src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 15 Feb 2013 16:30:31 +0000

author
mcimadamore
date
Fri, 15 Feb 2013 16:30:31 +0000
changeset 1582
3cd997b9fd84
parent 1579
0baaae675b19
child 1587
f1f605f85850
permissions
-rw-r--r--

8007535: Compiler crashes on @FunctionalInterface used on interface with two inherited methods with same signatures
Summary: Bad check in Types.interfaceCandidates
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.Comparator;
    30 import java.util.HashSet;
    31 import java.util.HashMap;
    32 import java.util.Locale;
    33 import java.util.Map;
    34 import java.util.Set;
    35 import java.util.WeakHashMap;
    37 import javax.lang.model.type.TypeKind;
    39 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    42 import com.sun.tools.javac.comp.Check;
    43 import com.sun.tools.javac.jvm.ClassReader;
    44 import com.sun.tools.javac.util.*;
    45 import static com.sun.tools.javac.code.BoundKind.*;
    46 import static com.sun.tools.javac.code.Flags.*;
    47 import static com.sun.tools.javac.code.Scope.*;
    48 import static com.sun.tools.javac.code.Symbol.*;
    49 import static com.sun.tools.javac.code.Type.*;
    50 import static com.sun.tools.javac.code.TypeTag.*;
    51 import static com.sun.tools.javac.util.ListBuffer.lb;
    53 /**
    54  * Utility class containing various operations on types.
    55  *
    56  * <p>Unless other names are more illustrative, the following naming
    57  * conventions should be observed in this file:
    58  *
    59  * <dl>
    60  * <dt>t</dt>
    61  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    62  * <dt>s</dt>
    63  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    64  * <dt>ts</dt>
    65  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    66  * <dt>ss</dt>
    67  * <dd>A second list of types should be named ss.</dd>
    68  * </dl>
    69  *
    70  * <p><b>This is NOT part of any supported API.
    71  * If you write code that depends on this, you do so at your own risk.
    72  * This code and its internal interfaces are subject to change or
    73  * deletion without notice.</b>
    74  */
    75 public class Types {
    76     protected static final Context.Key<Types> typesKey =
    77         new Context.Key<Types>();
    79     final Symtab syms;
    80     final JavacMessages messages;
    81     final Names names;
    82     final boolean allowBoxing;
    83     final boolean allowCovariantReturns;
    84     final boolean allowObjectToPrimitiveCast;
    85     final boolean allowDefaultMethods;
    86     final ClassReader reader;
    87     final Check chk;
    88     JCDiagnostic.Factory diags;
    89     List<Warner> warnStack = List.nil();
    90     final Name capturedName;
    91     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    93     public final Warner noWarnings;
    95     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    96     public static Types instance(Context context) {
    97         Types instance = context.get(typesKey);
    98         if (instance == null)
    99             instance = new Types(context);
   100         return instance;
   101     }
   103     protected Types(Context context) {
   104         context.put(typesKey, this);
   105         syms = Symtab.instance(context);
   106         names = Names.instance(context);
   107         Source source = Source.instance(context);
   108         allowBoxing = source.allowBoxing();
   109         allowCovariantReturns = source.allowCovariantReturns();
   110         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   111         allowDefaultMethods = source.allowDefaultMethods();
   112         reader = ClassReader.instance(context);
   113         chk = Check.instance(context);
   114         capturedName = names.fromString("<captured wildcard>");
   115         messages = JavacMessages.instance(context);
   116         diags = JCDiagnostic.Factory.instance(context);
   117         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   118         noWarnings = new Warner(null);
   119     }
   120     // </editor-fold>
   122     // <editor-fold defaultstate="collapsed" desc="upperBound">
   123     /**
   124      * The "rvalue conversion".<br>
   125      * The upper bound of most types is the type
   126      * itself.  Wildcards, on the other hand have upper
   127      * and lower bounds.
   128      * @param t a type
   129      * @return the upper bound of the given type
   130      */
   131     public Type upperBound(Type t) {
   132         return upperBound.visit(t);
   133     }
   134     // where
   135         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   137             @Override
   138             public Type visitWildcardType(WildcardType t, Void ignored) {
   139                 if (t.isSuperBound())
   140                     return t.bound == null ? syms.objectType : t.bound.bound;
   141                 else
   142                     return visit(t.type);
   143             }
   145             @Override
   146             public Type visitCapturedType(CapturedType t, Void ignored) {
   147                 return visit(t.bound);
   148             }
   149         };
   150     // </editor-fold>
   152     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   153     /**
   154      * The "lvalue conversion".<br>
   155      * The lower bound of most types is the type
   156      * itself.  Wildcards, on the other hand have upper
   157      * and lower bounds.
   158      * @param t a type
   159      * @return the lower bound of the given type
   160      */
   161     public Type lowerBound(Type t) {
   162         return lowerBound.visit(t);
   163     }
   164     // where
   165         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   167             @Override
   168             public Type visitWildcardType(WildcardType t, Void ignored) {
   169                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   170             }
   172             @Override
   173             public Type visitCapturedType(CapturedType t, Void ignored) {
   174                 return visit(t.getLowerBound());
   175             }
   176         };
   177     // </editor-fold>
   179     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   180     /**
   181      * Checks that all the arguments to a class are unbounded
   182      * wildcards or something else that doesn't make any restrictions
   183      * on the arguments. If a class isUnbounded, a raw super- or
   184      * subclass can be cast to it without a warning.
   185      * @param t a type
   186      * @return true iff the given type is unbounded or raw
   187      */
   188     public boolean isUnbounded(Type t) {
   189         return isUnbounded.visit(t);
   190     }
   191     // where
   192         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   194             public Boolean visitType(Type t, Void ignored) {
   195                 return true;
   196             }
   198             @Override
   199             public Boolean visitClassType(ClassType t, Void ignored) {
   200                 List<Type> parms = t.tsym.type.allparams();
   201                 List<Type> args = t.allparams();
   202                 while (parms.nonEmpty()) {
   203                     WildcardType unb = new WildcardType(syms.objectType,
   204                                                         BoundKind.UNBOUND,
   205                                                         syms.boundClass,
   206                                                         (TypeVar)parms.head);
   207                     if (!containsType(args.head, unb))
   208                         return false;
   209                     parms = parms.tail;
   210                     args = args.tail;
   211                 }
   212                 return true;
   213             }
   214         };
   215     // </editor-fold>
   217     // <editor-fold defaultstate="collapsed" desc="asSub">
   218     /**
   219      * Return the least specific subtype of t that starts with symbol
   220      * sym.  If none exists, return null.  The least specific subtype
   221      * is determined as follows:
   222      *
   223      * <p>If there is exactly one parameterized instance of sym that is a
   224      * subtype of t, that parameterized instance is returned.<br>
   225      * Otherwise, if the plain type or raw type `sym' is a subtype of
   226      * type t, the type `sym' itself is returned.  Otherwise, null is
   227      * returned.
   228      */
   229     public Type asSub(Type t, Symbol sym) {
   230         return asSub.visit(t, sym);
   231     }
   232     // where
   233         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   235             public Type visitType(Type t, Symbol sym) {
   236                 return null;
   237             }
   239             @Override
   240             public Type visitClassType(ClassType t, Symbol sym) {
   241                 if (t.tsym == sym)
   242                     return t;
   243                 Type base = asSuper(sym.type, t.tsym);
   244                 if (base == null)
   245                     return null;
   246                 ListBuffer<Type> from = new ListBuffer<Type>();
   247                 ListBuffer<Type> to = new ListBuffer<Type>();
   248                 try {
   249                     adapt(base, t, from, to);
   250                 } catch (AdaptFailure ex) {
   251                     return null;
   252                 }
   253                 Type res = subst(sym.type, from.toList(), to.toList());
   254                 if (!isSubtype(res, t))
   255                     return null;
   256                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   257                 for (List<Type> l = sym.type.allparams();
   258                      l.nonEmpty(); l = l.tail)
   259                     if (res.contains(l.head) && !t.contains(l.head))
   260                         openVars.append(l.head);
   261                 if (openVars.nonEmpty()) {
   262                     if (t.isRaw()) {
   263                         // The subtype of a raw type is raw
   264                         res = erasure(res);
   265                     } else {
   266                         // Unbound type arguments default to ?
   267                         List<Type> opens = openVars.toList();
   268                         ListBuffer<Type> qs = new ListBuffer<Type>();
   269                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   270                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   271                         }
   272                         res = subst(res, opens, qs.toList());
   273                     }
   274                 }
   275                 return res;
   276             }
   278             @Override
   279             public Type visitErrorType(ErrorType t, Symbol sym) {
   280                 return t;
   281             }
   282         };
   283     // </editor-fold>
   285     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   286     /**
   287      * Is t a subtype of or convertible via boxing/unboxing
   288      * conversion to s?
   289      */
   290     public boolean isConvertible(Type t, Type s, Warner warn) {
   291         if (t.tag == ERROR)
   292             return true;
   293         boolean tPrimitive = t.isPrimitive();
   294         boolean sPrimitive = s.isPrimitive();
   295         if (tPrimitive == sPrimitive) {
   296             return isSubtypeUnchecked(t, s, warn);
   297         }
   298         if (!allowBoxing) return false;
   299         return tPrimitive
   300             ? isSubtype(boxedClass(t).type, s)
   301             : isSubtype(unboxedType(t), s);
   302     }
   304     /**
   305      * Is t a subtype of or convertiable via boxing/unboxing
   306      * convertions to s?
   307      */
   308     public boolean isConvertible(Type t, Type s) {
   309         return isConvertible(t, s, noWarnings);
   310     }
   311     // </editor-fold>
   313     // <editor-fold defaultstate="collapsed" desc="findSam">
   315     /**
   316      * Exception used to report a function descriptor lookup failure. The exception
   317      * wraps a diagnostic that can be used to generate more details error
   318      * messages.
   319      */
   320     public static class FunctionDescriptorLookupError extends RuntimeException {
   321         private static final long serialVersionUID = 0;
   323         JCDiagnostic diagnostic;
   325         FunctionDescriptorLookupError() {
   326             this.diagnostic = null;
   327         }
   329         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   330             this.diagnostic = diag;
   331             return this;
   332         }
   334         public JCDiagnostic getDiagnostic() {
   335             return diagnostic;
   336         }
   337     }
   339     /**
   340      * A cache that keeps track of function descriptors associated with given
   341      * functional interfaces.
   342      */
   343     class DescriptorCache {
   345         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   347         class FunctionDescriptor {
   348             Symbol descSym;
   350             FunctionDescriptor(Symbol descSym) {
   351                 this.descSym = descSym;
   352             }
   354             public Symbol getSymbol() {
   355                 return descSym;
   356             }
   358             public Type getType(Type site) {
   359                 site = removeWildcards(site);
   360                 if (!chk.checkValidGenericType(site)) {
   361                     //if the inferred functional interface type is not well-formed,
   362                     //or if it's not a subtype of the original target, issue an error
   363                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   364                 }
   365                 return memberType(site, descSym);
   366             }
   367         }
   369         class Entry {
   370             final FunctionDescriptor cachedDescRes;
   371             final int prevMark;
   373             public Entry(FunctionDescriptor cachedDescRes,
   374                     int prevMark) {
   375                 this.cachedDescRes = cachedDescRes;
   376                 this.prevMark = prevMark;
   377             }
   379             boolean matches(int mark) {
   380                 return  this.prevMark == mark;
   381             }
   382         }
   384         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   385             Entry e = _map.get(origin);
   386             CompoundScope members = membersClosure(origin.type, false);
   387             if (e == null ||
   388                     !e.matches(members.getMark())) {
   389                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   390                 _map.put(origin, new Entry(descRes, members.getMark()));
   391                 return descRes;
   392             }
   393             else {
   394                 return e.cachedDescRes;
   395             }
   396         }
   398         /**
   399          * Compute the function descriptor associated with a given functional interface
   400          */
   401         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   402             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   403                 //t must be an interface
   404                 throw failure("not.a.functional.intf", origin);
   405             }
   407             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   408             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   409                 Type mtype = memberType(origin.type, sym);
   410                 if (abstracts.isEmpty() ||
   411                         (sym.name == abstracts.first().name &&
   412                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   413                     abstracts.append(sym);
   414                 } else {
   415                     //the target method(s) should be the only abstract members of t
   416                     throw failure("not.a.functional.intf.1",  origin,
   417                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   418                 }
   419             }
   420             if (abstracts.isEmpty()) {
   421                 //t must define a suitable non-generic method
   422                 throw failure("not.a.functional.intf.1", origin,
   423                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   424             } else if (abstracts.size() == 1) {
   425                 return new FunctionDescriptor(abstracts.first());
   426             } else { // size > 1
   427                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   428                 if (descRes == null) {
   429                     //we can get here if the functional interface is ill-formed
   430                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   431                     for (Symbol desc : abstracts) {
   432                         String key = desc.type.getThrownTypes().nonEmpty() ?
   433                                 "descriptor.throws" : "descriptor";
   434                         descriptors.append(diags.fragment(key, desc.name,
   435                                 desc.type.getParameterTypes(),
   436                                 desc.type.getReturnType(),
   437                                 desc.type.getThrownTypes()));
   438                     }
   439                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   440                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   441                             Kinds.kindName(origin), origin), descriptors.toList());
   442                     throw failure(incompatibleDescriptors);
   443                 }
   444                 return descRes;
   445             }
   446         }
   448         /**
   449          * Compute a synthetic type for the target descriptor given a list
   450          * of override-equivalent methods in the functional interface type.
   451          * The resulting method type is a method type that is override-equivalent
   452          * and return-type substitutable with each method in the original list.
   453          */
   454         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   455             //pick argument types - simply take the signature that is a
   456             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   457             List<Symbol> mostSpecific = List.nil();
   458             outer: for (Symbol msym1 : methodSyms) {
   459                 Type mt1 = memberType(origin.type, msym1);
   460                 for (Symbol msym2 : methodSyms) {
   461                     Type mt2 = memberType(origin.type, msym2);
   462                     if (!isSubSignature(mt1, mt2)) {
   463                         continue outer;
   464                     }
   465                 }
   466                 mostSpecific = mostSpecific.prepend(msym1);
   467             }
   468             if (mostSpecific.isEmpty()) {
   469                 return null;
   470             }
   473             //pick return types - this is done in two phases: (i) first, the most
   474             //specific return type is chosen using strict subtyping; if this fails,
   475             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   476             boolean phase2 = false;
   477             Symbol bestSoFar = null;
   478             while (bestSoFar == null) {
   479                 outer: for (Symbol msym1 : mostSpecific) {
   480                     Type mt1 = memberType(origin.type, msym1);
   481                     for (Symbol msym2 : methodSyms) {
   482                         Type mt2 = memberType(origin.type, msym2);
   483                         if (phase2 ?
   484                                 !returnTypeSubstitutable(mt1, mt2) :
   485                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   486                             continue outer;
   487                         }
   488                     }
   489                     bestSoFar = msym1;
   490                 }
   491                 if (phase2) {
   492                     break;
   493                 } else {
   494                     phase2 = true;
   495                 }
   496             }
   497             if (bestSoFar == null) return null;
   499             //merge thrown types - form the intersection of all the thrown types in
   500             //all the signatures in the list
   501             List<Type> thrown = null;
   502             for (Symbol msym1 : methodSyms) {
   503                 Type mt1 = memberType(origin.type, msym1);
   504                 thrown = (thrown == null) ?
   505                     mt1.getThrownTypes() :
   506                     chk.intersect(mt1.getThrownTypes(), thrown);
   507             }
   509             final List<Type> thrown1 = thrown;
   510             return new FunctionDescriptor(bestSoFar) {
   511                 @Override
   512                 public Type getType(Type origin) {
   513                     Type mt = memberType(origin, getSymbol());
   514                     return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
   515                 }
   516             };
   517         }
   519         boolean isSubtypeInternal(Type s, Type t) {
   520             return (s.isPrimitive() && t.isPrimitive()) ?
