src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 03 Dec 2012 11:16:32 +0100

author
jfranck
date
Mon, 03 Dec 2012 11:16:32 +0100
changeset 1445
376d6c1b49e5
parent 1441
c78acf6c2f3e
child 1492
df694c775e8a
child 1569
475eb15dfdad
permissions
-rw-r--r--

8001114: Container annotation is not checked for semantic correctness
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    48 import static com.sun.tools.javac.code.Flags.*;
    49 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    50 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    51 import static com.sun.tools.javac.code.Kinds.*;
    52 import static com.sun.tools.javac.code.TypeTag.*;
    53 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    55 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    57 /** Type checking helper class for the attribution phase.
    58  *
    59  *  <p><b>This is NOT part of any supported API.
    60  *  If you write code that depends on this, you do so at your own risk.
    61  *  This code and its internal interfaces are subject to change or
    62  *  deletion without notice.</b>
    63  */
    64 public class Check {
    65     protected static final Context.Key<Check> checkKey =
    66         new Context.Key<Check>();
    68     private final Names names;
    69     private final Log log;
    70     private final Resolve rs;
    71     private final Symtab syms;
    72     private final Enter enter;
    73     private final DeferredAttr deferredAttr;
    74     private final Infer infer;
    75     private final Types types;
    76     private final JCDiagnostic.Factory diags;
    77     private boolean warnOnSyntheticConflicts;
    78     private boolean suppressAbortOnBadClassFile;
    79     private boolean enableSunApiLintControl;
    80     private final TreeInfo treeinfo;
    81     private final JavaFileManager fileManager;
    83     // The set of lint options currently in effect. It is initialized
    84     // from the context, and then is set/reset as needed by Attr as it
    85     // visits all the various parts of the trees during attribution.
    86     private Lint lint;
    88     // The method being analyzed in Attr - it is set/reset as needed by
    89     // Attr as it visits new method declarations.
    90     private MethodSymbol method;
    92     public static Check instance(Context context) {
    93         Check instance = context.get(checkKey);
    94         if (instance == null)
    95             instance = new Check(context);
    96         return instance;
    97     }
    99     protected Check(Context context) {
   100         context.put(checkKey, this);
   102         names = Names.instance(context);
   103         log = Log.instance(context);
   104         rs = Resolve.instance(context);
   105         syms = Symtab.instance(context);
   106         enter = Enter.instance(context);
   107         deferredAttr = DeferredAttr.instance(context);
   108         infer = Infer.instance(context);
   109         this.types = Types.instance(context);
   110         diags = JCDiagnostic.Factory.instance(context);
   111         Options options = Options.instance(context);
   112         lint = Lint.instance(context);
   113         treeinfo = TreeInfo.instance(context);
   114         fileManager = context.get(JavaFileManager.class);
   116         Source source = Source.instance(context);
   117         allowGenerics = source.allowGenerics();
   118         allowVarargs = source.allowVarargs();
   119         allowAnnotations = source.allowAnnotations();
   120         allowCovariantReturns = source.allowCovariantReturns();
   121         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   122         allowDefaultMethods = source.allowDefaultMethods();
   123         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
   124         complexInference = options.isSet("complexinference");
   125         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   126         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   127         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   129         Target target = Target.instance(context);
   130         syntheticNameChar = target.syntheticNameChar();
   132         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   133         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   134         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   135         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   137         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   138                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   139         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   140                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   141         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   142                 enforceMandatoryWarnings, "sunapi", null);
   144         deferredLintHandler = DeferredLintHandler.immediateHandler;
   145     }
   147     /** Switch: generics enabled?
   148      */
   149     boolean allowGenerics;
   151     /** Switch: varargs enabled?
   152      */
   153     boolean allowVarargs;
   155     /** Switch: annotations enabled?
   156      */
   157     boolean allowAnnotations;
   159     /** Switch: covariant returns enabled?
   160      */
   161     boolean allowCovariantReturns;
   163     /** Switch: simplified varargs enabled?
   164      */
   165     boolean allowSimplifiedVarargs;
   167     /** Switch: default methods enabled?
   168      */
   169     boolean allowDefaultMethods;
   171     /** Switch: should unrelated return types trigger a method clash?
   172      */
   173     boolean allowStrictMethodClashCheck;
   175     /** Switch: -complexinference option set?
   176      */
   177     boolean complexInference;
   179     /** Character for synthetic names
   180      */
   181     char syntheticNameChar;
   183     /** A table mapping flat names of all compiled classes in this run to their
   184      *  symbols; maintained from outside.
   185      */
   186     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   188     /** A handler for messages about deprecated usage.
   189      */
   190     private MandatoryWarningHandler deprecationHandler;
   192     /** A handler for messages about unchecked or unsafe usage.
   193      */
   194     private MandatoryWarningHandler uncheckedHandler;
   196     /** A handler for messages about using proprietary API.
   197      */
   198     private MandatoryWarningHandler sunApiHandler;
   200     /** A handler for deferred lint warnings.
   201      */
   202     private DeferredLintHandler deferredLintHandler;
   204 /* *************************************************************************
   205  * Errors and Warnings
   206  **************************************************************************/
   208     Lint setLint(Lint newLint) {
   209         Lint prev = lint;
   210         lint = newLint;
   211         return prev;
   212     }
   214     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   215         DeferredLintHandler prev = deferredLintHandler;
   216         deferredLintHandler = newDeferredLintHandler;
   217         return prev;
   218     }
   220     MethodSymbol setMethod(MethodSymbol newMethod) {
   221         MethodSymbol prev = method;
   222         method = newMethod;
   223         return prev;
   224     }
   226     /** Warn about deprecated symbol.
   227      *  @param pos        Position to be used for error reporting.
   228      *  @param sym        The deprecated symbol.
   229      */
   230     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   231         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   232             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   233     }
   235     /** Warn about unchecked operation.
   236      *  @param pos        Position to be used for error reporting.
   237      *  @param msg        A string describing the problem.
   238      */
   239     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   240         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   241             uncheckedHandler.report(pos, msg, args);
   242     }
   244     /** Warn about unsafe vararg method decl.
   245      *  @param pos        Position to be used for error reporting.
   246      */
   247     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   248         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   249             log.warning(LintCategory.VARARGS, pos, key, args);
   250     }
   252     /** Warn about using proprietary API.
   253      *  @param pos        Position to be used for error reporting.
   254      *  @param msg        A string describing the problem.
   255      */
   256     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   257         if (!lint.isSuppressed(LintCategory.SUNAPI))
   258             sunApiHandler.report(pos, msg, args);
   259     }
   261     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   262         if (lint.isEnabled(LintCategory.STATIC))
   263             log.warning(LintCategory.STATIC, pos, msg, args);
   264     }
   266     /**
   267      * Report any deferred diagnostics.
   268      */
   269     public void reportDeferredDiagnostics() {
   270         deprecationHandler.reportDeferredDiagnostic();
   271         uncheckedHandler.reportDeferredDiagnostic();
   272         sunApiHandler.reportDeferredDiagnostic();
   273     }
   276     /** Report a failure to complete a class.
   277      *  @param pos        Position to be used for error reporting.
   278      *  @param ex         The failure to report.
   279      */
   280     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   281         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   282         if (ex instanceof ClassReader.BadClassFile
   283                 && !suppressAbortOnBadClassFile) throw new Abort();
   284         else return syms.errType;
   285     }
   287     /** Report an error that wrong type tag was found.
   288      *  @param pos        Position to be used for error reporting.
   289      *  @param required   An internationalized string describing the type tag
   290      *                    required.
   291      *  @param found      The type that was found.
   292      */
   293     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   294         // this error used to be raised by the parser,
   295         // but has been delayed to this point:
   296         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   297             log.error(pos, "illegal.start.of.type");
   298             return syms.errType;
   299         }
   300         log.error(pos, "type.found.req", found, required);
   301         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   302     }
   304     /** Report an error that symbol cannot be referenced before super
   305      *  has been called.
   306      *  @param pos        Position to be used for error reporting.
   307      *  @param sym        The referenced symbol.
   308      */
   309     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   310         log.error(pos, "cant.ref.before.ctor.called", sym);
   311     }
   313     /** Report duplicate declaration error.
   314      */
   315     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   316         if (!sym.type.isErroneous()) {
   317             Symbol location = sym.location();
   318             if (location.kind == MTH &&
   319                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   320                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   321                         kindName(sym.location()), kindName(sym.location().enclClass()),
   322                         sym.location().enclClass());
   323             } else {
   324                 log.error(pos, "already.defined", kindName(sym), sym,
   325                         kindName(sym.location()), sym.location());
   326             }
   327         }
   328     }
   330     /** Report array/varargs duplicate declaration
   331      */
   332     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   333         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   334             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   335         }
   336     }
   338 /* ************************************************************************
   339  * duplicate declaration checking
   340  *************************************************************************/
   342     /** Check that variable does not hide variable with same name in
   343      *  immediately enclosing local scope.
   344      *  @param pos           Position for error reporting.
   345      *  @param v             The symbol.
   346      *  @param s             The scope.
   347      */
   348     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   349         if (s.next != null) {
   350             for (Scope.Entry e = s.next.lookup(v.name);
   351                  e.scope != null && e.sym.owner == v.owner;
   352                  e = e.next()) {
   353                 if (e.sym.kind == VAR &&
   354                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   355                     v.name != names.error) {
   356                     duplicateError(pos, e.sym);
   357                     return;
   358                 }
   359             }
   360         }
   361     }
   363     /** Check that a class or interface does not hide a class or
   364      *  interface with same name in immediately enclosing local scope.
   365      *  @param pos           Position for error reporting.
   366      *  @param c             The symbol.
   367      *  @param s             The scope.
   368      */
   369     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   370         if (s.next != null) {
   371             for (Scope.Entry e = s.next.lookup(c.name);
   372                  e.scope != null && e.sym.owner == c.owner;
   373                  e = e.next()) {
   374                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   375                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   376                     c.name != names.error) {
   377                     duplicateError(pos, e.sym);
   378                     return;
   379                 }
   380             }
   381         }
   382     }
   384     /** Check that class does not have the same name as one of
   385      *  its enclosing classes, or as a class defined in its enclosing scope.
   386      *  return true if class is unique in its enclosing scope.
   387      *  @param pos           Position for error reporting.
   388      *  @param name          The class name.
   389      *  @param s             The enclosing scope.
   390      */
   391     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   392         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   393             if (e.sym.kind == TYP && e.sym.name != names.error) {
   394                 duplicateError(pos, e.sym);
   395                 return false;
   396             }
   397         }
   398         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   399             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   400                 duplicateError(pos, sym);
   401                 return true;
   402             }
   403         }
   404         return true;
   405     }
   407 /* *************************************************************************
   408  * Class name generation
   409  **************************************************************************/
   411     /** Return name of local class.
   412      *  This is of the form   {@code <enclClass> $ n <classname> }
   413      *  where
   414      *    enclClass is the flat name of the enclosing class,
   415      *    classname is the simple name of the local class
   416      */
   417     Name localClassName(ClassSymbol c) {
   418         for (int i=1; ; i++) {
   419             Name flatname = names.
   420                 fromString("" + c.owner.enclClass().flatname +
   421                            syntheticNameChar + i +
   422                            c.name);
   423             if (compiled.get(flatname) == null) return flatname;
   424         }
   425     }
   427 /* *************************************************************************
   428  * Type Checking
   429  **************************************************************************/
   431     /**
   432      * A check context is an object that can be used to perform compatibility
   433      * checks - depending on the check context, meaning of 'compatibility' might
   434      * vary significantly.
   435      */
   436     public interface CheckContext {
   437         /**
   438          * Is type 'found' compatible with type 'req' in given context
   439          */
   440         boolean compatible(Type found, Type req, Warner warn);
   441         /**
   442          * Report a check error
   443          */
   444         void report(DiagnosticPosition pos, JCDiagnostic details);
   445         /**
   446          * Obtain a warner for this check context
   447          */
   448         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   450         public Infer.InferenceContext inferenceContext();
   452         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   453     }
   455     /**
   456      * This class represent a check context that is nested within another check
   457      * context - useful to check sub-expressions. The default behavior simply
   458      * redirects all method calls to the enclosing check context leveraging
   459      * the forwarding pattern.
