {
   769                 return coerce(itype, type).constValue();
   770             } else {
   771                 return null;
   772             }
   773         } finally {
   774             deferredLintHandler.setPos(prevLintPos);
   775         }
   776     }
   778     /** Attribute type reference in an `extends' or `implements' clause.
   779      *  Supertypes of anonymous inner classes are usually already attributed.
   780      *
   781      *  @param tree              The tree making up the type reference.
   782      *  @param env               The environment current at the reference.
   783      *  @param classExpected     true if only a class is expected here.
   784      *  @param interfaceExpected true if only an interface is expected here.
   785      */
   786     Type attribBase(JCTree tree,
   787                     Env<AttrContext> env,
   788                     boolean classExpected,
   789                     boolean interfaceExpected,
   790                     boolean checkExtensible) {
   791         Type t = tree.type != null ?
   792             tree.type :
   793             attribType(tree, env);
   794         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   795     }
   796     Type checkBase(Type t,
   797                    JCTree tree,
   798                    Env<AttrContext> env,
   799                    boolean classExpected,
   800                    boolean interfaceExpected,
   801                    boolean checkExtensible) {
   802         if (t.isErroneous())
   803             return t;
   804         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   805             // check that type variable is already visible
   806             if (t.getUpperBound() == null) {
   807                 log.error(tree.pos(), "illegal.forward.ref");
   808                 return types.createErrorType(t);
   809             }
   810         } else {
   811             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   812         }
   813         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   814             log.error(tree.pos(), "intf.expected.here");
   815             // return errType is necessary since otherwise there might
   816             // be undetected cycles which cause attribution to loop
   817             return types.createErrorType(t);
   818         } else if (checkExtensible &&
   819                    classExpected &&
   820                    (t.tsym.flags() & INTERFACE) != 0) {
   821                 log.error(tree.pos(), "no.intf.expected.here");
   822             return types.createErrorType(t);
   823         }
   824         if (checkExtensible &&
   825             ((t.tsym.flags() & FINAL) != 0)) {
   826             log.error(tree.pos(),
   827                       "cant.inherit.from.final", t.tsym);
   828         }
   829         chk.checkNonCyclic(tree.pos(), t);
   830         return t;
   831     }
   833     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   834         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   835         id.type = env.info.scope.owner.type;
   836         id.sym = env.info.scope.owner;
   837         return id.type;
   838     }
   840     public void visitClassDef(JCClassDecl tree) {
   841         // Local classes have not been entered yet, so we need to do it now:
   842         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   843             enter.classEnter(tree, env);
   845         ClassSymbol c = tree.sym;
   846         if (c == null) {
   847             // exit in case something drastic went wrong during enter.
   848             result = null;
   849         } else {
   850             // make sure class has been completed:
   851             c.complete();
   853             // If this class appears as an anonymous class
   854             // in a superclass constructor call where
   855             // no explicit outer instance is given,
   856             // disable implicit outer instance from being passed.
   857             // (This would be an illegal access to "this before super").
   858             if (env.info.isSelfCall &&
   859                 env.tree.hasTag(NEWCLASS) &&
   860                 ((JCNewClass) env.tree).encl == null)
   861             {
   862                 c.flags_field |= NOOUTERTHIS;
   863             }
   864             attribClass(tree.pos(), c);
   865             result = tree.type = c.type;
   866         }
   867     }
   869     public void visitMethodDef(JCMethodDecl tree) {
   870         MethodSymbol m = tree.sym;
   871         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   873         Lint lint = env.info.lint.augment(m);
   874         Lint prevLint = chk.setLint(lint);
   875         MethodSymbol prevMethod = chk.setMethod(m);
   876         try {
   877             deferredLintHandler.flush(tree.pos());
   878             chk.checkDeprecatedAnnotation(tree.pos(), m);
   881             // Create a new environment with local scope
   882             // for attributing the method.
   883             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   884             localEnv.info.lint = lint;
   886             attribStats(tree.typarams, localEnv);
   888             // If we override any other methods, check that we do so properly.
   889             // JLS ???
   890             if (m.isStatic()) {
   891                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   892             } else {
   893                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   894             }
   895             chk.checkOverride(tree, m);
   897             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   898                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   899             }
   901             // Enter all type parameters into the local method scope.
   902             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   903                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   905             ClassSymbol owner = env.enclClass.sym;
   906             if ((owner.flags() & ANNOTATION) != 0 &&
   907                 tree.params.nonEmpty())
   908                 log.error(tree.params.head.pos(),
   909                           "intf.annotation.members.cant.have.params");
   911             // Attribute all value parameters.
   912             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   913                 attribStat(l.head, localEnv);
   914             }
   916             chk.checkVarargsMethodDecl(localEnv, tree);
   918             // Check that type parameters are well-formed.
   919             chk.validate(tree.typarams, localEnv);
   921             // Check that result type is well-formed.
   922             chk.validate(tree.restype, localEnv);
   924             // Check that receiver type is well-formed.
   925             if (tree.recvparam != null) {
   926                 // Use a new environment to check the receiver parameter.
   927                 // Otherwise I get "might not have been initialized" errors.
   928                 // Is there a better way?
   929                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   930                 attribType(tree.recvparam, newEnv);
   931                 chk.validate(tree.recvparam, newEnv);
   932             }
   934             // annotation method checks
   935             if ((owner.flags() & ANNOTATION) != 0) {
   936                 // annotation method cannot have throws clause
   937                 if (tree.thrown.nonEmpty()) {
   938                     log.error(tree.thrown.head.pos(),
   939                             "throws.not.allowed.in.intf.annotation");
   940                 }
   941                 // annotation method cannot declare type-parameters
   942                 if (tree.typarams.nonEmpty()) {
   943                     log.error(tree.typarams.head.pos(),
   944                             "intf.annotation.members.cant.have.type.params");
   945                 }
   946                 // validate annotation method's return type (could be an annotation type)
   947                 chk.validateAnnotationType(tree.restype);
   948                 // ensure that annotation method does not clash with members of Object/Annotation
   949                 chk.validateAnnotationMethod(tree.pos(), m);
   951                 if (tree.defaultValue != null) {
   952                     // if default value is an annotation, check it is a well-formed
   953                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   954                     chk.validateAnnotationTree(tree.defaultValue);
   955                 }
   956             }
   958             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   959                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   961             if (tree.body == null) {
   962                 // Empty bodies are only allowed for
   963                 // abstract, native, or interface methods, or for methods
   964                 // in a retrofit signature class.
   965                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   966                     !relax)
   967                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   968                 if (tree.defaultValue != null) {
   969                     if ((owner.flags() & ANNOTATION) == 0)
   970                         log.error(tree.pos(),
   971                                   "default.allowed.in.intf.annotation.member");
   972                 }
   973             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   974                 if ((owner.flags() & INTERFACE) != 0) {
   975                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   976                 } else {
   977                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   978                 }
   979             } else if ((tree.mods.flags & NATIVE) != 0) {
   980                 log.error(tree.pos(), "native.meth.cant.have.body");
   981             } else {
   982                 // Add an implicit super() call unless an explicit call to
   983                 // super(...) or this(...) is given
   984                 // or we are compiling class java.lang.Object.
   985                 if (tree.name == names.init && owner.type != syms.objectType) {
   986                     JCBlock body = tree.body;
   987                     if (body.stats.isEmpty() ||
   988                         !TreeInfo.isSelfCall(body.stats.head)) {
   989                         body.stats = body.stats.
   990                             prepend(memberEnter.SuperCall(make.at(body.pos),
   991                                                           List.<Type>nil(),
   992                                                           List.<JCVariableDecl>nil(),
   993                                                           false));
   994                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   995                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   996                                TreeInfo.isSuperCall(body.stats.head)) {
   997                         // enum constructors are not allowed to call super
   998                         // directly, so make sure there aren't any super calls
   999                         // in enum constructors, except in the compiler
  1000                         // generated one.
  1001                         log.error(tree.body.stats.head.pos(),
  1002                                   "call.to.super.not.allowed.in.enum.ctor",
  1003                                   env.enclClass.sym);
  1007                 // Attribute all type annotations in the body
  1008                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1009                 annotate.flush();
  1011                 // Attribute method body.
  1012                 attribStat(tree.body, localEnv);
  1015             localEnv.info.scope.leave();
  1016             result = tree.type = m.type;
  1017             chk.validateAnnotations(tree.mods.annotations, m);
  1019         finally {
  1020             chk.setLint(prevLint);
  1021             chk.setMethod(prevMethod);
  1025     public void visitVarDef(JCVariableDecl tree) {
  1026         // Local variables have not been entered yet, so we need to do it now:
  1027         if (env.info.scope.owner.kind == MTH) {
  1028             if (tree.sym != null) {
  1029                 // parameters have already been entered
  1030                 env.info.scope.enter(tree.sym);
  1031             } else {
  1032                 memberEnter.memberEnter(tree, env);
  1033                 annotate.flush();
  1035         } else {
  1036             if (tree.init != null) {
  1037                 // Field initializer expression need to be entered.
  1038                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1039                 annotate.flush();
  1043         VarSymbol v = tree.sym;
  1044         Lint lint = env.info.lint.augment(v);
  1045         Lint prevLint = chk.setLint(lint);
  1047         // Check that the variable's declared type is well-formed.
  1048         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1049                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1050                 (tree.sym.flags() & PARAMETER) != 0;
  1051         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1053         try {
  1054             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1055             deferredLintHandler.flush(tree.pos());
  1056             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1058             if (tree.init != null) {
  1059                 if ((v.flags_field & FINAL) == 0 ||
  1060                     !memberEnter.needsLazyConstValue(tree.init)) {
  1061                     // Not a compile-time constant
  1062                     // Attribute initializer in a new environment
  1063                     // with the declared variable as owner.
  1064                     // Check that initializer conforms to variable's declared type.
  1065                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1066                     initEnv.info.lint = lint;
  1067                     // In order to catch self-references, we set the variable's
  1068                     // declaration position to maximal possible value, effectively
  1069                     // marking the variable as undefined.
  1070                     initEnv.info.enclVar = v;
  1071                     attribExpr(tree.init, initEnv, v.type);
  1074             result = tree.type = v.type;
  1075             chk.validateAnnotations(tree.mods.annotations, v);
  1077         finally {
  1078             chk.setLint(prevLint);
  1082     public void visitSkip(JCSkip tree) {
  1083         result = null;
  1086     public void visitBlock(JCBlock tree) {
  1087         if (env.info.scope.owner.kind == TYP) {
  1088             // Block is a static or instance initializer;
  1089             // let the owner of the environment be a freshly
  1090             // created BLOCK-method.
  1091             Env<AttrContext> localEnv =
  1092                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1093             localEnv.info.scope.owner =
  1094                 new MethodSymbol(tree.flags | BLOCK |
  1095                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1096                     env.info.scope.owner);
  1097             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1099             // Attribute all type annotations in the block
  1100             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1101             annotate.flush();
  1104                 // Store init and clinit type annotations with the ClassSymbol
  1105                 // to allow output in Gen.normalizeDefs.
  1106                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1107                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1108                 if ((tree.flags & STATIC) != 0) {
  1109                     cs.appendClassInitTypeAttributes(tas);
  1110                 } else {
  1111                     cs.appendInitTypeAttributes(tas);
  1115             attribStats(tree.stats, localEnv);
  1116         } else {
  1117             // Create a new local environment with a local scope.
  1118             Env<AttrContext> localEnv =
  1119                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1120             try {
  1121                 attribStats(tree.stats, localEnv);
  1122             } finally {
  1123                 localEnv.info.scope.leave();
  1126         result = null;
  1129     public void visitDoLoop(JCDoWhileLoop tree) {
  1130         attribStat(tree.body, env.dup(tree));
  1131         attribExpr(tree.cond, env, syms.booleanType);
  1132         result = null;
  1135     public void visitWhileLoop(JCWhileLoop tree) {
  1136         attribExpr(tree.cond, env, syms.booleanType);
  1137         attribStat(tree.body, env.dup(tree));
  1138         result = null;
  1141     public void visitForLoop(JCForLoop tree) {
  1142         Env<AttrContext> loopEnv =
  1143             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1144         try {
  1145             attribStats(tree.init, loopEnv);
  1146             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1147             loopEnv.tree = tree; // before, we were not in loop!
  1148             attribStats(tree.step, loopEnv);
  1149             attribStat(tree.body, loopEnv);
  1150             result = null;
  1152         finally {
  1153             loopEnv.info.scope.leave();
  1157     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1158         Env<AttrContext> loopEnv =
  1159             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1160         try {
  1161             //the Formal Parameter of a for-each loop is not in the scope when
  1162             //attributing the for-each expression; we mimick this by attributing
  1163             //the for-each expression first (against original scope).
  1164             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1165             attribStat(tree.var, loopEnv);
  1166             chk.checkNonVoid(tree.pos(), exprType);
  1167             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1168             if (elemtype == null) {
  1169                 // or perhaps expr implements Iterable<T>?
  1170                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1171                 if (base == null) {
  1172                     log.error(tree.expr.pos(),
  1173                             "foreach.not.applicable.to.type",
  1174                             exprType,
  1175                             diags.fragment("type.req.array.or.iterable"));
  1176                     elemtype = types.createErrorType(exprType);
  1177                 } else {
  1178                     List<Type> iterableParams = base.allparams();
  1179                     elemtype = iterableParams.isEmpty()
  1180                         ? syms.objectType
  1181                         : types.upperBound(iterableParams.head);
  1184             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1185             loopEnv.tree = tree; // before, we were not in loop!
  1186             attribStat(tree.body, loopEnv);
  1187             result = null;
  1189         finally {
  1190             loopEnv.info.scope.leave();
  1194     public void visitLabelled(JCLabeledStatement tree) {
  1195         // Check that label is not used in an enclosing statement
  1196         Env<AttrContext> env1 = env;
  1197         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1198             if (env1.tree.hasTag(LABELLED) &&
  1199                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1200                 log.error(tree.pos(), "label.already.in.use",
  1201                           tree.label);
  1202                 break;
  1204             env1 = env1.next;
  1207         attribStat(tree.body, env.dup(tree));
  1208         result = null;
  1211     public void visitSwitch(JCSwitch tree) {
  1212         Type seltype = attribExpr(tree.selector, env);
  1214         Env<AttrContext> switchEnv =
  1215             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1217         try {
  1219             boolean enumSwitch =
  1220                 allowEnums &&
  1221                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1222             boolean stringSwitch = false;
  1223             if (types.isSameType(seltype, syms.stringType)) {
  1224                 if (allowStringsInSwitch) {
  1225                     stringSwitch = true;
  1226                 } else {
  1227                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1230             if (!enumSwitch && !stringSwitch)
  1231                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1233             // Attribute all cases and
  1234             // check that there are no duplicate case labels or default clauses.
  1235             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1236             boolean hasDefault = false;      // Is there a default label?
  1237             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1238                 JCCase c = l.head;
  1239                 Env<AttrContext> caseEnv =
  1240                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1241                 try {
  1242                     if (c.pat != null) {
  1243                         if (enumSwitch) {
  1244                             Symbol sym = enumConstant(c.pat, seltype);
  1245                             if (sym == null) {
  1246                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1247                             } else if (!labels.add(sym)) {
  1248                                 log.error(c.pos(), "duplicate.case.label");
  1250                         } else {
  1251                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1252                             if (!pattype.hasTag(ERROR)) {
  1253                                 if (pattype.constValue() == null) {
  1254                                     log.error(c.pat.pos(),
  1255                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1256                                 } else if (labels.contains(pattype.constValue())) {
  1257                                     log.error(c.pos(), "duplicate.case.label");
  1258                                 } else {
  1259                                     labels.add(pattype.constValue());
  1263                     } else if (hasDefault) {
  1264                         log.error(c.pos(), "duplicate.default.label");
  1265                     } else {
  1266                         hasDefault = true;
  1268                     attribStats(c.stats, caseEnv);
  1269                 } finally {
  1270                     caseEnv.info.scope.leave();
  1271                     addVars(c.stats, switchEnv.info.scope);
  1275             result = null;
  1277         finally {
  1278             switchEnv.info.scope.leave();
  1281     // where
  1282         /** Add any variables defined in stats to the switch scope. */
  1283         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1284             for (;stats.nonEmpty(); stats = stats.tail) {
  1285                 JCTree stat = stats.head;
  1286                 if (stat.hasTag(VARDEF))
  1287                     switchScope.enter(((JCVariableDecl) stat).sym);
  1290     // where
  1291     /** Return the selected enumeration constant symbol, or null. */
  1292     private Symbol enumConstant(JCTree tree, Type enumType) {
  1293         if (!tree.hasTag(IDENT)) {
  1294             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1295             return syms.errSymbol;
  1297         JCIdent ident = (JCIdent)tree;
  1298         Name name = ident.name;
  1299         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1300              e.scope != null; e = e.next()) {
  1301             if (e.sym.kind == VAR) {
  1302                 Symbol s = ident.sym = e.sym;
  1303                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1304                 ident.type = s.type;
  1305                 return ((s.flags_field & Flags.ENUM) == 0)
  1306                     ? null : s;
  1309         return null;
  1312     public void visitSynchronized(JCSynchronized tree) {
  1313         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1314         attribStat(tree.body, env);
  1315         result = null;
  1318     public void visitTry(JCTry tree) {
  1319         // Create a new local environment with a local
  1320         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1321         try {
  1322             boolean isTryWithResource = tree.resources.nonEmpty();
  1323             // Create a nested environment for attributing the try block if needed
  1324             Env<AttrContext> tryEnv = isTryWithResource ?
  1325                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1326                 localEnv;
  1327             try {
  1328                 // Attribute resource declarations
  1329                 for (JCTree resource : tree.resources) {
  1330                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1331                         @Override
  1332                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1333                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1335                     };
  1336                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1337                     if (resource.hasTag(VARDEF)) {
  1338                         attribStat(resource, tryEnv);
  1339                         twrResult.check(resource, resource.type);
  1341                         //check that resource type cannot throw InterruptedException
  1342                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1344                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1345                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1346                     } else {
  1347                         attribTree(resource, tryEnv, twrResult);
  1350                 // Attribute body
  1351                 attribStat(tree.body, tryEnv);
  1352             } finally {
  1353                 if (isTryWithResource)
  1354                     tryEnv.info.scope.leave();
  1357             // Attribute catch clauses
  1358             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1359                 JCCatch c = l.head;
  1360                 Env<AttrContext> catchEnv =
  1361                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1362                 try {
  1363                     Type ctype = attribStat(c.param, catchEnv);
  1364                     if (TreeInfo.isMultiCatch(c)) {
  1365                         //multi-catch parameter is implicitly marked as final
  1366                         c.param.sym.flags_field |= FINAL | UNION;
  1368                     if (c.param.sym.kind == Kinds.VAR) {
  1369                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1371                     chk.checkType(c.param.vartype.pos(),
  1372                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1373                                   syms.throwableType);
  1374                     attribStat(c.body, catchEnv);
  1375                 } finally {
  1376                     catchEnv.info.scope.leave();
  1380             // Attribute finalizer
  1381             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1382             result = null;
  1384         finally {
  1385             localEnv.info.scope.leave();
  1389     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1390         if (!resource.isErroneous() &&
  1391             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1392             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1393             Symbol close = syms.noSymbol;
  1394             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1395             try {
  1396                 close = rs.resolveQualifiedMethod(pos,
  1397                         env,
  1398                         resource,
  1399                         names.close,
  1400                         List.<Type>nil(),
  1401                         List.<Type>nil());
  1403             finally {
  1404                 log.popDiagnosticHandler(discardHandler);
  1406             if (close.kind == MTH &&
  1407                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1408                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1409                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1410                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1415     public void visitConditional(JCConditional tree) {
  1416         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1418         tree.polyKind = (!allowPoly ||
  1419                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1420                 isBooleanOrNumeric(env, tree)) ?
  1421                 PolyKind.STANDALONE : PolyKind.POLY;
  1423         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1424             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1425             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1426             result = tree.type = types.createErrorType(resultInfo.pt);
  1427             return;
  1430         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1431                 unknownExprInfo :
  1432                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1433                     //this will use enclosing check context to check compatibility of
  1434                     //subexpression against target type; if we are in a method check context,
  1435                     //depending on whether boxing is allowed, we could have incompatibilities
  1436                     @Override
  1437                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1438                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1440                 });
  1442         Type truetype = attribTree(tree.truepart, env, condInfo);
  1443         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1445         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1446         if (condtype.constValue() != null &&
  1447                 truetype.constValue() != null &&
  1448                 falsetype.constValue() != null &&
  1449                 !owntype.hasTag(NONE)) {
  1450             //constant folding
  1451             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1453         result = check(tree, owntype, VAL, resultInfo);
  1455     //where
  1456         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1457             switch (tree.getTag()) {
  1458                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1459                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1460                               ((JCLiteral)tree).typetag == BOT;
  1461                 case LAMBDA: case REFERENCE: return false;
  1462                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1463                 case CONDEXPR:
  1464                     JCConditional condTree = (JCConditional)tree;
  1465                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1466                             isBooleanOrNumeric(env, condTree.falsepart);
  1467                 case APPLY:
  1468                     JCMethodInvocation speculativeMethodTree =
  1469                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1470                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1471                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1472                 case NEWCLASS:
  1473                     JCExpression className =
  1474                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1475                     JCExpression speculativeNewClassTree =
  1476                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1477                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1478                 default:
  1479                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1480                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1481                     return speculativeType.isPrimitive();
  1484         //where
  1485             TreeTranslator removeClassParams = new TreeTranslator() {
  1486                 @Override
  1487                 public void visitTypeApply(JCTypeApply tree) {
  1488                     result = translate(tree.clazz);
  1490             };
  1492         /** Compute the type of a conditional expression, after
  1493          *  checking that it exists.  See JLS 15.25. Does not take into
  1494          *  account the special case where condition and both arms
  1495          *  are constants.
  1497          *  @param pos      The source position to be used for error
  1498          *                  diagnostics.
  1499          *  @param thentype The type of the expression's then-part.
  1500          *  @param elsetype The type of the expression's else-part.
  1501          */
  1502         private Type condType(DiagnosticPosition pos,
  1503                                Type thentype, Type elsetype) {
  1504             // If same type, that is the result
  1505             if (types.isSameType(thentype, elsetype))
  1506                 return thentype.baseType();
  1508             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1509                 ? thentype : types.unboxedType(thentype);
  1510             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1511                 ? elsetype : types.unboxedType(elsetype);
  1513             // Otherwise, if both arms can be converted to a numeric
  1514             // type, return the least numeric type that fits both arms
  1515             // (i.e. return larger of the two, or return int if one
  1516             // arm is short, the other is char).
  1517             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1518                 // If one arm has an integer subrange type (i.e., byte,
  1519                 // short, or char), and the other is an integer constant
  1520                 // that fits into the subrange, return the subrange type.
  1521                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1522                     elseUnboxed.hasTag(INT) &&
  1523                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1524                     return thenUnboxed.baseType();
  1526                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1527                     thenUnboxed.hasTag(INT) &&
  1528                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1529                     return elseUnboxed.baseType();
  1532                 for (TypeTag tag : primitiveTags) {
  1533                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1534                     if (types.isSubtype(thenUnboxed, candidate) &&
  1535                         types.isSubtype(elseUnboxed, candidate)) {
  1536                         return candidate;
  1541             // Those were all the cases that could result in a primitive
  1542             if (allowBoxing) {
  1543                 if (thentype.isPrimitive())
  1544                     thentype = types.boxedClass(thentype).type;
  1545                 if (elsetype.isPrimitive())
  1546                     elsetype = types.boxedClass(elsetype).type;
  1549             if (types.isSubtype(thentype, elsetype))
  1550                 return elsetype.baseType();
  1551             if (types.isSubtype(elsetype, thentype))
  1552                 return thentype.baseType();
  1554             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1555                 log.error(pos, "neither.conditional.subtype",
  1556                           thentype, elsetype);
  1557                 return thentype.baseType();
  1560             // both are known to be reference types.  The result is
  1561             // lub(thentype,elsetype). This cannot fail, as it will
  1562             // always be possible to infer "Object" if nothing better.
  1563             return types.lub(thentype.baseType(), elsetype.baseType());
  1566     final static TypeTag[] primitiveTags = new TypeTag[]{
  1567         BYTE,
  1568         CHAR,
  1569         SHORT,
  1570         INT,
  1571         LONG,
  1572         FLOAT,
  1573         DOUBLE,
  1574         BOOLEAN,
  1575     };
  1577     public void visitIf(JCIf tree) {
  1578         attribExpr(tree.cond, env, syms.booleanType);
  1579         attribStat(tree.thenpart, env);
  1580         if (tree.elsepart != null)
  1581             attribStat(tree.elsepart, env);
  1582         chk.checkEmptyIf(tree);
  1583         result = null;
  1586     public void visitExec(JCExpressionStatement tree) {
  1587         //a fresh environment is required for 292 inference to work properly ---
  1588         //see Infer.instantiatePolymorphicSignatureInstance()
  1589         Env<AttrContext> localEnv = env.dup(tree);
  1590         attribExpr(tree.expr, localEnv);
  1591         result = null;
  1594     public void visitBreak(JCBreak tree) {
  1595         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1596         result = null;
  1599     public void visitContinue(JCContinue tree) {
  1600         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1601         result = null;
  1603     //where
  1604         /** Return the target of a break or continue statement, if it exists,
  1605          *  report an error if not.
  1606          *  Note: The target of a labelled break or continue is the
  1607          *  (non-labelled) statement tree referred to by the label,
  1608          *  not the tree representing the labelled statement itself.
  1610          *  @param pos     The position to be used for error diagnostics
  1611          *  @param tag     The tag of the jump statement. This is either
  1612          *                 Tree.BREAK or Tree.CONTINUE.
  1613          *  @param label   The label of the jump statement, or null if no
  1614          *                 label is given.
  1615          *  @param env     The environment current at the jump statement.
  1616          */
  1617         private JCTree findJumpTarget(DiagnosticPosition pos,
  1618                                     JCTree.Tag tag,
  1619                                     Name label,
  1620                                     Env<AttrContext> env) {
  1621             // Search environments outwards from the point of jump.
  1622             Env<AttrContext> env1 = env;
  1623             LOOP:
  1624             while (env1 != null) {
  1625                 switch (env1.tree.getTag()) {
  1626                     case LABELLED:
  1627                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1628                         if (label == labelled.label) {
  1629                             // If jump is a continue, check that target is a loop.
  1630                             if (tag == CONTINUE) {
  1631                                 if (!labelled.body.hasTag(DOLOOP) &&
  1632                                         !labelled.body.hasTag(WHILELOOP) &&
  1633                                         !labelled.body.hasTag(FORLOOP) &&
  1634                                         !labelled.body.hasTag(FOREACHLOOP))
  1635                                     log.error(pos, "not.loop.label", label);
  1636                                 // Found labelled statement target, now go inwards
  1637                                 // to next non-labelled tree.
  1638                                 return TreeInfo.referencedStatement(labelled);
  1639                             } else {
  1640                                 return labelled;
  1643                         break;
  1644                     case DOLOOP:
  1645                     case WHILELOOP:
  1646                     case FORLOOP:
  1647                     case FOREACHLOOP:
  1648                         if (label == null) return env1.tree;
  1649                         break;
  1650                     case SWITCH:
  1651                         if (label == null && tag == BREAK) return env1.tree;
  1652                         break;
  1653                     case LAMBDA:
  1654                     case METHODDEF:
  1655                     case CLASSDEF:
  1656                         break LOOP;
  1657                     default:
  1659                 env1 = env1.next;
  1661             if (label != null)
  1662                 log.error(pos, "undef.label", label);
  1663             else if (tag == CONTINUE)
  1664                 log.error(pos, "cont.outside.loop");
  1665             else
  1666                 log.error(pos, "break.outside.switch.loop");
  1667             return null;
  1670     public void visitReturn(JCReturn tree) {
  1671         // Check that there is an enclosing method which is
  1672         // nested within than the enclosing class.
  1673         if (env.info.returnResult == null) {
  1674             log.error(tree.pos(), "ret.outside.meth");
  1675         } else {
  1676             // Attribute return expression, if it exists, and check that
  1677             // it conforms to result type of enclosing method.
  1678             if (tree.expr != null) {
  1679                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1680                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1681                               diags.fragment("unexpected.ret.val"));
  1683                 attribTree(tree.expr, env, env.info.returnResult);
  1684             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1685                     !env.info.returnResult.pt.hasTag(NONE)) {
  1686                 env.info.returnResult.checkContext.report(tree.pos(),
  1687                               diags.fragment("missing.ret.val"));
  1690         result = null;
  1693     public void visitThrow(JCThrow tree) {
  1694         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1695         if (allowPoly) {
  1696             chk.checkType(tree, owntype, syms.throwableType);
  1698         result = null;
  1701     public void visitAssert(JCAssert tree) {
  1702         attribExpr(tree.cond, env, syms.booleanType);
  1703         if (tree.detail != null) {
  1704             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1706         result = null;
  1709      /** Visitor method for method invocations.
  1710      *  NOTE: The method part of an application will have in its type field
  1711      *        the return type of the method, not the method's type itself!
  1712      */
  1713     public void visitApply(JCMethodInvocation tree) {
  1714         // The local environment of a method application is
  1715         // a new environment nested in the current one.
  1716         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1718         // The types of the actual method arguments.
  1719         List<Type> argtypes;
  1721         // The types of the actual method type arguments.
  1722         List<Type> typeargtypes = null;
  1724         Name methName = TreeInfo.name(tree.meth);
  1726         boolean isConstructorCall =
  1727             methName == names._this || methName == names._super;
  1729         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1730         if (isConstructorCall) {
  1731             // We are seeing a ...this(...) or ...super(...) call.
  1732             // Check that this is the first statement in a constructor.
  1733             if (checkFirstConstructorStat(tree, env)) {
  1735                 // Record the fact
  1736                 // that this is a constructor call (using isSelfCall).
  1737                 localEnv.info.isSelfCall = true;
  1739                 // Attribute arguments, yielding list of argument types.
  1740                 attribArgs(tree.args, localEnv, argtypesBuf);
  1741                 argtypes = argtypesBuf.toList();
  1742                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1744                 // Variable `site' points to the class in which the called
  1745                 // constructor is defined.
  1746                 Type site = env.enclClass.sym.type;
  1747                 if (methName == names._super) {
  1748                     if (site == syms.objectType) {
  1749                         log.error(tree.meth.pos(), "no.superclass", site);
  1750                         site = types.createErrorType(syms.objectType);
  1751                     } else {
  1752                         site = types.supertype(site);
  1756                 if (site.hasTag(CLASS)) {
  1757                     Type encl = site.getEnclosingType();
  1758                     while (encl != null && encl.hasTag(TYPEVAR))
  1759                         encl = encl.getUpperBound();
  1760                     if (encl.hasTag(CLASS)) {
  1761                         // we are calling a nested class
  1763                         if (tree.meth.hasTag(SELECT)) {
  1764                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1766                             // We are seeing a prefixed call, of the form
  1767                             //     <expr>.super(...).
  1768                             // Check that the prefix expression conforms
  1769                             // to the outer instance type of the class.
  1770                             chk.checkRefType(qualifier.pos(),
  1771                                              attribExpr(qualifier, localEnv,
  1772                                                         encl));
  1773                         } else if (methName == names._super) {
  1774                             // qualifier omitted; check for existence
  1775                             // of an appropriate implicit qualifier.
  1776                             rs.resolveImplicitThis(tree.meth.pos(),
  1777                                                    localEnv, site, true);
  1779                     } else if (tree.meth.hasTag(SELECT)) {
  1780                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1781                                   site.tsym);
  1784                     // if we're calling a java.lang.Enum constructor,
  1785                     // prefix the implicit String and int parameters
  1786                     if (site.tsym == syms.enumSym && allowEnums)
  1787                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1789                     // Resolve the called constructor under the assumption
  1790                     // that we are referring to a superclass instance of the
  1791                     // current instance (JLS ???).
  1792                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1793                     localEnv.info.selectSuper = true;
  1794                     localEnv.info.pendingResolutionPhase = null;
  1795                     Symbol sym = rs.resolveConstructor(
  1796                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1797                     localEnv.info.selectSuper = selectSuperPrev;
  1799                     // Set method symbol to resolved constructor...
  1800                     TreeInfo.setSymbol(tree.meth, sym);
  1802                     // ...and check that it is legal in the current context.
  1803                     // (this will also set the tree's type)
  1804                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1805                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1807                 // Otherwise, `site' is an error type and we do nothing
  1809             result = tree.type = syms.voidType;
  1810         } else {
  1811             // Otherwise, we are seeing a regular method call.
  1812             // Attribute the arguments, yielding list of argument types, ...
  1813             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
  1814             argtypes = argtypesBuf.toList();
  1815             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1817             // ... and attribute the method using as a prototype a methodtype
  1818             // whose formal argument types is exactly the list of actual
  1819             // arguments (this will also set the method symbol).
  1820             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1821             localEnv.info.pendingResolutionPhase = null;
  1822             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1824             // Compute the result type.
  1825             Type restype = mtype.getReturnType();
  1826             if (restype.hasTag(WILDCARD))
  1827                 throw new AssertionError(mtype);
  1829             Type qualifier = (tree.meth.hasTag(SELECT))
  1830                     ? ((JCFieldAccess) tree.meth).selected.type
  1831                     : env.enclClass.sym.type;
  1832             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1834             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1836             // Check that value of resulting type is admissible in the
  1837             // current context.  Also, capture the return type
  1838             result = check(tree, capture(restype), VAL, resultInfo);
  1840         chk.validate(tree.typeargs, localEnv);
  1842     //where
  1843         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1844             if (allowCovariantReturns &&
  1845                     methodName == names.clone &&
  1846                 types.isArray(qualifierType)) {
  1847                 // as a special case, array.clone() has a result that is
  1848                 // the same as static type of the array being cloned
  1849                 return qualifierType;
  1850             } else if (allowGenerics &&
  1851                     methodName == names.getClass &&
  1852                     argtypes.isEmpty()) {
  1853                 // as a special case, x.getClass() has type Class<? extends |X|>
  1854                 return new ClassType(restype.getEnclosingType(),
  1855                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1856                                                                BoundKind.EXTENDS,
  1857                                                                syms.boundClass)),
  1858                               restype.tsym);
  1859             } else {
  1860                 return restype;
  1864         /** Check that given application node appears as first statement
  1865          *  in a constructor call.
  1866          *  @param tree   The application node
  1867          *  @param env    The environment current at the application.
  1868          */
  1869         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1870             JCMethodDecl enclMethod = env.enclMethod;
  1871             if (enclMethod != null && enclMethod.name == names.init) {
  1872                 JCBlock body = enclMethod.body;
  1873                 if (body.stats.head.hasTag(EXEC) &&
  1874                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1875                     return true;
  1877             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1878                       TreeInfo.name(tree.meth));
  1879             return false;
  1882         /** Obtain a method type with given argument types.
  1883          */
  1884         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1885             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1886             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1889     public void visitNewClass(final JCNewClass tree) {
  1890         Type owntype = types.createErrorType(tree.type);
  1892         // The local environment of a class creation is
  1893         // a new environment nested in the current one.
  1894         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1896         // The anonymous inner class definition of the new expression,
  1897         // if one is defined by it.
  1898         JCClassDecl cdef = tree.def;
  1900         // If enclosing class is given, attribute it, and
  1901         // complete class name to be fully qualified
  1902         JCExpression clazz = tree.clazz; // Class field following new
  1903         JCExpression clazzid;            // Identifier in class field
  1904         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1905         annoclazzid = null;
  1907         if (clazz.hasTag(TYPEAPPLY)) {
  1908             clazzid = ((JCTypeApply) clazz).clazz;
  1909             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1910                 annoclazzid = (JCAnnotatedType) clazzid;
  1911                 clazzid = annoclazzid.underlyingType;
  1913         } else {
  1914             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1915                 annoclazzid = (JCAnnotatedType) clazz;
  1916                 clazzid = annoclazzid.underlyingType;
  1917             } else {
  1918                 clazzid = clazz;
  1922         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1924         if (tree.encl != null) {
  1925             // We are seeing a qualified new, of the form
  1926             //    <expr>.new C <...> (...) ...
  1927             // In this case, we let clazz stand for the name of the
  1928             // allocated class C prefixed with the type of the qualifier
  1929             // expression, so that we can
  1930             // resolve it with standard techniques later. I.e., if
  1931             // <expr> has type T, then <expr>.new C <...> (...)
  1932             // yields a clazz T.C.
  1933             Type encltype = chk.checkRefType(tree.encl.pos(),
  1934                                              attribExpr(tree.encl, env));
  1935             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1936             // from expr to the combined type, or not? Yes, do this.
  1937             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1938                                                  ((JCIdent) clazzid).name);
  1940             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1941             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1942             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1943                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1944                 List<JCAnnotation> annos = annoType.annotations;
  1946                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1947                     clazzid1 = make.at(tree.pos).
  1948                         TypeApply(clazzid1,
  1949                                   ((JCTypeApply) clazz).arguments);
  1952                 clazzid1 = make.at(tree.pos).
  1953                     AnnotatedType(annos, clazzid1);
  1954             } else if (clazz.hasTag(TYPEAPPLY)) {
  1955                 clazzid1 = make.at(tree.pos).
  1956                     TypeApply(clazzid1,
  1957                               ((JCTypeApply) clazz).arguments);
  1960             clazz = clazzid1;
  1963         // Attribute clazz expression and store
  1964         // symbol + type back into the attributed tree.
  1965         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1966             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1967             attribType(clazz, env);
  1969         clazztype = chk.checkDiamond(tree, clazztype);
  1970         chk.validate(clazz, localEnv);
  1971         if (tree.encl != null) {
  1972             // We have to work in this case to store
  1973             // symbol + type back into the attributed tree.
  1974             tree.clazz.type = clazztype;
  1975             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1976             clazzid.type = ((JCIdent) clazzid).sym.type;
  1977             if (annoclazzid != null) {
  1978                 annoclazzid.type = clazzid.type;
  1980             if (!clazztype.isErroneous()) {
  1981                 if (cdef != null && clazztype.tsym.isInterface()) {
  1982                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1983                 } else if (clazztype.tsym.isStatic()) {
  1984                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1987         } else if (!clazztype.tsym.isInterface() &&
  1988                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1989             // Check for the existence of an apropos outer instance
  1990             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1993         // Attribute constructor arguments.
  1994         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1995         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
  1996         List<Type> argtypes = argtypesBuf.toList();
  1997         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1999         // If we have made no mistakes in the class type...
  2000         if (clazztype.hasTag(CLASS)) {
  2001             // Enums may not be instantiated except implicitly
  2002             if (allowEnums &&
  2003                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2004                 (!env.tree.hasTag(VARDEF) ||
  2005                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2006                  ((JCVariableDecl) env.tree).init != tree))
  2007                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2008             // Check that class is not abstract
  2009             if (cdef == null &&
  2010                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2011                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2012                           clazztype.tsym);
  2013             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2014                 // Check that no constructor arguments are given to
  2015                 // anonymous classes implementing an interface
  2016                 if (!argtypes.isEmpty())
  2017                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2019                 if (!typeargtypes.isEmpty())
  2020                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2022                 // Error recovery: pretend no arguments were supplied.
  2023                 argtypes = List.nil();
  2024                 typeargtypes = List.nil();
  2025             } else if (TreeInfo.isDiamond(tree)) {
  2026                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2027                             clazztype.tsym.type.getTypeArguments(),
  2028                             clazztype.tsym);
  2030                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2031                 diamondEnv.info.selectSuper = cdef != null;
  2032                 diamondEnv.info.pendingResolutionPhase = null;
  2034                 //if the type of the instance creation expression is a class type
  2035                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2036                 //of the resolved constructor will be a partially instantiated type
  2037                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2038                             diamondEnv,
  2039                             site,
  2040                             argtypes,
  2041                             typeargtypes);
  2042                 tree.constructor = constructor.baseSymbol();
  2044                 final TypeSymbol csym = clazztype.tsym;
  2045                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2046                     @Override
  2047                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2048                         enclosingContext.report(tree.clazz,
  2049                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2051                 });
  2052                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2053                 constructorType = checkId(tree, site,
  2054                         constructor,
  2055                         diamondEnv,
  2056                         diamondResult);
  2058                 tree.clazz.type = types.createErrorType(clazztype);
  2059                 if (!constructorType.isErroneous()) {
  2060                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2061                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2063                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2066             // Resolve the called constructor under the assumption
  2067             // that we are referring to a superclass instance of the
  2068             // current instance (JLS ???).
  2069             else {
  2070                 //the following code alters some of the fields in the current
  2071                 //AttrContext - hence, the current context must be dup'ed in
  2072                 //order to avoid downstream failures
  2073                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2074                 rsEnv.info.selectSuper = cdef != null;
  2075                 rsEnv.info.pendingResolutionPhase = null;
  2076                 tree.constructor = rs.resolveConstructor(
  2077                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2078                 if (cdef == null) { //do not check twice!
  2079                     tree.constructorType = checkId(tree,
  2080                             clazztype,
  2081                             tree.constructor,
  2082                             rsEnv,
  2083                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2084                     if (rsEnv.info.lastResolveVarargs())
  2085                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2087                 if (cdef == null &&
  2088                         !clazztype.isErroneous() &&
  2089                         clazztype.getTypeArguments().nonEmpty() &&
  2090                         findDiamonds) {
  2091                     findDiamond(localEnv, tree, clazztype);
  2095             if (cdef != null) {
  2096                 // We are seeing an anonymous class instance creation.
  2097                 // In this case, the class instance creation
  2098                 // expression
  2099                 //
  2100                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2101                 //
  2102                 // is represented internally as
  2103                 //
  2104                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2105                 //
  2106                 // This expression is then *transformed* as follows:
  2107                 //
  2108                 // (1) add a STATIC flag to the class definition
  2109                 //     if the current environment is static
  2110                 // (2) add an extends or implements clause
  2111                 // (3) add a constructor.
  2112                 //
  2113                 // For instance, if C is a class, and ET is the type of E,
  2114                 // the expression
  2115                 //
  2116                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2117                 //
  2118                 // is translated to (where X is a fresh name and typarams is the
  2119                 // parameter list of the super constructor):
  2120                 //
  2121                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2122                 //     X extends C<typargs2> {
  2123                 //       <typarams> X(ET e, args) {
  2124                 //         e.<typeargs1>super(args)
  2125                 //       }
  2126                 //       ...
  2127                 //     }
  2128                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2130                 if (clazztype.tsym.isInterface()) {
  2131                     cdef.implementing = List.of(clazz);
  2132                 } else {
  2133                     cdef.extending = clazz;
  2136                 attribStat(cdef, localEnv);
  2138                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2140                 // If an outer instance is given,
  2141                 // prefix it to the constructor arguments
  2142                 // and delete it from the new expression
  2143                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2144                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2145                     argtypes = argtypes.prepend(tree.encl.type);
  2146                     tree.encl = null;
  2149                 // Reassign clazztype and recompute constructor.
  2150                 clazztype = cdef.sym.type;
  2151                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2152                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2153                 Assert.check(sym.kind < AMBIGUOUS);
  2154                 tree.constructor = sym;
  2155                 tree.constructorType = checkId(tree,
  2156                     clazztype,
  2157                     tree.constructor,
  2158                     localEnv,
  2159                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2160             } else {
  2161                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  2162                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  2163                             tree.clazz.type.tsym);
  2167             if (tree.constructor != null && tree.constructor.kind == MTH)
  2168                 owntype = clazztype;
  2170         result = check(tree, owntype, VAL, resultInfo);
  2171         chk.validate(tree.typeargs, localEnv);
  2173     //where
  2174         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2175             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2176             List<JCExpression> prevTypeargs = ta.arguments;
  2177             try {
  2178                 //create a 'fake' diamond AST node by removing type-argument trees
  2179                 ta.arguments = List.nil();
  2180                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2181                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2182                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2183                 Type polyPt = allowPoly ?
  2184                         syms.objectType :
  2185                         clazztype;
  2186                 if (!inferred.isErroneous() &&
  2187                     (allowPoly && pt() == Infer.anyPoly ?
  2188                         types.isSameType(inferred, clazztype) :
  2189                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2190                     String key = types.isSameType(clazztype, inferred) ?
  2191                         "diamond.redundant.args" :
  2192                         "diamond.redundant.args.1";
  2193                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2195             } finally {
  2196                 ta.arguments = prevTypeargs;
  2200             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2201                 if (allowLambda &&
  2202                         identifyLambdaCandidate &&
  2203                         clazztype.hasTag(CLASS) &&
  2204                         !pt().hasTag(NONE) &&
  2205                         types.isFunctionalInterface(clazztype.tsym)) {
  2206                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2207                     int count = 0;
  2208                     boolean found = false;
  2209                     for (Symbol sym : csym.members().getElements()) {
  2210                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2211                                 sym.isConstructor()) continue;
  2212                         count++;
  2213                         if (sym.kind != MTH ||
  2214                                 !sym.name.equals(descriptor.name)) continue;
  2215                         Type mtype = types.memberType(clazztype, sym);
  2216                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2217                             found = true;
  2220                     if (found && count == 1) {
  2221                         log.note(tree.def, "potential.lambda.found");
  2226     private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  2227             Symbol sym) {
  2228         // Ensure that no declaration annotations are present.
  2229         // Note that a tree type might be an AnnotatedType with
  2230         // empty annotations, if only declaration annotations were given.
  2231         // This method will raise an error for such a type.
  2232         for (JCAnnotation ai : annotations) {
  2233             if (typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  2234                 log.error(ai.pos(), "annotation.type.not.applicable");
  2240     /** Make an attributed null check tree.
  2241      */
  2242     public JCExpression makeNullCheck(JCExpression arg) {
  2243         // optimization: X.this is never null; skip null check
  2244         Name name = TreeInfo.name(arg);
  2245         if (name == names._this || name == names._super) return arg;
  2247         JCTree.Tag optag = NULLCHK;
  2248         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2249         tree.operator = syms.nullcheck;
  2250         tree.type = arg.type;
  2251         return tree;
  2254     public void visitNewArray(JCNewArray tree) {
  2255         Type owntype = types.createErrorType(tree.type);
  2256         Env<AttrContext> localEnv = env.dup(tree);
  2257         Type elemtype;
  2258         if (tree.elemtype != null) {
  2259             elemtype = attribType(tree.elemtype, localEnv);
  2260             chk.validate(tree.elemtype, localEnv);
  2261             owntype = elemtype;
  2262             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2263                 attribExpr(l.head, localEnv, syms.intType);
  2264                 owntype = new ArrayType(owntype, syms.arrayClass);
  2266             if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  2267                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  2268                         tree.elemtype.type.tsym);
  2270         } else {
  2271             // we are seeing an untyped aggregate { ... }
  2272             // this is allowed only if the prototype is an array
  2273             if (pt().hasTag(ARRAY)) {
  2274                 elemtype = types.elemtype(pt());
  2275             } else {
  2276                 if (!pt().hasTag(ERROR)) {
  2277                     log.error(tree.pos(), "illegal.initializer.for.type",
  2278                               pt());
  2280                 elemtype = types.createErrorType(pt());
  2283         if (tree.elems != null) {
  2284             attribExprs(tree.elems, localEnv, elemtype);
  2285             owntype = new ArrayType(elemtype, syms.arrayClass);
  2287         if (!types.isReifiable(elemtype))
  2288             log.error(tree.pos(), "generic.array.creation");
  2289         result = check(tree, owntype, VAL, resultInfo);
  2292     /*
  2293      * A lambda expression can only be attributed when a target-type is available.
  2294      * In addition, if the target-type is that of a functional interface whose
  2295      * descriptor contains inference variables in argument position the lambda expression
  2296      * is 'stuck' (see DeferredAttr).
  2297      */
  2298     @Override
  2299     public void visitLambda(final JCLambda that) {
  2300         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2301             if (pt().hasTag(NONE)) {
  2302                 //lambda only allowed in assignment or method invocation/cast context
  2303                 log.error(that.pos(), "unexpected.lambda");
  2305             result = that.type = types.createErrorType(pt());
  2306             return;
  2308         //create an environment for attribution of the lambda expression
  2309         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2310         boolean needsRecovery =
  2311                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2312         try {
  2313             Type currentTarget = pt();
  2314             List<Type> explicitParamTypes = null;
  2315             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2316                 //attribute lambda parameters
  2317                 attribStats(that.params, localEnv);
  2318                 explicitParamTypes = TreeInfo.types(that.params);
  2321             Type lambdaType;
  2322             if (pt() != Type.recoveryType) {
  2323                 /* We need to adjust the target. If the target is an
  2324                  * intersection type, for example: SAM & I1 & I2 ...
  2325                  * the target will be updated to SAM
  2326                  */
  2327                 currentTarget = targetChecker.visit(currentTarget, that);
  2328                 if (explicitParamTypes != null) {
  2329                     currentTarget = infer.instantiateFunctionalInterface(that,
  2330                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2332                 lambdaType = types.findDescriptorType(currentTarget);
  2333             } else {
  2334                 currentTarget = Type.recoveryType;
  2335                 lambdaType = fallbackDescriptorType(that);
  2338             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2340             if (lambdaType.hasTag(FORALL)) {
  2341                 //lambda expression target desc cannot be a generic method
  2342                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2343                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2344                 result = that.type = types.createErrorType(pt());
  2345                 return;
  2348             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2349                 //add param type info in the AST
  2350                 List<Type> actuals = lambdaType.getParameterTypes();
  2351                 List<JCVariableDecl> params = that.params;
  2353                 boolean arityMismatch = false;
  2355                 while (params.nonEmpty()) {
  2356                     if (actuals.isEmpty()) {
  2357                         //not enough actuals to perform lambda parameter inference
  2358                         arityMismatch = true;
  2360                     //reset previously set info
  2361                     Type argType = arityMismatch ?
  2362                             syms.errType :
  2363                             actuals.head;
  2364                     params.head.vartype = make.at(params.head).Type(argType);
  2365                     params.head.sym = null;
  2366                     actuals = actuals.isEmpty() ?
  2367                             actuals :
  2368                             actuals.tail;
  2369                     params = params.tail;
  2372                 //attribute lambda parameters
  2373                 attribStats(that.params, localEnv);
  2375                 if (arityMismatch) {
  2376                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2377                         result = that.type = types.createErrorType(currentTarget);
  2378                         return;
  2382             //from this point on, no recovery is needed; if we are in assignment context
  2383             //we will be able to attribute the whole lambda body, regardless of errors;
  2384             //if we are in a 'check' method context, and the lambda is not compatible
  2385             //with the target-type, it will be recovered anyway in Attr.checkId
  2386             needsRecovery = false;
  2388             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2389                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2390                     new FunctionalReturnContext(resultInfo.checkContext);
  2392             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2393                 recoveryInfo :
  2394                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2395             localEnv.info.returnResult = bodyResultInfo;
  2397             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2398                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2399             } else {
  2400                 JCBlock body = (JCBlock)that.body;
  2401                 attribStats(body.stats, localEnv);
  2404             result = check(that, currentTarget, VAL, resultInfo);
  2406             boolean isSpeculativeRound =
  2407                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2409             preFlow(that);
  2410             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2412             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2414             if (!isSpeculativeRound) {
  2415                 //add thrown types as bounds to the thrown types free variables if needed:
  2416                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2417                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2418                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asFree(lambdaType.getThrownTypes());
  2420                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2423                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2425             result = check(that, currentTarget, VAL, resultInfo);
  2426         } catch (Types.FunctionDescriptorLookupError ex) {
  2427             JCDiagnostic cause = ex.getDiagnostic();
  2428             resultInfo.checkContext.report(that, cause);
  2429             result = that.type = types.createErrorType(pt());
  2430             return;
  2431         } finally {
  2432             localEnv.info.scope.leave();
  2433             if (needsRecovery) {
  2434                 attribTree(that, env, recoveryInfo);
  2438     //where
  2439         void preFlow(JCLambda tree) {
  2440             new PostAttrAnalyzer() {
  2441                 @Override
  2442                 public void scan(JCTree tree) {
  2443                     if (tree == null ||
  2444                             (tree.type != null &&
  2445                             tree.type == Type.stuckType)) {
  2446                         //don't touch stuck expressions!
  2447                         return;
  2449                     super.scan(tree);
  2451             }.scan(tree);
  2454         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2456             @Override
  2457             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2458                 return t.isCompound() ?
  2459                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2462             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2463                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2464                 Type target = null;
  2465                 for (Type bound : ict.getExplicitComponents()) {
  2466                     TypeSymbol boundSym = bound.tsym;
  2467                     if (types.isFunctionalInterface(boundSym) &&
  2468                             types.findDescriptorSymbol(boundSym) == desc) {
  2469                         target = bound;
  2470                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2471                         //bound must be an interface
  2472                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2475                 return target != null ?
  2476                         target :
  2477                         ict.getExplicitComponents().head; //error recovery
  2480             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2481                 ListBuffer<Type> targs = new ListBuffer<>();
  2482                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2483                 for (Type i : ict.interfaces_field) {
  2484                     if (i.isParameterized()) {
  2485                         targs.appendList(i.tsym.type.allparams());
  2487                     supertypes.append(i.tsym.type);
  2489                 IntersectionClassType notionalIntf =
  2490                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2491                 notionalIntf.allparams_field = targs.toList();
  2492                 notionalIntf.tsym.flags_field |= INTERFACE;
  2493                 return notionalIntf.tsym;
  2496             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2497                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2498                         diags.fragment(key, args)));
  2500         };
  2502         private Type fallbackDescriptorType(JCExpression tree) {
  2503             switch (tree.getTag()) {
  2504                 case LAMBDA:
  2505                     JCLambda lambda = (JCLambda)tree;
  2506                     List<Type> argtypes = List.nil();
  2507                     for (JCVariableDecl param : lambda.params) {
  2508                         argtypes = param.vartype != null ?
  2509                                 argtypes.append(param.vartype.type) :
  2510                                 argtypes.append(syms.errType);
  2512                     return new MethodType(argtypes, Type.recoveryType,
  2513                             List.of(syms.throwableType), syms.methodClass);
  2514                 case REFERENCE:
  2515                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2516                             List.of(syms.throwableType), syms.methodClass);
  2517                 default:
  2518                     Assert.error("Cannot get here!");
  2520             return null;
  2523         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2524                 final InferenceContext inferenceContext, final Type... ts) {
  2525             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2528         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2529                 final InferenceContext inferenceContext, final List<Type> ts) {
  2530             if (inferenceContext.free(ts)) {
  2531                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2532                     @Override
  2533                     public void typesInferred(InferenceContext inferenceContext) {
  2534                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2536                 });
  2537             } else {
  2538                 for (Type t : ts) {
  2539                     rs.checkAccessibleType(env, t);
  2544         /**
  2545          * Lambda/method reference have a special check context that ensures
  2546          * that i.e. a lambda return type is compatible with the expected
  2547          * type according to both the inherited context and the assignment
  2548          * context.
  2549          */
  2550         class FunctionalReturnContext extends Check.NestedCheckContext {
  2552             FunctionalReturnContext(CheckContext enclosingContext) {
  2553                 super(enclosingContext);
  2556             @Override
  2557             public boolean compatible(Type found, Type req, Warner warn) {
  2558                 //return type must be compatible in both current context and assignment context
  2559                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
  2562             @Override
  2563             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2564                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2568         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2570             JCExpression expr;
  2572             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2573                 super(enclosingContext);
  2574                 this.expr = expr;
  2577             @Override
  2578             public boolean compatible(Type found, Type req, Warner warn) {
  2579                 //a void return is compatible with an expression statement lambda
  2580                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2581                         super.compatible(found, req, warn);
  2585         /**
  2586         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2587         * are compatible with the expected functional interface descriptor. This means that:
  2588         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2589         * types must be compatible with the return type of the expected descriptor.
  2590         */
  2591         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2592             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2594             //return values have already been checked - but if lambda has no return
  2595             //values, we must ensure that void/value compatibility is correct;
  2596             //this amounts at checking that, if a lambda body can complete normally,
  2597             //the descriptor's return type must be void
  2598             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2599                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2600                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2601                         diags.fragment("missing.ret.val", returnType)));
  2604             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
  2605             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2606                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2610         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2611             Env<AttrContext> lambdaEnv;
  2612             Symbol owner = env.info.scope.owner;
  2613             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2614                 //field initializer
  2615                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2616                 lambdaEnv.info.scope.owner =
  2617                     new MethodSymbol((owner.flags() & STATIC) | BLOCK, names.empty, null,
  2618                                      env.info.scope.owner);
  2619             } else {
  2620                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2622             return lambdaEnv;
  2625     @Override
  2626     public void visitReference(final JCMemberReference that) {
  2627         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2628             if (pt().hasTag(NONE)) {
  2629                 //method reference only allowed in assignment or method invocation/cast context
  2630                 log.error(that.pos(), "unexpected.mref");
  2632             result = that.type = types.createErrorType(pt());
  2633             return;
  2635         final Env<AttrContext> localEnv = env.dup(that);
  2636         try {
  2637             //attribute member reference qualifier - if this is a constructor
  2638             //reference, the expected kind must be a type
  2639             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2641             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2642                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2643                 if (!exprType.isErroneous() &&
  2644                     exprType.isRaw() &&
  2645                     that.typeargs != null) {
  2646                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2647                         diags.fragment("mref.infer.and.explicit.params"));
  2648                     exprType = types.createErrorType(exprType);
  2652             if (exprType.isErroneous()) {
  2653                 //if the qualifier expression contains problems,
  2654                 //give up attribution of method reference
  2655                 result = that.type = exprType;
  2656                 return;
  2659             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2660                 //if the qualifier is a type, validate it; raw warning check is
  2661                 //omitted as we don't know at this stage as to whether this is a
  2662                 //raw selector (because of inference)
  2663                 chk.validate(that.expr, env, false);
  2666             //attrib type-arguments
  2667             List<Type> typeargtypes = List.nil();
  2668             if (that.typeargs != null) {
  2669                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2672             Type target;
  2673             Type desc;
  2674             if (pt() != Type.recoveryType) {
  2675                 target = targetChecker.visit(pt(), that);
  2676                 desc = types.findDescriptorType(target);
  2677             } else {
  2678                 target = Type.recoveryType;
  2679                 desc = fallbackDescriptorType(that);
  2682             setFunctionalInfo(localEnv, that, pt(), desc, target, resultInfo.checkContext);
  2683             List<Type> argtypes = desc.getParameterTypes();
  2684             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2686             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2687                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2690             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2691             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2692             try {
  2693                 refResult = rs.resolveMemberReference(that.pos(), localEnv, that, that.expr.type,
  2694                         that.name, argtypes, typeargtypes, true, referenceCheck,
  2695                         resultInfo.checkContext.inferenceContext());
  2696             } finally {
  2697                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2700             Symbol refSym = refResult.fst;
  2701             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2703             if (refSym.kind != MTH) {
  2704                 boolean targetError;
  2705                 switch (refSym.kind) {
  2706                     case ABSENT_MTH:
  2707                         targetError = false;
  2708                         break;
  2709                     case WRONG_MTH:
  2710                     case WRONG_MTHS:
  2711                     case AMBIGUOUS:
  2712                     case HIDDEN:
  2713                     case STATICERR:
  2714                     case MISSING_ENCL:
  2715                         targetError = true;
  2716                         break;
  2717                     default:
  2718                         Assert.error("unexpected result kind " + refSym.kind);
  2719                         targetError = false;
  2722                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2723                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2725                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2726                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2728                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2729                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2731                 if (targetError && target == Type.recoveryType) {
  2732                     //a target error doesn't make sense during recovery stage
  2733                     //as we don't know what actual parameter types are
  2734                     result = that.type = target;
  2735                     return;
  2736                 } else {
  2737                     if (targetError) {
  2738                         resultInfo.checkContext.report(that, diag);
  2739                     } else {
  2740                         log.report(diag);
  2742                     result = that.type = types.createErrorType(target);
  2743                     return;
  2747             that.sym = refSym.baseSymbol();
  2748             that.kind = lookupHelper.referenceKind(that.sym);
  2749             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2751             if (desc.getReturnType() == Type.recoveryType) {
  2752                 // stop here
  2753                 result = that.type = target;
  2754                 return;
  2757             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2759                 if (that.getMode() == ReferenceMode.INVOKE &&
  2760                         TreeInfo.isStaticSelector(that.expr, names) &&
  2761                         that.kind.isUnbound() &&
  2762                         !desc.getParameterTypes().head.isParameterized()) {
  2763                     chk.checkRaw(that.expr, localEnv);
  2766                 if (!that.kind.isUnbound() &&
  2767                         that.getMode() == ReferenceMode.INVOKE &&
  2768                         TreeInfo.isStaticSelector(that.expr, names) &&
  2769                         !that.sym.isStatic()) {
  2770                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2771                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
  2772                     result = that.type = types.createErrorType(target);
  2773                     return;
  2776                 if (that.kind.isUnbound() &&
  2777                         that.getMode() == ReferenceMode.INVOKE &&
  2778                         TreeInfo.isStaticSelector(that.expr, names) &&
  2779                         that.sym.isStatic()) {
  2780                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2781                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
  2782                     result = that.type = types.createErrorType(target);
  2783                     return;
  2786                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2787                         exprType.getTypeArguments().nonEmpty()) {
  2788                     //static ref with class type-args
  2789                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2790                             diags.fragment("static.mref.with.targs"));
  2791                     result = that.type = types.createErrorType(target);
  2792                     return;
  2795                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2796                         !that.kind.isUnbound()) {
  2797                     //no static bound mrefs
  2798                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2799                             diags.fragment("static.bound.mref"));
  2800                     result = that.type = types.createErrorType(target);
  2801                     return;
  2804                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2805                     // Check that super-qualified symbols are not abstract (JLS)
  2806                     rs.checkNonAbstract(that.pos(), that.sym);
  2810             ResultInfo checkInfo =
  2811                     resultInfo.dup(newMethodTemplate(
  2812                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2813                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes));
  2815             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2817             if (that.kind.isUnbound() &&
  2818                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2819                 //re-generate inference constraints for unbound receiver
  2820                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asFree(argtypes.head), exprType)) {
  2821                     //cannot happen as this has already been checked - we just need
  2822                     //to regenerate the inference constraints, as that has been lost
  2823                     //as a result of the call to inferenceContext.save()
  2824                     Assert.error("Can't get here");
  2828             if (!refType.isErroneous()) {
  2829                 refType = types.createMethodTypeWithReturn(refType,
  2830                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2833             //go ahead with standard method reference compatibility check - note that param check
  2834             //is a no-op (as this has been taken care during method applicability)
  2835             boolean isSpeculativeRound =
  2836                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2837             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2838             if (!isSpeculativeRound) {
  2839                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2841             result = check(that, target, VAL, resultInfo);
  2842         } catch (Types.FunctionDescriptorLookupError ex) {
  2843             JCDiagnostic cause = ex.getDiagnostic();
  2844             resultInfo.checkContext.report(that, cause);
  2845             result = that.type = types.createErrorType(pt());
  2846             return;
  2849     //where
  2850         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2851             //if this is a constructor reference, the expected kind must be a type
  2852             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2856     @SuppressWarnings("fallthrough")
  2857     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2858         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2860         Type resType;
  2861         switch (tree.getMode()) {
  2862             case NEW:
  2863                 if (!tree.expr.type.isRaw()) {
  2864                     resType = tree.expr.type;
  2865                     break;
  2867             default:
  2868                 resType = refType.getReturnType();
  2871         Type incompatibleReturnType = resType;
  2873         if (returnType.hasTag(VOID)) {
  2874             incompatibleReturnType = null;
  2877         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2878             if (resType.isErroneous() ||
  2879                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2880                 incompatibleReturnType = null;
  2884         if (incompatibleReturnType != null) {
  2885             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2886                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2889         if (!speculativeAttr) {
  2890             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2891             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2892                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2897     /**
  2898      * Set functional type info on the underlying AST. Note: as the target descriptor
  2899      * might contain inference variables, we might need to register an hook in the
  2900      * current inference context.
  2901      */
  2902     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2903             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2904         if (checkContext.inferenceContext().free(descriptorType)) {
  2905             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2906                 public void typesInferred(InferenceContext inferenceContext) {
  2907                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2908                             inferenceContext.asInstType(primaryTarget), checkContext);
  2910             });
  2911         } else {
  2912             ListBuffer<Type> targets = new ListBuffer<>();
  2913             if (pt.hasTag(CLASS)) {
  2914                 if (pt.isCompound()) {
  2915                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2916                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2917                         if (t != primaryTarget) {
  2918                             targets.append(types.removeWildcards(t));
  2921                 } else {
  2922                     targets.append(types.removeWildcards(primaryTarget));
  2925             fExpr.targets = targets.toList();
  2926             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2927                     pt != Type.recoveryType) {
  2928                 //check that functional interface class is well-formed
  2929                 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2930                         names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2931                 if (csym != null) {
  2932                     chk.checkImplementations(env.tree, csym, csym);
  2938     public void visitParens(JCParens tree) {
  2939         Type owntype = attribTree(tree.expr, env, resultInfo);
  2940         result = check(tree, owntype, pkind(), resultInfo);
  2941         Symbol sym = TreeInfo.symbol(tree);
  2942         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2943             log.error(tree.pos(), "illegal.start.of.type");
  2946     public void visitAssign(JCAssign tree) {
  2947         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2948         Type capturedType = capture(owntype);
  2949         attribExpr(tree.rhs, env, owntype);
  2950         result = check(tree, capturedType, VAL, resultInfo);
  2953     public void visitAssignop(JCAssignOp tree) {
  2954         // Attribute arguments.
  2955         Type owntype = attribTree(tree.lhs, env, varInfo);
  2956         Type operand = attribExpr(tree.rhs, env);
  2957         // Find operator.
  2958         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2959             tree.pos(), tree.getTag().noAssignOp(), env,
  2960             owntype, operand);
  2962         if (operator.kind == MTH &&
  2963                 !owntype.isErroneous() &&
  2964                 !operand.isErroneous()) {
  2965             chk.checkOperator(tree.pos(),
  2966                               (OperatorSymbol)operator,
  2967                               tree.getTag().noAssignOp(),
  2968                               owntype,
  2969                               operand);
  2970             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2971             chk.checkCastable(tree.rhs.pos(),
  2972                               operator.type.getReturnType(),
  2973                               owntype);
  2975         result = check(tree, owntype, VAL, resultInfo);
  2978     public void visitUnary(JCUnary tree) {
  2979         // Attribute arguments.
  2980         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2981             ? attribTree(tree.arg, env, varInfo)
  2982             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2984         // Find operator.
  2985         Symbol operator = tree.operator =
  2986             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2988         Type owntype = types.createErrorType(tree.type);
  2989         if (operator.kind == MTH &&
  2990                 !argtype.isErroneous()) {
  2991             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2992                 ? tree.arg.type
  2993                 : operator.type.getReturnType();
  2994             int opc = ((OperatorSymbol)operator).opcode;
  2996             // If the argument is constant, fold it.
  2997             if (argtype.constValue() != null) {
  2998                 Type ctype = cfolder.fold1(opc, argtype);
  2999                 if (ctype != null) {
  3000                     owntype = cfolder.coerce(ctype, owntype);
  3002                     // Remove constant types from arguments to
  3003                     // conserve space. The parser will fold concatenations
  3004                     // of string literals; the code here also
  3005                     // gets rid of intermediate results when some of the
  3006                     // operands are constant identifiers.
  3007                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  3008                         tree.arg.type = syms.stringType;
  3013         result = check(tree, owntype, VAL, resultInfo);
  3016     public void visitBinary(JCBinary tree) {
  3017         // Attribute arguments.
  3018         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3019         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3021         // Find operator.
  3022         Symbol operator = tree.operator =
  3023             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3025         Type owntype = types.createErrorType(tree.type);
  3026         if (operator.kind == MTH &&
  3027                 !left.isErroneous() &&
  3028                 !right.isErroneous()) {
  3029             owntype = operator.type.getReturnType();
  3030             // This will figure out when unboxing can happen and
  3031             // choose the right comparison operator.
  3032             int opc = chk.checkOperator(tree.lhs.pos(),
  3033                                         (OperatorSymbol)operator,
  3034                                         tree.getTag(),
  3035                                         left,
  3036                                         right);
  3038             // If both arguments are constants, fold them.
  3039             if (left.constValue() != null && right.constValue() != null) {
  3040                 Type ctype = cfolder.fold2(opc, left, right);
  3041                 if (ctype != null) {
  3042                     owntype = cfolder.coerce(ctype, owntype);
  3044                     // Remove constant types from arguments to
  3045                     // conserve space. The parser will fold concatenations
  3046                     // of string literals; the code here also
  3047                     // gets rid of intermediate results when some of the
  3048                     // operands are constant identifiers.
  3049                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  3050                         tree.lhs.type = syms.stringType;
  3052                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  3053                         tree.rhs.type = syms.stringType;
  3058             // Check that argument types of a reference ==, != are
  3059             // castable to each other, (JLS 15.21).  Note: unboxing
  3060             // comparisons will not have an acmp* opc at this point.
  3061             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3062                 if (!types.isEqualityComparable(left, right,
  3063                                                 new Warner(tree.pos()))) {
  3064                     log.error(tree.pos(), "incomparable.types", left, right);
  3068             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3070         result = check(tree, owntype, VAL, resultInfo);
  3073     public void visitTypeCast(final JCTypeCast tree) {
  3074         Type clazztype = attribType(tree.clazz, env);
  3075         chk.validate(tree.clazz, env, false);
  3076         //a fresh environment is required for 292 inference to work properly ---
  3077         //see Infer.instantiatePolymorphicSignatureInstance()
  3078         Env<AttrContext> localEnv = env.dup(tree);
  3079         //should we propagate the target type?
  3080         final ResultInfo castInfo;
  3081         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3082         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3083         if (isPoly) {
  3084             //expression is a poly - we need to propagate target type info
  3085             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3086                 @Override
  3087                 public boolean compatible(Type found, Type req, Warner warn) {
  3088                     return types.isCastable(found, req, warn);
  3090             });
  3091         } else {
  3092             //standalone cast - target-type info is not propagated
  3093             castInfo = unknownExprInfo;
  3095         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3096         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3097         if (exprtype.constValue() != null)
  3098             owntype = cfolder.coerce(exprtype, owntype);
  3099         result = check(tree, capture(owntype), VAL, resultInfo);
  3100         if (!isPoly)
  3101             chk.checkRedundantCast(localEnv, tree);
  3104     public void visitTypeTest(JCInstanceOf tree) {
  3105         Type exprtype = chk.checkNullOrRefType(
  3106             tree.expr.pos(), attribExpr(tree.expr, env));
  3107         Type clazztype = attribType(tree.clazz, env);
  3108         if (!clazztype.hasTag(TYPEVAR)) {
  3109             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3111         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3112             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3113             clazztype = types.createErrorType(clazztype);
  3115         chk.validate(tree.clazz, env, false);
  3116         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3117         result = check(tree, syms.booleanType, VAL, resultInfo);
  3120     public void visitIndexed(JCArrayAccess tree) {
  3121         Type owntype = types.createErrorType(tree.type);
  3122         Type atype = attribExpr(tree.indexed, env);
  3123         attribExpr(tree.index, env, syms.intType);
  3124         if (types.isArray(atype))
  3125             owntype = types.elemtype(atype);
  3126         else if (!atype.hasTag(ERROR))
  3127             log.error(tree.pos(), "array.req.but.found", atype);
  3128         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3129         result = check(tree, owntype, VAR, resultInfo);
  3132     public void visitIdent(JCIdent tree) {
  3133         Symbol sym;
  3135         // Find symbol
  3136         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3137             // If we are looking for a method, the prototype `pt' will be a
  3138             // method type with the type of the call's arguments as parameters.
  3139             env.info.pendingResolutionPhase = null;
  3140             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3141         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3142             sym = tree.sym;
  3143         } else {
  3144             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3146         tree.sym = sym;
  3148         // (1) Also find the environment current for the class where
  3149         //     sym is defined (`symEnv').
  3150         // Only for pre-tiger versions (1.4 and earlier):
  3151         // (2) Also determine whether we access symbol out of an anonymous
  3152         //     class in a this or super call.  This is illegal for instance
  3153         //     members since such classes don't carry a this$n link.
  3154         //     (`noOuterThisPath').
  3155         Env<AttrContext> symEnv = env;
  3156         boolean noOuterThisPath = false;
  3157         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3158             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3159             sym.owner.kind == TYP &&
  3160             tree.name != names._this && tree.name != names._super) {
  3162             // Find environment in which identifier is defined.
  3163             while (symEnv.outer != null &&
  3164                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3165                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3166                     noOuterThisPath = !allowAnonOuterThis;
  3167                 symEnv = symEnv.outer;
  3171         // If symbol is a variable, ...
  3172         if (sym.kind == VAR) {
  3173             VarSymbol v = (VarSymbol)sym;
  3175             // ..., evaluate its initializer, if it has one, and check for
  3176             // illegal forward reference.
  3177             checkInit(tree, env, v, false);
  3179             // If we are expecting a variable (as opposed to a value), check
  3180             // that the variable is assignable in the current environment.
  3181             if (pkind() == VAR)
  3182                 checkAssignable(tree.pos(), v, null, env);
  3185         // In a constructor body,
  3186         // if symbol is a field or instance method, check that it is
  3187         // not accessed before the supertype constructor is called.
  3188         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3189             (sym.kind & (VAR | MTH)) != 0 &&
  3190             sym.owner.kind == TYP &&
  3191             (sym.flags() & STATIC) == 0) {
  3192             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3194         Env<AttrContext> env1 = env;
  3195         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3196             // If the found symbol is inaccessible, then it is
  3197             // accessed through an enclosing instance.  Locate this
  3198             // enclosing instance:
  3199             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3200                 env1 = env1.outer;
  3202         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3205     public void visitSelect(JCFieldAccess tree) {
  3206         // Determine the expected kind of the qualifier expression.
  3207         int skind = 0;
  3208         if (tree.name == names._this || tree.name == names._super ||
  3209             tree.name == names._class)
  3211             skind = TYP;
  3212         } else {
  3213             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3214             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3215             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3218         // Attribute the qualifier expression, and determine its symbol (if any).
  3219         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3220         if ((pkind() & (PCK | TYP)) == 0)
  3221             site = capture(site); // Capture field access
  3223         // don't allow T.class T[].class, etc
  3224         if (skind == TYP) {
  3225             Type elt = site;
  3226             while (elt.hasTag(ARRAY))
  3227                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3228             if (elt.hasTag(TYPEVAR)) {
  3229                 log.error(tree.pos(), "type.var.cant.be.deref");
  3230                 result = types.createErrorType(tree.type);
  3231                 return;
  3235         // If qualifier symbol is a type or `super', assert `selectSuper'
  3236         // for the selection. This is relevant for determining whether
  3237         // protected symbols are accessible.
  3238         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3239         boolean selectSuperPrev = env.info.selectSuper;
  3240         env.info.selectSuper =
  3241             sitesym != null &&
  3242             sitesym.name == names._super;
  3244         // Determine the symbol represented by the selection.
  3245         env.info.pendingResolutionPhase = null;
  3246         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3247         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3248             site = capture(site);
  3249             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3251         boolean varArgs = env.info.lastResolveVarargs();
  3252         tree.sym = sym;
  3254         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3255             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3256             site = capture(site);
  3259         // If that symbol is a variable, ...
  3260         if (sym.kind == VAR) {
  3261             VarSymbol v = (VarSymbol)sym;
  3263             // ..., evaluate its initializer, if it has one, and check for
  3264             // illegal forward reference.
  3265             checkInit(tree, env, v, true);
  3267             // If we are expecting a variable (as opposed to a value), check
  3268             // that the variable is assignable in the current environment.
  3269             if (pkind() == VAR)
  3270                 checkAssignable(tree.pos(), v, tree.selected, env);
  3273         if (sitesym != null &&
  3274                 sitesym.kind == VAR &&
  3275                 ((VarSymbol)sitesym).isResourceVariable() &&
  3276                 sym.kind == MTH &&
  3277                 sym.name.equals(names.close) &&
  3278                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3279                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3280             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3283         // Disallow selecting a type from an expression
  3284         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3285             tree.type = check(tree.selected, pt(),
  3286                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3289         if (isType(sitesym)) {
  3290             if (sym.name == names._this) {
  3291                 // If `C' is the currently compiled class, check that
  3292                 // C.this' does not appear in a call to a super(...)
  3293                 if (env.info.isSelfCall &&
  3294                     site.tsym == env.enclClass.sym) {
  3295                     chk.earlyRefError(tree.pos(), sym);
  3297             } else {
  3298                 // Check if type-qualified fields or methods are static (JLS)
  3299                 if ((sym.flags() & STATIC) == 0 &&
  3300                     !env.next.tree.hasTag(REFERENCE) &&
  3301                     sym.name != names._super &&
  3302                     (sym.kind == VAR || sym.kind == MTH)) {
  3303                     rs.accessBase(rs.new StaticError(sym),
  3304                               tree.pos(), site, sym.name, true);
  3307         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3308             // If the qualified item is not a type and the selected item is static, report
  3309             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3310             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3313         // If we are selecting an instance member via a `super', ...
  3314         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3316             // Check that super-qualified symbols are not abstract (JLS)
  3317             rs.checkNonAbstract(tree.pos(), sym);
  3319             if (site.isRaw()) {
  3320                 // Determine argument types for site.
  3321                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3322                 if (site1 != null) site = site1;
  3326         env.info.selectSuper = selectSuperPrev;
  3327         result = checkId(tree, site, sym, env, resultInfo);
  3329     //where
  3330         /** Determine symbol referenced by a Select expression,
  3332          *  @param tree   The select tree.
  3333          *  @param site   The type of the selected expression,
  3334          *  @param env    The current environment.
  3335          *  @param resultInfo The current result.
  3336          */
  3337         private Symbol selectSym(JCFieldAccess tree,
  3338                                  Symbol location,
  3339                                  Type site,
  3340                                  Env<AttrContext> env,
  3341                                  ResultInfo resultInfo) {
  3342             DiagnosticPosition pos = tree.pos();
  3343             Name name = tree.name;
  3344             switch (site.getTag()) {
  3345             case PACKAGE:
  3346                 return rs.accessBase(
  3347                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3348                     pos, location, site, name, true);
  3349             case ARRAY:
  3350             case CLASS:
  3351                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3352                     return rs.resolveQualifiedMethod(
  3353                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3354                 } else if (name == names._this || name == names._super) {
  3355                     return rs.resolveSelf(pos, env, site.tsym, name);
  3356                 } else if (name == names._class) {
  3357                     // In this case, we have already made sure in
  3358                     // visitSelect that qualifier expression is a type.
  3359                     Type t = syms.classType;
  3360                     List<Type> typeargs = allowGenerics
  3361                         ? List.of(types.erasure(site))
  3362                         : List.<Type>nil();
  3363                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3364                     return new VarSymbol(
  3365                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3366                 } else {
  3367                     // We are seeing a plain identifier as selector.
  3368                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3369                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3370                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3371                     return sym;
  3373             case WILDCARD:
  3374                 throw new AssertionError(tree);
  3375             case TYPEVAR:
  3376                 // Normally, site.getUpperBound() shouldn't be null.
  3377                 // It should only happen during memberEnter/attribBase
  3378                 // when determining the super type which *must* beac
  3379                 // done before attributing the type variables.  In
  3380                 // other words, we are seeing this illegal program:
  3381                 // class B<T> extends A<T.foo> {}
  3382                 Symbol sym = (site.getUpperBound() != null)
  3383                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3384                     : null;
  3385                 if (sym == null) {
  3386                     log.error(pos, "type.var.cant.be.deref");
  3387                     return syms.errSymbol;
  3388                 } else {
  3389                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3390                         rs.new AccessError(env, site, sym) :
  3391                                 sym;
  3392                     rs.accessBase(sym2, pos, location, site, name, true);
  3393                     return sym;
  3395             case ERROR:
  3396                 // preserve identifier names through errors
  3397                 return types.createErrorType(name, site.tsym, site).tsym;
  3398             default:
  3399                 // The qualifier expression is of a primitive type -- only
  3400                 // .class is allowed for these.
  3401                 if (name == names._class) {
  3402                     // In this case, we have already made sure in Select that
  3403                     // qualifier expression is a type.
  3404                     Type t = syms.classType;
  3405                     Type arg = types.boxedClass(site).type;
  3406                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3407                     return new VarSymbol(
  3408                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3409                 } else {
  3410                     log.error(pos, "cant.deref", site);
  3411                     return syms.errSymbol;
  3416         /** Determine type of identifier or select expression and check that
  3417          *  (1) the referenced symbol is not deprecated
  3418          *  (2) the symbol's type is safe (@see checkSafe)
  3419          *  (3) if symbol is a variable, check that its type and kind are
  3420          *      compatible with the prototype and protokind.
  3421          *  (4) if symbol is an instance field of a raw type,
  3422          *      which is being assigned to, issue an unchecked warning if its
  3423          *      type changes under erasure.
  3424          *  (5) if symbol is an instance method of a raw type, issue an
  3425          *      unchecked warning if its argument types change under erasure.
  3426          *  If checks succeed:
  3427          *    If symbol is a constant, return its constant type
  3428          *    else if symbol is a method, return its result type
  3429          *    otherwise return its type.
  3430          *  Otherwise return errType.
  3432          *  @param tree       The syntax tree representing the identifier
  3433          *  @param site       If this is a select, the type of the selected
  3434          *                    expression, otherwise the type of the current class.
  3435          *  @param sym        The symbol representing the identifier.
  3436          *  @param env        The current environment.
  3437          *  @param resultInfo    The expected result
  3438          */
  3439         Type checkId(JCTree tree,
  3440                      Type site,
  3441                      Symbol sym,
  3442                      Env<AttrContext> env,
  3443                      ResultInfo resultInfo) {
  3444             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3445                     checkMethodId(tree, site, sym, env, resultInfo) :
  3446                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3449         Type checkMethodId(JCTree tree,
  3450                      Type site,
  3451                      Symbol sym,
  3452                      Env<AttrContext> env,
  3453                      ResultInfo resultInfo) {
  3454             boolean isPolymorhicSignature =
  3455                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3456             return isPolymorhicSignature ?
  3457                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3458                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3461         Type checkSigPolyMethodId(JCTree tree,
  3462                      Type site,
  3463                      Symbol sym,
  3464                      Env<AttrContext> env,
  3465                      ResultInfo resultInfo) {
  3466             //recover original symbol for signature polymorphic methods
  3467             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3468             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3469             return sym.type;
  3472         Type checkMethodIdInternal(JCTree tree,
  3473                      Type site,
  3474                      Symbol sym,
  3475                      Env<AttrContext> env,
  3476                      ResultInfo resultInfo) {
  3477             if ((resultInfo.pkind & POLY) != 0) {
  3478                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3479                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3480                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3481                 return owntype;
  3482             } else {
  3483                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3487         Type checkIdInternal(JCTree tree,
  3488                      Type site,
  3489                      Symbol sym,
  3490                      Type pt,
  3491                      Env<AttrContext> env,
  3492                      ResultInfo resultInfo) {
  3493             if (pt.isErroneous()) {
  3494                 return types.createErrorType(site);
  3496             Type owntype; // The computed type of this identifier occurrence.
  3497             switch (sym.kind) {
  3498             case TYP:
  3499                 // For types, the computed type equals the symbol's type,
  3500                 // except for two situations:
  3501                 owntype = sym.type;
  3502                 if (owntype.hasTag(CLASS)) {
  3503                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3504                     Type ownOuter = owntype.getEnclosingType();
  3506                     // (a) If the symbol's type is parameterized, erase it
  3507                     // because no type parameters were given.
  3508                     // We recover generic outer type later in visitTypeApply.
  3509                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3510                         owntype = types.erasure(owntype);
  3513                     // (b) If the symbol's type is an inner class, then
  3514                     // we have to interpret its outer type as a superclass
  3515                     // of the site type. Example:
  3516                     //
  3517                     // class Tree<A> { class Visitor { ... } }
  3518                     // class PointTree extends Tree<Point> { ... }
  3519                     // ...PointTree.Visitor...
  3520                     //
  3521                     // Then the type of the last expression above is
  3522                     // Tree<Point>.Visitor.
  3523                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3524                         Type normOuter = site;
  3525                         if (normOuter.hasTag(CLASS)) {
  3526                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3527                             if (site.isAnnotated()) {
  3528                                 // Propagate any type annotations.
  3529                                 // TODO: should asEnclosingSuper do this?
  3530                                 // Note that the type annotations in site will be updated
  3531                                 // by annotateType. Therefore, modify site instead
  3532                                 // of creating a new AnnotatedType.
  3533                                 ((AnnotatedType)site).underlyingType = normOuter;
  3534                                 normOuter = site;
  3537                         if (normOuter == null) // perhaps from an import
  3538                             normOuter = types.erasure(ownOuter);
  3539                         if (normOuter != ownOuter)
  3540                             owntype = new ClassType(
  3541                                 normOuter, List.<Type>nil(), owntype.tsym);
  3544                 break;
  3545             case VAR:
  3546                 VarSymbol v = (VarSymbol)sym;
  3547                 // Test (4): if symbol is an instance field of a raw type,
  3548                 // which is being assigned to, issue an unchecked warning if
  3549                 // its type changes under erasure.
  3550                 if (allowGenerics &&
  3551                     resultInfo.pkind == VAR &&
  3552                     v.owner.kind == TYP &&
  3553                     (v.flags() & STATIC) == 0 &&
  3554                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3555                     Type s = types.asOuterSuper(site, v.owner);
  3556                     if (s != null &&
  3557                         s.isRaw() &&
  3558                         !types.isSameType(v.type, v.erasure(types))) {
  3559                         chk.warnUnchecked(tree.pos(),
  3560                                           "unchecked.assign.to.var",
  3561                                           v, s);
  3564                 // The computed type of a variable is the type of the
  3565                 // variable symbol, taken as a member of the site type.
  3566                 owntype = (sym.owner.kind == TYP &&
  3567                            sym.name != names._this && sym.name != names._super)
  3568                     ? types.memberType(site, sym)
  3569                     : sym.type;
  3571                 // If the variable is a constant, record constant value in
  3572                 // computed type.
  3573                 if (v.getConstValue() != null && isStaticReference(tree))
  3574                     owntype = owntype.constType(v.getConstValue());
  3576                 if (resultInfo.pkind == VAL) {
  3577                     owntype = capture(owntype); // capture "names as expressions"
  3579                 break;
  3580             case MTH: {
  3581                 owntype = checkMethod(site, sym,
  3582                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3583                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3584                         resultInfo.pt.getTypeArguments());
  3585                 break;
  3587             case PCK: case ERR:
  3588                 owntype = sym.type;
  3589                 break;
  3590             default:
  3591                 throw new AssertionError("unexpected kind: " + sym.kind +
  3592                                          " in tree " + tree);
  3595             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3596             // (for constructors, the error was given when the constructor was
  3597             // resolved)
  3599             if (sym.name != names.init) {
  3600                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3601                 chk.checkSunAPI(tree.pos(), sym);
  3602                 chk.checkProfile(tree.pos(), sym);
  3605             // Test (3): if symbol is a variable, check that its type and
  3606             // kind are compatible with the prototype and protokind.
  3607             return check(tree, owntype, sym.kind, resultInfo);
  3610         /** Check that variable is initialized and evaluate the variable's
  3611          *  initializer, if not yet done. Also check that variable is not
  3612          *  referenced before it is defined.
  3613          *  @param tree    The tree making up the variable reference.
  3614          *  @param env     The current environment.
  3615          *  @param v       The variable's symbol.
  3616          */
  3617         private void checkInit(JCTree tree,
  3618                                Env<AttrContext> env,
  3619                                VarSymbol v,
  3620                                boolean onlyWarning) {
  3621 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3622 //                             tree.pos + " " + v.pos + " " +
  3623 //                             Resolve.isStatic(env));//DEBUG
  3625             // A forward reference is diagnosed if the declaration position
  3626             // of the variable is greater than the current tree position
  3627             // and the tree and variable definition occur in the same class
  3628             // definition.  Note that writes don't count as references.
  3629             // This check applies only to class and instance
  3630             // variables.  Local variables follow different scope rules,
  3631             // and are subject to definite assignment checking.
  3632             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3633                 v.owner.kind == TYP &&
  3634                 canOwnInitializer(owner(env)) &&
  3635                 v.owner == env.info.scope.owner.enclClass() &&
  3636                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3637                 (!env.tree.hasTag(ASSIGN) ||
  3638                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3639                 String suffix = (env.info.enclVar == v) ?
  3640                                 "self.ref" : "forward.ref";
  3641                 if (!onlyWarning || isStaticEnumField(v)) {
  3642                     log.error(tree.pos(), "illegal." + suffix);
  3643                 } else if (useBeforeDeclarationWarning) {
  3644                     log.warning(tree.pos(), suffix, v);
  3648             v.getConstValue(); // ensure initializer is evaluated
  3650             checkEnumInitializer(tree, env, v);
  3653         /**
  3654          * Check for illegal references to static members of enum.  In
  3655          * an enum type, constructors and initializers may not
  3656          * reference its static members unless they are constant.
  3658          * @param tree    The tree making up the variable reference.
  3659          * @param env     The current environment.
  3660          * @param v       The variable's symbol.
  3661          * @jls  section 8.9 Enums
  3662          */
  3663         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3664             // JLS:
  3665             //
  3666             // "It is a compile-time error to reference a static field
  3667             // of an enum type that is not a compile-time constant
  3668             // (15.28) from constructors, instance initializer blocks,
  3669             // or instance variable initializer expressions of that
  3670             // type. It is a compile-time error for the constructors,
  3671             // instance initializer blocks, or instance variable
  3672             // initializer expressions of an enum constant e to refer
  3673             // to itself or to an enum constant of the same type that
  3674             // is declared to the right of e."
  3675             if (isStaticEnumField(v)) {
  3676                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3678                 if (enclClass == null || enclClass.owner == null)
  3679                     return;
  3681                 // See if the enclosing class is the enum (or a
  3682                 // subclass thereof) declaring v.  If not, this
  3683                 // reference is OK.
  3684                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3685                     return;
  3687                 // If the reference isn't from an initializer, then
  3688                 // the reference is OK.
  3689                 if (!Resolve.isInitializer(env))
  3690                     return;
  3692                 log.error(tree.pos(), "illegal.enum.static.ref");
  3696         /** Is the given symbol a static, non-constant field of an Enum?
  3697          *  Note: enum literals should not be regarded as such
  3698          */
  3699         private boolean isStaticEnumField(VarSymbol v) {
  3700             return Flags.isEnum(v.owner) &&
  3701                    Flags.isStatic(v) &&
  3702                    !Flags.isConstant(v) &&
  3703                    v.name != names._class;
  3706         /** Can the given symbol be the owner of code which forms part
  3707          *  if class initialization? This is the case if the symbol is
  3708          *  a type or field, or if the symbol is the synthetic method.
  3709          *  owning a block.
  3710          */
  3711         private boolean canOwnInitializer(Symbol sym) {
  3712             return
  3713                 (sym.kind & (VAR | TYP)) != 0 ||
  3714                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3717     Warner noteWarner = new Warner();
  3719     /**
  3720      * Check that method arguments conform to its instantiation.
  3721      **/
  3722     public Type checkMethod(Type site,
  3723                             final Symbol sym,
  3724                             ResultInfo resultInfo,
  3725                             Env<AttrContext> env,
  3726                             final List<JCExpression> argtrees,
  3727                             List<Type> argtypes,
  3728                             List<Type> typeargtypes) {
  3729         // Test (5): if symbol is an instance method of a raw type, issue
  3730         // an unchecked warning if its argument types change under erasure.
  3731         if (allowGenerics &&
  3732             (sym.flags() & STATIC) == 0 &&
  3733             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3734             Type s = types.asOuterSuper(site, sym.owner);
  3735             if (s != null && s.isRaw() &&
  3736                 !types.isSameTypes(sym.type.getParameterTypes(),
  3737                                    sym.erasure(types).getParameterTypes())) {
  3738                 chk.warnUnchecked(env.tree.pos(),
  3739                                   "unchecked.call.mbr.of.raw.type",
  3740                                   sym, s);
  3744         if (env.info.defaultSuperCallSite != null) {
  3745             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3746                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3747                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3748                 List<MethodSymbol> icand_sup =
  3749                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3750                 if (icand_sup.nonEmpty() &&
  3751                         icand_sup.head != sym &&
  3752                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3753                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3754                         diags.fragment("overridden.default", sym, sup));
  3755                     break;
  3758             env.info.defaultSuperCallSite = null;
  3761         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3762             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3763             if (app.meth.hasTag(SELECT) &&
  3764                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3765                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3769         // Compute the identifier's instantiated type.
  3770         // For methods, we need to compute the instance type by
  3771         // Resolve.instantiate from the symbol's type as well as
  3772         // any type arguments and value arguments.
  3773         noteWarner.clear();
  3774         try {
  3775             Type owntype = rs.checkMethod(
  3776                     env,
  3777                     site,
  3778                     sym,
  3779                     resultInfo,
  3780                     argtypes,
  3781                     typeargtypes,
  3782                     noteWarner);
  3784             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3785                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3787             argtypes = Type.map(argtypes, checkDeferredMap);
  3789             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3790                 chk.warnUnchecked(env.tree.pos(),
  3791                         "unchecked.meth.invocation.applied",
  3792                         kindName(sym),
  3793                         sym.name,
  3794                         rs.methodArguments(sym.type.getParameterTypes()),
  3795                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3796                         kindName(sym.location()),
  3797                         sym.location());
  3798                owntype = new MethodType(owntype.getParameterTypes(),
  3799                        types.erasure(owntype.getReturnType()),
  3800                        types.erasure(owntype.getThrownTypes()),
  3801                        syms.methodClass);
  3804             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3805                     resultInfo.checkContext.inferenceContext());
  3806         } catch (Infer.InferenceException ex) {
  3807             //invalid target type - propagate exception outwards or report error
  3808             //depending on the current check context
  3809             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3810             return types.createErrorType(site);
  3811         } catch (Resolve.InapplicableMethodException ex) {
  3812             final JCDiagnostic diag = ex.getDiagnostic();
  3813             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3814                 @Override
  3815                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3816                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3818             };
  3819             List<Type> argtypes2 = Type.map(argtypes,
  3820                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3821             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3822                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3823             log.report(errDiag);
  3824             return types.createErrorType(site);
  3828     public void visitLiteral(JCLiteral tree) {
  3829         result = check(
  3830             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3832     //where
  3833     /** Return the type of a literal with given type tag.
  3834      */
  3835     Type litType(TypeTag tag) {
  3836         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3839     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3840         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3843     public void visitTypeArray(JCArrayTypeTree tree) {
  3844         Type etype = attribType(tree.elemtype, env);
  3845         Type type = new ArrayType(etype, syms.arrayClass);
  3846         result = check(tree, type, TYP, resultInfo);
  3849     /** Visitor method for parameterized types.
  3850      *  Bound checking is left until later, since types are attributed
  3851      *  before supertype structure is completely known
  3852      */
  3853     public void visitTypeApply(JCTypeApply tree) {
  3854         Type owntype = types.createErrorType(tree.type);
  3856         // Attribute functor part of application and make sure it's a class.
  3857         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3859         // Attribute type parameters
  3860         List<Type> actuals = attribTypes(tree.arguments, env);
  3862         if (clazztype.hasTag(CLASS)) {
  3863             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3864             if (actuals.isEmpty()) //diamond
  3865                 actuals = formals;
  3867             if (actuals.length() == formals.length()) {
  3868                 List<Type> a = actuals;
  3869                 List<Type> f = formals;
  3870                 while (a.nonEmpty()) {
  3871                     a.head = a.head.withTypeVar(f.head);
  3872                     a = a.tail;
  3873                     f = f.tail;
  3875                 // Compute the proper generic outer
  3876                 Type clazzOuter = clazztype.getEnclosingType();
  3877                 if (clazzOuter.hasTag(CLASS)) {
  3878                     Type site;
  3879                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3880                     if (clazz.hasTag(IDENT)) {
  3881                         site = env.enclClass.sym.type;
  3882                     } else if (clazz.hasTag(SELECT)) {
  3883                         site = ((JCFieldAccess) clazz).selected.type;
  3884                     } else throw new AssertionError(""+tree);
  3885                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3886                         if (site.hasTag(CLASS))
  3887                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3888                         if (site == null)
  3889                             site = types.erasure(clazzOuter);
  3890                         clazzOuter = site;
  3893                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3894                 if (clazztype.isAnnotated()) {
  3895                     // Use the same AnnotatedType, because it will have
  3896                     // its annotations set later.
  3897                     ((AnnotatedType)clazztype).underlyingType = owntype;
  3898                     owntype = clazztype;
  3900             } else {
  3901                 if (formals.length() != 0) {
  3902                     log.error(tree.pos(), "wrong.number.type.args",
  3903                               Integer.toString(formals.length()));
  3904                 } else {
  3905                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3907                 owntype = types.createErrorType(tree.type);
  3910         result = check(tree, owntype, TYP, resultInfo);
  3913     public void visitTypeUnion(JCTypeUnion tree) {
  3914         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3915         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3916         for (JCExpression typeTree : tree.alternatives) {
  3917             Type ctype = attribType(typeTree, env);
  3918             ctype = chk.checkType(typeTree.pos(),
  3919                           chk.checkClassType(typeTree.pos(), ctype),
  3920                           syms.throwableType);
  3921             if (!ctype.isErroneous()) {
  3922                 //check that alternatives of a union type are pairwise
  3923                 //unrelated w.r.t. subtyping
  3924                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3925                     for (Type t : multicatchTypes) {
  3926                         boolean sub = types.isSubtype(ctype, t);
  3927                         boolean sup = types.isSubtype(t, ctype);
  3928                         if (sub || sup) {
  3929                             //assume 'a' <: 'b'
  3930                             Type a = sub ? ctype : t;
  3931                             Type b = sub ? t : ctype;
  3932                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3936                 multicatchTypes.append(ctype);
  3937                 if (all_multicatchTypes != null)
  3938                     all_multicatchTypes.append(ctype);
  3939             } else {
  3940                 if (all_multicatchTypes == null) {
  3941                     all_multicatchTypes = new ListBuffer<>();
  3942                     all_multicatchTypes.appendList(multicatchTypes);
  3944                 all_multicatchTypes.append(ctype);
  3947         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3948         if (t.hasTag(CLASS)) {
  3949             List<Type> alternatives =
  3950                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3951             t = new UnionClassType((ClassType) t, alternatives);
  3953         tree.type = result = t;
  3956     public void visitTypeIntersection(JCTypeIntersection tree) {
  3957         attribTypes(tree.bounds, env);
  3958         tree.type = result = checkIntersection(tree, tree.bounds);
  3961     public void visitTypeParameter(JCTypeParameter tree) {
  3962         TypeVar typeVar = (TypeVar) tree.type;
  3964         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3965             AnnotatedType antype = new AnnotatedType(typeVar);
  3966             annotateType(antype, tree.annotations);
  3967             tree.type = antype;
  3970         if (!typeVar.bound.isErroneous()) {
  3971             //fixup type-parameter bound computed in 'attribTypeVariables'
  3972             typeVar.bound = checkIntersection(tree, tree.bounds);
  3976     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3977         Set<Type> boundSet = new HashSet<Type>();
  3978         if (bounds.nonEmpty()) {
  3979             // accept class or interface or typevar as first bound.
  3980             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  3981             boundSet.add(types.erasure(bounds.head.type));
  3982             if (bounds.head.type.isErroneous()) {
  3983                 return bounds.head.type;
  3985             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3986                 // if first bound was a typevar, do not accept further bounds.
  3987                 if (bounds.tail.nonEmpty()) {
  3988                     log.error(bounds.tail.head.pos(),
  3989                               "type.var.may.not.be.followed.by.other.bounds");
  3990                     return bounds.head.type;
  3992             } else {
  3993                 // if first bound was a class or interface, accept only interfaces
  3994                 // as further bounds.
  3995                 for (JCExpression bound : bounds.tail) {
  3996                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  3997                     if (bound.type.isErroneous()) {
  3998                         bounds = List.of(bound);
  4000                     else if (bound.type.hasTag(CLASS)) {
  4001                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  4007         if (bounds.length() == 0) {
  4008             return syms.objectType;
  4009         } else if (bounds.length() == 1) {
  4010             return bounds.head.type;
  4011         } else {
  4012             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  4013             if (tree.hasTag(TYPEINTERSECTION)) {
  4014                 ((IntersectionClassType)owntype).intersectionKind =
  4015                         IntersectionClassType.IntersectionKind.EXPLICIT;
  4017             // ... the variable's bound is a class type flagged COMPOUND
  4018             // (see comment for TypeVar.bound).
  4019             // In this case, generate a class tree that represents the
  4020             // bound class, ...
  4021             JCExpression extending;
  4022             List<JCExpression> implementing;
  4023             if (!bounds.head.type.isInterface()) {
  4024                 extending = bounds.head;
  4025                 implementing = bounds.tail;
  4026             } else {
  4027                 extending = null;
  4028                 implementing = bounds;
  4030             JCClassDecl cd = make.at(tree).ClassDef(
  4031                 make.Modifiers(PUBLIC | ABSTRACT),
  4032                 names.empty, List.<JCTypeParameter>nil(),
  4033                 extending, implementing, List.<JCTree>nil());
  4035             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4036             Assert.check((c.flags() & COMPOUND) != 0);
  4037             cd.sym = c;
  4038             c.sourcefile = env.toplevel.sourcefile;
  4040             // ... and attribute the bound class
  4041             c.flags_field |= UNATTRIBUTED;
  4042             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4043             enter.typeEnvs.put(c, cenv);
  4044             attribClass(c);
  4045             return owntype;
  4049     public void visitWildcard(JCWildcard tree) {
  4050         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4051         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4052             ? syms.objectType
  4053             : attribType(tree.inner, env);
  4054         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4055                                               tree.kind.kind,
  4056                                               syms.boundClass),
  4057                        TYP, resultInfo);
  4060     public void visitAnnotation(JCAnnotation tree) {
  4061         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  4062         result = tree.type = syms.errType;
  4065     public void visitAnnotatedType(JCAnnotatedType tree) {
  4066         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4067         this.attribAnnotationTypes(tree.annotations, env);
  4068         AnnotatedType antype = new AnnotatedType(underlyingType);
  4069         annotateType(antype, tree.annotations);
  4070         result = tree.type = antype;
  4073     /**
  4074      * Apply the annotations to the particular type.
  4075      */
  4076     public void annotateType(final AnnotatedType type, final List<JCAnnotation> annotations) {
  4077         if (annotations.isEmpty())
  4078             return;
  4079         annotate.typeAnnotation(new Annotate.Annotator() {
  4080             @Override
  4081             public String toString() {
  4082                 return "annotate " + annotations + " onto " + type;
  4084             @Override
  4085             public void enterAnnotation() {
  4086                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4087                 type.typeAnnotations = compounds;
  4089         });
  4092     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4093         if (annotations.isEmpty())
  4094             return List.nil();
  4096         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4097         for (JCAnnotation anno : annotations) {
  4098             if (anno.attribute != null) {
  4099                 // TODO: this null-check is only needed for an obscure
  4100                 // ordering issue, where annotate.flush is called when
  4101                 // the attribute is not set yet. For an example failure
  4102                 // try the referenceinfos/NestedTypes.java test.
  4103                 // Any better solutions?
  4104                 buf.append((Attribute.TypeCompound) anno.attribute);
  4107         return buf.toList();
  4110     public void visitErroneous(JCErroneous tree) {
  4111         if (tree.errs != null)
  4112             for (JCTree err : tree.errs)
  4113                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4114         result = tree.type = syms.errType;
  4117     /** Default visitor method for all other trees.
  4118      */
  4119     public void visitTree(JCTree tree) {
  4120         throw new AssertionError();
  4123     /**
  4124      * Attribute an env for either a top level tree or class declaration.
  4125      */
  4126     public void attrib(Env<AttrContext> env) {
  4127         if (env.tree.hasTag(TOPLEVEL))
  4128             attribTopLevel(env);
  4129         else
  4130             attribClass(env.tree.pos(), env.enclClass.sym);
  4133     /**
  4134      * Attribute a top level tree. These trees are encountered when the
  4135      * package declaration has annotations.
  4136      */
  4137     public void attribTopLevel(Env<AttrContext> env) {
  4138         JCCompilationUnit toplevel = env.toplevel;
  4139         try {
  4140             annotate.flush();
  4141             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  4142         } catch (CompletionFailure ex) {
  4143             chk.completionError(toplevel.pos(), ex);
  4147     /** Main method: attribute class definition associated with given class symbol.
  4148      *  reporting completion failures at the given position.
  4149      *  @param pos The source position at which completion errors are to be
  4150      *             reported.
  4151      *  @param c   The class symbol whose definition will be attributed.
  4152      */
  4153     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4154         try {
  4155             annotate.flush();
  4156             attribClass(c);
  4157         } catch (CompletionFailure ex) {
  4158             chk.completionError(pos, ex);
  4162     /** Attribute class definition associated with given class symbol.
  4163      *  @param c   The class symbol whose definition will be attributed.
  4164      */
  4165     void attribClass(ClassSymbol c) throws CompletionFailure {
  4166         if (c.type.hasTag(ERROR)) return;
  4168         // Check for cycles in the inheritance graph, which can arise from
  4169         // ill-formed class files.
  4170         chk.checkNonCyclic(null, c.type);
  4172         Type st = types.supertype(c.type);
  4173         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4174             // First, attribute superclass.
  4175             if (st.hasTag(CLASS))
  4176                 attribClass((ClassSymbol)st.tsym);
  4178             // Next attribute owner, if it is a class.
  4179             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4180                 attribClass((ClassSymbol)c.owner);
  4183         // The previous operations might have attributed the current class
  4184         // if there was a cycle. So we test first whether the class is still
  4185         // UNATTRIBUTED.
  4186         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4187             c.flags_field &= ~UNATTRIBUTED;
  4189             // Get environment current at the point of class definition.
  4190             Env<AttrContext> env = enter.typeEnvs.get(c);
  4192             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  4193             // because the annotations were not available at the time the env was created. Therefore,
  4194             // we look up the environment chain for the first enclosing environment for which the
  4195             // lint value is set. Typically, this is the parent env, but might be further if there
  4196             // are any envs created as a result of TypeParameter nodes.
  4197             Env<AttrContext> lintEnv = env;
  4198             while (lintEnv.info.lint == null)
  4199                 lintEnv = lintEnv.next;
  4201             // Having found the enclosing lint value, we can initialize the lint value for this class
  4202             env.info.lint = lintEnv.info.lint.augment(c);
  4204             Lint prevLint = chk.setLint(env.info.lint);
  4205             JavaFileObject prev = log.useSource(c.sourcefile);
  4206             ResultInfo prevReturnRes = env.info.returnResult;
  4208             try {
  4209                 deferredLintHandler.flush(env.tree);
  4210                 env.info.returnResult = null;
  4211                 // java.lang.Enum may not be subclassed by a non-enum
  4212                 if (st.tsym == syms.enumSym &&
  4213                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4214                     log.error(env.tree.pos(), "enum.no.subclassing");
  4216                 // Enums may not be extended by source-level classes
  4217                 if (st.tsym != null &&
  4218                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4219                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4220                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4222                 attribClassBody(env, c);
  4224                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4225                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4226             } finally {
  4227                 env.info.returnResult = prevReturnRes;
  4228                 log.useSource(prev);
  4229                 chk.setLint(prevLint);
  4235     public void visitImport(JCImport tree) {
  4236         // nothing to do
  4239     /** Finish the attribution of a class. */
  4240     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4241         JCClassDecl tree = (JCClassDecl)env.tree;
  4242         Assert.check(c == tree.sym);
  4244         // Validate annotations
  4245         chk.validateAnnotations(tree.mods.annotations, c);
  4247         // Validate type parameters, supertype and interfaces.
  4248         attribStats(tree.typarams, env);
  4249         if (!c.isAnonymous()) {
  4250             //already checked if anonymous
  4251             chk.validate(tree.typarams, env);
  4252             chk.validate(tree.extending, env);
  4253             chk.validate(tree.implementing, env);
  4256         // If this is a non-abstract class, check that it has no abstract
  4257         // methods or unimplemented methods of an implemented interface.
  4258         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4259             if (!relax)
  4260                 chk.checkAllDefined(tree.pos(), c);
  4263         if ((c.flags() & ANNOTATION) != 0) {
  4264             if (tree.implementing.nonEmpty())
  4265                 log.error(tree.implementing.head.pos(),
  4266                           "cant.extend.intf.annotation");
  4267             if (tree.typarams.nonEmpty())
  4268                 log.error(tree.typarams.head.pos(),
  4269                           "intf.annotation.cant.have.type.params");
  4271             // If this annotation has a @Repeatable, validate
  4272             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4273             if (repeatable != null) {
  4274                 // get diagnostic position for error reporting
  4275                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4276                 Assert.checkNonNull(cbPos);
  4278                 chk.validateRepeatable(c, repeatable, cbPos);
  4280         } else {
  4281             // Check that all extended classes and interfaces
  4282             // are compatible (i.e. no two define methods with same arguments
  4283             // yet different return types).  (JLS 8.4.6.3)
  4284             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4285             if (allowDefaultMethods) {
  4286                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4290         // Check that class does not import the same parameterized interface
  4291         // with two different argument lists.
  4292         chk.checkClassBounds(tree.pos(), c.type);
  4294         tree.type = c.type;
  4296         for (List<JCTypeParameter> l = tree.typarams;
  4297              l.nonEmpty(); l = l.tail) {
  4298              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4301         // Check that a generic class doesn't extend Throwable
  4302         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4303             log.error(tree.extending.pos(), "generic.throwable");
  4305         // Check that all methods which implement some
  4306         // method conform to the method they implement.
  4307         chk.checkImplementations(tree);
  4309         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4310         checkAutoCloseable(tree.pos(), env, c.type);
  4312         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4313             // Attribute declaration
  4314             attribStat(l.head, env);
  4315             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4316             // Make an exception for static constants.
  4317             if (c.owner.kind != PCK &&
  4318                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4319                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4320                 Symbol sym = null;
  4321                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4322                 if (sym == null ||
  4323                     sym.kind != VAR ||
  4324                     ((VarSymbol) sym).getConstValue() == null)
  4325                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4329         // Check for cycles among non-initial constructors.
  4330         chk.checkCyclicConstructors(tree);
  4332         // Check for cycles among annotation elements.
  4333         chk.checkNonCyclicElements(tree);
  4335         // Check for proper use of serialVersionUID
  4336         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4337             isSerializable(c) &&
  4338             (c.flags() & Flags.ENUM) == 0 &&
  4339             checkForSerial(c)) {
  4340             checkSerialVersionUID(tree, c);
  4342         if (allowTypeAnnos) {
  4343             // Correctly organize the postions of the type annotations
  4344             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4346             // Check type annotations applicability rules
  4347             validateTypeAnnotations(tree);
  4350         // where
  4351         boolean checkForSerial(ClassSymbol c) {
  4352             if ((c.flags() & ABSTRACT) == 0) {
  4353                 return true;
  4354             } else {
  4355                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4359         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4360             @Override
  4361             public boolean accepts(Symbol s) {
  4362                 return s.kind == Kinds.MTH &&
  4363                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4365         };
  4367         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4368         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4369             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4370                 if (types.isSameType(al.head.annotationType.type, t))
  4371                     return al.head.pos();
  4374             return null;
  4377         /** check if a class is a subtype of Serializable, if that is available. */
  4378         private boolean isSerializable(ClassSymbol c) {
  4379             try {
  4380                 syms.serializableType.complete();
  4382             catch (CompletionFailure e) {
  4383                 return false;
  4385             return types.isSubtype(c.type, syms.serializableType);
  4388         /** Check that an appropriate serialVersionUID member is defined. */
  4389         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4391             // check for presence of serialVersionUID
  4392             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4393             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4394             if (e.scope == null) {
  4395                 log.warning(LintCategory.SERIAL,
  4396                         tree.pos(), "missing.SVUID", c);
  4397                 return;
  4400             // check that it is static final
  4401             VarSymbol svuid = (VarSymbol)e.sym;
  4402             if ((svuid.flags() & (STATIC | FINAL)) !=
  4403                 (STATIC | FINAL))
  4404                 log.warning(LintCategory.SERIAL,
  4405                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4407             // check that it is long
  4408             else if (!svuid.type.hasTag(LONG))
  4409                 log.warning(LintCategory.SERIAL,
  4410                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4412             // check constant
  4413             else if (svuid.getConstValue() == null)
  4414                 log.warning(LintCategory.SERIAL,
  4415                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4418     private Type capture(Type type) {
  4419         return types.capture(type);
  4422     private void validateTypeAnnotations(JCTree tree) {
  4423         tree.accept(typeAnnotationsValidator);
  4425     //where
  4426     private final JCTree.Visitor typeAnnotationsValidator = new TreeScanner() {
  4428         private boolean checkAllAnnotations = false;
  4430         public void visitAnnotation(JCAnnotation tree) {
  4431             if (tree.hasTag(TYPE_ANNOTATION) || checkAllAnnotations) {
  4432                 chk.validateTypeAnnotation(tree, false);
  4434             super.visitAnnotation(tree);
  4436         public void visitTypeParameter(JCTypeParameter tree) {
  4437             chk.validateTypeAnnotations(tree.annotations, true);
  4438             scan(tree.bounds);
  4439             // Don't call super.
  4440             // This is needed because above we call validateTypeAnnotation with
  4441             // false, which would forbid annotations on type parameters.
  4442             // super.visitTypeParameter(tree);
  4444         public void visitMethodDef(JCMethodDecl tree) {
  4445             if (tree.recvparam != null &&
  4446                     tree.recvparam.vartype.type.getKind() != TypeKind.ERROR) {
  4447                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4448                         tree.recvparam.vartype.type.tsym);
  4450             if (tree.restype != null && tree.restype.type != null) {
  4451                 validateAnnotatedType(tree.restype, tree.restype.type);
  4453             super.visitMethodDef(tree);
  4455         public void visitVarDef(final JCVariableDecl tree) {
  4456             if (tree.sym != null && tree.sym.type != null)
  4457                 validateAnnotatedType(tree, tree.sym.type);
  4458             super.visitVarDef(tree);
  4460         public void visitTypeCast(JCTypeCast tree) {
  4461             if (tree.clazz != null && tree.clazz.type != null)
  4462                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4463             super.visitTypeCast(tree);
  4465         public void visitTypeTest(JCInstanceOf tree) {
  4466             if (tree.clazz != null && tree.clazz.type != null)
  4467                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4468             super.visitTypeTest(tree);
  4470         public void visitNewClass(JCNewClass tree) {
  4471             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  4472                 boolean prevCheck = this.checkAllAnnotations;
  4473                 try {
  4474                     this.checkAllAnnotations = true;
  4475                     scan(((JCAnnotatedType)tree.clazz).annotations);
  4476                 } finally {
  4477                     this.checkAllAnnotations = prevCheck;
  4480             super.visitNewClass(tree);
  4482         public void visitNewArray(JCNewArray tree) {
  4483             if (tree.elemtype != null && tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  4484                 boolean prevCheck = this.checkAllAnnotations;
  4485                 try {
  4486                     this.checkAllAnnotations = true;
  4487                     scan(((JCAnnotatedType)tree.elemtype).annotations);
  4488                 } finally {
  4489                     this.checkAllAnnotations = prevCheck;
  4492             super.visitNewArray(tree);
  4495         /* I would want to model this after
  4496          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4497          * and override visitSelect and visitTypeApply.
  4498          * However, we only set the annotated type in the top-level type
  4499          * of the symbol.
  4500          * Therefore, we need to override each individual location where a type
  4501          * can occur.
  4502          */
  4503         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4504             if (type.getEnclosingType() != null &&
  4505                     type != type.getEnclosingType()) {
  4506                 validateEnclosingAnnotatedType(errtree, type.getEnclosingType());
  4508             for (Type targ : type.getTypeArguments()) {
  4509                 validateAnnotatedType(errtree, targ);
  4512         private void validateEnclosingAnnotatedType(final JCTree errtree, final Type type) {
  4513             validateAnnotatedType(errtree, type);
  4514             if (type.tsym != null &&
  4515                     type.tsym.isStatic() &&
  4516                     type.getAnnotationMirrors().nonEmpty()) {
  4517                     // Enclosing static classes cannot have type annotations.
  4518                 log.error(errtree.pos(), "cant.annotate.static.class");
  4521     };
  4523     // <editor-fold desc="post-attribution visitor">
  4525     /**
  4526      * Handle missing types/symbols in an AST. This routine is useful when
  4527      * the compiler has encountered some errors (which might have ended up
  4528      * terminating attribution abruptly); if the compiler is used in fail-over
  4529      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4530      * prevents NPE to be progagated during subsequent compilation steps.
  4531      */
  4532     public void postAttr(JCTree tree) {
  4533         new PostAttrAnalyzer().scan(tree);
  4536     class PostAttrAnalyzer extends TreeScanner {
  4538         private void initTypeIfNeeded(JCTree that) {
  4539             if (that.type == null) {
  4540                 that.type = syms.unknownType;
  4544         @Override
  4545         public void scan(JCTree tree) {
  4546             if (tree == null) return;
  4547             if (tree instanceof JCExpression) {
  4548                 initTypeIfNeeded(tree);
  4550             super.scan(tree);
  4553         @Override
  4554         public void visitIdent(JCIdent that) {
  4555             if (that.sym == null) {
  4556                 that.sym = syms.unknownSymbol;
  4560         @Override
  4561         public void visitSelect(JCFieldAccess that) {
  4562             if (that.sym == null) {
  4563                 that.sym = syms.unknownSymbol;
  4565             super.visitSelect(that);
  4568         @Override
  4569         public void visitClassDef(JCClassDecl that) {
  4570             initTypeIfNeeded(that);
  4571             if (that.sym == null) {
  4572                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4574             super.visitClassDef(that);
  4577         @Override
  4578         public void visitMethodDef(JCMethodDecl that) {
  4579             initTypeIfNeeded(that);
  4580             if (that.sym == null) {
  4581                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4583             super.visitMethodDef(that);
  4586         @Override
  4587         public void visitVarDef(JCVariableDecl that) {
  4588             initTypeIfNeeded(that);
  4589             if (that.sym == null) {
  4590                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4591                 that.sym.adr = 0;
  4593             super.visitVarDef(that);
  4596         @Override
  4597         public void visitNewClass(JCNewClass that) {
  4598             if (that.constructor == null) {
  4599                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4601             if (that.constructorType == null) {
  4602                 that.constructorType = syms.unknownType;
  4604             super.visitNewClass(that);
  4607         @Override
  4608         public void visitAssignop(JCAssignOp that) {
  4609             if (that.operator == null)
  4610                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4611             super.visitAssignop(that);
  4614         @Override
  4615         public void visitBinary(JCBinary that) {
  4616             if (that.operator == null)
  4617                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4618             super.visitBinary(that);
  4621         @Override
  4622         public void visitUnary(JCUnary that) {
  4623             if (that.operator == null)
  4624                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4625             super.visitUnary(that);
  4628         @Override
  4629         public void visitLambda(JCLambda that) {
  4630             super.visitLambda(that);
  4631             if (that.targets == null) {
  4632                 that.targets = List.nil();
  4636         @Override
  4637         public void visitReference(JCMemberReference that) {
  4638             super.visitReference(that);
  4639             if (that.sym == null) {
  4640                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4642             if (that.targets == null) {
  4643                 that.targets = List.nil();
  4647     // </editor-fold>

mercurial