   521                     isSameType(t, s) :
   522                     isSubtype(s, t);
   523         }
   525         FunctionDescriptorLookupError failure(String msg, Object... args) {
   526             return failure(diags.fragment(msg, args));
   527         }
   529         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   530             return functionDescriptorLookupError.setMessage(diag);
   531         }
   532     }
   534     private DescriptorCache descCache = new DescriptorCache();
   536     /**
   537      * Find the method descriptor associated to this class symbol - if the
   538      * symbol 'origin' is not a functional interface, an exception is thrown.
   539      */
   540     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   541         return descCache.get(origin).getSymbol();
   542     }
   544     /**
   545      * Find the type of the method descriptor associated to this class symbol -
   546      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   547      */
   548     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   549         return descCache.get(origin.tsym).getType(origin);
   550     }
   552     /**
   553      * Is given type a functional interface?
   554      */
   555     public boolean isFunctionalInterface(TypeSymbol tsym) {
   556         try {
   557             findDescriptorSymbol(tsym);
   558             return true;
   559         } catch (FunctionDescriptorLookupError ex) {
   560             return false;
   561         }
   562     }
   564     public boolean isFunctionalInterface(Type site) {
   565         try {
   566             findDescriptorType(site);
   567             return true;
   568         } catch (FunctionDescriptorLookupError ex) {
   569             return false;
   570         }
   571     }
   573     public Type removeWildcards(Type site) {
   574         if (capture(site) != site) {
   575             Type formalInterface = site.tsym.type;
   576             ListBuffer<Type> typeargs = ListBuffer.lb();
   577             List<Type> actualTypeargs = site.getTypeArguments();
   578             //simply replace the wildcards with its bound
   579             for (Type t : formalInterface.getTypeArguments()) {
   580                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   581                     WildcardType wt = (WildcardType)actualTypeargs.head;
   582                     typeargs.append(wt.type);
   583                 } else {
   584                     typeargs.append(actualTypeargs.head);
   585                 }
   586                 actualTypeargs = actualTypeargs.tail;
   587             }
   588             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   589         } else {
   590             return site;
   591         }
   592     }
   593     // </editor-fold>
   595    /**
   596     * Scope filter used to skip methods that should be ignored (such as methods
   597     * overridden by j.l.Object) during function interface conversion/marker interface checks
   598     */
   599     class DescriptorFilter implements Filter<Symbol> {
   601        TypeSymbol origin;
   603        DescriptorFilter(TypeSymbol origin) {
   604            this.origin = origin;
   605        }
   607        @Override
   608        public boolean accepts(Symbol sym) {
   609            return sym.kind == Kinds.MTH &&
   610                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   611                    !overridesObjectMethod(origin, sym) &&
   612                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   613        }
   614     };
   616     // <editor-fold defaultstate="collapsed" desc="isMarker">
   618     /**
   619      * A cache that keeps track of marker interfaces
   620      */
   621     class MarkerCache {
   623         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   625         class Entry {
   626             final boolean isMarkerIntf;
   627             final int prevMark;
   629             public Entry(boolean isMarkerIntf,
   630                     int prevMark) {
   631                 this.isMarkerIntf = isMarkerIntf;
   632                 this.prevMark = prevMark;
   633             }
   635             boolean matches(int mark) {
   636                 return  this.prevMark == mark;
   637             }
   638         }
   640         boolean get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   641             Entry e = _map.get(origin);
   642             CompoundScope members = membersClosure(origin.type, false);
   643             if (e == null ||
   644                     !e.matches(members.getMark())) {
   645                 boolean isMarkerIntf = isMarkerInterfaceInternal(origin, members);
   646                 _map.put(origin, new Entry(isMarkerIntf, members.getMark()));
   647                 return isMarkerIntf;
   648             }
   649             else {
   650                 return e.isMarkerIntf;
   651             }
   652         }
   654         /**
   655          * Is given symbol a marker interface
   656          */
   657         public boolean isMarkerInterfaceInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   658             return !origin.isInterface() ?
   659                     false :
   660                     !membersCache.getElements(new DescriptorFilter(origin)).iterator().hasNext();
   661         }
   662     }
   664     private MarkerCache markerCache = new MarkerCache();
   666     /**
   667      * Is given type a marker interface?
   668      */
   669     public boolean isMarkerInterface(Type site) {
   670         return markerCache.get(site.tsym);
   671     }
   672     // </editor-fold>
   674     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   675     /**
   676      * Is t an unchecked subtype of s?
   677      */
   678     public boolean isSubtypeUnchecked(Type t, Type s) {
   679         return isSubtypeUnchecked(t, s, noWarnings);
   680     }
   681     /**
   682      * Is t an unchecked subtype of s?
   683      */
   684     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   685         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   686         if (result) {
   687             checkUnsafeVarargsConversion(t, s, warn);
   688         }
   689         return result;
   690     }
   691     //where
   692         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   693             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   694                 t = t.unannotatedType();
   695                 s = s.unannotatedType();
   696                 if (((ArrayType)t).elemtype.isPrimitive()) {
   697                     return isSameType(elemtype(t), elemtype(s));
   698                 } else {
   699                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   700                 }
   701             } else if (isSubtype(t, s)) {
   702                 return true;
   703             }
   704             else if (t.tag == TYPEVAR) {
   705                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   706             }
   707             else if (!s.isRaw()) {
   708                 Type t2 = asSuper(t, s.tsym);
   709                 if (t2 != null && t2.isRaw()) {
   710                     if (isReifiable(s))
   711                         warn.silentWarn(LintCategory.UNCHECKED);
   712                     else
   713                         warn.warn(LintCategory.UNCHECKED);
   714                     return true;
   715                 }
   716             }
   717             return false;
   718         }
   720         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   721             if (t.tag != ARRAY || isReifiable(t))
   722                 return;
   723             t = t.unannotatedType();
   724             s = s.unannotatedType();
   725             ArrayType from = (ArrayType)t;
   726             boolean shouldWarn = false;
   727             switch (s.tag) {
   728                 case ARRAY:
   729                     ArrayType to = (ArrayType)s;
   730                     shouldWarn = from.isVarargs() &&
   731                             !to.isVarargs() &&
   732                             !isReifiable(from);
   733                     break;
   734                 case CLASS:
   735                     shouldWarn = from.isVarargs();
   736                     break;
   737             }
   738             if (shouldWarn) {
   739                 warn.warn(LintCategory.VARARGS);
   740             }
   741         }
   743     /**
   744      * Is t a subtype of s?<br>
   745      * (not defined for Method and ForAll types)
   746      */
   747     final public boolean isSubtype(Type t, Type s) {
   748         return isSubtype(t, s, true);
   749     }
   750     final public boolean isSubtypeNoCapture(Type t, Type s) {
   751         return isSubtype(t, s, false);
   752     }
   753     public boolean isSubtype(Type t, Type s, boolean capture) {
   754         if (t == s)
   755             return true;
   757         t = t.unannotatedType();
   758         s = s.unannotatedType();
   760         if (t == s)
   761             return true;
   763         if (s.isPartial())
   764             return isSuperType(s, t);
   766         if (s.isCompound()) {
   767             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   768                 if (!isSubtype(t, s2, capture))
   769                     return false;
   770             }
   771             return true;
   772         }
   774         Type lower = lowerBound(s);
   775         if (s != lower)
   776             return isSubtype(capture ? capture(t) : t, lower, false);
   778         return isSubtype.visit(capture ? capture(t) : t, s);
   779     }
   780     // where
   781         private TypeRelation isSubtype = new TypeRelation()
   782         {
   783             public Boolean visitType(Type t, Type s) {
   784                 switch (t.tag) {
   785                  case BYTE:
   786                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   787                  case CHAR:
   788                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   789                  case SHORT: case INT: case LONG:
   790                  case FLOAT: case DOUBLE:
   791                      return t.getTag().isSubRangeOf(s.getTag());
   792                  case BOOLEAN: case VOID:
   793                      return t.hasTag(s.getTag());
   794                  case TYPEVAR:
   795                      return isSubtypeNoCapture(t.getUpperBound(), s);
   796                  case BOT:
   797                      return
   798                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   799                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   800                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   801                  case NONE:
   802                      return false;
   803                  default:
   804                      throw new AssertionError("isSubtype " + t.tag);
   805                  }
   806             }
   808             private Set<TypePair> cache = new HashSet<TypePair>();
   810             private boolean containsTypeRecursive(Type t, Type s) {
   811                 TypePair pair = new TypePair(t, s);
   812                 if (cache.add(pair)) {
   813                     try {
   814                         return containsType(t.getTypeArguments(),
   815                                             s.getTypeArguments());
   816                     } finally {
   817                         cache.remove(pair);
   818                     }
   819                 } else {
   820                     return containsType(t.getTypeArguments(),
   821                                         rewriteSupers(s).getTypeArguments());
   822                 }
   823             }
   825             private Type rewriteSupers(Type t) {
   826                 if (!t.isParameterized())
   827                     return t;
   828                 ListBuffer<Type> from = lb();
   829                 ListBuffer<Type> to = lb();
   830                 adaptSelf(t, from, to);
   831                 if (from.isEmpty())
   832                     return t;
   833                 ListBuffer<Type> rewrite = lb();
   834                 boolean changed = false;
   835                 for (Type orig : to.toList()) {
   836                     Type s = rewriteSupers(orig);
   837                     if (s.isSuperBound() && !s.isExtendsBound()) {
   838                         s = new WildcardType(syms.objectType,
   839                                              BoundKind.UNBOUND,
   840                                              syms.boundClass);
   841                         changed = true;
   842                     } else if (s != orig) {
   843                         s = new WildcardType(upperBound(s),
   844                                              BoundKind.EXTENDS,
   845                                              syms.boundClass);
   846                         changed = true;
   847                     }
   848                     rewrite.append(s);
   849                 }
   850                 if (changed)
   851                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   852                 else
   853                     return t;
   854             }
   856             @Override
   857             public Boolean visitClassType(ClassType t, Type s) {
   858                 Type sup = asSuper(t, s.tsym);
   859                 return sup != null
   860                     && sup.tsym == s.tsym
   861                     // You're not allowed to write
   862                     //     Vector<Object> vec = new Vector<String>();
   863                     // But with wildcards you can write
   864                     //     Vector<? extends Object> vec = new Vector<String>();
   865                     // which means that subtype checking must be done
   866                     // here instead of same-type checking (via containsType).
   867                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   868                     && isSubtypeNoCapture(sup.getEnclosingType(),
   869                                           s.getEnclosingType());
   870             }
   872             @Override
   873             public Boolean visitArrayType(ArrayType t, Type s) {
   874                 if (s.tag == ARRAY) {
   875                     if (t.elemtype.isPrimitive())
   876                         return isSameType(t.elemtype, elemtype(s));
   877                     else
   878                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   879                 }
   881                 if (s.tag == CLASS) {
   882                     Name sname = s.tsym.getQualifiedName();
   883                     return sname == names.java_lang_Object
   884                         || sname == names.java_lang_Cloneable
   885                         || sname == names.java_io_Serializable;
   886                 }
   888                 return false;
   889             }
   891             @Override
   892             public Boolean visitUndetVar(UndetVar t, Type s) {
   893                 //todo: test against origin needed? or replace with substitution?
   894                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   895                     return true;
   896                 } else if (s.tag == BOT) {
   897                     //if 's' is 'null' there's no instantiated type U for which
   898                     //U <: s (but 'null' itself, which is not a valid type)
   899                     return false;
   900                 }
   902                 t.addBound(InferenceBound.UPPER, s, Types.this);
   903                 return true;
   904             }
   906             @Override
   907             public Boolean visitErrorType(ErrorType t, Type s) {
   908                 return true;
   909             }
   910         };
   912     /**
   913      * Is t a subtype of every type in given list `ts'?<br>
   914      * (not defined for Method and ForAll types)<br>
   915      * Allows unchecked conversions.
   916      */
   917     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   918         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   919             if (!isSubtypeUnchecked(t, l.head, warn))
   920                 return false;
   921         return true;
   922     }
   924     /**
   925      * Are corresponding elements of ts subtypes of ss?  If lists are
   926      * of different length, return false.
   927      */
   928     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   929         while (ts.tail != null && ss.tail != null
   930                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   931                isSubtype(ts.head, ss.head)) {
   932             ts = ts.tail;
   933             ss = ss.tail;
   934         }
   935         return ts.tail == null && ss.tail == null;
   936         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   937     }
   939     /**
   940      * Are corresponding elements of ts subtypes of ss, allowing
   941      * unchecked conversions?  If lists are of different length,
   942      * return false.
   943      **/
   944     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   945         while (ts.tail != null && ss.tail != null
   946                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   947                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   948             ts = ts.tail;
   949             ss = ss.tail;
   950         }
   951         return ts.tail == null && ss.tail == null;
   952         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   953     }
   954     // </editor-fold>
   956     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   957     /**
   958      * Is t a supertype of s?
   959      */
   960     public boolean isSuperType(Type t, Type s) {
   961         switch (t.tag) {
   962         case ERROR:
   963             return true;
   964         case UNDETVAR: {
   965             UndetVar undet = (UndetVar)t;
   966             if (t == s ||
   967                 undet.qtype == s ||
   968                 s.tag == ERROR ||
   969                 s.tag == BOT) return true;
   970             undet.addBound(InferenceBound.LOWER, s, this);
   971             return true;
   972         }
   973         default:
   974             return isSubtype(s, t);
   975         }
   976     }
   977     // </editor-fold>
   979     // <editor-fold defaultstate="collapsed" desc="isSameType">
   980     /**
   981      * Are corresponding elements of the lists the same type?  If
   982      * lists are of different length, return false.
   983      */
   984     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   985         return isSameTypes(ts, ss, false);
   986     }
   987     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
   988         while (ts.tail != null && ss.tail != null
   989                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   990                isSameType(ts.head, ss.head, strict)) {
   991             ts = ts.tail;
   992             ss = ss.tail;
   993         }
   994         return ts.tail == null && ss.tail == null;
   995         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   996     }
   998     /**
   999      * Is t the same type as s?
  1000      */
  1001     public boolean isSameType(Type t, Type s) {
  1002         return isSameType(t, s, false);
  1004     public boolean isSameType(Type t, Type s, boolean strict) {
  1005         return strict ?
  1006                 isSameTypeStrict.visit(t, s) :
  1007                 isSameTypeLoose.visit(t, s);
  1009     // where
  1010         abstract class SameTypeVisitor extends TypeRelation {
  1012             public Boolean visitType(Type t, Type s) {
  1013                 if (t == s)
  1014                     return true;
  1016                 if (s.isPartial())
  1017                     return visit(s, t);
  1019                 switch (t.tag) {
  1020                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1021                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
  1022                     return t.tag == s.tag;
  1023                 case TYPEVAR: {
  1024                     if (s.tag == TYPEVAR) {
  1025                         //type-substitution does not preserve type-var types
  1026                         //check that type var symbols and bounds are indeed the same
  1027                         return sameTypeVars((TypeVar)t, (TypeVar)s);
  1029                     else {
  1030                         //special case for s == ? super X, where upper(s) = u
  1031                         //check that u == t, where u has been set by Type.withTypeVar
  1032                         return s.isSuperBound() &&
  1033                                 !s.isExtendsBound() &&
  1034                                 visit(t, upperBound(s));
  1037                 default:
  1038                     throw new AssertionError("isSameType " + t.tag);
  1042             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1044             @Override
  1045             public Boolean visitWildcardType(WildcardType t, Type s) {
  1046                 if (s.isPartial())
  1047                     return visit(s, t);
  1048                 else
  1049                     return false;
  1052             @Override
  1053             public Boolean visitClassType(ClassType t, Type s) {
  1054                 if (t == s)
  1055                     return true;
  1057                 if (s.isPartial())
  1058                     return visit(s, t);
  1060                 if (s.isSuperBound() && !s.isExtendsBound())
  1061                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1063                 if (t.isCompound() && s.isCompound()) {
  1064                     if (!visit(supertype(t), supertype(s)))
  1065                         return false;
  1067                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1068                     for (Type x : interfaces(t))
  1069                         set.add(new UniqueType(x, Types.this));
  1070                     for (Type x : interfaces(s)) {
  1071                         if (!set.remove(new UniqueType(x, Types.this)))
  1072                             return false;
  1074                     return (set.isEmpty());
  1076                 return t.tsym == s.tsym
  1077                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1078                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1081             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1083             @Override
  1084             public Boolean visitArrayType(ArrayType t, Type s) {
  1085                 if (t == s)
  1086                     return true;
  1088                 if (s.isPartial())
  1089                     return visit(s, t);
  1091                 return s.hasTag(ARRAY)
  1092                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1095             @Override
  1096             public Boolean visitMethodType(MethodType t, Type s) {
  1097                 // isSameType for methods does not take thrown
  1098                 // exceptions into account!