   460      */
   461     static class NestedCheckContext implements CheckContext {
   462         CheckContext enclosingContext;
   464         NestedCheckContext(CheckContext enclosingContext) {
   465             this.enclosingContext = enclosingContext;
   466         }
   468         public boolean compatible(Type found, Type req, Warner warn) {
   469             return enclosingContext.compatible(found, req, warn);
   470         }
   472         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   473             enclosingContext.report(pos, details);
   474         }
   476         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   477             return enclosingContext.checkWarner(pos, found, req);
   478         }
   480         public Infer.InferenceContext inferenceContext() {
   481             return enclosingContext.inferenceContext();
   482         }
   484         public DeferredAttrContext deferredAttrContext() {
   485             return enclosingContext.deferredAttrContext();
   486         }
   487     }
   489     /**
   490      * Check context to be used when evaluating assignment/return statements
   491      */
   492     CheckContext basicHandler = new CheckContext() {
   493         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   494             log.error(pos, "prob.found.req", details);
   495         }
   496         public boolean compatible(Type found, Type req, Warner warn) {
   497             return types.isAssignable(found, req, warn);
   498         }
   500         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   501             return convertWarner(pos, found, req);
   502         }
   504         public InferenceContext inferenceContext() {
   505             return infer.emptyContext;
   506         }
   508         public DeferredAttrContext deferredAttrContext() {
   509             return deferredAttr.emptyDeferredAttrContext;
   510         }
   511     };
   513     /** Check that a given type is assignable to a given proto-type.
   514      *  If it is, return the type, otherwise return errType.
   515      *  @param pos        Position to be used for error reporting.
   516      *  @param found      The type that was found.
   517      *  @param req        The type that was required.
   518      */
   519     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   520         return checkType(pos, found, req, basicHandler);
   521     }
   523     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   524         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   525         if (inferenceContext.free(req)) {
   526             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   527                 @Override
   528                 public void typesInferred(InferenceContext inferenceContext) {
   529                     checkType(pos, found, inferenceContext.asInstType(req, types), checkContext);
   530                 }
   531             });
   532         }
   533         if (req.hasTag(ERROR))
   534             return req;
   535         if (req.hasTag(NONE))
   536             return found;
   537         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   538             return found;
   539         } else {
   540             if (found.getTag().isSubRangeOf(DOUBLE) && req.getTag().isSubRangeOf(DOUBLE)) {
   541                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   542                 return types.createErrorType(found);
   543             }
   544             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   545             return types.createErrorType(found);
   546         }
   547     }
   549     /** Check that a given type can be cast to a given target type.
   550      *  Return the result of the cast.
   551      *  @param pos        Position to be used for error reporting.
   552      *  @param found      The type that is being cast.
   553      *  @param req        The target type of the cast.
   554      */
   555     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   556         return checkCastable(pos, found, req, basicHandler);
   557     }
   558     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   559         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   560             return req;
   561         } else {
   562             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   563             return types.createErrorType(found);
   564         }
   565     }
   567     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   568      * The problem should only be reported for non-292 cast
   569      */
   570     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   571         if (!tree.type.isErroneous() &&
   572                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   573                 && types.isSameType(tree.expr.type, tree.clazz.type)
   574                 && !is292targetTypeCast(tree)) {
   575             log.warning(Lint.LintCategory.CAST,
   576                     tree.pos(), "redundant.cast", tree.expr.type);
   577         }
   578     }
   579     //where
   580             private boolean is292targetTypeCast(JCTypeCast tree) {
   581                 boolean is292targetTypeCast = false;
   582                 JCExpression expr = TreeInfo.skipParens(tree.expr);
   583                 if (expr.hasTag(APPLY)) {
   584                     JCMethodInvocation apply = (JCMethodInvocation)expr;
   585                     Symbol sym = TreeInfo.symbol(apply.meth);
   586                     is292targetTypeCast = sym != null &&
   587                         sym.kind == MTH &&
   588                         (sym.flags() & HYPOTHETICAL) != 0;
   589                 }
   590                 return is292targetTypeCast;
   591             }
   595 //where
   596         /** Is type a type variable, or a (possibly multi-dimensional) array of
   597          *  type variables?
   598          */
   599         boolean isTypeVar(Type t) {
   600             return t.hasTag(TYPEVAR) || t.hasTag(ARRAY) && isTypeVar(types.elemtype(t));
   601         }
   603     /** Check that a type is within some bounds.
   604      *
   605      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   606      *  type argument.
   607      *  @param a             The type that should be bounded by bs.
   608      *  @param bound         The bound.
   609      */
   610     private boolean checkExtends(Type a, Type bound) {
   611          if (a.isUnbound()) {
   612              return true;
   613          } else if (!a.hasTag(WILDCARD)) {
   614              a = types.upperBound(a);
   615              return types.isSubtype(a, bound);
   616          } else if (a.isExtendsBound()) {
   617              return types.isCastable(bound, types.upperBound(a), types.noWarnings);
   618          } else if (a.isSuperBound()) {
   619              return !types.notSoftSubtype(types.lowerBound(a), bound);
   620          }
   621          return true;
   622      }
   624     /** Check that type is different from 'void'.
   625      *  @param pos           Position to be used for error reporting.
   626      *  @param t             The type to be checked.
   627      */
   628     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   629         if (t.hasTag(VOID)) {
   630             log.error(pos, "void.not.allowed.here");
   631             return types.createErrorType(t);
   632         } else {
   633             return t;
   634         }
   635     }
   637     /** Check that type is a class or interface type.
   638      *  @param pos           Position to be used for error reporting.
   639      *  @param t             The type to be checked.
   640      */
   641     Type checkClassType(DiagnosticPosition pos, Type t) {
   642         if (!t.hasTag(CLASS) && !t.hasTag(ERROR))
   643             return typeTagError(pos,
   644                                 diags.fragment("type.req.class"),
   645                                 (t.hasTag(TYPEVAR))
   646                                 ? diags.fragment("type.parameter", t)
   647                                 : t);
   648         else
   649             return t;
   650     }
   652     /** Check that type is a valid qualifier for a constructor reference expression
   653      */
   654     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   655         t = checkClassType(pos, t);
   656         if (t.hasTag(CLASS)) {
   657             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   658                 log.error(pos, "abstract.cant.be.instantiated");
   659                 t = types.createErrorType(t);
   660             } else if ((t.tsym.flags() & ENUM) != 0) {
   661                 log.error(pos, "enum.cant.be.instantiated");
   662                 t = types.createErrorType(t);
   663             }
   664         }
   665         return t;
   666     }
   668     /** Check that type is a class or interface type.
   669      *  @param pos           Position to be used for error reporting.
   670      *  @param t             The type to be checked.
   671      *  @param noBounds    True if type bounds are illegal here.
   672      */
   673     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   674         t = checkClassType(pos, t);
   675         if (noBounds && t.isParameterized()) {
   676             List<Type> args = t.getTypeArguments();
   677             while (args.nonEmpty()) {
   678                 if (args.head.hasTag(WILDCARD))
   679                     return typeTagError(pos,
   680                                         diags.fragment("type.req.exact"),
   681                                         args.head);
   682                 args = args.tail;
   683             }
   684         }
   685         return t;
   686     }
   688     /** Check that type is a reifiable class, interface or array type.
   689      *  @param pos           Position to be used for error reporting.
   690      *  @param t             The type to be checked.
   691      */
   692     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   693         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   694             return typeTagError(pos,
   695                                 diags.fragment("type.req.class.array"),
   696                                 t);
   697         } else if (!types.isReifiable(t)) {
   698             log.error(pos, "illegal.generic.type.for.instof");
   699             return types.createErrorType(t);
   700         } else {
   701             return t;
   702         }
   703     }
   705     /** Check that type is a reference type, i.e. a class, interface or array type
   706      *  or a type variable.
   707      *  @param pos           Position to be used for error reporting.
   708      *  @param t             The type to be checked.
   709      */
   710     Type checkRefType(DiagnosticPosition pos, Type t) {
   711         if (t.isReference())
   712             return t;
   713         else
   714             return typeTagError(pos,
   715                                 diags.fragment("type.req.ref"),
   716                                 t);
   717     }
   719     /** Check that each type is a reference type, i.e. a class, interface or array type
   720      *  or a type variable.
   721      *  @param trees         Original trees, used for error reporting.
   722      *  @param types         The types to be checked.
   723      */
   724     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   725         List<JCExpression> tl = trees;
   726         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   727             l.head = checkRefType(tl.head.pos(), l.head);
   728             tl = tl.tail;
   729         }
   730         return types;
   731     }
   733     /** Check that type is a null or reference type.
   734      *  @param pos           Position to be used for error reporting.
   735      *  @param t             The type to be checked.
   736      */
   737     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   738         if (t.isNullOrReference())
   739             return t;
   740         else
   741             return typeTagError(pos,
   742                                 diags.fragment("type.req.ref"),
   743                                 t);
   744     }
   746     /** Check that flag set does not contain elements of two conflicting sets. s
   747      *  Return true if it doesn't.
   748      *  @param pos           Position to be used for error reporting.
   749      *  @param flags         The set of flags to be checked.
   750      *  @param set1          Conflicting flags set #1.
   751      *  @param set2          Conflicting flags set #2.
   752      */
   753     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   754         if ((flags & set1) != 0 && (flags & set2) != 0) {
   755             log.error(pos,
   756                       "illegal.combination.of.modifiers",
   757                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   758                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   759             return false;
   760         } else
   761             return true;
   762     }
   764     /** Check that usage of diamond operator is correct (i.e. diamond should not
   765      * be used with non-generic classes or in anonymous class creation expressions)
   766      */
   767     Type checkDiamond(JCNewClass tree, Type t) {
   768         if (!TreeInfo.isDiamond(tree) ||
   769                 t.isErroneous()) {
   770             return checkClassType(tree.clazz.pos(), t, true);
   771         } else if (tree.def != null) {
   772             log.error(tree.clazz.pos(),
   773                     "cant.apply.diamond.1",
   774                     t, diags.fragment("diamond.and.anon.class", t));
   775             return types.createErrorType(t);
   776         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   777             log.error(tree.clazz.pos(),
   778                 "cant.apply.diamond.1",
   779                 t, diags.fragment("diamond.non.generic", t));
   780             return types.createErrorType(t);
   781         } else if (tree.typeargs != null &&
   782                 tree.typeargs.nonEmpty()) {
   783             log.error(tree.clazz.pos(),
   784                 "cant.apply.diamond.1",
   785                 t, diags.fragment("diamond.and.explicit.params", t));
   786             return types.createErrorType(t);
   787         } else {
   788             return t;
   789         }
   790     }
   792     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   793         MethodSymbol m = tree.sym;
   794         if (!allowSimplifiedVarargs) return;
   795         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   796         Type varargElemType = null;
   797         if (m.isVarArgs()) {
   798             varargElemType = types.elemtype(tree.params.last().type);
   799         }
   800         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   801             if (varargElemType != null) {
   802                 log.error(tree,
   803                         "varargs.invalid.trustme.anno",
   804                         syms.trustMeType.tsym,
   805                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   806             } else {
   807                 log.error(tree,
   808                             "varargs.invalid.trustme.anno",
   809                             syms.trustMeType.tsym,
   810                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   811             }
   812         } else if (hasTrustMeAnno && varargElemType != null &&
   813                             types.isReifiable(varargElemType)) {
   814             warnUnsafeVararg(tree,
   815                             "varargs.redundant.trustme.anno",
   816                             syms.trustMeType.tsym,
   817                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   818         }
   819         else if (!hasTrustMeAnno && varargElemType != null &&
   820                 !types.isReifiable(varargElemType)) {
   821             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   822         }
   823     }
   824     //where
   825         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   826             return (s.flags() & VARARGS) != 0 &&
   827                 (s.isConstructor() ||
   828                     (s.flags() & (STATIC | FINAL)) != 0);
   829         }
   831     Type checkMethod(Type owntype,
   832                             Symbol sym,
   833                             Env<AttrContext> env,
   834                             final List<JCExpression> argtrees,
   835                             List<Type> argtypes,
   836                             boolean useVarargs,
   837                             boolean unchecked) {
   838         // System.out.println("call   : " + env.tree);
   839         // System.out.println("method : " + owntype);
   840         // System.out.println("actuals: " + argtypes);
   841         List<Type> formals = owntype.getParameterTypes();
   842         Type last = useVarargs ? formals.last() : null;
   843         if (sym.name==names.init &&
   844                 sym.owner == syms.enumSym)
   845                 formals = formals.tail.tail;
   846         List<JCExpression> args = argtrees;
   847         DeferredAttr.DeferredTypeMap checkDeferredMap =
   848                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   849         if (args != null) {
   850             //this is null when type-checking a method reference
   851             while (formals.head != last) {
   852                 JCTree arg = args.head;
   853                 Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   854                 assertConvertible(arg, arg.type, formals.head, warn);
   855                 args = args.tail;
   856                 formals = formals.tail;
   857             }
   858             if (useVarargs) {
   859                 Type varArg = types.elemtype(last);
   860                 while (args.tail != null) {
   861                     JCTree arg = args.head;
   862                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   863                     assertConvertible(arg, arg.type, varArg, warn);
   864                     args = args.tail;
   865                 }
   866             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   867                 // non-varargs call to varargs method
   868                 Type varParam = owntype.getParameterTypes().last();
   869                 Type lastArg = checkDeferredMap.apply(argtypes.last());
   870                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   871                         !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   872                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   873                             types.elemtype(varParam), varParam);
   874             }
   875         }
   876         if (unchecked) {
   877             warnUnchecked(env.tree.pos(),
   878                     "unchecked.meth.invocation.applied",
   879                     kindName(sym),
   880                     sym.name,
   881                     rs.methodArguments(sym.type.getParameterTypes()),
   882                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   883                     kindName(sym.location()),
   884                     sym.location());
   885            owntype = new MethodType(owntype.getParameterTypes(),
   886                    types.erasure(owntype.getReturnType()),
   887                    types.erasure(owntype.getThrownTypes()),
   888                    syms.methodClass);
   889         }
   890         if (useVarargs) {
   891             JCTree tree = env.tree;
   892             Type argtype = owntype.getParameterTypes().last();
   893             if (!types.isReifiable(argtype) &&
   894                     (!allowSimplifiedVarargs ||
   895                     sym.attribute(syms.trustMeType.tsym) == null ||
   896                     !isTrustMeAllowedOnMethod(sym))) {
   897                 warnUnchecked(env.tree.pos(),
   898                                   "unchecked.generic.array.creation",
   899                                   argtype);
   900             }
   901             if (!((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types)) {
   902                 Type elemtype = types.elemtype(argtype);
   903                 switch (tree.getTag()) {
   904                     case APPLY:
   905                         ((JCMethodInvocation) tree).varargsElement = elemtype;
   906                         break;
   907                     case NEWCLASS:
   908                         ((JCNewClass) tree).varargsElement = elemtype;
   909                         break;
   910                     case REFERENCE:
   911                         ((JCMemberReference) tree).varargsElement = elemtype;
   912                         break;
   913                     default:
   914                         throw new AssertionError(""+tree);
   915                 }
   916             }
   917          }
   918          return owntype;
   919     }
   920     //where
   921         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   922             if (types.isConvertible(actual, formal, warn))
   923                 return;
   925             if (formal.isCompound()
   926                 && types.isSubtype(actual, types.supertype(formal))
   927                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   928                 return;
   929         }
   931     /**
   932      * Check that type 't' is a valid instantiation of a generic class
   933      * (see JLS 4.5)
   934      *
   935      * @param t class type to be checked
   936      * @return true if 't' is well-formed
   937      */
   938     public boolean checkValidGenericType(Type t) {
   939         return firstIncompatibleTypeArg(t) == null;
   940     }
   941     //WHERE
   942         private Type firstIncompatibleTypeArg(Type type) {
   943             List<Type> formals = type.tsym.type.allparams();
   944             List<Type> actuals = type.allparams();
   945             List<Type> args = type.getTypeArguments();
   946             List<Type> forms = type.tsym.type.getTypeArguments();
   947             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   949             // For matching pairs of actual argument types `a' and
   950             // formal type parameters with declared bound `b' ...
   951             while (args.nonEmpty() && forms.nonEmpty()) {
   952                 // exact type arguments needs to know their
   953                 // bounds (for upper and lower bound
   954                 // calculations).  So we create new bounds where
   955                 // type-parameters are replaced with actuals argument types.
   956                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   957                 args = args.tail;
   958                 forms = forms.tail;
   959             }
   961             args = type.getTypeArguments();
   962             List<Type> tvars_cap = types.substBounds(formals,
   963                                       formals,
   964                                       types.capture(type).allparams());
   965             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   966                 // Let the actual arguments know their bound
   967                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   968                 args = args.tail;
   969                 tvars_cap = tvars_cap.tail;
   970             }
   972             args = type.getTypeArguments();
   973             List<Type> bounds = bounds_buf.toList();
   975             while (args.nonEmpty() && bounds.nonEmpty()) {
   976                 Type actual = args.head;
   977                 if (!isTypeArgErroneous(actual) &&
   978                         !bounds.head.isErroneous() &&
   979                         !checkExtends(actual, bounds.head)) {
   980                     return args.head;
   981                 }
   982                 args = args.tail;
   983                 bounds = bounds.tail;
   984             }
   986             args = type.getTypeArguments();
   987             bounds = bounds_buf.toList();
   989             for (Type arg : types.capture(type).getTypeArguments()) {
   990                 if (arg.hasTag(TYPEVAR) &&
   991                         arg.getUpperBound().isErroneous() &&
   992                         !bounds.head.isErroneous() &&
   993                         !isTypeArgErroneous(args.head)) {
   994                     return args.head;
   995                 }
   996                 bounds = bounds.tail;
   997                 args = args.tail;
   998             }
  1000             return null;
  1002         //where
  1003         boolean isTypeArgErroneous(Type t) {
  1004             return isTypeArgErroneous.visit(t);
  1007         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1008             public Boolean visitType(Type t, Void s) {
  1009                 return t.isErroneous();
  1011             @Override
  1012             public Boolean visitTypeVar(TypeVar t, Void s) {
  1013                 return visit(t.getUpperBound());
  1015             @Override
  1016             public Boolean visitCapturedType(CapturedType t, Void s) {
  1017                 return visit(t.getUpperBound()) ||
  1018                         visit(t.getLowerBound());
  1020             @Override
  1021             public Boolean visitWildcardType(WildcardType t, Void s) {
  1022                 return visit(t.type);
  1024         };
  1026     /** Check that given modifiers are legal for given symbol and
  1027      *  return modifiers together with any implicit modififiers for that symbol.
  1028      *  Warning: we can't use flags() here since this method
  1029      *  is called during class enter, when flags() would cause a premature
  1030      *  completion.
  1031      *  @param pos           Position to be used for error reporting.
  1032      *  @param flags         The set of modifiers given in a definition.
  1033      *  @param sym           The defined symbol.
  1034      */
  1035     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1036         long mask;
  1037         long implicit = 0;
  1038         switch (sym.kind) {
  1039         case VAR:
  1040             if (sym.owner.kind != TYP)
  1041                 mask = LocalVarFlags;
  1042             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1043                 mask = implicit = InterfaceVarFlags;
  1044             else
  1045                 mask = VarFlags;
  1046             break;
  1047         case MTH:
  1048             if (sym.name == names.init) {
  1049                 if ((sym.owner.flags_field & ENUM) != 0) {
  1050                     // enum constructors cannot be declared public or
  1051                     // protected and must be implicitly or explicitly
  1052                     // private
  1053                     implicit = PRIVATE;
  1054                     mask = PRIVATE;
  1055                 } else
  1056                     mask = ConstructorFlags;
  1057             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1058                 if ((flags & DEFAULT) != 0) {
  1059                     mask = InterfaceDefaultMethodMask;
  1060                     implicit = PUBLIC | ABSTRACT;
  1061                 } else {
  1062                     mask = implicit = InterfaceMethodFlags;
  1065             else {
  1066                 mask = MethodFlags;
  1068             // Imply STRICTFP if owner has STRICTFP set.
  1069             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1070               implicit |= sym.owner.flags_field & STRICTFP;
  1071             break;
  1072         case TYP:
  1073             if (sym.isLocal()) {
  1074                 mask = LocalClassFlags;
  1075                 if (sym.name.isEmpty()) { // Anonymous class
  1076                     // Anonymous classes in static methods are themselves static;
  1077                     // that's why we admit STATIC here.
  1078                     mask |= STATIC;
  1079                     // JLS: Anonymous classes are final.
  1080                     implicit |= FINAL;
  1082                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1083                     (flags & ENUM) != 0)
  1084                     log.error(pos, "enums.must.be.static");
  1085             } else if (sym.owner.kind == TYP) {
  1086                 mask = MemberClassFlags;
  1087                 if (sym.owner.owner.kind == PCK ||
  1088                     (sym.owner.flags_field & STATIC) != 0)
  1089                     mask |= STATIC;
  1090                 else if ((flags & ENUM) != 0)
  1091                     log.error(pos, "enums.must.be.static");
  1092                 // Nested interfaces and enums are always STATIC (Spec ???)
  1093                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1094             } else {
  1095                 mask = ClassFlags;
  1097             // Interfaces are always ABSTRACT
  1098             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1100             if ((flags & ENUM) != 0) {
  1101                 // enums can't be declared abstract or final
  1102                 mask &= ~(ABSTRACT | FINAL);
  1103                 implicit |= implicitEnumFinalFlag(tree);
  1105             // Imply STRICTFP if owner has STRICTFP set.
  1106             implicit |= sym.owner.flags_field & STRICTFP;
  1107             break;
  1108         default:
  1109             throw new AssertionError();
  1111         long illegal = flags & ExtendedStandardFlags & ~mask;
  1112         if (illegal != 0) {
  1113             if ((illegal & INTERFACE) != 0) {
  1114                 log.error(pos, "intf.not.allowed.here");
  1115                 mask |= INTERFACE;
  1117             else {
  1118                 log.error(pos,
  1119                           "mod.not.allowed.here", asFlagSet(illegal));
  1122         else if ((sym.kind == TYP ||
  1123                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1124                   // in the presence of inner classes. Should it be deleted here?
  1125                   checkDisjoint(pos, flags,
  1126                                 ABSTRACT,
  1127                                 PRIVATE | STATIC | DEFAULT))
  1128                  &&
  1129                  checkDisjoint(pos, flags,
  1130                                ABSTRACT | INTERFACE,
  1131                                FINAL | NATIVE | SYNCHRONIZED)
  1132                  &&
  1133                  checkDisjoint(pos, flags,
  1134                                PUBLIC,
  1135                                PRIVATE | PROTECTED)
  1136                  &&
  1137                  checkDisjoint(pos, flags,
  1138                                PRIVATE,
  1139                                PUBLIC | PROTECTED)
  1140                  &&
  1141                  checkDisjoint(pos, flags,
  1142                                FINAL,
  1143                                VOLATILE)
  1144                  &&
  1145                  (sym.kind == TYP ||
  1146                   checkDisjoint(pos, flags,
  1147                                 ABSTRACT | NATIVE,
  1148                                 STRICTFP))) {
  1149             // skip
  1151         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1155     /** Determine if this enum should be implicitly final.
  1157      *  If the enum has no specialized enum contants, it is final.
  1159      *  If the enum does have specialized enum contants, it is
  1160      *  <i>not</i> final.
  1161      */
  1162     private long implicitEnumFinalFlag(JCTree tree) {
  1163         if (!tree.hasTag(CLASSDEF)) return 0;
  1164         class SpecialTreeVisitor extends JCTree.Visitor {
  1165             boolean specialized;
  1166             SpecialTreeVisitor() {
  1167                 this.specialized = false;
  1168             };
  1170             @Override
  1171             public void visitTree(JCTree tree) { /* no-op */ }
  1173             @Override
  1174             public void visitVarDef(JCVariableDecl tree) {
  1175                 if ((tree.mods.flags & ENUM) != 0) {
  1176                     if (tree.init instanceof JCNewClass &&
  1177                         ((JCNewClass) tree.init).def != null) {
  1178                         specialized = true;
  1184         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1185         JCClassDecl cdef = (JCClassDecl) tree;
  1186         for (JCTree defs: cdef.defs) {
  1187             defs.accept(sts);
  1188             if (sts.specialized) return 0;
  1190         return FINAL;
  1193 /* *************************************************************************
  1194  * Type Validation
  1195  **************************************************************************/
  1197     /** Validate a type expression. That is,
  1198      *  check that all type arguments of a parametric type are within
  1199      *  their bounds. This must be done in a second phase after type attributon
  1200      *  since a class might have a subclass as type parameter bound. E.g:
  1202      *  <pre>{@code
  1203      *  class B<A extends C> { ... }
  1204      *  class C extends B<C> { ... }
  1205      *  }</pre>
  1207      *  and we can't make sure that the bound is already attributed because
  1208      *  of possible cycles.
  1210      * Visitor method: Validate a type expression, if it is not null, catching
  1211      *  and reporting any completion failures.
  1212      */
  1213     void validate(JCTree tree, Env<AttrContext> env) {
  1214         validate(tree, env, true);
  1216     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1217         new Validator(env).validateTree(tree, checkRaw, true);
  1220     /** Visitor method: Validate a list of type expressions.
  1221      */
  1222     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1223         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1224             validate(l.head, env);
  1227     /** A visitor class for type validation.
  1228      */
  1229     class Validator extends JCTree.Visitor {
  1231         boolean isOuter;
  1232         Env<AttrContext> env;
  1234         Validator(Env<AttrContext> env) {
  1235             this.env = env;
  1238         @Override
  1239         public void visitTypeArray(JCArrayTypeTree tree) {
  1240             tree.elemtype.accept(this);
  1243         @Override
  1244         public void visitTypeApply(JCTypeApply tree) {
  1245             if (tree.type.hasTag(CLASS)) {
  1246                 List<JCExpression> args = tree.arguments;
  1247                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1249                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1250                 if (incompatibleArg != null) {
  1251                     for (JCTree arg : tree.arguments) {
  1252                         if (arg.type == incompatibleArg) {
  1253                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1255                         forms = forms.tail;
  1259                 forms = tree.type.tsym.type.getTypeArguments();
  1261                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1263                 // For matching pairs of actual argument types `a' and
  1264                 // formal type parameters with declared bound `b' ...
  1265                 while (args.nonEmpty() && forms.nonEmpty()) {
  1266                     validateTree(args.head,
  1267                             !(isOuter && is_java_lang_Class),
  1268                             false);
  1269                     args = args.tail;
  1270                     forms = forms.tail;
  1273                 // Check that this type is either fully parameterized, or
  1274                 // not parameterized at all.
  1275                 if (tree.type.getEnclosingType().isRaw())
  1276                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1277                 if (tree.clazz.hasTag(SELECT))
  1278                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1282         @Override
  1283         public void visitTypeParameter(JCTypeParameter tree) {
  1284             validateTrees(tree.bounds, true, isOuter);
  1285             checkClassBounds(tree.pos(), tree.type);
  1288         @Override
  1289         public void visitWildcard(JCWildcard tree) {
  1290             if (tree.inner != null)
  1291                 validateTree(tree.inner, true, isOuter);
  1294         @Override
  1295         public void visitSelect(JCFieldAccess tree) {
  1296             if (tree.type.hasTag(CLASS)) {
  1297                 visitSelectInternal(tree);
  1299                 // Check that this type is either fully parameterized, or
  1300                 // not parameterized at all.
  1301                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1302                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1306         public void visitSelectInternal(JCFieldAccess tree) {
  1307             if (tree.type.tsym.isStatic() &&
  1308                 tree.selected.type.isParameterized()) {
  1309                 // The enclosing type is not a class, so we are
  1310                 // looking at a static member type.  However, the
  1311                 // qualifying expression is parameterized.
  1312                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1313             } else {
  1314                 // otherwise validate the rest of the expression
  1315                 tree.selected.accept(this);
  1319         /** Default visitor method: do nothing.
  1320          */
  1321         @Override
  1322         public void visitTree(JCTree tree) {
  1325         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1326             try {
  1327                 if (tree != null) {
  1328                     this.isOuter = isOuter;
  1329                     tree.accept(this);
  1330                     if (checkRaw)
  1331                         checkRaw(tree, env);
  1333             } catch (CompletionFailure ex) {
  1334                 completionError(tree.pos(), ex);
  1338         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1339             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1340                 validateTree(l.head, checkRaw, isOuter);
  1343         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1344             if (lint.isEnabled(LintCategory.RAW) &&
  1345                 tree.type.hasTag(CLASS) &&
  1346                 !TreeInfo.isDiamond(tree) &&
  1347                 !withinAnonConstr(env) &&
  1348                 tree.type.isRaw()) {
  1349                 log.warning(LintCategory.RAW,
  1350                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1354         boolean withinAnonConstr(Env<AttrContext> env) {
  1355             return env.enclClass.name.isEmpty() &&
  1356                     env.enclMethod != null && env.enclMethod.name == names.init;
  1360 /* *************************************************************************
  1361  * Exception checking
  1362  **************************************************************************/
  1364     /* The following methods treat classes as sets that contain
  1365      * the class itself and all their subclasses
  1366      */
  1368     /** Is given type a subtype of some of the types in given list?
  1369      */
  1370     boolean subset(Type t, List<Type> ts) {
  1371         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1372             if (types.isSubtype(t, l.head)) return true;
  1373         return false;
  1376     /** Is given type a subtype or supertype of
  1377      *  some of the types in given list?
  1378      */
  1379     boolean intersects(Type t, List<Type> ts) {
  1380         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1381             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1382         return false;
  1385     /** Add type set to given type list, unless it is a subclass of some class
  1386      *  in the list.
  1387      */
  1388     List<Type> incl(Type t, List<Type> ts) {
  1389         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1392     /** Remove type set from type set list.
  1393      */
  1394     List<Type> excl(Type t, List<Type> ts) {
  1395         if (ts.isEmpty()) {
  1396             return ts;
  1397         } else {
  1398             List<Type> ts1 = excl(t, ts.tail);
  1399             if (types.isSubtype(ts.head, t)) return ts1;
  1400             else if (ts1 == ts.tail) return ts;
  1401             else return ts1.prepend(ts.head);
  1405     /** Form the union of two type set lists.
  1406      */
  1407     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1408         List<Type> ts = ts1;
  1409         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1410             ts = incl(l.head, ts);
  1411         return ts;
  1414     /** Form the difference of two type lists.
  1415      */
  1416     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1417         List<Type> ts = ts1;
  1418         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1419             ts = excl(l.head, ts);
  1420         return ts;
  1423     /** Form the intersection of two type lists.
  1424      */
  1425     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1426         List<Type> ts = List.nil();
  1427         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1428             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1429         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1430             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1431         return ts;
  1434     /** Is exc an exception symbol that need not be declared?
  1435      */
  1436     boolean isUnchecked(ClassSymbol exc) {
  1437         return
  1438             exc.kind == ERR ||
  1439             exc.isSubClass(syms.errorType.tsym, types) ||
  1440             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1443     /** Is exc an exception type that need not be declared?
  1444      */
  1445     boolean isUnchecked(Type exc) {
  1446         return
  1447             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1448             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1449             exc.hasTag(BOT);
  1452     /** Same, but handling completion failures.
  1453      */
  1454     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1455         try {
  1456             return isUnchecked(exc);
  1457         } catch (CompletionFailure ex) {
  1458             completionError(pos, ex);
  1459             return true;
  1463     /** Is exc handled by given exception list?
  1464      */
  1465     boolean isHandled(Type exc, List<Type> handled) {
  1466         return isUnchecked(exc) || subset(exc, handled);
  1469     /** Return all exceptions in thrown list that are not in handled list.
  1470      *  @param thrown     The list of thrown exceptions.
  1471      *  @param handled    The list of handled exceptions.
  1472      */
  1473     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1474         List<Type> unhandled = List.nil();
  1475         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1476             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1477         return unhandled;
  1480 /* *************************************************************************
  1481  * Overriding/Implementation checking
  1482  **************************************************************************/
  1484     /** The level of access protection given by a flag set,
  1485      *  where PRIVATE is highest and PUBLIC is lowest.
  1486      */
  1487     static int protection(long flags) {
  1488         switch ((short)(flags & AccessFlags)) {
  1489         case PRIVATE: return 3;
  1490         case PROTECTED: return 1;
  1491         default:
  1492         case PUBLIC: return 0;
  1493         case 0: return 2;
  1497     /** A customized "cannot override" error message.
  1498      *  @param m      The overriding method.
  1499      *  @param other  The overridden method.
  1500      *  @return       An internationalized string.
  1501      */
  1502     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1503         String key;
  1504         if ((other.owner.flags() & INTERFACE) == 0)
  1505             key = "cant.override";
  1506         else if ((m.owner.flags() & INTERFACE) == 0)
  1507             key = "cant.implement";
  1508         else
  1509             key = "clashes.with";
  1510         return diags.fragment(key, m, m.location(), other, other.location());
  1513     /** A customized "override" warning message.
  1514      *  @param m      The overriding method.
  1515      *  @param other  The overridden method.
  1516      *  @return       An internationalized string.
  1517      */
  1518     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1519         String key;
  1520         if ((other.owner.flags() & INTERFACE) == 0)
  1521             key = "unchecked.override";
  1522         else if ((m.owner.flags() & INTERFACE) == 0)
  1523             key = "unchecked.implement";
  1524         else
  1525             key = "unchecked.clash.with";
  1526         return diags.fragment(key, m, m.location(), other, other.location());
  1529     /** A customized "override" warning message.
  1530      *  @param m      The overriding method.
  1531      *  @param other  The overridden method.
  1532      *  @return       An internationalized string.
  1533      */
  1534     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1535         String key;
  1536         if ((other.owner.flags() & INTERFACE) == 0)
  1537             key = "varargs.override";
  1538         else  if ((m.owner.flags() & INTERFACE) == 0)
  1539             key = "varargs.implement";
  1540         else
  1541             key = "varargs.clash.with";
  1542         return diags.fragment(key, m, m.location(), other, other.location());
  1545     /** Check that this method conforms with overridden method 'other'.
  1546      *  where `origin' is the class where checking started.
  1547      *  Complications:
  1548      *  (1) Do not check overriding of synthetic methods
  1549      *      (reason: they might be final).
  1550      *      todo: check whether this is still necessary.
  1551      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1552      *      than the method it implements. Augment the proxy methods with the
  1553      *      undeclared exceptions in this case.
  1554      *  (3) When generics are enabled, admit the case where an interface proxy
  1555      *      has a result type
  1556      *      extended by the result type of the method it implements.
  1557      *      Change the proxies result type to the smaller type in this case.
  1559      *  @param tree         The tree from which positions
  1560      *                      are extracted for errors.
  1561      *  @param m            The overriding method.
  1562      *  @param other        The overridden method.
  1563      *  @param origin       The class of which the overriding method
  1564      *                      is a member.
  1565      */
  1566     void checkOverride(JCTree tree,
  1567                        MethodSymbol m,
  1568                        MethodSymbol other,
  1569                        ClassSymbol origin) {
  1570         // Don't check overriding of synthetic methods or by bridge methods.
  1571         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1572             return;
  1575         // Error if static method overrides instance method (JLS 8.4.6.2).
  1576         if ((m.flags() & STATIC) != 0 &&
  1577                    (other.flags() & STATIC) == 0) {
  1578             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1579                       cannotOverride(m, other));
  1580             return;
  1583         // Error if instance method overrides static or final
  1584         // method (JLS 8.4.6.1).
  1585         if ((other.flags() & FINAL) != 0 ||
  1586                  (m.flags() & STATIC) == 0 &&
  1587                  (other.flags() & STATIC) != 0) {
  1588             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1589                       cannotOverride(m, other),
  1590                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1591             return;
  1594         if ((m.owner.flags() & ANNOTATION) != 0) {
  1595             // handled in validateAnnotationMethod
  1596             return;
  1599         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1600         if ((origin.flags() & INTERFACE) == 0 &&
  1601                  protection(m.flags()) > protection(other.flags())) {
  1602             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1603                       cannotOverride(m, other),
  1604                       other.flags() == 0 ?
  1605                           Flag.PACKAGE :
  1606                           asFlagSet(other.flags() & AccessFlags));
  1607             return;
  1610         Type mt = types.memberType(origin.type, m);
  1611         Type ot = types.memberType(origin.type, other);
  1612         // Error if overriding result type is different
  1613         // (or, in the case of generics mode, not a subtype) of
  1614         // overridden result type. We have to rename any type parameters
  1615         // before comparing types.
  1616         List<Type> mtvars = mt.getTypeArguments();
  1617         List<Type> otvars = ot.getTypeArguments();
  1618         Type mtres = mt.getReturnType();
  1619         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1621         overrideWarner.clear();
  1622         boolean resultTypesOK =
  1623             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1624         if (!resultTypesOK) {
  1625             if (!allowCovariantReturns &&
  1626                 m.owner != origin &&
  1627                 m.owner.isSubClass(other.owner, types)) {
  1628                 // allow limited interoperability with covariant returns
  1629             } else {
  1630                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1631                           "override.incompatible.ret",
  1632                           cannotOverride(m, other),
  1633                           mtres, otres);
  1634                 return;
  1636         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1637             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1638                     "override.unchecked.ret",
  1639                     uncheckedOverrides(m, other),
  1640                     mtres, otres);
  1643         // Error if overriding method throws an exception not reported
  1644         // by overridden method.
  1645         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1646         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1647         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1648         if (unhandledErased.nonEmpty()) {
  1649             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1650                       "override.meth.doesnt.throw",
  1651                       cannotOverride(m, other),
  1652                       unhandledUnerased.head);
  1653             return;
  1655         else if (unhandledUnerased.nonEmpty()) {
  1656             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1657                           "override.unchecked.thrown",
  1658                          cannotOverride(m, other),
  1659                          unhandledUnerased.head);
  1660             return;
  1663         // Optional warning if varargs don't agree
  1664         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1665             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1666             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1667                         ((m.flags() & Flags.VARARGS) != 0)
  1668                         ? "override.varargs.missing"
  1669                         : "override.varargs.extra",
  1670                         varargsOverrides(m, other));
  1673         // Warn if instance method overrides bridge method (compiler spec ??)
  1674         if ((other.flags() & BRIDGE) != 0) {
  1675             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1676                         uncheckedOverrides(m, other));
  1679         // Warn if a deprecated method overridden by a non-deprecated one.
  1680         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1681             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1684     // where
  1685         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1686             // If the method, m, is defined in an interface, then ignore the issue if the method
  1687             // is only inherited via a supertype and also implemented in the supertype,
  1688             // because in that case, we will rediscover the issue when examining the method
  1689             // in the supertype.
  1690             // If the method, m, is not defined in an interface, then the only time we need to
  1691             // address the issue is when the method is the supertype implemementation: any other
  1692             // case, we will have dealt with when examining the supertype classes
  1693             ClassSymbol mc = m.enclClass();
  1694             Type st = types.supertype(origin.type);
  1695             if (!st.hasTag(CLASS))
  1696                 return true;
  1697             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1699             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1700                 List<Type> intfs = types.interfaces(origin.type);
  1701                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1703             else
  1704                 return (stimpl != m);
  1708     // used to check if there were any unchecked conversions
  1709     Warner overrideWarner = new Warner();
  1711     /** Check that a class does not inherit two concrete methods
  1712      *  with the same signature.
  1713      *  @param pos          Position to be used for error reporting.
  1714      *  @param site         The class type to be checked.
  1715      */
  1716     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1717         Type sup = types.supertype(site);
  1718         if (!sup.hasTag(CLASS)) return;
  1720         for (Type t1 = sup;
  1721              t1.tsym.type.isParameterized();
  1722              t1 = types.supertype(t1)) {
  1723             for (Scope.Entry e1 = t1.tsym.members().elems;
  1724                  e1 != null;
  1725                  e1 = e1.sibling) {
  1726                 Symbol s1 = e1.sym;
  1727                 if (s1.kind != MTH ||
  1728                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1729                     !s1.isInheritedIn(site.tsym, types) ||
  1730                     ((MethodSymbol)s1).implementation(site.tsym,
  1731                                                       types,
  1732                                                       true) != s1)
  1733                     continue;
  1734                 Type st1 = types.memberType(t1, s1);
  1735                 int s1ArgsLength = st1.getParameterTypes().length();
  1736                 if (st1 == s1.type) continue;
  1738                 for (Type t2 = sup;
  1739                      t2.hasTag(CLASS);
  1740                      t2 = types.supertype(t2)) {
  1741                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1742                          e2.scope != null;
  1743                          e2 = e2.next()) {
  1744                         Symbol s2 = e2.sym;
  1745                         if (s2 == s1 ||
  1746                             s2.kind != MTH ||
  1747                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1748                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1749                             !s2.isInheritedIn(site.tsym, types) ||
  1750                             ((MethodSymbol)s2).implementation(site.tsym,
  1751                                                               types,
  1752                                                               true) != s2)
  1753                             continue;
  1754                         Type st2 = types.memberType(t2, s2);
  1755                         if (types.overrideEquivalent(st1, st2))
  1756                             log.error(pos, "concrete.inheritance.conflict",
  1757                                       s1, t1, s2, t2, sup);
  1764     /** Check that classes (or interfaces) do not each define an abstract
  1765      *  method with same name and arguments but incompatible return types.
  1766      *  @param pos          Position to be used for error reporting.
  1767      *  @param t1           The first argument type.
  1768      *  @param t2           The second argument type.
  1769      */
  1770     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1771                                             Type t1,
  1772                                             Type t2) {
  1773         return checkCompatibleAbstracts(pos, t1, t2,
  1774                                         types.makeCompoundType(t1, t2));
  1777     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1778                                             Type t1,
  1779                                             Type t2,
  1780                                             Type site) {
  1781         return firstIncompatibility(pos, t1, t2, site) == null;
  1784     /** Return the first method which is defined with same args
  1785      *  but different return types in two given interfaces, or null if none
  1786      *  exists.
  1787      *  @param t1     The first type.
  1788      *  @param t2     The second type.
  1789      *  @param site   The most derived type.
  1790      *  @returns symbol from t2 that conflicts with one in t1.
  1791      */
  1792     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1793         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1794         closure(t1, interfaces1);
  1795         Map<TypeSymbol,Type> interfaces2;
  1796         if (t1 == t2)
  1797             interfaces2 = interfaces1;
  1798         else
  1799             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1801         for (Type t3 : interfaces1.values()) {
  1802             for (Type t4 : interfaces2.values()) {
  1803                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1804                 if (s != null) return s;
  1807         return null;
  1810     /** Compute all the supertypes of t, indexed by type symbol. */
  1811     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1812         if (!t.hasTag(CLASS)) return;
  1813         if (typeMap.put(t.tsym, t) == null) {
  1814             closure(types.supertype(t), typeMap);
  1815             for (Type i : types.interfaces(t))
  1816                 closure(i, typeMap);
  1820     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1821     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1822         if (!t.hasTag(CLASS)) return;
  1823         if (typesSkip.get(t.tsym) != null) return;
  1824         if (typeMap.put(t.tsym, t) == null) {
  1825             closure(types.supertype(t), typesSkip, typeMap);
  1826             for (Type i : types.interfaces(t))
  1827                 closure(i, typesSkip, typeMap);
  1831     /** Return the first method in t2 that conflicts with a method from t1. */
  1832     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1833         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1834             Symbol s1 = e1.sym;
  1835             Type st1 = null;
  1836             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
  1837                     (s1.flags() & SYNTHETIC) != 0) continue;
  1838             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1839             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1840             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1841                 Symbol s2 = e2.sym;
  1842                 if (s1 == s2) continue;
  1843                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
  1844                         (s2.flags() & SYNTHETIC) != 0) continue;
  1845                 if (st1 == null) st1 = types.memberType(t1, s1);
  1846                 Type st2 = types.memberType(t2, s2);
  1847                 if (types.overrideEquivalent(st1, st2)) {
  1848                     List<Type> tvars1 = st1.getTypeArguments();
  1849                     List<Type> tvars2 = st2.getTypeArguments();
  1850                     Type rt1 = st1.getReturnType();
  1851                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1852                     boolean compat =
  1853                         types.isSameType(rt1, rt2) ||
  1854                         !rt1.isPrimitiveOrVoid() &&
  1855                         !rt2.isPrimitiveOrVoid() &&
  1856                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
  1857                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
  1858                          checkCommonOverriderIn(s1,s2,site);
  1859                     if (!compat) {
  1860                         log.error(pos, "types.incompatible.diff.ret",
  1861                             t1, t2, s2.name +
  1862                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1863                         return s2;
  1865                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1866                         !checkCommonOverriderIn(s1, s2, site)) {
  1867                     log.error(pos,
  1868                             "name.clash.same.erasure.no.override",
  1869                             s1, s1.location(),
  1870                             s2, s2.location());
  1871                     return s2;
  1875         return null;
  1877     //WHERE
  1878     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1879         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1880         Type st1 = types.memberType(site, s1);
  1881         Type st2 = types.memberType(site, s2);
  1882         closure(site, supertypes);
  1883         for (Type t : supertypes.values()) {
  1884             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1885                 Symbol s3 = e.sym;
  1886                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1887                 Type st3 = types.memberType(site,s3);
  1888                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1889                     if (s3.owner == site.tsym) {
  1890                         return true;
  1892                     List<Type> tvars1 = st1.getTypeArguments();
  1893                     List<Type> tvars2 = st2.getTypeArguments();
  1894                     List<Type> tvars3 = st3.getTypeArguments();
  1895                     Type rt1 = st1.getReturnType();
  1896                     Type rt2 = st2.getReturnType();
  1897                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1898                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1899                     boolean compat =
  1900                         !rt13.isPrimitiveOrVoid() &&
  1901                         !rt23.isPrimitiveOrVoid() &&
  1902                         (types.covariantReturnType(rt13, rt1, types.noWarnings) &&
  1903                          types.covariantReturnType(rt23, rt2, types.noWarnings));
  1904                     if (compat)
  1905                         return true;
  1909         return false;
  1912     /** Check that a given method conforms with any method it overrides.
  1913      *  @param tree         The tree from which positions are extracted
  1914      *                      for errors.
  1915      *  @param m            The overriding method.
  1916      */
  1917     void checkOverride(JCTree tree, MethodSymbol m) {
  1918         ClassSymbol origin = (ClassSymbol)m.owner;
  1919         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1920             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1921                 log.error(tree.pos(), "enum.no.finalize");
  1922                 return;
  1924         for (Type t = origin.type; t.hasTag(CLASS);
  1925              t = types.supertype(t)) {
  1926             if (t != origin.type) {
  1927                 checkOverride(tree, t, origin, m);
  1929             for (Type t2 : types.interfaces(t)) {
  1930                 checkOverride(tree, t2, origin, m);
  1935     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1936         TypeSymbol c = site.tsym;
  1937         Scope.Entry e = c.members().lookup(m.name);
  1938         while (e.scope != null) {
  1939             if (m.overrides(e.sym, origin, types, false)) {
  1940                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1941                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1944             e = e.next();
  1948     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1949         ClashFilter cf = new ClashFilter(origin.type);
  1950         return (cf.accepts(s1) &&
  1951                 cf.accepts(s2) &&
  1952                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1956     /** Check that all abstract members of given class have definitions.
  1957      *  @param pos          Position to be used for error reporting.
  1958      *  @param c            The class.
  1959      */
  1960     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1961         try {
  1962             MethodSymbol undef = firstUndef(c, c);
  1963             if (undef != null) {
  1964                 if ((c.flags() & ENUM) != 0 &&
  1965                     types.supertype(c.type).tsym == syms.enumSym &&
  1966                     (c.flags() & FINAL) == 0) {
  1967                     // add the ABSTRACT flag to an enum
  1968                     c.flags_field |= ABSTRACT;
  1969                 } else {
  1970                     MethodSymbol undef1 =
  1971                         new MethodSymbol(undef.flags(), undef.name,
  1972                                          types.memberType(c.type, undef), undef.owner);
  1973                     log.error(pos, "does.not.override.abstract",
  1974                               c, undef1, undef1.location());
  1977         } catch (CompletionFailure ex) {
  1978             completionError(pos, ex);
  1981 //where
  1982         /** Return first abstract member of class `c' that is not defined
  1983          *  in `impl', null if there is none.
  1984          */
  1985         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1986             MethodSymbol undef = null;
  1987             // Do not bother to search in classes that are not abstract,
  1988             // since they cannot have abstract members.
  1989             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1990                 Scope s = c.members();
  1991                 for (Scope.Entry e = s.elems;
  1992                      undef == null && e != null;
  1993                      e = e.sibling) {
  1994                     if (e.sym.kind == MTH &&
  1995                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  1996                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1997                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1998                         if (implmeth == null || implmeth == absmeth) {
  1999                             //look for default implementations
  2000                             if (allowDefaultMethods) {
  2001                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
  2002                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
  2003                                     implmeth = prov;
  2007                         if (implmeth == null || implmeth == absmeth) {
  2008                             undef = absmeth;
  2012                 if (undef == null) {
  2013                     Type st = types.supertype(c.type);
  2014                     if (st.hasTag(CLASS))
  2015                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2017                 for (List<Type> l = types.interfaces(c.type);
  2018                      undef == null && l.nonEmpty();
  2019                      l = l.tail) {
  2020                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2023             return undef;
  2026     void checkNonCyclicDecl(JCClassDecl tree) {
  2027         CycleChecker cc = new CycleChecker();
  2028         cc.scan(tree);
  2029         if (!cc.errorFound && !cc.partialCheck) {
  2030             tree.sym.flags_field |= ACYCLIC;
  2034     class CycleChecker extends TreeScanner {
  2036         List<Symbol> seenClasses = List.nil();
  2037         boolean errorFound = false;
  2038         boolean partialCheck = false;
  2040         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2041             if (sym != null && sym.kind == TYP) {
  2042                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2043                 if (classEnv != null) {
  2044                     DiagnosticSource prevSource = log.currentSource();
  2045                     try {
  2046                         log.useSource(classEnv.toplevel.sourcefile);
  2047                         scan(classEnv.tree);
  2049                     finally {
  2050                         log.useSource(prevSource.getFile());
  2052                 } else if (sym.kind == TYP) {
  2053                     checkClass(pos, sym, List.<JCTree>nil());
  2055             } else {
  2056                 //not completed yet
  2057                 partialCheck = true;
  2061         @Override
  2062         public void visitSelect(JCFieldAccess tree) {
  2063             super.visitSelect(tree);
  2064             checkSymbol(tree.pos(), tree.sym);
  2067         @Override
  2068         public void visitIdent(JCIdent tree) {
  2069             checkSymbol(tree.pos(), tree.sym);
  2072         @Override
  2073         public void visitTypeApply(JCTypeApply tree) {
  2074             scan(tree.clazz);
  2077         @Override
  2078         public void visitTypeArray(JCArrayTypeTree tree) {
  2079             scan(tree.elemtype);
  2082         @Override
  2083         public void visitClassDef(JCClassDecl tree) {
  2084             List<JCTree> supertypes = List.nil();
  2085             if (tree.getExtendsClause() != null) {
  2086                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2088             if (tree.getImplementsClause() != null) {
  2089                 for (JCTree intf : tree.getImplementsClause()) {
  2090                     supertypes = supertypes.prepend(intf);
  2093             checkClass(tree.pos(), tree.sym, supertypes);
  2096         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2097             if ((c.flags_field & ACYCLIC) != 0)
  2098                 return;
  2099             if (seenClasses.contains(c)) {
  2100                 errorFound = true;
  2101                 noteCyclic(pos, (ClassSymbol)c);
  2102             } else if (!c.type.isErroneous()) {
  2103                 try {
  2104                     seenClasses = seenClasses.prepend(c);
  2105                     if (c.type.hasTag(CLASS)) {
  2106                         if (supertypes.nonEmpty()) {
  2107                             scan(supertypes);
  2109                         else {
  2110                             ClassType ct = (ClassType)c.type;
  2111                             if (ct.supertype_field == null ||
  2112                                     ct.interfaces_field == null) {
  2113                                 //not completed yet
  2114                                 partialCheck = true;
  2115                                 return;
  2117                             checkSymbol(pos, ct.supertype_field.tsym);
  2118                             for (Type intf : ct.interfaces_field) {
  2119                                 checkSymbol(pos, intf.tsym);
  2122                         if (c.owner.kind == TYP) {
  2123                             checkSymbol(pos, c.owner);
  2126                 } finally {
  2127                     seenClasses = seenClasses.tail;
  2133     /** Check for cyclic references. Issue an error if the
  2134      *  symbol of the type referred to has a LOCKED flag set.
  2136      *  @param pos      Position to be used for error reporting.
  2137      *  @param t        The type referred to.
  2138      */
  2139     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2140         checkNonCyclicInternal(pos, t);
  2144     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2145         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2148     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2149         final TypeVar tv;
  2150         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2151             return;
  2152         if (seen.contains(t)) {
  2153             tv = (TypeVar)t;
  2154             tv.bound = types.createErrorType(t);
  2155             log.error(pos, "cyclic.inheritance", t);
  2156         } else if (t.hasTag(TYPEVAR)) {
  2157             tv = (TypeVar)t;
  2158             seen = seen.prepend(tv);
  2159             for (Type b : types.getBounds(tv))
  2160                 checkNonCyclic1(pos, b, seen);
  2164     /** Check for cyclic references. Issue an error if the
  2165      *  symbol of the type referred to has a LOCKED flag set.
  2167      *  @param pos      Position to be used for error reporting.
  2168      *  @param t        The type referred to.
  2169      *  @returns        True if the check completed on all attributed classes
  2170      */
  2171     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2172         boolean complete = true; // was the check complete?
  2173         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2174         Symbol c = t.tsym;
  2175         if ((c.flags_field & ACYCLIC) != 0) return true;
  2177         if ((c.flags_field & LOCKED) != 0) {
  2178             noteCyclic(pos, (ClassSymbol)c);
  2179         } else if (!c.type.isErroneous()) {
  2180             try {
  2181                 c.flags_field |= LOCKED;
  2182                 if (c.type.hasTag(CLASS)) {
  2183                     ClassType clazz = (ClassType)c.type;
  2184                     if (clazz.interfaces_field != null)
  2185                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2186                             complete &= checkNonCyclicInternal(pos, l.head);
  2187                     if (clazz.supertype_field != null) {
  2188                         Type st = clazz.supertype_field;
  2189                         if (st != null && st.hasTag(CLASS))
  2190                             complete &= checkNonCyclicInternal(pos, st);
  2192                     if (c.owner.kind == TYP)
  2193                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2195             } finally {
  2196                 c.flags_field &= ~LOCKED;
  2199         if (complete)
  2200             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2201         if (complete) c.flags_field |= ACYCLIC;
  2202         return complete;
  2205     /** Note that we found an inheritance cycle. */
  2206     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2207         log.error(pos, "cyclic.inheritance", c);
  2208         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2209             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2210         Type st = types.supertype(c.type);
  2211         if (st.hasTag(CLASS))
  2212             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2213         c.type = types.createErrorType(c, c.type);
  2214         c.flags_field |= ACYCLIC;
  2217     /**
  2218      * Check that functional interface methods would make sense when seen
  2219      * from the perspective of the implementing class
  2220      */
  2221     void checkFunctionalInterface(JCTree tree, Type funcInterface) {
  2222         ClassType c = new ClassType(Type.noType, List.<Type>nil(), null);
  2223         ClassSymbol csym = new ClassSymbol(0, names.empty, c, syms.noSymbol);
  2224         c.interfaces_field = List.of(funcInterface);
  2225         c.supertype_field = syms.objectType;
  2226         c.tsym = csym;
  2227         csym.members_field = new Scope(csym);
  2228         csym.completer = null;
  2229         checkImplementations(tree, csym, csym);
  2232     /** Check that all methods which implement some
  2233      *  method conform to the method they implement.
  2234      *  @param tree         The class definition whose members are checked.
  2235      */
  2236     void checkImplementations(JCClassDecl tree) {
  2237         checkImplementations(tree, tree.sym, tree.sym);
  2239 //where
  2240         /** Check that all methods which implement some
  2241          *  method in `ic' conform to the method they implement.
  2242          */
  2243         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
  2244             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2245                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2246                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2247                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2248                         if (e.sym.kind == MTH &&
  2249                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2250                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2251                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2252                             if (implmeth != null && implmeth != absmeth &&
  2253                                 (implmeth.owner.flags() & INTERFACE) ==
  2254                                 (origin.flags() & INTERFACE)) {
  2255                                 // don't check if implmeth is in a class, yet
  2256                                 // origin is an interface. This case arises only
  2257                                 // if implmeth is declared in Object. The reason is
  2258                                 // that interfaces really don't inherit from
  2259                                 // Object it's just that the compiler represents
  2260                                 // things that way.
  2261                                 checkOverride(tree, implmeth, absmeth, origin);
  2269     /** Check that all abstract methods implemented by a class are
  2270      *  mutually compatible.
  2271      *  @param pos          Position to be used for error reporting.
  2272      *  @param c            The class whose interfaces are checked.
  2273      */
  2274     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2275         List<Type> supertypes = types.interfaces(c);
  2276         Type supertype = types.supertype(c);
  2277         if (supertype.hasTag(CLASS) &&
  2278             (supertype.tsym.flags() & ABSTRACT) != 0)
  2279             supertypes = supertypes.prepend(supertype);
  2280         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2281             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2282                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2283                 return;
  2284             for (List<Type> m = supertypes; m != l; m = m.tail)
  2285                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2286                     return;
  2288         checkCompatibleConcretes(pos, c);
  2291     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2292         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2293             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2294                 // VM allows methods and variables with differing types
  2295                 if (sym.kind == e.sym.kind &&
  2296                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2297                     sym != e.sym &&
  2298                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2299                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2300                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2301                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2302                     return;
  2308     /** Check that all non-override equivalent methods accessible from 'site'
  2309      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2311      *  @param pos  Position to be used for error reporting.
  2312      *  @param site The class whose methods are checked.
  2313      *  @param sym  The method symbol to be checked.
  2314      */
  2315     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2316          ClashFilter cf = new ClashFilter(site);
  2317         //for each method m1 that is overridden (directly or indirectly)
  2318         //by method 'sym' in 'site'...
  2319         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2320             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2321              //...check each method m2 that is a member of 'site'
  2322              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2323                 if (m2 == m1) continue;
  2324                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2325                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2326                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2327                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2328                     sym.flags_field |= CLASH;
  2329                     String key = m1 == sym ?
  2330                             "name.clash.same.erasure.no.override" :
  2331                             "name.clash.same.erasure.no.override.1";
  2332                     log.error(pos,
  2333                             key,
  2334                             sym, sym.location(),
  2335                             m2, m2.location(),
  2336                             m1, m1.location());
  2337                     return;
  2345     /** Check that all static methods accessible from 'site' are
  2346      *  mutually compatible (JLS 8.4.8).
  2348      *  @param pos  Position to be used for error reporting.
  2349      *  @param site The class whose methods are checked.
  2350      *  @param sym  The method symbol to be checked.
  2351      */
  2352     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2353         ClashFilter cf = new ClashFilter(site);
  2354         //for each method m1 that is a member of 'site'...
  2355         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2356             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2357             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2358             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck) &&
  2359                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2360                 log.error(pos,
  2361                         "name.clash.same.erasure.no.hide",
  2362                         sym, sym.location(),
  2363                         s, s.location());
  2364                 return;
  2369      //where
  2370      private class ClashFilter implements Filter<Symbol> {
  2372          Type site;
  2374          ClashFilter(Type site) {
  2375              this.site = site;
  2378          boolean shouldSkip(Symbol s) {
  2379              return (s.flags() & CLASH) != 0 &&
  2380                 s.owner == site.tsym;
  2383          public boolean accepts(Symbol s) {
  2384              return s.kind == MTH &&
  2385                      (s.flags() & SYNTHETIC) == 0 &&
  2386                      !shouldSkip(s) &&
  2387                      s.isInheritedIn(site.tsym, types) &&
  2388                      !s.isConstructor();
  2392     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2393         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2394         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2395             Assert.check(m.kind == MTH);
  2396             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2397             if (prov.size() > 1) {
  2398                 ListBuffer<Symbol> abstracts = ListBuffer.lb();
  2399                 ListBuffer<Symbol> defaults = ListBuffer.lb();
  2400                 for (MethodSymbol provSym : prov) {
  2401                     if ((provSym.flags() & DEFAULT) != 0) {
  2402                         defaults = defaults.append(provSym);
  2403                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2404                         abstracts = abstracts.append(provSym);
  2406                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2407                         //strong semantics - issue an error if two sibling interfaces
  2408                         //have two override-equivalent defaults - or if one is abstract
  2409                         //and the other is default
  2410                         String errKey;
  2411                         Symbol s1 = defaults.first();
  2412                         Symbol s2;
  2413                         if (defaults.size() > 1) {
  2414                             errKey = "types.incompatible.unrelated.defaults";
  2415                             s2 = defaults.toList().tail.head;
  2416                         } else {
  2417                             errKey = "types.incompatible.abstract.default";
  2418                             s2 = abstracts.first();
  2420                         log.error(pos, errKey,
  2421                                 Kinds.kindName(site.tsym), site,
  2422                                 m.name, types.memberType(site, m).getParameterTypes(),
  2423                                 s1.location(), s2.location());
  2424                         break;
  2431     //where
  2432      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2434          Type site;
  2436          DefaultMethodClashFilter(Type site) {
  2437              this.site = site;
  2440          public boolean accepts(Symbol s) {
  2441              return s.kind == MTH &&
  2442                      (s.flags() & DEFAULT) != 0 &&
  2443                      s.isInheritedIn(site.tsym, types) &&
  2444                      !s.isConstructor();
  2448     /** Report a conflict between a user symbol and a synthetic symbol.
  2449      */
  2450     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2451         if (!sym.type.isErroneous()) {
  2452             if (warnOnSyntheticConflicts) {
  2453                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2455             else {
  2456                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2461     /** Check that class c does not implement directly or indirectly
  2462      *  the same parameterized interface with two different argument lists.
  2463      *  @param pos          Position to be used for error reporting.
  2464      *  @param type         The type whose interfaces are checked.
  2465      */
  2466     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2467         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2469 //where
  2470         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2471          *  with their class symbol as key and their type as value. Make
  2472          *  sure no class is entered with two different types.
  2473          */
  2474         void checkClassBounds(DiagnosticPosition pos,
  2475                               Map<TypeSymbol,Type> seensofar,
  2476                               Type type) {
  2477             if (type.isErroneous()) return;
  2478             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2479                 Type it = l.head;
  2480                 Type oldit = seensofar.put(it.tsym, it);
  2481                 if (oldit != null) {
  2482                     List<Type> oldparams = oldit.allparams();
  2483                     List<Type> newparams = it.allparams();
  2484                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2485                         log.error(pos, "cant.inherit.diff.arg",
  2486                                   it.tsym, Type.toString(oldparams),
  2487                                   Type.toString(newparams));
  2489                 checkClassBounds(pos, seensofar, it);
  2491             Type st = types.supertype(type);
  2492             if (st != null) checkClassBounds(pos, seensofar, st);
  2495     /** Enter interface into into set.
  2496      *  If it existed already, issue a "repeated interface" error.
  2497      */
  2498     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2499         if (its.contains(it))
  2500             log.error(pos, "repeated.interface");
  2501         else {
  2502             its.add(it);
  2506 /* *************************************************************************
  2507  * Check annotations
  2508  **************************************************************************/
  2510     /**
  2511      * Recursively validate annotations values
  2512      */
  2513     void validateAnnotationTree(JCTree tree) {
  2514         class AnnotationValidator extends TreeScanner {
  2515             @Override
  2516             public void visitAnnotation(JCAnnotation tree) {
  2517                 if (!tree.type.isErroneous()) {
  2518                     super.visitAnnotation(tree);
  2519                     validateAnnotation(tree);
  2523         tree.accept(new AnnotationValidator());
  2526     /**
  2527      *  {@literal
  2528      *  Annotation types are restricted to primitives, String, an
  2529      *  enum, an annotation, Class, Class<?>, Class<? extends
  2530      *  Anything>, arrays of the preceding.
  2531      *  }
  2532      */
  2533     void validateAnnotationType(JCTree restype) {
  2534         // restype may be null if an error occurred, so don't bother validating it
  2535         if (restype != null) {
  2536             validateAnnotationType(restype.pos(), restype.type);
  2540     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2541         if (type.isPrimitive()) return;
  2542         if (types.isSameType(type, syms.stringType)) return;
  2543         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2544         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2545         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2546         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2547             validateAnnotationType(pos, types.elemtype(type));
  2548             return;
  2550         log.error(pos, "invalid.annotation.member.type");
  2553     /**
  2554      * "It is also a compile-time error if any method declared in an
  2555      * annotation type has a signature that is override-equivalent to
  2556      * that of any public or protected method declared in class Object
  2557      * or in the interface annotation.Annotation."
  2559      * @jls 9.6 Annotation Types
  2560      */
  2561     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2562         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2563             Scope s = sup.tsym.members();
  2564             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2565                 if (e.sym.kind == MTH &&
  2566                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2567                     types.overrideEquivalent(m.type, e.sym.type))
  2568                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2573     /** Check the annotations of a symbol.
  2574      */
  2575     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2576         for (JCAnnotation a : annotations)
  2577             validateAnnotation(a, s);
  2580     /** Check an annotation of a symbol.
  2581      */
  2582     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2583         validateAnnotationTree(a);
  2585         if (!annotationApplicable(a, s))
  2586             log.error(a.pos(), "annotation.type.not.applicable");
  2588         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2589             if (!isOverrider(s))
  2590                 log.error(a.pos(), "method.does.not.override.superclass");
  2594     /**
  2595      * Validate the proposed container 'containedBy' on the
  2596      * annotation type symbol 's'. Report errors at position
  2597      * 'pos'.
  2599      * @param s The (annotation)type declaration annotated with a @ContainedBy
  2600      * @param containedBy the @ContainedBy on 's'
  2601      * @param pos where to report errors
  2602      */
  2603     public void validateContainedBy(TypeSymbol s, Attribute.Compound containedBy, DiagnosticPosition pos) {
  2604         Assert.check(types.isSameType(containedBy.type, syms.containedByType));
  2606         Type t = null;
  2607         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2608         if (!l.isEmpty()) {
  2609             Assert.check(l.head.fst.name == names.value);
  2610             t = ((Attribute.Class)l.head.snd).getValue();
  2613         if (t == null) {
  2614             log.error(pos, "invalid.container.wrong.containedby", s, containedBy);
  2615             return;
  2618         validateHasContainerFor(t.tsym, s, pos);
  2619         validateRetention(t.tsym, s, pos);
  2620         validateDocumented(t.tsym, s, pos);
  2621         validateInherited(t.tsym, s, pos);
  2622         validateTarget(t.tsym, s, pos);
  2623         validateDefault(t.tsym, s, pos);
  2626     /**
  2627      * Validate the proposed container 'containerFor' on the
  2628      * annotation type symbol 's'. Report errors at position
  2629      * 'pos'.
  2631      * @param s The (annotation)type declaration annotated with a @ContainerFor
  2632      * @param containerFor the @ContainedFor on 's'
  2633      * @param pos where to report errors
  2634      */
  2635     public void validateContainerFor(TypeSymbol s, Attribute.Compound containerFor, DiagnosticPosition pos) {
  2636         Assert.check(types.isSameType(containerFor.type, syms.containerForType));
  2638         Type t = null;
  2639         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2640         if (!l.isEmpty()) {
  2641             Assert.check(l.head.fst.name == names.value);
  2642             t = ((Attribute.Class)l.head.snd).getValue();
  2645         if (t == null) {
  2646             log.error(pos, "invalid.container.wrong.containerfor", s, containerFor);
  2647             return;
  2650         validateHasContainedBy(t.tsym, s, pos);
  2653     private void validateHasContainedBy(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2654         Attribute.Compound containedBy = container.attribute(syms.containedByType.tsym);
  2656         if (containedBy == null) {
  2657             log.error(pos, "invalid.container.no.containedby", container, syms.containedByType.tsym);
  2658             return;
  2661         Type t = null;
  2662         List<Pair<MethodSymbol,Attribute>> l = containedBy.values;
  2663         if (!l.isEmpty()) {
  2664             Assert.check(l.head.fst.name == names.value);
  2665             t = ((Attribute.Class)l.head.snd).getValue();
  2668         if (t == null) {
  2669             log.error(pos, "invalid.container.wrong.containedby", container, contained);
  2670             return;
  2673         if (!types.isSameType(t, contained.type))
  2674             log.error(pos, "invalid.container.wrong.containedby", t.tsym, contained);
  2677     private void validateHasContainerFor(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2678         Attribute.Compound containerFor = container.attribute(syms.containerForType.tsym);
  2680         if (containerFor == null) {
  2681             log.error(pos, "invalid.container.no.containerfor", container, syms.containerForType.tsym);
  2682             return;
  2685         Type t = null;
  2686         List<Pair<MethodSymbol,Attribute>> l = containerFor.values;
  2687         if (!l.isEmpty()) {
  2688             Assert.check(l.head.fst.name == names.value);
  2689             t = ((Attribute.Class)l.head.snd).getValue();
  2692         if (t == null) {
  2693             log.error(pos, "invalid.container.wrong.containerfor", container, contained);
  2694             return;
  2697         if (!types.isSameType(t, contained.type))
  2698             log.error(pos, "invalid.container.wrong.containerfor", t.tsym, contained);
  2701     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2702         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2703         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2705         boolean error = false;
  2706         switch (containedRetention) {
  2707         case RUNTIME:
  2708             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2709                 error = true;
  2711             break;
  2712         case CLASS:
  2713             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2714                 error = true;
  2717         if (error ) {
  2718             log.error(pos, "invalid.containedby.annotation.retention",
  2719                       container, containerRetention,
  2720                       contained, containedRetention);
  2724     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2725         if (contained.attribute(syms.documentedType.tsym) != null) {
  2726             if (container.attribute(syms.documentedType.tsym) == null) {
  2727                 log.error(pos, "invalid.containedby.annotation.not.documented", container, contained);
  2732     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2733         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2734             if (container.attribute(syms.inheritedType.tsym) == null) {
  2735                 log.error(pos, "invalid.containedby.annotation.not.inherited", container, contained);
  2740     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2741         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2743         // If contained has no Target, we are done
  2744         if (containedTarget == null) {
  2745             return;
  2748         // If contained has Target m1, container must have a Target
  2749         // annotation, m2, and m2 must be a subset of m1. (This is
  2750         // trivially true if contained has no target as per above).
  2752         // contained has target, but container has not, error
  2753         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2754         if (containerTarget == null) {
  2755             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2756             return;
  2759         Set<Name> containerTargets = new HashSet<Name>();
  2760         for (Attribute app : containerTarget.values) {
  2761             if (!(app instanceof Attribute.Enum)) {
  2762                 continue; // recovery
  2764             Attribute.Enum e = (Attribute.Enum)app;
  2765             containerTargets.add(e.value.name);
  2768         Set<Name> containedTargets = new HashSet<Name>();
  2769         for (Attribute app : containedTarget.values) {
  2770             if (!(app instanceof Attribute.Enum)) {
  2771                 continue; // recovery
  2773             Attribute.Enum e = (Attribute.Enum)app;
  2774             containedTargets.add(e.value.name);
  2777         if (!isTargetSubset(containedTargets, containerTargets)) {
  2778             log.error(pos, "invalid.containedby.annotation.incompatible.target", container, contained);
  2782     /** Checks that t is a subset of s, with respect to ElementType
  2783      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2784      */
  2785     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2786         // Check that all elements in t are present in s
  2787         for (Name n2 : t) {
  2788             boolean currentElementOk = false;
  2789             for (Name n1 : s) {
  2790                 if (n1 == n2) {
  2791                     currentElementOk = true;
  2792                     break;
  2793                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2794                     currentElementOk = true;
  2795                     break;
  2798             if (!currentElementOk)
  2799                 return false;
  2801         return true;
  2804     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2805         // validate that all other elements of containing type has defaults
  2806         Scope scope = container.members();
  2807         for(Symbol elm : scope.getElements()) {
  2808             if (elm.name != names.value &&
  2809                 elm.kind == Kinds.MTH &&
  2810                 ((MethodSymbol)elm).defaultValue == null) {
  2811                 log.error(pos,
  2812                           "invalid.containedby.annotation.elem.nondefault",
  2813                           container,
  2814                           elm);
  2819     /** Is s a method symbol that overrides a method in a superclass? */
  2820     boolean isOverrider(Symbol s) {
  2821         if (s.kind != MTH || s.isStatic())
  2822             return false;
  2823         MethodSymbol m = (MethodSymbol)s;
  2824         TypeSymbol owner = (TypeSymbol)m.owner;
  2825         for (Type sup : types.closure(owner.type)) {
  2826             if (sup == owner.type)
  2827                 continue; // skip "this"
  2828             Scope scope = sup.tsym.members();
  2829             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2830                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2831                     return true;
  2834         return false;
  2837     /** Is the annotation applicable to the symbol? */
  2838     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2839         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2840         if (arr == null) {
  2841             return true;
  2843         for (Attribute app : arr.values) {
  2844             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2845             Attribute.Enum e = (Attribute.Enum) app;
  2846             if (e.value.name == names.TYPE)
  2847                 { if (s.kind == TYP) return true; }
  2848             else if (e.value.name == names.FIELD)
  2849                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2850             else if (e.value.name == names.METHOD)
  2851                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2852             else if (e.value.name == names.PARAMETER)
  2853                 { if (s.kind == VAR &&
  2854                       s.owner.kind == MTH &&
  2855                       (s.flags() & PARAMETER) != 0)
  2856                     return true;
  2858             else if (e.value.name == names.CONSTRUCTOR)
  2859                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2860             else if (e.value.name == names.LOCAL_VARIABLE)
  2861                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2862                       (s.flags() & PARAMETER) == 0)
  2863                     return true;
  2865             else if (e.value.name == names.ANNOTATION_TYPE)
  2866                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2867                     return true;
  2869             else if (e.value.name == names.PACKAGE)
  2870                 { if (s.kind == PCK) return true; }
  2871             else if (e.value.name == names.TYPE_USE)
  2872                 { if (s.kind == TYP ||
  2873                       s.kind == VAR ||
  2874                       (s.kind == MTH && !s.isConstructor() &&
  2875                        !s.type.getReturnType().hasTag(VOID)))
  2876                     return true;
  2878             else
  2879                 return true; // recovery
  2881         return false;
  2885     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2886         Attribute.Compound atTarget =
  2887             s.attribute(syms.annotationTargetType.tsym);
  2888         if (atTarget == null) return null; // ok, is applicable
  2889         Attribute atValue = atTarget.member(names.value);
  2890         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2891         return (Attribute.Array) atValue;
  2894     /** Check an annotation value.
  2896      * @param a The annotation tree to check
  2897      * @return true if this annotation tree is valid, otherwise false
  2898      */
  2899     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
  2900         boolean res = false;
  2901         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
  2902         try {
  2903             res = validateAnnotation(a);
  2904         } finally {
  2905             log.popDiagnosticHandler(diagHandler);
  2907         return res;
  2910     private boolean validateAnnotation(JCAnnotation a) {
  2911         boolean isValid = true;
  2912         // collect an inventory of the annotation elements
  2913         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
  2914         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2915              e != null;
  2916              e = e.sibling)
  2917             if (e.sym.kind == MTH)
  2918                 members.add((MethodSymbol) e.sym);
  2920         // remove the ones that are assigned values
  2921         for (JCTree arg : a.args) {
  2922             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2923             JCAssign assign = (JCAssign) arg;
  2924             Symbol m = TreeInfo.symbol(assign.lhs);
  2925             if (m == null || m.type.isErroneous()) continue;
  2926             if (!members.remove(m)) {
  2927                 isValid = false;
  2928                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2929                           m.name, a.type);
  2933         // all the remaining ones better have default values
  2934         List<Name> missingDefaults = List.nil();
  2935         for (MethodSymbol m : members) {
  2936             if (m.defaultValue == null && !m.type.isErroneous()) {
  2937                 missingDefaults = missingDefaults.append(m.name);
  2940         missingDefaults = missingDefaults.reverse();
  2941         if (missingDefaults.nonEmpty()) {
  2942             isValid = false;
  2943             String key = (missingDefaults.size() > 1)
  2944                     ? "annotation.missing.default.value.1"
  2945                     : "annotation.missing.default.value";
  2946             log.error(a.pos(), key, a.type, missingDefaults);
  2949         // special case: java.lang.annotation.Target must not have
  2950         // repeated values in its value member
  2951         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2952             a.args.tail == null)
  2953             return isValid;
  2955         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
  2956         JCAssign assign = (JCAssign) a.args.head;
  2957         Symbol m = TreeInfo.symbol(assign.lhs);
  2958         if (m.name != names.value) return false;
  2959         JCTree rhs = assign.rhs;
  2960         if (!rhs.hasTag(NEWARRAY)) return false;
  2961         JCNewArray na = (JCNewArray) rhs;
  2962         Set<Symbol> targets = new HashSet<Symbol>();
  2963         for (JCTree elem : na.elems) {
  2964             if (!targets.add(TreeInfo.symbol(elem))) {
  2965                 isValid = false;
  2966                 log.error(elem.pos(), "repeated.annotation.target");
  2969         return isValid;
  2972     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2973         if (allowAnnotations &&
  2974             lint.isEnabled(LintCategory.DEP_ANN) &&
  2975             (s.flags() & DEPRECATED) != 0 &&
  2976             !syms.deprecatedType.isErroneous() &&
  2977             s.attribute(syms.deprecatedType.tsym) == null) {
  2978             log.warning(LintCategory.DEP_ANN,
  2979                     pos, "missing.deprecated.annotation");
  2983     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  2984         if ((s.flags() & DEPRECATED) != 0 &&
  2985                 (other.flags() & DEPRECATED) == 0 &&
  2986                 s.outermostClass() != other.outermostClass()) {
  2987             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2988                 @Override
  2989                 public void report() {
  2990                     warnDeprecated(pos, s);
  2992             });
  2996     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  2997         if ((s.flags() & PROPRIETARY) != 0) {
  2998             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  2999                 public void report() {
  3000                     if (enableSunApiLintControl)
  3001                       warnSunApi(pos, "sun.proprietary", s);
  3002                     else
  3003                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3005             });
  3009 /* *************************************************************************
  3010  * Check for recursive annotation elements.
  3011  **************************************************************************/
  3013     /** Check for cycles in the graph of annotation elements.
  3014      */
  3015     void checkNonCyclicElements(JCClassDecl tree) {
  3016         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3017         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3018         try {
  3019             tree.sym.flags_field |= LOCKED;
  3020             for (JCTree def : tree.defs) {
  3021                 if (!def.hasTag(METHODDEF)) continue;
  3022                 JCMethodDecl meth = (JCMethodDecl)def;
  3023                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3025         } finally {
  3026             tree.sym.flags_field &= ~LOCKED;
  3027             tree.sym.flags_field |= ACYCLIC_ANN;
  3031     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3032         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3033             return;
  3034         if ((tsym.flags_field & LOCKED) != 0) {
  3035             log.error(pos, "cyclic.annotation.element");
  3036             return;
  3038         try {
  3039             tsym.flags_field |= LOCKED;
  3040             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3041                 Symbol s = e.sym;
  3042                 if (s.kind != Kinds.MTH)
  3043                     continue;
  3044                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3046         } finally {
  3047             tsym.flags_field &= ~LOCKED;
  3048             tsym.flags_field |= ACYCLIC_ANN;
  3052     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3053         switch (type.getTag()) {
  3054         case CLASS:
  3055             if ((type.tsym.flags() & ANNOTATION) != 0)
  3056                 checkNonCyclicElementsInternal(pos, type.tsym);
  3057             break;
  3058         case ARRAY:
  3059             checkAnnotationResType(pos, types.elemtype(type));
  3060             break;
  3061         default:
  3062             break; // int etc
  3066 /* *************************************************************************
  3067  * Check for cycles in the constructor call graph.
  3068  **************************************************************************/
  3070     /** Check for cycles in the graph of constructors calling other
  3071      *  constructors.
  3072      */
  3073     void checkCyclicConstructors(JCClassDecl tree) {
  3074         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3076         // enter each constructor this-call into the map
  3077         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3078             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3079             if (app == null) continue;
  3080             JCMethodDecl meth = (JCMethodDecl) l.head;
  3081             if (TreeInfo.name(app.meth) == names._this) {
  3082                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3083             } else {
  3084                 meth.sym.flags_field |= ACYCLIC;
  3088         // Check for cycles in the map
  3089         Symbol[] ctors = new Symbol[0];
  3090         ctors = callMap.keySet().toArray(ctors);
  3091         for (Symbol caller : ctors) {
  3092             checkCyclicConstructor(tree, caller, callMap);
  3096     /** Look in the map to see if the given constructor is part of a
  3097      *  call cycle.
  3098      */
  3099     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3100                                         Map<Symbol,Symbol> callMap) {
  3101         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3102             if ((ctor.flags_field & LOCKED) != 0) {
  3103                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3104                           "recursive.ctor.invocation");
  3105             } else {
  3106                 ctor.flags_field |= LOCKED;
  3107                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3108                 ctor.flags_field &= ~LOCKED;
  3110             ctor.flags_field |= ACYCLIC;
  3114 /* *************************************************************************
  3115  * Miscellaneous
  3116  **************************************************************************/
  3118     /**
  3119      * Return the opcode of the operator but emit an error if it is an
  3120      * error.
  3121      * @param pos        position for error reporting.
  3122      * @param operator   an operator
  3123      * @param tag        a tree tag
  3124      * @param left       type of left hand side
  3125      * @param right      type of right hand side
  3126      */
  3127     int checkOperator(DiagnosticPosition pos,
  3128                        OperatorSymbol operator,
  3129                        JCTree.Tag tag,
  3130                        Type left,
  3131                        Type right) {
  3132         if (operator.opcode == ByteCodes.error) {
  3133             log.error(pos,
  3134                       "operator.cant.be.applied.1",
  3135                       treeinfo.operatorName(tag),
  3136                       left, right);
  3138         return operator.opcode;
  3142     /**
  3143      *  Check for division by integer constant zero
  3144      *  @param pos           Position for error reporting.
  3145      *  @param operator      The operator for the expression
  3146      *  @param operand       The right hand operand for the expression
  3147      */
  3148     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3149         if (operand.constValue() != null
  3150             && lint.isEnabled(LintCategory.DIVZERO)
  3151             && (operand.getTag().isSubRangeOf(LONG))
  3152             && ((Number) (operand.constValue())).longValue() == 0) {
  3153             int opc = ((OperatorSymbol)operator).opcode;
  3154             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3155                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3156                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3161     /**
  3162      * Check for empty statements after if
  3163      */
  3164     void checkEmptyIf(JCIf tree) {
  3165         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3166                 lint.isEnabled(LintCategory.EMPTY))
  3167             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3170     /** Check that symbol is unique in given scope.
  3171      *  @param pos           Position for error reporting.
  3172      *  @param sym           The symbol.
  3173      *  @param s             The scope.
  3174      */
  3175     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3176         if (sym.type.isErroneous())
  3177             return true;
  3178         if (sym.owner.name == names.any) return false;
  3179         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3180             if (sym != e.sym &&
  3181                     (e.sym.flags() & CLASH) == 0 &&
  3182                     sym.kind == e.sym.kind &&
  3183                     sym.name != names.error &&
  3184                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3185                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3186                     varargsDuplicateError(pos, sym, e.sym);
  3187                     return true;
  3188                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3189                     duplicateErasureError(pos, sym, e.sym);
  3190                     sym.flags_field |= CLASH;
  3191                     return true;
  3192                 } else {
  3193                     duplicateError(pos, e.sym);
  3194                     return false;
  3198         return true;
  3201     /** Report duplicate declaration error.
  3202      */
  3203     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3204         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3205             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3209     /** Check that single-type import is not already imported or top-level defined,
  3210      *  but make an exception for two single-type imports which denote the same type.
  3211      *  @param pos           Position for error reporting.
  3212      *  @param sym           The symbol.
  3213      *  @param s             The scope
  3214      */
  3215     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3216         return checkUniqueImport(pos, sym, s, false);
  3219     /** Check that static single-type import is not already imported or top-level defined,
  3220      *  but make an exception for two single-type imports which denote the same type.
  3221      *  @param pos           Position for error reporting.
  3222      *  @param sym           The symbol.
  3223      *  @param s             The scope
  3224      */
  3225     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3226         return checkUniqueImport(pos, sym, s, true);
  3229     /** Check that single-type import is not already imported or top-level defined,
  3230      *  but make an exception for two single-type imports which denote the same type.
  3231      *  @param pos           Position for error reporting.
  3232      *  @param sym           The symbol.
  3233      *  @param s             The scope.
  3234      *  @param staticImport  Whether or not this was a static import
  3235      */
  3236     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3237         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3238             // is encountered class entered via a class declaration?
  3239             boolean isClassDecl = e.scope == s;
  3240             if ((isClassDecl || sym != e.sym) &&
  3241                 sym.kind == e.sym.kind &&
  3242                 sym.name != names.error) {
  3243                 if (!e.sym.type.isErroneous()) {
  3244                     String what = e.sym.toString();
  3245                     if (!isClassDecl) {
  3246                         if (staticImport)
  3247                             log.error(pos, "already.defined.static.single.import", what);
  3248                         else
  3249                             log.error(pos, "already.defined.single.import", what);
  3251                     else if (sym != e.sym)
  3252                         log.error(pos, "already.defined.this.unit", what);
  3254                 return false;
  3257         return true;
  3260     /** Check that a qualified name is in canonical form (for import decls).
  3261      */
  3262     public void checkCanonical(JCTree tree) {
  3263         if (!isCanonical(tree))
  3264             log.error(tree.pos(), "import.requires.canonical",
  3265                       TreeInfo.symbol(tree));
  3267         // where
  3268         private boolean isCanonical(JCTree tree) {
  3269             while (tree.hasTag(SELECT)) {
  3270                 JCFieldAccess s = (JCFieldAccess) tree;
  3271                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3272                     return false;
  3273                 tree = s.selected;
  3275             return true;
  3278     /** Check that an auxiliary class is not accessed from any other file than its own.
  3279      */
  3280     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3281         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3282             (c.flags() & AUXILIARY) != 0 &&
  3283             rs.isAccessible(env, c) &&
  3284             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3286             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3287                         c, c.sourcefile);
  3291     private class ConversionWarner extends Warner {
  3292         final String uncheckedKey;
  3293         final Type found;
  3294         final Type expected;
  3295         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3296             super(pos);
  3297             this.uncheckedKey = uncheckedKey;
  3298             this.found = found;
  3299             this.expected = expected;
  3302         @Override
  3303         public void warn(LintCategory lint) {
  3304             boolean warned = this.warned;
  3305             super.warn(lint);
  3306             if (warned) return; // suppress redundant diagnostics
  3307             switch (lint) {
  3308                 case UNCHECKED:
  3309                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3310                     break;
  3311                 case VARARGS:
  3312                     if (method != null &&
  3313                             method.attribute(syms.trustMeType.tsym) != null &&
  3314                             isTrustMeAllowedOnMethod(method) &&
  3315                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3316                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3318                     break;
  3319                 default:
  3320                     throw new AssertionError("Unexpected lint: " + lint);
  3325     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3326         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3329     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3330         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial