src/share/classes/com/sun/tools/javac/comp/Check.java

Thu, 04 Feb 2010 10:14:28 -0800

author
jjg
date
Thu, 04 Feb 2010 10:14:28 -0800
changeset 489
4b4e282a3146
parent 479
da0e3e2dd3ef
child 505
87eb6edd4f21
permissions
-rw-r--r--

6923080: TreeScanner.visitNewClass should scan tree.typeargs
Reviewed-by: darcy

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Types types;
    64     private final JCDiagnostic.Factory diags;
    65     private final boolean skipAnnotations;
    66     private boolean warnOnSyntheticConflicts;
    67     private final TreeInfo treeinfo;
    69     // The set of lint options currently in effect. It is initialized
    70     // from the context, and then is set/reset as needed by Attr as it
    71     // visits all the various parts of the trees during attribution.
    72     private Lint lint;
    74     public static Check instance(Context context) {
    75         Check instance = context.get(checkKey);
    76         if (instance == null)
    77             instance = new Check(context);
    78         return instance;
    79     }
    81     protected Check(Context context) {
    82         context.put(checkKey, this);
    84         names = Names.instance(context);
    85         log = Log.instance(context);
    86         syms = Symtab.instance(context);
    87         infer = Infer.instance(context);
    88         this.types = Types.instance(context);
    89         diags = JCDiagnostic.Factory.instance(context);
    90         Options options = Options.instance(context);
    91         lint = Lint.instance(context);
    92         treeinfo = TreeInfo.instance(context);
    94         Source source = Source.instance(context);
    95         allowGenerics = source.allowGenerics();
    96         allowAnnotations = source.allowAnnotations();
    97         allowCovariantReturns = source.allowCovariantReturns();
    98         complexInference = options.get("-complexinference") != null;
    99         skipAnnotations = options.get("skipAnnotations") != null;
   100         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   102         Target target = Target.instance(context);
   103         syntheticNameChar = target.syntheticNameChar();
   105         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   106         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   107         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   108         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   110         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   111                 enforceMandatoryWarnings, "deprecated");
   112         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   113                 enforceMandatoryWarnings, "unchecked");
   114         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   115                 enforceMandatoryWarnings, "sunapi");
   116     }
   118     /** Switch: generics enabled?
   119      */
   120     boolean allowGenerics;
   122     /** Switch: annotations enabled?
   123      */
   124     boolean allowAnnotations;
   126     /** Switch: covariant returns enabled?
   127      */
   128     boolean allowCovariantReturns;
   130     /** Switch: -complexinference option set?
   131      */
   132     boolean complexInference;
   134     /** Character for synthetic names
   135      */
   136     char syntheticNameChar;
   138     /** A table mapping flat names of all compiled classes in this run to their
   139      *  symbols; maintained from outside.
   140      */
   141     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   143     /** A handler for messages about deprecated usage.
   144      */
   145     private MandatoryWarningHandler deprecationHandler;
   147     /** A handler for messages about unchecked or unsafe usage.
   148      */
   149     private MandatoryWarningHandler uncheckedHandler;
   151     /** A handler for messages about using Sun proprietary API.
   152      */
   153     private MandatoryWarningHandler sunApiHandler;
   155 /* *************************************************************************
   156  * Errors and Warnings
   157  **************************************************************************/
   159     Lint setLint(Lint newLint) {
   160         Lint prev = lint;
   161         lint = newLint;
   162         return prev;
   163     }
   165     /** Warn about deprecated symbol.
   166      *  @param pos        Position to be used for error reporting.
   167      *  @param sym        The deprecated symbol.
   168      */
   169     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   170         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   171             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   172     }
   174     /** Warn about unchecked operation.
   175      *  @param pos        Position to be used for error reporting.
   176      *  @param msg        A string describing the problem.
   177      */
   178     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   179         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   180             uncheckedHandler.report(pos, msg, args);
   181     }
   183     /** Warn about using Sun proprietary API.
   184      *  @param pos        Position to be used for error reporting.
   185      *  @param msg        A string describing the problem.
   186      */
   187     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   188         if (!lint.isSuppressed(LintCategory.SUNAPI))
   189             sunApiHandler.report(pos, msg, args);
   190     }
   192     /**
   193      * Report any deferred diagnostics.
   194      */
   195     public void reportDeferredDiagnostics() {
   196         deprecationHandler.reportDeferredDiagnostic();
   197         uncheckedHandler.reportDeferredDiagnostic();
   198         sunApiHandler.reportDeferredDiagnostic();
   199     }
   202     /** Report a failure to complete a class.
   203      *  @param pos        Position to be used for error reporting.
   204      *  @param ex         The failure to report.
   205      */
   206     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   207         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   208         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   209         else return syms.errType;
   210     }
   212     /** Report a type error.
   213      *  @param pos        Position to be used for error reporting.
   214      *  @param problem    A string describing the error.
   215      *  @param found      The type that was found.
   216      *  @param req        The type that was required.
   217      */
   218     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   219         log.error(pos, "prob.found.req",
   220                   problem, found, req);
   221         return types.createErrorType(found);
   222     }
   224     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   225         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   226         return types.createErrorType(found);
   227     }
   229     /** Report an error that wrong type tag was found.
   230      *  @param pos        Position to be used for error reporting.
   231      *  @param required   An internationalized string describing the type tag
   232      *                    required.
   233      *  @param found      The type that was found.
   234      */
   235     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   236         // this error used to be raised by the parser,
   237         // but has been delayed to this point:
   238         if (found instanceof Type && ((Type)found).tag == VOID) {
   239             log.error(pos, "illegal.start.of.type");
   240             return syms.errType;
   241         }
   242         log.error(pos, "type.found.req", found, required);
   243         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   244     }
   246     /** Report an error that symbol cannot be referenced before super
   247      *  has been called.
   248      *  @param pos        Position to be used for error reporting.
   249      *  @param sym        The referenced symbol.
   250      */
   251     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   252         log.error(pos, "cant.ref.before.ctor.called", sym);
   253     }
   255     /** Report duplicate declaration error.
   256      */
   257     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   258         if (!sym.type.isErroneous()) {
   259             log.error(pos, "already.defined", sym, sym.location());
   260         }
   261     }
   263     /** Report array/varargs duplicate declaration
   264      */
   265     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   266         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   267             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   268         }
   269     }
   271 /* ************************************************************************
   272  * duplicate declaration checking
   273  *************************************************************************/
   275     /** Check that variable does not hide variable with same name in
   276      *  immediately enclosing local scope.
   277      *  @param pos           Position for error reporting.
   278      *  @param v             The symbol.
   279      *  @param s             The scope.
   280      */
   281     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   282         if (s.next != null) {
   283             for (Scope.Entry e = s.next.lookup(v.name);
   284                  e.scope != null && e.sym.owner == v.owner;
   285                  e = e.next()) {
   286                 if (e.sym.kind == VAR &&
   287                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   288                     v.name != names.error) {
   289                     duplicateError(pos, e.sym);
   290                     return;
   291                 }
   292             }
   293         }
   294     }
   296     /** Check that a class or interface does not hide a class or
   297      *  interface with same name in immediately enclosing local scope.
   298      *  @param pos           Position for error reporting.
   299      *  @param c             The symbol.
   300      *  @param s             The scope.
   301      */
   302     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   303         if (s.next != null) {
   304             for (Scope.Entry e = s.next.lookup(c.name);
   305                  e.scope != null && e.sym.owner == c.owner;
   306                  e = e.next()) {
   307                 if (e.sym.kind == TYP &&
   308                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   309                     c.name != names.error) {
   310                     duplicateError(pos, e.sym);
   311                     return;
   312                 }
   313             }
   314         }
   315     }
   317     /** Check that class does not have the same name as one of
   318      *  its enclosing classes, or as a class defined in its enclosing scope.
   319      *  return true if class is unique in its enclosing scope.
   320      *  @param pos           Position for error reporting.
   321      *  @param name          The class name.
   322      *  @param s             The enclosing scope.
   323      */
   324     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   325         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   326             if (e.sym.kind == TYP && e.sym.name != names.error) {
   327                 duplicateError(pos, e.sym);
   328                 return false;
   329             }
   330         }
   331         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   332             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   333                 duplicateError(pos, sym);
   334                 return true;
   335             }
   336         }
   337         return true;
   338     }
   340 /* *************************************************************************
   341  * Class name generation
   342  **************************************************************************/
   344     /** Return name of local class.
   345      *  This is of the form    <enclClass> $ n <classname>
   346      *  where
   347      *    enclClass is the flat name of the enclosing class,
   348      *    classname is the simple name of the local class
   349      */
   350     Name localClassName(ClassSymbol c) {
   351         for (int i=1; ; i++) {
   352             Name flatname = names.
   353                 fromString("" + c.owner.enclClass().flatname +
   354                            syntheticNameChar + i +
   355                            c.name);
   356             if (compiled.get(flatname) == null) return flatname;
   357         }
   358     }
   360 /* *************************************************************************
   361  * Type Checking
   362  **************************************************************************/
   364     /** Check that a given type is assignable to a given proto-type.
   365      *  If it is, return the type, otherwise return errType.
   366      *  @param pos        Position to be used for error reporting.
   367      *  @param found      The type that was found.
   368      *  @param req        The type that was required.
   369      */
   370     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   371         if (req.tag == ERROR)
   372             return req;
   373         if (req.tag == NONE)
   374             return found;
   375         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   376             return found;
   377         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   378             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   379         if (found.isSuperBound()) {
   380             log.error(pos, "assignment.from.super-bound", found);
   381             return types.createErrorType(found);
   382         }
   383         if (req.isExtendsBound()) {
   384             log.error(pos, "assignment.to.extends-bound", req);
   385             return types.createErrorType(found);
   386         }
   387         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   388     }
   390     Type checkReturnType(DiagnosticPosition pos, Type found, Type req) {
   391         if (found.tag == FORALL) {
   392             try {
   393                 return instantiatePoly(pos, (ForAll) found, req, convertWarner(pos, found, req));
   394             } catch (Infer.NoInstanceException ex) {
   395                 if (ex.isAmbiguous) {
   396                     JCDiagnostic d = ex.getDiagnostic();
   397                     log.error(pos,
   398                             "undetermined.type" + (d != null ? ".1" : ""),
   399                             found, d);
   400                     return types.createErrorType(req);
   401                 } else {
   402                     JCDiagnostic d = ex.getDiagnostic();
   403                     return typeError(pos,
   404                             diags.fragment("incompatible.types" + (d != null ? ".1" : ""), d),
   405                             found, req);
   406                 }
   407             } catch (Infer.InvalidInstanceException ex) {
   408                 JCDiagnostic d = ex.getDiagnostic();
   409                 log.error(pos, "invalid.inferred.types", ((ForAll)found).tvars, d);
   410                 return types.createErrorType(req);
   411             }
   412         } else {
   413             return checkType(pos, found, req);
   414         }
   415     }
   417     /** Instantiate polymorphic type to some prototype, unless
   418      *  prototype is `anyPoly' in which case polymorphic type
   419      *  is returned unchanged.
   420      */
   421     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   422         if (pt == Infer.anyPoly && complexInference) {
   423             return t;
   424         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   425             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   426             return instantiatePoly(pos, t, newpt, warn);
   427         } else if (pt.tag == ERROR) {
   428             return pt;
   429         } else {
   430             return infer.instantiateExpr(t, pt, warn);
   431         }
   432      }
   434     /** Check that a given type can be cast to a given target type.
   435      *  Return the result of the cast.
   436      *  @param pos        Position to be used for error reporting.
   437      *  @param found      The type that is being cast.
   438      *  @param req        The target type of the cast.
   439      */
   440     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   441         if (found.tag == FORALL) {
   442             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   443             return req;
   444         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   445             return req;
   446         } else {
   447             return typeError(pos,
   448                              diags.fragment("inconvertible.types"),
   449                              found, req);
   450         }
   451     }
   452 //where
   453         /** Is type a type variable, or a (possibly multi-dimensional) array of
   454          *  type variables?
   455          */
   456         boolean isTypeVar(Type t) {
   457             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   458         }
   460     /** Check that a type is within some bounds.
   461      *
   462      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   463      *  type argument.
   464      *  @param pos           Position to be used for error reporting.
   465      *  @param a             The type that should be bounded by bs.
   466      *  @param bs            The bound.
   467      */
   468     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   469          if (a.isUnbound()) {
   470              return;
   471          } else if (a.tag != WILDCARD) {
   472              a = types.upperBound(a);
   473              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   474                  if (!types.isSubtype(a, l.head)) {
   475                      log.error(pos, "not.within.bounds", a);
   476                      return;
   477                  }
   478              }
   479          } else if (a.isExtendsBound()) {
   480              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   481                  log.error(pos, "not.within.bounds", a);
   482          } else if (a.isSuperBound()) {
   483              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   484                  log.error(pos, "not.within.bounds", a);
   485          }
   486      }
   488     /** Check that a type is within some bounds.
   489      *
   490      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   491      *  type argument.
   492      *  @param pos           Position to be used for error reporting.
   493      *  @param a             The type that should be bounded by bs.
   494      *  @param bs            The bound.
   495      */
   496     private void checkCapture(JCTypeApply tree) {
   497         List<JCExpression> args = tree.getTypeArguments();
   498         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   499             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   500                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   501                 break;
   502             }
   503             args = args.tail;
   504         }
   505      }
   507     /** Check that type is different from 'void'.
   508      *  @param pos           Position to be used for error reporting.
   509      *  @param t             The type to be checked.
   510      */
   511     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   512         if (t.tag == VOID) {
   513             log.error(pos, "void.not.allowed.here");
   514             return types.createErrorType(t);
   515         } else {
   516             return t;
   517         }
   518     }
   520     /** Check that type is a class or interface type.
   521      *  @param pos           Position to be used for error reporting.
   522      *  @param t             The type to be checked.
   523      */
   524     Type checkClassType(DiagnosticPosition pos, Type t) {
   525         if (t.tag != CLASS && t.tag != ERROR)
   526             return typeTagError(pos,
   527                                 diags.fragment("type.req.class"),
   528                                 (t.tag == TYPEVAR)
   529                                 ? diags.fragment("type.parameter", t)
   530                                 : t);
   531         else
   532             return t;
   533     }
   535     /** Check that type is a class or interface type.
   536      *  @param pos           Position to be used for error reporting.
   537      *  @param t             The type to be checked.
   538      *  @param noBounds    True if type bounds are illegal here.
   539      */
   540     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   541         t = checkClassType(pos, t);
   542         if (noBounds && t.isParameterized()) {
   543             List<Type> args = t.getTypeArguments();
   544             while (args.nonEmpty()) {
   545                 if (args.head.tag == WILDCARD)
   546                     return typeTagError(pos,
   547                                         Log.getLocalizedString("type.req.exact"),
   548                                         args.head);
   549                 args = args.tail;
   550             }
   551         }
   552         return t;
   553     }
   555     /** Check that type is a valid type for a new expression. If the type contains
   556      * some uninferred type variables, instantiate them exploiting the expected
   557      * type.
   558      *
   559      *  @param pos           Position to be used for error reporting.
   560      *  @param t             The type to be checked.
   561      *  @param noBounds    True if type bounds are illegal here.
   562      *  @param pt          Expected type (used with diamond operator)
   563      */
   564     Type checkNewClassType(DiagnosticPosition pos, Type t, boolean noBounds, Type pt) {
   565         if (t.tag == FORALL) {
   566             try {
   567                 t = instantiatePoly(pos, (ForAll)t, pt, Warner.noWarnings);
   568             }
   569             catch (Infer.NoInstanceException ex) {
   570                 JCDiagnostic d = ex.getDiagnostic();
   571                 log.error(pos, "cant.apply.diamond", t.getTypeArguments(), d);
   572                 return types.createErrorType(pt);
   573             }
   574         }
   575         return checkClassType(pos, t, noBounds);
   576     }
   578     /** Check that type is a reifiable class, interface or array type.
   579      *  @param pos           Position to be used for error reporting.
   580      *  @param t             The type to be checked.
   581      */
   582     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   583         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   584             return typeTagError(pos,
   585                                 diags.fragment("type.req.class.array"),
   586                                 t);
   587         } else if (!types.isReifiable(t)) {
   588             log.error(pos, "illegal.generic.type.for.instof");
   589             return types.createErrorType(t);
   590         } else {
   591             return t;
   592         }
   593     }
   595     /** Check that type is a reference type, i.e. a class, interface or array type
   596      *  or a type variable.
   597      *  @param pos           Position to be used for error reporting.
   598      *  @param t             The type to be checked.
   599      */
   600     Type checkRefType(DiagnosticPosition pos, Type t) {
   601         switch (t.tag) {
   602         case CLASS:
   603         case ARRAY:
   604         case TYPEVAR:
   605         case WILDCARD:
   606         case ERROR:
   607             return t;
   608         default:
   609             return typeTagError(pos,
   610                                 diags.fragment("type.req.ref"),
   611                                 t);
   612         }
   613     }
   615     /** Check that each type is a reference type, i.e. a class, interface or array type
   616      *  or a type variable.
   617      *  @param trees         Original trees, used for error reporting.
   618      *  @param types         The types to be checked.
   619      */
   620     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   621         List<JCExpression> tl = trees;
   622         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   623             l.head = checkRefType(tl.head.pos(), l.head);
   624             tl = tl.tail;
   625         }
   626         return types;
   627     }
   629     /** Check that type is a null or reference type.
   630      *  @param pos           Position to be used for error reporting.
   631      *  @param t             The type to be checked.
   632      */
   633     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   634         switch (t.tag) {
   635         case CLASS:
   636         case ARRAY:
   637         case TYPEVAR:
   638         case WILDCARD:
   639         case BOT:
   640         case ERROR:
   641             return t;
   642         default:
   643             return typeTagError(pos,
   644                                 diags.fragment("type.req.ref"),
   645                                 t);
   646         }
   647     }
   649     /** Check that flag set does not contain elements of two conflicting sets. s
   650      *  Return true if it doesn't.
   651      *  @param pos           Position to be used for error reporting.
   652      *  @param flags         The set of flags to be checked.
   653      *  @param set1          Conflicting flags set #1.
   654      *  @param set2          Conflicting flags set #2.
   655      */
   656     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   657         if ((flags & set1) != 0 && (flags & set2) != 0) {
   658             log.error(pos,
   659                       "illegal.combination.of.modifiers",
   660                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   661                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   662             return false;
   663         } else
   664             return true;
   665     }
   667     /** Check that given modifiers are legal for given symbol and
   668      *  return modifiers together with any implicit modififiers for that symbol.
   669      *  Warning: we can't use flags() here since this method
   670      *  is called during class enter, when flags() would cause a premature
   671      *  completion.
   672      *  @param pos           Position to be used for error reporting.
   673      *  @param flags         The set of modifiers given in a definition.
   674      *  @param sym           The defined symbol.
   675      */
   676     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   677         long mask;
   678         long implicit = 0;
   679         switch (sym.kind) {
   680         case VAR:
   681             if (sym.owner.kind != TYP)
   682                 mask = LocalVarFlags;
   683             else if ((sym.owner.flags_field & INTERFACE) != 0)
   684                 mask = implicit = InterfaceVarFlags;
   685             else
   686                 mask = VarFlags;
   687             break;
   688         case MTH:
   689             if (sym.name == names.init) {
   690                 if ((sym.owner.flags_field & ENUM) != 0) {
   691                     // enum constructors cannot be declared public or
   692                     // protected and must be implicitly or explicitly
   693                     // private
   694                     implicit = PRIVATE;
   695                     mask = PRIVATE;
   696                 } else
   697                     mask = ConstructorFlags;
   698             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   699                 mask = implicit = InterfaceMethodFlags;
   700             else {
   701                 mask = MethodFlags;
   702             }
   703             // Imply STRICTFP if owner has STRICTFP set.
   704             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   705               implicit |= sym.owner.flags_field & STRICTFP;
   706             break;
   707         case TYP:
   708             if (sym.isLocal()) {
   709                 mask = LocalClassFlags;
   710                 if (sym.name.isEmpty()) { // Anonymous class
   711                     // Anonymous classes in static methods are themselves static;
   712                     // that's why we admit STATIC here.
   713                     mask |= STATIC;
   714                     // JLS: Anonymous classes are final.
   715                     implicit |= FINAL;
   716                 }
   717                 if ((sym.owner.flags_field & STATIC) == 0 &&
   718                     (flags & ENUM) != 0)
   719                     log.error(pos, "enums.must.be.static");
   720             } else if (sym.owner.kind == TYP) {
   721                 mask = MemberClassFlags;
   722                 if (sym.owner.owner.kind == PCK ||
   723                     (sym.owner.flags_field & STATIC) != 0)
   724                     mask |= STATIC;
   725                 else if ((flags & ENUM) != 0)
   726                     log.error(pos, "enums.must.be.static");
   727                 // Nested interfaces and enums are always STATIC (Spec ???)
   728                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   729             } else {
   730                 mask = ClassFlags;
   731             }
   732             // Interfaces are always ABSTRACT
   733             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   735             if ((flags & ENUM) != 0) {
   736                 // enums can't be declared abstract or final
   737                 mask &= ~(ABSTRACT | FINAL);
   738                 implicit |= implicitEnumFinalFlag(tree);
   739             }
   740             // Imply STRICTFP if owner has STRICTFP set.
   741             implicit |= sym.owner.flags_field & STRICTFP;
   742             break;
   743         default:
   744             throw new AssertionError();
   745         }
   746         long illegal = flags & StandardFlags & ~mask;
   747         if (illegal != 0) {
   748             if ((illegal & INTERFACE) != 0) {
   749                 log.error(pos, "intf.not.allowed.here");
   750                 mask |= INTERFACE;
   751             }
   752             else {
   753                 log.error(pos,
   754                           "mod.not.allowed.here", asFlagSet(illegal));
   755             }
   756         }
   757         else if ((sym.kind == TYP ||
   758                   // ISSUE: Disallowing abstract&private is no longer appropriate
   759                   // in the presence of inner classes. Should it be deleted here?
   760                   checkDisjoint(pos, flags,
   761                                 ABSTRACT,
   762                                 PRIVATE | STATIC))
   763                  &&
   764                  checkDisjoint(pos, flags,
   765                                ABSTRACT | INTERFACE,
   766                                FINAL | NATIVE | SYNCHRONIZED)
   767                  &&
   768                  checkDisjoint(pos, flags,
   769                                PUBLIC,
   770                                PRIVATE | PROTECTED)
   771                  &&
   772                  checkDisjoint(pos, flags,
   773                                PRIVATE,
   774                                PUBLIC | PROTECTED)
   775                  &&
   776                  checkDisjoint(pos, flags,
   777                                FINAL,
   778                                VOLATILE)
   779                  &&
   780                  (sym.kind == TYP ||
   781                   checkDisjoint(pos, flags,
   782                                 ABSTRACT | NATIVE,
   783                                 STRICTFP))) {
   784             // skip
   785         }
   786         return flags & (mask | ~StandardFlags) | implicit;
   787     }
   790     /** Determine if this enum should be implicitly final.
   791      *
   792      *  If the enum has no specialized enum contants, it is final.
   793      *
   794      *  If the enum does have specialized enum contants, it is
   795      *  <i>not</i> final.
   796      */
   797     private long implicitEnumFinalFlag(JCTree tree) {
   798         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   799         class SpecialTreeVisitor extends JCTree.Visitor {
   800             boolean specialized;
   801             SpecialTreeVisitor() {
   802                 this.specialized = false;
   803             };
   805             @Override
   806             public void visitTree(JCTree tree) { /* no-op */ }
   808             @Override
   809             public void visitVarDef(JCVariableDecl tree) {
   810                 if ((tree.mods.flags & ENUM) != 0) {
   811                     if (tree.init instanceof JCNewClass &&
   812                         ((JCNewClass) tree.init).def != null) {
   813                         specialized = true;
   814                     }
   815                 }
   816             }
   817         }
   819         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   820         JCClassDecl cdef = (JCClassDecl) tree;
   821         for (JCTree defs: cdef.defs) {
   822             defs.accept(sts);
   823             if (sts.specialized) return 0;
   824         }
   825         return FINAL;
   826     }
   828 /* *************************************************************************
   829  * Type Validation
   830  **************************************************************************/
   832     /** Validate a type expression. That is,
   833      *  check that all type arguments of a parametric type are within
   834      *  their bounds. This must be done in a second phase after type attributon
   835      *  since a class might have a subclass as type parameter bound. E.g:
   836      *
   837      *  class B<A extends C> { ... }
   838      *  class C extends B<C> { ... }
   839      *
   840      *  and we can't make sure that the bound is already attributed because
   841      *  of possible cycles.
   842      */
   843     private Validator validator = new Validator();
   845     /** Visitor method: Validate a type expression, if it is not null, catching
   846      *  and reporting any completion failures.
   847      */
   848     void validate(JCTree tree, Env<AttrContext> env) {
   849         try {
   850             if (tree != null) {
   851                 validator.env = env;
   852                 tree.accept(validator);
   853                 checkRaw(tree, env);
   854             }
   855         } catch (CompletionFailure ex) {
   856             completionError(tree.pos(), ex);
   857         }
   858     }
   859     //where
   860     void checkRaw(JCTree tree, Env<AttrContext> env) {
   861         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   862             tree.type.tag == CLASS &&
   863             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   864             tree.type.isRaw()) {
   865             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   866         }
   867     }
   869     /** Visitor method: Validate a list of type expressions.
   870      */
   871     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   872         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   873             validate(l.head, env);
   874     }
   876     /** A visitor class for type validation.
   877      */
   878     class Validator extends JCTree.Visitor {
   880         @Override
   881         public void visitTypeArray(JCArrayTypeTree tree) {
   882             validate(tree.elemtype, env);
   883         }
   885         @Override
   886         public void visitTypeApply(JCTypeApply tree) {
   887             if (tree.type.tag == CLASS) {
   888                 List<Type> formals = tree.type.tsym.type.allparams();
   889                 List<Type> actuals = tree.type.allparams();
   890                 List<JCExpression> args = tree.arguments;
   891                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   892                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   894                 // For matching pairs of actual argument types `a' and
   895                 // formal type parameters with declared bound `b' ...
   896                 while (args.nonEmpty() && forms.nonEmpty()) {
   897                     validate(args.head, env);
   899                     // exact type arguments needs to know their
   900                     // bounds (for upper and lower bound
   901                     // calculations).  So we create new TypeVars with
   902                     // bounds substed with actuals.
   903                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   904                                                       formals,
   905                                                       actuals));
   907                     args = args.tail;
   908                     forms = forms.tail;
   909                 }
   911                 args = tree.arguments;
   912                 List<Type> tvars_cap = types.substBounds(formals,
   913                                           formals,
   914                                           types.capture(tree.type).allparams());
   915                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   916                     // Let the actual arguments know their bound
   917                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   918                     args = args.tail;
   919                     tvars_cap = tvars_cap.tail;
   920                 }
   922                 args = tree.arguments;
   923                 List<TypeVar> tvars = tvars_buf.toList();
   925                 while (args.nonEmpty() && tvars.nonEmpty()) {
   926                     checkExtends(args.head.pos(),
   927                                  args.head.type,
   928                                  tvars.head);
   929                     args = args.tail;
   930                     tvars = tvars.tail;
   931                 }
   933                 checkCapture(tree);
   934             }
   935             if (tree.type.tag == CLASS || tree.type.tag == FORALL) {
   936                 // Check that this type is either fully parameterized, or
   937                 // not parameterized at all.
   938                 if (tree.type.getEnclosingType().isRaw())
   939                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   940                 if (tree.clazz.getTag() == JCTree.SELECT)
   941                     visitSelectInternal((JCFieldAccess)tree.clazz);
   942             }
   943         }
   945         @Override
   946         public void visitTypeParameter(JCTypeParameter tree) {
   947             validate(tree.bounds, env);
   948             checkClassBounds(tree.pos(), tree.type);
   949         }
   951         @Override
   952         public void visitWildcard(JCWildcard tree) {
   953             if (tree.inner != null)
   954                 validate(tree.inner, env);
   955         }
   957         @Override
   958         public void visitSelect(JCFieldAccess tree) {
   959             if (tree.type.tag == CLASS) {
   960                 visitSelectInternal(tree);
   962                 // Check that this type is either fully parameterized, or
   963                 // not parameterized at all.
   964                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   965                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   966             }
   967         }
   968         public void visitSelectInternal(JCFieldAccess tree) {
   969             if (tree.type.tsym.isStatic() &&
   970                 tree.selected.type.isParameterized()) {
   971                 // The enclosing type is not a class, so we are
   972                 // looking at a static member type.  However, the
   973                 // qualifying expression is parameterized.
   974                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   975             } else {
   976                 // otherwise validate the rest of the expression
   977                 tree.selected.accept(this);
   978             }
   979         }
   981         @Override
   982         public void visitAnnotatedType(JCAnnotatedType tree) {
   983             tree.underlyingType.accept(this);
   984         }
   986         /** Default visitor method: do nothing.
   987          */
   988         @Override
   989         public void visitTree(JCTree tree) {
   990         }
   992         Env<AttrContext> env;
   993     }
   995 /* *************************************************************************
   996  * Exception checking
   997  **************************************************************************/
   999     /* The following methods treat classes as sets that contain
  1000      * the class itself and all their subclasses
  1001      */
  1003     /** Is given type a subtype of some of the types in given list?
  1004      */
  1005     boolean subset(Type t, List<Type> ts) {
  1006         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1007             if (types.isSubtype(t, l.head)) return true;
  1008         return false;
  1011     /** Is given type a subtype or supertype of
  1012      *  some of the types in given list?
  1013      */
  1014     boolean intersects(Type t, List<Type> ts) {
  1015         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1016             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1017         return false;
  1020     /** Add type set to given type list, unless it is a subclass of some class
  1021      *  in the list.
  1022      */
  1023     List<Type> incl(Type t, List<Type> ts) {
  1024         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1027     /** Remove type set from type set list.
  1028      */
  1029     List<Type> excl(Type t, List<Type> ts) {
  1030         if (ts.isEmpty()) {
  1031             return ts;
  1032         } else {
  1033             List<Type> ts1 = excl(t, ts.tail);
  1034             if (types.isSubtype(ts.head, t)) return ts1;
  1035             else if (ts1 == ts.tail) return ts;
  1036             else return ts1.prepend(ts.head);
  1040     /** Form the union of two type set lists.
  1041      */
  1042     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1043         List<Type> ts = ts1;
  1044         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1045             ts = incl(l.head, ts);
  1046         return ts;
  1049     /** Form the difference of two type lists.
  1050      */
  1051     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1052         List<Type> ts = ts1;
  1053         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1054             ts = excl(l.head, ts);
  1055         return ts;
  1058     /** Form the intersection of two type lists.
  1059      */
  1060     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1061         List<Type> ts = List.nil();
  1062         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1063             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1064         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1065             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1066         return ts;
  1069     /** Is exc an exception symbol that need not be declared?
  1070      */
  1071     boolean isUnchecked(ClassSymbol exc) {
  1072         return
  1073             exc.kind == ERR ||
  1074             exc.isSubClass(syms.errorType.tsym, types) ||
  1075             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1078     /** Is exc an exception type that need not be declared?
  1079      */
  1080     boolean isUnchecked(Type exc) {
  1081         return
  1082             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1083             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1084             exc.tag == BOT;
  1087     /** Same, but handling completion failures.
  1088      */
  1089     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1090         try {
  1091             return isUnchecked(exc);
  1092         } catch (CompletionFailure ex) {
  1093             completionError(pos, ex);
  1094             return true;
  1098     /** Is exc handled by given exception list?
  1099      */
  1100     boolean isHandled(Type exc, List<Type> handled) {
  1101         return isUnchecked(exc) || subset(exc, handled);
  1104     /** Return all exceptions in thrown list that are not in handled list.
  1105      *  @param thrown     The list of thrown exceptions.
  1106      *  @param handled    The list of handled exceptions.
  1107      */
  1108     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1109         List<Type> unhandled = List.nil();
  1110         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1111             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1112         return unhandled;
  1115 /* *************************************************************************
  1116  * Overriding/Implementation checking
  1117  **************************************************************************/
  1119     /** The level of access protection given by a flag set,
  1120      *  where PRIVATE is highest and PUBLIC is lowest.
  1121      */
  1122     static int protection(long flags) {
  1123         switch ((short)(flags & AccessFlags)) {
  1124         case PRIVATE: return 3;
  1125         case PROTECTED: return 1;
  1126         default:
  1127         case PUBLIC: return 0;
  1128         case 0: return 2;
  1132     /** A customized "cannot override" error message.
  1133      *  @param m      The overriding method.
  1134      *  @param other  The overridden method.
  1135      *  @return       An internationalized string.
  1136      */
  1137     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1138         String key;
  1139         if ((other.owner.flags() & INTERFACE) == 0)
  1140             key = "cant.override";
  1141         else if ((m.owner.flags() & INTERFACE) == 0)
  1142             key = "cant.implement";
  1143         else
  1144             key = "clashes.with";
  1145         return diags.fragment(key, m, m.location(), other, other.location());
  1148     /** A customized "override" warning message.
  1149      *  @param m      The overriding method.
  1150      *  @param other  The overridden method.
  1151      *  @return       An internationalized string.
  1152      */
  1153     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1154         String key;
  1155         if ((other.owner.flags() & INTERFACE) == 0)
  1156             key = "unchecked.override";
  1157         else if ((m.owner.flags() & INTERFACE) == 0)
  1158             key = "unchecked.implement";
  1159         else
  1160             key = "unchecked.clash.with";
  1161         return diags.fragment(key, m, m.location(), other, other.location());
  1164     /** A customized "override" warning message.
  1165      *  @param m      The overriding method.
  1166      *  @param other  The overridden method.
  1167      *  @return       An internationalized string.
  1168      */
  1169     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1170         String key;
  1171         if ((other.owner.flags() & INTERFACE) == 0)
  1172             key = "varargs.override";
  1173         else  if ((m.owner.flags() & INTERFACE) == 0)
  1174             key = "varargs.implement";
  1175         else
  1176             key = "varargs.clash.with";
  1177         return diags.fragment(key, m, m.location(), other, other.location());
  1180     /** Check that this method conforms with overridden method 'other'.
  1181      *  where `origin' is the class where checking started.
  1182      *  Complications:
  1183      *  (1) Do not check overriding of synthetic methods
  1184      *      (reason: they might be final).
  1185      *      todo: check whether this is still necessary.
  1186      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1187      *      than the method it implements. Augment the proxy methods with the
  1188      *      undeclared exceptions in this case.
  1189      *  (3) When generics are enabled, admit the case where an interface proxy
  1190      *      has a result type
  1191      *      extended by the result type of the method it implements.
  1192      *      Change the proxies result type to the smaller type in this case.
  1194      *  @param tree         The tree from which positions
  1195      *                      are extracted for errors.
  1196      *  @param m            The overriding method.
  1197      *  @param other        The overridden method.
  1198      *  @param origin       The class of which the overriding method
  1199      *                      is a member.
  1200      */
  1201     void checkOverride(JCTree tree,
  1202                        MethodSymbol m,
  1203                        MethodSymbol other,
  1204                        ClassSymbol origin) {
  1205         // Don't check overriding of synthetic methods or by bridge methods.
  1206         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1207             return;
  1210         // Error if static method overrides instance method (JLS 8.4.6.2).
  1211         if ((m.flags() & STATIC) != 0 &&
  1212                    (other.flags() & STATIC) == 0) {
  1213             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1214                       cannotOverride(m, other));
  1215             return;
  1218         // Error if instance method overrides static or final
  1219         // method (JLS 8.4.6.1).
  1220         if ((other.flags() & FINAL) != 0 ||
  1221                  (m.flags() & STATIC) == 0 &&
  1222                  (other.flags() & STATIC) != 0) {
  1223             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1224                       cannotOverride(m, other),
  1225                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1226             return;
  1229         if ((m.owner.flags() & ANNOTATION) != 0) {
  1230             // handled in validateAnnotationMethod
  1231             return;
  1234         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1235         if ((origin.flags() & INTERFACE) == 0 &&
  1236                  protection(m.flags()) > protection(other.flags())) {
  1237             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1238                       cannotOverride(m, other),
  1239                       other.flags() == 0 ?
  1240                           Flag.PACKAGE :
  1241                           asFlagSet(other.flags() & AccessFlags));
  1242             return;
  1245         Type mt = types.memberType(origin.type, m);
  1246         Type ot = types.memberType(origin.type, other);
  1247         // Error if overriding result type is different
  1248         // (or, in the case of generics mode, not a subtype) of
  1249         // overridden result type. We have to rename any type parameters
  1250         // before comparing types.
  1251         List<Type> mtvars = mt.getTypeArguments();
  1252         List<Type> otvars = ot.getTypeArguments();
  1253         Type mtres = mt.getReturnType();
  1254         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1256         overrideWarner.warned = false;
  1257         boolean resultTypesOK =
  1258             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1259         if (!resultTypesOK) {
  1260             if (!allowCovariantReturns &&
  1261                 m.owner != origin &&
  1262                 m.owner.isSubClass(other.owner, types)) {
  1263                 // allow limited interoperability with covariant returns
  1264             } else {
  1265                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1266                           "override.incompatible.ret",
  1267                           cannotOverride(m, other),
  1268                           mtres, otres);
  1269                 return;
  1271         } else if (overrideWarner.warned) {
  1272             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1273                     "override.unchecked.ret",
  1274                     uncheckedOverrides(m, other),
  1275                     mtres, otres);
  1278         // Error if overriding method throws an exception not reported
  1279         // by overridden method.
  1280         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1281         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1282         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1283         if (unhandledErased.nonEmpty()) {
  1284             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1285                       "override.meth.doesnt.throw",
  1286                       cannotOverride(m, other),
  1287                       unhandledUnerased.head);
  1288             return;
  1290         else if (unhandledUnerased.nonEmpty()) {
  1291             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1292                           "override.unchecked.thrown",
  1293                          cannotOverride(m, other),
  1294                          unhandledUnerased.head);
  1295             return;
  1298         // Optional warning if varargs don't agree
  1299         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1300             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1301             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1302                         ((m.flags() & Flags.VARARGS) != 0)
  1303                         ? "override.varargs.missing"
  1304                         : "override.varargs.extra",
  1305                         varargsOverrides(m, other));
  1308         // Warn if instance method overrides bridge method (compiler spec ??)
  1309         if ((other.flags() & BRIDGE) != 0) {
  1310             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1311                         uncheckedOverrides(m, other));
  1314         // Warn if a deprecated method overridden by a non-deprecated one.
  1315         if ((other.flags() & DEPRECATED) != 0
  1316             && (m.flags() & DEPRECATED) == 0
  1317             && m.outermostClass() != other.outermostClass()
  1318             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1319             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1322     // where
  1323         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1324             // If the method, m, is defined in an interface, then ignore the issue if the method
  1325             // is only inherited via a supertype and also implemented in the supertype,
  1326             // because in that case, we will rediscover the issue when examining the method
  1327             // in the supertype.
  1328             // If the method, m, is not defined in an interface, then the only time we need to
  1329             // address the issue is when the method is the supertype implemementation: any other
  1330             // case, we will have dealt with when examining the supertype classes
  1331             ClassSymbol mc = m.enclClass();
  1332             Type st = types.supertype(origin.type);
  1333             if (st.tag != CLASS)
  1334                 return true;
  1335             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1337             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1338                 List<Type> intfs = types.interfaces(origin.type);
  1339                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1341             else
  1342                 return (stimpl != m);
  1346     // used to check if there were any unchecked conversions
  1347     Warner overrideWarner = new Warner();
  1349     /** Check that a class does not inherit two concrete methods
  1350      *  with the same signature.
  1351      *  @param pos          Position to be used for error reporting.
  1352      *  @param site         The class type to be checked.
  1353      */
  1354     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1355         Type sup = types.supertype(site);
  1356         if (sup.tag != CLASS) return;
  1358         for (Type t1 = sup;
  1359              t1.tsym.type.isParameterized();
  1360              t1 = types.supertype(t1)) {
  1361             for (Scope.Entry e1 = t1.tsym.members().elems;
  1362                  e1 != null;
  1363                  e1 = e1.sibling) {
  1364                 Symbol s1 = e1.sym;
  1365                 if (s1.kind != MTH ||
  1366                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1367                     !s1.isInheritedIn(site.tsym, types) ||
  1368                     ((MethodSymbol)s1).implementation(site.tsym,
  1369                                                       types,
  1370                                                       true) != s1)
  1371                     continue;
  1372                 Type st1 = types.memberType(t1, s1);
  1373                 int s1ArgsLength = st1.getParameterTypes().length();
  1374                 if (st1 == s1.type) continue;
  1376                 for (Type t2 = sup;
  1377                      t2.tag == CLASS;
  1378                      t2 = types.supertype(t2)) {
  1379                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1380                          e2.scope != null;
  1381                          e2 = e2.next()) {
  1382                         Symbol s2 = e2.sym;
  1383                         if (s2 == s1 ||
  1384                             s2.kind != MTH ||
  1385                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1386                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1387                             !s2.isInheritedIn(site.tsym, types) ||
  1388                             ((MethodSymbol)s2).implementation(site.tsym,
  1389                                                               types,
  1390                                                               true) != s2)
  1391                             continue;
  1392                         Type st2 = types.memberType(t2, s2);
  1393                         if (types.overrideEquivalent(st1, st2))
  1394                             log.error(pos, "concrete.inheritance.conflict",
  1395                                       s1, t1, s2, t2, sup);
  1402     /** Check that classes (or interfaces) do not each define an abstract
  1403      *  method with same name and arguments but incompatible return types.
  1404      *  @param pos          Position to be used for error reporting.
  1405      *  @param t1           The first argument type.
  1406      *  @param t2           The second argument type.
  1407      */
  1408     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1409                                             Type t1,
  1410                                             Type t2) {
  1411         return checkCompatibleAbstracts(pos, t1, t2,
  1412                                         types.makeCompoundType(t1, t2));
  1415     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1416                                             Type t1,
  1417                                             Type t2,
  1418                                             Type site) {
  1419         Symbol sym = firstIncompatibility(t1, t2, site);
  1420         if (sym != null) {
  1421             log.error(pos, "types.incompatible.diff.ret",
  1422                       t1, t2, sym.name +
  1423                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1424             return false;
  1426         return true;
  1429     /** Return the first method which is defined with same args
  1430      *  but different return types in two given interfaces, or null if none
  1431      *  exists.
  1432      *  @param t1     The first type.
  1433      *  @param t2     The second type.
  1434      *  @param site   The most derived type.
  1435      *  @returns symbol from t2 that conflicts with one in t1.
  1436      */
  1437     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1438         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1439         closure(t1, interfaces1);
  1440         Map<TypeSymbol,Type> interfaces2;
  1441         if (t1 == t2)
  1442             interfaces2 = interfaces1;
  1443         else
  1444             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1446         for (Type t3 : interfaces1.values()) {
  1447             for (Type t4 : interfaces2.values()) {
  1448                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1449                 if (s != null) return s;
  1452         return null;
  1455     /** Compute all the supertypes of t, indexed by type symbol. */
  1456     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1457         if (t.tag != CLASS) return;
  1458         if (typeMap.put(t.tsym, t) == null) {
  1459             closure(types.supertype(t), typeMap);
  1460             for (Type i : types.interfaces(t))
  1461                 closure(i, typeMap);
  1465     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1466     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1467         if (t.tag != CLASS) return;
  1468         if (typesSkip.get(t.tsym) != null) return;
  1469         if (typeMap.put(t.tsym, t) == null) {
  1470             closure(types.supertype(t), typesSkip, typeMap);
  1471             for (Type i : types.interfaces(t))
  1472                 closure(i, typesSkip, typeMap);
  1476     /** Return the first method in t2 that conflicts with a method from t1. */
  1477     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1478         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1479             Symbol s1 = e1.sym;
  1480             Type st1 = null;
  1481             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1482             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1483             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1484             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1485                 Symbol s2 = e2.sym;
  1486                 if (s1 == s2) continue;
  1487                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1488                 if (st1 == null) st1 = types.memberType(t1, s1);
  1489                 Type st2 = types.memberType(t2, s2);
  1490                 if (types.overrideEquivalent(st1, st2)) {
  1491                     List<Type> tvars1 = st1.getTypeArguments();
  1492                     List<Type> tvars2 = st2.getTypeArguments();
  1493                     Type rt1 = st1.getReturnType();
  1494                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1495                     boolean compat =
  1496                         types.isSameType(rt1, rt2) ||
  1497                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1498                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1499                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1500                          checkCommonOverriderIn(s1,s2,site);
  1501                     if (!compat) return s2;
  1505         return null;
  1507     //WHERE
  1508     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1509         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1510         Type st1 = types.memberType(site, s1);
  1511         Type st2 = types.memberType(site, s2);
  1512         closure(site, supertypes);
  1513         for (Type t : supertypes.values()) {
  1514             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1515                 Symbol s3 = e.sym;
  1516                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1517                 Type st3 = types.memberType(site,s3);
  1518                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1519                     if (s3.owner == site.tsym) {
  1520                         return true;
  1522                     List<Type> tvars1 = st1.getTypeArguments();
  1523                     List<Type> tvars2 = st2.getTypeArguments();
  1524                     List<Type> tvars3 = st3.getTypeArguments();
  1525                     Type rt1 = st1.getReturnType();
  1526                     Type rt2 = st2.getReturnType();
  1527                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1528                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1529                     boolean compat =
  1530                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1531                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1532                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1533                     if (compat)
  1534                         return true;
  1538         return false;
  1541     /** Check that a given method conforms with any method it overrides.
  1542      *  @param tree         The tree from which positions are extracted
  1543      *                      for errors.
  1544      *  @param m            The overriding method.
  1545      */
  1546     void checkOverride(JCTree tree, MethodSymbol m) {
  1547         ClassSymbol origin = (ClassSymbol)m.owner;
  1548         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1549             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1550                 log.error(tree.pos(), "enum.no.finalize");
  1551                 return;
  1553         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1554              t = types.supertype(t)) {
  1555             TypeSymbol c = t.tsym;
  1556             Scope.Entry e = c.members().lookup(m.name);
  1557             while (e.scope != null) {
  1558                 if (m.overrides(e.sym, origin, types, false))
  1559                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1560                 else if (e.sym.kind == MTH &&
  1561                         e.sym.isInheritedIn(origin, types) &&
  1562                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1563                         !m.isConstructor()) {
  1564                     Type er1 = m.erasure(types);
  1565                     Type er2 = e.sym.erasure(types);
  1566                     if (types.isSameTypes(er1.getParameterTypes(),
  1567                             er2.getParameterTypes())) {
  1568                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1569                                     "name.clash.same.erasure.no.override",
  1570                                     m, m.location(),
  1571                                     e.sym, e.sym.location());
  1574                 e = e.next();
  1579     /** Check that all abstract members of given class have definitions.
  1580      *  @param pos          Position to be used for error reporting.
  1581      *  @param c            The class.
  1582      */
  1583     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1584         try {
  1585             MethodSymbol undef = firstUndef(c, c);
  1586             if (undef != null) {
  1587                 if ((c.flags() & ENUM) != 0 &&
  1588                     types.supertype(c.type).tsym == syms.enumSym &&
  1589                     (c.flags() & FINAL) == 0) {
  1590                     // add the ABSTRACT flag to an enum
  1591                     c.flags_field |= ABSTRACT;
  1592                 } else {
  1593                     MethodSymbol undef1 =
  1594                         new MethodSymbol(undef.flags(), undef.name,
  1595                                          types.memberType(c.type, undef), undef.owner);
  1596                     log.error(pos, "does.not.override.abstract",
  1597                               c, undef1, undef1.location());
  1600         } catch (CompletionFailure ex) {
  1601             completionError(pos, ex);
  1604 //where
  1605         /** Return first abstract member of class `c' that is not defined
  1606          *  in `impl', null if there is none.
  1607          */
  1608         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1609             MethodSymbol undef = null;
  1610             // Do not bother to search in classes that are not abstract,
  1611             // since they cannot have abstract members.
  1612             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1613                 Scope s = c.members();
  1614                 for (Scope.Entry e = s.elems;
  1615                      undef == null && e != null;
  1616                      e = e.sibling) {
  1617                     if (e.sym.kind == MTH &&
  1618                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1619                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1620                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1621                         if (implmeth == null || implmeth == absmeth)
  1622                             undef = absmeth;
  1625                 if (undef == null) {
  1626                     Type st = types.supertype(c.type);
  1627                     if (st.tag == CLASS)
  1628                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1630                 for (List<Type> l = types.interfaces(c.type);
  1631                      undef == null && l.nonEmpty();
  1632                      l = l.tail) {
  1633                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1636             return undef;
  1639     /** Check for cyclic references. Issue an error if the
  1640      *  symbol of the type referred to has a LOCKED flag set.
  1642      *  @param pos      Position to be used for error reporting.
  1643      *  @param t        The type referred to.
  1644      */
  1645     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1646         checkNonCyclicInternal(pos, t);
  1650     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1651         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1654     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1655         final TypeVar tv;
  1656         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1657             return;
  1658         if (seen.contains(t)) {
  1659             tv = (TypeVar)t;
  1660             tv.bound = types.createErrorType(t);
  1661             log.error(pos, "cyclic.inheritance", t);
  1662         } else if (t.tag == TYPEVAR) {
  1663             tv = (TypeVar)t;
  1664             seen = seen.prepend(tv);
  1665             for (Type b : types.getBounds(tv))
  1666                 checkNonCyclic1(pos, b, seen);
  1670     /** Check for cyclic references. Issue an error if the
  1671      *  symbol of the type referred to has a LOCKED flag set.
  1673      *  @param pos      Position to be used for error reporting.
  1674      *  @param t        The type referred to.
  1675      *  @returns        True if the check completed on all attributed classes
  1676      */
  1677     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1678         boolean complete = true; // was the check complete?
  1679         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1680         Symbol c = t.tsym;
  1681         if ((c.flags_field & ACYCLIC) != 0) return true;
  1683         if ((c.flags_field & LOCKED) != 0) {
  1684             noteCyclic(pos, (ClassSymbol)c);
  1685         } else if (!c.type.isErroneous()) {
  1686             try {
  1687                 c.flags_field |= LOCKED;
  1688                 if (c.type.tag == CLASS) {
  1689                     ClassType clazz = (ClassType)c.type;
  1690                     if (clazz.interfaces_field != null)
  1691                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1692                             complete &= checkNonCyclicInternal(pos, l.head);
  1693                     if (clazz.supertype_field != null) {
  1694                         Type st = clazz.supertype_field;
  1695                         if (st != null && st.tag == CLASS)
  1696                             complete &= checkNonCyclicInternal(pos, st);
  1698                     if (c.owner.kind == TYP)
  1699                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1701             } finally {
  1702                 c.flags_field &= ~LOCKED;
  1705         if (complete)
  1706             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1707         if (complete) c.flags_field |= ACYCLIC;
  1708         return complete;
  1711     /** Note that we found an inheritance cycle. */
  1712     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1713         log.error(pos, "cyclic.inheritance", c);
  1714         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1715             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1716         Type st = types.supertype(c.type);
  1717         if (st.tag == CLASS)
  1718             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1719         c.type = types.createErrorType(c, c.type);
  1720         c.flags_field |= ACYCLIC;
  1723     /** Check that all methods which implement some
  1724      *  method conform to the method they implement.
  1725      *  @param tree         The class definition whose members are checked.
  1726      */
  1727     void checkImplementations(JCClassDecl tree) {
  1728         checkImplementations(tree, tree.sym);
  1730 //where
  1731         /** Check that all methods which implement some
  1732          *  method in `ic' conform to the method they implement.
  1733          */
  1734         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1735             ClassSymbol origin = tree.sym;
  1736             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1737                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1738                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1739                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1740                         if (e.sym.kind == MTH &&
  1741                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1742                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1743                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1744                             if (implmeth != null && implmeth != absmeth &&
  1745                                 (implmeth.owner.flags() & INTERFACE) ==
  1746                                 (origin.flags() & INTERFACE)) {
  1747                                 // don't check if implmeth is in a class, yet
  1748                                 // origin is an interface. This case arises only
  1749                                 // if implmeth is declared in Object. The reason is
  1750                                 // that interfaces really don't inherit from
  1751                                 // Object it's just that the compiler represents
  1752                                 // things that way.
  1753                                 checkOverride(tree, implmeth, absmeth, origin);
  1761     /** Check that all abstract methods implemented by a class are
  1762      *  mutually compatible.
  1763      *  @param pos          Position to be used for error reporting.
  1764      *  @param c            The class whose interfaces are checked.
  1765      */
  1766     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1767         List<Type> supertypes = types.interfaces(c);
  1768         Type supertype = types.supertype(c);
  1769         if (supertype.tag == CLASS &&
  1770             (supertype.tsym.flags() & ABSTRACT) != 0)
  1771             supertypes = supertypes.prepend(supertype);
  1772         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1773             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1774                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1775                 return;
  1776             for (List<Type> m = supertypes; m != l; m = m.tail)
  1777                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1778                     return;
  1780         checkCompatibleConcretes(pos, c);
  1783     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1784         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1785             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1786                 // VM allows methods and variables with differing types
  1787                 if (sym.kind == e.sym.kind &&
  1788                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1789                     sym != e.sym &&
  1790                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1791                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1792                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1793                     return;
  1799     /** Report a conflict between a user symbol and a synthetic symbol.
  1800      */
  1801     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1802         if (!sym.type.isErroneous()) {
  1803             if (warnOnSyntheticConflicts) {
  1804                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1806             else {
  1807                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1812     /** Check that class c does not implement directly or indirectly
  1813      *  the same parameterized interface with two different argument lists.
  1814      *  @param pos          Position to be used for error reporting.
  1815      *  @param type         The type whose interfaces are checked.
  1816      */
  1817     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1818         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1820 //where
  1821         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1822          *  with their class symbol as key and their type as value. Make
  1823          *  sure no class is entered with two different types.
  1824          */
  1825         void checkClassBounds(DiagnosticPosition pos,
  1826                               Map<TypeSymbol,Type> seensofar,
  1827                               Type type) {
  1828             if (type.isErroneous()) return;
  1829             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1830                 Type it = l.head;
  1831                 Type oldit = seensofar.put(it.tsym, it);
  1832                 if (oldit != null) {
  1833                     List<Type> oldparams = oldit.allparams();
  1834                     List<Type> newparams = it.allparams();
  1835                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1836                         log.error(pos, "cant.inherit.diff.arg",
  1837                                   it.tsym, Type.toString(oldparams),
  1838                                   Type.toString(newparams));
  1840                 checkClassBounds(pos, seensofar, it);
  1842             Type st = types.supertype(type);
  1843             if (st != null) checkClassBounds(pos, seensofar, st);
  1846     /** Enter interface into into set.
  1847      *  If it existed already, issue a "repeated interface" error.
  1848      */
  1849     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1850         if (its.contains(it))
  1851             log.error(pos, "repeated.interface");
  1852         else {
  1853             its.add(it);
  1857 /* *************************************************************************
  1858  * Check annotations
  1859  **************************************************************************/
  1861     /** Annotation types are restricted to primitives, String, an
  1862      *  enum, an annotation, Class, Class<?>, Class<? extends
  1863      *  Anything>, arrays of the preceding.
  1864      */
  1865     void validateAnnotationType(JCTree restype) {
  1866         // restype may be null if an error occurred, so don't bother validating it
  1867         if (restype != null) {
  1868             validateAnnotationType(restype.pos(), restype.type);
  1872     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1873         if (type.isPrimitive()) return;
  1874         if (types.isSameType(type, syms.stringType)) return;
  1875         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1876         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1877         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1878         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1879             validateAnnotationType(pos, types.elemtype(type));
  1880             return;
  1882         log.error(pos, "invalid.annotation.member.type");
  1885     /**
  1886      * "It is also a compile-time error if any method declared in an
  1887      * annotation type has a signature that is override-equivalent to
  1888      * that of any public or protected method declared in class Object
  1889      * or in the interface annotation.Annotation."
  1891      * @jls3 9.6 Annotation Types
  1892      */
  1893     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1894         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1895             Scope s = sup.tsym.members();
  1896             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1897                 if (e.sym.kind == MTH &&
  1898                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1899                     types.overrideEquivalent(m.type, e.sym.type))
  1900                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1905     /** Check the annotations of a symbol.
  1906      */
  1907     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1908         if (skipAnnotations) return;
  1909         for (JCAnnotation a : annotations)
  1910             validateAnnotation(a, s);
  1913     /** Check the type annotations
  1914      */
  1915     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  1916         if (skipAnnotations) return;
  1917         for (JCTypeAnnotation a : annotations)
  1918             validateTypeAnnotation(a, isTypeParameter);
  1921     /** Check an annotation of a symbol.
  1922      */
  1923     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1924         validateAnnotation(a);
  1926         if (!annotationApplicable(a, s))
  1927             log.error(a.pos(), "annotation.type.not.applicable");
  1929         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1930             if (!isOverrider(s))
  1931                 log.error(a.pos(), "method.does.not.override.superclass");
  1935     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1936         if (a.type == null)
  1937             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  1938         validateAnnotation(a);
  1940         if (!isTypeAnnotation(a, isTypeParameter))
  1941             log.error(a.pos(), "annotation.type.not.applicable");
  1944     /** Is s a method symbol that overrides a method in a superclass? */
  1945     boolean isOverrider(Symbol s) {
  1946         if (s.kind != MTH || s.isStatic())
  1947             return false;
  1948         MethodSymbol m = (MethodSymbol)s;
  1949         TypeSymbol owner = (TypeSymbol)m.owner;
  1950         for (Type sup : types.closure(owner.type)) {
  1951             if (sup == owner.type)
  1952                 continue; // skip "this"
  1953             Scope scope = sup.tsym.members();
  1954             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1955                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1956                     return true;
  1959         return false;
  1962     /** Is the annotation applicable to type annotations */
  1963     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1964         Attribute.Compound atTarget =
  1965             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1966         if (atTarget == null) return true;
  1967         Attribute atValue = atTarget.member(names.value);
  1968         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1969         Attribute.Array arr = (Attribute.Array) atValue;
  1970         for (Attribute app : arr.values) {
  1971             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1972             Attribute.Enum e = (Attribute.Enum) app;
  1973             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  1974                 return true;
  1975             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  1976                 return true;
  1978         return false;
  1981     /** Is the annotation applicable to the symbol? */
  1982     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1983         Attribute.Compound atTarget =
  1984             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1985         if (atTarget == null) return true;
  1986         Attribute atValue = atTarget.member(names.value);
  1987         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1988         Attribute.Array arr = (Attribute.Array) atValue;
  1989         for (Attribute app : arr.values) {
  1990             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1991             Attribute.Enum e = (Attribute.Enum) app;
  1992             if (e.value.name == names.TYPE)
  1993                 { if (s.kind == TYP) return true; }
  1994             else if (e.value.name == names.FIELD)
  1995                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1996             else if (e.value.name == names.METHOD)
  1997                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1998             else if (e.value.name == names.PARAMETER)
  1999                 { if (s.kind == VAR &&
  2000                       s.owner.kind == MTH &&
  2001                       (s.flags() & PARAMETER) != 0)
  2002                     return true;
  2004             else if (e.value.name == names.CONSTRUCTOR)
  2005                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2006             else if (e.value.name == names.LOCAL_VARIABLE)
  2007                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2008                       (s.flags() & PARAMETER) == 0)
  2009                     return true;
  2011             else if (e.value.name == names.ANNOTATION_TYPE)
  2012                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2013                     return true;
  2015             else if (e.value.name == names.PACKAGE)
  2016                 { if (s.kind == PCK) return true; }
  2017             else if (e.value.name == names.TYPE_USE)
  2018                 { if (s.kind == TYP ||
  2019                       s.kind == VAR ||
  2020                       (s.kind == MTH && !s.isConstructor() &&
  2021                        s.type.getReturnType().tag != VOID))
  2022                     return true;
  2024             else
  2025                 return true; // recovery
  2027         return false;
  2030     /** Check an annotation value.
  2031      */
  2032     public void validateAnnotation(JCAnnotation a) {
  2033         if (a.type.isErroneous()) return;
  2035         // collect an inventory of the members
  2036         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  2037         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2038              e != null;
  2039              e = e.sibling)
  2040             if (e.sym.kind == MTH)
  2041                 members.add((MethodSymbol) e.sym);
  2043         // count them off as they're annotated
  2044         for (JCTree arg : a.args) {
  2045             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2046             JCAssign assign = (JCAssign) arg;
  2047             Symbol m = TreeInfo.symbol(assign.lhs);
  2048             if (m == null || m.type.isErroneous()) continue;
  2049             if (!members.remove(m))
  2050                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2051                           m.name, a.type);
  2052             if (assign.rhs.getTag() == ANNOTATION)
  2053                 validateAnnotation((JCAnnotation)assign.rhs);
  2056         // all the remaining ones better have default values
  2057         for (MethodSymbol m : members)
  2058             if (m.defaultValue == null && !m.type.isErroneous())
  2059                 log.error(a.pos(), "annotation.missing.default.value",
  2060                           a.type, m.name);
  2062         // special case: java.lang.annotation.Target must not have
  2063         // repeated values in its value member
  2064         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2065             a.args.tail == null)
  2066             return;
  2068         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2069         JCAssign assign = (JCAssign) a.args.head;
  2070         Symbol m = TreeInfo.symbol(assign.lhs);
  2071         if (m.name != names.value) return;
  2072         JCTree rhs = assign.rhs;
  2073         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2074         JCNewArray na = (JCNewArray) rhs;
  2075         Set<Symbol> targets = new HashSet<Symbol>();
  2076         for (JCTree elem : na.elems) {
  2077             if (!targets.add(TreeInfo.symbol(elem))) {
  2078                 log.error(elem.pos(), "repeated.annotation.target");
  2083     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2084         if (allowAnnotations &&
  2085             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2086             (s.flags() & DEPRECATED) != 0 &&
  2087             !syms.deprecatedType.isErroneous() &&
  2088             s.attribute(syms.deprecatedType.tsym) == null) {
  2089             log.warning(pos, "missing.deprecated.annotation");
  2093 /* *************************************************************************
  2094  * Check for recursive annotation elements.
  2095  **************************************************************************/
  2097     /** Check for cycles in the graph of annotation elements.
  2098      */
  2099     void checkNonCyclicElements(JCClassDecl tree) {
  2100         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2101         assert (tree.sym.flags_field & LOCKED) == 0;
  2102         try {
  2103             tree.sym.flags_field |= LOCKED;
  2104             for (JCTree def : tree.defs) {
  2105                 if (def.getTag() != JCTree.METHODDEF) continue;
  2106                 JCMethodDecl meth = (JCMethodDecl)def;
  2107                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2109         } finally {
  2110             tree.sym.flags_field &= ~LOCKED;
  2111             tree.sym.flags_field |= ACYCLIC_ANN;
  2115     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2116         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2117             return;
  2118         if ((tsym.flags_field & LOCKED) != 0) {
  2119             log.error(pos, "cyclic.annotation.element");
  2120             return;
  2122         try {
  2123             tsym.flags_field |= LOCKED;
  2124             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2125                 Symbol s = e.sym;
  2126                 if (s.kind != Kinds.MTH)
  2127                     continue;
  2128                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2130         } finally {
  2131             tsym.flags_field &= ~LOCKED;
  2132             tsym.flags_field |= ACYCLIC_ANN;
  2136     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2137         switch (type.tag) {
  2138         case TypeTags.CLASS:
  2139             if ((type.tsym.flags() & ANNOTATION) != 0)
  2140                 checkNonCyclicElementsInternal(pos, type.tsym);
  2141             break;
  2142         case TypeTags.ARRAY:
  2143             checkAnnotationResType(pos, types.elemtype(type));
  2144             break;
  2145         default:
  2146             break; // int etc
  2150 /* *************************************************************************
  2151  * Check for cycles in the constructor call graph.
  2152  **************************************************************************/
  2154     /** Check for cycles in the graph of constructors calling other
  2155      *  constructors.
  2156      */
  2157     void checkCyclicConstructors(JCClassDecl tree) {
  2158         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2160         // enter each constructor this-call into the map
  2161         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2162             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2163             if (app == null) continue;
  2164             JCMethodDecl meth = (JCMethodDecl) l.head;
  2165             if (TreeInfo.name(app.meth) == names._this) {
  2166                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2167             } else {
  2168                 meth.sym.flags_field |= ACYCLIC;
  2172         // Check for cycles in the map
  2173         Symbol[] ctors = new Symbol[0];
  2174         ctors = callMap.keySet().toArray(ctors);
  2175         for (Symbol caller : ctors) {
  2176             checkCyclicConstructor(tree, caller, callMap);
  2180     /** Look in the map to see if the given constructor is part of a
  2181      *  call cycle.
  2182      */
  2183     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2184                                         Map<Symbol,Symbol> callMap) {
  2185         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2186             if ((ctor.flags_field & LOCKED) != 0) {
  2187                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2188                           "recursive.ctor.invocation");
  2189             } else {
  2190                 ctor.flags_field |= LOCKED;
  2191                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2192                 ctor.flags_field &= ~LOCKED;
  2194             ctor.flags_field |= ACYCLIC;
  2198 /* *************************************************************************
  2199  * Miscellaneous
  2200  **************************************************************************/
  2202     /**
  2203      * Return the opcode of the operator but emit an error if it is an
  2204      * error.
  2205      * @param pos        position for error reporting.
  2206      * @param operator   an operator
  2207      * @param tag        a tree tag
  2208      * @param left       type of left hand side
  2209      * @param right      type of right hand side
  2210      */
  2211     int checkOperator(DiagnosticPosition pos,
  2212                        OperatorSymbol operator,
  2213                        int tag,
  2214                        Type left,
  2215                        Type right) {
  2216         if (operator.opcode == ByteCodes.error) {
  2217             log.error(pos,
  2218                       "operator.cant.be.applied",
  2219                       treeinfo.operatorName(tag),
  2220                       List.of(left, right));
  2222         return operator.opcode;
  2226     /**
  2227      *  Check for division by integer constant zero
  2228      *  @param pos           Position for error reporting.
  2229      *  @param operator      The operator for the expression
  2230      *  @param operand       The right hand operand for the expression
  2231      */
  2232     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2233         if (operand.constValue() != null
  2234             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2235             && operand.tag <= LONG
  2236             && ((Number) (operand.constValue())).longValue() == 0) {
  2237             int opc = ((OperatorSymbol)operator).opcode;
  2238             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2239                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2240                 log.warning(pos, "div.zero");
  2245     /**
  2246      * Check for empty statements after if
  2247      */
  2248     void checkEmptyIf(JCIf tree) {
  2249         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2250             log.warning(tree.thenpart.pos(), "empty.if");
  2253     /** Check that symbol is unique in given scope.
  2254      *  @param pos           Position for error reporting.
  2255      *  @param sym           The symbol.
  2256      *  @param s             The scope.
  2257      */
  2258     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2259         if (sym.type.isErroneous())
  2260             return true;
  2261         if (sym.owner.name == names.any) return false;
  2262         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2263             if (sym != e.sym &&
  2264                 sym.kind == e.sym.kind &&
  2265                 sym.name != names.error &&
  2266                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2267                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2268                     varargsDuplicateError(pos, sym, e.sym);
  2269                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2270                     duplicateErasureError(pos, sym, e.sym);
  2271                 else
  2272                     duplicateError(pos, e.sym);
  2273                 return false;
  2276         return true;
  2278     //where
  2279     /** Report duplicate declaration error.
  2280      */
  2281     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2282         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2283             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2287     /** Check that single-type import is not already imported or top-level defined,
  2288      *  but make an exception for two single-type imports which denote the same type.
  2289      *  @param pos           Position for error reporting.
  2290      *  @param sym           The symbol.
  2291      *  @param s             The scope
  2292      */
  2293     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2294         return checkUniqueImport(pos, sym, s, false);
  2297     /** Check that static single-type import is not already imported or top-level defined,
  2298      *  but make an exception for two single-type imports which denote the same type.
  2299      *  @param pos           Position for error reporting.
  2300      *  @param sym           The symbol.
  2301      *  @param s             The scope
  2302      *  @param staticImport  Whether or not this was a static import
  2303      */
  2304     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2305         return checkUniqueImport(pos, sym, s, true);
  2308     /** Check that single-type import is not already imported or top-level defined,
  2309      *  but make an exception for two single-type imports which denote the same type.
  2310      *  @param pos           Position for error reporting.
  2311      *  @param sym           The symbol.
  2312      *  @param s             The scope.
  2313      *  @param staticImport  Whether or not this was a static import
  2314      */
  2315     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2316         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2317             // is encountered class entered via a class declaration?
  2318             boolean isClassDecl = e.scope == s;
  2319             if ((isClassDecl || sym != e.sym) &&
  2320                 sym.kind == e.sym.kind &&
  2321                 sym.name != names.error) {
  2322                 if (!e.sym.type.isErroneous()) {
  2323                     String what = e.sym.toString();
  2324                     if (!isClassDecl) {
  2325                         if (staticImport)
  2326                             log.error(pos, "already.defined.static.single.import", what);
  2327                         else
  2328                             log.error(pos, "already.defined.single.import", what);
  2330                     else if (sym != e.sym)
  2331                         log.error(pos, "already.defined.this.unit", what);
  2333                 return false;
  2336         return true;
  2339     /** Check that a qualified name is in canonical form (for import decls).
  2340      */
  2341     public void checkCanonical(JCTree tree) {
  2342         if (!isCanonical(tree))
  2343             log.error(tree.pos(), "import.requires.canonical",
  2344                       TreeInfo.symbol(tree));
  2346         // where
  2347         private boolean isCanonical(JCTree tree) {
  2348             while (tree.getTag() == JCTree.SELECT) {
  2349                 JCFieldAccess s = (JCFieldAccess) tree;
  2350                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2351                     return false;
  2352                 tree = s.selected;
  2354             return true;
  2357     private class ConversionWarner extends Warner {
  2358         final String key;
  2359         final Type found;
  2360         final Type expected;
  2361         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2362             super(pos);
  2363             this.key = key;
  2364             this.found = found;
  2365             this.expected = expected;
  2368         @Override
  2369         public void warnUnchecked() {
  2370             boolean warned = this.warned;
  2371             super.warnUnchecked();
  2372             if (warned) return; // suppress redundant diagnostics
  2373             Object problem = diags.fragment(key);
  2374             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2378     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2379         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2382     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2383         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial