src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 16 Sep 2013 14:13:44 +0200

author
jlahoda
date
Mon, 16 Sep 2013 14:13:44 +0200
changeset 2028
4ce8148ffc4f
parent 2024
5d2d484a1216
child 2038
8d1c48de706d
permissions
-rw-r--r--

8021112: Spurious unchecked warning reported by javac
6480588: No way to suppress deprecation warnings when implementing deprecated interface
Summary: Fixing DeferredLintHandler configuration, so lint warnings are reported with correct @SuppressWarnings settings
Reviewed-by: jjg, vromero

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.tree.JCTree.*;
    47 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    49 import static com.sun.tools.javac.code.Flags.*;
    50 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    51 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    52 import static com.sun.tools.javac.code.Kinds.*;
    53 import static com.sun.tools.javac.code.TypeTag.*;
    54 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    56 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    58 /** Type checking helper class for the attribution phase.
    59  *
    60  *  <p><b>This is NOT part of any supported API.
    61  *  If you write code that depends on this, you do so at your own risk.
    62  *  This code and its internal interfaces are subject to change or
    63  *  deletion without notice.</b>
    64  */
    65 public class Check {
    66     protected static final Context.Key<Check> checkKey =
    67         new Context.Key<Check>();
    69     private final Names names;
    70     private final Log log;
    71     private final Resolve rs;
    72     private final Symtab syms;
    73     private final Enter enter;
    74     private final DeferredAttr deferredAttr;
    75     private final Infer infer;
    76     private final Types types;
    77     private final JCDiagnostic.Factory diags;
    78     private boolean warnOnSyntheticConflicts;
    79     private boolean suppressAbortOnBadClassFile;
    80     private boolean enableSunApiLintControl;
    81     private final TreeInfo treeinfo;
    82     private final JavaFileManager fileManager;
    83     private final Profile profile;
    85     // The set of lint options currently in effect. It is initialized
    86     // from the context, and then is set/reset as needed by Attr as it
    87     // visits all the various parts of the trees during attribution.
    88     private Lint lint;
    90     // The method being analyzed in Attr - it is set/reset as needed by
    91     // Attr as it visits new method declarations.
    92     private MethodSymbol method;
    94     public static Check instance(Context context) {
    95         Check instance = context.get(checkKey);
    96         if (instance == null)
    97             instance = new Check(context);
    98         return instance;
    99     }
   101     protected Check(Context context) {
   102         context.put(checkKey, this);
   104         names = Names.instance(context);
   105         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
   106             names.FIELD, names.METHOD, names.CONSTRUCTOR,
   107             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
   108         log = Log.instance(context);
   109         rs = Resolve.instance(context);
   110         syms = Symtab.instance(context);
   111         enter = Enter.instance(context);
   112         deferredAttr = DeferredAttr.instance(context);
   113         infer = Infer.instance(context);
   114         types = Types.instance(context);
   115         diags = JCDiagnostic.Factory.instance(context);
   116         Options options = Options.instance(context);
   117         lint = Lint.instance(context);
   118         treeinfo = TreeInfo.instance(context);
   119         fileManager = context.get(JavaFileManager.class);
   121         Source source = Source.instance(context);
   122         allowGenerics = source.allowGenerics();
   123         allowVarargs = source.allowVarargs();
   124         allowAnnotations = source.allowAnnotations();
   125         allowCovariantReturns = source.allowCovariantReturns();
   126         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   127         allowDefaultMethods = source.allowDefaultMethods();
   128         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
   129         complexInference = options.isSet("complexinference");
   130         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   131         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   132         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   134         Target target = Target.instance(context);
   135         syntheticNameChar = target.syntheticNameChar();
   137         profile = Profile.instance(context);
   139         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   140         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   141         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   142         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   144         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   145                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   146         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   147                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   148         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   149                 enforceMandatoryWarnings, "sunapi", null);
   151         deferredLintHandler = DeferredLintHandler.instance(context);
   152     }
   154     /** Switch: generics enabled?
   155      */
   156     boolean allowGenerics;
   158     /** Switch: varargs enabled?
   159      */
   160     boolean allowVarargs;
   162     /** Switch: annotations enabled?
   163      */
   164     boolean allowAnnotations;
   166     /** Switch: covariant returns enabled?
   167      */
   168     boolean allowCovariantReturns;
   170     /** Switch: simplified varargs enabled?
   171      */
   172     boolean allowSimplifiedVarargs;
   174     /** Switch: default methods enabled?
   175      */
   176     boolean allowDefaultMethods;
   178     /** Switch: should unrelated return types trigger a method clash?
   179      */
   180     boolean allowStrictMethodClashCheck;
   182     /** Switch: -complexinference option set?
   183      */
   184     boolean complexInference;
   186     /** Character for synthetic names
   187      */
   188     char syntheticNameChar;
   190     /** A table mapping flat names of all compiled classes in this run to their
   191      *  symbols; maintained from outside.
   192      */
   193     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   195     /** A handler for messages about deprecated usage.
   196      */
   197     private MandatoryWarningHandler deprecationHandler;
   199     /** A handler for messages about unchecked or unsafe usage.
   200      */
   201     private MandatoryWarningHandler uncheckedHandler;
   203     /** A handler for messages about using proprietary API.
   204      */
   205     private MandatoryWarningHandler sunApiHandler;
   207     /** A handler for deferred lint warnings.
   208      */
   209     private DeferredLintHandler deferredLintHandler;
   211 /* *************************************************************************
   212  * Errors and Warnings
   213  **************************************************************************/
   215     Lint setLint(Lint newLint) {
   216         Lint prev = lint;
   217         lint = newLint;
   218         return prev;
   219     }
   221     MethodSymbol setMethod(MethodSymbol newMethod) {
   222         MethodSymbol prev = method;
   223         method = newMethod;
   224         return prev;
   225     }
   227     /** Warn about deprecated symbol.
   228      *  @param pos        Position to be used for error reporting.
   229      *  @param sym        The deprecated symbol.
   230      */
   231     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   232         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   233             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   234     }
   236     /** Warn about unchecked operation.
   237      *  @param pos        Position to be used for error reporting.
   238      *  @param msg        A string describing the problem.
   239      */
   240     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   241         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   242             uncheckedHandler.report(pos, msg, args);
   243     }
   245     /** Warn about unsafe vararg method decl.
   246      *  @param pos        Position to be used for error reporting.
   247      */
   248     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   249         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   250             log.warning(LintCategory.VARARGS, pos, key, args);
   251     }
   253     /** Warn about using proprietary API.
   254      *  @param pos        Position to be used for error reporting.
   255      *  @param msg        A string describing the problem.
   256      */
   257     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   258         if (!lint.isSuppressed(LintCategory.SUNAPI))
   259             sunApiHandler.report(pos, msg, args);
   260     }
   262     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   263         if (lint.isEnabled(LintCategory.STATIC))
   264             log.warning(LintCategory.STATIC, pos, msg, args);
   265     }
   267     /**
   268      * Report any deferred diagnostics.
   269      */
   270     public void reportDeferredDiagnostics() {
   271         deprecationHandler.reportDeferredDiagnostic();
   272         uncheckedHandler.reportDeferredDiagnostic();
   273         sunApiHandler.reportDeferredDiagnostic();
   274     }
   277     /** Report a failure to complete a class.
   278      *  @param pos        Position to be used for error reporting.
   279      *  @param ex         The failure to report.
   280      */
   281     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   282         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
   283         if (ex instanceof ClassReader.BadClassFile
   284                 && !suppressAbortOnBadClassFile) throw new Abort();
   285         else return syms.errType;
   286     }
   288     /** Report an error that wrong type tag was found.
   289      *  @param pos        Position to be used for error reporting.
   290      *  @param required   An internationalized string describing the type tag
   291      *                    required.
   292      *  @param found      The type that was found.
   293      */
   294     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   295         // this error used to be raised by the parser,
   296         // but has been delayed to this point:
   297         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   298             log.error(pos, "illegal.start.of.type");
   299             return syms.errType;
   300         }
   301         log.error(pos, "type.found.req", found, required);
   302         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   303     }
   305     /** Report an error that symbol cannot be referenced before super
   306      *  has been called.
   307      *  @param pos        Position to be used for error reporting.
   308      *  @param sym        The referenced symbol.
   309      */
   310     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   311         log.error(pos, "cant.ref.before.ctor.called", sym);
   312     }
   314     /** Report duplicate declaration error.
   315      */
   316     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   317         if (!sym.type.isErroneous()) {
   318             Symbol location = sym.location();
   319             if (location.kind == MTH &&
   320                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   321                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   322                         kindName(sym.location()), kindName(sym.location().enclClass()),
   323                         sym.location().enclClass());
   324             } else {
   325                 log.error(pos, "already.defined", kindName(sym), sym,
   326                         kindName(sym.location()), sym.location());
   327             }
   328         }
   329     }
   331     /** Report array/varargs duplicate declaration
   332      */
   333     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   334         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   335             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   336         }
   337     }
   339 /* ************************************************************************
   340  * duplicate declaration checking
   341  *************************************************************************/
   343     /** Check that variable does not hide variable with same name in
   344      *  immediately enclosing local scope.
   345      *  @param pos           Position for error reporting.
   346      *  @param v             The symbol.
   347      *  @param s             The scope.
   348      */
   349     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   350         if (s.next != null) {
   351             for (Scope.Entry e = s.next.lookup(v.name);
   352                  e.scope != null && e.sym.owner == v.owner;
   353                  e = e.next()) {
   354                 if (e.sym.kind == VAR &&
   355                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   356                     v.name != names.error) {
   357                     duplicateError(pos, e.sym);
   358                     return;
   359                 }
   360             }
   361         }
   362     }
   364     /** Check that a class or interface does not hide a class or
   365      *  interface with same name in immediately enclosing local scope.
   366      *  @param pos           Position for error reporting.
   367      *  @param c             The symbol.
   368      *  @param s             The scope.
   369      */
   370     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   371         if (s.next != null) {
   372             for (Scope.Entry e = s.next.lookup(c.name);
   373                  e.scope != null && e.sym.owner == c.owner;
   374                  e = e.next()) {
   375                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   376                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   377                     c.name != names.error) {
   378                     duplicateError(pos, e.sym);
   379                     return;
   380                 }
   381             }
   382         }
   383     }
   385     /** Check that class does not have the same name as one of
   386      *  its enclosing classes, or as a class defined in its enclosing scope.
   387      *  return true if class is unique in its enclosing scope.
   388      *  @param pos           Position for error reporting.
   389      *  @param name          The class name.
   390      *  @param s             The enclosing scope.
   391      */
   392     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   393         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   394             if (e.sym.kind == TYP && e.sym.name != names.error) {
   395                 duplicateError(pos, e.sym);
   396                 return false;
   397             }
   398         }
   399         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   400             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   401                 duplicateError(pos, sym);
   402                 return true;
   403             }
   404         }
   405         return true;
   406     }
   408 /* *************************************************************************
   409  * Class name generation
   410  **************************************************************************/
   412     /** Return name of local class.
   413      *  This is of the form   {@code <enclClass> $ n <classname> }
   414      *  where
   415      *    enclClass is the flat name of the enclosing class,
   416      *    classname is the simple name of the local class
   417      */
   418     Name localClassName(ClassSymbol c) {
   419         for (int i=1; ; i++) {
   420             Name flatname = names.
   421                 fromString("" + c.owner.enclClass().flatname +
   422                            syntheticNameChar + i +
   423                            c.name);
   424             if (compiled.get(flatname) == null) return flatname;
   425         }
   426     }
   428 /* *************************************************************************
   429  * Type Checking
   430  **************************************************************************/
   432     /**
   433      * A check context is an object that can be used to perform compatibility
   434      * checks - depending on the check context, meaning of 'compatibility' might
   435      * vary significantly.
   436      */
   437     public interface CheckContext {
   438         /**
   439          * Is type 'found' compatible with type 'req' in given context
   440          */
   441         boolean compatible(Type found, Type req, Warner warn);
   442         /**
   443          * Report a check error
   444          */
   445         void report(DiagnosticPosition pos, JCDiagnostic details);
   446         /**
   447          * Obtain a warner for this check context
   448          */
   449         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   451         public Infer.InferenceContext inferenceContext();
   453         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   454     }
   456     /**
   457      * This class represent a check context that is nested within another check
   458      * context - useful to check sub-expressions. The default behavior simply
   459      * redirects all method calls to the enclosing check context leveraging
   460      * the forwarding pattern.
   461      */
   462     static class NestedCheckContext implements CheckContext {
   463         CheckContext enclosingContext;
   465         NestedCheckContext(CheckContext enclosingContext) {
   466             this.enclosingContext = enclosingContext;
   467         }
   469         public boolean compatible(Type found, Type req, Warner warn) {
   470             return enclosingContext.compatible(found, req, warn);
   471         }
   473         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   474             enclosingContext.report(pos, details);
   475         }
   477         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   478             return enclosingContext.checkWarner(pos, found, req);
   479         }
   481         public Infer.InferenceContext inferenceContext() {
   482             return enclosingContext.inferenceContext();
   483         }
   485         public DeferredAttrContext deferredAttrContext() {
   486             return enclosingContext.deferredAttrContext();
   487         }
   488     }
   490     /**
   491      * Check context to be used when evaluating assignment/return statements
   492      */
   493     CheckContext basicHandler = new CheckContext() {
   494         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   495             log.error(pos, "prob.found.req", details);
   496         }
   497         public boolean compatible(Type found, Type req, Warner warn) {
   498             return types.isAssignable(found, req, warn);
   499         }
   501         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   502             return convertWarner(pos, found, req);
   503         }
   505         public InferenceContext inferenceContext() {
   506             return infer.emptyContext;
   507         }
   509         public DeferredAttrContext deferredAttrContext() {
   510             return deferredAttr.emptyDeferredAttrContext;
   511         }
   512     };
   514     /** Check that a given type is assignable to a given proto-type.
   515      *  If it is, return the type, otherwise return errType.
   516      *  @param pos        Position to be used for error reporting.
   517      *  @param found      The type that was found.
   518      *  @param req        The type that was required.
   519      */
   520     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   521         return checkType(pos, found, req, basicHandler);
   522     }
   524     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   525         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   526         if (inferenceContext.free(req)) {
   527             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   528                 @Override
   529                 public void typesInferred(InferenceContext inferenceContext) {
   530                     checkType(pos, found, inferenceContext.asInstType(req), checkContext);
   531                 }
   532             });
   533         }
   534         if (req.hasTag(ERROR))
   535             return req;
   536         if (req.hasTag(NONE))
   537             return found;
   538         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   539             return found;
   540         } else {
   541             if (found.isNumeric() && req.isNumeric()) {
   542                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   543                 return types.createErrorType(found);
   544             }
   545             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   546             return types.createErrorType(found);
   547         }
   548     }
   550     /** Check that a given type can be cast to a given target type.
   551      *  Return the result of the cast.
   552      *  @param pos        Position to be used for error reporting.
   553      *  @param found      The type that is being cast.
   554      *  @param req        The target type of the cast.
   555      */
   556     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   557         return checkCastable(pos, found, req, basicHandler);
   558     }
   559     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   560         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   561             return req;
   562         } else {
   563             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   564             return types.createErrorType(found);
   565         }
   566     }
   568     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   569      * The problem should only be reported for non-292 cast
   570      */
   571     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
   572         if (!tree.type.isErroneous()
   573                 && types.isSameType(tree.expr.type, tree.clazz.type)
   574                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
   575                 && !is292targetTypeCast(tree)) {
   576             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
   577                 @Override
   578                 public void report() {
   579                     if (lint.isEnabled(Lint.LintCategory.CAST))
   580                         log.warning(Lint.LintCategory.CAST,
   581                                 tree.pos(), "redundant.cast", tree.expr.type);
   582                 }
   583             });
   584         }
   585     }
   586     //where
   587         private boolean is292targetTypeCast(JCTypeCast tree) {
   588             boolean is292targetTypeCast = false;
   589             JCExpression expr = TreeInfo.skipParens(tree.expr);
   590             if (expr.hasTag(APPLY)) {
   591                 JCMethodInvocation apply = (JCMethodInvocation)expr;
   592                 Symbol sym = TreeInfo.symbol(apply.meth);
   593                 is292targetTypeCast = sym != null &&
   594                     sym.kind == MTH &&
   595                     (sym.flags() & HYPOTHETICAL) != 0;
   596             }
   597             return is292targetTypeCast;
   598         }
   600         private static final boolean ignoreAnnotatedCasts = true;
   602     /** Check that a type is within some bounds.
   603      *
   604      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   605      *  type argument.
   606      *  @param a             The type that should be bounded by bs.
   607      *  @param bound         The bound.
   608      */
   609     private boolean checkExtends(Type a, Type bound) {
   610          if (a.isUnbound()) {
   611              return true;
   612          } else if (!a.hasTag(WILDCARD)) {
   613              a = types.upperBound(a);
   614              return types.isSubtype(a, bound);
   615          } else if (a.isExtendsBound()) {
   616              return types.isCastable(bound, types.upperBound(a), types.noWarnings);
   617          } else if (a.isSuperBound()) {
   618              return !types.notSoftSubtype(types.lowerBound(a), bound);
   619          }
   620          return true;
   621      }
   623     /** Check that type is different from 'void'.
   624      *  @param pos           Position to be used for error reporting.
   625      *  @param t             The type to be checked.
   626      */
   627     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   628         if (t.hasTag(VOID)) {
   629             log.error(pos, "void.not.allowed.here");
   630             return types.createErrorType(t);
   631         } else {
   632             return t;
   633         }
   634     }
   636     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
   637         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   638             return typeTagError(pos,
   639                                 diags.fragment("type.req.class.array"),
   640                                 asTypeParam(t));
   641         } else {
   642             return t;
   643         }
   644     }
   646     /** Check that type is a class or interface type.
   647      *  @param pos           Position to be used for error reporting.
   648      *  @param t             The type to be checked.
   649      */
   650     Type checkClassType(DiagnosticPosition pos, Type t) {
   651         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
   652             return typeTagError(pos,
   653                                 diags.fragment("type.req.class"),
   654                                 asTypeParam(t));
   655         } else {
   656             return t;
   657         }
   658     }
   659     //where
   660         private Object asTypeParam(Type t) {
   661             return (t.hasTag(TYPEVAR))
   662                                     ? diags.fragment("type.parameter", t)
   663                                     : t;
   664         }
   666     /** Check that type is a valid qualifier for a constructor reference expression
   667      */
   668     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   669         t = checkClassOrArrayType(pos, t);
   670         if (t.hasTag(CLASS)) {
   671             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   672                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
   673                 t = types.createErrorType(t);
   674             } else if ((t.tsym.flags() & ENUM) != 0) {
   675                 log.error(pos, "enum.cant.be.instantiated");
   676                 t = types.createErrorType(t);
   677             } else {
   678                 t = checkClassType(pos, t, true);
   679             }
   680         } else if (t.hasTag(ARRAY)) {
   681             if (!types.isReifiable(((ArrayType)t).elemtype)) {
   682                 log.error(pos, "generic.array.creation");
   683                 t = types.createErrorType(t);
   684             }
   685         }
   686         return t;
   687     }
   689     /** Check that type is a class or interface type.
   690      *  @param pos           Position to be used for error reporting.
   691      *  @param t             The type to be checked.
   692      *  @param noBounds    True if type bounds are illegal here.
   693      */
   694     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   695         t = checkClassType(pos, t);
   696         if (noBounds && t.isParameterized()) {
   697             List<Type> args = t.getTypeArguments();
   698             while (args.nonEmpty()) {
   699                 if (args.head.hasTag(WILDCARD))
   700                     return typeTagError(pos,
   701                                         diags.fragment("type.req.exact"),
   702                                         args.head);
   703                 args = args.tail;
   704             }
   705         }
   706         return t;
   707     }
   709     /** Check that type is a reifiable class, interface or array type.
   710      *  @param pos           Position to be used for error reporting.
   711      *  @param t             The type to be checked.
   712      */
   713     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   714         t = checkClassOrArrayType(pos, t);
   715         if (!t.isErroneous() && !types.isReifiable(t)) {
   716             log.error(pos, "illegal.generic.type.for.instof");
   717             return types.createErrorType(t);
   718         } else {
   719             return t;
   720         }
   721     }
   723     /** Check that type is a reference type, i.e. a class, interface or array type
   724      *  or a type variable.
   725      *  @param pos           Position to be used for error reporting.
   726      *  @param t             The type to be checked.
   727      */
   728     Type checkRefType(DiagnosticPosition pos, Type t) {
   729         if (t.isReference())
   730             return t;
   731         else
   732             return typeTagError(pos,
   733                                 diags.fragment("type.req.ref"),
   734                                 t);
   735     }
   737     /** Check that each type is a reference type, i.e. a class, interface or array type
   738      *  or a type variable.
   739      *  @param trees         Original trees, used for error reporting.
   740      *  @param types         The types to be checked.
   741      */
   742     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   743         List<JCExpression> tl = trees;
   744         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   745             l.head = checkRefType(tl.head.pos(), l.head);
   746             tl = tl.tail;
   747         }
   748         return types;
   749     }
   751     /** Check that type is a null or reference type.
   752      *  @param pos           Position to be used for error reporting.
   753      *  @param t             The type to be checked.
   754      */
   755     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   756         if (t.isReference() || t.hasTag(BOT))
   757             return t;
   758         else
   759             return typeTagError(pos,
   760                                 diags.fragment("type.req.ref"),
   761                                 t);
   762     }
   764     /** Check that flag set does not contain elements of two conflicting sets. s
   765      *  Return true if it doesn't.
   766      *  @param pos           Position to be used for error reporting.
   767      *  @param flags         The set of flags to be checked.
   768      *  @param set1          Conflicting flags set #1.
   769      *  @param set2          Conflicting flags set #2.
   770      */
   771     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   772         if ((flags & set1) != 0 && (flags & set2) != 0) {
   773             log.error(pos,
   774                       "illegal.combination.of.modifiers",
   775                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   776                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   777             return false;
   778         } else
   779             return true;
   780     }
   782     /** Check that usage of diamond operator is correct (i.e. diamond should not
   783      * be used with non-generic classes or in anonymous class creation expressions)
   784      */
   785     Type checkDiamond(JCNewClass tree, Type t) {
   786         if (!TreeInfo.isDiamond(tree) ||
   787                 t.isErroneous()) {
   788             return checkClassType(tree.clazz.pos(), t, true);
   789         } else if (tree.def != null) {
   790             log.error(tree.clazz.pos(),
   791                     "cant.apply.diamond.1",
   792                     t, diags.fragment("diamond.and.anon.class", t));
   793             return types.createErrorType(t);
   794         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   795             log.error(tree.clazz.pos(),
   796                 "cant.apply.diamond.1",
   797                 t, diags.fragment("diamond.non.generic", t));
   798             return types.createErrorType(t);
   799         } else if (tree.typeargs != null &&
   800                 tree.typeargs.nonEmpty()) {
   801             log.error(tree.clazz.pos(),
   802                 "cant.apply.diamond.1",
   803                 t, diags.fragment("diamond.and.explicit.params", t));
   804             return types.createErrorType(t);
   805         } else {
   806             return t;
   807         }
   808     }
   810     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   811         MethodSymbol m = tree.sym;
   812         if (!allowSimplifiedVarargs) return;
   813         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   814         Type varargElemType = null;
   815         if (m.isVarArgs()) {
   816             varargElemType = types.elemtype(tree.params.last().type);
   817         }
   818         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   819             if (varargElemType != null) {
   820                 log.error(tree,
   821                         "varargs.invalid.trustme.anno",
   822                         syms.trustMeType.tsym,
   823                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   824             } else {
   825                 log.error(tree,
   826                             "varargs.invalid.trustme.anno",
   827                             syms.trustMeType.tsym,
   828                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   829             }
   830         } else if (hasTrustMeAnno && varargElemType != null &&
   831                             types.isReifiable(varargElemType)) {
   832             warnUnsafeVararg(tree,
   833                             "varargs.redundant.trustme.anno",
   834                             syms.trustMeType.tsym,
   835                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   836         }
   837         else if (!hasTrustMeAnno && varargElemType != null &&
   838                 !types.isReifiable(varargElemType)) {
   839             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   840         }
   841     }
   842     //where
   843         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   844             return (s.flags() & VARARGS) != 0 &&
   845                 (s.isConstructor() ||
   846                     (s.flags() & (STATIC | FINAL)) != 0);
   847         }
   849     Type checkMethod(final Type mtype,
   850             final Symbol sym,
   851             final Env<AttrContext> env,
   852             final List<JCExpression> argtrees,
   853             final List<Type> argtypes,
   854             final boolean useVarargs,
   855             InferenceContext inferenceContext) {
   856         // System.out.println("call   : " + env.tree);
   857         // System.out.println("method : " + owntype);
   858         // System.out.println("actuals: " + argtypes);
   859         if (inferenceContext.free(mtype)) {
   860             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
   861                 public void typesInferred(InferenceContext inferenceContext) {
   862                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
   863                 }
   864             });
   865             return mtype;
   866         }
   867         Type owntype = mtype;
   868         List<Type> formals = owntype.getParameterTypes();
   869         List<Type> nonInferred = sym.type.getParameterTypes();
   870         if (nonInferred.length() != formals.length()) nonInferred = formals;
   871         Type last = useVarargs ? formals.last() : null;
   872         if (sym.name == names.init && sym.owner == syms.enumSym) {
   873             formals = formals.tail.tail;
   874             nonInferred = nonInferred.tail.tail;
   875         }
   876         List<JCExpression> args = argtrees;
   877         if (args != null) {
   878             //this is null when type-checking a method reference
   879             while (formals.head != last) {
   880                 JCTree arg = args.head;
   881                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
   882                 assertConvertible(arg, arg.type, formals.head, warn);
   883                 args = args.tail;
   884                 formals = formals.tail;
   885                 nonInferred = nonInferred.tail;
   886             }
   887             if (useVarargs) {
   888                 Type varArg = types.elemtype(last);
   889                 while (args.tail != null) {
   890                     JCTree arg = args.head;
   891                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   892                     assertConvertible(arg, arg.type, varArg, warn);
   893                     args = args.tail;
   894                 }
   895             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
   896                     allowVarargs) {
   897                 // non-varargs call to varargs method
   898                 Type varParam = owntype.getParameterTypes().last();
   899                 Type lastArg = argtypes.last();
   900                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   901                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   902                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   903                                 types.elemtype(varParam), varParam);
   904             }
   905         }
   906         if (useVarargs) {
   907             Type argtype = owntype.getParameterTypes().last();
   908             if (!types.isReifiable(argtype) &&
   909                 (!allowSimplifiedVarargs ||
   910                  sym.attribute(syms.trustMeType.tsym) == null ||
   911                  !isTrustMeAllowedOnMethod(sym))) {
   912                 warnUnchecked(env.tree.pos(),
   913                                   "unchecked.generic.array.creation",
   914                                   argtype);
   915             }
   916             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
   917                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
   918             }
   919          }
   920          PolyKind pkind = (sym.type.hasTag(FORALL) &&
   921                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
   922                  PolyKind.POLY : PolyKind.STANDALONE;
   923          TreeInfo.setPolyKind(env.tree, pkind);
   924          return owntype;
   925     }
   926     //where
   927     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   928         if (types.isConvertible(actual, formal, warn))
   929             return;
   931         if (formal.isCompound()
   932             && types.isSubtype(actual, types.supertype(formal))
   933             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   934             return;
   935     }
   937     /**
   938      * Check that type 't' is a valid instantiation of a generic class
   939      * (see JLS 4.5)
   940      *
   941      * @param t class type to be checked
   942      * @return true if 't' is well-formed
   943      */
   944     public boolean checkValidGenericType(Type t) {
   945         return firstIncompatibleTypeArg(t) == null;
   946     }
   947     //WHERE
   948         private Type firstIncompatibleTypeArg(Type type) {
   949             List<Type> formals = type.tsym.type.allparams();
   950             List<Type> actuals = type.allparams();
   951             List<Type> args = type.getTypeArguments();
   952             List<Type> forms = type.tsym.type.getTypeArguments();
   953             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   955             // For matching pairs of actual argument types `a' and
   956             // formal type parameters with declared bound `b' ...
   957             while (args.nonEmpty() && forms.nonEmpty()) {
   958                 // exact type arguments needs to know their
   959                 // bounds (for upper and lower bound
   960                 // calculations).  So we create new bounds where
   961                 // type-parameters are replaced with actuals argument types.
   962                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   963                 args = args.tail;
   964                 forms = forms.tail;
   965             }
   967             args = type.getTypeArguments();
   968             List<Type> tvars_cap = types.substBounds(formals,
   969                                       formals,
   970                                       types.capture(type).allparams());
   971             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   972                 // Let the actual arguments know their bound
   973                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   974                 args = args.tail;
   975                 tvars_cap = tvars_cap.tail;
   976             }
   978             args = type.getTypeArguments();
   979             List<Type> bounds = bounds_buf.toList();
   981             while (args.nonEmpty() && bounds.nonEmpty()) {
   982                 Type actual = args.head;
   983                 if (!isTypeArgErroneous(actual) &&
   984                         !bounds.head.isErroneous() &&
   985                         !checkExtends(actual, bounds.head)) {
   986                     return args.head;
   987                 }
   988                 args = args.tail;
   989                 bounds = bounds.tail;
   990             }
   992             args = type.getTypeArguments();
   993             bounds = bounds_buf.toList();
   995             for (Type arg : types.capture(type).getTypeArguments()) {
   996                 if (arg.hasTag(TYPEVAR) &&
   997                         arg.getUpperBound().isErroneous() &&
   998                         !bounds.head.isErroneous() &&
   999                         !isTypeArgErroneous(args.head)) {
  1000                     return args.head;
  1002                 bounds = bounds.tail;
  1003                 args = args.tail;
  1006             return null;
  1008         //where
  1009         boolean isTypeArgErroneous(Type t) {
  1010             return isTypeArgErroneous.visit(t);
  1013         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1014             public Boolean visitType(Type t, Void s) {
  1015                 return t.isErroneous();
  1017             @Override
  1018             public Boolean visitTypeVar(TypeVar t, Void s) {
  1019                 return visit(t.getUpperBound());
  1021             @Override
  1022             public Boolean visitCapturedType(CapturedType t, Void s) {
  1023                 return visit(t.getUpperBound()) ||
  1024                         visit(t.getLowerBound());
  1026             @Override
  1027             public Boolean visitWildcardType(WildcardType t, Void s) {
  1028                 return visit(t.type);
  1030         };
  1032     /** Check that given modifiers are legal for given symbol and
  1033      *  return modifiers together with any implicit modifiers for that symbol.
  1034      *  Warning: we can't use flags() here since this method
  1035      *  is called during class enter, when flags() would cause a premature
  1036      *  completion.
  1037      *  @param pos           Position to be used for error reporting.
  1038      *  @param flags         The set of modifiers given in a definition.
  1039      *  @param sym           The defined symbol.
  1040      */
  1041     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1042         long mask;
  1043         long implicit = 0;
  1045         switch (sym.kind) {
  1046         case VAR:
  1047             if (sym.owner.kind != TYP)
  1048                 mask = LocalVarFlags;
  1049             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1050                 mask = implicit = InterfaceVarFlags;
  1051             else
  1052                 mask = VarFlags;
  1053             break;
  1054         case MTH:
  1055             if (sym.name == names.init) {
  1056                 if ((sym.owner.flags_field & ENUM) != 0) {
  1057                     // enum constructors cannot be declared public or
  1058                     // protected and must be implicitly or explicitly
  1059                     // private
  1060                     implicit = PRIVATE;
  1061                     mask = PRIVATE;
  1062                 } else
  1063                     mask = ConstructorFlags;
  1064             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1065                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
  1066                     mask = AnnotationTypeElementMask;
  1067                     implicit = PUBLIC | ABSTRACT;
  1068                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
  1069                     mask = InterfaceMethodMask;
  1070                     implicit = PUBLIC;
  1071                     if ((flags & DEFAULT) != 0) {
  1072                         implicit |= ABSTRACT;
  1074                 } else {
  1075                     mask = implicit = InterfaceMethodFlags;
  1077             } else {
  1078                 mask = MethodFlags;
  1080             // Imply STRICTFP if owner has STRICTFP set.
  1081             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
  1082                 ((flags) & Flags.DEFAULT) != 0)
  1083                 implicit |= sym.owner.flags_field & STRICTFP;
  1084             break;
  1085         case TYP:
  1086             if (sym.isLocal()) {
  1087                 mask = LocalClassFlags;
  1088                 if (sym.name.isEmpty()) { // Anonymous class
  1089                     // Anonymous classes in static methods are themselves static;
  1090                     // that's why we admit STATIC here.
  1091                     mask |= STATIC;
  1092                     // JLS: Anonymous classes are final.
  1093                     implicit |= FINAL;
  1095                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1096                     (flags & ENUM) != 0)
  1097                     log.error(pos, "enums.must.be.static");
  1098             } else if (sym.owner.kind == TYP) {
  1099                 mask = MemberClassFlags;
  1100                 if (sym.owner.owner.kind == PCK ||
  1101                     (sym.owner.flags_field & STATIC) != 0)
  1102                     mask |= STATIC;
  1103                 else if ((flags & ENUM) != 0)
  1104                     log.error(pos, "enums.must.be.static");
  1105                 // Nested interfaces and enums are always STATIC (Spec ???)
  1106                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1107             } else {
  1108                 mask = ClassFlags;
  1110             // Interfaces are always ABSTRACT
  1111             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1113             if ((flags & ENUM) != 0) {
  1114                 // enums can't be declared abstract or final
  1115                 mask &= ~(ABSTRACT | FINAL);
  1116                 implicit |= implicitEnumFinalFlag(tree);
  1118             // Imply STRICTFP if owner has STRICTFP set.
  1119             implicit |= sym.owner.flags_field & STRICTFP;
  1120             break;
  1121         default:
  1122             throw new AssertionError();
  1124         long illegal = flags & ExtendedStandardFlags & ~mask;
  1125         if (illegal != 0) {
  1126             if ((illegal & INTERFACE) != 0) {
  1127                 log.error(pos, "intf.not.allowed.here");
  1128                 mask |= INTERFACE;
  1130             else {
  1131                 log.error(pos,
  1132                           "mod.not.allowed.here", asFlagSet(illegal));
  1135         else if ((sym.kind == TYP ||
  1136                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1137                   // in the presence of inner classes. Should it be deleted here?
  1138                   checkDisjoint(pos, flags,
  1139                                 ABSTRACT,
  1140                                 PRIVATE | STATIC | DEFAULT))
  1141                  &&
  1142                  checkDisjoint(pos, flags,
  1143                                 STATIC,
  1144                                 DEFAULT)
  1145                  &&
  1146                  checkDisjoint(pos, flags,
  1147                                ABSTRACT | INTERFACE,
  1148                                FINAL | NATIVE | SYNCHRONIZED)
  1149                  &&
  1150                  checkDisjoint(pos, flags,
  1151                                PUBLIC,
  1152                                PRIVATE | PROTECTED)
  1153                  &&
  1154                  checkDisjoint(pos, flags,
  1155                                PRIVATE,
  1156                                PUBLIC | PROTECTED)
  1157                  &&
  1158                  checkDisjoint(pos, flags,
  1159                                FINAL,
  1160                                VOLATILE)
  1161                  &&
  1162                  (sym.kind == TYP ||
  1163                   checkDisjoint(pos, flags,
  1164                                 ABSTRACT | NATIVE,
  1165                                 STRICTFP))) {
  1166             // skip
  1168         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1172     /** Determine if this enum should be implicitly final.
  1174      *  If the enum has no specialized enum contants, it is final.
  1176      *  If the enum does have specialized enum contants, it is
  1177      *  <i>not</i> final.
  1178      */
  1179     private long implicitEnumFinalFlag(JCTree tree) {
  1180         if (!tree.hasTag(CLASSDEF)) return 0;
  1181         class SpecialTreeVisitor extends JCTree.Visitor {
  1182             boolean specialized;
  1183             SpecialTreeVisitor() {
  1184                 this.specialized = false;
  1185             };
  1187             @Override
  1188             public void visitTree(JCTree tree) { /* no-op */ }
  1190             @Override
  1191             public void visitVarDef(JCVariableDecl tree) {
  1192                 if ((tree.mods.flags & ENUM) != 0) {
  1193                     if (tree.init instanceof JCNewClass &&
  1194                         ((JCNewClass) tree.init).def != null) {
  1195                         specialized = true;
  1201         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1202         JCClassDecl cdef = (JCClassDecl) tree;
  1203         for (JCTree defs: cdef.defs) {
  1204             defs.accept(sts);
  1205             if (sts.specialized) return 0;
  1207         return FINAL;
  1210 /* *************************************************************************
  1211  * Type Validation
  1212  **************************************************************************/
  1214     /** Validate a type expression. That is,
  1215      *  check that all type arguments of a parametric type are within
  1216      *  their bounds. This must be done in a second phase after type attribution
  1217      *  since a class might have a subclass as type parameter bound. E.g:
  1219      *  <pre>{@code
  1220      *  class B<A extends C> { ... }
  1221      *  class C extends B<C> { ... }
  1222      *  }</pre>
  1224      *  and we can't make sure that the bound is already attributed because
  1225      *  of possible cycles.
  1227      * Visitor method: Validate a type expression, if it is not null, catching
  1228      *  and reporting any completion failures.
  1229      */
  1230     void validate(JCTree tree, Env<AttrContext> env) {
  1231         validate(tree, env, true);
  1233     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1234         new Validator(env).validateTree(tree, checkRaw, true);
  1237     /** Visitor method: Validate a list of type expressions.
  1238      */
  1239     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1240         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1241             validate(l.head, env);
  1244     /** A visitor class for type validation.
  1245      */
  1246     class Validator extends JCTree.Visitor {
  1248         boolean isOuter;
  1249         Env<AttrContext> env;
  1251         Validator(Env<AttrContext> env) {
  1252             this.env = env;
  1255         @Override
  1256         public void visitTypeArray(JCArrayTypeTree tree) {
  1257             tree.elemtype.accept(this);
  1260         @Override
  1261         public void visitTypeApply(JCTypeApply tree) {
  1262             if (tree.type.hasTag(CLASS)) {
  1263                 List<JCExpression> args = tree.arguments;
  1264                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1266                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1267                 if (incompatibleArg != null) {
  1268                     for (JCTree arg : tree.arguments) {
  1269                         if (arg.type == incompatibleArg) {
  1270                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1272                         forms = forms.tail;
  1276                 forms = tree.type.tsym.type.getTypeArguments();
  1278                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1280                 // For matching pairs of actual argument types `a' and
  1281                 // formal type parameters with declared bound `b' ...
  1282                 while (args.nonEmpty() && forms.nonEmpty()) {
  1283                     validateTree(args.head,
  1284                             !(isOuter && is_java_lang_Class),
  1285                             false);
  1286                     args = args.tail;
  1287                     forms = forms.tail;
  1290                 // Check that this type is either fully parameterized, or
  1291                 // not parameterized at all.
  1292                 if (tree.type.getEnclosingType().isRaw())
  1293                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1294                 if (tree.clazz.hasTag(SELECT))
  1295                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1299         @Override
  1300         public void visitTypeParameter(JCTypeParameter tree) {
  1301             validateTrees(tree.bounds, true, isOuter);
  1302             checkClassBounds(tree.pos(), tree.type);
  1305         @Override
  1306         public void visitWildcard(JCWildcard tree) {
  1307             if (tree.inner != null)
  1308                 validateTree(tree.inner, true, isOuter);
  1311         @Override
  1312         public void visitSelect(JCFieldAccess tree) {
  1313             if (tree.type.hasTag(CLASS)) {
  1314                 visitSelectInternal(tree);
  1316                 // Check that this type is either fully parameterized, or
  1317                 // not parameterized at all.
  1318                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1319                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1323         public void visitSelectInternal(JCFieldAccess tree) {
  1324             if (tree.type.tsym.isStatic() &&
  1325                 tree.selected.type.isParameterized()) {
  1326                 // The enclosing type is not a class, so we are
  1327                 // looking at a static member type.  However, the
  1328                 // qualifying expression is parameterized.
  1329                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1330             } else {
  1331                 // otherwise validate the rest of the expression
  1332                 tree.selected.accept(this);
  1336         @Override
  1337         public void visitAnnotatedType(JCAnnotatedType tree) {
  1338             tree.underlyingType.accept(this);
  1341         /** Default visitor method: do nothing.
  1342          */
  1343         @Override
  1344         public void visitTree(JCTree tree) {
  1347         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1348             try {
  1349                 if (tree != null) {
  1350                     this.isOuter = isOuter;
  1351                     tree.accept(this);
  1352                     if (checkRaw)
  1353                         checkRaw(tree, env);
  1355             } catch (CompletionFailure ex) {
  1356                 completionError(tree.pos(), ex);
  1360         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1361             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1362                 validateTree(l.head, checkRaw, isOuter);
  1366     void checkRaw(JCTree tree, Env<AttrContext> env) {
  1367         if (lint.isEnabled(LintCategory.RAW) &&
  1368             tree.type.hasTag(CLASS) &&
  1369             !TreeInfo.isDiamond(tree) &&
  1370             !withinAnonConstr(env) &&
  1371             tree.type.isRaw()) {
  1372             log.warning(LintCategory.RAW,
  1373                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1376     //where
  1377         private boolean withinAnonConstr(Env<AttrContext> env) {
  1378             return env.enclClass.name.isEmpty() &&
  1379                     env.enclMethod != null && env.enclMethod.name == names.init;
  1382 /* *************************************************************************
  1383  * Exception checking
  1384  **************************************************************************/
  1386     /* The following methods treat classes as sets that contain
  1387      * the class itself and all their subclasses
  1388      */
  1390     /** Is given type a subtype of some of the types in given list?
  1391      */
  1392     boolean subset(Type t, List<Type> ts) {
  1393         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1394             if (types.isSubtype(t, l.head)) return true;
  1395         return false;
  1398     /** Is given type a subtype or supertype of
  1399      *  some of the types in given list?
  1400      */
  1401     boolean intersects(Type t, List<Type> ts) {
  1402         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1403             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1404         return false;
  1407     /** Add type set to given type list, unless it is a subclass of some class
  1408      *  in the list.
  1409      */
  1410     List<Type> incl(Type t, List<Type> ts) {
  1411         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1414     /** Remove type set from type set list.
  1415      */
  1416     List<Type> excl(Type t, List<Type> ts) {
  1417         if (ts.isEmpty()) {
  1418             return ts;
  1419         } else {
  1420             List<Type> ts1 = excl(t, ts.tail);
  1421             if (types.isSubtype(ts.head, t)) return ts1;
  1422             else if (ts1 == ts.tail) return ts;
  1423             else return ts1.prepend(ts.head);
  1427     /** Form the union of two type set lists.
  1428      */
  1429     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1430         List<Type> ts = ts1;
  1431         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1432             ts = incl(l.head, ts);
  1433         return ts;
  1436     /** Form the difference of two type lists.
  1437      */
  1438     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1439         List<Type> ts = ts1;
  1440         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1441             ts = excl(l.head, ts);
  1442         return ts;
  1445     /** Form the intersection of two type lists.
  1446      */
  1447     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1448         List<Type> ts = List.nil();
  1449         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1450             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1451         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1452             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1453         return ts;
  1456     /** Is exc an exception symbol that need not be declared?
  1457      */
  1458     boolean isUnchecked(ClassSymbol exc) {
  1459         return
  1460             exc.kind == ERR ||
  1461             exc.isSubClass(syms.errorType.tsym, types) ||
  1462             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1465     /** Is exc an exception type that need not be declared?
  1466      */
  1467     boolean isUnchecked(Type exc) {
  1468         return
  1469             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1470             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1471             exc.hasTag(BOT);
  1474     /** Same, but handling completion failures.
  1475      */
  1476     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1477         try {
  1478             return isUnchecked(exc);
  1479         } catch (CompletionFailure ex) {
  1480             completionError(pos, ex);
  1481             return true;
  1485     /** Is exc handled by given exception list?
  1486      */
  1487     boolean isHandled(Type exc, List<Type> handled) {
  1488         return isUnchecked(exc) || subset(exc, handled);
  1491     /** Return all exceptions in thrown list that are not in handled list.
  1492      *  @param thrown     The list of thrown exceptions.
  1493      *  @param handled    The list of handled exceptions.
  1494      */
  1495     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1496         List<Type> unhandled = List.nil();
  1497         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1498             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1499         return unhandled;
  1502 /* *************************************************************************
  1503  * Overriding/Implementation checking
  1504  **************************************************************************/
  1506     /** The level of access protection given by a flag set,
  1507      *  where PRIVATE is highest and PUBLIC is lowest.
  1508      */
  1509     static int protection(long flags) {
  1510         switch ((short)(flags & AccessFlags)) {
  1511         case PRIVATE: return 3;
  1512         case PROTECTED: return 1;
  1513         default:
  1514         case PUBLIC: return 0;
  1515         case 0: return 2;
  1519     /** A customized "cannot override" error message.
  1520      *  @param m      The overriding method.
  1521      *  @param other  The overridden method.
  1522      *  @return       An internationalized string.
  1523      */
  1524     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1525         String key;
  1526         if ((other.owner.flags() & INTERFACE) == 0)
  1527             key = "cant.override";
  1528         else if ((m.owner.flags() & INTERFACE) == 0)
  1529             key = "cant.implement";
  1530         else
  1531             key = "clashes.with";
  1532         return diags.fragment(key, m, m.location(), other, other.location());
  1535     /** A customized "override" warning message.
  1536      *  @param m      The overriding method.
  1537      *  @param other  The overridden method.
  1538      *  @return       An internationalized string.
  1539      */
  1540     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1541         String key;
  1542         if ((other.owner.flags() & INTERFACE) == 0)
  1543             key = "unchecked.override";
  1544         else if ((m.owner.flags() & INTERFACE) == 0)
  1545             key = "unchecked.implement";
  1546         else
  1547             key = "unchecked.clash.with";
  1548         return diags.fragment(key, m, m.location(), other, other.location());
  1551     /** A customized "override" warning message.
  1552      *  @param m      The overriding method.
  1553      *  @param other  The overridden method.
  1554      *  @return       An internationalized string.
  1555      */
  1556     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1557         String key;
  1558         if ((other.owner.flags() & INTERFACE) == 0)
  1559             key = "varargs.override";
  1560         else  if ((m.owner.flags() & INTERFACE) == 0)
  1561             key = "varargs.implement";
  1562         else
  1563             key = "varargs.clash.with";
  1564         return diags.fragment(key, m, m.location(), other, other.location());
  1567     /** Check that this method conforms with overridden method 'other'.
  1568      *  where `origin' is the class where checking started.
  1569      *  Complications:
  1570      *  (1) Do not check overriding of synthetic methods
  1571      *      (reason: they might be final).
  1572      *      todo: check whether this is still necessary.
  1573      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1574      *      than the method it implements. Augment the proxy methods with the
  1575      *      undeclared exceptions in this case.
  1576      *  (3) When generics are enabled, admit the case where an interface proxy
  1577      *      has a result type
  1578      *      extended by the result type of the method it implements.
  1579      *      Change the proxies result type to the smaller type in this case.
  1581      *  @param tree         The tree from which positions
  1582      *                      are extracted for errors.
  1583      *  @param m            The overriding method.
  1584      *  @param other        The overridden method.
  1585      *  @param origin       The class of which the overriding method
  1586      *                      is a member.
  1587      */
  1588     void checkOverride(JCTree tree,
  1589                        MethodSymbol m,
  1590                        MethodSymbol other,
  1591                        ClassSymbol origin) {
  1592         // Don't check overriding of synthetic methods or by bridge methods.
  1593         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1594             return;
  1597         // Error if static method overrides instance method (JLS 8.4.6.2).
  1598         if ((m.flags() & STATIC) != 0 &&
  1599                    (other.flags() & STATIC) == 0) {
  1600             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1601                       cannotOverride(m, other));
  1602             m.flags_field |= BAD_OVERRIDE;
  1603             return;
  1606         // Error if instance method overrides static or final
  1607         // method (JLS 8.4.6.1).
  1608         if ((other.flags() & FINAL) != 0 ||
  1609                  (m.flags() & STATIC) == 0 &&
  1610                  (other.flags() & STATIC) != 0) {
  1611             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1612                       cannotOverride(m, other),
  1613                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1614             m.flags_field |= BAD_OVERRIDE;
  1615             return;
  1618         if ((m.owner.flags() & ANNOTATION) != 0) {
  1619             // handled in validateAnnotationMethod
  1620             return;
  1623         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1624         if ((origin.flags() & INTERFACE) == 0 &&
  1625                  protection(m.flags()) > protection(other.flags())) {
  1626             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1627                       cannotOverride(m, other),
  1628                       other.flags() == 0 ?
  1629                           "package" :
  1630                           asFlagSet(other.flags() & AccessFlags));
  1631             m.flags_field |= BAD_OVERRIDE;
  1632             return;
  1635         Type mt = types.memberType(origin.type, m);
  1636         Type ot = types.memberType(origin.type, other);
  1637         // Error if overriding result type is different
  1638         // (or, in the case of generics mode, not a subtype) of
  1639         // overridden result type. We have to rename any type parameters
  1640         // before comparing types.
  1641         List<Type> mtvars = mt.getTypeArguments();
  1642         List<Type> otvars = ot.getTypeArguments();
  1643         Type mtres = mt.getReturnType();
  1644         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1646         overrideWarner.clear();
  1647         boolean resultTypesOK =
  1648             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1649         if (!resultTypesOK) {
  1650             if (!allowCovariantReturns &&
  1651                 m.owner != origin &&
  1652                 m.owner.isSubClass(other.owner, types)) {
  1653                 // allow limited interoperability with covariant returns
  1654             } else {
  1655                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1656                           "override.incompatible.ret",
  1657                           cannotOverride(m, other),
  1658                           mtres, otres);
  1659                 m.flags_field |= BAD_OVERRIDE;
  1660                 return;
  1662         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1663             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1664                     "override.unchecked.ret",
  1665                     uncheckedOverrides(m, other),
  1666                     mtres, otres);
  1669         // Error if overriding method throws an exception not reported
  1670         // by overridden method.
  1671         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1672         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1673         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1674         if (unhandledErased.nonEmpty()) {
  1675             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1676                       "override.meth.doesnt.throw",
  1677                       cannotOverride(m, other),
  1678                       unhandledUnerased.head);
  1679             m.flags_field |= BAD_OVERRIDE;
  1680             return;
  1682         else if (unhandledUnerased.nonEmpty()) {
  1683             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1684                           "override.unchecked.thrown",
  1685                          cannotOverride(m, other),
  1686                          unhandledUnerased.head);
  1687             return;
  1690         // Optional warning if varargs don't agree
  1691         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1692             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1693             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1694                         ((m.flags() & Flags.VARARGS) != 0)
  1695                         ? "override.varargs.missing"
  1696                         : "override.varargs.extra",
  1697                         varargsOverrides(m, other));
  1700         // Warn if instance method overrides bridge method (compiler spec ??)
  1701         if ((other.flags() & BRIDGE) != 0) {
  1702             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1703                         uncheckedOverrides(m, other));
  1706         // Warn if a deprecated method overridden by a non-deprecated one.
  1707         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1708             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1711     // where
  1712         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1713             // If the method, m, is defined in an interface, then ignore the issue if the method
  1714             // is only inherited via a supertype and also implemented in the supertype,
  1715             // because in that case, we will rediscover the issue when examining the method
  1716             // in the supertype.
  1717             // If the method, m, is not defined in an interface, then the only time we need to
  1718             // address the issue is when the method is the supertype implemementation: any other
  1719             // case, we will have dealt with when examining the supertype classes
  1720             ClassSymbol mc = m.enclClass();
  1721             Type st = types.supertype(origin.type);
  1722             if (!st.hasTag(CLASS))
  1723                 return true;
  1724             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1726             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1727                 List<Type> intfs = types.interfaces(origin.type);
  1728                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1730             else
  1731                 return (stimpl != m);
  1735     // used to check if there were any unchecked conversions
  1736     Warner overrideWarner = new Warner();
  1738     /** Check that a class does not inherit two concrete methods
  1739      *  with the same signature.
  1740      *  @param pos          Position to be used for error reporting.
  1741      *  @param site         The class type to be checked.
  1742      */
  1743     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1744         Type sup = types.supertype(site);
  1745         if (!sup.hasTag(CLASS)) return;
  1747         for (Type t1 = sup;
  1748              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
  1749              t1 = types.supertype(t1)) {
  1750             for (Scope.Entry e1 = t1.tsym.members().elems;
  1751                  e1 != null;
  1752                  e1 = e1.sibling) {
  1753                 Symbol s1 = e1.sym;
  1754                 if (s1.kind != MTH ||
  1755                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1756                     !s1.isInheritedIn(site.tsym, types) ||
  1757                     ((MethodSymbol)s1).implementation(site.tsym,
  1758                                                       types,
  1759                                                       true) != s1)
  1760                     continue;
  1761                 Type st1 = types.memberType(t1, s1);
  1762                 int s1ArgsLength = st1.getParameterTypes().length();
  1763                 if (st1 == s1.type) continue;
  1765                 for (Type t2 = sup;
  1766                      t2.hasTag(CLASS);
  1767                      t2 = types.supertype(t2)) {
  1768                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1769                          e2.scope != null;
  1770                          e2 = e2.next()) {
  1771                         Symbol s2 = e2.sym;
  1772                         if (s2 == s1 ||
  1773                             s2.kind != MTH ||
  1774                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1775                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1776                             !s2.isInheritedIn(site.tsym, types) ||
  1777                             ((MethodSymbol)s2).implementation(site.tsym,
  1778                                                               types,
  1779                                                               true) != s2)
  1780                             continue;
  1781                         Type st2 = types.memberType(t2, s2);
  1782                         if (types.overrideEquivalent(st1, st2))
  1783                             log.error(pos, "concrete.inheritance.conflict",
  1784                                       s1, t1, s2, t2, sup);
  1791     /** Check that classes (or interfaces) do not each define an abstract
  1792      *  method with same name and arguments but incompatible return types.
  1793      *  @param pos          Position to be used for error reporting.
  1794      *  @param t1           The first argument type.
  1795      *  @param t2           The second argument type.
  1796      */
  1797     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1798                                             Type t1,
  1799                                             Type t2) {
  1800         return checkCompatibleAbstracts(pos, t1, t2,
  1801                                         types.makeCompoundType(t1, t2));
  1804     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1805                                             Type t1,
  1806                                             Type t2,
  1807                                             Type site) {
  1808         return firstIncompatibility(pos, t1, t2, site) == null;
  1811     /** Return the first method which is defined with same args
  1812      *  but different return types in two given interfaces, or null if none
  1813      *  exists.
  1814      *  @param t1     The first type.
  1815      *  @param t2     The second type.
  1816      *  @param site   The most derived type.
  1817      *  @returns symbol from t2 that conflicts with one in t1.
  1818      */
  1819     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1820         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1821         closure(t1, interfaces1);
  1822         Map<TypeSymbol,Type> interfaces2;
  1823         if (t1 == t2)
  1824             interfaces2 = interfaces1;
  1825         else
  1826             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1828         for (Type t3 : interfaces1.values()) {
  1829             for (Type t4 : interfaces2.values()) {
  1830                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1831                 if (s != null) return s;
  1834         return null;
  1837     /** Compute all the supertypes of t, indexed by type symbol. */
  1838     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1839         if (!t.hasTag(CLASS)) return;
  1840         if (typeMap.put(t.tsym, t) == null) {
  1841             closure(types.supertype(t), typeMap);
  1842             for (Type i : types.interfaces(t))
  1843                 closure(i, typeMap);
  1847     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1848     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1849         if (!t.hasTag(CLASS)) return;
  1850         if (typesSkip.get(t.tsym) != null) return;
  1851         if (typeMap.put(t.tsym, t) == null) {
  1852             closure(types.supertype(t), typesSkip, typeMap);
  1853             for (Type i : types.interfaces(t))
  1854                 closure(i, typesSkip, typeMap);
  1858     /** Return the first method in t2 that conflicts with a method from t1. */
  1859     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1860         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1861             Symbol s1 = e1.sym;
  1862             Type st1 = null;
  1863             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
  1864                     (s1.flags() & SYNTHETIC) != 0) continue;
  1865             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1866             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1867             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1868                 Symbol s2 = e2.sym;
  1869                 if (s1 == s2) continue;
  1870                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
  1871                         (s2.flags() & SYNTHETIC) != 0) continue;
  1872                 if (st1 == null) st1 = types.memberType(t1, s1);
  1873                 Type st2 = types.memberType(t2, s2);
  1874                 if (types.overrideEquivalent(st1, st2)) {
  1875                     List<Type> tvars1 = st1.getTypeArguments();
  1876                     List<Type> tvars2 = st2.getTypeArguments();
  1877                     Type rt1 = st1.getReturnType();
  1878                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1879                     boolean compat =
  1880                         types.isSameType(rt1, rt2) ||
  1881                         !rt1.isPrimitiveOrVoid() &&
  1882                         !rt2.isPrimitiveOrVoid() &&
  1883                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
  1884                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
  1885                          checkCommonOverriderIn(s1,s2,site);
  1886                     if (!compat) {
  1887                         log.error(pos, "types.incompatible.diff.ret",
  1888                             t1, t2, s2.name +
  1889                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1890                         return s2;
  1892                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1893                         !checkCommonOverriderIn(s1, s2, site)) {
  1894                     log.error(pos,
  1895                             "name.clash.same.erasure.no.override",
  1896                             s1, s1.location(),
  1897                             s2, s2.location());
  1898                     return s2;
  1902         return null;
  1904     //WHERE
  1905     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1906         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1907         Type st1 = types.memberType(site, s1);
  1908         Type st2 = types.memberType(site, s2);
  1909         closure(site, supertypes);
  1910         for (Type t : supertypes.values()) {
  1911             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1912                 Symbol s3 = e.sym;
  1913                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1914                 Type st3 = types.memberType(site,s3);
  1915                 if (types.overrideEquivalent(st3, st1) &&
  1916                         types.overrideEquivalent(st3, st2) &&
  1917                         types.returnTypeSubstitutable(st3, st1) &&
  1918                         types.returnTypeSubstitutable(st3, st2)) {
  1919                     return true;
  1923         return false;
  1926     /** Check that a given method conforms with any method it overrides.
  1927      *  @param tree         The tree from which positions are extracted
  1928      *                      for errors.
  1929      *  @param m            The overriding method.
  1930      */
  1931     void checkOverride(JCTree tree, MethodSymbol m) {
  1932         ClassSymbol origin = (ClassSymbol)m.owner;
  1933         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1934             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1935                 log.error(tree.pos(), "enum.no.finalize");
  1936                 return;
  1938         for (Type t = origin.type; t.hasTag(CLASS);
  1939              t = types.supertype(t)) {
  1940             if (t != origin.type) {
  1941                 checkOverride(tree, t, origin, m);
  1943             for (Type t2 : types.interfaces(t)) {
  1944                 checkOverride(tree, t2, origin, m);
  1949     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1950         TypeSymbol c = site.tsym;
  1951         Scope.Entry e = c.members().lookup(m.name);
  1952         while (e.scope != null) {
  1953             if (m.overrides(e.sym, origin, types, false)) {
  1954                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1955                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1958             e = e.next();
  1962     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
  1963         public boolean accepts(Symbol s) {
  1964             return MethodSymbol.implementation_filter.accepts(s) &&
  1965                     (s.flags() & BAD_OVERRIDE) == 0;
  1968     };
  1970     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
  1971             ClassSymbol someClass) {
  1972         /* At present, annotations cannot possibly have a method that is override
  1973          * equivalent with Object.equals(Object) but in any case the condition is
  1974          * fine for completeness.
  1975          */
  1976         if (someClass == (ClassSymbol)syms.objectType.tsym ||
  1977             someClass.isInterface() || someClass.isEnum() ||
  1978             (someClass.flags() & ANNOTATION) != 0 ||
  1979             (someClass.flags() & ABSTRACT) != 0) return;
  1980         //anonymous inner classes implementing interfaces need especial treatment
  1981         if (someClass.isAnonymous()) {
  1982             List<Type> interfaces =  types.interfaces(someClass.type);
  1983             if (interfaces != null && !interfaces.isEmpty() &&
  1984                 interfaces.head.tsym == syms.comparatorType.tsym) return;
  1986         checkClassOverrideEqualsAndHash(pos, someClass);
  1989     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
  1990             ClassSymbol someClass) {
  1991         if (lint.isEnabled(LintCategory.OVERRIDES)) {
  1992             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
  1993                     .tsym.members().lookup(names.equals).sym;
  1994             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
  1995                     .tsym.members().lookup(names.hashCode).sym;
  1996             boolean overridesEquals = types.implementation(equalsAtObject,
  1997                 someClass, false, equalsHasCodeFilter).owner == someClass;
  1998             boolean overridesHashCode = types.implementation(hashCodeAtObject,
  1999                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
  2001             if (overridesEquals && !overridesHashCode) {
  2002                 log.warning(LintCategory.OVERRIDES, pos,
  2003                         "override.equals.but.not.hashcode", someClass);
  2008     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2009         ClashFilter cf = new ClashFilter(origin.type);
  2010         return (cf.accepts(s1) &&
  2011                 cf.accepts(s2) &&
  2012                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2016     /** Check that all abstract members of given class have definitions.
  2017      *  @param pos          Position to be used for error reporting.
  2018      *  @param c            The class.
  2019      */
  2020     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2021         try {
  2022             MethodSymbol undef = firstUndef(c, c);
  2023             if (undef != null) {
  2024                 if ((c.flags() & ENUM) != 0 &&
  2025                     types.supertype(c.type).tsym == syms.enumSym &&
  2026                     (c.flags() & FINAL) == 0) {
  2027                     // add the ABSTRACT flag to an enum
  2028                     c.flags_field |= ABSTRACT;
  2029                 } else {
  2030                     MethodSymbol undef1 =
  2031                         new MethodSymbol(undef.flags(), undef.name,
  2032                                          types.memberType(c.type, undef), undef.owner);
  2033                     log.error(pos, "does.not.override.abstract",
  2034                               c, undef1, undef1.location());
  2037         } catch (CompletionFailure ex) {
  2038             completionError(pos, ex);
  2041 //where
  2042         /** Return first abstract member of class `c' that is not defined
  2043          *  in `impl', null if there is none.
  2044          */
  2045         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2046             MethodSymbol undef = null;
  2047             // Do not bother to search in classes that are not abstract,
  2048             // since they cannot have abstract members.
  2049             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2050                 Scope s = c.members();
  2051                 for (Scope.Entry e = s.elems;
  2052                      undef == null && e != null;
  2053                      e = e.sibling) {
  2054                     if (e.sym.kind == MTH &&
  2055                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  2056                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2057                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2058                         if (implmeth == null || implmeth == absmeth) {
  2059                             //look for default implementations
  2060                             if (allowDefaultMethods) {
  2061                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
  2062                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
  2063                                     implmeth = prov;
  2067                         if (implmeth == null || implmeth == absmeth) {
  2068                             undef = absmeth;
  2072                 if (undef == null) {
  2073                     Type st = types.supertype(c.type);
  2074                     if (st.hasTag(CLASS))
  2075                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2077                 for (List<Type> l = types.interfaces(c.type);
  2078                      undef == null && l.nonEmpty();
  2079                      l = l.tail) {
  2080                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2083             return undef;
  2086     void checkNonCyclicDecl(JCClassDecl tree) {
  2087         CycleChecker cc = new CycleChecker();
  2088         cc.scan(tree);
  2089         if (!cc.errorFound && !cc.partialCheck) {
  2090             tree.sym.flags_field |= ACYCLIC;
  2094     class CycleChecker extends TreeScanner {
  2096         List<Symbol> seenClasses = List.nil();
  2097         boolean errorFound = false;
  2098         boolean partialCheck = false;
  2100         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2101             if (sym != null && sym.kind == TYP) {
  2102                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2103                 if (classEnv != null) {
  2104                     DiagnosticSource prevSource = log.currentSource();
  2105                     try {
  2106                         log.useSource(classEnv.toplevel.sourcefile);
  2107                         scan(classEnv.tree);
  2109                     finally {
  2110                         log.useSource(prevSource.getFile());
  2112                 } else if (sym.kind == TYP) {
  2113                     checkClass(pos, sym, List.<JCTree>nil());
  2115             } else {
  2116                 //not completed yet
  2117                 partialCheck = true;
  2121         @Override
  2122         public void visitSelect(JCFieldAccess tree) {
  2123             super.visitSelect(tree);
  2124             checkSymbol(tree.pos(), tree.sym);
  2127         @Override
  2128         public void visitIdent(JCIdent tree) {
  2129             checkSymbol(tree.pos(), tree.sym);
  2132         @Override
  2133         public void visitTypeApply(JCTypeApply tree) {
  2134             scan(tree.clazz);
  2137         @Override
  2138         public void visitTypeArray(JCArrayTypeTree tree) {
  2139             scan(tree.elemtype);
  2142         @Override
  2143         public void visitClassDef(JCClassDecl tree) {
  2144             List<JCTree> supertypes = List.nil();
  2145             if (tree.getExtendsClause() != null) {
  2146                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2148             if (tree.getImplementsClause() != null) {
  2149                 for (JCTree intf : tree.getImplementsClause()) {
  2150                     supertypes = supertypes.prepend(intf);
  2153             checkClass(tree.pos(), tree.sym, supertypes);
  2156         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2157             if ((c.flags_field & ACYCLIC) != 0)
  2158                 return;
  2159             if (seenClasses.contains(c)) {
  2160                 errorFound = true;
  2161                 noteCyclic(pos, (ClassSymbol)c);
  2162             } else if (!c.type.isErroneous()) {
  2163                 try {
  2164                     seenClasses = seenClasses.prepend(c);
  2165                     if (c.type.hasTag(CLASS)) {
  2166                         if (supertypes.nonEmpty()) {
  2167                             scan(supertypes);
  2169                         else {
  2170                             ClassType ct = (ClassType)c.type;
  2171                             if (ct.supertype_field == null ||
  2172                                     ct.interfaces_field == null) {
  2173                                 //not completed yet
  2174                                 partialCheck = true;
  2175                                 return;
  2177                             checkSymbol(pos, ct.supertype_field.tsym);
  2178                             for (Type intf : ct.interfaces_field) {
  2179                                 checkSymbol(pos, intf.tsym);
  2182                         if (c.owner.kind == TYP) {
  2183                             checkSymbol(pos, c.owner);
  2186                 } finally {
  2187                     seenClasses = seenClasses.tail;
  2193     /** Check for cyclic references. Issue an error if the
  2194      *  symbol of the type referred to has a LOCKED flag set.
  2196      *  @param pos      Position to be used for error reporting.
  2197      *  @param t        The type referred to.
  2198      */
  2199     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2200         checkNonCyclicInternal(pos, t);
  2204     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2205         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2208     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2209         final TypeVar tv;
  2210         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2211             return;
  2212         if (seen.contains(t)) {
  2213             tv = (TypeVar)t.unannotatedType();
  2214             tv.bound = types.createErrorType(t);
  2215             log.error(pos, "cyclic.inheritance", t);
  2216         } else if (t.hasTag(TYPEVAR)) {
  2217             tv = (TypeVar)t.unannotatedType();
  2218             seen = seen.prepend(tv);
  2219             for (Type b : types.getBounds(tv))
  2220                 checkNonCyclic1(pos, b, seen);
  2224     /** Check for cyclic references. Issue an error if the
  2225      *  symbol of the type referred to has a LOCKED flag set.
  2227      *  @param pos      Position to be used for error reporting.
  2228      *  @param t        The type referred to.
  2229      *  @returns        True if the check completed on all attributed classes
  2230      */
  2231     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2232         boolean complete = true; // was the check complete?
  2233         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2234         Symbol c = t.tsym;
  2235         if ((c.flags_field & ACYCLIC) != 0) return true;
  2237         if ((c.flags_field & LOCKED) != 0) {
  2238             noteCyclic(pos, (ClassSymbol)c);
  2239         } else if (!c.type.isErroneous()) {
  2240             try {
  2241                 c.flags_field |= LOCKED;
  2242                 if (c.type.hasTag(CLASS)) {
  2243                     ClassType clazz = (ClassType)c.type;
  2244                     if (clazz.interfaces_field != null)
  2245                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2246                             complete &= checkNonCyclicInternal(pos, l.head);
  2247                     if (clazz.supertype_field != null) {
  2248                         Type st = clazz.supertype_field;
  2249                         if (st != null && st.hasTag(CLASS))
  2250                             complete &= checkNonCyclicInternal(pos, st);
  2252                     if (c.owner.kind == TYP)
  2253                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2255             } finally {
  2256                 c.flags_field &= ~LOCKED;
  2259         if (complete)
  2260             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2261         if (complete) c.flags_field |= ACYCLIC;
  2262         return complete;
  2265     /** Note that we found an inheritance cycle. */
  2266     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2267         log.error(pos, "cyclic.inheritance", c);
  2268         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2269             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2270         Type st = types.supertype(c.type);
  2271         if (st.hasTag(CLASS))
  2272             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2273         c.type = types.createErrorType(c, c.type);
  2274         c.flags_field |= ACYCLIC;
  2277     /** Check that all methods which implement some
  2278      *  method conform to the method they implement.
  2279      *  @param tree         The class definition whose members are checked.
  2280      */
  2281     void checkImplementations(JCClassDecl tree) {
  2282         checkImplementations(tree, tree.sym, tree.sym);
  2284     //where
  2285         /** Check that all methods which implement some
  2286          *  method in `ic' conform to the method they implement.
  2287          */
  2288         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
  2289             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2290                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2291                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2292                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2293                         if (e.sym.kind == MTH &&
  2294                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2295                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2296                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2297                             if (implmeth != null && implmeth != absmeth &&
  2298                                 (implmeth.owner.flags() & INTERFACE) ==
  2299                                 (origin.flags() & INTERFACE)) {
  2300                                 // don't check if implmeth is in a class, yet
  2301                                 // origin is an interface. This case arises only
  2302                                 // if implmeth is declared in Object. The reason is
  2303                                 // that interfaces really don't inherit from
  2304                                 // Object it's just that the compiler represents
  2305                                 // things that way.
  2306                                 checkOverride(tree, implmeth, absmeth, origin);
  2314     /** Check that all abstract methods implemented by a class are
  2315      *  mutually compatible.
  2316      *  @param pos          Position to be used for error reporting.
  2317      *  @param c            The class whose interfaces are checked.
  2318      */
  2319     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2320         List<Type> supertypes = types.interfaces(c);
  2321         Type supertype = types.supertype(c);
  2322         if (supertype.hasTag(CLASS) &&
  2323             (supertype.tsym.flags() & ABSTRACT) != 0)
  2324             supertypes = supertypes.prepend(supertype);
  2325         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2326             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2327                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2328                 return;
  2329             for (List<Type> m = supertypes; m != l; m = m.tail)
  2330                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2331                     return;
  2333         checkCompatibleConcretes(pos, c);
  2336     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2337         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2338             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2339                 // VM allows methods and variables with differing types
  2340                 if (sym.kind == e.sym.kind &&
  2341                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2342                     sym != e.sym &&
  2343                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2344                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2345                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2346                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2347                     return;
  2353     /** Check that all non-override equivalent methods accessible from 'site'
  2354      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2356      *  @param pos  Position to be used for error reporting.
  2357      *  @param site The class whose methods are checked.
  2358      *  @param sym  The method symbol to be checked.
  2359      */
  2360     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2361          ClashFilter cf = new ClashFilter(site);
  2362         //for each method m1 that is overridden (directly or indirectly)
  2363         //by method 'sym' in 'site'...
  2364         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2365              if (!sym.overrides(m1, site.tsym, types, false)) {
  2366                  checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)m1);
  2367                  continue;
  2369              //...check each method m2 that is a member of 'site'
  2370              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2371                 if (m2 == m1) continue;
  2372                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2373                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2374                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2375                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2376                     sym.flags_field |= CLASH;
  2377                     String key = m1 == sym ?
  2378                             "name.clash.same.erasure.no.override" :
  2379                             "name.clash.same.erasure.no.override.1";
  2380                     log.error(pos,
  2381                             key,
  2382                             sym, sym.location(),
  2383                             m2, m2.location(),
  2384                             m1, m1.location());
  2385                     return;
  2393     /** Check that all static methods accessible from 'site' are
  2394      *  mutually compatible (JLS 8.4.8).
  2396      *  @param pos  Position to be used for error reporting.
  2397      *  @param site The class whose methods are checked.
  2398      *  @param sym  The method symbol to be checked.
  2399      */
  2400     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2401         ClashFilter cf = new ClashFilter(site);
  2402         //for each method m1 that is a member of 'site'...
  2403         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2404             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2405             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2406             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
  2407                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2408                     log.error(pos,
  2409                             "name.clash.same.erasure.no.hide",
  2410                             sym, sym.location(),
  2411                             s, s.location());
  2412                     return;
  2413                 } else {
  2414                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
  2420      //where
  2421      private class ClashFilter implements Filter<Symbol> {
  2423          Type site;
  2425          ClashFilter(Type site) {
  2426              this.site = site;
  2429          boolean shouldSkip(Symbol s) {
  2430              return (s.flags() & CLASH) != 0 &&
  2431                 s.owner == site.tsym;
  2434          public boolean accepts(Symbol s) {
  2435              return s.kind == MTH &&
  2436                      (s.flags() & SYNTHETIC) == 0 &&
  2437                      !shouldSkip(s) &&
  2438                      s.isInheritedIn(site.tsym, types) &&
  2439                      !s.isConstructor();
  2443     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2444         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2445         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2446             Assert.check(m.kind == MTH);
  2447             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2448             if (prov.size() > 1) {
  2449                 ListBuffer<Symbol> abstracts = ListBuffer.lb();
  2450                 ListBuffer<Symbol> defaults = ListBuffer.lb();
  2451                 for (MethodSymbol provSym : prov) {
  2452                     if ((provSym.flags() & DEFAULT) != 0) {
  2453                         defaults = defaults.append(provSym);
  2454                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2455                         abstracts = abstracts.append(provSym);
  2457                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2458                         //strong semantics - issue an error if two sibling interfaces
  2459                         //have two override-equivalent defaults - or if one is abstract
  2460                         //and the other is default
  2461                         String errKey;
  2462                         Symbol s1 = defaults.first();
  2463                         Symbol s2;
  2464                         if (defaults.size() > 1) {
  2465                             errKey = "types.incompatible.unrelated.defaults";
  2466                             s2 = defaults.toList().tail.head;
  2467                         } else {
  2468                             errKey = "types.incompatible.abstract.default";
  2469                             s2 = abstracts.first();
  2471                         log.error(pos, errKey,
  2472                                 Kinds.kindName(site.tsym), site,
  2473                                 m.name, types.memberType(site, m).getParameterTypes(),
  2474                                 s1.location(), s2.location());
  2475                         break;
  2482     //where
  2483      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2485          Type site;
  2487          DefaultMethodClashFilter(Type site) {
  2488              this.site = site;
  2491          public boolean accepts(Symbol s) {
  2492              return s.kind == MTH &&
  2493                      (s.flags() & DEFAULT) != 0 &&
  2494                      s.isInheritedIn(site.tsym, types) &&
  2495                      !s.isConstructor();
  2499     /**
  2500       * Report warnings for potentially ambiguous method declarations. Two declarations
  2501       * are potentially ambiguous if they feature two unrelated functional interface
  2502       * in same argument position (in which case, a call site passing an implicit
  2503       * lambda would be ambiguous).
  2504       */
  2505     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
  2506             MethodSymbol msym1, MethodSymbol msym2) {
  2507         if (msym1 != msym2 &&
  2508                 allowDefaultMethods &&
  2509                 lint.isEnabled(LintCategory.OVERLOADS) &&
  2510                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
  2511                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
  2512             Type mt1 = types.memberType(site, msym1);
  2513             Type mt2 = types.memberType(site, msym2);
  2514             //if both generic methods, adjust type variables
  2515             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
  2516                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
  2517                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
  2519             //expand varargs methods if needed
  2520             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
  2521             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
  2522             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
  2523             //if arities don't match, exit
  2524             if (args1.length() != args2.length()) return;
  2525             boolean potentiallyAmbiguous = false;
  2526             while (args1.nonEmpty() && args2.nonEmpty()) {
  2527                 Type s = args1.head;
  2528                 Type t = args2.head;
  2529                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
  2530                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
  2531                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
  2532                             types.findDescriptorType(s).getParameterTypes().length() ==
  2533                             types.findDescriptorType(t).getParameterTypes().length()) {
  2534                         potentiallyAmbiguous = true;
  2535                     } else {
  2536                         break;
  2539                 args1 = args1.tail;
  2540                 args2 = args2.tail;
  2542             if (potentiallyAmbiguous) {
  2543                 //we found two incompatible functional interfaces with same arity
  2544                 //this means a call site passing an implicit lambda would be ambigiuous
  2545                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
  2546                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
  2547                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
  2548                             msym1, msym1.location(),
  2549                             msym2, msym2.location());
  2550                 return;
  2555     /** Report a conflict between a user symbol and a synthetic symbol.
  2556      */
  2557     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2558         if (!sym.type.isErroneous()) {
  2559             if (warnOnSyntheticConflicts) {
  2560                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2562             else {
  2563                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2568     /** Check that class c does not implement directly or indirectly
  2569      *  the same parameterized interface with two different argument lists.
  2570      *  @param pos          Position to be used for error reporting.
  2571      *  @param type         The type whose interfaces are checked.
  2572      */
  2573     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2574         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2576 //where
  2577         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2578          *  with their class symbol as key and their type as value. Make
  2579          *  sure no class is entered with two different types.
  2580          */
  2581         void checkClassBounds(DiagnosticPosition pos,
  2582                               Map<TypeSymbol,Type> seensofar,
  2583                               Type type) {
  2584             if (type.isErroneous()) return;
  2585             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2586                 Type it = l.head;
  2587                 Type oldit = seensofar.put(it.tsym, it);
  2588                 if (oldit != null) {
  2589                     List<Type> oldparams = oldit.allparams();
  2590                     List<Type> newparams = it.allparams();
  2591                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2592                         log.error(pos, "cant.inherit.diff.arg",
  2593                                   it.tsym, Type.toString(oldparams),
  2594                                   Type.toString(newparams));
  2596                 checkClassBounds(pos, seensofar, it);
  2598             Type st = types.supertype(type);
  2599             if (st != null) checkClassBounds(pos, seensofar, st);
  2602     /** Enter interface into into set.
  2603      *  If it existed already, issue a "repeated interface" error.
  2604      */
  2605     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2606         if (its.contains(it))
  2607             log.error(pos, "repeated.interface");
  2608         else {
  2609             its.add(it);
  2613 /* *************************************************************************
  2614  * Check annotations
  2615  **************************************************************************/
  2617     /**
  2618      * Recursively validate annotations values
  2619      */
  2620     void validateAnnotationTree(JCTree tree) {
  2621         class AnnotationValidator extends TreeScanner {
  2622             @Override
  2623             public void visitAnnotation(JCAnnotation tree) {
  2624                 if (!tree.type.isErroneous()) {
  2625                     super.visitAnnotation(tree);
  2626                     validateAnnotation(tree);
  2630         tree.accept(new AnnotationValidator());
  2633     /**
  2634      *  {@literal
  2635      *  Annotation types are restricted to primitives, String, an
  2636      *  enum, an annotation, Class, Class<?>, Class<? extends
  2637      *  Anything>, arrays of the preceding.
  2638      *  }
  2639      */
  2640     void validateAnnotationType(JCTree restype) {
  2641         // restype may be null if an error occurred, so don't bother validating it
  2642         if (restype != null) {
  2643             validateAnnotationType(restype.pos(), restype.type);
  2647     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2648         if (type.isPrimitive()) return;
  2649         if (types.isSameType(type, syms.stringType)) return;
  2650         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2651         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2652         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2653         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2654             validateAnnotationType(pos, types.elemtype(type));
  2655             return;
  2657         log.error(pos, "invalid.annotation.member.type");
  2660     /**
  2661      * "It is also a compile-time error if any method declared in an
  2662      * annotation type has a signature that is override-equivalent to
  2663      * that of any public or protected method declared in class Object
  2664      * or in the interface annotation.Annotation."
  2666      * @jls 9.6 Annotation Types
  2667      */
  2668     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2669         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2670             Scope s = sup.tsym.members();
  2671             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2672                 if (e.sym.kind == MTH &&
  2673                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2674                     types.overrideEquivalent(m.type, e.sym.type))
  2675                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2680     /** Check the annotations of a symbol.
  2681      */
  2682     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2683         for (JCAnnotation a : annotations)
  2684             validateAnnotation(a, s);
  2687     /** Check the type annotations.
  2688      */
  2689     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
  2690         for (JCAnnotation a : annotations)
  2691             validateTypeAnnotation(a, isTypeParameter);
  2694     /** Check an annotation of a symbol.
  2695      */
  2696     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2697         validateAnnotationTree(a);
  2699         if (!annotationApplicable(a, s))
  2700             log.error(a.pos(), "annotation.type.not.applicable");
  2702         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2703             if (!isOverrider(s))
  2704                 log.error(a.pos(), "method.does.not.override.superclass");
  2707         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  2708             if (s.kind != TYP) {
  2709                 log.error(a.pos(), "bad.functional.intf.anno");
  2710             } else {
  2711                 try {
  2712                     types.findDescriptorSymbol((TypeSymbol)s);
  2713                 } catch (Types.FunctionDescriptorLookupError ex) {
  2714                     log.error(a.pos(), "bad.functional.intf.anno.1", ex.getDiagnostic());
  2720     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2721         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
  2722         validateAnnotationTree(a);
  2724         if (!isTypeAnnotation(a, isTypeParameter))
  2725             log.error(a.pos(), "annotation.type.not.applicable");
  2728     /**
  2729      * Validate the proposed container 'repeatable' on the
  2730      * annotation type symbol 's'. Report errors at position
  2731      * 'pos'.
  2733      * @param s The (annotation)type declaration annotated with a @Repeatable
  2734      * @param repeatable the @Repeatable on 's'
  2735      * @param pos where to report errors
  2736      */
  2737     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
  2738         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
  2740         Type t = null;
  2741         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
  2742         if (!l.isEmpty()) {
  2743             Assert.check(l.head.fst.name == names.value);
  2744             t = ((Attribute.Class)l.head.snd).getValue();
  2747         if (t == null) {
  2748             // errors should already have been reported during Annotate
  2749             return;
  2752         validateValue(t.tsym, s, pos);
  2753         validateRetention(t.tsym, s, pos);
  2754         validateDocumented(t.tsym, s, pos);
  2755         validateInherited(t.tsym, s, pos);
  2756         validateTarget(t.tsym, s, pos);
  2757         validateDefault(t.tsym, s, pos);
  2760     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2761         Scope.Entry e = container.members().lookup(names.value);
  2762         if (e.scope != null && e.sym.kind == MTH) {
  2763             MethodSymbol m = (MethodSymbol) e.sym;
  2764             Type ret = m.getReturnType();
  2765             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
  2766                 log.error(pos, "invalid.repeatable.annotation.value.return",
  2767                         container, ret, types.makeArrayType(contained.type));
  2769         } else {
  2770             log.error(pos, "invalid.repeatable.annotation.no.value", container);
  2774     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2775         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2776         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2778         boolean error = false;
  2779         switch (containedRetention) {
  2780         case RUNTIME:
  2781             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2782                 error = true;
  2784             break;
  2785         case CLASS:
  2786             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2787                 error = true;
  2790         if (error ) {
  2791             log.error(pos, "invalid.repeatable.annotation.retention",
  2792                       container, containerRetention,
  2793                       contained, containedRetention);
  2797     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2798         if (contained.attribute(syms.documentedType.tsym) != null) {
  2799             if (container.attribute(syms.documentedType.tsym) == null) {
  2800                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
  2805     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2806         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2807             if (container.attribute(syms.inheritedType.tsym) == null) {
  2808                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
  2813     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2814         // The set of targets the container is applicable to must be a subset
  2815         // (with respect to annotation target semantics) of the set of targets
  2816         // the contained is applicable to. The target sets may be implicit or
  2817         // explicit.
  2819         Set<Name> containerTargets;
  2820         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2821         if (containerTarget == null) {
  2822             containerTargets = getDefaultTargetSet();
  2823         } else {
  2824             containerTargets = new HashSet<Name>();
  2825         for (Attribute app : containerTarget.values) {
  2826             if (!(app instanceof Attribute.Enum)) {
  2827                 continue; // recovery
  2829             Attribute.Enum e = (Attribute.Enum)app;
  2830             containerTargets.add(e.value.name);
  2834         Set<Name> containedTargets;
  2835         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2836         if (containedTarget == null) {
  2837             containedTargets = getDefaultTargetSet();
  2838         } else {
  2839             containedTargets = new HashSet<Name>();
  2840         for (Attribute app : containedTarget.values) {
  2841             if (!(app instanceof Attribute.Enum)) {
  2842                 continue; // recovery
  2844             Attribute.Enum e = (Attribute.Enum)app;
  2845             containedTargets.add(e.value.name);
  2849         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
  2850             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
  2854     /* get a set of names for the default target */
  2855     private Set<Name> getDefaultTargetSet() {
  2856         if (defaultTargets == null) {
  2857             Set<Name> targets = new HashSet<Name>();
  2858             targets.add(names.ANNOTATION_TYPE);
  2859             targets.add(names.CONSTRUCTOR);
  2860             targets.add(names.FIELD);
  2861             targets.add(names.LOCAL_VARIABLE);
  2862             targets.add(names.METHOD);
  2863             targets.add(names.PACKAGE);
  2864             targets.add(names.PARAMETER);
  2865             targets.add(names.TYPE);
  2867             defaultTargets = java.util.Collections.unmodifiableSet(targets);
  2870         return defaultTargets;
  2872     private Set<Name> defaultTargets;
  2875     /** Checks that s is a subset of t, with respect to ElementType
  2876      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2877      */
  2878     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
  2879         // Check that all elements in s are present in t
  2880         for (Name n2 : s) {
  2881             boolean currentElementOk = false;
  2882             for (Name n1 : t) {
  2883                 if (n1 == n2) {
  2884                     currentElementOk = true;
  2885                     break;
  2886                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2887                     currentElementOk = true;
  2888                     break;
  2891             if (!currentElementOk)
  2892                 return false;
  2894         return true;
  2897     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2898         // validate that all other elements of containing type has defaults
  2899         Scope scope = container.members();
  2900         for(Symbol elm : scope.getElements()) {
  2901             if (elm.name != names.value &&
  2902                 elm.kind == Kinds.MTH &&
  2903                 ((MethodSymbol)elm).defaultValue == null) {
  2904                 log.error(pos,
  2905                           "invalid.repeatable.annotation.elem.nondefault",
  2906                           container,
  2907                           elm);
  2912     /** Is s a method symbol that overrides a method in a superclass? */
  2913     boolean isOverrider(Symbol s) {
  2914         if (s.kind != MTH || s.isStatic())
  2915             return false;
  2916         MethodSymbol m = (MethodSymbol)s;
  2917         TypeSymbol owner = (TypeSymbol)m.owner;
  2918         for (Type sup : types.closure(owner.type)) {
  2919             if (sup == owner.type)
  2920                 continue; // skip "this"
  2921             Scope scope = sup.tsym.members();
  2922             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2923                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2924                     return true;
  2927         return false;
  2930     /** Is the annotation applicable to type annotations? */
  2931     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2932         Attribute.Compound atTarget =
  2933             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2934         if (atTarget == null) {
  2935             // An annotation without @Target is not a type annotation.
  2936             return false;
  2939         Attribute atValue = atTarget.member(names.value);
  2940         if (!(atValue instanceof Attribute.Array)) {
  2941             return false; // error recovery
  2944         Attribute.Array arr = (Attribute.Array) atValue;
  2945         for (Attribute app : arr.values) {
  2946             if (!(app instanceof Attribute.Enum)) {
  2947                 return false; // recovery
  2949             Attribute.Enum e = (Attribute.Enum) app;
  2951             if (e.value.name == names.TYPE_USE)
  2952                 return true;
  2953             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2954                 return true;
  2956         return false;
  2959     /** Is the annotation applicable to the symbol? */
  2960     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2961         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2962         Name[] targets;
  2964         if (arr == null) {
  2965             targets = defaultTargetMetaInfo(a, s);
  2966         } else {
  2967             // TODO: can we optimize this?
  2968             targets = new Name[arr.values.length];
  2969             for (int i=0; i<arr.values.length; ++i) {
  2970                 Attribute app = arr.values[i];
  2971                 if (!(app instanceof Attribute.Enum)) {
  2972                     return true; // recovery
  2974                 Attribute.Enum e = (Attribute.Enum) app;
  2975                 targets[i] = e.value.name;
  2978         for (Name target : targets) {
  2979             if (target == names.TYPE)
  2980                 { if (s.kind == TYP) return true; }
  2981             else if (target == names.FIELD)
  2982                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2983             else if (target == names.METHOD)
  2984                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2985             else if (target == names.PARAMETER)
  2986                 { if (s.kind == VAR &&
  2987                       s.owner.kind == MTH &&
  2988                       (s.flags() & PARAMETER) != 0)
  2989                     return true;
  2991             else if (target == names.CONSTRUCTOR)
  2992                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2993             else if (target == names.LOCAL_VARIABLE)
  2994                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2995                       (s.flags() & PARAMETER) == 0)
  2996                     return true;
  2998             else if (target == names.ANNOTATION_TYPE)
  2999                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  3000                     return true;
  3002             else if (target == names.PACKAGE)
  3003                 { if (s.kind == PCK) return true; }
  3004             else if (target == names.TYPE_USE)
  3005                 { if (s.kind == TYP ||
  3006                       s.kind == VAR ||
  3007                       (s.kind == MTH && !s.isConstructor() &&
  3008                       !s.type.getReturnType().hasTag(VOID)) ||
  3009                       (s.kind == MTH && s.isConstructor()))
  3010                     return true;
  3012             else if (target == names.TYPE_PARAMETER)
  3013                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
  3014                     return true;
  3016             else
  3017                 return true; // recovery
  3019         return false;
  3023     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  3024         Attribute.Compound atTarget =
  3025             s.attribute(syms.annotationTargetType.tsym);
  3026         if (atTarget == null) return null; // ok, is applicable
  3027         Attribute atValue = atTarget.member(names.value);
  3028         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  3029         return (Attribute.Array) atValue;
  3032     private final Name[] dfltTargetMeta;
  3033     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
  3034         return dfltTargetMeta;
  3037     /** Check an annotation value.
  3039      * @param a The annotation tree to check
  3040      * @return true if this annotation tree is valid, otherwise false
  3041      */
  3042     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
  3043         boolean res = false;
  3044         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
  3045         try {
  3046             res = validateAnnotation(a);
  3047         } finally {
  3048             log.popDiagnosticHandler(diagHandler);
  3050         return res;
  3053     private boolean validateAnnotation(JCAnnotation a) {
  3054         boolean isValid = true;
  3055         // collect an inventory of the annotation elements
  3056         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
  3057         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  3058                 e != null;
  3059                 e = e.sibling)
  3060             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
  3061                     (e.sym.flags() & SYNTHETIC) == 0)
  3062                 members.add((MethodSymbol) e.sym);
  3064         // remove the ones that are assigned values
  3065         for (JCTree arg : a.args) {
  3066             if (!arg.hasTag(ASSIGN)) continue; // recovery
  3067             JCAssign assign = (JCAssign) arg;
  3068             Symbol m = TreeInfo.symbol(assign.lhs);
  3069             if (m == null || m.type.isErroneous()) continue;
  3070             if (!members.remove(m)) {
  3071                 isValid = false;
  3072                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  3073                           m.name, a.type);
  3077         // all the remaining ones better have default values
  3078         List<Name> missingDefaults = List.nil();
  3079         for (MethodSymbol m : members) {
  3080             if (m.defaultValue == null && !m.type.isErroneous()) {
  3081                 missingDefaults = missingDefaults.append(m.name);
  3084         missingDefaults = missingDefaults.reverse();
  3085         if (missingDefaults.nonEmpty()) {
  3086             isValid = false;
  3087             String key = (missingDefaults.size() > 1)
  3088                     ? "annotation.missing.default.value.1"
  3089                     : "annotation.missing.default.value";
  3090             log.error(a.pos(), key, a.type, missingDefaults);
  3093         // special case: java.lang.annotation.Target must not have
  3094         // repeated values in its value member
  3095         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  3096             a.args.tail == null)
  3097             return isValid;
  3099         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
  3100         JCAssign assign = (JCAssign) a.args.head;
  3101         Symbol m = TreeInfo.symbol(assign.lhs);
  3102         if (m.name != names.value) return false;
  3103         JCTree rhs = assign.rhs;
  3104         if (!rhs.hasTag(NEWARRAY)) return false;
  3105         JCNewArray na = (JCNewArray) rhs;
  3106         Set<Symbol> targets = new HashSet<Symbol>();
  3107         for (JCTree elem : na.elems) {
  3108             if (!targets.add(TreeInfo.symbol(elem))) {
  3109                 isValid = false;
  3110                 log.error(elem.pos(), "repeated.annotation.target");
  3113         return isValid;
  3116     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  3117         if (allowAnnotations &&
  3118             lint.isEnabled(LintCategory.DEP_ANN) &&
  3119             (s.flags() & DEPRECATED) != 0 &&
  3120             !syms.deprecatedType.isErroneous() &&
  3121             s.attribute(syms.deprecatedType.tsym) == null) {
  3122             log.warning(LintCategory.DEP_ANN,
  3123                     pos, "missing.deprecated.annotation");
  3127     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  3128         if ((s.flags() & DEPRECATED) != 0 &&
  3129                 (other.flags() & DEPRECATED) == 0 &&
  3130                 s.outermostClass() != other.outermostClass()) {
  3131             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3132                 @Override
  3133                 public void report() {
  3134                     warnDeprecated(pos, s);
  3136             });
  3140     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  3141         if ((s.flags() & PROPRIETARY) != 0) {
  3142             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3143                 public void report() {
  3144                     if (enableSunApiLintControl)
  3145                       warnSunApi(pos, "sun.proprietary", s);
  3146                     else
  3147                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3149             });
  3153     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
  3154         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
  3155             log.error(pos, "not.in.profile", s, profile);
  3159 /* *************************************************************************
  3160  * Check for recursive annotation elements.
  3161  **************************************************************************/
  3163     /** Check for cycles in the graph of annotation elements.
  3164      */
  3165     void checkNonCyclicElements(JCClassDecl tree) {
  3166         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3167         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3168         try {
  3169             tree.sym.flags_field |= LOCKED;
  3170             for (JCTree def : tree.defs) {
  3171                 if (!def.hasTag(METHODDEF)) continue;
  3172                 JCMethodDecl meth = (JCMethodDecl)def;
  3173                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3175         } finally {
  3176             tree.sym.flags_field &= ~LOCKED;
  3177             tree.sym.flags_field |= ACYCLIC_ANN;
  3181     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3182         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3183             return;
  3184         if ((tsym.flags_field & LOCKED) != 0) {
  3185             log.error(pos, "cyclic.annotation.element");
  3186             return;
  3188         try {
  3189             tsym.flags_field |= LOCKED;
  3190             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3191                 Symbol s = e.sym;
  3192                 if (s.kind != Kinds.MTH)
  3193                     continue;
  3194                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3196         } finally {
  3197             tsym.flags_field &= ~LOCKED;
  3198             tsym.flags_field |= ACYCLIC_ANN;
  3202     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3203         switch (type.getTag()) {
  3204         case CLASS:
  3205             if ((type.tsym.flags() & ANNOTATION) != 0)
  3206                 checkNonCyclicElementsInternal(pos, type.tsym);
  3207             break;
  3208         case ARRAY:
  3209             checkAnnotationResType(pos, types.elemtype(type));
  3210             break;
  3211         default:
  3212             break; // int etc
  3216 /* *************************************************************************
  3217  * Check for cycles in the constructor call graph.
  3218  **************************************************************************/
  3220     /** Check for cycles in the graph of constructors calling other
  3221      *  constructors.
  3222      */
  3223     void checkCyclicConstructors(JCClassDecl tree) {
  3224         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3226         // enter each constructor this-call into the map
  3227         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3228             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3229             if (app == null) continue;
  3230             JCMethodDecl meth = (JCMethodDecl) l.head;
  3231             if (TreeInfo.name(app.meth) == names._this) {
  3232                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3233             } else {
  3234                 meth.sym.flags_field |= ACYCLIC;
  3238         // Check for cycles in the map
  3239         Symbol[] ctors = new Symbol[0];
  3240         ctors = callMap.keySet().toArray(ctors);
  3241         for (Symbol caller : ctors) {
  3242             checkCyclicConstructor(tree, caller, callMap);
  3246     /** Look in the map to see if the given constructor is part of a
  3247      *  call cycle.
  3248      */
  3249     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3250                                         Map<Symbol,Symbol> callMap) {
  3251         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3252             if ((ctor.flags_field & LOCKED) != 0) {
  3253                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3254                           "recursive.ctor.invocation");
  3255             } else {
  3256                 ctor.flags_field |= LOCKED;
  3257                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3258                 ctor.flags_field &= ~LOCKED;
  3260             ctor.flags_field |= ACYCLIC;
  3264 /* *************************************************************************
  3265  * Miscellaneous
  3266  **************************************************************************/
  3268     /**
  3269      * Return the opcode of the operator but emit an error if it is an
  3270      * error.
  3271      * @param pos        position for error reporting.
  3272      * @param operator   an operator
  3273      * @param tag        a tree tag
  3274      * @param left       type of left hand side
  3275      * @param right      type of right hand side
  3276      */
  3277     int checkOperator(DiagnosticPosition pos,
  3278                        OperatorSymbol operator,
  3279                        JCTree.Tag tag,
  3280                        Type left,
  3281                        Type right) {
  3282         if (operator.opcode == ByteCodes.error) {
  3283             log.error(pos,
  3284                       "operator.cant.be.applied.1",
  3285                       treeinfo.operatorName(tag),
  3286                       left, right);
  3288         return operator.opcode;
  3292     /**
  3293      *  Check for division by integer constant zero
  3294      *  @param pos           Position for error reporting.
  3295      *  @param operator      The operator for the expression
  3296      *  @param operand       The right hand operand for the expression
  3297      */
  3298     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3299         if (operand.constValue() != null
  3300             && lint.isEnabled(LintCategory.DIVZERO)
  3301             && operand.getTag().isSubRangeOf(LONG)
  3302             && ((Number) (operand.constValue())).longValue() == 0) {
  3303             int opc = ((OperatorSymbol)operator).opcode;
  3304             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3305                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3306                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3311     /**
  3312      * Check for empty statements after if
  3313      */
  3314     void checkEmptyIf(JCIf tree) {
  3315         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3316                 lint.isEnabled(LintCategory.EMPTY))
  3317             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3320     /** Check that symbol is unique in given scope.
  3321      *  @param pos           Position for error reporting.
  3322      *  @param sym           The symbol.
  3323      *  @param s             The scope.
  3324      */
  3325     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3326         if (sym.type.isErroneous())
  3327             return true;
  3328         if (sym.owner.name == names.any) return false;
  3329         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3330             if (sym != e.sym &&
  3331                     (e.sym.flags() & CLASH) == 0 &&
  3332                     sym.kind == e.sym.kind &&
  3333                     sym.name != names.error &&
  3334                     (sym.kind != MTH ||
  3335                      types.hasSameArgs(sym.type, e.sym.type) ||
  3336                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3337                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3338                     varargsDuplicateError(pos, sym, e.sym);
  3339                     return true;
  3340                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3341                     duplicateErasureError(pos, sym, e.sym);
  3342                     sym.flags_field |= CLASH;
  3343                     return true;
  3344                 } else {
  3345                     duplicateError(pos, e.sym);
  3346                     return false;
  3350         return true;
  3353     /** Report duplicate declaration error.
  3354      */
  3355     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3356         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3357             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3361     /** Check that single-type import is not already imported or top-level defined,
  3362      *  but make an exception for two single-type imports which denote the same type.
  3363      *  @param pos           Position for error reporting.
  3364      *  @param sym           The symbol.
  3365      *  @param s             The scope
  3366      */
  3367     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3368         return checkUniqueImport(pos, sym, s, false);
  3371     /** Check that static single-type import is not already imported or top-level defined,
  3372      *  but make an exception for two single-type imports which denote the same type.
  3373      *  @param pos           Position for error reporting.
  3374      *  @param sym           The symbol.
  3375      *  @param s             The scope
  3376      */
  3377     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3378         return checkUniqueImport(pos, sym, s, true);
  3381     /** Check that single-type import is not already imported or top-level defined,
  3382      *  but make an exception for two single-type imports which denote the same type.
  3383      *  @param pos           Position for error reporting.
  3384      *  @param sym           The symbol.
  3385      *  @param s             The scope.
  3386      *  @param staticImport  Whether or not this was a static import
  3387      */
  3388     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3389         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3390             // is encountered class entered via a class declaration?
  3391             boolean isClassDecl = e.scope == s;
  3392             if ((isClassDecl || sym != e.sym) &&
  3393                 sym.kind == e.sym.kind &&
  3394                 sym.name != names.error &&
  3395                 (!staticImport || !e.isStaticallyImported())) {
  3396                 if (!e.sym.type.isErroneous()) {
  3397                     String what = e.sym.toString();
  3398                     if (!isClassDecl) {
  3399                         if (staticImport)
  3400                             log.error(pos, "already.defined.static.single.import", what);
  3401                         else
  3402                         log.error(pos, "already.defined.single.import", what);
  3404                     else if (sym != e.sym)
  3405                         log.error(pos, "already.defined.this.unit", what);
  3407                 return false;
  3410         return true;
  3413     /** Check that a qualified name is in canonical form (for import decls).
  3414      */
  3415     public void checkCanonical(JCTree tree) {
  3416         if (!isCanonical(tree))
  3417             log.error(tree.pos(), "import.requires.canonical",
  3418                       TreeInfo.symbol(tree));
  3420         // where
  3421         private boolean isCanonical(JCTree tree) {
  3422             while (tree.hasTag(SELECT)) {
  3423                 JCFieldAccess s = (JCFieldAccess) tree;
  3424                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3425                     return false;
  3426                 tree = s.selected;
  3428             return true;
  3431     /** Check that an auxiliary class is not accessed from any other file than its own.
  3432      */
  3433     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3434         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3435             (c.flags() & AUXILIARY) != 0 &&
  3436             rs.isAccessible(env, c) &&
  3437             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3439             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3440                         c, c.sourcefile);
  3444     private class ConversionWarner extends Warner {
  3445         final String uncheckedKey;
  3446         final Type found;
  3447         final Type expected;
  3448         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3449             super(pos);
  3450             this.uncheckedKey = uncheckedKey;
  3451             this.found = found;
  3452             this.expected = expected;
  3455         @Override
  3456         public void warn(LintCategory lint) {
  3457             boolean warned = this.warned;
  3458             super.warn(lint);
  3459             if (warned) return; // suppress redundant diagnostics
  3460             switch (lint) {
  3461                 case UNCHECKED:
  3462                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3463                     break;
  3464                 case VARARGS:
  3465                     if (method != null &&
  3466                             method.attribute(syms.trustMeType.tsym) != null &&
  3467                             isTrustMeAllowedOnMethod(method) &&
  3468                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3469                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3471                     break;
  3472                 default:
  3473                     throw new AssertionError("Unexpected lint: " + lint);
  3478     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3479         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3482     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3483         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial