src/share/classes/com/sun/tools/javac/code/Types.java

Thu, 21 Feb 2013 15:27:05 +0000

author
mcimadamore
date
Thu, 21 Feb 2013 15:27:05 +0000
changeset 1600
3fef0cae83b3
parent 1598
7ac9242d2ca6
child 1605
94e67bed460d
permissions
-rw-r--r--

8008444: Inherited generic functional descriptors are merged incorrectly
Summary: Missing call to Types.createMethodWithThrownTypes
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.Comparator;
    30 import java.util.HashSet;
    31 import java.util.HashMap;
    32 import java.util.Locale;
    33 import java.util.Map;
    34 import java.util.Set;
    35 import java.util.WeakHashMap;
    37 import javax.lang.model.type.TypeKind;
    39 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    42 import com.sun.tools.javac.comp.Check;
    43 import com.sun.tools.javac.jvm.ClassReader;
    44 import com.sun.tools.javac.util.*;
    45 import static com.sun.tools.javac.code.BoundKind.*;
    46 import static com.sun.tools.javac.code.Flags.*;
    47 import static com.sun.tools.javac.code.Scope.*;
    48 import static com.sun.tools.javac.code.Symbol.*;
    49 import static com.sun.tools.javac.code.Type.*;
    50 import static com.sun.tools.javac.code.TypeTag.*;
    51 import static com.sun.tools.javac.jvm.ClassFile.externalize;
    52 import static com.sun.tools.javac.util.ListBuffer.lb;
    54 /**
    55  * Utility class containing various operations on types.
    56  *
    57  * <p>Unless other names are more illustrative, the following naming
    58  * conventions should be observed in this file:
    59  *
    60  * <dl>
    61  * <dt>t</dt>
    62  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    63  * <dt>s</dt>
    64  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    65  * <dt>ts</dt>
    66  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    67  * <dt>ss</dt>
    68  * <dd>A second list of types should be named ss.</dd>
    69  * </dl>
    70  *
    71  * <p><b>This is NOT part of any supported API.
    72  * If you write code that depends on this, you do so at your own risk.
    73  * This code and its internal interfaces are subject to change or
    74  * deletion without notice.</b>
    75  */
    76 public class Types {
    77     protected static final Context.Key<Types> typesKey =
    78         new Context.Key<Types>();
    80     final Symtab syms;
    81     final JavacMessages messages;
    82     final Names names;
    83     final boolean allowBoxing;
    84     final boolean allowCovariantReturns;
    85     final boolean allowObjectToPrimitiveCast;
    86     final boolean allowDefaultMethods;
    87     final ClassReader reader;
    88     final Check chk;
    89     JCDiagnostic.Factory diags;
    90     List<Warner> warnStack = List.nil();
    91     final Name capturedName;
    92     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    94     public final Warner noWarnings;
    96     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    97     public static Types instance(Context context) {
    98         Types instance = context.get(typesKey);
    99         if (instance == null)
   100             instance = new Types(context);
   101         return instance;
   102     }
   104     protected Types(Context context) {
   105         context.put(typesKey, this);
   106         syms = Symtab.instance(context);
   107         names = Names.instance(context);
   108         Source source = Source.instance(context);
   109         allowBoxing = source.allowBoxing();
   110         allowCovariantReturns = source.allowCovariantReturns();
   111         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   112         allowDefaultMethods = source.allowDefaultMethods();
   113         reader = ClassReader.instance(context);
   114         chk = Check.instance(context);
   115         capturedName = names.fromString("<captured wildcard>");
   116         messages = JavacMessages.instance(context);
   117         diags = JCDiagnostic.Factory.instance(context);
   118         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   119         noWarnings = new Warner(null);
   120     }
   121     // </editor-fold>
   123     // <editor-fold defaultstate="collapsed" desc="upperBound">
   124     /**
   125      * The "rvalue conversion".<br>
   126      * The upper bound of most types is the type
   127      * itself.  Wildcards, on the other hand have upper
   128      * and lower bounds.
   129      * @param t a type
   130      * @return the upper bound of the given type
   131      */
   132     public Type upperBound(Type t) {
   133         return upperBound.visit(t);
   134     }
   135     // where
   136         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   138             @Override
   139             public Type visitWildcardType(WildcardType t, Void ignored) {
   140                 if (t.isSuperBound())
   141                     return t.bound == null ? syms.objectType : t.bound.bound;
   142                 else
   143                     return visit(t.type);
   144             }
   146             @Override
   147             public Type visitCapturedType(CapturedType t, Void ignored) {
   148                 return visit(t.bound);
   149             }
   150         };
   151     // </editor-fold>
   153     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   154     /**
   155      * The "lvalue conversion".<br>
   156      * The lower bound of most types is the type
   157      * itself.  Wildcards, on the other hand have upper
   158      * and lower bounds.
   159      * @param t a type
   160      * @return the lower bound of the given type
   161      */
   162     public Type lowerBound(Type t) {
   163         return lowerBound.visit(t);
   164     }
   165     // where
   166         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   168             @Override
   169             public Type visitWildcardType(WildcardType t, Void ignored) {
   170                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   171             }
   173             @Override
   174             public Type visitCapturedType(CapturedType t, Void ignored) {
   175                 return visit(t.getLowerBound());
   176             }
   177         };
   178     // </editor-fold>
   180     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   181     /**
   182      * Checks that all the arguments to a class are unbounded
   183      * wildcards or something else that doesn't make any restrictions
   184      * on the arguments. If a class isUnbounded, a raw super- or
   185      * subclass can be cast to it without a warning.
   186      * @param t a type
   187      * @return true iff the given type is unbounded or raw
   188      */
   189     public boolean isUnbounded(Type t) {
   190         return isUnbounded.visit(t);
   191     }
   192     // where
   193         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   195             public Boolean visitType(Type t, Void ignored) {
   196                 return true;
   197             }
   199             @Override
   200             public Boolean visitClassType(ClassType t, Void ignored) {
   201                 List<Type> parms = t.tsym.type.allparams();
   202                 List<Type> args = t.allparams();
   203                 while (parms.nonEmpty()) {
   204                     WildcardType unb = new WildcardType(syms.objectType,
   205                                                         BoundKind.UNBOUND,
   206                                                         syms.boundClass,
   207                                                         (TypeVar)parms.head);
   208                     if (!containsType(args.head, unb))
   209                         return false;
   210                     parms = parms.tail;
   211                     args = args.tail;
   212                 }
   213                 return true;
   214             }
   215         };
   216     // </editor-fold>
   218     // <editor-fold defaultstate="collapsed" desc="asSub">
   219     /**
   220      * Return the least specific subtype of t that starts with symbol
   221      * sym.  If none exists, return null.  The least specific subtype
   222      * is determined as follows:
   223      *
   224      * <p>If there is exactly one parameterized instance of sym that is a
   225      * subtype of t, that parameterized instance is returned.<br>
   226      * Otherwise, if the plain type or raw type `sym' is a subtype of
   227      * type t, the type `sym' itself is returned.  Otherwise, null is
   228      * returned.
   229      */
   230     public Type asSub(Type t, Symbol sym) {
   231         return asSub.visit(t, sym);
   232     }
   233     // where
   234         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   236             public Type visitType(Type t, Symbol sym) {
   237                 return null;
   238             }
   240             @Override
   241             public Type visitClassType(ClassType t, Symbol sym) {
   242                 if (t.tsym == sym)
   243                     return t;
   244                 Type base = asSuper(sym.type, t.tsym);
   245                 if (base == null)
   246                     return null;
   247                 ListBuffer<Type> from = new ListBuffer<Type>();
   248                 ListBuffer<Type> to = new ListBuffer<Type>();
   249                 try {
   250                     adapt(base, t, from, to);
   251                 } catch (AdaptFailure ex) {
   252                     return null;
   253                 }
   254                 Type res = subst(sym.type, from.toList(), to.toList());
   255                 if (!isSubtype(res, t))
   256                     return null;
   257                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   258                 for (List<Type> l = sym.type.allparams();
   259                      l.nonEmpty(); l = l.tail)
   260                     if (res.contains(l.head) && !t.contains(l.head))
   261                         openVars.append(l.head);
   262                 if (openVars.nonEmpty()) {
   263                     if (t.isRaw()) {
   264                         // The subtype of a raw type is raw
   265                         res = erasure(res);
   266                     } else {
   267                         // Unbound type arguments default to ?
   268                         List<Type> opens = openVars.toList();
   269                         ListBuffer<Type> qs = new ListBuffer<Type>();
   270                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   271                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   272                         }
   273                         res = subst(res, opens, qs.toList());
   274                     }
   275                 }
   276                 return res;
   277             }
   279             @Override
   280             public Type visitErrorType(ErrorType t, Symbol sym) {
   281                 return t;
   282             }
   283         };
   284     // </editor-fold>
   286     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   287     /**
   288      * Is t a subtype of or convertible via boxing/unboxing
   289      * conversion to s?
   290      */
   291     public boolean isConvertible(Type t, Type s, Warner warn) {
   292         if (t.tag == ERROR)
   293             return true;
   294         boolean tPrimitive = t.isPrimitive();
   295         boolean sPrimitive = s.isPrimitive();
   296         if (tPrimitive == sPrimitive) {
   297             return isSubtypeUnchecked(t, s, warn);
   298         }
   299         if (!allowBoxing) return false;
   300         return tPrimitive
   301             ? isSubtype(boxedClass(t).type, s)
   302             : isSubtype(unboxedType(t), s);
   303     }
   305     /**
   306      * Is t a subtype of or convertiable via boxing/unboxing
   307      * convertions to s?
   308      */
   309     public boolean isConvertible(Type t, Type s) {
   310         return isConvertible(t, s, noWarnings);
   311     }
   312     // </editor-fold>
   314     // <editor-fold defaultstate="collapsed" desc="findSam">
   316     /**
   317      * Exception used to report a function descriptor lookup failure. The exception
   318      * wraps a diagnostic that can be used to generate more details error
   319      * messages.
   320      */
   321     public static class FunctionDescriptorLookupError extends RuntimeException {
   322         private static final long serialVersionUID = 0;
   324         JCDiagnostic diagnostic;
   326         FunctionDescriptorLookupError() {
   327             this.diagnostic = null;
   328         }
   330         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   331             this.diagnostic = diag;
   332             return this;
   333         }
   335         public JCDiagnostic getDiagnostic() {
   336             return diagnostic;
   337         }
   338     }
   340     /**
   341      * A cache that keeps track of function descriptors associated with given
   342      * functional interfaces.
   343      */
   344     class DescriptorCache {
   346         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   348         class FunctionDescriptor {
   349             Symbol descSym;
   351             FunctionDescriptor(Symbol descSym) {
   352                 this.descSym = descSym;
   353             }
   355             public Symbol getSymbol() {
   356                 return descSym;
   357             }
   359             public Type getType(Type site) {
   360                 site = removeWildcards(site);
   361                 if (!chk.checkValidGenericType(site)) {
   362                     //if the inferred functional interface type is not well-formed,
   363                     //or if it's not a subtype of the original target, issue an error
   364                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   365                 }
   366                 return memberType(site, descSym);
   367             }
   368         }
   370         class Entry {
   371             final FunctionDescriptor cachedDescRes;
   372             final int prevMark;
   374             public Entry(FunctionDescriptor cachedDescRes,
   375                     int prevMark) {
   376                 this.cachedDescRes = cachedDescRes;
   377                 this.prevMark = prevMark;
   378             }
   380             boolean matches(int mark) {
   381                 return  this.prevMark == mark;
   382             }
   383         }
   385         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   386             Entry e = _map.get(origin);
   387             CompoundScope members = membersClosure(origin.type, false);
   388             if (e == null ||
   389                     !e.matches(members.getMark())) {
   390                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   391                 _map.put(origin, new Entry(descRes, members.getMark()));
   392                 return descRes;
   393             }
   394             else {
   395                 return e.cachedDescRes;
   396             }
   397         }
   399         /**
   400          * Compute the function descriptor associated with a given functional interface
   401          */
   402         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   403             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   404                 //t must be an interface
   405                 throw failure("not.a.functional.intf", origin);
   406             }
   408             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   409             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   410                 Type mtype = memberType(origin.type, sym);
   411                 if (abstracts.isEmpty() ||
   412                         (sym.name == abstracts.first().name &&
   413                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   414                     abstracts.append(sym);
   415                 } else {
   416                     //the target method(s) should be the only abstract members of t
   417                     throw failure("not.a.functional.intf.1",  origin,
   418                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   419                 }
   420             }
   421             if (abstracts.isEmpty()) {
   422                 //t must define a suitable non-generic method
   423                 throw failure("not.a.functional.intf.1", origin,
   424                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   425             } else if (abstracts.size() == 1) {
   426                 return new FunctionDescriptor(abstracts.first());
   427             } else { // size > 1
   428                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   429                 if (descRes == null) {
   430                     //we can get here if the functional interface is ill-formed
   431                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   432                     for (Symbol desc : abstracts) {
   433                         String key = desc.type.getThrownTypes().nonEmpty() ?
   434                                 "descriptor.throws" : "descriptor";
   435                         descriptors.append(diags.fragment(key, desc.name,
   436                                 desc.type.getParameterTypes(),
   437                                 desc.type.getReturnType(),
   438                                 desc.type.getThrownTypes()));
   439                     }
   440                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   441                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   442                             Kinds.kindName(origin), origin), descriptors.toList());
   443                     throw failure(incompatibleDescriptors);
   444                 }
   445                 return descRes;
   446             }
   447         }
   449         /**
   450          * Compute a synthetic type for the target descriptor given a list
   451          * of override-equivalent methods in the functional interface type.
   452          * The resulting method type is a method type that is override-equivalent
   453          * and return-type substitutable with each method in the original list.
   454          */
   455         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   456             //pick argument types - simply take the signature that is a
   457             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   458             List<Symbol> mostSpecific = List.nil();
   459             outer: for (Symbol msym1 : methodSyms) {
   460                 Type mt1 = memberType(origin.type, msym1);
   461                 for (Symbol msym2 : methodSyms) {
   462                     Type mt2 = memberType(origin.type, msym2);
   463                     if (!isSubSignature(mt1, mt2)) {
   464                         continue outer;
   465                     }
   466                 }
   467                 mostSpecific = mostSpecific.prepend(msym1);
   468             }
   469             if (mostSpecific.isEmpty()) {
   470                 return null;
   471             }
   474             //pick return types - this is done in two phases: (i) first, the most
   475             //specific return type is chosen using strict subtyping; if this fails,
   476             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   477             boolean phase2 = false;
   478             Symbol bestSoFar = null;
   479             while (bestSoFar == null) {
   480                 outer: for (Symbol msym1 : mostSpecific) {
   481                     Type mt1 = memberType(origin.type, msym1);
   482                     for (Symbol msym2 : methodSyms) {
   483                         Type mt2 = memberType(origin.type, msym2);
   484                         if (phase2 ?
   485                                 !returnTypeSubstitutable(mt1, mt2) :
   486                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   487                             continue outer;
   488                         }
   489                     }
   490                     bestSoFar = msym1;
   491                 }
   492                 if (phase2) {
   493                     break;
   494                 } else {
   495                     phase2 = true;
   496                 }
   497             }
   498             if (bestSoFar == null) return null;
   500             //merge thrown types - form the intersection of all the thrown types in
   501             //all the signatures in the list
   502             List<Type> thrown = null;
   503             for (Symbol msym1 : methodSyms) {
   504                 Type mt1 = memberType(origin.type, msym1);
   505                 thrown = (thrown == null) ?
   506                     mt1.getThrownTypes() :
   507                     chk.intersect(mt1.getThrownTypes(), thrown);
   508             }
   510             final List<Type> thrown1 = thrown;
   511             return new FunctionDescriptor(bestSoFar) {
   512                 @Override
   513                 public Type getType(Type origin) {
   514                     Type mt = memberType(origin, getSymbol());
   515                     return createMethodTypeWithThrown(mt, thrown1);
   516                 }
   517             };
   518         }
   520         boolean isSubtypeInternal(Type s, Type t) {
   521             return (s.isPrimitive() && t.isPrimitive()) ?
   522                     isSameType(t, s) :
   523                     isSubtype(s, t);
   524         }
   526         FunctionDescriptorLookupError failure(String msg, Object... args) {
   527             return failure(diags.fragment(msg, args));
   528         }
   530         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   531             return functionDescriptorLookupError.setMessage(diag);
   532         }
   533     }
   535     private DescriptorCache descCache = new DescriptorCache();
   537     /**
   538      * Find the method descriptor associated to this class symbol - if the
   539      * symbol 'origin' is not a functional interface, an exception is thrown.
   540      */
   541     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   542         return descCache.get(origin).getSymbol();
   543     }
   545     /**
   546      * Find the type of the method descriptor associated to this class symbol -
   547      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   548      */
   549     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   550         return descCache.get(origin.tsym).getType(origin);
   551     }
   553     /**
   554      * Is given type a functional interface?
   555      */
   556     public boolean isFunctionalInterface(TypeSymbol tsym) {
   557         try {
   558             findDescriptorSymbol(tsym);
   559             return true;
   560         } catch (FunctionDescriptorLookupError ex) {
   561             return false;
   562         }
   563     }
   565     public boolean isFunctionalInterface(Type site) {
   566         try {
   567             findDescriptorType(site);
   568             return true;
   569         } catch (FunctionDescriptorLookupError ex) {
   570             return false;
   571         }
   572     }
   574     public Type removeWildcards(Type site) {
   575         if (capture(site) != site) {
   576             Type formalInterface = site.tsym.type;
   577             ListBuffer<Type> typeargs = ListBuffer.lb();
   578             List<Type> actualTypeargs = site.getTypeArguments();
   579             //simply replace the wildcards with its bound
   580             for (Type t : formalInterface.getTypeArguments()) {
   581                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   582                     WildcardType wt = (WildcardType)actualTypeargs.head;
   583                     Type bound;
   584                     switch (wt.kind) {
   585                         case UNBOUND:
   586                             //use declared bound if it doesn't depend on formal type-args
   587                             bound = wt.bound.bound.containsAny(formalInterface.getTypeArguments()) ?
   588                                     syms.objectType : wt.bound.bound;
   589                             break;
   590                         default:
   591                             bound = wt.type;
   592                     }
   593                     typeargs.append(bound);
   594                 } else {
   595                     typeargs.append(actualTypeargs.head);
   596                 }
   597                 actualTypeargs = actualTypeargs.tail;
   598             }
   599             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   600         } else {
   601             return site;
   602         }
   603     }
   604     // </editor-fold>
   606    /**
   607     * Scope filter used to skip methods that should be ignored (such as methods
   608     * overridden by j.l.Object) during function interface conversion/marker interface checks
   609     */
   610     class DescriptorFilter implements Filter<Symbol> {
   612        TypeSymbol origin;
   614        DescriptorFilter(TypeSymbol origin) {
   615            this.origin = origin;
   616        }
   618        @Override
   619        public boolean accepts(Symbol sym) {
   620            return sym.kind == Kinds.MTH &&
   621                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   622                    !overridesObjectMethod(origin, sym) &&
   623                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   624        }
   625     };
   627     // <editor-fold defaultstate="collapsed" desc="isMarker">
   629     /**
   630      * A cache that keeps track of marker interfaces
   631      */
   632     class MarkerCache {
   634         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   636         class Entry {
   637             final boolean isMarkerIntf;
   638             final int prevMark;
   640             public Entry(boolean isMarkerIntf,
   641                     int prevMark) {
   642                 this.isMarkerIntf = isMarkerIntf;
   643                 this.prevMark = prevMark;
   644             }
   646             boolean matches(int mark) {
   647                 return  this.prevMark == mark;
   648             }
   649         }
   651         boolean get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   652             Entry e = _map.get(origin);
   653             CompoundScope members = membersClosure(origin.type, false);
   654             if (e == null ||
   655                     !e.matches(members.getMark())) {
   656                 boolean isMarkerIntf = isMarkerInterfaceInternal(origin, members);
   657                 _map.put(origin, new Entry(isMarkerIntf, members.getMark()));
   658                 return isMarkerIntf;
   659             }
   660             else {
   661                 return e.isMarkerIntf;
   662             }
   663         }
   665         /**
   666          * Is given symbol a marker interface
   667          */
   668         public boolean isMarkerInterfaceInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   669             return !origin.isInterface() ?
   670                     false :
   671                     !membersCache.getElements(new DescriptorFilter(origin)).iterator().hasNext();
   672         }
   673     }
   675     private MarkerCache markerCache = new MarkerCache();
   677     /**
   678      * Is given type a marker interface?
   679      */
   680     public boolean isMarkerInterface(Type site) {
   681         return markerCache.get(site.tsym);
   682     }
   683     // </editor-fold>
   685     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   686     /**
   687      * Is t an unchecked subtype of s?
   688      */
   689     public boolean isSubtypeUnchecked(Type t, Type s) {
   690         return isSubtypeUnchecked(t, s, noWarnings);
   691     }
   692     /**
   693      * Is t an unchecked subtype of s?
   694      */
   695     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   696         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   697         if (result) {
   698             checkUnsafeVarargsConversion(t, s, warn);
   699         }
   700         return result;
   701     }
   702     //where
   703         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   704             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   705                 t = t.unannotatedType();
   706                 s = s.unannotatedType();
   707                 if (((ArrayType)t).elemtype.isPrimitive()) {
   708                     return isSameType(elemtype(t), elemtype(s));
   709                 } else {
   710                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   711                 }
   712             } else if (isSubtype(t, s)) {
   713                 return true;
   714             }
   715             else if (t.tag == TYPEVAR) {
   716                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   717             }
   718             else if (!s.isRaw()) {
   719                 Type t2 = asSuper(t, s.tsym);
   720                 if (t2 != null && t2.isRaw()) {
   721                     if (isReifiable(s))
   722                         warn.silentWarn(LintCategory.UNCHECKED);
   723                     else
   724                         warn.warn(LintCategory.UNCHECKED);
   725                     return true;
   726                 }
   727             }
   728             return false;
   729         }
   731         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   732             if (t.tag != ARRAY || isReifiable(t))
   733                 return;
   734             t = t.unannotatedType();
   735             s = s.unannotatedType();
   736             ArrayType from = (ArrayType)t;
   737             boolean shouldWarn = false;
   738             switch (s.tag) {
   739                 case ARRAY:
   740                     ArrayType to = (ArrayType)s;
   741                     shouldWarn = from.isVarargs() &&
   742                             !to.isVarargs() &&
   743                             !isReifiable(from);
   744                     break;
   745                 case CLASS:
   746                     shouldWarn = from.isVarargs();
   747                     break;
   748             }
   749             if (shouldWarn) {
   750                 warn.warn(LintCategory.VARARGS);
   751             }
   752         }
   754     /**
   755      * Is t a subtype of s?<br>
   756      * (not defined for Method and ForAll types)
   757      */
   758     final public boolean isSubtype(Type t, Type s) {
   759         return isSubtype(t, s, true);
   760     }
   761     final public boolean isSubtypeNoCapture(Type t, Type s) {
   762         return isSubtype(t, s, false);
   763     }
   764     public boolean isSubtype(Type t, Type s, boolean capture) {
   765         if (t == s)
   766             return true;
   768         t = t.unannotatedType();
   769         s = s.unannotatedType();
   771         if (t == s)
   772             return true;
   774         if (s.isPartial())
   775             return isSuperType(s, t);
   777         if (s.isCompound()) {
   778             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   779                 if (!isSubtype(t, s2, capture))
   780                     return false;
   781             }
   782             return true;
   783         }
   785         Type lower = lowerBound(s);
   786         if (s != lower)
   787             return isSubtype(capture ? capture(t) : t, lower, false);
   789         return isSubtype.visit(capture ? capture(t) : t, s);
   790     }
   791     // where
   792         private TypeRelation isSubtype = new TypeRelation()
   793         {
   794             public Boolean visitType(Type t, Type s) {
   795                 switch (t.tag) {
   796                  case BYTE:
   797                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   798                  case CHAR:
   799                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   800                  case SHORT: case INT: case LONG:
   801                  case FLOAT: case DOUBLE:
   802                      return t.getTag().isSubRangeOf(s.getTag());
   803                  case BOOLEAN: case VOID:
   804                      return t.hasTag(s.getTag());
   805                  case TYPEVAR:
   806                      return isSubtypeNoCapture(t.getUpperBound(), s);
   807                  case BOT:
   808                      return
   809                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   810                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   811                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   812                  case NONE:
   813                      return false;
   814                  default:
   815                      throw new AssertionError("isSubtype " + t.tag);
   816                  }
   817             }
   819             private Set<TypePair> cache = new HashSet<TypePair>();
   821             private boolean containsTypeRecursive(Type t, Type s) {
   822                 TypePair pair = new TypePair(t, s);
   823                 if (cache.add(pair)) {
   824                     try {
   825                         return containsType(t.getTypeArguments(),
   826                                             s.getTypeArguments());
   827                     } finally {
   828                         cache.remove(pair);
   829                     }
   830                 } else {
   831                     return containsType(t.getTypeArguments(),
   832                                         rewriteSupers(s).getTypeArguments());
   833                 }
   834             }
   836             private Type rewriteSupers(Type t) {
   837                 if (!t.isParameterized())
   838                     return t;
   839                 ListBuffer<Type> from = lb();
   840                 ListBuffer<Type> to = lb();
   841                 adaptSelf(t, from, to);
   842                 if (from.isEmpty())
   843                     return t;
   844                 ListBuffer<Type> rewrite = lb();
   845                 boolean changed = false;
   846                 for (Type orig : to.toList()) {
   847                     Type s = rewriteSupers(orig);
   848                     if (s.isSuperBound() && !s.isExtendsBound()) {
   849                         s = new WildcardType(syms.objectType,
   850                                              BoundKind.UNBOUND,
   851                                              syms.boundClass);
   852                         changed = true;
   853                     } else if (s != orig) {
   854                         s = new WildcardType(upperBound(s),
   855                                              BoundKind.EXTENDS,
   856                                              syms.boundClass);
   857                         changed = true;
   858                     }
   859                     rewrite.append(s);
   860                 }
   861                 if (changed)
   862                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   863                 else
   864                     return t;
   865             }
   867             @Override
   868             public Boolean visitClassType(ClassType t, Type s) {
   869                 Type sup = asSuper(t, s.tsym);
   870                 return sup != null
   871                     && sup.tsym == s.tsym
   872                     // You're not allowed to write
   873                     //     Vector<Object> vec = new Vector<String>();
   874                     // But with wildcards you can write
   875                     //     Vector<? extends Object> vec = new Vector<String>();
   876                     // which means that subtype checking must be done
   877                     // here instead of same-type checking (via containsType).
   878                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   879                     && isSubtypeNoCapture(sup.getEnclosingType(),
   880                                           s.getEnclosingType());
   881             }
   883             @Override
   884             public Boolean visitArrayType(ArrayType t, Type s) {
   885                 if (s.tag == ARRAY) {
   886                     if (t.elemtype.isPrimitive())
   887                         return isSameType(t.elemtype, elemtype(s));
   888                     else
   889                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   890                 }
   892                 if (s.tag == CLASS) {
   893                     Name sname = s.tsym.getQualifiedName();
   894                     return sname == names.java_lang_Object
   895                         || sname == names.java_lang_Cloneable
   896                         || sname == names.java_io_Serializable;
   897                 }
   899                 return false;
   900             }
   902             @Override
   903             public Boolean visitUndetVar(UndetVar t, Type s) {
   904                 //todo: test against origin needed? or replace with substitution?
   905                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   906                     return true;
   907                 } else if (s.tag == BOT) {
   908                     //if 's' is 'null' there's no instantiated type U for which
   909                     //U <: s (but 'null' itself, which is not a valid type)
   910                     return false;
   911                 }
   913                 t.addBound(InferenceBound.UPPER, s, Types.this);
   914                 return true;
   915             }
   917             @Override
   918             public Boolean visitErrorType(ErrorType t, Type s) {
   919                 return true;
   920             }
   921         };
   923     /**
   924      * Is t a subtype of every type in given list `ts'?<br>
   925      * (not defined for Method and ForAll types)<br>
   926      * Allows unchecked conversions.
   927      */
   928     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   929         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   930             if (!isSubtypeUnchecked(t, l.head, warn))
   931                 return false;
   932         return true;
   933     }
   935     /**
   936      * Are corresponding elements of ts subtypes of ss?  If lists are
   937      * of different length, return false.
   938      */
   939     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   940         while (ts.tail != null && ss.tail != null
   941                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   942                isSubtype(ts.head, ss.head)) {
   943             ts = ts.tail;
   944             ss = ss.tail;
   945         }
   946         return ts.tail == null && ss.tail == null;
   947         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   948     }
   950     /**
   951      * Are corresponding elements of ts subtypes of ss, allowing
   952      * unchecked conversions?  If lists are of different length,
   953      * return false.
   954      **/
   955     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   956         while (ts.tail != null && ss.tail != null
   957                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   958                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   959             ts = ts.tail;
   960             ss = ss.tail;
   961         }
   962         return ts.tail == null && ss.tail == null;
   963         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   964     }
   965     // </editor-fold>
   967     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   968     /**
   969      * Is t a supertype of s?
   970      */
   971     public boolean isSuperType(Type t, Type s) {
   972         switch (t.tag) {
   973         case ERROR:
   974             return true;
   975         case UNDETVAR: {
   976             UndetVar undet = (UndetVar)t;
   977             if (t == s ||
   978                 undet.qtype == s ||
   979                 s.tag == ERROR ||
   980                 s.tag == BOT) return true;
   981             undet.addBound(InferenceBound.LOWER, s, this);
   982             return true;
   983         }
   984         default:
   985             return isSubtype(s, t);
   986         }
   987     }
   988     // </editor-fold>
   990     // <editor-fold defaultstate="collapsed" desc="isSameType">
   991     /**
   992      * Are corresponding elements of the lists the same type?  If
   993      * lists are of different length, return false.
   994      */
   995     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   996         return isSameTypes(ts, ss, false);
   997     }
   998     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
   999         while (ts.tail != null && ss.tail != null
  1000                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
  1001                isSameType(ts.head, ss.head, strict)) {
  1002             ts = ts.tail;
  1003             ss = ss.tail;
  1005         return ts.tail == null && ss.tail == null;
  1006         /*inlined: ts.isEmpty() && ss.isEmpty();*/
  1009     /**
  1010      * Is t the same type as s?
  1011      */
  1012     public boolean isSameType(Type t, Type s) {
  1013         return isSameType(t, s, false);
  1015     public boolean isSameType(Type t, Type s, boolean strict) {
  1016         return strict ?
  1017                 isSameTypeStrict.visit(t, s) :
  1018                 isSameTypeLoose.visit(t, s);
  1020     // where
  1021         abstract class SameTypeVisitor extends TypeRelation {
  1023             public Boolean visitType(Type t, Type s) {
  1024                 if (t == s)
  1025                     return true;
  1027                 if (s.isPartial())
  1028                     return visit(s, t);
  1030                 switch (t.tag) {
  1031                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1032                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
  1033                     return t.tag == s.tag;
  1034                 case TYPEVAR: {
  1035                     if (s.tag == TYPEVAR) {
  1036                         //type-substitution does not preserve type-var types
  1037                         //check that type var symbols and bounds are indeed the same
  1038                         return sameTypeVars((TypeVar)t, (TypeVar)s);
  1040                     else {
  1041                         //special case for s == ? super X, where upper(s) = u
  1042                         //check that u == t, where u has been set by Type.withTypeVar
  1043                         return s.isSuperBound() &&
  1044                                 !s.isExtendsBound() &&
  1045                                 visit(t, upperBound(s));
  1048                 default:
  1049                     throw new AssertionError("isSameType " + t.tag);
  1053             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1055             @Override
  1056             public Boolean visitWildcardType(WildcardType t, Type s) {
  1057                 if (s.isPartial())
  1058                     return visit(s, t);
  1059                 else
  1060                     return false;
  1063             @Override
  1064             public Boolean visitClassType(ClassType t, Type s) {
  1065                 if (t == s)
  1066                     return true;
  1068                 if (s.isPartial())
  1069                     return visit(s, t);
  1071                 if (s.isSuperBound() && !s.isExtendsBound())
  1072                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1074                 if (t.isCompound() && s.isCompound()) {
  1075                     if (!visit(supertype(t), supertype(s)))
  1076                         return false;
  1078                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1079                     for (Type x : interfaces(t))
  1080                         set.add(new UniqueType(x, Types.this));
  1081                     for (Type x : interfaces(s)) {
  1082                         if (!set.remove(new UniqueType(x, Types.this)))
  1083                             return false;
  1085                     return (set.isEmpty());
  1087                 return t.tsym == s.tsym
  1088                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1089                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1092             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1094             @Override
  1095             public Boolean visitArrayType(ArrayType t, Type s) {
  1096                 if (t == s)
  1097                     return true;
  1099                 if (s.isPartial())
  1100                     return visit(s, t);
  1102                 return s.hasTag(ARRAY)
  1103                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1106             @Override
  1107             public Boolean visitMethodType(MethodType t, Type s) {
  1108                 // isSameType for methods does not take thrown
  1109                 // exceptions into account!
  1110                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1113             @Override
  1114             public Boolean visitPackageType(PackageType t, Type s) {
  1115                 return t == s;
  1118             @Override
  1119             public Boolean visitForAll(ForAll t, Type s) {
  1120                 if (s.tag != FORALL)
  1121                     return false;
  1123                 ForAll forAll = (ForAll)s;
  1124                 return hasSameBounds(t, forAll)
  1125                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1128             @Override
  1129             public Boolean visitUndetVar(UndetVar t, Type s) {
  1130                 if (s.tag == WILDCARD)
  1131                     // FIXME, this might be leftovers from before capture conversion
  1132                     return false;
  1134                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1135                     return true;
  1137                 t.addBound(InferenceBound.EQ, s, Types.this);
  1139                 return true;
  1142             @Override
  1143             public Boolean visitErrorType(ErrorType t, Type s) {
  1144                 return true;
  1148         /**
  1149          * Standard type-equality relation - type variables are considered
  1150          * equals if they share the same type symbol.
  1151          */
  1152         TypeRelation isSameTypeLoose = new SameTypeVisitor() {
  1153             @Override
  1154             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1155                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
  1157             @Override
  1158             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1159                 return containsTypeEquivalent(ts1, ts2);
  1161         };
  1163         /**
  1164          * Strict type-equality relation - type variables are considered
  1165          * equals if they share the same object identity.
  1166          */
  1167         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1168             @Override
  1169             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1170                 return tv1 == tv2;
  1172             @Override
  1173             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1174                 return isSameTypes(ts1, ts2, true);
  1176         };
  1177     // </editor-fold>
  1179     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1180     public boolean containedBy(Type t, Type s) {
  1181         switch (t.tag) {
  1182         case UNDETVAR:
  1183             if (s.tag == WILDCARD) {
  1184                 UndetVar undetvar = (UndetVar)t;
  1185                 WildcardType wt = (WildcardType)s;
  1186                 switch(wt.kind) {
  1187                     case UNBOUND: //similar to ? extends Object
  1188                     case EXTENDS: {
  1189                         Type bound = upperBound(s);
  1190                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1191                         break;
  1193                     case SUPER: {
  1194                         Type bound = lowerBound(s);
  1195                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1196                         break;
  1199                 return true;
  1200             } else {
  1201                 return isSameType(t, s);
  1203         case ERROR:
  1204             return true;
  1205         default:
  1206             return containsType(s, t);
  1210     boolean containsType(List<Type> ts, List<Type> ss) {
  1211         while (ts.nonEmpty() && ss.nonEmpty()
  1212                && containsType(ts.head, ss.head)) {
  1213             ts = ts.tail;
  1214             ss = ss.tail;
  1216         return ts.isEmpty() && ss.isEmpty();
  1219     /**
  1220      * Check if t contains s.
  1222      * <p>T contains S if:
  1224      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1226      * <p>This relation is only used by ClassType.isSubtype(), that
  1227      * is,
  1229      * <p>{@code C<S> <: C<T> if T contains S.}
  1231      * <p>Because of F-bounds, this relation can lead to infinite
  1232      * recursion.  Thus we must somehow break that recursion.  Notice
  1233      * that containsType() is only called from ClassType.isSubtype().
  1234      * Since the arguments have already been checked against their
  1235      * bounds, we know:
  1237      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1239      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1241      * @param t a type
  1242      * @param s a type
  1243      */
  1244     public boolean containsType(Type t, Type s) {
  1245         return containsType.visit(t, s);
  1247     // where
  1248         private TypeRelation containsType = new TypeRelation() {
  1250             private Type U(Type t) {
  1251                 while (t.tag == WILDCARD) {
  1252                     WildcardType w = (WildcardType)t;
  1253                     if (w.isSuperBound())
  1254                         return w.bound == null ? syms.objectType : w.bound.bound;
  1255                     else
  1256                         t = w.type;
  1258                 return t;
  1261             private Type L(Type t) {
  1262                 while (t.tag == WILDCARD) {
  1263                     WildcardType w = (WildcardType)t;
  1264                     if (w.isExtendsBound())
  1265                         return syms.botType;
  1266                     else
  1267                         t = w.type;
  1269                 return t;
  1272             public Boolean visitType(Type t, Type s) {
  1273                 if (s.isPartial())
  1274                     return containedBy(s, t);
  1275                 else
  1276                     return isSameType(t, s);
  1279 //            void debugContainsType(WildcardType t, Type s) {
  1280 //                System.err.println();
  1281 //                System.err.format(" does %s contain %s?%n", t, s);
  1282 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1283 //                                  upperBound(s), s, t, U(t),
  1284 //                                  t.isSuperBound()
  1285 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1286 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1287 //                                  L(t), t, s, lowerBound(s),
  1288 //                                  t.isExtendsBound()
  1289 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1290 //                System.err.println();
  1291 //            }
  1293             @Override
  1294             public Boolean visitWildcardType(WildcardType t, Type s) {
  1295                 if (s.isPartial())
  1296                     return containedBy(s, t);
  1297                 else {
  1298 //                    debugContainsType(t, s);
  1299                     return isSameWildcard(t, s)
  1300                         || isCaptureOf(s, t)
  1301                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1302                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1306             @Override
  1307             public Boolean visitUndetVar(UndetVar t, Type s) {
  1308                 if (s.tag != WILDCARD)
  1309                     return isSameType(t, s);
  1310                 else
  1311                     return false;
  1314             @Override
  1315             public Boolean visitErrorType(ErrorType t, Type s) {
  1316                 return true;
  1318         };
  1320     public boolean isCaptureOf(Type s, WildcardType t) {
  1321         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1322             return false;
  1323         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1326     public boolean isSameWildcard(WildcardType t, Type s) {
  1327         if (s.tag != WILDCARD)
  1328             return false;
  1329         WildcardType w = (WildcardType)s;
  1330         return w.kind == t.kind && w.type == t.type;
  1333     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1334         while (ts.nonEmpty() && ss.nonEmpty()
  1335                && containsTypeEquivalent(ts.head, ss.head)) {
  1336             ts = ts.tail;
  1337             ss = ss.tail;
  1339         return ts.isEmpty() && ss.isEmpty();
  1341     // </editor-fold>
  1343     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1344     public boolean isCastable(Type t, Type s) {
  1345         return isCastable(t, s, noWarnings);
  1348     /**
  1349      * Is t is castable to s?<br>
  1350      * s is assumed to be an erased type.<br>
  1351      * (not defined for Method and ForAll types).
  1352      */
  1353     public boolean isCastable(Type t, Type s, Warner warn) {
  1354         if (t == s)
  1355             return true;
  1357         if (t.isPrimitive() != s.isPrimitive())
  1358             return allowBoxing && (
  1359                     isConvertible(t, s, warn)
  1360                     || (allowObjectToPrimitiveCast &&
  1361                         s.isPrimitive() &&
  1362                         isSubtype(boxedClass(s).type, t)));
  1363         if (warn != warnStack.head) {
  1364             try {
  1365                 warnStack = warnStack.prepend(warn);
  1366                 checkUnsafeVarargsConversion(t, s, warn);
  1367                 return isCastable.visit(t,s);
  1368             } finally {
  1369                 warnStack = warnStack.tail;
  1371         } else {
  1372             return isCastable.visit(t,s);
  1375     // where
  1376         private TypeRelation isCastable = new TypeRelation() {
  1378             public Boolean visitType(Type t, Type s) {
  1379                 if (s.tag == ERROR)
  1380                     return true;
  1382                 switch (t.tag) {
  1383                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1384                 case DOUBLE:
  1385                     return s.isNumeric();
  1386                 case BOOLEAN:
  1387                     return s.tag == BOOLEAN;
  1388                 case VOID:
  1389                     return false;
  1390                 case BOT:
  1391                     return isSubtype(t, s);
  1392                 default:
  1393                     throw new AssertionError();
  1397             @Override
  1398             public Boolean visitWildcardType(WildcardType t, Type s) {
  1399                 return isCastable(upperBound(t), s, warnStack.head);
  1402             @Override
  1403             public Boolean visitClassType(ClassType t, Type s) {
  1404                 if (s.tag == ERROR || s.tag == BOT)
  1405                     return true;
  1407                 if (s.tag == TYPEVAR) {
  1408                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1409                         warnStack.head.warn(LintCategory.UNCHECKED);
  1410                         return true;
  1411                     } else {
  1412                         return false;
  1416                 if (t.isCompound()) {
  1417                     Warner oldWarner = warnStack.head;
  1418                     warnStack.head = noWarnings;
  1419                     if (!visit(supertype(t), s))
  1420                         return false;
  1421                     for (Type intf : interfaces(t)) {
  1422                         if (!visit(intf, s))
  1423                             return false;
  1425                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1426                         oldWarner.warn(LintCategory.UNCHECKED);
  1427                     return true;
  1430                 if (s.isCompound()) {
  1431                     // call recursively to reuse the above code
  1432                     return visitClassType((ClassType)s, t);
  1435                 if (s.tag == CLASS || s.tag == ARRAY) {
  1436                     boolean upcast;
  1437                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1438                         || isSubtype(erasure(s), erasure(t))) {
  1439                         if (!upcast && s.tag == ARRAY) {
  1440                             if (!isReifiable(s))
  1441                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1442                             return true;
  1443                         } else if (s.isRaw()) {
  1444                             return true;
  1445                         } else if (t.isRaw()) {
  1446                             if (!isUnbounded(s))
  1447                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1448                             return true;
  1450                         // Assume |a| <: |b|
  1451                         final Type a = upcast ? t : s;
  1452                         final Type b = upcast ? s : t;
  1453                         final boolean HIGH = true;
  1454                         final boolean LOW = false;
  1455                         final boolean DONT_REWRITE_TYPEVARS = false;
  1456                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1457                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1458                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1459                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1460                         Type lowSub = asSub(bLow, aLow.tsym);
  1461                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1462                         if (highSub == null) {
  1463                             final boolean REWRITE_TYPEVARS = true;
  1464                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1465                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1466                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1467                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1468                             lowSub = asSub(bLow, aLow.tsym);
  1469                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1471                         if (highSub != null) {
  1472                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1473                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1475                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1476                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1477                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1478                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1479                                 if (upcast ? giveWarning(a, b) :
  1480                                     giveWarning(b, a))
  1481                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1482                                 return true;
  1485                         if (isReifiable(s))
  1486                             return isSubtypeUnchecked(a, b);
  1487                         else
  1488                             return isSubtypeUnchecked(a, b, warnStack.head);
  1491                     // Sidecast
  1492                     if (s.tag == CLASS) {
  1493                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1494                             return ((t.tsym.flags() & FINAL) == 0)
  1495                                 ? sideCast(t, s, warnStack.head)
  1496                                 : sideCastFinal(t, s, warnStack.head);
  1497                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1498                             return ((s.tsym.flags() & FINAL) == 0)
  1499                                 ? sideCast(t, s, warnStack.head)
  1500                                 : sideCastFinal(t, s, warnStack.head);
  1501                         } else {
  1502                             // unrelated class types
  1503                             return false;
  1507                 return false;
  1510             @Override
  1511             public Boolean visitArrayType(ArrayType t, Type s) {
  1512                 switch (s.tag) {
  1513                 case ERROR:
  1514                 case BOT:
  1515                     return true;
  1516                 case TYPEVAR:
  1517                     if (isCastable(s, t, noWarnings)) {
  1518                         warnStack.head.warn(LintCategory.UNCHECKED);
  1519                         return true;
  1520                     } else {
  1521                         return false;
  1523                 case CLASS:
  1524                     return isSubtype(t, s);
  1525                 case ARRAY:
  1526                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1527                         return elemtype(t).tag == elemtype(s).tag;
  1528                     } else {
  1529                         return visit(elemtype(t), elemtype(s));
  1531                 default:
  1532                     return false;
  1536             @Override
  1537             public Boolean visitTypeVar(TypeVar t, Type s) {
  1538                 switch (s.tag) {
  1539                 case ERROR:
  1540                 case BOT:
  1541                     return true;
  1542                 case TYPEVAR:
  1543                     if (isSubtype(t, s)) {
  1544                         return true;
  1545                     } else if (isCastable(t.bound, s, noWarnings)) {
  1546                         warnStack.head.warn(LintCategory.UNCHECKED);
  1547                         return true;
  1548                     } else {
  1549                         return false;
  1551                 default:
  1552                     return isCastable(t.bound, s, warnStack.head);
  1556             @Override
  1557             public Boolean visitErrorType(ErrorType t, Type s) {
  1558                 return true;
  1560         };
  1561     // </editor-fold>
  1563     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1564     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1565         while (ts.tail != null && ss.tail != null) {
  1566             if (disjointType(ts.head, ss.head)) return true;
  1567             ts = ts.tail;
  1568             ss = ss.tail;
  1570         return false;
  1573     /**
  1574      * Two types or wildcards are considered disjoint if it can be
  1575      * proven that no type can be contained in both. It is
  1576      * conservative in that it is allowed to say that two types are
  1577      * not disjoint, even though they actually are.
  1579      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1580      * {@code X} and {@code Y} are not disjoint.
  1581      */
  1582     public boolean disjointType(Type t, Type s) {
  1583         return disjointType.visit(t, s);
  1585     // where
  1586         private TypeRelation disjointType = new TypeRelation() {
  1588             private Set<TypePair> cache = new HashSet<TypePair>();
  1590             public Boolean visitType(Type t, Type s) {
  1591                 if (s.tag == WILDCARD)
  1592                     return visit(s, t);
  1593                 else
  1594                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1597             private boolean isCastableRecursive(Type t, Type s) {
  1598                 TypePair pair = new TypePair(t, s);
  1599                 if (cache.add(pair)) {
  1600                     try {
  1601                         return Types.this.isCastable(t, s);
  1602                     } finally {
  1603                         cache.remove(pair);
  1605                 } else {
  1606                     return true;
  1610             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1611                 TypePair pair = new TypePair(t, s);
  1612                 if (cache.add(pair)) {
  1613                     try {
  1614                         return Types.this.notSoftSubtype(t, s);
  1615                     } finally {
  1616                         cache.remove(pair);
  1618                 } else {
  1619                     return false;
  1623             @Override
  1624             public Boolean visitWildcardType(WildcardType t, Type s) {
  1625                 if (t.isUnbound())
  1626                     return false;
  1628                 if (s.tag != WILDCARD) {
  1629                     if (t.isExtendsBound())
  1630                         return notSoftSubtypeRecursive(s, t.type);
  1631                     else // isSuperBound()
  1632                         return notSoftSubtypeRecursive(t.type, s);
  1635                 if (s.isUnbound())
  1636                     return false;
  1638                 if (t.isExtendsBound()) {
  1639                     if (s.isExtendsBound())
  1640                         return !isCastableRecursive(t.type, upperBound(s));
  1641                     else if (s.isSuperBound())
  1642                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1643                 } else if (t.isSuperBound()) {
  1644                     if (s.isExtendsBound())
  1645                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1647                 return false;
  1649         };
  1650     // </editor-fold>
  1652     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1653     /**
  1654      * Returns the lower bounds of the formals of a method.
  1655      */
  1656     public List<Type> lowerBoundArgtypes(Type t) {
  1657         return lowerBounds(t.getParameterTypes());
  1659     public List<Type> lowerBounds(List<Type> ts) {
  1660         return map(ts, lowerBoundMapping);
  1662     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1663             public Type apply(Type t) {
  1664                 return lowerBound(t);
  1666         };
  1667     // </editor-fold>
  1669     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1670     /**
  1671      * This relation answers the question: is impossible that
  1672      * something of type `t' can be a subtype of `s'? This is
  1673      * different from the question "is `t' not a subtype of `s'?"
  1674      * when type variables are involved: Integer is not a subtype of T
  1675      * where {@code <T extends Number>} but it is not true that Integer cannot
  1676      * possibly be a subtype of T.
  1677      */
  1678     public boolean notSoftSubtype(Type t, Type s) {
  1679         if (t == s) return false;
  1680         if (t.tag == TYPEVAR) {
  1681             TypeVar tv = (TypeVar) t;
  1682             return !isCastable(tv.bound,
  1683                                relaxBound(s),
  1684                                noWarnings);
  1686         if (s.tag != WILDCARD)
  1687             s = upperBound(s);
  1689         return !isSubtype(t, relaxBound(s));
  1692     private Type relaxBound(Type t) {
  1693         if (t.tag == TYPEVAR) {
  1694             while (t.tag == TYPEVAR)
  1695                 t = t.getUpperBound();
  1696             t = rewriteQuantifiers(t, true, true);
  1698         return t;
  1700     // </editor-fold>
  1702     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1703     public boolean isReifiable(Type t) {
  1704         return isReifiable.visit(t);
  1706     // where
  1707         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1709             public Boolean visitType(Type t, Void ignored) {
  1710                 return true;
  1713             @Override
  1714             public Boolean visitClassType(ClassType t, Void ignored) {
  1715                 if (t.isCompound())
  1716                     return false;
  1717                 else {
  1718                     if (!t.isParameterized())
  1719                         return true;
  1721                     for (Type param : t.allparams()) {
  1722                         if (!param.isUnbound())
  1723                             return false;
  1725                     return true;
  1729             @Override
  1730             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1731                 return visit(t.elemtype);
  1734             @Override
  1735             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1736                 return false;
  1738         };
  1739     // </editor-fold>
  1741     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1742     public boolean isArray(Type t) {
  1743         while (t.tag == WILDCARD)
  1744             t = upperBound(t);
  1745         return t.tag == ARRAY;
  1748     /**
  1749      * The element type of an array.
  1750      */
  1751     public Type elemtype(Type t) {
  1752         switch (t.tag) {
  1753         case WILDCARD:
  1754             return elemtype(upperBound(t));
  1755         case ARRAY:
  1756             t = t.unannotatedType();
  1757             return ((ArrayType)t).elemtype;
  1758         case FORALL:
  1759             return elemtype(((ForAll)t).qtype);
  1760         case ERROR:
  1761             return t;
  1762         default:
  1763             return null;
  1767     public Type elemtypeOrType(Type t) {
  1768         Type elemtype = elemtype(t);
  1769         return elemtype != null ?
  1770             elemtype :
  1771             t;
  1774     /**
  1775      * Mapping to take element type of an arraytype
  1776      */
  1777     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1778         public Type apply(Type t) { return elemtype(t); }
  1779     };
  1781     /**
  1782      * The number of dimensions of an array type.
  1783      */
  1784     public int dimensions(Type t) {
  1785         int result = 0;
  1786         while (t.tag == ARRAY) {
  1787             result++;
  1788             t = elemtype(t);
  1790         return result;
  1793     /**
  1794      * Returns an ArrayType with the component type t
  1796      * @param t The component type of the ArrayType
  1797      * @return the ArrayType for the given component
  1798      */
  1799     public ArrayType makeArrayType(Type t) {
  1800         if (t.tag == VOID ||
  1801             t.tag == PACKAGE) {
  1802             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1804         return new ArrayType(t, syms.arrayClass);
  1806     // </editor-fold>
  1808     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1809     /**
  1810      * Return the (most specific) base type of t that starts with the
  1811      * given symbol.  If none exists, return null.
  1813      * @param t a type
  1814      * @param sym a symbol
  1815      */
  1816     public Type asSuper(Type t, Symbol sym) {
  1817         return asSuper.visit(t, sym);
  1819     // where
  1820         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1822             public Type visitType(Type t, Symbol sym) {
  1823                 return null;
  1826             @Override
  1827             public Type visitClassType(ClassType t, Symbol sym) {
  1828                 if (t.tsym == sym)
  1829                     return t;
  1831                 Type st = supertype(t);
  1832                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1833                     Type x = asSuper(st, sym);
  1834                     if (x != null)
  1835                         return x;
  1837                 if ((sym.flags() & INTERFACE) != 0) {
  1838                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1839                         Type x = asSuper(l.head, sym);
  1840                         if (x != null)
  1841                             return x;
  1844                 return null;
  1847             @Override
  1848             public Type visitArrayType(ArrayType t, Symbol sym) {
  1849                 return isSubtype(t, sym.type) ? sym.type : null;
  1852             @Override
  1853             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1854                 if (t.tsym == sym)
  1855                     return t;
  1856                 else
  1857                     return asSuper(t.bound, sym);
  1860             @Override
  1861             public Type visitErrorType(ErrorType t, Symbol sym) {
  1862                 return t;
  1864         };
  1866     /**
  1867      * Return the base type of t or any of its outer types that starts
  1868      * with the given symbol.  If none exists, return null.
  1870      * @param t a type
  1871      * @param sym a symbol
  1872      */
  1873     public Type asOuterSuper(Type t, Symbol sym) {
  1874         switch (t.tag) {
  1875         case CLASS:
  1876             do {
  1877                 Type s = asSuper(t, sym);
  1878                 if (s != null) return s;
  1879                 t = t.getEnclosingType();
  1880             } while (t.tag == CLASS);
  1881             return null;
  1882         case ARRAY:
  1883             return isSubtype(t, sym.type) ? sym.type : null;
  1884         case TYPEVAR:
  1885             return asSuper(t, sym);
  1886         case ERROR:
  1887             return t;
  1888         default:
  1889             return null;
  1893     /**
  1894      * Return the base type of t or any of its enclosing types that
  1895      * starts with the given symbol.  If none exists, return null.
  1897      * @param t a type
  1898      * @param sym a symbol
  1899      */
  1900     public Type asEnclosingSuper(Type t, Symbol sym) {
  1901         switch (t.tag) {
  1902         case CLASS:
  1903             do {
  1904                 Type s = asSuper(t, sym);
  1905                 if (s != null) return s;
  1906                 Type outer = t.getEnclosingType();
  1907                 t = (outer.tag == CLASS) ? outer :
  1908                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1909                     Type.noType;
  1910             } while (t.tag == CLASS);
  1911             return null;
  1912         case ARRAY:
  1913             return isSubtype(t, sym.type) ? sym.type : null;
  1914         case TYPEVAR:
  1915             return asSuper(t, sym);
  1916         case ERROR:
  1917             return t;
  1918         default:
  1919             return null;
  1922     // </editor-fold>
  1924     // <editor-fold defaultstate="collapsed" desc="memberType">
  1925     /**
  1926      * The type of given symbol, seen as a member of t.
  1928      * @param t a type
  1929      * @param sym a symbol
  1930      */
  1931     public Type memberType(Type t, Symbol sym) {
  1932         return (sym.flags() & STATIC) != 0
  1933             ? sym.type
  1934             : memberType.visit(t, sym);
  1936     // where
  1937         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1939             public Type visitType(Type t, Symbol sym) {
  1940                 return sym.type;
  1943             @Override
  1944             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1945                 return memberType(upperBound(t), sym);
  1948             @Override
  1949             public Type visitClassType(ClassType t, Symbol sym) {
  1950                 Symbol owner = sym.owner;
  1951                 long flags = sym.flags();
  1952                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1953                     Type base = asOuterSuper(t, owner);
  1954                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1955                     //its supertypes CT, I1, ... In might contain wildcards
  1956                     //so we need to go through capture conversion
  1957                     base = t.isCompound() ? capture(base) : base;
  1958                     if (base != null) {
  1959                         List<Type> ownerParams = owner.type.allparams();
  1960                         List<Type> baseParams = base.allparams();
  1961                         if (ownerParams.nonEmpty()) {
  1962                             if (baseParams.isEmpty()) {
  1963                                 // then base is a raw type
  1964                                 return erasure(sym.type);
  1965                             } else {
  1966                                 return subst(sym.type, ownerParams, baseParams);
  1971                 return sym.type;
  1974             @Override
  1975             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1976                 return memberType(t.bound, sym);
  1979             @Override
  1980             public Type visitErrorType(ErrorType t, Symbol sym) {
  1981                 return t;
  1983         };
  1984     // </editor-fold>
  1986     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1987     public boolean isAssignable(Type t, Type s) {
  1988         return isAssignable(t, s, noWarnings);
  1991     /**
  1992      * Is t assignable to s?<br>
  1993      * Equivalent to subtype except for constant values and raw
  1994      * types.<br>
  1995      * (not defined for Method and ForAll types)
  1996      */
  1997     public boolean isAssignable(Type t, Type s, Warner warn) {
  1998         if (t.tag == ERROR)
  1999             return true;
  2000         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  2001             int value = ((Number)t.constValue()).intValue();
  2002             switch (s.tag) {
  2003             case BYTE:
  2004                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  2005                     return true;
  2006                 break;
  2007             case CHAR:
  2008                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  2009                     return true;
  2010                 break;
  2011             case SHORT:
  2012                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2013                     return true;
  2014                 break;
  2015             case INT:
  2016                 return true;
  2017             case CLASS:
  2018                 switch (unboxedType(s).tag) {
  2019                 case BYTE:
  2020                 case CHAR:
  2021                 case SHORT:
  2022                     return isAssignable(t, unboxedType(s), warn);
  2024                 break;
  2027         return isConvertible(t, s, warn);
  2029     // </editor-fold>
  2031     // <editor-fold defaultstate="collapsed" desc="erasure">
  2032     /**
  2033      * The erasure of t {@code |t|} -- the type that results when all
  2034      * type parameters in t are deleted.
  2035      */
  2036     public Type erasure(Type t) {
  2037         return eraseNotNeeded(t)? t : erasure(t, false);
  2039     //where
  2040     private boolean eraseNotNeeded(Type t) {
  2041         // We don't want to erase primitive types and String type as that
  2042         // operation is idempotent. Also, erasing these could result in loss
  2043         // of information such as constant values attached to such types.
  2044         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2047     private Type erasure(Type t, boolean recurse) {
  2048         if (t.isPrimitive())
  2049             return t; /* fast special case */
  2050         else
  2051             return erasure.visit(t, recurse);
  2053     // where
  2054         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2055             public Type visitType(Type t, Boolean recurse) {
  2056                 if (t.isPrimitive())
  2057                     return t; /*fast special case*/
  2058                 else
  2059                     return t.map(recurse ? erasureRecFun : erasureFun);
  2062             @Override
  2063             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2064                 return erasure(upperBound(t), recurse);
  2067             @Override
  2068             public Type visitClassType(ClassType t, Boolean recurse) {
  2069                 Type erased = t.tsym.erasure(Types.this);
  2070                 if (recurse) {
  2071                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2073                 return erased;
  2076             @Override
  2077             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2078                 return erasure(t.bound, recurse);
  2081             @Override
  2082             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2083                 return t;
  2086             @Override
  2087             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2088                 Type erased = erasure(t.underlyingType, recurse);
  2089                 if (erased.getKind() == TypeKind.ANNOTATED) {
  2090                     // This can only happen when the underlying type is a
  2091                     // type variable and the upper bound of it is annotated.
  2092                     // The annotation on the type variable overrides the one
  2093                     // on the bound.
  2094                     erased = ((AnnotatedType)erased).underlyingType;
  2096                 return new AnnotatedType(t.typeAnnotations, erased);
  2098         };
  2100     private Mapping erasureFun = new Mapping ("erasure") {
  2101             public Type apply(Type t) { return erasure(t); }
  2102         };
  2104     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2105         public Type apply(Type t) { return erasureRecursive(t); }
  2106     };
  2108     public List<Type> erasure(List<Type> ts) {
  2109         return Type.map(ts, erasureFun);
  2112     public Type erasureRecursive(Type t) {
  2113         return erasure(t, true);
  2116     public List<Type> erasureRecursive(List<Type> ts) {
  2117         return Type.map(ts, erasureRecFun);
  2119     // </editor-fold>
  2121     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2122     /**
  2123      * Make a compound type from non-empty list of types
  2125      * @param bounds            the types from which the compound type is formed
  2126      * @param supertype         is objectType if all bounds are interfaces,
  2127      *                          null otherwise.
  2128      */
  2129     public Type makeCompoundType(List<Type> bounds) {
  2130         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2132     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2133         Assert.check(bounds.nonEmpty());
  2134         Type firstExplicitBound = bounds.head;
  2135         if (allInterfaces) {
  2136             bounds = bounds.prepend(syms.objectType);
  2138         ClassSymbol bc =
  2139             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2140                             Type.moreInfo
  2141                                 ? names.fromString(bounds.toString())
  2142                                 : names.empty,
  2143                             null,
  2144                             syms.noSymbol);
  2145         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2146         bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
  2147                 syms.objectType : // error condition, recover
  2148                 erasure(firstExplicitBound);
  2149         bc.members_field = new Scope(bc);
  2150         return bc.type;
  2153     /**
  2154      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2155      * arguments are converted to a list and passed to the other
  2156      * method.  Note that this might cause a symbol completion.
  2157      * Hence, this version of makeCompoundType may not be called
  2158      * during a classfile read.
  2159      */
  2160     public Type makeCompoundType(Type bound1, Type bound2) {
  2161         return makeCompoundType(List.of(bound1, bound2));
  2163     // </editor-fold>
  2165     // <editor-fold defaultstate="collapsed" desc="supertype">
  2166     public Type supertype(Type t) {
  2167         return supertype.visit(t);
  2169     // where
  2170         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2172             public Type visitType(Type t, Void ignored) {
  2173                 // A note on wildcards: there is no good way to
  2174                 // determine a supertype for a super bounded wildcard.
  2175                 return null;
  2178             @Override
  2179             public Type visitClassType(ClassType t, Void ignored) {
  2180                 if (t.supertype_field == null) {
  2181                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2182                     // An interface has no superclass; its supertype is Object.
  2183                     if (t.isInterface())
  2184                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2185                     if (t.supertype_field == null) {
  2186                         List<Type> actuals = classBound(t).allparams();
  2187                         List<Type> formals = t.tsym.type.allparams();
  2188                         if (t.hasErasedSupertypes()) {
  2189                             t.supertype_field = erasureRecursive(supertype);
  2190                         } else if (formals.nonEmpty()) {
  2191                             t.supertype_field = subst(supertype, formals, actuals);
  2193                         else {
  2194                             t.supertype_field = supertype;
  2198                 return t.supertype_field;
  2201             /**
  2202              * The supertype is always a class type. If the type
  2203              * variable's bounds start with a class type, this is also
  2204              * the supertype.  Otherwise, the supertype is
  2205              * java.lang.Object.
  2206              */
  2207             @Override
  2208             public Type visitTypeVar(TypeVar t, Void ignored) {
  2209                 if (t.bound.tag == TYPEVAR ||
  2210                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2211                     return t.bound;
  2212                 } else {
  2213                     return supertype(t.bound);
  2217             @Override
  2218             public Type visitArrayType(ArrayType t, Void ignored) {
  2219                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2220                     return arraySuperType();
  2221                 else
  2222                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2225             @Override
  2226             public Type visitErrorType(ErrorType t, Void ignored) {
  2227                 return t;
  2229         };
  2230     // </editor-fold>
  2232     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2233     /**
  2234      * Return the interfaces implemented by this class.
  2235      */
  2236     public List<Type> interfaces(Type t) {
  2237         return interfaces.visit(t);
  2239     // where
  2240         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2242             public List<Type> visitType(Type t, Void ignored) {
  2243                 return List.nil();
  2246             @Override
  2247             public List<Type> visitClassType(ClassType t, Void ignored) {
  2248                 if (t.interfaces_field == null) {
  2249                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2250                     if (t.interfaces_field == null) {
  2251                         // If t.interfaces_field is null, then t must
  2252                         // be a parameterized type (not to be confused
  2253                         // with a generic type declaration).
  2254                         // Terminology:
  2255                         //    Parameterized type: List<String>
  2256                         //    Generic type declaration: class List<E> { ... }
  2257                         // So t corresponds to List<String> and
  2258                         // t.tsym.type corresponds to List<E>.
  2259                         // The reason t must be parameterized type is
  2260                         // that completion will happen as a side
  2261                         // effect of calling
  2262                         // ClassSymbol.getInterfaces.  Since
  2263                         // t.interfaces_field is null after
  2264                         // completion, we can assume that t is not the
  2265                         // type of a class/interface declaration.
  2266                         Assert.check(t != t.tsym.type, t);
  2267                         List<Type> actuals = t.allparams();
  2268                         List<Type> formals = t.tsym.type.allparams();
  2269                         if (t.hasErasedSupertypes()) {
  2270                             t.interfaces_field = erasureRecursive(interfaces);
  2271                         } else if (formals.nonEmpty()) {
  2272                             t.interfaces_field =
  2273                                 upperBounds(subst(interfaces, formals, actuals));
  2275                         else {
  2276                             t.interfaces_field = interfaces;
  2280                 return t.interfaces_field;
  2283             @Override
  2284             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2285                 if (t.bound.isCompound())
  2286                     return interfaces(t.bound);
  2288                 if (t.bound.isInterface())
  2289                     return List.of(t.bound);
  2291                 return List.nil();
  2293         };
  2295     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2296         for (Type i2 : interfaces(origin.type)) {
  2297             if (isym == i2.tsym) return true;
  2299         return false;
  2301     // </editor-fold>
  2303     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2304     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2306     public boolean isDerivedRaw(Type t) {
  2307         Boolean result = isDerivedRawCache.get(t);
  2308         if (result == null) {
  2309             result = isDerivedRawInternal(t);
  2310             isDerivedRawCache.put(t, result);
  2312         return result;
  2315     public boolean isDerivedRawInternal(Type t) {
  2316         if (t.isErroneous())
  2317             return false;
  2318         return
  2319             t.isRaw() ||
  2320             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2321             isDerivedRaw(interfaces(t));
  2324     public boolean isDerivedRaw(List<Type> ts) {
  2325         List<Type> l = ts;
  2326         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2327         return l.nonEmpty();
  2329     // </editor-fold>
  2331     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2332     /**
  2333      * Set the bounds field of the given type variable to reflect a
  2334      * (possibly multiple) list of bounds.
  2335      * @param t                 a type variable
  2336      * @param bounds            the bounds, must be nonempty
  2337      * @param supertype         is objectType if all bounds are interfaces,
  2338      *                          null otherwise.
  2339      */
  2340     public void setBounds(TypeVar t, List<Type> bounds) {
  2341         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2344     /**
  2345      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2346      * third parameter is computed directly, as follows: if all
  2347      * all bounds are interface types, the computed supertype is Object,
  2348      * otherwise the supertype is simply left null (in this case, the supertype
  2349      * is assumed to be the head of the bound list passed as second argument).
  2350      * Note that this check might cause a symbol completion. Hence, this version of
  2351      * setBounds may not be called during a classfile read.
  2352      */
  2353     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2354         t.bound = bounds.tail.isEmpty() ?
  2355                 bounds.head :
  2356                 makeCompoundType(bounds, allInterfaces);
  2357         t.rank_field = -1;
  2359     // </editor-fold>
  2361     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2362     /**
  2363      * Return list of bounds of the given type variable.
  2364      */
  2365     public List<Type> getBounds(TypeVar t) {
  2366         if (t.bound.hasTag(NONE))
  2367             return List.nil();
  2368         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2369             return List.of(t.bound);
  2370         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2371             return interfaces(t).prepend(supertype(t));
  2372         else
  2373             // No superclass was given in bounds.
  2374             // In this case, supertype is Object, erasure is first interface.
  2375             return interfaces(t);
  2377     // </editor-fold>
  2379     // <editor-fold defaultstate="collapsed" desc="classBound">
  2380     /**
  2381      * If the given type is a (possibly selected) type variable,
  2382      * return the bounding class of this type, otherwise return the
  2383      * type itself.
  2384      */
  2385     public Type classBound(Type t) {
  2386         return classBound.visit(t);
  2388     // where
  2389         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2391             public Type visitType(Type t, Void ignored) {
  2392                 return t;
  2395             @Override
  2396             public Type visitClassType(ClassType t, Void ignored) {
  2397                 Type outer1 = classBound(t.getEnclosingType());
  2398                 if (outer1 != t.getEnclosingType())
  2399                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2400                 else
  2401                     return t;
  2404             @Override
  2405             public Type visitTypeVar(TypeVar t, Void ignored) {
  2406                 return classBound(supertype(t));
  2409             @Override
  2410             public Type visitErrorType(ErrorType t, Void ignored) {
  2411                 return t;
  2413         };
  2414     // </editor-fold>
  2416     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2417     /**
  2418      * Returns true iff the first signature is a <em>sub
  2419      * signature</em> of the other.  This is <b>not</b> an equivalence
  2420      * relation.
  2422      * @jls section 8.4.2.
  2423      * @see #overrideEquivalent(Type t, Type s)
  2424      * @param t first signature (possibly raw).
  2425      * @param s second signature (could be subjected to erasure).
  2426      * @return true if t is a sub signature of s.
  2427      */
  2428     public boolean isSubSignature(Type t, Type s) {
  2429         return isSubSignature(t, s, true);
  2432     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2433         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2436     /**
  2437      * Returns true iff these signatures are related by <em>override
  2438      * equivalence</em>.  This is the natural extension of
  2439      * isSubSignature to an equivalence relation.
  2441      * @jls section 8.4.2.
  2442      * @see #isSubSignature(Type t, Type s)
  2443      * @param t a signature (possible raw, could be subjected to
  2444      * erasure).
  2445      * @param s a signature (possible raw, could be subjected to
  2446      * erasure).
  2447      * @return true if either argument is a sub signature of the other.
  2448      */
  2449     public boolean overrideEquivalent(Type t, Type s) {
  2450         return hasSameArgs(t, s) ||
  2451             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2454     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2455         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2456             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2457                 return true;
  2460         return false;
  2463     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2464     class ImplementationCache {
  2466         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2467                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2469         class Entry {
  2470             final MethodSymbol cachedImpl;
  2471             final Filter<Symbol> implFilter;
  2472             final boolean checkResult;
  2473             final int prevMark;
  2475             public Entry(MethodSymbol cachedImpl,
  2476                     Filter<Symbol> scopeFilter,
  2477                     boolean checkResult,
  2478                     int prevMark) {
  2479                 this.cachedImpl = cachedImpl;
  2480                 this.implFilter = scopeFilter;
  2481                 this.checkResult = checkResult;
  2482                 this.prevMark = prevMark;
  2485             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2486                 return this.implFilter == scopeFilter &&
  2487                         this.checkResult == checkResult &&
  2488                         this.prevMark == mark;
  2492         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2493             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2494             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2495             if (cache == null) {
  2496                 cache = new HashMap<TypeSymbol, Entry>();
  2497                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2499             Entry e = cache.get(origin);
  2500             CompoundScope members = membersClosure(origin.type, true);
  2501             if (e == null ||
  2502                     !e.matches(implFilter, checkResult, members.getMark())) {
  2503                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2504                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2505                 return impl;
  2507             else {
  2508                 return e.cachedImpl;
  2512         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2513             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2514                 while (t.tag == TYPEVAR)
  2515                     t = t.getUpperBound();
  2516                 TypeSymbol c = t.tsym;
  2517                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2518                      e.scope != null;
  2519                      e = e.next(implFilter)) {
  2520                     if (e.sym != null &&
  2521                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2522                         return (MethodSymbol)e.sym;
  2525             return null;
  2529     private ImplementationCache implCache = new ImplementationCache();
  2531     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2532         return implCache.get(ms, origin, checkResult, implFilter);
  2534     // </editor-fold>
  2536     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2537     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2539         private WeakHashMap<TypeSymbol, Entry> _map =
  2540                 new WeakHashMap<TypeSymbol, Entry>();
  2542         class Entry {
  2543             final boolean skipInterfaces;
  2544             final CompoundScope compoundScope;
  2546             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2547                 this.skipInterfaces = skipInterfaces;
  2548                 this.compoundScope = compoundScope;
  2551             boolean matches(boolean skipInterfaces) {
  2552                 return this.skipInterfaces == skipInterfaces;
  2556         List<TypeSymbol> seenTypes = List.nil();
  2558         /** members closure visitor methods **/
  2560         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2561             return null;
  2564         @Override
  2565         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2566             if (seenTypes.contains(t.tsym)) {
  2567                 //this is possible when an interface is implemented in multiple
  2568                 //superclasses, or when a classs hierarchy is circular - in such
  2569                 //cases we don't need to recurse (empty scope is returned)
  2570                 return new CompoundScope(t.tsym);
  2572             try {
  2573                 seenTypes = seenTypes.prepend(t.tsym);
  2574                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2575                 Entry e = _map.get(csym);
  2576                 if (e == null || !e.matches(skipInterface)) {
  2577                     CompoundScope membersClosure = new CompoundScope(csym);
  2578                     if (!skipInterface) {
  2579                         for (Type i : interfaces(t)) {
  2580                             membersClosure.addSubScope(visit(i, skipInterface));
  2583                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2584                     membersClosure.addSubScope(csym.members());
  2585                     e = new Entry(skipInterface, membersClosure);
  2586                     _map.put(csym, e);
  2588                 return e.compoundScope;
  2590             finally {
  2591                 seenTypes = seenTypes.tail;
  2595         @Override
  2596         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2597             return visit(t.getUpperBound(), skipInterface);
  2601     private MembersClosureCache membersCache = new MembersClosureCache();
  2603     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2604         return membersCache.visit(site, skipInterface);
  2606     // </editor-fold>
  2609     //where
  2610     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2611         Filter<Symbol> filter = new MethodFilter(ms, site);
  2612         List<MethodSymbol> candidates = List.nil();
  2613         for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2614             if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2615                 return List.of((MethodSymbol)s);
  2616             } else if (!candidates.contains(s)) {
  2617                 candidates = candidates.prepend((MethodSymbol)s);
  2620         return prune(candidates);
  2623     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2624         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2625         for (MethodSymbol m1 : methods) {
  2626             boolean isMin_m1 = true;
  2627             for (MethodSymbol m2 : methods) {
  2628                 if (m1 == m2) continue;
  2629                 if (m2.owner != m1.owner &&
  2630                         asSuper(m2.owner.type, m1.owner) != null) {
  2631                     isMin_m1 = false;
  2632                     break;
  2635             if (isMin_m1)
  2636                 methodsMin.append(m1);
  2638         return methodsMin.toList();
  2640     // where
  2641             private class MethodFilter implements Filter<Symbol> {
  2643                 Symbol msym;
  2644                 Type site;
  2646                 MethodFilter(Symbol msym, Type site) {
  2647                     this.msym = msym;
  2648                     this.site = site;
  2651                 public boolean accepts(Symbol s) {
  2652                     return s.kind == Kinds.MTH &&
  2653                             s.name == msym.name &&
  2654                             s.isInheritedIn(site.tsym, Types.this) &&
  2655                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2657             };
  2658     // </editor-fold>
  2660     /**
  2661      * Does t have the same arguments as s?  It is assumed that both
  2662      * types are (possibly polymorphic) method types.  Monomorphic
  2663      * method types "have the same arguments", if their argument lists
  2664      * are equal.  Polymorphic method types "have the same arguments",
  2665      * if they have the same arguments after renaming all type
  2666      * variables of one to corresponding type variables in the other,
  2667      * where correspondence is by position in the type parameter list.
  2668      */
  2669     public boolean hasSameArgs(Type t, Type s) {
  2670         return hasSameArgs(t, s, true);
  2673     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2674         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2677     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2678         return hasSameArgs.visit(t, s);
  2680     // where
  2681         private class HasSameArgs extends TypeRelation {
  2683             boolean strict;
  2685             public HasSameArgs(boolean strict) {
  2686                 this.strict = strict;
  2689             public Boolean visitType(Type t, Type s) {
  2690                 throw new AssertionError();
  2693             @Override
  2694             public Boolean visitMethodType(MethodType t, Type s) {
  2695                 return s.tag == METHOD
  2696                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2699             @Override
  2700             public Boolean visitForAll(ForAll t, Type s) {
  2701                 if (s.tag != FORALL)
  2702                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2704                 ForAll forAll = (ForAll)s;
  2705                 return hasSameBounds(t, forAll)
  2706                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2709             @Override
  2710             public Boolean visitErrorType(ErrorType t, Type s) {
  2711                 return false;
  2713         };
  2715         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2716         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2718     // </editor-fold>
  2720     // <editor-fold defaultstate="collapsed" desc="subst">
  2721     public List<Type> subst(List<Type> ts,
  2722                             List<Type> from,
  2723                             List<Type> to) {
  2724         return new Subst(from, to).subst(ts);
  2727     /**
  2728      * Substitute all occurrences of a type in `from' with the
  2729      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2730      * from the right: If lists have different length, discard leading
  2731      * elements of the longer list.
  2732      */
  2733     public Type subst(Type t, List<Type> from, List<Type> to) {
  2734         return new Subst(from, to).subst(t);
  2737     private class Subst extends UnaryVisitor<Type> {
  2738         List<Type> from;
  2739         List<Type> to;
  2741         public Subst(List<Type> from, List<Type> to) {
  2742             int fromLength = from.length();
  2743             int toLength = to.length();
  2744             while (fromLength > toLength) {
  2745                 fromLength--;
  2746                 from = from.tail;
  2748             while (fromLength < toLength) {
  2749                 toLength--;
  2750                 to = to.tail;
  2752             this.from = from;
  2753             this.to = to;
  2756         Type subst(Type t) {
  2757             if (from.tail == null)
  2758                 return t;
  2759             else
  2760                 return visit(t);
  2763         List<Type> subst(List<Type> ts) {
  2764             if (from.tail == null)
  2765                 return ts;
  2766             boolean wild = false;
  2767             if (ts.nonEmpty() && from.nonEmpty()) {
  2768                 Type head1 = subst(ts.head);
  2769                 List<Type> tail1 = subst(ts.tail);
  2770                 if (head1 != ts.head || tail1 != ts.tail)
  2771                     return tail1.prepend(head1);
  2773             return ts;
  2776         public Type visitType(Type t, Void ignored) {
  2777             return t;
  2780         @Override
  2781         public Type visitMethodType(MethodType t, Void ignored) {
  2782             List<Type> argtypes = subst(t.argtypes);
  2783             Type restype = subst(t.restype);
  2784             List<Type> thrown = subst(t.thrown);
  2785             if (argtypes == t.argtypes &&
  2786                 restype == t.restype &&
  2787                 thrown == t.thrown)
  2788                 return t;
  2789             else
  2790                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2793         @Override
  2794         public Type visitTypeVar(TypeVar t, Void ignored) {
  2795             for (List<Type> from = this.from, to = this.to;
  2796                  from.nonEmpty();
  2797                  from = from.tail, to = to.tail) {
  2798                 if (t == from.head) {
  2799                     return to.head.withTypeVar(t);
  2802             return t;
  2805         @Override
  2806         public Type visitClassType(ClassType t, Void ignored) {
  2807             if (!t.isCompound()) {
  2808                 List<Type> typarams = t.getTypeArguments();
  2809                 List<Type> typarams1 = subst(typarams);
  2810                 Type outer = t.getEnclosingType();
  2811                 Type outer1 = subst(outer);
  2812                 if (typarams1 == typarams && outer1 == outer)
  2813                     return t;
  2814                 else
  2815                     return new ClassType(outer1, typarams1, t.tsym);
  2816             } else {
  2817                 Type st = subst(supertype(t));
  2818                 List<Type> is = upperBounds(subst(interfaces(t)));
  2819                 if (st == supertype(t) && is == interfaces(t))
  2820                     return t;
  2821                 else
  2822                     return makeCompoundType(is.prepend(st));
  2826         @Override
  2827         public Type visitWildcardType(WildcardType t, Void ignored) {
  2828             Type bound = t.type;
  2829             if (t.kind != BoundKind.UNBOUND)
  2830                 bound = subst(bound);
  2831             if (bound == t.type) {
  2832                 return t;
  2833             } else {
  2834                 if (t.isExtendsBound() && bound.isExtendsBound())
  2835                     bound = upperBound(bound);
  2836                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2840         @Override
  2841         public Type visitArrayType(ArrayType t, Void ignored) {
  2842             Type elemtype = subst(t.elemtype);
  2843             if (elemtype == t.elemtype)
  2844                 return t;
  2845             else
  2846                 return new ArrayType(upperBound(elemtype), t.tsym);
  2849         @Override
  2850         public Type visitForAll(ForAll t, Void ignored) {
  2851             if (Type.containsAny(to, t.tvars)) {
  2852                 //perform alpha-renaming of free-variables in 't'
  2853                 //if 'to' types contain variables that are free in 't'
  2854                 List<Type> freevars = newInstances(t.tvars);
  2855                 t = new ForAll(freevars,
  2856                         Types.this.subst(t.qtype, t.tvars, freevars));
  2858             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2859             Type qtype1 = subst(t.qtype);
  2860             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2861                 return t;
  2862             } else if (tvars1 == t.tvars) {
  2863                 return new ForAll(tvars1, qtype1);
  2864             } else {
  2865                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2869         @Override
  2870         public Type visitErrorType(ErrorType t, Void ignored) {
  2871             return t;
  2875     public List<Type> substBounds(List<Type> tvars,
  2876                                   List<Type> from,
  2877                                   List<Type> to) {
  2878         if (tvars.isEmpty())
  2879             return tvars;
  2880         ListBuffer<Type> newBoundsBuf = lb();
  2881         boolean changed = false;
  2882         // calculate new bounds
  2883         for (Type t : tvars) {
  2884             TypeVar tv = (TypeVar) t;
  2885             Type bound = subst(tv.bound, from, to);
  2886             if (bound != tv.bound)
  2887                 changed = true;
  2888             newBoundsBuf.append(bound);
  2890         if (!changed)
  2891             return tvars;
  2892         ListBuffer<Type> newTvars = lb();
  2893         // create new type variables without bounds
  2894         for (Type t : tvars) {
  2895             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2897         // the new bounds should use the new type variables in place
  2898         // of the old
  2899         List<Type> newBounds = newBoundsBuf.toList();
  2900         from = tvars;
  2901         to = newTvars.toList();
  2902         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2903             newBounds.head = subst(newBounds.head, from, to);
  2905         newBounds = newBoundsBuf.toList();
  2906         // set the bounds of new type variables to the new bounds
  2907         for (Type t : newTvars.toList()) {
  2908             TypeVar tv = (TypeVar) t;
  2909             tv.bound = newBounds.head;
  2910             newBounds = newBounds.tail;
  2912         return newTvars.toList();
  2915     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2916         Type bound1 = subst(t.bound, from, to);
  2917         if (bound1 == t.bound)
  2918             return t;
  2919         else {
  2920             // create new type variable without bounds
  2921             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2922             // the new bound should use the new type variable in place
  2923             // of the old
  2924             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2925             return tv;
  2928     // </editor-fold>
  2930     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2931     /**
  2932      * Does t have the same bounds for quantified variables as s?
  2933      */
  2934     boolean hasSameBounds(ForAll t, ForAll s) {
  2935         List<Type> l1 = t.tvars;
  2936         List<Type> l2 = s.tvars;
  2937         while (l1.nonEmpty() && l2.nonEmpty() &&
  2938                isSameType(l1.head.getUpperBound(),
  2939                           subst(l2.head.getUpperBound(),
  2940                                 s.tvars,
  2941                                 t.tvars))) {
  2942             l1 = l1.tail;
  2943             l2 = l2.tail;
  2945         return l1.isEmpty() && l2.isEmpty();
  2947     // </editor-fold>
  2949     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2950     /** Create new vector of type variables from list of variables
  2951      *  changing all recursive bounds from old to new list.
  2952      */
  2953     public List<Type> newInstances(List<Type> tvars) {
  2954         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2955         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2956             TypeVar tv = (TypeVar) l.head;
  2957             tv.bound = subst(tv.bound, tvars, tvars1);
  2959         return tvars1;
  2961     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2962             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2963         };
  2964     // </editor-fold>
  2966     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2967         return original.accept(methodWithParameters, newParams);
  2969     // where
  2970         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2971             public Type visitType(Type t, List<Type> newParams) {
  2972                 throw new IllegalArgumentException("Not a method type: " + t);
  2974             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2975                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2977             public Type visitForAll(ForAll t, List<Type> newParams) {
  2978                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2980         };
  2982     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2983         return original.accept(methodWithThrown, newThrown);
  2985     // where
  2986         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2987             public Type visitType(Type t, List<Type> newThrown) {
  2988                 throw new IllegalArgumentException("Not a method type: " + t);
  2990             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2991                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2993             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2994                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2996         };
  2998     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2999         return original.accept(methodWithReturn, newReturn);
  3001     // where
  3002         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  3003             public Type visitType(Type t, Type newReturn) {
  3004                 throw new IllegalArgumentException("Not a method type: " + t);
  3006             public Type visitMethodType(MethodType t, Type newReturn) {
  3007                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  3009             public Type visitForAll(ForAll t, Type newReturn) {
  3010                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3012         };
  3014     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3015     public Type createErrorType(Type originalType) {
  3016         return new ErrorType(originalType, syms.errSymbol);
  3019     public Type createErrorType(ClassSymbol c, Type originalType) {
  3020         return new ErrorType(c, originalType);
  3023     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3024         return new ErrorType(name, container, originalType);
  3026     // </editor-fold>
  3028     // <editor-fold defaultstate="collapsed" desc="rank">
  3029     /**
  3030      * The rank of a class is the length of the longest path between
  3031      * the class and java.lang.Object in the class inheritance
  3032      * graph. Undefined for all but reference types.
  3033      */
  3034     public int rank(Type t) {
  3035         t = t.unannotatedType();
  3036         switch(t.tag) {
  3037         case CLASS: {
  3038             ClassType cls = (ClassType)t;
  3039             if (cls.rank_field < 0) {
  3040                 Name fullname = cls.tsym.getQualifiedName();
  3041                 if (fullname == names.java_lang_Object)
  3042                     cls.rank_field = 0;
  3043                 else {
  3044                     int r = rank(supertype(cls));
  3045                     for (List<Type> l = interfaces(cls);
  3046                          l.nonEmpty();
  3047                          l = l.tail) {
  3048                         if (rank(l.head) > r)
  3049                             r = rank(l.head);
  3051                     cls.rank_field = r + 1;
  3054             return cls.rank_field;
  3056         case TYPEVAR: {
  3057             TypeVar tvar = (TypeVar)t;
  3058             if (tvar.rank_field < 0) {
  3059                 int r = rank(supertype(tvar));
  3060                 for (List<Type> l = interfaces(tvar);
  3061                      l.nonEmpty();
  3062                      l = l.tail) {
  3063                     if (rank(l.head) > r) r = rank(l.head);
  3065                 tvar.rank_field = r + 1;
  3067             return tvar.rank_field;
  3069         case ERROR:
  3070             return 0;
  3071         default:
  3072             throw new AssertionError();
  3075     // </editor-fold>
  3077     /**
  3078      * Helper method for generating a string representation of a given type
  3079      * accordingly to a given locale
  3080      */
  3081     public String toString(Type t, Locale locale) {
  3082         return Printer.createStandardPrinter(messages).visit(t, locale);
  3085     /**
  3086      * Helper method for generating a string representation of a given type
  3087      * accordingly to a given locale
  3088      */
  3089     public String toString(Symbol t, Locale locale) {
  3090         return Printer.createStandardPrinter(messages).visit(t, locale);
  3093     // <editor-fold defaultstate="collapsed" desc="toString">
  3094     /**
  3095      * This toString is slightly more descriptive than the one on Type.
  3097      * @deprecated Types.toString(Type t, Locale l) provides better support
  3098      * for localization
  3099      */
  3100     @Deprecated
  3101     public String toString(Type t) {
  3102         if (t.tag == FORALL) {
  3103             ForAll forAll = (ForAll)t;
  3104             return typaramsString(forAll.tvars) + forAll.qtype;
  3106         return "" + t;
  3108     // where
  3109         private String typaramsString(List<Type> tvars) {
  3110             StringBuilder s = new StringBuilder();
  3111             s.append('<');
  3112             boolean first = true;
  3113             for (Type t : tvars) {
  3114                 if (!first) s.append(", ");
  3115                 first = false;
  3116                 appendTyparamString(((TypeVar)t), s);
  3118             s.append('>');
  3119             return s.toString();
  3121         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3122             buf.append(t);
  3123             if (t.bound == null ||
  3124                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3125                 return;
  3126             buf.append(" extends "); // Java syntax; no need for i18n
  3127             Type bound = t.bound;
  3128             if (!bound.isCompound()) {
  3129                 buf.append(bound);
  3130             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3131                 buf.append(supertype(t));
  3132                 for (Type intf : interfaces(t)) {
  3133                     buf.append('&');
  3134                     buf.append(intf);
  3136             } else {
  3137                 // No superclass was given in bounds.
  3138                 // In this case, supertype is Object, erasure is first interface.
  3139                 boolean first = true;
  3140                 for (Type intf : interfaces(t)) {
  3141                     if (!first) buf.append('&');
  3142                     first = false;
  3143                     buf.append(intf);
  3147     // </editor-fold>
  3149     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3150     /**
  3151      * A cache for closures.
  3153      * <p>A closure is a list of all the supertypes and interfaces of
  3154      * a class or interface type, ordered by ClassSymbol.precedes
  3155      * (that is, subclasses come first, arbitrary but fixed
  3156      * otherwise).
  3157      */
  3158     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3160     /**
  3161      * Returns the closure of a class or interface type.
  3162      */
  3163     public List<Type> closure(Type t) {
  3164         List<Type> cl = closureCache.get(t);
  3165         if (cl == null) {
  3166             Type st = supertype(t);
  3167             if (!t.isCompound()) {
  3168                 if (st.tag == CLASS) {
  3169                     cl = insert(closure(st), t);
  3170                 } else if (st.tag == TYPEVAR) {
  3171                     cl = closure(st).prepend(t);
  3172                 } else {
  3173                     cl = List.of(t);
  3175             } else {
  3176                 cl = closure(supertype(t));
  3178             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3179                 cl = union(cl, closure(l.head));
  3180             closureCache.put(t, cl);
  3182         return cl;
  3185     /**
  3186      * Insert a type in a closure
  3187      */
  3188     public List<Type> insert(List<Type> cl, Type t) {
  3189         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3190             return cl.prepend(t);
  3191         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3192             return insert(cl.tail, t).prepend(cl.head);
  3193         } else {
  3194             return cl;
  3198     /**
  3199      * Form the union of two closures
  3200      */
  3201     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3202         if (cl1.isEmpty()) {
  3203             return cl2;
  3204         } else if (cl2.isEmpty()) {
  3205             return cl1;
  3206         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3207             return union(cl1.tail, cl2).prepend(cl1.head);
  3208         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3209             return union(cl1, cl2.tail).prepend(cl2.head);
  3210         } else {
  3211             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3215     /**
  3216      * Intersect two closures
  3217      */
  3218     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3219         if (cl1 == cl2)
  3220             return cl1;
  3221         if (cl1.isEmpty() || cl2.isEmpty())
  3222             return List.nil();
  3223         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3224             return intersect(cl1.tail, cl2);
  3225         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3226             return intersect(cl1, cl2.tail);
  3227         if (isSameType(cl1.head, cl2.head))
  3228             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3229         if (cl1.head.tsym == cl2.head.tsym &&
  3230             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3231             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3232                 Type merge = merge(cl1.head,cl2.head);
  3233                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3235             if (cl1.head.isRaw() || cl2.head.isRaw())
  3236                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3238         return intersect(cl1.tail, cl2.tail);
  3240     // where
  3241         class TypePair {
  3242             final Type t1;
  3243             final Type t2;
  3244             TypePair(Type t1, Type t2) {
  3245                 this.t1 = t1;
  3246                 this.t2 = t2;
  3248             @Override
  3249             public int hashCode() {
  3250                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3252             @Override
  3253             public boolean equals(Object obj) {
  3254                 if (!(obj instanceof TypePair))
  3255                     return false;
  3256                 TypePair typePair = (TypePair)obj;
  3257                 return isSameType(t1, typePair.t1)
  3258                     && isSameType(t2, typePair.t2);
  3261         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3262         private Type merge(Type c1, Type c2) {
  3263             ClassType class1 = (ClassType) c1;
  3264             List<Type> act1 = class1.getTypeArguments();
  3265             ClassType class2 = (ClassType) c2;
  3266             List<Type> act2 = class2.getTypeArguments();
  3267             ListBuffer<Type> merged = new ListBuffer<Type>();
  3268             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3270             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3271                 if (containsType(act1.head, act2.head)) {
  3272                     merged.append(act1.head);
  3273                 } else if (containsType(act2.head, act1.head)) {
  3274                     merged.append(act2.head);
  3275                 } else {
  3276                     TypePair pair = new TypePair(c1, c2);
  3277                     Type m;
  3278                     if (mergeCache.add(pair)) {
  3279                         m = new WildcardType(lub(upperBound(act1.head),
  3280                                                  upperBound(act2.head)),
  3281                                              BoundKind.EXTENDS,
  3282                                              syms.boundClass);
  3283                         mergeCache.remove(pair);
  3284                     } else {
  3285                         m = new WildcardType(syms.objectType,
  3286                                              BoundKind.UNBOUND,
  3287                                              syms.boundClass);
  3289                     merged.append(m.withTypeVar(typarams.head));
  3291                 act1 = act1.tail;
  3292                 act2 = act2.tail;
  3293                 typarams = typarams.tail;
  3295             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3296             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3299     /**
  3300      * Return the minimum type of a closure, a compound type if no
  3301      * unique minimum exists.
  3302      */
  3303     private Type compoundMin(List<Type> cl) {
  3304         if (cl.isEmpty()) return syms.objectType;
  3305         List<Type> compound = closureMin(cl);
  3306         if (compound.isEmpty())
  3307             return null;
  3308         else if (compound.tail.isEmpty())
  3309             return compound.head;
  3310         else
  3311             return makeCompoundType(compound);
  3314     /**
  3315      * Return the minimum types of a closure, suitable for computing
  3316      * compoundMin or glb.
  3317      */
  3318     private List<Type> closureMin(List<Type> cl) {
  3319         ListBuffer<Type> classes = lb();
  3320         ListBuffer<Type> interfaces = lb();
  3321         while (!cl.isEmpty()) {
  3322             Type current = cl.head;
  3323             if (current.isInterface())
  3324                 interfaces.append(current);
  3325             else
  3326                 classes.append(current);
  3327             ListBuffer<Type> candidates = lb();
  3328             for (Type t : cl.tail) {
  3329                 if (!isSubtypeNoCapture(current, t))
  3330                     candidates.append(t);
  3332             cl = candidates.toList();
  3334         return classes.appendList(interfaces).toList();
  3337     /**
  3338      * Return the least upper bound of pair of types.  if the lub does
  3339      * not exist return null.
  3340      */
  3341     public Type lub(Type t1, Type t2) {
  3342         return lub(List.of(t1, t2));
  3345     /**
  3346      * Return the least upper bound (lub) of set of types.  If the lub
  3347      * does not exist return the type of null (bottom).
  3348      */
  3349     public Type lub(List<Type> ts) {
  3350         final int ARRAY_BOUND = 1;
  3351         final int CLASS_BOUND = 2;
  3352         int boundkind = 0;
  3353         for (Type t : ts) {
  3354             switch (t.tag) {
  3355             case CLASS:
  3356                 boundkind |= CLASS_BOUND;
  3357                 break;
  3358             case ARRAY:
  3359                 boundkind |= ARRAY_BOUND;
  3360                 break;
  3361             case  TYPEVAR:
  3362                 do {
  3363                     t = t.getUpperBound();
  3364                 } while (t.tag == TYPEVAR);
  3365                 if (t.tag == ARRAY) {
  3366                     boundkind |= ARRAY_BOUND;
  3367                 } else {
  3368                     boundkind |= CLASS_BOUND;
  3370                 break;
  3371             default:
  3372                 if (t.isPrimitive())
  3373                     return syms.errType;
  3376         switch (boundkind) {
  3377         case 0:
  3378             return syms.botType;
  3380         case ARRAY_BOUND:
  3381             // calculate lub(A[], B[])
  3382             List<Type> elements = Type.map(ts, elemTypeFun);
  3383             for (Type t : elements) {
  3384                 if (t.isPrimitive()) {
  3385                     // if a primitive type is found, then return
  3386                     // arraySuperType unless all the types are the
  3387                     // same
  3388                     Type first = ts.head;
  3389                     for (Type s : ts.tail) {
  3390                         if (!isSameType(first, s)) {
  3391                              // lub(int[], B[]) is Cloneable & Serializable
  3392                             return arraySuperType();
  3395                     // all the array types are the same, return one
  3396                     // lub(int[], int[]) is int[]
  3397                     return first;
  3400             // lub(A[], B[]) is lub(A, B)[]
  3401             return new ArrayType(lub(elements), syms.arrayClass);
  3403         case CLASS_BOUND:
  3404             // calculate lub(A, B)
  3405             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3406                 ts = ts.tail;
  3407             Assert.check(!ts.isEmpty());
  3408             //step 1 - compute erased candidate set (EC)
  3409             List<Type> cl = erasedSupertypes(ts.head);
  3410             for (Type t : ts.tail) {
  3411                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3412                     cl = intersect(cl, erasedSupertypes(t));
  3414             //step 2 - compute minimal erased candidate set (MEC)
  3415             List<Type> mec = closureMin(cl);
  3416             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3417             List<Type> candidates = List.nil();
  3418             for (Type erasedSupertype : mec) {
  3419                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3420                 for (Type t : ts) {
  3421                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3423                 candidates = candidates.appendList(lci);
  3425             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3426             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3427             return compoundMin(candidates);
  3429         default:
  3430             // calculate lub(A, B[])
  3431             List<Type> classes = List.of(arraySuperType());
  3432             for (Type t : ts) {
  3433                 if (t.tag != ARRAY) // Filter out any arrays
  3434                     classes = classes.prepend(t);
  3436             // lub(A, B[]) is lub(A, arraySuperType)
  3437             return lub(classes);
  3440     // where
  3441         List<Type> erasedSupertypes(Type t) {
  3442             ListBuffer<Type> buf = lb();
  3443             for (Type sup : closure(t)) {
  3444                 if (sup.tag == TYPEVAR) {
  3445                     buf.append(sup);
  3446                 } else {
  3447                     buf.append(erasure(sup));
  3450             return buf.toList();
  3453         private Type arraySuperType = null;
  3454         private Type arraySuperType() {
  3455             // initialized lazily to avoid problems during compiler startup
  3456             if (arraySuperType == null) {
  3457                 synchronized (this) {
  3458                     if (arraySuperType == null) {
  3459                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3460                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3461                                                                   syms.cloneableType), true);
  3465             return arraySuperType;
  3467     // </editor-fold>
  3469     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3470     public Type glb(List<Type> ts) {
  3471         Type t1 = ts.head;
  3472         for (Type t2 : ts.tail) {
  3473             if (t1.isErroneous())
  3474                 return t1;
  3475             t1 = glb(t1, t2);
  3477         return t1;
  3479     //where
  3480     public Type glb(Type t, Type s) {
  3481         if (s == null)
  3482             return t;
  3483         else if (t.isPrimitive() || s.isPrimitive())
  3484             return syms.errType;
  3485         else if (isSubtypeNoCapture(t, s))
  3486             return t;
  3487         else if (isSubtypeNoCapture(s, t))
  3488             return s;
  3490         List<Type> closure = union(closure(t), closure(s));
  3491         List<Type> bounds = closureMin(closure);
  3493         if (bounds.isEmpty()) {             // length == 0
  3494             return syms.objectType;
  3495         } else if (bounds.tail.isEmpty()) { // length == 1
  3496             return bounds.head;
  3497         } else {                            // length > 1
  3498             int classCount = 0;
  3499             for (Type bound : bounds)
  3500                 if (!bound.isInterface())
  3501                     classCount++;
  3502             if (classCount > 1)
  3503                 return createErrorType(t);
  3505         return makeCompoundType(bounds);
  3507     // </editor-fold>
  3509     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3510     /**
  3511      * Compute a hash code on a type.
  3512      */
  3513     public int hashCode(Type t) {
  3514         return hashCode.visit(t);
  3516     // where
  3517         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3519             public Integer visitType(Type t, Void ignored) {
  3520                 return t.tag.ordinal();
  3523             @Override
  3524             public Integer visitClassType(ClassType t, Void ignored) {
  3525                 int result = visit(t.getEnclosingType());
  3526                 result *= 127;
  3527                 result += t.tsym.flatName().hashCode();
  3528                 for (Type s : t.getTypeArguments()) {
  3529                     result *= 127;
  3530                     result += visit(s);
  3532                 return result;
  3535             @Override
  3536             public Integer visitMethodType(MethodType t, Void ignored) {
  3537                 int h = METHOD.ordinal();
  3538                 for (List<Type> thisargs = t.argtypes;
  3539                      thisargs.tail != null;
  3540                      thisargs = thisargs.tail)
  3541                     h = (h << 5) + visit(thisargs.head);
  3542                 return (h << 5) + visit(t.restype);
  3545             @Override
  3546             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3547                 int result = t.kind.hashCode();
  3548                 if (t.type != null) {
  3549                     result *= 127;
  3550                     result += visit(t.type);
  3552                 return result;
  3555             @Override
  3556             public Integer visitArrayType(ArrayType t, Void ignored) {
  3557                 return visit(t.elemtype) + 12;
  3560             @Override
  3561             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3562                 return System.identityHashCode(t.tsym);
  3565             @Override
  3566             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3567                 return System.identityHashCode(t);
  3570             @Override
  3571             public Integer visitErrorType(ErrorType t, Void ignored) {
  3572                 return 0;
  3574         };
  3575     // </editor-fold>
  3577     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3578     /**
  3579      * Does t have a result that is a subtype of the result type of s,
  3580      * suitable for covariant returns?  It is assumed that both types
  3581      * are (possibly polymorphic) method types.  Monomorphic method
  3582      * types are handled in the obvious way.  Polymorphic method types
  3583      * require renaming all type variables of one to corresponding
  3584      * type variables in the other, where correspondence is by
  3585      * position in the type parameter list. */
  3586     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3587         List<Type> tvars = t.getTypeArguments();
  3588         List<Type> svars = s.getTypeArguments();
  3589         Type tres = t.getReturnType();
  3590         Type sres = subst(s.getReturnType(), svars, tvars);
  3591         return covariantReturnType(tres, sres, warner);
  3594     /**
  3595      * Return-Type-Substitutable.
  3596      * @jls section 8.4.5
  3597      */
  3598     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3599         if (hasSameArgs(r1, r2))
  3600             return resultSubtype(r1, r2, noWarnings);
  3601         else
  3602             return covariantReturnType(r1.getReturnType(),
  3603                                        erasure(r2.getReturnType()),
  3604                                        noWarnings);
  3607     public boolean returnTypeSubstitutable(Type r1,
  3608                                            Type r2, Type r2res,
  3609                                            Warner warner) {
  3610         if (isSameType(r1.getReturnType(), r2res))
  3611             return true;
  3612         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3613             return false;
  3615         if (hasSameArgs(r1, r2))
  3616             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3617         if (!allowCovariantReturns)
  3618             return false;
  3619         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3620             return true;
  3621         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3622             return false;
  3623         warner.warn(LintCategory.UNCHECKED);
  3624         return true;
  3627     /**
  3628      * Is t an appropriate return type in an overrider for a
  3629      * method that returns s?
  3630      */
  3631     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3632         return
  3633             isSameType(t, s) ||
  3634             allowCovariantReturns &&
  3635             !t.isPrimitive() &&
  3636             !s.isPrimitive() &&
  3637             isAssignable(t, s, warner);
  3639     // </editor-fold>
  3641     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3642     /**
  3643      * Return the class that boxes the given primitive.
  3644      */
  3645     public ClassSymbol boxedClass(Type t) {
  3646         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3649     /**
  3650      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3651      */
  3652     public Type boxedTypeOrType(Type t) {
  3653         return t.isPrimitive() ?
  3654             boxedClass(t).type :
  3655             t;
  3658     /**
  3659      * Return the primitive type corresponding to a boxed type.
  3660      */
  3661     public Type unboxedType(Type t) {
  3662         if (allowBoxing) {
  3663             for (int i=0; i<syms.boxedName.length; i++) {
  3664                 Name box = syms.boxedName[i];
  3665                 if (box != null &&
  3666                     asSuper(t, reader.enterClass(box)) != null)
  3667                     return syms.typeOfTag[i];
  3670         return Type.noType;
  3673     /**
  3674      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3675      */
  3676     public Type unboxedTypeOrType(Type t) {
  3677         Type unboxedType = unboxedType(t);
  3678         return unboxedType.tag == NONE ? t : unboxedType;
  3680     // </editor-fold>
  3682     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3683     /*
  3684      * JLS 5.1.10 Capture Conversion:
  3686      * Let G name a generic type declaration with n formal type
  3687      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3688      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3689      * where, for 1 <= i <= n:
  3691      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3692      *   Si is a fresh type variable whose upper bound is
  3693      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3694      *   type.
  3696      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3697      *   then Si is a fresh type variable whose upper bound is
  3698      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3699      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3700      *   a compile-time error if for any two classes (not interfaces)
  3701      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3703      * + If Ti is a wildcard type argument of the form ? super Bi,
  3704      *   then Si is a fresh type variable whose upper bound is
  3705      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3707      * + Otherwise, Si = Ti.
  3709      * Capture conversion on any type other than a parameterized type
  3710      * (4.5) acts as an identity conversion (5.1.1). Capture
  3711      * conversions never require a special action at run time and
  3712      * therefore never throw an exception at run time.
  3714      * Capture conversion is not applied recursively.
  3715      */
  3716     /**
  3717      * Capture conversion as specified by the JLS.
  3718      */
  3720     public List<Type> capture(List<Type> ts) {
  3721         List<Type> buf = List.nil();
  3722         for (Type t : ts) {
  3723             buf = buf.prepend(capture(t));
  3725         return buf.reverse();
  3727     public Type capture(Type t) {
  3728         if (t.tag != CLASS)
  3729             return t;
  3730         if (t.getEnclosingType() != Type.noType) {
  3731             Type capturedEncl = capture(t.getEnclosingType());
  3732             if (capturedEncl != t.getEnclosingType()) {
  3733                 Type type1 = memberType(capturedEncl, t.tsym);
  3734                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3737         t = t.unannotatedType();
  3738         ClassType cls = (ClassType)t;
  3739         if (cls.isRaw() || !cls.isParameterized())
  3740             return cls;
  3742         ClassType G = (ClassType)cls.asElement().asType();
  3743         List<Type> A = G.getTypeArguments();
  3744         List<Type> T = cls.getTypeArguments();
  3745         List<Type> S = freshTypeVariables(T);
  3747         List<Type> currentA = A;
  3748         List<Type> currentT = T;
  3749         List<Type> currentS = S;
  3750         boolean captured = false;
  3751         while (!currentA.isEmpty() &&
  3752                !currentT.isEmpty() &&
  3753                !currentS.isEmpty()) {
  3754             if (currentS.head != currentT.head) {
  3755                 captured = true;
  3756                 WildcardType Ti = (WildcardType)currentT.head;
  3757                 Type Ui = currentA.head.getUpperBound();
  3758                 CapturedType Si = (CapturedType)currentS.head;
  3759                 if (Ui == null)
  3760                     Ui = syms.objectType;
  3761                 switch (Ti.kind) {
  3762                 case UNBOUND:
  3763                     Si.bound = subst(Ui, A, S);
  3764                     Si.lower = syms.botType;
  3765                     break;
  3766                 case EXTENDS:
  3767                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3768                     Si.lower = syms.botType;
  3769                     break;
  3770                 case SUPER:
  3771                     Si.bound = subst(Ui, A, S);
  3772                     Si.lower = Ti.getSuperBound();
  3773                     break;
  3775                 if (Si.bound == Si.lower)
  3776                     currentS.head = Si.bound;
  3778             currentA = currentA.tail;
  3779             currentT = currentT.tail;
  3780             currentS = currentS.tail;
  3782         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3783             return erasure(t); // some "rare" type involved
  3785         if (captured)
  3786             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3787         else
  3788             return t;
  3790     // where
  3791         public List<Type> freshTypeVariables(List<Type> types) {
  3792             ListBuffer<Type> result = lb();
  3793             for (Type t : types) {
  3794                 if (t.tag == WILDCARD) {
  3795                     Type bound = ((WildcardType)t).getExtendsBound();
  3796                     if (bound == null)
  3797                         bound = syms.objectType;
  3798                     result.append(new CapturedType(capturedName,
  3799                                                    syms.noSymbol,
  3800                                                    bound,
  3801                                                    syms.botType,
  3802                                                    (WildcardType)t));
  3803                 } else {
  3804                     result.append(t);
  3807             return result.toList();
  3809     // </editor-fold>
  3811     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3812     private List<Type> upperBounds(List<Type> ss) {
  3813         if (ss.isEmpty()) return ss;
  3814         Type head = upperBound(ss.head);
  3815         List<Type> tail = upperBounds(ss.tail);
  3816         if (head != ss.head || tail != ss.tail)
  3817             return tail.prepend(head);
  3818         else
  3819             return ss;
  3822     private boolean sideCast(Type from, Type to, Warner warn) {
  3823         // We are casting from type $from$ to type $to$, which are
  3824         // non-final unrelated types.  This method
  3825         // tries to reject a cast by transferring type parameters
  3826         // from $to$ to $from$ by common superinterfaces.
  3827         boolean reverse = false;
  3828         Type target = to;
  3829         if ((to.tsym.flags() & INTERFACE) == 0) {
  3830             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3831             reverse = true;
  3832             to = from;
  3833             from = target;
  3835         List<Type> commonSupers = superClosure(to, erasure(from));
  3836         boolean giveWarning = commonSupers.isEmpty();
  3837         // The arguments to the supers could be unified here to
  3838         // get a more accurate analysis
  3839         while (commonSupers.nonEmpty()) {
  3840             Type t1 = asSuper(from, commonSupers.head.tsym);
  3841             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3842             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3843                 return false;
  3844             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3845             commonSupers = commonSupers.tail;
  3847         if (giveWarning && !isReifiable(reverse ? from : to))
  3848             warn.warn(LintCategory.UNCHECKED);
  3849         if (!allowCovariantReturns)
  3850             // reject if there is a common method signature with
  3851             // incompatible return types.
  3852             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3853         return true;
  3856     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3857         // We are casting from type $from$ to type $to$, which are
  3858         // unrelated types one of which is final and the other of
  3859         // which is an interface.  This method
  3860         // tries to reject a cast by transferring type parameters
  3861         // from the final class to the interface.
  3862         boolean reverse = false;
  3863         Type target = to;
  3864         if ((to.tsym.flags() & INTERFACE) == 0) {
  3865             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3866             reverse = true;
  3867             to = from;
  3868             from = target;
  3870         Assert.check((from.tsym.flags() & FINAL) != 0);
  3871         Type t1 = asSuper(from, to.tsym);
  3872         if (t1 == null) return false;
  3873         Type t2 = to;
  3874         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3875             return false;
  3876         if (!allowCovariantReturns)
  3877             // reject if there is a common method signature with
  3878             // incompatible return types.
  3879             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3880         if (!isReifiable(target) &&
  3881             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3882             warn.warn(LintCategory.UNCHECKED);
  3883         return true;
  3886     private boolean giveWarning(Type from, Type to) {
  3887         Type subFrom = asSub(from, to.tsym);
  3888         return to.isParameterized() &&
  3889                 (!(isUnbounded(to) ||
  3890                 isSubtype(from, to) ||
  3891                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3894     private List<Type> superClosure(Type t, Type s) {
  3895         List<Type> cl = List.nil();
  3896         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3897             if (isSubtype(s, erasure(l.head))) {
  3898                 cl = insert(cl, l.head);
  3899             } else {
  3900                 cl = union(cl, superClosure(l.head, s));
  3903         return cl;
  3906     private boolean containsTypeEquivalent(Type t, Type s) {
  3907         return
  3908             isSameType(t, s) || // shortcut
  3909             containsType(t, s) && containsType(s, t);
  3912     // <editor-fold defaultstate="collapsed" desc="adapt">
  3913     /**
  3914      * Adapt a type by computing a substitution which maps a source
  3915      * type to a target type.
  3917      * @param source    the source type
  3918      * @param target    the target type
  3919      * @param from      the type variables of the computed substitution
  3920      * @param to        the types of the computed substitution.
  3921      */
  3922     public void adapt(Type source,
  3923                        Type target,
  3924                        ListBuffer<Type> from,
  3925                        ListBuffer<Type> to) throws AdaptFailure {
  3926         new Adapter(from, to).adapt(source, target);
  3929     class Adapter extends SimpleVisitor<Void, Type> {
  3931         ListBuffer<Type> from;
  3932         ListBuffer<Type> to;
  3933         Map<Symbol,Type> mapping;
  3935         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3936             this.from = from;
  3937             this.to = to;
  3938             mapping = new HashMap<Symbol,Type>();
  3941         public void adapt(Type source, Type target) throws AdaptFailure {
  3942             visit(source, target);
  3943             List<Type> fromList = from.toList();
  3944             List<Type> toList = to.toList();
  3945             while (!fromList.isEmpty()) {
  3946                 Type val = mapping.get(fromList.head.tsym);
  3947                 if (toList.head != val)
  3948                     toList.head = val;
  3949                 fromList = fromList.tail;
  3950                 toList = toList.tail;
  3954         @Override
  3955         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3956             if (target.tag == CLASS)
  3957                 adaptRecursive(source.allparams(), target.allparams());
  3958             return null;
  3961         @Override
  3962         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3963             if (target.tag == ARRAY)
  3964                 adaptRecursive(elemtype(source), elemtype(target));
  3965             return null;
  3968         @Override
  3969         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3970             if (source.isExtendsBound())
  3971                 adaptRecursive(upperBound(source), upperBound(target));
  3972             else if (source.isSuperBound())
  3973                 adaptRecursive(lowerBound(source), lowerBound(target));
  3974             return null;
  3977         @Override
  3978         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3979             // Check to see if there is
  3980             // already a mapping for $source$, in which case
  3981             // the old mapping will be merged with the new
  3982             Type val = mapping.get(source.tsym);
  3983             if (val != null) {
  3984                 if (val.isSuperBound() && target.isSuperBound()) {
  3985                     val = isSubtype(lowerBound(val), lowerBound(target))
  3986                         ? target : val;
  3987                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3988                     val = isSubtype(upperBound(val), upperBound(target))
  3989                         ? val : target;
  3990                 } else if (!isSameType(val, target)) {
  3991                     throw new AdaptFailure();
  3993             } else {
  3994                 val = target;
  3995                 from.append(source);
  3996                 to.append(target);
  3998             mapping.put(source.tsym, val);
  3999             return null;
  4002         @Override
  4003         public Void visitType(Type source, Type target) {
  4004             return null;
  4007         private Set<TypePair> cache = new HashSet<TypePair>();
  4009         private void adaptRecursive(Type source, Type target) {
  4010             TypePair pair = new TypePair(source, target);
  4011             if (cache.add(pair)) {
  4012                 try {
  4013                     visit(source, target);
  4014                 } finally {
  4015                     cache.remove(pair);
  4020         private void adaptRecursive(List<Type> source, List<Type> target) {
  4021             if (source.length() == target.length()) {
  4022                 while (source.nonEmpty()) {
  4023                     adaptRecursive(source.head, target.head);
  4024                     source = source.tail;
  4025                     target = target.tail;
  4031     public static class AdaptFailure extends RuntimeException {
  4032         static final long serialVersionUID = -7490231548272701566L;
  4035     private void adaptSelf(Type t,
  4036                            ListBuffer<Type> from,
  4037                            ListBuffer<Type> to) {
  4038         try {
  4039             //if (t.tsym.type != t)
  4040                 adapt(t.tsym.type, t, from, to);
  4041         } catch (AdaptFailure ex) {
  4042             // Adapt should never fail calculating a mapping from
  4043             // t.tsym.type to t as there can be no merge problem.
  4044             throw new AssertionError(ex);
  4047     // </editor-fold>
  4049     /**
  4050      * Rewrite all type variables (universal quantifiers) in the given
  4051      * type to wildcards (existential quantifiers).  This is used to
  4052      * determine if a cast is allowed.  For example, if high is true
  4053      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4054      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4055      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4056      * List<Integer>} with a warning.
  4057      * @param t a type
  4058      * @param high if true return an upper bound; otherwise a lower
  4059      * bound
  4060      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4061      * otherwise rewrite all type variables
  4062      * @return the type rewritten with wildcards (existential
  4063      * quantifiers) only
  4064      */
  4065     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4066         return new Rewriter(high, rewriteTypeVars).visit(t);
  4069     class Rewriter extends UnaryVisitor<Type> {
  4071         boolean high;
  4072         boolean rewriteTypeVars;
  4074         Rewriter(boolean high, boolean rewriteTypeVars) {
  4075             this.high = high;
  4076             this.rewriteTypeVars = rewriteTypeVars;
  4079         @Override
  4080         public Type visitClassType(ClassType t, Void s) {
  4081             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4082             boolean changed = false;
  4083             for (Type arg : t.allparams()) {
  4084                 Type bound = visit(arg);
  4085                 if (arg != bound) {
  4086                     changed = true;
  4088                 rewritten.append(bound);
  4090             if (changed)
  4091                 return subst(t.tsym.type,
  4092                         t.tsym.type.allparams(),
  4093                         rewritten.toList());
  4094             else
  4095                 return t;
  4098         public Type visitType(Type t, Void s) {
  4099             return high ? upperBound(t) : lowerBound(t);
  4102         @Override
  4103         public Type visitCapturedType(CapturedType t, Void s) {
  4104             Type w_bound = t.wildcard.type;
  4105             Type bound = w_bound.contains(t) ?
  4106                         erasure(w_bound) :
  4107                         visit(w_bound);
  4108             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4111         @Override
  4112         public Type visitTypeVar(TypeVar t, Void s) {
  4113             if (rewriteTypeVars) {
  4114                 Type bound = t.bound.contains(t) ?
  4115                         erasure(t.bound) :
  4116                         visit(t.bound);
  4117                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4118             } else {
  4119                 return t;
  4123         @Override
  4124         public Type visitWildcardType(WildcardType t, Void s) {
  4125             Type bound2 = visit(t.type);
  4126             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4129         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4130             switch (bk) {
  4131                case EXTENDS: return high ?
  4132                        makeExtendsWildcard(B(bound), formal) :
  4133                        makeExtendsWildcard(syms.objectType, formal);
  4134                case SUPER: return high ?
  4135                        makeSuperWildcard(syms.botType, formal) :
  4136                        makeSuperWildcard(B(bound), formal);
  4137                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4138                default:
  4139                    Assert.error("Invalid bound kind " + bk);
  4140                    return null;
  4144         Type B(Type t) {
  4145             while (t.tag == WILDCARD) {
  4146                 WildcardType w = (WildcardType)t;
  4147                 t = high ?
  4148                     w.getExtendsBound() :
  4149                     w.getSuperBound();
  4150                 if (t == null) {
  4151                     t = high ? syms.objectType : syms.botType;
  4154             return t;
  4159     /**
  4160      * Create a wildcard with the given upper (extends) bound; create
  4161      * an unbounded wildcard if bound is Object.
  4163      * @param bound the upper bound
  4164      * @param formal the formal type parameter that will be
  4165      * substituted by the wildcard
  4166      */
  4167     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4168         if (bound == syms.objectType) {
  4169             return new WildcardType(syms.objectType,
  4170                                     BoundKind.UNBOUND,
  4171                                     syms.boundClass,
  4172                                     formal);
  4173         } else {
  4174             return new WildcardType(bound,
  4175                                     BoundKind.EXTENDS,
  4176                                     syms.boundClass,
  4177                                     formal);
  4181     /**
  4182      * Create a wildcard with the given lower (super) bound; create an
  4183      * unbounded wildcard if bound is bottom (type of {@code null}).
  4185      * @param bound the lower bound
  4186      * @param formal the formal type parameter that will be
  4187      * substituted by the wildcard
  4188      */
  4189     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4190         if (bound.tag == BOT) {
  4191             return new WildcardType(syms.objectType,
  4192                                     BoundKind.UNBOUND,
  4193                                     syms.boundClass,
  4194                                     formal);
  4195         } else {
  4196             return new WildcardType(bound,
  4197                                     BoundKind.SUPER,
  4198                                     syms.boundClass,
  4199                                     formal);
  4203     /**
  4204      * A wrapper for a type that allows use in sets.
  4205      */
  4206     public static class UniqueType {
  4207         public final Type type;
  4208         final Types types;
  4210         public UniqueType(Type type, Types types) {
  4211             this.type = type;
  4212             this.types = types;
  4215         public int hashCode() {
  4216             return types.hashCode(type);
  4219         public boolean equals(Object obj) {
  4220             return (obj instanceof UniqueType) &&
  4221                 types.isSameType(type, ((UniqueType)obj).type);
  4224         public String toString() {
  4225             return type.toString();
  4229     // </editor-fold>
  4231     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4232     /**
  4233      * A default visitor for types.  All visitor methods except
  4234      * visitType are implemented by delegating to visitType.  Concrete
  4235      * subclasses must provide an implementation of visitType and can
  4236      * override other methods as needed.
  4238      * @param <R> the return type of the operation implemented by this
  4239      * visitor; use Void if no return type is needed.
  4240      * @param <S> the type of the second argument (the first being the
  4241      * type itself) of the operation implemented by this visitor; use
  4242      * Void if a second argument is not needed.
  4243      */
  4244     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4245         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4246         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4247         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4248         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4249         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4250         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4251         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4252         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4253         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4254         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4255         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4256         // Pretend annotations don't exist
  4257         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
  4260     /**
  4261      * A default visitor for symbols.  All visitor methods except
  4262      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4263      * subclasses must provide an implementation of visitSymbol and can
  4264      * override other methods as needed.
  4266      * @param <R> the return type of the operation implemented by this
  4267      * visitor; use Void if no return type is needed.
  4268      * @param <S> the type of the second argument (the first being the
  4269      * symbol itself) of the operation implemented by this visitor; use
  4270      * Void if a second argument is not needed.
  4271      */
  4272     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4273         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4274         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4275         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4276         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4277         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4278         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4279         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4282     /**
  4283      * A <em>simple</em> visitor for types.  This visitor is simple as
  4284      * captured wildcards, for-all types (generic methods), and
  4285      * undetermined type variables (part of inference) are hidden.
  4286      * Captured wildcards are hidden by treating them as type
  4287      * variables and the rest are hidden by visiting their qtypes.
  4289      * @param <R> the return type of the operation implemented by this
  4290      * visitor; use Void if no return type is needed.
  4291      * @param <S> the type of the second argument (the first being the
  4292      * type itself) of the operation implemented by this visitor; use
  4293      * Void if a second argument is not needed.
  4294      */
  4295     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4296         @Override
  4297         public R visitCapturedType(CapturedType t, S s) {
  4298             return visitTypeVar(t, s);
  4300         @Override
  4301         public R visitForAll(ForAll t, S s) {
  4302             return visit(t.qtype, s);
  4304         @Override
  4305         public R visitUndetVar(UndetVar t, S s) {
  4306             return visit(t.qtype, s);
  4310     /**
  4311      * A plain relation on types.  That is a 2-ary function on the
  4312      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4313      * <!-- In plain text: Type x Type -> Boolean -->
  4314      */
  4315     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4317     /**
  4318      * A convenience visitor for implementing operations that only
  4319      * require one argument (the type itself), that is, unary
  4320      * operations.
  4322      * @param <R> the return type of the operation implemented by this
  4323      * visitor; use Void if no return type is needed.
  4324      */
  4325     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4326         final public R visit(Type t) { return t.accept(this, null); }
  4329     /**
  4330      * A visitor for implementing a mapping from types to types.  The
  4331      * default behavior of this class is to implement the identity
  4332      * mapping (mapping a type to itself).  This can be overridden in
  4333      * subclasses.
  4335      * @param <S> the type of the second argument (the first being the
  4336      * type itself) of this mapping; use Void if a second argument is
  4337      * not needed.
  4338      */
  4339     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4340         final public Type visit(Type t) { return t.accept(this, null); }
  4341         public Type visitType(Type t, S s) { return t; }
  4343     // </editor-fold>
  4346     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4348     public RetentionPolicy getRetention(Attribute.Compound a) {
  4349         return getRetention(a.type.tsym);
  4352     public RetentionPolicy getRetention(Symbol sym) {
  4353         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4354         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4355         if (c != null) {
  4356             Attribute value = c.member(names.value);
  4357             if (value != null && value instanceof Attribute.Enum) {
  4358                 Name levelName = ((Attribute.Enum)value).value.name;
  4359                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4360                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4361                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4362                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4365         return vis;
  4367     // </editor-fold>
  4369     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
  4371     public static abstract class SignatureGenerator {
  4373         private final Types types;
  4375         protected abstract void append(char ch);
  4376         protected abstract void append(byte[] ba);
  4377         protected abstract void append(Name name);
  4378         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
  4380         protected SignatureGenerator(Types types) {
  4381             this.types = types;
  4384         /**
  4385          * Assemble signature of given type in string buffer.
  4386          */
  4387         public void assembleSig(Type type) {
  4388             type = type.unannotatedType();
  4389             switch (type.getTag()) {
  4390                 case BYTE:
  4391                     append('B');
  4392                     break;
  4393                 case SHORT:
  4394                     append('S');
  4395                     break;
  4396                 case CHAR:
  4397                     append('C');
  4398                     break;
  4399                 case INT:
  4400                     append('I');
  4401                     break;
  4402                 case LONG:
  4403                     append('J');
  4404                     break;
  4405                 case FLOAT:
  4406                     append('F');
  4407                     break;
  4408                 case DOUBLE:
  4409                     append('D');
  4410                     break;
  4411                 case BOOLEAN:
  4412                     append('Z');
  4413                     break;
  4414                 case VOID:
  4415                     append('V');
  4416                     break;
  4417                 case CLASS:
  4418                     append('L');
  4419                     assembleClassSig(type);
  4420                     append(';');
  4421                     break;
  4422                 case ARRAY:
  4423                     ArrayType at = (ArrayType) type;
  4424                     append('[');
  4425                     assembleSig(at.elemtype);
  4426                     break;
  4427                 case METHOD:
  4428                     MethodType mt = (MethodType) type;
  4429                     append('(');
  4430                     assembleSig(mt.argtypes);
  4431                     append(')');
  4432                     assembleSig(mt.restype);
  4433                     if (hasTypeVar(mt.thrown)) {
  4434                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
  4435                             append('^');
  4436                             assembleSig(l.head);
  4439                     break;
  4440                 case WILDCARD: {
  4441                     Type.WildcardType ta = (Type.WildcardType) type;
  4442                     switch (ta.kind) {
  4443                         case SUPER:
  4444                             append('-');
  4445                             assembleSig(ta.type);
  4446                             break;
  4447                         case EXTENDS:
  4448                             append('+');
  4449                             assembleSig(ta.type);
  4450                             break;
  4451                         case UNBOUND:
  4452                             append('*');
  4453                             break;
  4454                         default:
  4455                             throw new AssertionError(ta.kind);
  4457                     break;
  4459                 case TYPEVAR:
  4460                     append('T');
  4461                     append(type.tsym.name);
  4462                     append(';');
  4463                     break;
  4464                 case FORALL:
  4465                     Type.ForAll ft = (Type.ForAll) type;
  4466                     assembleParamsSig(ft.tvars);
  4467                     assembleSig(ft.qtype);
  4468                     break;
  4469                 default:
  4470                     throw new AssertionError("typeSig " + type.getTag());
  4474         public boolean hasTypeVar(List<Type> l) {
  4475             while (l.nonEmpty()) {
  4476                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
  4477                     return true;
  4479                 l = l.tail;
  4481             return false;
  4484         public void assembleClassSig(Type type) {
  4485             type = type.unannotatedType();
  4486             ClassType ct = (ClassType) type;
  4487             ClassSymbol c = (ClassSymbol) ct.tsym;
  4488             classReference(c);
  4489             Type outer = ct.getEnclosingType();
  4490             if (outer.allparams().nonEmpty()) {
  4491                 boolean rawOuter =
  4492                         c.owner.kind == Kinds.MTH || // either a local class
  4493                         c.name == types.names.empty; // or anonymous
  4494                 assembleClassSig(rawOuter
  4495                         ? types.erasure(outer)
  4496                         : outer);
  4497                 append('.');
  4498                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
  4499                 append(rawOuter
  4500                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
  4501                         : c.name);
  4502             } else {
  4503                 append(externalize(c.flatname));
  4505             if (ct.getTypeArguments().nonEmpty()) {
  4506                 append('<');
  4507                 assembleSig(ct.getTypeArguments());
  4508                 append('>');
  4512         public void assembleParamsSig(List<Type> typarams) {
  4513             append('<');
  4514             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
  4515                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
  4516                 append(tvar.tsym.name);
  4517                 List<Type> bounds = types.getBounds(tvar);
  4518                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
  4519                     append(':');
  4521                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
  4522                     append(':');
  4523                     assembleSig(l.head);
  4526             append('>');
  4529         private void assembleSig(List<Type> types) {
  4530             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
  4531                 assembleSig(ts.head);
  4535     // </editor-fold>

mercurial