  1099                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1102             @Override
  1103             public Boolean visitPackageType(PackageType t, Type s) {
  1104                 return t == s;
  1107             @Override
  1108             public Boolean visitForAll(ForAll t, Type s) {
  1109                 if (s.tag != FORALL)
  1110                     return false;
  1112                 ForAll forAll = (ForAll)s;
  1113                 return hasSameBounds(t, forAll)
  1114                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1117             @Override
  1118             public Boolean visitUndetVar(UndetVar t, Type s) {
  1119                 if (s.tag == WILDCARD)
  1120                     // FIXME, this might be leftovers from before capture conversion
  1121                     return false;
  1123                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1124                     return true;
  1126                 t.addBound(InferenceBound.EQ, s, Types.this);
  1128                 return true;
  1131             @Override
  1132             public Boolean visitErrorType(ErrorType t, Type s) {
  1133                 return true;
  1137         /**
  1138          * Standard type-equality relation - type variables are considered
  1139          * equals if they share the same type symbol.
  1140          */
  1141         TypeRelation isSameTypeLoose = new SameTypeVisitor() {
  1142             @Override
  1143             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1144                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
  1146             @Override
  1147             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1148                 return containsTypeEquivalent(ts1, ts2);
  1150         };
  1152         /**
  1153          * Strict type-equality relation - type variables are considered
  1154          * equals if they share the same object identity.
  1155          */
  1156         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1157             @Override
  1158             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1159                 return tv1 == tv2;
  1161             @Override
  1162             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1163                 return isSameTypes(ts1, ts2, true);
  1165         };
  1166     // </editor-fold>
  1168     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1169     public boolean containedBy(Type t, Type s) {
  1170         switch (t.tag) {
  1171         case UNDETVAR:
  1172             if (s.tag == WILDCARD) {
  1173                 UndetVar undetvar = (UndetVar)t;
  1174                 WildcardType wt = (WildcardType)s;
  1175                 switch(wt.kind) {
  1176                     case UNBOUND: //similar to ? extends Object
  1177                     case EXTENDS: {
  1178                         Type bound = upperBound(s);
  1179                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1180                         break;
  1182                     case SUPER: {
  1183                         Type bound = lowerBound(s);
  1184                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1185                         break;
  1188                 return true;
  1189             } else {
  1190                 return isSameType(t, s);
  1192         case ERROR:
  1193             return true;
  1194         default:
  1195             return containsType(s, t);
  1199     boolean containsType(List<Type> ts, List<Type> ss) {
  1200         while (ts.nonEmpty() && ss.nonEmpty()
  1201                && containsType(ts.head, ss.head)) {
  1202             ts = ts.tail;
  1203             ss = ss.tail;
  1205         return ts.isEmpty() && ss.isEmpty();
  1208     /**
  1209      * Check if t contains s.
  1211      * <p>T contains S if:
  1213      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1215      * <p>This relation is only used by ClassType.isSubtype(), that
  1216      * is,
  1218      * <p>{@code C<S> <: C<T> if T contains S.}
  1220      * <p>Because of F-bounds, this relation can lead to infinite
  1221      * recursion.  Thus we must somehow break that recursion.  Notice
  1222      * that containsType() is only called from ClassType.isSubtype().
  1223      * Since the arguments have already been checked against their
  1224      * bounds, we know:
  1226      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1228      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1230      * @param t a type
  1231      * @param s a type
  1232      */
  1233     public boolean containsType(Type t, Type s) {
  1234         return containsType.visit(t, s);
  1236     // where
  1237         private TypeRelation containsType = new TypeRelation() {
  1239             private Type U(Type t) {
  1240                 while (t.tag == WILDCARD) {
  1241                     WildcardType w = (WildcardType)t;
  1242                     if (w.isSuperBound())
  1243                         return w.bound == null ? syms.objectType : w.bound.bound;
  1244                     else
  1245                         t = w.type;
  1247                 return t;
  1250             private Type L(Type t) {
  1251                 while (t.tag == WILDCARD) {
  1252                     WildcardType w = (WildcardType)t;
  1253                     if (w.isExtendsBound())
  1254                         return syms.botType;
  1255                     else
  1256                         t = w.type;
  1258                 return t;
  1261             public Boolean visitType(Type t, Type s) {
  1262                 if (s.isPartial())
  1263                     return containedBy(s, t);
  1264                 else
  1265                     return isSameType(t, s);
  1268 //            void debugContainsType(WildcardType t, Type s) {
  1269 //                System.err.println();
  1270 //                System.err.format(" does %s contain %s?%n", t, s);
  1271 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1272 //                                  upperBound(s), s, t, U(t),
  1273 //                                  t.isSuperBound()
  1274 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1275 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1276 //                                  L(t), t, s, lowerBound(s),
  1277 //                                  t.isExtendsBound()
  1278 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1279 //                System.err.println();
  1280 //            }
  1282             @Override
  1283             public Boolean visitWildcardType(WildcardType t, Type s) {
  1284                 if (s.isPartial())
  1285                     return containedBy(s, t);
  1286                 else {
  1287 //                    debugContainsType(t, s);
  1288                     return isSameWildcard(t, s)
  1289                         || isCaptureOf(s, t)
  1290                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1291                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1295             @Override
  1296             public Boolean visitUndetVar(UndetVar t, Type s) {
  1297                 if (s.tag != WILDCARD)
  1298                     return isSameType(t, s);
  1299                 else
  1300                     return false;
  1303             @Override
  1304             public Boolean visitErrorType(ErrorType t, Type s) {
  1305                 return true;
  1307         };
  1309     public boolean isCaptureOf(Type s, WildcardType t) {
  1310         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1311             return false;
  1312         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1315     public boolean isSameWildcard(WildcardType t, Type s) {
  1316         if (s.tag != WILDCARD)
  1317             return false;
  1318         WildcardType w = (WildcardType)s;
  1319         return w.kind == t.kind && w.type == t.type;
  1322     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1323         while (ts.nonEmpty() && ss.nonEmpty()
  1324                && containsTypeEquivalent(ts.head, ss.head)) {
  1325             ts = ts.tail;
  1326             ss = ss.tail;
  1328         return ts.isEmpty() && ss.isEmpty();
  1330     // </editor-fold>
  1332     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1333     public boolean isCastable(Type t, Type s) {
  1334         return isCastable(t, s, noWarnings);
  1337     /**
  1338      * Is t is castable to s?<br>
  1339      * s is assumed to be an erased type.<br>
  1340      * (not defined for Method and ForAll types).
  1341      */
  1342     public boolean isCastable(Type t, Type s, Warner warn) {
  1343         if (t == s)
  1344             return true;
  1346         if (t.isPrimitive() != s.isPrimitive())
  1347             return allowBoxing && (
  1348                     isConvertible(t, s, warn)
  1349                     || (allowObjectToPrimitiveCast &&
  1350                         s.isPrimitive() &&
  1351                         isSubtype(boxedClass(s).type, t)));
  1352         if (warn != warnStack.head) {
  1353             try {
  1354                 warnStack = warnStack.prepend(warn);
  1355                 checkUnsafeVarargsConversion(t, s, warn);
  1356                 return isCastable.visit(t,s);
  1357             } finally {
  1358                 warnStack = warnStack.tail;
  1360         } else {
  1361             return isCastable.visit(t,s);
  1364     // where
  1365         private TypeRelation isCastable = new TypeRelation() {
  1367             public Boolean visitType(Type t, Type s) {
  1368                 if (s.tag == ERROR)
  1369                     return true;
  1371                 switch (t.tag) {
  1372                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1373                 case DOUBLE:
  1374                     return s.isNumeric();
  1375                 case BOOLEAN:
  1376                     return s.tag == BOOLEAN;
  1377                 case VOID:
  1378                     return false;
  1379                 case BOT:
  1380                     return isSubtype(t, s);
  1381                 default:
  1382                     throw new AssertionError();
  1386             @Override
  1387             public Boolean visitWildcardType(WildcardType t, Type s) {
  1388                 return isCastable(upperBound(t), s, warnStack.head);
  1391             @Override
  1392             public Boolean visitClassType(ClassType t, Type s) {
  1393                 if (s.tag == ERROR || s.tag == BOT)
  1394                     return true;
  1396                 if (s.tag == TYPEVAR) {
  1397                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1398                         warnStack.head.warn(LintCategory.UNCHECKED);
  1399                         return true;
  1400                     } else {
  1401                         return false;
  1405                 if (t.isCompound()) {
  1406                     Warner oldWarner = warnStack.head;
  1407                     warnStack.head = noWarnings;
  1408                     if (!visit(supertype(t), s))
  1409                         return false;
  1410                     for (Type intf : interfaces(t)) {
  1411                         if (!visit(intf, s))
  1412                             return false;
  1414                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1415                         oldWarner.warn(LintCategory.UNCHECKED);
  1416                     return true;
  1419                 if (s.isCompound()) {
  1420                     // call recursively to reuse the above code
  1421                     return visitClassType((ClassType)s, t);
  1424                 if (s.tag == CLASS || s.tag == ARRAY) {
  1425                     boolean upcast;
  1426                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1427                         || isSubtype(erasure(s), erasure(t))) {
  1428                         if (!upcast && s.tag == ARRAY) {
  1429                             if (!isReifiable(s))
  1430                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1431                             return true;
  1432                         } else if (s.isRaw()) {
  1433                             return true;
  1434                         } else if (t.isRaw()) {
  1435                             if (!isUnbounded(s))
  1436                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1437                             return true;
  1439                         // Assume |a| <: |b|
  1440                         final Type a = upcast ? t : s;
  1441                         final Type b = upcast ? s : t;
  1442                         final boolean HIGH = true;
  1443                         final boolean LOW = false;
  1444                         final boolean DONT_REWRITE_TYPEVARS = false;
  1445                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1446                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1447                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1448                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1449                         Type lowSub = asSub(bLow, aLow.tsym);
  1450                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1451                         if (highSub == null) {
  1452                             final boolean REWRITE_TYPEVARS = true;
  1453                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1454                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1455                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1456                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1457                             lowSub = asSub(bLow, aLow.tsym);
  1458                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1460                         if (highSub != null) {
  1461                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1462                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1464                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1465                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1466                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1467                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1468                                 if (upcast ? giveWarning(a, b) :
  1469                                     giveWarning(b, a))
  1470                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1471                                 return true;
  1474                         if (isReifiable(s))
  1475                             return isSubtypeUnchecked(a, b);
  1476                         else
  1477                             return isSubtypeUnchecked(a, b, warnStack.head);
  1480                     // Sidecast
  1481                     if (s.tag == CLASS) {
  1482                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1483                             return ((t.tsym.flags() & FINAL) == 0)
  1484                                 ? sideCast(t, s, warnStack.head)
  1485                                 : sideCastFinal(t, s, warnStack.head);
  1486                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1487                             return ((s.tsym.flags() & FINAL) == 0)
  1488                                 ? sideCast(t, s, warnStack.head)
  1489                                 : sideCastFinal(t, s, warnStack.head);
  1490                         } else {
  1491                             // unrelated class types
  1492                             return false;
  1496                 return false;
  1499             @Override
  1500             public Boolean visitArrayType(ArrayType t, Type s) {
  1501                 switch (s.tag) {
  1502                 case ERROR:
  1503                 case BOT:
  1504                     return true;
  1505                 case TYPEVAR:
  1506                     if (isCastable(s, t, noWarnings)) {
  1507                         warnStack.head.warn(LintCategory.UNCHECKED);
  1508                         return true;
  1509                     } else {
  1510                         return false;
  1512                 case CLASS:
  1513                     return isSubtype(t, s);
  1514                 case ARRAY:
  1515                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1516                         return elemtype(t).tag == elemtype(s).tag;
  1517                     } else {
  1518                         return visit(elemtype(t), elemtype(s));
  1520                 default:
  1521                     return false;
  1525             @Override
  1526             public Boolean visitTypeVar(TypeVar t, Type s) {
  1527                 switch (s.tag) {
  1528                 case ERROR:
  1529                 case BOT:
  1530                     return true;
  1531                 case TYPEVAR:
  1532                     if (isSubtype(t, s)) {
  1533                         return true;
  1534                     } else if (isCastable(t.bound, s, noWarnings)) {
  1535                         warnStack.head.warn(LintCategory.UNCHECKED);
  1536                         return true;
  1537                     } else {
  1538                         return false;
  1540                 default:
  1541                     return isCastable(t.bound, s, warnStack.head);
  1545             @Override
  1546             public Boolean visitErrorType(ErrorType t, Type s) {
  1547                 return true;
  1549         };
  1550     // </editor-fold>
  1552     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1553     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1554         while (ts.tail != null && ss.tail != null) {
  1555             if (disjointType(ts.head, ss.head)) return true;
  1556             ts = ts.tail;
  1557             ss = ss.tail;
  1559         return false;
  1562     /**
  1563      * Two types or wildcards are considered disjoint if it can be
  1564      * proven that no type can be contained in both. It is
  1565      * conservative in that it is allowed to say that two types are
  1566      * not disjoint, even though they actually are.
  1568      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1569      * {@code X} and {@code Y} are not disjoint.
  1570      */
  1571     public boolean disjointType(Type t, Type s) {
  1572         return disjointType.visit(t, s);
  1574     // where
  1575         private TypeRelation disjointType = new TypeRelation() {
  1577             private Set<TypePair> cache = new HashSet<TypePair>();
  1579             public Boolean visitType(Type t, Type s) {
  1580                 if (s.tag == WILDCARD)
  1581                     return visit(s, t);
  1582                 else
  1583                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1586             private boolean isCastableRecursive(Type t, Type s) {
  1587                 TypePair pair = new TypePair(t, s);
  1588                 if (cache.add(pair)) {
  1589                     try {
  1590                         return Types.this.isCastable(t, s);
  1591                     } finally {
  1592                         cache.remove(pair);
  1594                 } else {
  1595                     return true;
  1599             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1600                 TypePair pair = new TypePair(t, s);
  1601                 if (cache.add(pair)) {
  1602                     try {
  1603                         return Types.this.notSoftSubtype(t, s);
  1604                     } finally {
  1605                         cache.remove(pair);
  1607                 } else {
  1608                     return false;
  1612             @Override
  1613             public Boolean visitWildcardType(WildcardType t, Type s) {
  1614                 if (t.isUnbound())
  1615                     return false;
  1617                 if (s.tag != WILDCARD) {
  1618                     if (t.isExtendsBound())
  1619                         return notSoftSubtypeRecursive(s, t.type);
  1620                     else // isSuperBound()
  1621                         return notSoftSubtypeRecursive(t.type, s);
  1624                 if (s.isUnbound())
  1625                     return false;
  1627                 if (t.isExtendsBound()) {
  1628                     if (s.isExtendsBound())
  1629                         return !isCastableRecursive(t.type, upperBound(s));
  1630                     else if (s.isSuperBound())
  1631                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1632                 } else if (t.isSuperBound()) {
  1633                     if (s.isExtendsBound())
  1634                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1636                 return false;
  1638         };
  1639     // </editor-fold>
  1641     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1642     /**
  1643      * Returns the lower bounds of the formals of a method.
  1644      */
  1645     public List<Type> lowerBoundArgtypes(Type t) {
  1646         return lowerBounds(t.getParameterTypes());
  1648     public List<Type> lowerBounds(List<Type> ts) {
  1649         return map(ts, lowerBoundMapping);
  1651     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1652             public Type apply(Type t) {
  1653                 return lowerBound(t);
  1655         };
  1656     // </editor-fold>
  1658     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1659     /**
  1660      * This relation answers the question: is impossible that
  1661      * something of type `t' can be a subtype of `s'? This is
  1662      * different from the question "is `t' not a subtype of `s'?"
  1663      * when type variables are involved: Integer is not a subtype of T
  1664      * where {@code <T extends Number>} but it is not true that Integer cannot
  1665      * possibly be a subtype of T.
  1666      */
  1667     public boolean notSoftSubtype(Type t, Type s) {
  1668         if (t == s) return false;
  1669         if (t.tag == TYPEVAR) {
  1670             TypeVar tv = (TypeVar) t;
  1671             return !isCastable(tv.bound,
  1672                                relaxBound(s),
  1673                                noWarnings);
  1675         if (s.tag != WILDCARD)
  1676             s = upperBound(s);
  1678         return !isSubtype(t, relaxBound(s));
  1681     private Type relaxBound(Type t) {
  1682         if (t.tag == TYPEVAR) {
  1683             while (t.tag == TYPEVAR)
  1684                 t = t.getUpperBound();
  1685             t = rewriteQuantifiers(t, true, true);
  1687         return t;
  1689     // </editor-fold>
  1691     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1692     public boolean isReifiable(Type t) {
  1693         return isReifiable.visit(t);
  1695     // where
  1696         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1698             public Boolean visitType(Type t, Void ignored) {
  1699                 return true;
  1702             @Override
  1703             public Boolean visitClassType(ClassType t, Void ignored) {
  1704                 if (t.isCompound())
  1705                     return false;
  1706                 else {
  1707                     if (!t.isParameterized())
  1708                         return true;
  1710                     for (Type param : t.allparams()) {
  1711                         if (!param.isUnbound())
  1712                             return false;
  1714                     return true;
  1718             @Override
  1719             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1720                 return visit(t.elemtype);
  1723             @Override
  1724             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1725                 return false;
  1727         };
  1728     // </editor-fold>
  1730     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1731     public boolean isArray(Type t) {
  1732         while (t.tag == WILDCARD)
  1733             t = upperBound(t);
  1734         return t.tag == ARRAY;
  1737     /**
  1738      * The element type of an array.
  1739      */
  1740     public Type elemtype(Type t) {
  1741         switch (t.tag) {
  1742         case WILDCARD:
  1743             return elemtype(upperBound(t));
  1744         case ARRAY:
  1745             t = t.unannotatedType();
  1746             return ((ArrayType)t).elemtype;
  1747         case FORALL:
  1748             return elemtype(((ForAll)t).qtype);
  1749         case ERROR:
  1750             return t;
  1751         default:
  1752             return null;
  1756     public Type elemtypeOrType(Type t) {
  1757         Type elemtype = elemtype(t);
  1758         return elemtype != null ?
  1759             elemtype :
  1760             t;
  1763     /**
  1764      * Mapping to take element type of an arraytype
  1765      */
  1766     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1767         public Type apply(Type t) { return elemtype(t); }
  1768     };
  1770     /**
  1771      * The number of dimensions of an array type.
  1772      */
  1773     public int dimensions(Type t) {
  1774         int result = 0;
  1775         while (t.tag == ARRAY) {
  1776             result++;
  1777             t = elemtype(t);
  1779         return result;
  1782     /**
  1783      * Returns an ArrayType with the component type t
  1785      * @param t The component type of the ArrayType
  1786      * @return the ArrayType for the given component
  1787      */
  1788     public ArrayType makeArrayType(Type t) {
  1789         if (t.tag == VOID ||
  1790             t.tag == PACKAGE) {
  1791             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1793         return new ArrayType(t, syms.arrayClass);
  1795     // </editor-fold>
  1797     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1798     /**
  1799      * Return the (most specific) base type of t that starts with the
  1800      * given symbol.  If none exists, return null.
  1802      * @param t a type
  1803      * @param sym a symbol
  1804      */
  1805     public Type asSuper(Type t, Symbol sym) {
  1806         return asSuper.visit(t, sym);
  1808     // where
  1809         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1811             public Type visitType(Type t, Symbol sym) {
  1812                 return null;
  1815             @Override
  1816             public Type visitClassType(ClassType t, Symbol sym) {
  1817                 if (t.tsym == sym)
  1818                     return t;
  1820                 Type st = supertype(t);
  1821                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1822                     Type x = asSuper(st, sym);
  1823                     if (x != null)
  1824                         return x;
  1826                 if ((sym.flags() & INTERFACE) != 0) {
  1827                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1828                         Type x = asSuper(l.head, sym);
  1829                         if (x != null)
  1830                             return x;
  1833                 return null;
  1836             @Override
  1837             public Type visitArrayType(ArrayType t, Symbol sym) {
  1838                 return isSubtype(t, sym.type) ? sym.type : null;
  1841             @Override
  1842             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1843                 if (t.tsym == sym)
  1844                     return t;
  1845                 else
  1846                     return asSuper(t.bound, sym);
  1849             @Override
  1850             public Type visitErrorType(ErrorType t, Symbol sym) {
  1851                 return t;
  1853         };
  1855     /**
  1856      * Return the base type of t or any of its outer types that starts
  1857      * with the given symbol.  If none exists, return null.
  1859      * @param t a type
  1860      * @param sym a symbol
  1861      */
  1862     public Type asOuterSuper(Type t, Symbol sym) {
  1863         switch (t.tag) {
  1864         case CLASS:
  1865             do {
  1866                 Type s = asSuper(t, sym);
  1867                 if (s != null) return s;
  1868                 t = t.getEnclosingType();
  1869             } while (t.tag == CLASS);
  1870             return null;
  1871         case ARRAY:
  1872             return isSubtype(t, sym.type) ? sym.type : null;
  1873         case TYPEVAR:
  1874             return asSuper(t, sym);
  1875         case ERROR:
  1876             return t;
  1877         default:
  1878             return null;
  1882     /**
  1883      * Return the base type of t or any of its enclosing types that
  1884      * starts with the given symbol.  If none exists, return null.
  1886      * @param t a type
  1887      * @param sym a symbol
  1888      */
  1889     public Type asEnclosingSuper(Type t, Symbol sym) {
  1890         switch (t.tag) {
  1891         case CLASS:
  1892             do {
  1893                 Type s = asSuper(t, sym);
  1894                 if (s != null) return s;
  1895                 Type outer = t.getEnclosingType();
  1896                 t = (outer.tag == CLASS) ? outer :
  1897                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1898                     Type.noType;
  1899             } while (t.tag == CLASS);
  1900             return null;
  1901         case ARRAY:
  1902             return isSubtype(t, sym.type) ? sym.type : null;
  1903         case TYPEVAR:
  1904             return asSuper(t, sym);
  1905         case ERROR:
  1906             return t;
  1907         default:
  1908             return null;
  1911     // </editor-fold>
  1913     // <editor-fold defaultstate="collapsed" desc="memberType">
  1914     /**
  1915      * The type of given symbol, seen as a member of t.
  1917      * @param t a type
  1918      * @param sym a symbol
  1919      */
  1920     public Type memberType(Type t, Symbol sym) {
  1921         return (sym.flags() & STATIC) != 0
  1922             ? sym.type
  1923             : memberType.visit(t, sym);
  1925     // where
  1926         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1928             public Type visitType(Type t, Symbol sym) {
  1929                 return sym.type;
  1932             @Override
  1933             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1934                 return memberType(upperBound(t), sym);
  1937             @Override
  1938             public Type visitClassType(ClassType t, Symbol sym) {
  1939                 Symbol owner = sym.owner;
  1940                 long flags = sym.flags();
  1941                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1942                     Type base = asOuterSuper(t, owner);
  1943                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1944                     //its supertypes CT, I1, ... In might contain wildcards
  1945                     //so we need to go through capture conversion
  1946                     base = t.isCompound() ? capture(base) : base;
  1947                     if (base != null) {
  1948                         List<Type> ownerParams = owner.type.allparams();
  1949                         List<Type> baseParams = base.allparams();
  1950                         if (ownerParams.nonEmpty()) {
  1951                             if (baseParams.isEmpty()) {
  1952                                 // then base is a raw type
  1953                                 return erasure(sym.type);
  1954                             } else {
  1955                                 return subst(sym.type, ownerParams, baseParams);
  1960                 return sym.type;
  1963             @Override
  1964             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1965                 return memberType(t.bound, sym);
  1968             @Override
  1969             public Type visitErrorType(ErrorType t, Symbol sym) {
  1970                 return t;
  1972         };
  1973     // </editor-fold>
  1975     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1976     public boolean isAssignable(Type t, Type s) {
  1977         return isAssignable(t, s, noWarnings);
  1980     /**
  1981      * Is t assignable to s?<br>
  1982      * Equivalent to subtype except for constant values and raw
  1983      * types.<br>
  1984      * (not defined for Method and ForAll types)
  1985      */
  1986     public boolean isAssignable(Type t, Type s, Warner warn) {
  1987         if (t.tag == ERROR)
  1988             return true;
  1989         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  1990             int value = ((Number)t.constValue()).intValue();
  1991             switch (s.tag) {
  1992             case BYTE:
  1993                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1994                     return true;
  1995                 break;
  1996             case CHAR:
  1997                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1998                     return true;
  1999                 break;
  2000             case SHORT:
  2001                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2002                     return true;
  2003                 break;
  2004             case INT:
  2005                 return true;
  2006             case CLASS:
  2007                 switch (unboxedType(s).tag) {
  2008                 case BYTE:
  2009                 case CHAR:
  2010                 case SHORT:
  2011                     return isAssignable(t, unboxedType(s), warn);
  2013                 break;
  2016         return isConvertible(t, s, warn);
  2018     // </editor-fold>
  2020     // <editor-fold defaultstate="collapsed" desc="erasure">
  2021     /**
  2022      * The erasure of t {@code |t|} -- the type that results when all
  2023      * type parameters in t are deleted.
  2024      */
  2025     public Type erasure(Type t) {
  2026         return eraseNotNeeded(t)? t : erasure(t, false);
  2028     //where
  2029     private boolean eraseNotNeeded(Type t) {
  2030         // We don't want to erase primitive types and String type as that
  2031         // operation is idempotent. Also, erasing these could result in loss
  2032         // of information such as constant values attached to such types.
  2033         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2036     private Type erasure(Type t, boolean recurse) {
  2037         if (t.isPrimitive())
  2038             return t; /* fast special case */
  2039         else
  2040             return erasure.visit(t, recurse);
  2042     // where
  2043         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2044             public Type visitType(Type t, Boolean recurse) {
  2045                 if (t.isPrimitive())
  2046                     return t; /*fast special case*/
  2047                 else
  2048                     return t.map(recurse ? erasureRecFun : erasureFun);
  2051             @Override
  2052             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2053                 return erasure(upperBound(t), recurse);
  2056             @Override
  2057             public Type visitClassType(ClassType t, Boolean recurse) {
  2058                 Type erased = t.tsym.erasure(Types.this);
  2059                 if (recurse) {
  2060                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2062                 return erased;
  2065             @Override
  2066             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2067                 return erasure(t.bound, recurse);
  2070             @Override
  2071             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2072                 return t;
  2075             @Override
  2076             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2077                 Type erased = erasure(t.underlyingType, recurse);
  2078                 if (erased.getKind() == TypeKind.ANNOTATED) {
  2079                     // This can only happen when the underlying type is a
  2080                     // type variable and the upper bound of it is annotated.
  2081                     // The annotation on the type variable overrides the one
  2082                     // on the bound.
  2083                     erased = ((AnnotatedType)erased).underlyingType;
  2085                 return new AnnotatedType(t.typeAnnotations, erased);
  2087         };
  2089     private Mapping erasureFun = new Mapping ("erasure") {
  2090             public Type apply(Type t) { return erasure(t); }
  2091         };
  2093     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2094         public Type apply(Type t) { return erasureRecursive(t); }
  2095     };
  2097     public List<Type> erasure(List<Type> ts) {
  2098         return Type.map(ts, erasureFun);
  2101     public Type erasureRecursive(Type t) {
  2102         return erasure(t, true);
  2105     public List<Type> erasureRecursive(List<Type> ts) {
  2106         return Type.map(ts, erasureRecFun);
  2108     // </editor-fold>
  2110     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2111     /**
  2112      * Make a compound type from non-empty list of types
  2114      * @param bounds            the types from which the compound type is formed
  2115      * @param supertype         is objectType if all bounds are interfaces,
  2116      *                          null otherwise.
  2117      */
  2118     public Type makeCompoundType(List<Type> bounds) {
  2119         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2121     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2122         Assert.check(bounds.nonEmpty());
  2123         Type firstExplicitBound = bounds.head;
  2124         if (allInterfaces) {
  2125             bounds = bounds.prepend(syms.objectType);
  2127         ClassSymbol bc =
  2128             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2129                             Type.moreInfo
  2130                                 ? names.fromString(bounds.toString())
  2131                                 : names.empty,
  2132                             null,
  2133                             syms.noSymbol);
  2134         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2135         bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
  2136                 syms.objectType : // error condition, recover
  2137                 erasure(firstExplicitBound);
  2138         bc.members_field = new Scope(bc);
  2139         return bc.type;
  2142     /**
  2143      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2144      * arguments are converted to a list and passed to the other
  2145      * method.  Note that this might cause a symbol completion.
  2146      * Hence, this version of makeCompoundType may not be called
  2147      * during a classfile read.
  2148      */
  2149     public Type makeCompoundType(Type bound1, Type bound2) {
  2150         return makeCompoundType(List.of(bound1, bound2));
  2152     // </editor-fold>
  2154     // <editor-fold defaultstate="collapsed" desc="supertype">
  2155     public Type supertype(Type t) {
  2156         return supertype.visit(t);
  2158     // where
  2159         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2161             public Type visitType(Type t, Void ignored) {
  2162                 // A note on wildcards: there is no good way to
  2163                 // determine a supertype for a super bounded wildcard.
  2164                 return null;
  2167             @Override
  2168             public Type visitClassType(ClassType t, Void ignored) {
  2169                 if (t.supertype_field == null) {
  2170                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2171                     // An interface has no superclass; its supertype is Object.
  2172                     if (t.isInterface())
  2173                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2174                     if (t.supertype_field == null) {
  2175                         List<Type> actuals = classBound(t).allparams();
  2176                         List<Type> formals = t.tsym.type.allparams();
  2177                         if (t.hasErasedSupertypes()) {
  2178                             t.supertype_field = erasureRecursive(supertype);
  2179                         } else if (formals.nonEmpty()) {
  2180                             t.supertype_field = subst(supertype, formals, actuals);
  2182                         else {
  2183                             t.supertype_field = supertype;
  2187                 return t.supertype_field;
  2190             /**
  2191              * The supertype is always a class type. If the type
  2192              * variable's bounds start with a class type, this is also
  2193              * the supertype.  Otherwise, the supertype is
  2194              * java.lang.Object.
  2195              */
  2196             @Override
  2197             public Type visitTypeVar(TypeVar t, Void ignored) {
  2198                 if (t.bound.tag == TYPEVAR ||
  2199                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2200                     return t.bound;
  2201                 } else {
  2202                     return supertype(t.bound);
  2206             @Override
  2207             public Type visitArrayType(ArrayType t, Void ignored) {
  2208                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2209                     return arraySuperType();
  2210                 else
  2211                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2214             @Override
  2215             public Type visitErrorType(ErrorType t, Void ignored) {
  2216                 return t;
  2218         };
  2219     // </editor-fold>
  2221     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2222     /**
  2223      * Return the interfaces implemented by this class.
  2224      */
  2225     public List<Type> interfaces(Type t) {
  2226         return interfaces.visit(t);
  2228     // where
  2229         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2231             public List<Type> visitType(Type t, Void ignored) {
  2232                 return List.nil();
  2235             @Override
  2236             public List<Type> visitClassType(ClassType t, Void ignored) {
  2237                 if (t.interfaces_field == null) {
  2238                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2239                     if (t.interfaces_field == null) {
  2240                         // If t.interfaces_field is null, then t must
  2241                         // be a parameterized type (not to be confused
  2242                         // with a generic type declaration).
  2243                         // Terminology:
  2244                         //    Parameterized type: List<String>
  2245                         //    Generic type declaration: class List<E> { ... }
  2246                         // So t corresponds to List<String> and
  2247                         // t.tsym.type corresponds to List<E>.
  2248                         // The reason t must be parameterized type is
  2249                         // that completion will happen as a side
  2250                         // effect of calling
  2251                         // ClassSymbol.getInterfaces.  Since
  2252                         // t.interfaces_field is null after
  2253                         // completion, we can assume that t is not the
  2254                         // type of a class/interface declaration.
  2255                         Assert.check(t != t.tsym.type, t);
  2256                         List<Type> actuals = t.allparams();
  2257                         List<Type> formals = t.tsym.type.allparams();
  2258                         if (t.hasErasedSupertypes()) {
  2259                             t.interfaces_field = erasureRecursive(interfaces);
  2260                         } else if (formals.nonEmpty()) {
  2261                             t.interfaces_field =
  2262                                 upperBounds(subst(interfaces, formals, actuals));
  2264                         else {
  2265                             t.interfaces_field = interfaces;
  2269                 return t.interfaces_field;
  2272             @Override
  2273             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2274                 if (t.bound.isCompound())
  2275                     return interfaces(t.bound);
  2277                 if (t.bound.isInterface())
  2278                     return List.of(t.bound);
  2280                 return List.nil();
  2282         };
  2284     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2285         for (Type i2 : interfaces(origin.type)) {
  2286             if (isym == i2.tsym) return true;
  2288         return false;
  2290     // </editor-fold>
  2292     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2293     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2295     public boolean isDerivedRaw(Type t) {
  2296         Boolean result = isDerivedRawCache.get(t);
  2297         if (result == null) {
  2298             result = isDerivedRawInternal(t);
  2299             isDerivedRawCache.put(t, result);
  2301         return result;
  2304     public boolean isDerivedRawInternal(Type t) {
  2305         if (t.isErroneous())
  2306             return false;
  2307         return
  2308             t.isRaw() ||
  2309             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2310             isDerivedRaw(interfaces(t));
  2313     public boolean isDerivedRaw(List<Type> ts) {
  2314         List<Type> l = ts;
  2315         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2316         return l.nonEmpty();
  2318     // </editor-fold>
  2320     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2321     /**
  2322      * Set the bounds field of the given type variable to reflect a
  2323      * (possibly multiple) list of bounds.
  2324      * @param t                 a type variable
  2325      * @param bounds            the bounds, must be nonempty
  2326      * @param supertype         is objectType if all bounds are interfaces,
  2327      *                          null otherwise.
  2328      */
  2329     public void setBounds(TypeVar t, List<Type> bounds) {
  2330         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2333     /**
  2334      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2335      * third parameter is computed directly, as follows: if all
  2336      * all bounds are interface types, the computed supertype is Object,
  2337      * otherwise the supertype is simply left null (in this case, the supertype
  2338      * is assumed to be the head of the bound list passed as second argument).
  2339      * Note that this check might cause a symbol completion. Hence, this version of
  2340      * setBounds may not be called during a classfile read.
  2341      */
  2342     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2343         t.bound = bounds.tail.isEmpty() ?
  2344                 bounds.head :
  2345                 makeCompoundType(bounds, allInterfaces);
  2346         t.rank_field = -1;
  2348     // </editor-fold>
  2350     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2351     /**
  2352      * Return list of bounds of the given type variable.
  2353      */
  2354     public List<Type> getBounds(TypeVar t) {
  2355         if (t.bound.hasTag(NONE))
  2356             return List.nil();
  2357         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2358             return List.of(t.bound);
  2359         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2360             return interfaces(t).prepend(supertype(t));
  2361         else
  2362             // No superclass was given in bounds.
  2363             // In this case, supertype is Object, erasure is first interface.
  2364             return interfaces(t);
  2366     // </editor-fold>
  2368     // <editor-fold defaultstate="collapsed" desc="classBound">
  2369     /**
  2370      * If the given type is a (possibly selected) type variable,
  2371      * return the bounding class of this type, otherwise return the
  2372      * type itself.
  2373      */
  2374     public Type classBound(Type t) {
  2375         return classBound.visit(t);
  2377     // where
  2378         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2380             public Type visitType(Type t, Void ignored) {
  2381                 return t;
  2384             @Override
  2385             public Type visitClassType(ClassType t, Void ignored) {
  2386                 Type outer1 = classBound(t.getEnclosingType());
  2387                 if (outer1 != t.getEnclosingType())
  2388                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2389                 else
  2390                     return t;
  2393             @Override
  2394             public Type visitTypeVar(TypeVar t, Void ignored) {
  2395                 return classBound(supertype(t));
  2398             @Override
  2399             public Type visitErrorType(ErrorType t, Void ignored) {
  2400                 return t;
  2402         };
  2403     // </editor-fold>
  2405     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2406     /**
  2407      * Returns true iff the first signature is a <em>sub
  2408      * signature</em> of the other.  This is <b>not</b> an equivalence
  2409      * relation.
  2411      * @jls section 8.4.2.
  2412      * @see #overrideEquivalent(Type t, Type s)
  2413      * @param t first signature (possibly raw).
  2414      * @param s second signature (could be subjected to erasure).
  2415      * @return true if t is a sub signature of s.
  2416      */
  2417     public boolean isSubSignature(Type t, Type s) {
  2418         return isSubSignature(t, s, true);
  2421     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2422         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2425     /**
  2426      * Returns true iff these signatures are related by <em>override
  2427      * equivalence</em>.  This is the natural extension of
  2428      * isSubSignature to an equivalence relation.
  2430      * @jls section 8.4.2.
  2431      * @see #isSubSignature(Type t, Type s)
  2432      * @param t a signature (possible raw, could be subjected to
  2433      * erasure).
  2434      * @param s a signature (possible raw, could be subjected to
  2435      * erasure).
  2436      * @return true if either argument is a sub signature of the other.
  2437      */
  2438     public boolean overrideEquivalent(Type t, Type s) {
  2439         return hasSameArgs(t, s) ||
  2440             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2443     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2444         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2445             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2446                 return true;
  2449         return false;
  2452     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2453     class ImplementationCache {
  2455         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2456                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2458         class Entry {
  2459             final MethodSymbol cachedImpl;
  2460             final Filter<Symbol> implFilter;
  2461             final boolean checkResult;
  2462             final int prevMark;
  2464             public Entry(MethodSymbol cachedImpl,
  2465                     Filter<Symbol> scopeFilter,
  2466                     boolean checkResult,
  2467                     int prevMark) {
  2468                 this.cachedImpl = cachedImpl;
  2469                 this.implFilter = scopeFilter;
  2470                 this.checkResult = checkResult;
  2471                 this.prevMark = prevMark;
  2474             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2475                 return this.implFilter == scopeFilter &&
  2476                         this.checkResult == checkResult &&
  2477                         this.prevMark == mark;
  2481         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2482             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2483             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2484             if (cache == null) {
  2485                 cache = new HashMap<TypeSymbol, Entry>();
  2486                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2488             Entry e = cache.get(origin);
  2489             CompoundScope members = membersClosure(origin.type, true);
  2490             if (e == null ||
  2491                     !e.matches(implFilter, checkResult, members.getMark())) {
  2492                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2493                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2494                 return impl;
  2496             else {
  2497                 return e.cachedImpl;
  2501         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2502             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2503                 while (t.tag == TYPEVAR)
  2504                     t = t.getUpperBound();
  2505                 TypeSymbol c = t.tsym;
  2506                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2507                      e.scope != null;
  2508                      e = e.next(implFilter)) {
  2509                     if (e.sym != null &&
  2510                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2511                         return (MethodSymbol)e.sym;
  2514             return null;
  2518     private ImplementationCache implCache = new ImplementationCache();
  2520     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2521         return implCache.get(ms, origin, checkResult, implFilter);
  2523     // </editor-fold>
  2525     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2526     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2528         private WeakHashMap<TypeSymbol, Entry> _map =
  2529                 new WeakHashMap<TypeSymbol, Entry>();
  2531         class Entry {
  2532             final boolean skipInterfaces;
  2533             final CompoundScope compoundScope;
  2535             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2536                 this.skipInterfaces = skipInterfaces;
  2537                 this.compoundScope = compoundScope;
  2540             boolean matches(boolean skipInterfaces) {
  2541                 return this.skipInterfaces == skipInterfaces;
  2545         List<TypeSymbol> seenTypes = List.nil();
  2547         /** members closure visitor methods **/
  2549         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2550             return null;
  2553         @Override
  2554         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2555             if (seenTypes.contains(t.tsym)) {
  2556                 //this is possible when an interface is implemented in multiple
  2557                 //superclasses, or when a classs hierarchy is circular - in such
  2558                 //cases we don't need to recurse (empty scope is returned)
  2559                 return new CompoundScope(t.tsym);
  2561             try {
  2562                 seenTypes = seenTypes.prepend(t.tsym);
  2563                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2564                 Entry e = _map.get(csym);
  2565                 if (e == null || !e.matches(skipInterface)) {
  2566                     CompoundScope membersClosure = new CompoundScope(csym);
  2567                     if (!skipInterface) {
  2568                         for (Type i : interfaces(t)) {
  2569                             membersClosure.addSubScope(visit(i, skipInterface));
  2572                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2573                     membersClosure.addSubScope(csym.members());
  2574                     e = new Entry(skipInterface, membersClosure);
  2575                     _map.put(csym, e);
  2577                 return e.compoundScope;
  2579             finally {
  2580                 seenTypes = seenTypes.tail;
  2584         @Override
  2585         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2586             return visit(t.getUpperBound(), skipInterface);
  2590     private MembersClosureCache membersCache = new MembersClosureCache();
  2592     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2593         return membersCache.visit(site, skipInterface);
  2595     // </editor-fold>
  2598     //where
  2599     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2600         Filter<Symbol> filter = new MethodFilter(ms, site);
  2601         List<MethodSymbol> candidates = List.nil();
  2602         for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2603             if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2604                 return List.of((MethodSymbol)s);
  2605             } else if (!candidates.contains(s)) {
  2606                 candidates = candidates.prepend((MethodSymbol)s);
  2609         return prune(candidates);
  2612     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2613         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2614         for (MethodSymbol m1 : methods) {
  2615             boolean isMin_m1 = true;
  2616             for (MethodSymbol m2 : methods) {
  2617                 if (m1 == m2) continue;
  2618                 if (m2.owner != m1.owner &&
  2619                         asSuper(m2.owner.type, m1.owner) != null) {
  2620                     isMin_m1 = false;
  2621                     break;
  2624             if (isMin_m1)
  2625                 methodsMin.append(m1);
  2627         return methodsMin.toList();
  2629     // where
  2630             private class MethodFilter implements Filter<Symbol> {
  2632                 Symbol msym;
  2633                 Type site;
  2635                 MethodFilter(Symbol msym, Type site) {
  2636                     this.msym = msym;
  2637                     this.site = site;
  2640                 public boolean accepts(Symbol s) {
  2641                     return s.kind == Kinds.MTH &&
  2642                             s.name == msym.name &&
  2643                             s.isInheritedIn(site.tsym, Types.this) &&
  2644                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2646             };
  2647     // </editor-fold>
  2649     /**
  2650      * Does t have the same arguments as s?  It is assumed that both
  2651      * types are (possibly polymorphic) method types.  Monomorphic
  2652      * method types "have the same arguments", if their argument lists
  2653      * are equal.  Polymorphic method types "have the same arguments",
  2654      * if they have the same arguments after renaming all type
  2655      * variables of one to corresponding type variables in the other,
  2656      * where correspondence is by position in the type parameter list.
  2657      */
  2658     public boolean hasSameArgs(Type t, Type s) {
  2659         return hasSameArgs(t, s, true);
  2662     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2663         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2666     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2667         return hasSameArgs.visit(t, s);
  2669     // where
  2670         private class HasSameArgs extends TypeRelation {
  2672             boolean strict;
  2674             public HasSameArgs(boolean strict) {
  2675                 this.strict = strict;
  2678             public Boolean visitType(Type t, Type s) {
  2679                 throw new AssertionError();
  2682             @Override
  2683             public Boolean visitMethodType(MethodType t, Type s) {
  2684                 return s.tag == METHOD
  2685                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2688             @Override
  2689             public Boolean visitForAll(ForAll t, Type s) {
  2690                 if (s.tag != FORALL)
  2691                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2693                 ForAll forAll = (ForAll)s;
  2694                 return hasSameBounds(t, forAll)
  2695                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2698             @Override
  2699             public Boolean visitErrorType(ErrorType t, Type s) {
  2700                 return false;
  2702         };
  2704         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2705         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2707     // </editor-fold>
  2709     // <editor-fold defaultstate="collapsed" desc="subst">
  2710     public List<Type> subst(List<Type> ts,
  2711                             List<Type> from,
  2712                             List<Type> to) {
  2713         return new Subst(from, to).subst(ts);
  2716     /**
  2717      * Substitute all occurrences of a type in `from' with the
  2718      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2719      * from the right: If lists have different length, discard leading
  2720      * elements of the longer list.
  2721      */
  2722     public Type subst(Type t, List<Type> from, List<Type> to) {
  2723         return new Subst(from, to).subst(t);
  2726     private class Subst extends UnaryVisitor<Type> {
  2727         List<Type> from;
  2728         List<Type> to;
  2730         public Subst(List<Type> from, List<Type> to) {
  2731             int fromLength = from.length();
  2732             int toLength = to.length();
  2733             while (fromLength > toLength) {
  2734                 fromLength--;
  2735                 from = from.tail;
  2737             while (fromLength < toLength) {
  2738                 toLength--;
  2739                 to = to.tail;
  2741             this.from = from;
  2742             this.to = to;
  2745         Type subst(Type t) {
  2746             if (from.tail == null)
  2747                 return t;
  2748             else
  2749                 return visit(t);
  2752         List<Type> subst(List<Type> ts) {
  2753             if (from.tail == null)
  2754                 return ts;
  2755             boolean wild = false;
  2756             if (ts.nonEmpty() && from.nonEmpty()) {
  2757                 Type head1 = subst(ts.head);
  2758                 List<Type> tail1 = subst(ts.tail);
  2759                 if (head1 != ts.head || tail1 != ts.tail)
  2760                     return tail1.prepend(head1);
  2762             return ts;
  2765         public Type visitType(Type t, Void ignored) {
  2766             return t;
  2769         @Override
  2770         public Type visitMethodType(MethodType t, Void ignored) {
  2771             List<Type> argtypes = subst(t.argtypes);
  2772             Type restype = subst(t.restype);
  2773             List<Type> thrown = subst(t.thrown);
  2774             if (argtypes == t.argtypes &&
  2775                 restype == t.restype &&
  2776                 thrown == t.thrown)
  2777                 return t;
  2778             else
  2779                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2782         @Override
  2783         public Type visitTypeVar(TypeVar t, Void ignored) {
  2784             for (List<Type> from = this.from, to = this.to;
  2785                  from.nonEmpty();
  2786                  from = from.tail, to = to.tail) {
  2787                 if (t == from.head) {
  2788                     return to.head.withTypeVar(t);
  2791             return t;
  2794         @Override
  2795         public Type visitClassType(ClassType t, Void ignored) {
  2796             if (!t.isCompound()) {
  2797                 List<Type> typarams = t.getTypeArguments();
  2798                 List<Type> typarams1 = subst(typarams);
  2799                 Type outer = t.getEnclosingType();
  2800                 Type outer1 = subst(outer);
  2801                 if (typarams1 == typarams && outer1 == outer)
  2802                     return t;
  2803                 else
  2804                     return new ClassType(outer1, typarams1, t.tsym);
  2805             } else {
  2806                 Type st = subst(supertype(t));
  2807                 List<Type> is = upperBounds(subst(interfaces(t)));
  2808                 if (st == supertype(t) && is == interfaces(t))
  2809                     return t;
  2810                 else
  2811                     return makeCompoundType(is.prepend(st));
  2815         @Override
  2816         public Type visitWildcardType(WildcardType t, Void ignored) {
  2817             Type bound = t.type;
  2818             if (t.kind != BoundKind.UNBOUND)
  2819                 bound = subst(bound);
  2820             if (bound == t.type) {
  2821                 return t;
  2822             } else {
  2823                 if (t.isExtendsBound() && bound.isExtendsBound())
  2824                     bound = upperBound(bound);
  2825                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2829         @Override
  2830         public Type visitArrayType(ArrayType t, Void ignored) {
  2831             Type elemtype = subst(t.elemtype);
  2832             if (elemtype == t.elemtype)
  2833                 return t;
  2834             else
  2835                 return new ArrayType(upperBound(elemtype), t.tsym);
  2838         @Override
  2839         public Type visitForAll(ForAll t, Void ignored) {
  2840             if (Type.containsAny(to, t.tvars)) {
  2841                 //perform alpha-renaming of free-variables in 't'
  2842                 //if 'to' types contain variables that are free in 't'
  2843                 List<Type> freevars = newInstances(t.tvars);
  2844                 t = new ForAll(freevars,
  2845                         Types.this.subst(t.qtype, t.tvars, freevars));
  2847             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2848             Type qtype1 = subst(t.qtype);
  2849             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2850                 return t;
  2851             } else if (tvars1 == t.tvars) {
  2852                 return new ForAll(tvars1, qtype1);
  2853             } else {
  2854                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2858         @Override
  2859         public Type visitErrorType(ErrorType t, Void ignored) {
  2860             return t;
  2864     public List<Type> substBounds(List<Type> tvars,
  2865                                   List<Type> from,
  2866                                   List<Type> to) {
  2867         if (tvars.isEmpty())
  2868             return tvars;
  2869         ListBuffer<Type> newBoundsBuf = lb();
  2870         boolean changed = false;
  2871         // calculate new bounds
  2872         for (Type t : tvars) {
  2873             TypeVar tv = (TypeVar) t;
  2874             Type bound = subst(tv.bound, from, to);
  2875             if (bound != tv.bound)
  2876                 changed = true;
  2877             newBoundsBuf.append(bound);
  2879         if (!changed)
  2880             return tvars;
  2881         ListBuffer<Type> newTvars = lb();
  2882         // create new type variables without bounds
  2883         for (Type t : tvars) {
  2884             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2886         // the new bounds should use the new type variables in place
  2887         // of the old
  2888         List<Type> newBounds = newBoundsBuf.toList();
  2889         from = tvars;
  2890         to = newTvars.toList();
  2891         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2892             newBounds.head = subst(newBounds.head, from, to);
  2894         newBounds = newBoundsBuf.toList();
  2895         // set the bounds of new type variables to the new bounds
  2896         for (Type t : newTvars.toList()) {
  2897             TypeVar tv = (TypeVar) t;
  2898             tv.bound = newBounds.head;
  2899             newBounds = newBounds.tail;
  2901         return newTvars.toList();
  2904     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2905         Type bound1 = subst(t.bound, from, to);
  2906         if (bound1 == t.bound)
  2907             return t;
  2908         else {
  2909             // create new type variable without bounds
  2910             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2911             // the new bound should use the new type variable in place
  2912             // of the old
  2913             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2914             return tv;
  2917     // </editor-fold>
  2919     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2920     /**
  2921      * Does t have the same bounds for quantified variables as s?
  2922      */
  2923     boolean hasSameBounds(ForAll t, ForAll s) {
  2924         List<Type> l1 = t.tvars;
  2925         List<Type> l2 = s.tvars;
  2926         while (l1.nonEmpty() && l2.nonEmpty() &&
  2927                isSameType(l1.head.getUpperBound(),
  2928                           subst(l2.head.getUpperBound(),
  2929                                 s.tvars,
  2930                                 t.tvars))) {
  2931             l1 = l1.tail;
  2932             l2 = l2.tail;
  2934         return l1.isEmpty() && l2.isEmpty();
  2936     // </editor-fold>
  2938     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2939     /** Create new vector of type variables from list of variables
  2940      *  changing all recursive bounds from old to new list.
  2941      */
  2942     public List<Type> newInstances(List<Type> tvars) {
  2943         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2944         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2945             TypeVar tv = (TypeVar) l.head;
  2946             tv.bound = subst(tv.bound, tvars, tvars1);
  2948         return tvars1;
  2950     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2951             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2952         };
  2953     // </editor-fold>
  2955     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2956         return original.accept(methodWithParameters, newParams);
  2958     // where
  2959         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2960             public Type visitType(Type t, List<Type> newParams) {
  2961                 throw new IllegalArgumentException("Not a method type: " + t);
  2963             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2964                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2966             public Type visitForAll(ForAll t, List<Type> newParams) {
  2967                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2969         };
  2971     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2972         return original.accept(methodWithThrown, newThrown);
  2974     // where
  2975         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2976             public Type visitType(Type t, List<Type> newThrown) {
  2977                 throw new IllegalArgumentException("Not a method type: " + t);
  2979             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2980                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2982             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2983                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2985         };
  2987     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2988         return original.accept(methodWithReturn, newReturn);
  2990     // where
  2991         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2992             public Type visitType(Type t, Type newReturn) {
  2993                 throw new IllegalArgumentException("Not a method type: " + t);
  2995             public Type visitMethodType(MethodType t, Type newReturn) {
  2996                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2998             public Type visitForAll(ForAll t, Type newReturn) {
  2999                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3001         };
  3003     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3004     public Type createErrorType(Type originalType) {
  3005         return new ErrorType(originalType, syms.errSymbol);
  3008     public Type createErrorType(ClassSymbol c, Type originalType) {
  3009         return new ErrorType(c, originalType);
  3012     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3013         return new ErrorType(name, container, originalType);
  3015     // </editor-fold>
  3017     // <editor-fold defaultstate="collapsed" desc="rank">
  3018     /**
  3019      * The rank of a class is the length of the longest path between
  3020      * the class and java.lang.Object in the class inheritance
  3021      * graph. Undefined for all but reference types.
  3022      */
  3023     public int rank(Type t) {
  3024         t = t.unannotatedType();
  3025         switch(t.tag) {
  3026         case CLASS: {
  3027             ClassType cls = (ClassType)t;
  3028             if (cls.rank_field < 0) {
  3029                 Name fullname = cls.tsym.getQualifiedName();
  3030                 if (fullname == names.java_lang_Object)
  3031                     cls.rank_field = 0;
  3032                 else {
  3033                     int r = rank(supertype(cls));
  3034                     for (List<Type> l = interfaces(cls);
  3035                          l.nonEmpty();
  3036                          l = l.tail) {
  3037                         if (rank(l.head) > r)
  3038                             r = rank(l.head);
  3040                     cls.rank_field = r + 1;
  3043             return cls.rank_field;
  3045         case TYPEVAR: {
  3046             TypeVar tvar = (TypeVar)t;
  3047             if (tvar.rank_field < 0) {
  3048                 int r = rank(supertype(tvar));
  3049                 for (List<Type> l = interfaces(tvar);
  3050                      l.nonEmpty();
  3051                      l = l.tail) {
  3052                     if (rank(l.head) > r) r = rank(l.head);
  3054                 tvar.rank_field = r + 1;
  3056             return tvar.rank_field;
  3058         case ERROR:
  3059             return 0;
  3060         default:
  3061             throw new AssertionError();
  3064     // </editor-fold>
  3066     /**
  3067      * Helper method for generating a string representation of a given type
  3068      * accordingly to a given locale
  3069      */
  3070     public String toString(Type t, Locale locale) {
  3071         return Printer.createStandardPrinter(messages).visit(t, locale);
  3074     /**
  3075      * Helper method for generating a string representation of a given type
  3076      * accordingly to a given locale
  3077      */
  3078     public String toString(Symbol t, Locale locale) {
  3079         return Printer.createStandardPrinter(messages).visit(t, locale);
  3082     // <editor-fold defaultstate="collapsed" desc="toString">
  3083     /**
  3084      * This toString is slightly more descriptive than the one on Type.
  3086      * @deprecated Types.toString(Type t, Locale l) provides better support
  3087      * for localization
  3088      */
  3089     @Deprecated
  3090     public String toString(Type t) {
  3091         if (t.tag == FORALL) {
  3092             ForAll forAll = (ForAll)t;
  3093             return typaramsString(forAll.tvars) + forAll.qtype;
  3095         return "" + t;
  3097     // where
  3098         private String typaramsString(List<Type> tvars) {
  3099             StringBuilder s = new StringBuilder();
  3100             s.append('<');
  3101             boolean first = true;
  3102             for (Type t : tvars) {
  3103                 if (!first) s.append(", ");
  3104                 first = false;
  3105                 appendTyparamString(((TypeVar)t), s);
  3107             s.append('>');
  3108             return s.toString();
  3110         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3111             buf.append(t);
  3112             if (t.bound == null ||
  3113                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3114                 return;
  3115             buf.append(" extends "); // Java syntax; no need for i18n
  3116             Type bound = t.bound;
  3117             if (!bound.isCompound()) {
  3118                 buf.append(bound);
  3119             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3120                 buf.append(supertype(t));
  3121                 for (Type intf : interfaces(t)) {
  3122                     buf.append('&');
  3123                     buf.append(intf);
  3125             } else {
  3126                 // No superclass was given in bounds.
  3127                 // In this case, supertype is Object, erasure is first interface.
  3128                 boolean first = true;
  3129                 for (Type intf : interfaces(t)) {
  3130                     if (!first) buf.append('&');
  3131                     first = false;
  3132                     buf.append(intf);
  3136     // </editor-fold>
  3138     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3139     /**
  3140      * A cache for closures.
  3142      * <p>A closure is a list of all the supertypes and interfaces of
  3143      * a class or interface type, ordered by ClassSymbol.precedes
  3144      * (that is, subclasses come first, arbitrary but fixed
  3145      * otherwise).
  3146      */
  3147     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3149     /**
  3150      * Returns the closure of a class or interface type.
  3151      */
  3152     public List<Type> closure(Type t) {
  3153         List<Type> cl = closureCache.get(t);
  3154         if (cl == null) {
  3155             Type st = supertype(t);
  3156             if (!t.isCompound()) {
  3157                 if (st.tag == CLASS) {
  3158                     cl = insert(closure(st), t);
  3159                 } else if (st.tag == TYPEVAR) {
  3160                     cl = closure(st).prepend(t);
  3161                 } else {
  3162                     cl = List.of(t);
  3164             } else {
  3165                 cl = closure(supertype(t));
  3167             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3168                 cl = union(cl, closure(l.head));
  3169             closureCache.put(t, cl);
  3171         return cl;
  3174     /**
  3175      * Insert a type in a closure
  3176      */
  3177     public List<Type> insert(List<Type> cl, Type t) {
  3178         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3179             return cl.prepend(t);
  3180         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3181             return insert(cl.tail, t).prepend(cl.head);
  3182         } else {
  3183             return cl;
  3187     /**
  3188      * Form the union of two closures
  3189      */
  3190     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3191         if (cl1.isEmpty()) {
  3192             return cl2;
  3193         } else if (cl2.isEmpty()) {
  3194             return cl1;
  3195         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3196             return union(cl1.tail, cl2).prepend(cl1.head);
  3197         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3198             return union(cl1, cl2.tail).prepend(cl2.head);
  3199         } else {
  3200             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3204     /**
  3205      * Intersect two closures
  3206      */
  3207     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3208         if (cl1 == cl2)
  3209             return cl1;
  3210         if (cl1.isEmpty() || cl2.isEmpty())
  3211             return List.nil();
  3212         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3213             return intersect(cl1.tail, cl2);
  3214         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3215             return intersect(cl1, cl2.tail);
  3216         if (isSameType(cl1.head, cl2.head))
  3217             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3218         if (cl1.head.tsym == cl2.head.tsym &&
  3219             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3220             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3221                 Type merge = merge(cl1.head,cl2.head);
  3222                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3224             if (cl1.head.isRaw() || cl2.head.isRaw())
  3225                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3227         return intersect(cl1.tail, cl2.tail);
  3229     // where
  3230         class TypePair {
  3231             final Type t1;
  3232             final Type t2;
  3233             TypePair(Type t1, Type t2) {
  3234                 this.t1 = t1;
  3235                 this.t2 = t2;
  3237             @Override
  3238             public int hashCode() {
  3239                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3241             @Override
  3242             public boolean equals(Object obj) {
  3243                 if (!(obj instanceof TypePair))
  3244                     return false;
  3245                 TypePair typePair = (TypePair)obj;
  3246                 return isSameType(t1, typePair.t1)
  3247                     && isSameType(t2, typePair.t2);
  3250         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3251         private Type merge(Type c1, Type c2) {
  3252             ClassType class1 = (ClassType) c1;
  3253             List<Type> act1 = class1.getTypeArguments();
  3254             ClassType class2 = (ClassType) c2;
  3255             List<Type> act2 = class2.getTypeArguments();
  3256             ListBuffer<Type> merged = new ListBuffer<Type>();
  3257             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3259             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3260                 if (containsType(act1.head, act2.head)) {
  3261                     merged.append(act1.head);
  3262                 } else if (containsType(act2.head, act1.head)) {
  3263                     merged.append(act2.head);
  3264                 } else {
  3265                     TypePair pair = new TypePair(c1, c2);
  3266                     Type m;
  3267                     if (mergeCache.add(pair)) {
  3268                         m = new WildcardType(lub(upperBound(act1.head),
  3269                                                  upperBound(act2.head)),
  3270                                              BoundKind.EXTENDS,
  3271                                              syms.boundClass);
  3272                         mergeCache.remove(pair);
  3273                     } else {
  3274                         m = new WildcardType(syms.objectType,
  3275                                              BoundKind.UNBOUND,
  3276                                              syms.boundClass);
  3278                     merged.append(m.withTypeVar(typarams.head));
  3280                 act1 = act1.tail;
  3281                 act2 = act2.tail;
  3282                 typarams = typarams.tail;
  3284             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3285             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3288     /**
  3289      * Return the minimum type of a closure, a compound type if no
  3290      * unique minimum exists.
  3291      */
  3292     private Type compoundMin(List<Type> cl) {
  3293         if (cl.isEmpty()) return syms.objectType;
  3294         List<Type> compound = closureMin(cl);
  3295         if (compound.isEmpty())
  3296             return null;
  3297         else if (compound.tail.isEmpty())
  3298             return compound.head;
  3299         else
  3300             return makeCompoundType(compound);
  3303     /**
  3304      * Return the minimum types of a closure, suitable for computing
  3305      * compoundMin or glb.
  3306      */
  3307     private List<Type> closureMin(List<Type> cl) {
  3308         ListBuffer<Type> classes = lb();
  3309         ListBuffer<Type> interfaces = lb();
  3310         while (!cl.isEmpty()) {
  3311             Type current = cl.head;
  3312             if (current.isInterface())
  3313                 interfaces.append(current);
  3314             else
  3315                 classes.append(current);
  3316             ListBuffer<Type> candidates = lb();
  3317             for (Type t : cl.tail) {
  3318                 if (!isSubtypeNoCapture(current, t))
  3319                     candidates.append(t);
  3321             cl = candidates.toList();
  3323         return classes.appendList(interfaces).toList();
  3326     /**
  3327      * Return the least upper bound of pair of types.  if the lub does
  3328      * not exist return null.
  3329      */
  3330     public Type lub(Type t1, Type t2) {
  3331         return lub(List.of(t1, t2));
  3334     /**
  3335      * Return the least upper bound (lub) of set of types.  If the lub
  3336      * does not exist return the type of null (bottom).
  3337      */
  3338     public Type lub(List<Type> ts) {
  3339         final int ARRAY_BOUND = 1;
  3340         final int CLASS_BOUND = 2;
  3341         int boundkind = 0;
  3342         for (Type t : ts) {
  3343             switch (t.tag) {
  3344             case CLASS:
  3345                 boundkind |= CLASS_BOUND;
  3346                 break;
  3347             case ARRAY:
  3348                 boundkind |= ARRAY_BOUND;
  3349                 break;
  3350             case  TYPEVAR:
  3351                 do {
  3352                     t = t.getUpperBound();
  3353                 } while (t.tag == TYPEVAR);
  3354                 if (t.tag == ARRAY) {
  3355                     boundkind |= ARRAY_BOUND;
  3356                 } else {
  3357                     boundkind |= CLASS_BOUND;
  3359                 break;
  3360             default:
  3361                 if (t.isPrimitive())
  3362                     return syms.errType;
  3365         switch (boundkind) {
  3366         case 0:
  3367             return syms.botType;
  3369         case ARRAY_BOUND:
  3370             // calculate lub(A[], B[])
  3371             List<Type> elements = Type.map(ts, elemTypeFun);
  3372             for (Type t : elements) {
  3373                 if (t.isPrimitive()) {
  3374                     // if a primitive type is found, then return
  3375                     // arraySuperType unless all the types are the
  3376                     // same
  3377                     Type first = ts.head;
  3378                     for (Type s : ts.tail) {
  3379                         if (!isSameType(first, s)) {
  3380                              // lub(int[], B[]) is Cloneable & Serializable
  3381                             return arraySuperType();
  3384                     // all the array types are the same, return one
  3385                     // lub(int[], int[]) is int[]
  3386                     return first;
  3389             // lub(A[], B[]) is lub(A, B)[]
  3390             return new ArrayType(lub(elements), syms.arrayClass);
  3392         case CLASS_BOUND:
  3393             // calculate lub(A, B)
  3394             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3395                 ts = ts.tail;
  3396             Assert.check(!ts.isEmpty());
  3397             //step 1 - compute erased candidate set (EC)
  3398             List<Type> cl = erasedSupertypes(ts.head);
  3399             for (Type t : ts.tail) {
  3400                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3401                     cl = intersect(cl, erasedSupertypes(t));
  3403             //step 2 - compute minimal erased candidate set (MEC)
  3404             List<Type> mec = closureMin(cl);
  3405             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3406             List<Type> candidates = List.nil();
  3407             for (Type erasedSupertype : mec) {
  3408                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3409                 for (Type t : ts) {
  3410                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3412                 candidates = candidates.appendList(lci);
  3414             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3415             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3416             return compoundMin(candidates);
  3418         default:
  3419             // calculate lub(A, B[])
  3420             List<Type> classes = List.of(arraySuperType());
  3421             for (Type t : ts) {
  3422                 if (t.tag != ARRAY) // Filter out any arrays
  3423                     classes = classes.prepend(t);
  3425             // lub(A, B[]) is lub(A, arraySuperType)
  3426             return lub(classes);
  3429     // where
  3430         List<Type> erasedSupertypes(Type t) {
  3431             ListBuffer<Type> buf = lb();
  3432             for (Type sup : closure(t)) {
  3433                 if (sup.tag == TYPEVAR) {
  3434                     buf.append(sup);
  3435                 } else {
  3436                     buf.append(erasure(sup));
  3439             return buf.toList();
  3442         private Type arraySuperType = null;
  3443         private Type arraySuperType() {
  3444             // initialized lazily to avoid problems during compiler startup
  3445             if (arraySuperType == null) {
  3446                 synchronized (this) {
  3447                     if (arraySuperType == null) {
  3448                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3449                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3450                                                                   syms.cloneableType), true);
  3454             return arraySuperType;
  3456     // </editor-fold>
  3458     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3459     public Type glb(List<Type> ts) {
  3460         Type t1 = ts.head;
  3461         for (Type t2 : ts.tail) {
  3462             if (t1.isErroneous())
  3463                 return t1;
  3464             t1 = glb(t1, t2);
  3466         return t1;
  3468     //where
  3469     public Type glb(Type t, Type s) {
  3470         if (s == null)
  3471             return t;
  3472         else if (t.isPrimitive() || s.isPrimitive())
  3473             return syms.errType;
  3474         else if (isSubtypeNoCapture(t, s))
  3475             return t;
  3476         else if (isSubtypeNoCapture(s, t))
  3477             return s;
  3479         List<Type> closure = union(closure(t), closure(s));
  3480         List<Type> bounds = closureMin(closure);
  3482         if (bounds.isEmpty()) {             // length == 0
  3483             return syms.objectType;
  3484         } else if (bounds.tail.isEmpty()) { // length == 1
  3485             return bounds.head;
  3486         } else {                            // length > 1
  3487             int classCount = 0;
  3488             for (Type bound : bounds)
  3489                 if (!bound.isInterface())
  3490                     classCount++;
  3491             if (classCount > 1)
  3492                 return createErrorType(t);
  3494         return makeCompoundType(bounds);
  3496     // </editor-fold>
  3498     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3499     /**
  3500      * Compute a hash code on a type.
  3501      */
  3502     public int hashCode(Type t) {
  3503         return hashCode.visit(t);
  3505     // where
  3506         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3508             public Integer visitType(Type t, Void ignored) {
  3509                 return t.tag.ordinal();
  3512             @Override
  3513             public Integer visitClassType(ClassType t, Void ignored) {
  3514                 int result = visit(t.getEnclosingType());
  3515                 result *= 127;
  3516                 result += t.tsym.flatName().hashCode();
  3517                 for (Type s : t.getTypeArguments()) {
  3518                     result *= 127;
  3519                     result += visit(s);
  3521                 return result;
  3524             @Override
  3525             public Integer visitMethodType(MethodType t, Void ignored) {
  3526                 int h = METHOD.ordinal();
  3527                 for (List<Type> thisargs = t.argtypes;
  3528                      thisargs.tail != null;
  3529                      thisargs = thisargs.tail)
  3530                     h = (h << 5) + visit(thisargs.head);
  3531                 return (h << 5) + visit(t.restype);
  3534             @Override
  3535             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3536                 int result = t.kind.hashCode();
  3537                 if (t.type != null) {
  3538                     result *= 127;
  3539                     result += visit(t.type);
  3541                 return result;
  3544             @Override
  3545             public Integer visitArrayType(ArrayType t, Void ignored) {
  3546                 return visit(t.elemtype) + 12;
  3549             @Override
  3550             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3551                 return System.identityHashCode(t.tsym);
  3554             @Override
  3555             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3556                 return System.identityHashCode(t);
  3559             @Override
  3560             public Integer visitErrorType(ErrorType t, Void ignored) {
  3561                 return 0;
  3563         };
  3564     // </editor-fold>
  3566     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3567     /**
  3568      * Does t have a result that is a subtype of the result type of s,
  3569      * suitable for covariant returns?  It is assumed that both types
  3570      * are (possibly polymorphic) method types.  Monomorphic method
  3571      * types are handled in the obvious way.  Polymorphic method types
  3572      * require renaming all type variables of one to corresponding
  3573      * type variables in the other, where correspondence is by
  3574      * position in the type parameter list. */
  3575     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3576         List<Type> tvars = t.getTypeArguments();
  3577         List<Type> svars = s.getTypeArguments();
  3578         Type tres = t.getReturnType();
  3579         Type sres = subst(s.getReturnType(), svars, tvars);
  3580         return covariantReturnType(tres, sres, warner);
  3583     /**
  3584      * Return-Type-Substitutable.
  3585      * @jls section 8.4.5
  3586      */
  3587     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3588         if (hasSameArgs(r1, r2))
  3589             return resultSubtype(r1, r2, noWarnings);
  3590         else
  3591             return covariantReturnType(r1.getReturnType(),
  3592                                        erasure(r2.getReturnType()),
  3593                                        noWarnings);
  3596     public boolean returnTypeSubstitutable(Type r1,
  3597                                            Type r2, Type r2res,
  3598                                            Warner warner) {
  3599         if (isSameType(r1.getReturnType(), r2res))
  3600             return true;
  3601         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3602             return false;
  3604         if (hasSameArgs(r1, r2))
  3605             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3606         if (!allowCovariantReturns)
  3607             return false;
  3608         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3609             return true;
  3610         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3611             return false;
  3612         warner.warn(LintCategory.UNCHECKED);
  3613         return true;
  3616     /**
  3617      * Is t an appropriate return type in an overrider for a
  3618      * method that returns s?
  3619      */
  3620     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3621         return
  3622             isSameType(t, s) ||
  3623             allowCovariantReturns &&
  3624             !t.isPrimitive() &&
  3625             !s.isPrimitive() &&
  3626             isAssignable(t, s, warner);
  3628     // </editor-fold>
  3630     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3631     /**
  3632      * Return the class that boxes the given primitive.
  3633      */
  3634     public ClassSymbol boxedClass(Type t) {
  3635         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3638     /**
  3639      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3640      */
  3641     public Type boxedTypeOrType(Type t) {
  3642         return t.isPrimitive() ?
  3643             boxedClass(t).type :
  3644             t;
  3647     /**
  3648      * Return the primitive type corresponding to a boxed type.
  3649      */
  3650     public Type unboxedType(Type t) {
  3651         if (allowBoxing) {
  3652             for (int i=0; i<syms.boxedName.length; i++) {
  3653                 Name box = syms.boxedName[i];
  3654                 if (box != null &&
  3655                     asSuper(t, reader.enterClass(box)) != null)
  3656                     return syms.typeOfTag[i];
  3659         return Type.noType;
  3662     /**
  3663      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3664      */
  3665     public Type unboxedTypeOrType(Type t) {
  3666         Type unboxedType = unboxedType(t);
  3667         return unboxedType.tag == NONE ? t : unboxedType;
  3669     // </editor-fold>
  3671     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3672     /*
  3673      * JLS 5.1.10 Capture Conversion:
  3675      * Let G name a generic type declaration with n formal type
  3676      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3677      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3678      * where, for 1 <= i <= n:
  3680      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3681      *   Si is a fresh type variable whose upper bound is
  3682      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3683      *   type.
  3685      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3686      *   then Si is a fresh type variable whose upper bound is
  3687      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3688      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3689      *   a compile-time error if for any two classes (not interfaces)
  3690      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3692      * + If Ti is a wildcard type argument of the form ? super Bi,
  3693      *   then Si is a fresh type variable whose upper bound is
  3694      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3696      * + Otherwise, Si = Ti.
  3698      * Capture conversion on any type other than a parameterized type
  3699      * (4.5) acts as an identity conversion (5.1.1). Capture
  3700      * conversions never require a special action at run time and
  3701      * therefore never throw an exception at run time.
  3703      * Capture conversion is not applied recursively.
  3704      */
  3705     /**
  3706      * Capture conversion as specified by the JLS.
  3707      */
  3709     public List<Type> capture(List<Type> ts) {
  3710         List<Type> buf = List.nil();
  3711         for (Type t : ts) {
  3712             buf = buf.prepend(capture(t));
  3714         return buf.reverse();
  3716     public Type capture(Type t) {
  3717         if (t.tag != CLASS)
  3718             return t;
  3719         if (t.getEnclosingType() != Type.noType) {
  3720             Type capturedEncl = capture(t.getEnclosingType());
  3721             if (capturedEncl != t.getEnclosingType()) {
  3722                 Type type1 = memberType(capturedEncl, t.tsym);
  3723                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3726         t = t.unannotatedType();
  3727         ClassType cls = (ClassType)t;
  3728         if (cls.isRaw() || !cls.isParameterized())
  3729             return cls;
  3731         ClassType G = (ClassType)cls.asElement().asType();
  3732         List<Type> A = G.getTypeArguments();
  3733         List<Type> T = cls.getTypeArguments();
  3734         List<Type> S = freshTypeVariables(T);
  3736         List<Type> currentA = A;
  3737         List<Type> currentT = T;
  3738         List<Type> currentS = S;
  3739         boolean captured = false;
  3740         while (!currentA.isEmpty() &&
  3741                !currentT.isEmpty() &&
  3742                !currentS.isEmpty()) {
  3743             if (currentS.head != currentT.head) {
  3744                 captured = true;
  3745                 WildcardType Ti = (WildcardType)currentT.head;
  3746                 Type Ui = currentA.head.getUpperBound();
  3747                 CapturedType Si = (CapturedType)currentS.head;
  3748                 if (Ui == null)
  3749                     Ui = syms.objectType;
  3750                 switch (Ti.kind) {
  3751                 case UNBOUND:
  3752                     Si.bound = subst(Ui, A, S);
  3753                     Si.lower = syms.botType;
  3754                     break;
  3755                 case EXTENDS:
  3756                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3757                     Si.lower = syms.botType;
  3758                     break;
  3759                 case SUPER:
  3760                     Si.bound = subst(Ui, A, S);
  3761                     Si.lower = Ti.getSuperBound();
  3762                     break;
  3764                 if (Si.bound == Si.lower)
  3765                     currentS.head = Si.bound;
  3767             currentA = currentA.tail;
  3768             currentT = currentT.tail;
  3769             currentS = currentS.tail;
  3771         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3772             return erasure(t); // some "rare" type involved
  3774         if (captured)
  3775             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3776         else
  3777             return t;
  3779     // where
  3780         public List<Type> freshTypeVariables(List<Type> types) {
  3781             ListBuffer<Type> result = lb();
  3782             for (Type t : types) {
  3783                 if (t.tag == WILDCARD) {
  3784                     Type bound = ((WildcardType)t).getExtendsBound();
  3785                     if (bound == null)
  3786                         bound = syms.objectType;
  3787                     result.append(new CapturedType(capturedName,
  3788                                                    syms.noSymbol,
  3789                                                    bound,
  3790                                                    syms.botType,
  3791                                                    (WildcardType)t));
  3792                 } else {
  3793                     result.append(t);
  3796             return result.toList();
  3798     // </editor-fold>
  3800     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3801     private List<Type> upperBounds(List<Type> ss) {
  3802         if (ss.isEmpty()) return ss;
  3803         Type head = upperBound(ss.head);
  3804         List<Type> tail = upperBounds(ss.tail);
  3805         if (head != ss.head || tail != ss.tail)
  3806             return tail.prepend(head);
  3807         else
  3808             return ss;
  3811     private boolean sideCast(Type from, Type to, Warner warn) {
  3812         // We are casting from type $from$ to type $to$, which are
  3813         // non-final unrelated types.  This method
  3814         // tries to reject a cast by transferring type parameters
  3815         // from $to$ to $from$ by common superinterfaces.
  3816         boolean reverse = false;
  3817         Type target = to;
  3818         if ((to.tsym.flags() & INTERFACE) == 0) {
  3819             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3820             reverse = true;
  3821             to = from;
  3822             from = target;
  3824         List<Type> commonSupers = superClosure(to, erasure(from));
  3825         boolean giveWarning = commonSupers.isEmpty();
  3826         // The arguments to the supers could be unified here to
  3827         // get a more accurate analysis
  3828         while (commonSupers.nonEmpty()) {
  3829             Type t1 = asSuper(from, commonSupers.head.tsym);
  3830             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3831             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3832                 return false;
  3833             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3834             commonSupers = commonSupers.tail;
  3836         if (giveWarning && !isReifiable(reverse ? from : to))
  3837             warn.warn(LintCategory.UNCHECKED);
  3838         if (!allowCovariantReturns)
  3839             // reject if there is a common method signature with
  3840             // incompatible return types.
  3841             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3842         return true;
  3845     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3846         // We are casting from type $from$ to type $to$, which are
  3847         // unrelated types one of which is final and the other of
  3848         // which is an interface.  This method
  3849         // tries to reject a cast by transferring type parameters
  3850         // from the final class to the interface.
  3851         boolean reverse = false;
  3852         Type target = to;
  3853         if ((to.tsym.flags() & INTERFACE) == 0) {
  3854             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3855             reverse = true;
  3856             to = from;
  3857             from = target;
  3859         Assert.check((from.tsym.flags() & FINAL) != 0);
  3860         Type t1 = asSuper(from, to.tsym);
  3861         if (t1 == null) return false;
  3862         Type t2 = to;
  3863         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3864             return false;
  3865         if (!allowCovariantReturns)
  3866             // reject if there is a common method signature with
  3867             // incompatible return types.
  3868             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3869         if (!isReifiable(target) &&
  3870             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3871             warn.warn(LintCategory.UNCHECKED);
  3872         return true;
  3875     private boolean giveWarning(Type from, Type to) {
  3876         Type subFrom = asSub(from, to.tsym);
  3877         return to.isParameterized() &&
  3878                 (!(isUnbounded(to) ||
  3879                 isSubtype(from, to) ||
  3880                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3883     private List<Type> superClosure(Type t, Type s) {
  3884         List<Type> cl = List.nil();
  3885         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3886             if (isSubtype(s, erasure(l.head))) {
  3887                 cl = insert(cl, l.head);
  3888             } else {
  3889                 cl = union(cl, superClosure(l.head, s));
  3892         return cl;
  3895     private boolean containsTypeEquivalent(Type t, Type s) {
  3896         return
  3897             isSameType(t, s) || // shortcut
  3898             containsType(t, s) && containsType(s, t);
  3901     // <editor-fold defaultstate="collapsed" desc="adapt">
  3902     /**
  3903      * Adapt a type by computing a substitution which maps a source
  3904      * type to a target type.
  3906      * @param source    the source type
  3907      * @param target    the target type
  3908      * @param from      the type variables of the computed substitution
  3909      * @param to        the types of the computed substitution.
  3910      */
  3911     public void adapt(Type source,
  3912                        Type target,
  3913                        ListBuffer<Type> from,
  3914                        ListBuffer<Type> to) throws AdaptFailure {
  3915         new Adapter(from, to).adapt(source, target);
  3918     class Adapter extends SimpleVisitor<Void, Type> {
  3920         ListBuffer<Type> from;
  3921         ListBuffer<Type> to;
  3922         Map<Symbol,Type> mapping;
  3924         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3925             this.from = from;
  3926             this.to = to;
  3927             mapping = new HashMap<Symbol,Type>();
  3930         public void adapt(Type source, Type target) throws AdaptFailure {
  3931             visit(source, target);
  3932             List<Type> fromList = from.toList();
  3933             List<Type> toList = to.toList();
  3934             while (!fromList.isEmpty()) {
  3935                 Type val = mapping.get(fromList.head.tsym);
  3936                 if (toList.head != val)
  3937                     toList.head = val;
  3938                 fromList = fromList.tail;
  3939                 toList = toList.tail;
  3943         @Override
  3944         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3945             if (target.tag == CLASS)
  3946                 adaptRecursive(source.allparams(), target.allparams());
  3947             return null;
  3950         @Override
  3951         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3952             if (target.tag == ARRAY)
  3953                 adaptRecursive(elemtype(source), elemtype(target));
  3954             return null;
  3957         @Override
  3958         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3959             if (source.isExtendsBound())
  3960                 adaptRecursive(upperBound(source), upperBound(target));
  3961             else if (source.isSuperBound())
  3962                 adaptRecursive(lowerBound(source), lowerBound(target));
  3963             return null;
  3966         @Override
  3967         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3968             // Check to see if there is
  3969             // already a mapping for $source$, in which case
  3970             // the old mapping will be merged with the new
  3971             Type val = mapping.get(source.tsym);
  3972             if (val != null) {
  3973                 if (val.isSuperBound() && target.isSuperBound()) {
  3974                     val = isSubtype(lowerBound(val), lowerBound(target))
  3975                         ? target : val;
  3976                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3977                     val = isSubtype(upperBound(val), upperBound(target))
  3978                         ? val : target;
  3979                 } else if (!isSameType(val, target)) {
  3980                     throw new AdaptFailure();
  3982             } else {
  3983                 val = target;
  3984                 from.append(source);
  3985                 to.append(target);
  3987             mapping.put(source.tsym, val);
  3988             return null;
  3991         @Override
  3992         public Void visitType(Type source, Type target) {
  3993             return null;
  3996         private Set<TypePair> cache = new HashSet<TypePair>();
  3998         private void adaptRecursive(Type source, Type target) {
  3999             TypePair pair = new TypePair(source, target);
  4000             if (cache.add(pair)) {
  4001                 try {
  4002                     visit(source, target);
  4003                 } finally {
  4004                     cache.remove(pair);
  4009         private void adaptRecursive(List<Type> source, List<Type> target) {
  4010             if (source.length() == target.length()) {
  4011                 while (source.nonEmpty()) {
  4012                     adaptRecursive(source.head, target.head);
  4013                     source = source.tail;
  4014                     target = target.tail;
  4020     public static class AdaptFailure extends RuntimeException {
  4021         static final long serialVersionUID = -7490231548272701566L;
  4024     private void adaptSelf(Type t,
  4025                            ListBuffer<Type> from,
  4026                            ListBuffer<Type> to) {
  4027         try {
  4028             //if (t.tsym.type != t)
  4029                 adapt(t.tsym.type, t, from, to);
  4030         } catch (AdaptFailure ex) {
  4031             // Adapt should never fail calculating a mapping from
  4032             // t.tsym.type to t as there can be no merge problem.
  4033             throw new AssertionError(ex);
  4036     // </editor-fold>
  4038     /**
  4039      * Rewrite all type variables (universal quantifiers) in the given
  4040      * type to wildcards (existential quantifiers).  This is used to
  4041      * determine if a cast is allowed.  For example, if high is true
  4042      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4043      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4044      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4045      * List<Integer>} with a warning.
  4046      * @param t a type
  4047      * @param high if true return an upper bound; otherwise a lower
  4048      * bound
  4049      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4050      * otherwise rewrite all type variables
  4051      * @return the type rewritten with wildcards (existential
  4052      * quantifiers) only
  4053      */
  4054     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4055         return new Rewriter(high, rewriteTypeVars).visit(t);
  4058     class Rewriter extends UnaryVisitor<Type> {
  4060         boolean high;
  4061         boolean rewriteTypeVars;
  4063         Rewriter(boolean high, boolean rewriteTypeVars) {
  4064             this.high = high;
  4065             this.rewriteTypeVars = rewriteTypeVars;
  4068         @Override
  4069         public Type visitClassType(ClassType t, Void s) {
  4070             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4071             boolean changed = false;
  4072             for (Type arg : t.allparams()) {
  4073                 Type bound = visit(arg);
  4074                 if (arg != bound) {
  4075                     changed = true;
  4077                 rewritten.append(bound);
  4079             if (changed)
  4080                 return subst(t.tsym.type,
  4081                         t.tsym.type.allparams(),
  4082                         rewritten.toList());
  4083             else
  4084                 return t;
  4087         public Type visitType(Type t, Void s) {
  4088             return high ? upperBound(t) : lowerBound(t);
  4091         @Override
  4092         public Type visitCapturedType(CapturedType t, Void s) {
  4093             Type w_bound = t.wildcard.type;
  4094             Type bound = w_bound.contains(t) ?
  4095                         erasure(w_bound) :
  4096                         visit(w_bound);
  4097             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4100         @Override
  4101         public Type visitTypeVar(TypeVar t, Void s) {
  4102             if (rewriteTypeVars) {
  4103                 Type bound = t.bound.contains(t) ?
  4104                         erasure(t.bound) :
  4105                         visit(t.bound);
  4106                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4107             } else {
  4108                 return t;
  4112         @Override
  4113         public Type visitWildcardType(WildcardType t, Void s) {
  4114             Type bound2 = visit(t.type);
  4115             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4118         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4119             switch (bk) {
  4120                case EXTENDS: return high ?
  4121                        makeExtendsWildcard(B(bound), formal) :
  4122                        makeExtendsWildcard(syms.objectType, formal);
  4123                case SUPER: return high ?
  4124                        makeSuperWildcard(syms.botType, formal) :
  4125                        makeSuperWildcard(B(bound), formal);
  4126                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4127                default:
  4128                    Assert.error("Invalid bound kind " + bk);
  4129                    return null;
  4133         Type B(Type t) {
  4134             while (t.tag == WILDCARD) {
  4135                 WildcardType w = (WildcardType)t;
  4136                 t = high ?
  4137                     w.getExtendsBound() :
  4138                     w.getSuperBound();
  4139                 if (t == null) {
  4140                     t = high ? syms.objectType : syms.botType;
  4143             return t;
  4148     /**
  4149      * Create a wildcard with the given upper (extends) bound; create
  4150      * an unbounded wildcard if bound is Object.
  4152      * @param bound the upper bound
  4153      * @param formal the formal type parameter that will be
  4154      * substituted by the wildcard
  4155      */
  4156     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4157         if (bound == syms.objectType) {
  4158             return new WildcardType(syms.objectType,
  4159                                     BoundKind.UNBOUND,
  4160                                     syms.boundClass,
  4161                                     formal);
  4162         } else {
  4163             return new WildcardType(bound,
  4164                                     BoundKind.EXTENDS,
  4165                                     syms.boundClass,
  4166                                     formal);
  4170     /**
  4171      * Create a wildcard with the given lower (super) bound; create an
  4172      * unbounded wildcard if bound is bottom (type of {@code null}).
  4174      * @param bound the lower bound
  4175      * @param formal the formal type parameter that will be
  4176      * substituted by the wildcard
  4177      */
  4178     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4179         if (bound.tag == BOT) {
  4180             return new WildcardType(syms.objectType,
  4181                                     BoundKind.UNBOUND,
  4182                                     syms.boundClass,
  4183                                     formal);
  4184         } else {
  4185             return new WildcardType(bound,
  4186                                     BoundKind.SUPER,
  4187                                     syms.boundClass,
  4188                                     formal);
  4192     /**
  4193      * A wrapper for a type that allows use in sets.
  4194      */
  4195     public static class UniqueType {
  4196         public final Type type;
  4197         final Types types;
  4199         public UniqueType(Type type, Types types) {
  4200             this.type = type;
  4201             this.types = types;
  4204         public int hashCode() {
  4205             return types.hashCode(type);
  4208         public boolean equals(Object obj) {
  4209             return (obj instanceof UniqueType) &&
  4210                 types.isSameType(type, ((UniqueType)obj).type);
  4213         public String toString() {
  4214             return type.toString();
  4218     // </editor-fold>
  4220     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4221     /**
  4222      * A default visitor for types.  All visitor methods except
  4223      * visitType are implemented by delegating to visitType.  Concrete
  4224      * subclasses must provide an implementation of visitType and can
  4225      * override other methods as needed.
  4227      * @param <R> the return type of the operation implemented by this
  4228      * visitor; use Void if no return type is needed.
  4229      * @param <S> the type of the second argument (the first being the
  4230      * type itself) of the operation implemented by this visitor; use
  4231      * Void if a second argument is not needed.
  4232      */
  4233     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4234         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4235         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4236         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4237         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4238         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4239         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4240         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4241         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4242         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4243         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4244         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4245         // Pretend annotations don't exist
  4246         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
  4249     /**
  4250      * A default visitor for symbols.  All visitor methods except
  4251      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4252      * subclasses must provide an implementation of visitSymbol and can
  4253      * override other methods as needed.
  4255      * @param <R> the return type of the operation implemented by this
  4256      * visitor; use Void if no return type is needed.
  4257      * @param <S> the type of the second argument (the first being the
  4258      * symbol itself) of the operation implemented by this visitor; use
  4259      * Void if a second argument is not needed.
  4260      */
  4261     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4262         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4263         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4264         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4265         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4266         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4267         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4268         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4271     /**
  4272      * A <em>simple</em> visitor for types.  This visitor is simple as
  4273      * captured wildcards, for-all types (generic methods), and
  4274      * undetermined type variables (part of inference) are hidden.
  4275      * Captured wildcards are hidden by treating them as type
  4276      * variables and the rest are hidden by visiting their qtypes.
  4278      * @param <R> the return type of the operation implemented by this
  4279      * visitor; use Void if no return type is needed.
  4280      * @param <S> the type of the second argument (the first being the
  4281      * type itself) of the operation implemented by this visitor; use
  4282      * Void if a second argument is not needed.
  4283      */
  4284     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4285         @Override
  4286         public R visitCapturedType(CapturedType t, S s) {
  4287             return visitTypeVar(t, s);
  4289         @Override
  4290         public R visitForAll(ForAll t, S s) {
  4291             return visit(t.qtype, s);
  4293         @Override
  4294         public R visitUndetVar(UndetVar t, S s) {
  4295             return visit(t.qtype, s);
  4299     /**
  4300      * A plain relation on types.  That is a 2-ary function on the
  4301      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4302      * <!-- In plain text: Type x Type -> Boolean -->
  4303      */
  4304     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4306     /**
  4307      * A convenience visitor for implementing operations that only
  4308      * require one argument (the type itself), that is, unary
  4309      * operations.
  4311      * @param <R> the return type of the operation implemented by this
  4312      * visitor; use Void if no return type is needed.
  4313      */
  4314     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4315         final public R visit(Type t) { return t.accept(this, null); }
  4318     /**
  4319      * A visitor for implementing a mapping from types to types.  The
  4320      * default behavior of this class is to implement the identity
  4321      * mapping (mapping a type to itself).  This can be overridden in
  4322      * subclasses.
  4324      * @param <S> the type of the second argument (the first being the
  4325      * type itself) of this mapping; use Void if a second argument is
  4326      * not needed.
  4327      */
  4328     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4329         final public Type visit(Type t) { return t.accept(this, null); }
  4330         public Type visitType(Type t, S s) { return t; }
  4332     // </editor-fold>
  4335     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4337     public RetentionPolicy getRetention(Attribute.Compound a) {
  4338         return getRetention(a.type.tsym);
  4341     public RetentionPolicy getRetention(Symbol sym) {
  4342         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4343         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4344         if (c != null) {
  4345             Attribute value = c.member(names.value);
  4346             if (value != null && value instanceof Attribute.Enum) {
  4347                 Name levelName = ((Attribute.Enum)value).value.name;
  4348                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4349                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4350                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4351                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4354         return vis;
  4356     // </editor-fold>

mercurial