src/share/classes/com/sun/tools/javac/comp/Infer.java

Fri, 12 Jul 2013 13:11:12 -0700

author
jjg
date
Fri, 12 Jul 2013 13:11:12 -0700
changeset 1895
37031963493e
parent 1891
42b3c5e92461
child 1896
44e27378f523
permissions
-rw-r--r--

8020278: NPE in javadoc
Reviewed-by: mcimadamore, vromero

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.tree.JCTree;
    29 import com.sun.tools.javac.tree.JCTree.JCTypeCast;
    30 import com.sun.tools.javac.tree.TreeInfo;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    33 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.code.*;
    35 import com.sun.tools.javac.code.Type.*;
    36 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    37 import com.sun.tools.javac.code.Symbol.*;
    38 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    39 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
    40 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
    41 import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
    42 import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
    44 import java.util.HashMap;
    45 import java.util.Map;
    46 import java.util.Set;
    48 import java.util.ArrayList;
    49 import java.util.Collections;
    50 import java.util.EnumSet;
    51 import java.util.HashSet;
    53 import static com.sun.tools.javac.code.TypeTag.*;
    55 /** Helper class for type parameter inference, used by the attribution phase.
    56  *
    57  *  <p><b>This is NOT part of any supported API.
    58  *  If you write code that depends on this, you do so at your own risk.
    59  *  This code and its internal interfaces are subject to change or
    60  *  deletion without notice.</b>
    61  */
    62 public class Infer {
    63     protected static final Context.Key<Infer> inferKey =
    64         new Context.Key<Infer>();
    66     Resolve rs;
    67     Check chk;
    68     Symtab syms;
    69     Types types;
    70     JCDiagnostic.Factory diags;
    71     Log log;
    73     /** should the graph solver be used? */
    74     boolean allowGraphInference;
    76     public static Infer instance(Context context) {
    77         Infer instance = context.get(inferKey);
    78         if (instance == null)
    79             instance = new Infer(context);
    80         return instance;
    81     }
    83     protected Infer(Context context) {
    84         context.put(inferKey, this);
    86         rs = Resolve.instance(context);
    87         chk = Check.instance(context);
    88         syms = Symtab.instance(context);
    89         types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         log = Log.instance(context);
    92         inferenceException = new InferenceException(diags);
    93         Options options = Options.instance(context);
    94         allowGraphInference = Source.instance(context).allowGraphInference()
    95                 && options.isUnset("useLegacyInference");
    96     }
    98     /** A value for prototypes that admit any type, including polymorphic ones. */
    99     public static final Type anyPoly = new JCNoType();
   101    /**
   102     * This exception class is design to store a list of diagnostics corresponding
   103     * to inference errors that can arise during a method applicability check.
   104     */
   105     public static class InferenceException extends InapplicableMethodException {
   106         private static final long serialVersionUID = 0;
   108         List<JCDiagnostic> messages = List.nil();
   110         InferenceException(JCDiagnostic.Factory diags) {
   111             super(diags);
   112         }
   114         @Override
   115         InapplicableMethodException setMessage(JCDiagnostic diag) {
   116             messages = messages.append(diag);
   117             return this;
   118         }
   120         @Override
   121         public JCDiagnostic getDiagnostic() {
   122             return messages.head;
   123         }
   125         void clear() {
   126             messages = List.nil();
   127         }
   128     }
   130     protected final InferenceException inferenceException;
   132     // <editor-fold defaultstate="collapsed" desc="Inference routines">
   133     /**
   134      * Main inference entry point - instantiate a generic method type
   135      * using given argument types and (possibly) an expected target-type.
   136      */
   137     public Type instantiateMethod(Env<AttrContext> env,
   138                                   List<Type> tvars,
   139                                   MethodType mt,
   140                                   Attr.ResultInfo resultInfo,
   141                                   Symbol msym,
   142                                   List<Type> argtypes,
   143                                   boolean allowBoxing,
   144                                   boolean useVarargs,
   145                                   Resolve.MethodResolutionContext resolveContext,
   146                                   Warner warn) throws InferenceException {
   147         //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
   148         final InferenceContext inferenceContext = new InferenceContext(tvars);
   149         inferenceException.clear();
   150         try {
   151             DeferredAttr.DeferredAttrContext deferredAttrContext =
   152                     resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
   154             resolveContext.methodCheck.argumentsAcceptable(env, deferredAttrContext,
   155                     argtypes, mt.getParameterTypes(), warn);
   157             if (allowGraphInference &&
   158                     resultInfo != null &&
   159                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   160                 //inject return constraints earlier
   161                 checkWithinBounds(inferenceContext, warn); //propagation
   162                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   163                 //propagate outwards if needed
   164                 if (resultInfo.checkContext.inferenceContext().free(resultInfo.pt)) {
   165                     //propagate inference context outwards and exit
   166                     inferenceContext.dupTo(resultInfo.checkContext.inferenceContext());
   167                     deferredAttrContext.complete();
   168                     return mt;
   169                 }
   170             }
   172             deferredAttrContext.complete();
   174             // minimize as yet undetermined type variables
   175             if (allowGraphInference) {
   176                 inferenceContext.solve(warn);
   177             } else {
   178                 inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
   179             }
   181             mt = (MethodType)inferenceContext.asInstType(mt);
   183             if (!allowGraphInference &&
   184                     inferenceContext.restvars().nonEmpty() &&
   185                     resultInfo != null &&
   186                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   187                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   188                 inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
   189                 mt = (MethodType)inferenceContext.asInstType(mt);
   190             }
   192             if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
   193                 log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
   194             }
   196             // return instantiated version of method type
   197             return mt;
   198         } finally {
   199             if (resultInfo != null || !allowGraphInference) {
   200                 inferenceContext.notifyChange();
   201             } else {
   202                 inferenceContext.notifyChange(inferenceContext.boundedVars());
   203             }
   204         }
   205     }
   207     /**
   208      * Generate constraints from the generic method's return type. If the method
   209      * call occurs in a context where a type T is expected, use the expected
   210      * type to derive more constraints on the generic method inference variables.
   211      */
   212     void generateReturnConstraints(Attr.ResultInfo resultInfo,
   213             MethodType mt, InferenceContext inferenceContext) {
   214         Type qtype1 = inferenceContext.asFree(mt.getReturnType());
   215         Type to = returnConstraintTarget(qtype1, resultInfo.pt);
   216         Assert.check(allowGraphInference || !resultInfo.checkContext.inferenceContext().free(to),
   217                 "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
   218         //we need to skip capture?
   219         Warner retWarn = new Warner();
   220         if (!resultInfo.checkContext.compatible(qtype1, resultInfo.checkContext.inferenceContext().asFree(to), retWarn) ||
   221                 //unchecked conversion is not allowed in source 7 mode
   222                 (!allowGraphInference && retWarn.hasLint(Lint.LintCategory.UNCHECKED))) {
   223             throw inferenceException
   224                     .setMessage("infer.no.conforming.instance.exists",
   225                     inferenceContext.restvars(), mt.getReturnType(), to);
   226         }
   227     }
   228     //where
   229         private Type returnConstraintTarget(Type from, Type to) {
   230             if (from.hasTag(VOID)) {
   231                 return syms.voidType;
   232             } else if (to.hasTag(NONE)) {
   233                 return from.isPrimitive() ? from : syms.objectType;
   234             } else if (from.hasTag(UNDETVAR) && to.isPrimitive()) {
   235                 if (!allowGraphInference) {
   236                     //if legacy, just return boxed type
   237                     return types.boxedClass(to).type;
   238                 }
   239                 //if graph inference we need to skip conflicting boxed bounds...
   240                 UndetVar uv = (UndetVar)from;
   241                 for (Type t : uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
   242                     Type boundAsPrimitive = types.unboxedType(t);
   243                     if (boundAsPrimitive == null) continue;
   244                     if (types.isConvertible(boundAsPrimitive, to)) {
   245                         //effectively skip return-type constraint generation (compatibility)
   246                         return syms.objectType;
   247                     }
   248                 }
   249                 return types.boxedClass(to).type;
   250             } else {
   251                 return to;
   252             }
   253         }
   255     /**
   256       * Infer cyclic inference variables as described in 15.12.2.8.
   257       */
   258     private void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
   259         ListBuffer<Type> todo = ListBuffer.lb();
   260         //step 1 - create fresh tvars
   261         for (Type t : vars) {
   262             UndetVar uv = (UndetVar)inferenceContext.asFree(t);
   263             List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
   264             if (Type.containsAny(upperBounds, vars)) {
   265                 TypeSymbol fresh_tvar = new TypeVariableSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
   266                 fresh_tvar.type = new TypeVar(fresh_tvar, types.makeCompoundType(uv.getBounds(InferenceBound.UPPER)), null);
   267                 todo.append(uv);
   268                 uv.inst = fresh_tvar.type;
   269             } else if (upperBounds.nonEmpty()) {
   270                 uv.inst = types.glb(upperBounds);
   271             } else {
   272                 uv.inst = syms.objectType;
   273             }
   274         }
   275         //step 2 - replace fresh tvars in their bounds
   276         List<Type> formals = vars;
   277         for (Type t : todo) {
   278             UndetVar uv = (UndetVar)t;
   279             TypeVar ct = (TypeVar)uv.inst;
   280             ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
   281             if (ct.bound.isErroneous()) {
   282                 //report inference error if glb fails
   283                 reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   284             }
   285             formals = formals.tail;
   286         }
   287     }
   289     /**
   290      * Compute a synthetic method type corresponding to the requested polymorphic
   291      * method signature. The target return type is computed from the immediately
   292      * enclosing scope surrounding the polymorphic-signature call.
   293      */
   294     Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
   295                                             MethodSymbol spMethod,  // sig. poly. method or null if none
   296                                             Resolve.MethodResolutionContext resolveContext,
   297                                             List<Type> argtypes) {
   298         final Type restype;
   300         //The return type for a polymorphic signature call is computed from
   301         //the enclosing tree E, as follows: if E is a cast, then use the
   302         //target type of the cast expression as a return type; if E is an
   303         //expression statement, the return type is 'void' - otherwise the
   304         //return type is simply 'Object'. A correctness check ensures that
   305         //env.next refers to the lexically enclosing environment in which
   306         //the polymorphic signature call environment is nested.
   308         switch (env.next.tree.getTag()) {
   309             case TYPECAST:
   310                 JCTypeCast castTree = (JCTypeCast)env.next.tree;
   311                 restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
   312                     castTree.clazz.type :
   313                     syms.objectType;
   314                 break;
   315             case EXEC:
   316                 JCTree.JCExpressionStatement execTree =
   317                         (JCTree.JCExpressionStatement)env.next.tree;
   318                 restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
   319                     syms.voidType :
   320                     syms.objectType;
   321                 break;
   322             default:
   323                 restype = syms.objectType;
   324         }
   326         List<Type> paramtypes = Type.map(argtypes, new ImplicitArgType(spMethod, resolveContext.step));
   327         List<Type> exType = spMethod != null ?
   328             spMethod.getThrownTypes() :
   329             List.of(syms.throwableType); // make it throw all exceptions
   331         MethodType mtype = new MethodType(paramtypes,
   332                                           restype,
   333                                           exType,
   334                                           syms.methodClass);
   335         return mtype;
   336     }
   337     //where
   338         class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
   340             public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
   341                 rs.deferredAttr.super(AttrMode.SPECULATIVE, msym, phase);
   342             }
   344             public Type apply(Type t) {
   345                 t = types.erasure(super.apply(t));
   346                 if (t.hasTag(BOT))
   347                     // nulls type as the marker type Null (which has no instances)
   348                     // infer as java.lang.Void for now
   349                     t = types.boxedClass(syms.voidType).type;
   350                 return t;
   351             }
   352         }
   354     /**
   355       * This method is used to infer a suitable target SAM in case the original
   356       * SAM type contains one or more wildcards. An inference process is applied
   357       * so that wildcard bounds, as well as explicit lambda/method ref parameters
   358       * (where applicable) are used to constraint the solution.
   359       */
   360     public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
   361             List<Type> paramTypes, Check.CheckContext checkContext) {
   362         if (types.capture(funcInterface) == funcInterface) {
   363             //if capture doesn't change the type then return the target unchanged
   364             //(this means the target contains no wildcards!)
   365             return funcInterface;
   366         } else {
   367             Type formalInterface = funcInterface.tsym.type;
   368             InferenceContext funcInterfaceContext =
   369                     new InferenceContext(funcInterface.tsym.type.getTypeArguments());
   371             Assert.check(paramTypes != null);
   372             //get constraints from explicit params (this is done by
   373             //checking that explicit param types are equal to the ones
   374             //in the functional interface descriptors)
   375             List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
   376             if (descParameterTypes.size() != paramTypes.size()) {
   377                 checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
   378                 return types.createErrorType(funcInterface);
   379             }
   380             for (Type p : descParameterTypes) {
   381                 if (!types.isSameType(funcInterfaceContext.asFree(p), paramTypes.head)) {
   382                     checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   383                     return types.createErrorType(funcInterface);
   384                 }
   385                 paramTypes = paramTypes.tail;
   386             }
   388             try {
   389                 funcInterfaceContext.solve(funcInterfaceContext.boundedVars(), types.noWarnings);
   390             } catch (InferenceException ex) {
   391                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   392             }
   394             List<Type> actualTypeargs = funcInterface.getTypeArguments();
   395             for (Type t : funcInterfaceContext.undetvars) {
   396                 UndetVar uv = (UndetVar)t;
   397                 if (uv.inst == null) {
   398                     uv.inst = actualTypeargs.head;
   399                 }
   400                 actualTypeargs = actualTypeargs.tail;
   401             }
   403             Type owntype = funcInterfaceContext.asInstType(formalInterface);
   404             if (!chk.checkValidGenericType(owntype)) {
   405                 //if the inferred functional interface type is not well-formed,
   406                 //or if it's not a subtype of the original target, issue an error
   407                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   408             }
   409             return owntype;
   410         }
   411     }
   412     // </editor-fold>
   414     // <editor-fold defaultstate="collapsed" desc="Bound checking">
   415     /**
   416      * Check bounds and perform incorporation
   417      */
   418     void checkWithinBounds(InferenceContext inferenceContext,
   419                              Warner warn) throws InferenceException {
   420         MultiUndetVarListener mlistener = new MultiUndetVarListener(inferenceContext.undetvars);
   421         List<Type> saved_undet = inferenceContext.save();
   422         try {
   423             while (true) {
   424                 mlistener.reset();
   425                 if (!allowGraphInference) {
   426                     //in legacy mode we lack of transitivity, so bound check
   427                     //cannot be run in parallel with other incoprporation rounds
   428                     for (Type t : inferenceContext.undetvars) {
   429                         UndetVar uv = (UndetVar)t;
   430                         IncorporationStep.CHECK_BOUNDS.apply(uv, inferenceContext, warn);
   431                     }
   432                 }
   433                 for (Type t : inferenceContext.undetvars) {
   434                     UndetVar uv = (UndetVar)t;
   435                     //bound incorporation
   436                     EnumSet<IncorporationStep> incorporationSteps = allowGraphInference ?
   437                             incorporationStepsGraph : incorporationStepsLegacy;
   438                     for (IncorporationStep is : incorporationSteps) {
   439                         is.apply(uv, inferenceContext, warn);
   440                     }
   441                 }
   442                 if (!mlistener.changed || !allowGraphInference) break;
   443             }
   444         }
   445         finally {
   446             mlistener.detach();
   447             if (mlistener.rounds == MAX_INCORPORATION_STEPS) {
   448                 inferenceContext.rollback(saved_undet);
   449             }
   450         }
   451     }
   452     //where
   453         /**
   454          * This listener keeps track of changes on a group of inference variable
   455          * bounds. Note: the listener must be detached (calling corresponding
   456          * method) to make sure that the underlying inference variable is
   457          * left in a clean state.
   458          */
   459         class MultiUndetVarListener implements UndetVar.UndetVarListener {
   461             int rounds;
   462             boolean changed;
   463             List<Type> undetvars;
   465             public MultiUndetVarListener(List<Type> undetvars) {
   466                 this.undetvars = undetvars;
   467                 for (Type t : undetvars) {
   468                     UndetVar uv = (UndetVar)t;
   469                     uv.listener = this;
   470                 }
   471             }
   473             public void varChanged(UndetVar uv, Set<InferenceBound> ibs) {
   474                 //avoid non-termination
   475                 if (rounds < MAX_INCORPORATION_STEPS) {
   476                     changed = true;
   477                 }
   478             }
   480             void reset() {
   481                 rounds++;
   482                 changed = false;
   483             }
   485             void detach() {
   486                 for (Type t : undetvars) {
   487                     UndetVar uv = (UndetVar)t;
   488                     uv.listener = null;
   489                 }
   490             }
   491         };
   493         /** max number of incorporation rounds */
   494         static final int MAX_INCORPORATION_STEPS = 100;
   496     /**
   497      * This enumeration defines an entry point for doing inference variable
   498      * bound incorporation - it can be used to inject custom incorporation
   499      * logic into the basic bound checking routine
   500      */
   501     enum IncorporationStep {
   502         /**
   503          * Performs basic bound checking - i.e. is the instantiated type for a given
   504          * inference variable compatible with its bounds?
   505          */
   506         CHECK_BOUNDS() {
   507             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   508                 Infer infer = inferenceContext.infer();
   509                 uv.substBounds(inferenceContext.inferenceVars(), inferenceContext.instTypes(), infer.types);
   510                 infer.checkCompatibleUpperBounds(uv, inferenceContext);
   511                 if (uv.inst != null) {
   512                     Type inst = uv.inst;
   513                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   514                         if (!infer.types.isSubtypeUnchecked(inst, inferenceContext.asFree(u), warn)) {
   515                             infer.reportBoundError(uv, BoundErrorKind.UPPER);
   516                         }
   517                     }
   518                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   519                         if (!infer.types.isSubtypeUnchecked(inferenceContext.asFree(l), inst, warn)) {
   520                             infer.reportBoundError(uv, BoundErrorKind.LOWER);
   521                         }
   522                     }
   523                     for (Type e : uv.getBounds(InferenceBound.EQ)) {
   524                         if (!infer.types.isSameType(inst, inferenceContext.asFree(e))) {
   525                             infer.reportBoundError(uv, BoundErrorKind.EQ);
   526                         }
   527                     }
   528                 }
   529             }
   530         },
   531         /**
   532          * Check consistency of equality constraints. This is a slightly more aggressive
   533          * inference routine that is designed as to maximize compatibility with JDK 7.
   534          * Note: this is not used in graph mode.
   535          */
   536         EQ_CHECK_LEGACY() {
   537             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   538                 Infer infer = inferenceContext.infer();
   539                 Type eq = null;
   540                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   541                     Assert.check(!inferenceContext.free(e));
   542                     if (eq != null && !infer.types.isSameType(e, eq)) {
   543                         infer.reportBoundError(uv, BoundErrorKind.EQ);
   544                     }
   545                     eq = e;
   546                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   547                         Assert.check(!inferenceContext.free(l));
   548                         if (!infer.types.isSubtypeUnchecked(l, e, warn)) {
   549                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   550                         }
   551                     }
   552                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   553                         if (inferenceContext.free(u)) continue;
   554                         if (!infer.types.isSubtypeUnchecked(e, u, warn)) {
   555                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   556                         }
   557                     }
   558                 }
   559             }
   560         },
   561         /**
   562          * Check consistency of equality constraints.
   563          */
   564         EQ_CHECK() {
   565             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   566                 Infer infer = inferenceContext.infer();
   567                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   568                     if (e.containsAny(inferenceContext.inferenceVars())) continue;
   569                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   570                         if (!infer.types.isSubtypeUnchecked(e, inferenceContext.asFree(u), warn)) {
   571                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   572                         }
   573                     }
   574                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   575                         if (!infer.types.isSubtypeUnchecked(inferenceContext.asFree(l), e, warn)) {
   576                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   577                         }
   578                     }
   579                 }
   580             }
   581         },
   582         /**
   583          * Given a bound set containing {@code alpha <: T} and {@code alpha :> S}
   584          * perform {@code S <: T} (which could lead to new bounds).
   585          */
   586         CROSS_UPPER_LOWER() {
   587             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   588                 Infer infer = inferenceContext.infer();
   589                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   590                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   591                         infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   592                     }
   593                 }
   594             }
   595         },
   596         /**
   597          * Given a bound set containing {@code alpha <: T} and {@code alpha == S}
   598          * perform {@code S <: T} (which could lead to new bounds).
   599          */
   600         CROSS_UPPER_EQ() {
   601             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   602                 Infer infer = inferenceContext.infer();
   603                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   604                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   605                         infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   606                     }
   607                 }
   608             }
   609         },
   610         /**
   611          * Given a bound set containing {@code alpha :> S} and {@code alpha == T}
   612          * perform {@code S <: T} (which could lead to new bounds).
   613          */
   614         CROSS_EQ_LOWER() {
   615             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   616                 Infer infer = inferenceContext.infer();
   617                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   618                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   619                         infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   620                     }
   621                 }
   622             }
   623         },
   624         /**
   625          * Given a bound set containing {@code alpha == S} and {@code alpha == T}
   626          * perform {@code S == T} (which could lead to new bounds).
   627          */
   628         CROSS_EQ_EQ() {
   629             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   630                 Infer infer = inferenceContext.infer();
   631                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   632                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   633                         if (b1 != b2) {
   634                             infer.types.isSameType(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   635                         }
   636                     }
   637                 }
   638             }
   639         },
   640         /**
   641          * Given a bound set containing {@code alpha <: beta} propagate lower bounds
   642          * from alpha to beta; also propagate upper bounds from beta to alpha.
   643          */
   644         PROP_UPPER() {
   645             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   646                 Infer infer = inferenceContext.infer();
   647                 for (Type b : uv.getBounds(InferenceBound.UPPER)) {
   648                     if (inferenceContext.inferenceVars().contains(b)) {
   649                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   650                         //alpha <: beta
   651                         //0. set beta :> alpha
   652                         uv2.addBound(InferenceBound.LOWER, uv, infer.types);
   653                         //1. copy alpha's lower to beta's
   654                         for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   655                             uv2.addBound(InferenceBound.LOWER, inferenceContext.asInstType(l), infer.types);
   656                         }
   657                         //2. copy beta's upper to alpha's
   658                         for (Type u : uv2.getBounds(InferenceBound.UPPER)) {
   659                             uv.addBound(InferenceBound.UPPER, inferenceContext.asInstType(u), infer.types);
   660                         }
   661                     }
   662                 }
   663             }
   664         },
   665         /**
   666          * Given a bound set containing {@code alpha :> beta} propagate lower bounds
   667          * from beta to alpha; also propagate upper bounds from alpha to beta.
   668          */
   669         PROP_LOWER() {
   670             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   671                 Infer infer = inferenceContext.infer();
   672                 for (Type b : uv.getBounds(InferenceBound.LOWER)) {
   673                     if (inferenceContext.inferenceVars().contains(b)) {
   674                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   675                         //alpha :> beta
   676                         //0. set beta <: alpha
   677                         uv2.addBound(InferenceBound.UPPER, uv, infer.types);
   678                         //1. copy alpha's upper to beta's
   679                         for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   680                             uv2.addBound(InferenceBound.UPPER, inferenceContext.asInstType(u), infer.types);
   681                         }
   682                         //2. copy beta's lower to alpha's
   683                         for (Type l : uv2.getBounds(InferenceBound.LOWER)) {
   684                             uv.addBound(InferenceBound.LOWER, inferenceContext.asInstType(l), infer.types);
   685                         }
   686                     }
   687                 }
   688             }
   689         },
   690         /**
   691          * Given a bound set containing {@code alpha == beta} propagate lower/upper
   692          * bounds from alpha to beta and back.
   693          */
   694         PROP_EQ() {
   695             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   696                 Infer infer = inferenceContext.infer();
   697                 for (Type b : uv.getBounds(InferenceBound.EQ)) {
   698                     if (inferenceContext.inferenceVars().contains(b)) {
   699                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   700                         //alpha == beta
   701                         //0. set beta == alpha
   702                         uv2.addBound(InferenceBound.EQ, uv, infer.types);
   703                         //1. copy all alpha's bounds to beta's
   704                         for (InferenceBound ib : InferenceBound.values()) {
   705                             for (Type b2 : uv.getBounds(ib)) {
   706                                 if (b2 != uv2) {
   707                                     uv2.addBound(ib, inferenceContext.asInstType(b2), infer.types);
   708                                 }
   709                             }
   710                         }
   711                         //2. copy all beta's bounds to alpha's
   712                         for (InferenceBound ib : InferenceBound.values()) {
   713                             for (Type b2 : uv2.getBounds(ib)) {
   714                                 if (b2 != uv) {
   715                                     uv.addBound(ib, inferenceContext.asInstType(b2), infer.types);
   716                                 }
   717                             }
   718                         }
   719                     }
   720                 }
   721             }
   722         };
   724         abstract void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn);
   725     }
   727     /** incorporation steps to be executed when running in legacy mode */
   728     EnumSet<IncorporationStep> incorporationStepsLegacy = EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY);
   730     /** incorporation steps to be executed when running in graph mode */
   731     EnumSet<IncorporationStep> incorporationStepsGraph =
   732             EnumSet.complementOf(EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY));
   734     /**
   735      * Make sure that the upper bounds we got so far lead to a solvable inference
   736      * variable by making sure that a glb exists.
   737      */
   738     void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
   739         List<Type> hibounds =
   740                 Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
   741         Type hb = null;
   742         if (hibounds.isEmpty())
   743             hb = syms.objectType;
   744         else if (hibounds.tail.isEmpty())
   745             hb = hibounds.head;
   746         else
   747             hb = types.glb(hibounds);
   748         if (hb == null || hb.isErroneous())
   749             reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   750     }
   751     //where
   752         protected static class BoundFilter implements Filter<Type> {
   754             InferenceContext inferenceContext;
   756             public BoundFilter(InferenceContext inferenceContext) {
   757                 this.inferenceContext = inferenceContext;
   758             }
   760             @Override
   761             public boolean accepts(Type t) {
   762                 return !t.isErroneous() && !inferenceContext.free(t) &&
   763                         !t.hasTag(BOT);
   764             }
   765         };
   767     /**
   768      * This enumeration defines all possible bound-checking related errors.
   769      */
   770     enum BoundErrorKind {
   771         /**
   772          * The (uninstantiated) inference variable has incompatible upper bounds.
   773          */
   774         BAD_UPPER() {
   775             @Override
   776             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   777                 return ex.setMessage("incompatible.upper.bounds", uv.qtype,
   778                         uv.getBounds(InferenceBound.UPPER));
   779             }
   780         },
   781         /**
   782          * An equality constraint is not compatible with an upper bound.
   783          */
   784         BAD_EQ_UPPER() {
   785             @Override
   786             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   787                 return ex.setMessage("incompatible.eq.upper.bounds", uv.qtype,
   788                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.UPPER));
   789             }
   790         },
   791         /**
   792          * An equality constraint is not compatible with a lower bound.
   793          */
   794         BAD_EQ_LOWER() {
   795             @Override
   796             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   797                 return ex.setMessage("incompatible.eq.lower.bounds", uv.qtype,
   798                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.LOWER));
   799             }
   800         },
   801         /**
   802          * Instantiated inference variable is not compatible with an upper bound.
   803          */
   804         UPPER() {
   805             @Override
   806             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   807                 return ex.setMessage("inferred.do.not.conform.to.upper.bounds", uv.inst,
   808                         uv.getBounds(InferenceBound.UPPER));
   809             }
   810         },
   811         /**
   812          * Instantiated inference variable is not compatible with a lower bound.
   813          */
   814         LOWER() {
   815             @Override
   816             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   817                 return ex.setMessage("inferred.do.not.conform.to.lower.bounds", uv.inst,
   818                         uv.getBounds(InferenceBound.LOWER));
   819             }
   820         },
   821         /**
   822          * Instantiated inference variable is not compatible with an equality constraint.
   823          */
   824         EQ() {
   825             @Override
   826             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   827                 return ex.setMessage("inferred.do.not.conform.to.eq.bounds", uv.inst,
   828                         uv.getBounds(InferenceBound.EQ));
   829             }
   830         };
   832         abstract InapplicableMethodException setMessage(InferenceException ex, UndetVar uv);
   833     }
   835     /**
   836      * Report a bound-checking error of given kind
   837      */
   838     void reportBoundError(UndetVar uv, BoundErrorKind bk) {
   839         throw bk.setMessage(inferenceException, uv);
   840     }
   841     // </editor-fold>
   843     // <editor-fold defaultstate="collapsed" desc="Inference engine">
   844     /**
   845      * Graph inference strategy - act as an input to the inference solver; a strategy is
   846      * composed of two ingredients: (i) find a node to solve in the inference graph,
   847      * and (ii) tell th engine when we are done fixing inference variables
   848      */
   849     interface GraphStrategy {
   850         /**
   851          * Pick the next node (leaf) to solve in the graph
   852          */
   853         Node pickNode(InferenceGraph g);
   854         /**
   855          * Is this the last step?
   856          */
   857         boolean done();
   858     }
   860     /**
   861      * Simple solver strategy class that locates all leaves inside a graph
   862      * and picks the first leaf as the next node to solve
   863      */
   864     abstract class LeafSolver implements GraphStrategy {
   865         public Node pickNode(InferenceGraph g) {
   866                         Assert.check(!g.nodes.isEmpty(), "No nodes to solve!");
   867             return g.nodes.get(0);
   868         }
   869     }
   871     /**
   872      * This solver uses an heuristic to pick the best leaf - the heuristic
   873      * tries to select the node that has maximal probability to contain one
   874      * or more inference variables in a given list
   875      */
   876     abstract class BestLeafSolver extends LeafSolver {
   878         List<Type> varsToSolve;
   880         BestLeafSolver(List<Type> varsToSolve) {
   881             this.varsToSolve = varsToSolve;
   882         }
   884         /**
   885          * Computes the cost associated with a given node; the cost is computed
   886          * as the total number of type-variables that should be eagerly instantiated
   887          * in order to get to some of the variables in {@code varsToSolve} from
   888          * a given node
   889          */
   890         void computeCostIfNeeded(Node n, Map<Node, Integer> costMap) {
   891             if (costMap.containsKey(n)) {
   892                 return;
   893             } else if (!Collections.disjoint(n.data, varsToSolve)) {
   894                 costMap.put(n, n.data.size());
   895             } else {
   896                 int subcost = Integer.MAX_VALUE;
   897                 costMap.put(n, subcost); //avoid loops
   898                 for (Node n2 : n.getDependencies()) {
   899                     computeCostIfNeeded(n2, costMap);
   900                     subcost = Math.min(costMap.get(n2), subcost);
   901                 }
   902                 //update cost map to reflect real cost
   903                 costMap.put(n, subcost == Integer.MAX_VALUE ?
   904                         Integer.MAX_VALUE :
   905                         n.data.size() + subcost);
   906             }
   907         }
   909         /**
   910          * Pick the leaf that minimize cost
   911          */
   912         @Override
   913         public Node pickNode(final InferenceGraph g) {
   914             final Map<Node, Integer> costMap = new HashMap<Node, Integer>();
   915             ArrayList<Node> leaves = new ArrayList<Node>();
   916             for (Node n : g.nodes) {
   917                 computeCostIfNeeded(n, costMap);
   918                 if (n.isLeaf(n)) {
   919                     leaves.add(n);
   920                 }
   921             }
   922             Assert.check(!leaves.isEmpty(), "No nodes to solve!");
   923             Collections.sort(leaves, new java.util.Comparator<Node>() {
   924                 public int compare(Node n1, Node n2) {
   925                     return costMap.get(n1) - costMap.get(n2);
   926                 }
   927             });
   928             return leaves.get(0);
   929         }
   930     }
   932     /**
   933      * The inference process can be thought of as a sequence of steps. Each step
   934      * instantiates an inference variable using a subset of the inference variable
   935      * bounds, if certain condition are met. Decisions such as the sequence in which
   936      * steps are applied, or which steps are to be applied are left to the inference engine.
   937      */
   938     enum InferenceStep {
   940         /**
   941          * Instantiate an inference variables using one of its (ground) equality
   942          * constraints
   943          */
   944         EQ(InferenceBound.EQ) {
   945             @Override
   946             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   947                 return filterBounds(uv, inferenceContext).head;
   948             }
   949         },
   950         /**
   951          * Instantiate an inference variables using its (ground) lower bounds. Such
   952          * bounds are merged together using lub().
   953          */
   954         LOWER(InferenceBound.LOWER) {
   955             @Override
   956             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   957                 Infer infer = inferenceContext.infer();
   958                 List<Type> lobounds = filterBounds(uv, inferenceContext);
   959                 //note: lobounds should have at least one element
   960                 Type owntype = lobounds.tail.tail == null  ? lobounds.head : infer.types.lub(lobounds);
   961                 if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
   962                     throw infer.inferenceException
   963                         .setMessage("no.unique.minimal.instance.exists",
   964                                     uv.qtype, lobounds);
   965                 } else {
   966                     return owntype;
   967                 }
   968             }
   969         },
   970         /**
   971          * Instantiate an inference variables using its (ground) upper bounds. Such
   972          * bounds are merged together using glb().
   973          */
   974         UPPER(InferenceBound.UPPER) {
   975             @Override
   976             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   977                 Infer infer = inferenceContext.infer();
   978                 List<Type> hibounds = filterBounds(uv, inferenceContext);
   979                 //note: lobounds should have at least one element
   980                 Type owntype = hibounds.tail.tail == null  ? hibounds.head : infer.types.glb(hibounds);
   981                 if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
   982                     throw infer.inferenceException
   983                         .setMessage("no.unique.maximal.instance.exists",
   984                                     uv.qtype, hibounds);
   985                 } else {
   986                     return owntype;
   987                 }
   988             }
   989         },
   990         /**
   991          * Like the former; the only difference is that this step can only be applied
   992          * if all upper bounds are ground.
   993          */
   994         UPPER_LEGACY(InferenceBound.UPPER) {
   995             @Override
   996             public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
   997                 return !inferenceContext.free(t.getBounds(ib));
   998             }
  1000             @Override
  1001             Type solve(UndetVar uv, InferenceContext inferenceContext) {
  1002                 return UPPER.solve(uv, inferenceContext);
  1004         };
  1006         final InferenceBound ib;
  1008         InferenceStep(InferenceBound ib) {
  1009             this.ib = ib;
  1012         /**
  1013          * Find an instantiated type for a given inference variable within
  1014          * a given inference context
  1015          */
  1016         abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
  1018         /**
  1019          * Can the inference variable be instantiated using this step?
  1020          */
  1021         public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1022             return filterBounds(t, inferenceContext).nonEmpty();
  1025         /**
  1026          * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
  1027          */
  1028         List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
  1029             return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
  1033     /**
  1034      * This enumeration defines the sequence of steps to be applied when the
  1035      * solver works in legacy mode. The steps in this enumeration reflect
  1036      * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1037      */
  1038     enum LegacyInferenceSteps {
  1040         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1041         EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
  1043         final EnumSet<InferenceStep> steps;
  1045         LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
  1046             this.steps = steps;
  1050     /**
  1051      * This enumeration defines the sequence of steps to be applied when the
  1052      * graph solver is used. This order is defined so as to maximize compatibility
  1053      * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1054      */
  1055     enum GraphInferenceSteps {
  1057         EQ(EnumSet.of(InferenceStep.EQ)),
  1058         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1059         EQ_LOWER_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER));
  1061         final EnumSet<InferenceStep> steps;
  1063         GraphInferenceSteps(EnumSet<InferenceStep> steps) {
  1064             this.steps = steps;
  1068     /**
  1069      * This is the graph inference solver - the solver organizes all inference variables in
  1070      * a given inference context by bound dependencies - in the general case, such dependencies
  1071      * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
  1072      * an acyclic graph, where all cyclic variables are bundled together. An inference
  1073      * step corresponds to solving a node in the acyclic graph - this is done by
  1074      * relying on a given strategy (see GraphStrategy).
  1075      */
  1076     class GraphSolver {
  1078         InferenceContext inferenceContext;
  1079         Warner warn;
  1081         GraphSolver(InferenceContext inferenceContext, Warner warn) {
  1082             this.inferenceContext = inferenceContext;
  1083             this.warn = warn;
  1086         /**
  1087          * Solve variables in a given inference context. The amount of variables
  1088          * to be solved, and the way in which the underlying acyclic graph is explored
  1089          * depends on the selected solver strategy.
  1090          */
  1091         void solve(GraphStrategy sstrategy) {
  1092             checkWithinBounds(inferenceContext, warn); //initial propagation of bounds
  1093             InferenceGraph inferenceGraph = new InferenceGraph();
  1094             while (!sstrategy.done()) {
  1095                 InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
  1096                 List<Type> varsToSolve = List.from(nodeToSolve.data);
  1097                 List<Type> saved_undet = inferenceContext.save();
  1098                 try {
  1099                     //repeat until all variables are solved
  1100                     outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
  1101                         //for each inference phase
  1102                         for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
  1103                             if (inferenceContext.solveBasic(varsToSolve, step.steps)) {
  1104                                 checkWithinBounds(inferenceContext, warn);
  1105                                 continue outer;
  1108                         //no progress
  1109                         throw inferenceException.setMessage();
  1112                 catch (InferenceException ex) {
  1113                     //did we fail because of interdependent ivars?
  1114                     inferenceContext.rollback(saved_undet);
  1115                     instantiateAsUninferredVars(varsToSolve, inferenceContext);
  1116                     checkWithinBounds(inferenceContext, warn);
  1118                 inferenceGraph.deleteNode(nodeToSolve);
  1122         /**
  1123          * The dependencies between the inference variables that need to be solved
  1124          * form a (possibly cyclic) graph. This class reduces the original dependency graph
  1125          * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
  1126          */
  1127         class InferenceGraph {
  1129             /**
  1130              * This class represents a node in the graph. Each node corresponds
  1131              * to an inference variable and has edges (dependencies) on other
  1132              * nodes. The node defines an entry point that can be used to receive
  1133              * updates on the structure of the graph this node belongs to (used to
  1134              * keep dependencies in sync).
  1135              */
  1136             class Node extends GraphUtils.TarjanNode<ListBuffer<Type>> {
  1138                 Set<Node> deps;
  1140                 Node(Type ivar) {
  1141                     super(ListBuffer.of(ivar));
  1142                     this.deps = new HashSet<Node>();
  1145                 @Override
  1146                 public Iterable<? extends Node> getDependencies() {
  1147                     return deps;
  1150                 @Override
  1151                 public String printDependency(GraphUtils.Node<ListBuffer<Type>> to) {
  1152                     StringBuilder buf = new StringBuilder();
  1153                     String sep = "";
  1154                     for (Type from : data) {
  1155                         UndetVar uv = (UndetVar)inferenceContext.asFree(from);
  1156                         for (Type bound : uv.getBounds(InferenceBound.values())) {
  1157                             if (bound.containsAny(List.from(to.data))) {
  1158                                 buf.append(sep);
  1159                                 buf.append(bound);
  1160                                 sep = ",";
  1164                     return buf.toString();
  1167                 boolean isLeaf(Node n) {
  1168                     //no deps, or only one self dep
  1169                     return (n.deps.isEmpty() ||
  1170                             n.deps.size() == 1 && n.deps.contains(n));
  1173                 void mergeWith(List<? extends Node> nodes) {
  1174                     for (Node n : nodes) {
  1175                         Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
  1176                         data.appendList(n.data);
  1177                         deps.addAll(n.deps);
  1179                     //update deps
  1180                     Set<Node> deps2 = new HashSet<Node>();
  1181                     for (Node d : deps) {
  1182                         if (data.contains(d.data.first())) {
  1183                             deps2.add(this);
  1184                         } else {
  1185                             deps2.add(d);
  1188                     deps = deps2;
  1191                 void graphChanged(Node from, Node to) {
  1192                     if (deps.contains(from)) {
  1193                         deps.remove(from);
  1194                         if (to != null) {
  1195                             deps.add(to);
  1201             /** the nodes in the inference graph */
  1202             ArrayList<Node> nodes;
  1204             InferenceGraph() {
  1205                 initNodes();
  1208             /**
  1209              * Delete a node from the graph. This update the underlying structure
  1210              * of the graph (including dependencies) via listeners updates.
  1211              */
  1212             public void deleteNode(Node n) {
  1213                 Assert.check(nodes.contains(n));
  1214                 nodes.remove(n);
  1215                 notifyUpdate(n, null);
  1218             /**
  1219              * Notify all nodes of a change in the graph. If the target node is
  1220              * {@code null} the source node is assumed to be removed.
  1221              */
  1222             void notifyUpdate(Node from, Node to) {
  1223                 for (Node n : nodes) {
  1224                     n.graphChanged(from, to);
  1228             /**
  1229              * Create the graph nodes. First a simple node is created for every inference
  1230              * variables to be solved. Then Tarjan is used to found all connected components
  1231              * in the graph. For each component containing more than one node, a super node is
  1232                  * created, effectively replacing the original cyclic nodes.
  1233              */
  1234             void initNodes() {
  1235                 nodes = new ArrayList<Node>();
  1236                 for (Type t : inferenceContext.restvars()) {
  1237                     nodes.add(new Node(t));
  1239                 for (Node n_i : nodes) {
  1240                     Type i = n_i.data.first();
  1241                     for (Node n_j : nodes) {
  1242                         Type j = n_j.data.first();
  1243                         UndetVar uv_i = (UndetVar)inferenceContext.asFree(i);
  1244                         if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
  1245                             //update i's deps
  1246                             n_i.deps.add(n_j);
  1250                 ArrayList<Node> acyclicNodes = new ArrayList<Node>();
  1251                 for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
  1252                     if (conSubGraph.length() > 1) {
  1253                         Node root = conSubGraph.head;
  1254                         root.mergeWith(conSubGraph.tail);
  1255                         for (Node n : conSubGraph) {
  1256                             notifyUpdate(n, root);
  1259                     acyclicNodes.add(conSubGraph.head);
  1261                 nodes = acyclicNodes;
  1264             /**
  1265              * Debugging: dot representation of this graph
  1266              */
  1267             String toDot() {
  1268                 StringBuilder buf = new StringBuilder();
  1269                 for (Type t : inferenceContext.undetvars) {
  1270                     UndetVar uv = (UndetVar)t;
  1271                     buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
  1272                             uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
  1273                             uv.getBounds(InferenceBound.EQ)));
  1275                 return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
  1279     // </editor-fold>
  1281     // <editor-fold defaultstate="collapsed" desc="Inference context">
  1282     /**
  1283      * Functional interface for defining inference callbacks. Certain actions
  1284      * (i.e. subtyping checks) might need to be redone after all inference variables
  1285      * have been fixed.
  1286      */
  1287     interface FreeTypeListener {
  1288         void typesInferred(InferenceContext inferenceContext);
  1291     /**
  1292      * An inference context keeps track of the set of variables that are free
  1293      * in the current context. It provides utility methods for opening/closing
  1294      * types to their corresponding free/closed forms. It also provide hooks for
  1295      * attaching deferred post-inference action (see PendingCheck). Finally,
  1296      * it can be used as an entry point for performing upper/lower bound inference
  1297      * (see InferenceKind).
  1298      */
  1299      class InferenceContext {
  1301         /** list of inference vars as undet vars */
  1302         List<Type> undetvars;
  1304         /** list of inference vars in this context */
  1305         List<Type> inferencevars;
  1307         /** backed up inference variables */
  1308         List<Type> saved_undet;
  1310         java.util.Map<FreeTypeListener, List<Type>> freeTypeListeners =
  1311                 new java.util.HashMap<FreeTypeListener, List<Type>>();
  1313         List<FreeTypeListener> freetypeListeners = List.nil();
  1315         public InferenceContext(List<Type> inferencevars) {
  1316             this.undetvars = Type.map(inferencevars, fromTypeVarFun);
  1317             this.inferencevars = inferencevars;
  1319         //where
  1320             Mapping fromTypeVarFun = new Mapping("fromTypeVarFunWithBounds") {
  1321                 // mapping that turns inference variables into undet vars
  1322                 public Type apply(Type t) {
  1323                     if (t.hasTag(TYPEVAR)) return new UndetVar((TypeVar)t, types);
  1324                     else return t.map(this);
  1326             };
  1328         /**
  1329          * returns the list of free variables (as type-variables) in this
  1330          * inference context
  1331          */
  1332         List<Type> inferenceVars() {
  1333             return inferencevars;
  1336         /**
  1337          * returns the list of uninstantiated variables (as type-variables) in this
  1338          * inference context
  1339          */
  1340         List<Type> restvars() {
  1341             return filterVars(new Filter<UndetVar>() {
  1342                 public boolean accepts(UndetVar uv) {
  1343                     return uv.inst == null;
  1345             });
  1348         /**
  1349          * returns the list of instantiated variables (as type-variables) in this
  1350          * inference context
  1351          */
  1352         List<Type> instvars() {
  1353             return filterVars(new Filter<UndetVar>() {
  1354                 public boolean accepts(UndetVar uv) {
  1355                     return uv.inst != null;
  1357             });
  1360         /**
  1361          * Get list of bounded inference variables (where bound is other than
  1362          * declared bounds).
  1363          */
  1364         final List<Type> boundedVars() {
  1365             return filterVars(new Filter<UndetVar>() {
  1366                 public boolean accepts(UndetVar uv) {
  1367                     return uv.getBounds(InferenceBound.UPPER)
  1368                             .diff(uv.getDeclaredBounds())
  1369                             .appendList(uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)).nonEmpty();
  1371             });
  1374         private List<Type> filterVars(Filter<UndetVar> fu) {
  1375             ListBuffer<Type> res = ListBuffer.lb();
  1376             for (Type t : undetvars) {
  1377                 UndetVar uv = (UndetVar)t;
  1378                 if (fu.accepts(uv)) {
  1379                     res.append(uv.qtype);
  1382             return res.toList();
  1385         /**
  1386          * is this type free?
  1387          */
  1388         final boolean free(Type t) {
  1389             return t.containsAny(inferencevars);
  1392         final boolean free(List<Type> ts) {
  1393             for (Type t : ts) {
  1394                 if (free(t)) return true;
  1396             return false;
  1399         /**
  1400          * Returns a list of free variables in a given type
  1401          */
  1402         final List<Type> freeVarsIn(Type t) {
  1403             ListBuffer<Type> buf = ListBuffer.lb();
  1404             for (Type iv : inferenceVars()) {
  1405                 if (t.contains(iv)) {
  1406                     buf.add(iv);
  1409             return buf.toList();
  1412         final List<Type> freeVarsIn(List<Type> ts) {
  1413             ListBuffer<Type> buf = ListBuffer.lb();
  1414             for (Type t : ts) {
  1415                 buf.appendList(freeVarsIn(t));
  1417             ListBuffer<Type> buf2 = ListBuffer.lb();
  1418             for (Type t : buf) {
  1419                 if (!buf2.contains(t)) {
  1420                     buf2.add(t);
  1423             return buf2.toList();
  1426         /**
  1427          * Replace all free variables in a given type with corresponding
  1428          * undet vars (used ahead of subtyping/compatibility checks to allow propagation
  1429          * of inference constraints).
  1430          */
  1431         final Type asFree(Type t) {
  1432             return types.subst(t, inferencevars, undetvars);
  1435         final List<Type> asFree(List<Type> ts) {
  1436             ListBuffer<Type> buf = ListBuffer.lb();
  1437             for (Type t : ts) {
  1438                 buf.append(asFree(t));
  1440             return buf.toList();
  1443         List<Type> instTypes() {
  1444             ListBuffer<Type> buf = ListBuffer.lb();
  1445             for (Type t : undetvars) {
  1446                 UndetVar uv = (UndetVar)t;
  1447                 buf.append(uv.inst != null ? uv.inst : uv.qtype);
  1449             return buf.toList();
  1452         /**
  1453          * Replace all free variables in a given type with corresponding
  1454          * instantiated types - if one or more free variable has not been
  1455          * fully instantiated, it will still be available in the resulting type.
  1456          */
  1457         Type asInstType(Type t) {
  1458             return types.subst(t, inferencevars, instTypes());
  1461         List<Type> asInstTypes(List<Type> ts) {
  1462             ListBuffer<Type> buf = ListBuffer.lb();
  1463             for (Type t : ts) {
  1464                 buf.append(asInstType(t));
  1466             return buf.toList();
  1469         /**
  1470          * Add custom hook for performing post-inference action
  1471          */
  1472         void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
  1473             freeTypeListeners.put(ftl, freeVarsIn(types));
  1476         /**
  1477          * Mark the inference context as complete and trigger evaluation
  1478          * of all deferred checks.
  1479          */
  1480         void notifyChange() {
  1481             notifyChange(inferencevars.diff(restvars()));
  1484         void notifyChange(List<Type> inferredVars) {
  1485             InferenceException thrownEx = null;
  1486             for (Map.Entry<FreeTypeListener, List<Type>> entry :
  1487                     new HashMap<FreeTypeListener, List<Type>>(freeTypeListeners).entrySet()) {
  1488                 if (!Type.containsAny(entry.getValue(), inferencevars.diff(inferredVars))) {
  1489                     try {
  1490                         entry.getKey().typesInferred(this);
  1491                         freeTypeListeners.remove(entry.getKey());
  1492                     } catch (InferenceException ex) {
  1493                         if (thrownEx == null) {
  1494                             thrownEx = ex;
  1499             //inference exception multiplexing - present any inference exception
  1500             //thrown when processing listeners as a single one
  1501             if (thrownEx != null) {
  1502                 throw thrownEx;
  1506         /**
  1507          * Save the state of this inference context
  1508          */
  1509         List<Type> save() {
  1510             ListBuffer<Type> buf = ListBuffer.lb();
  1511             for (Type t : undetvars) {
  1512                 UndetVar uv = (UndetVar)t;
  1513                 UndetVar uv2 = new UndetVar((TypeVar)uv.qtype, types);
  1514                 for (InferenceBound ib : InferenceBound.values()) {
  1515                     for (Type b : uv.getBounds(ib)) {
  1516                         uv2.addBound(ib, b, types);
  1519                 uv2.inst = uv.inst;
  1520                 buf.add(uv2);
  1522             return buf.toList();
  1525         /**
  1526          * Restore the state of this inference context to the previous known checkpoint
  1527          */
  1528         void rollback(List<Type> saved_undet) {
  1529              Assert.check(saved_undet != null && saved_undet.length() == undetvars.length());
  1530             //restore bounds (note: we need to preserve the old instances)
  1531             for (Type t : undetvars) {
  1532                 UndetVar uv = (UndetVar)t;
  1533                 UndetVar uv_saved = (UndetVar)saved_undet.head;
  1534                 for (InferenceBound ib : InferenceBound.values()) {
  1535                     uv.setBounds(ib, uv_saved.getBounds(ib));
  1537                 uv.inst = uv_saved.inst;
  1538                 saved_undet = saved_undet.tail;
  1542         /**
  1543          * Copy variable in this inference context to the given context
  1544          */
  1545         void dupTo(final InferenceContext that) {
  1546             that.inferencevars = that.inferencevars.appendList(inferencevars);
  1547             that.undetvars = that.undetvars.appendList(undetvars);
  1548             //set up listeners to notify original inference contexts as
  1549             //propagated vars are inferred in new context
  1550             for (Type t : inferencevars) {
  1551                 that.freeTypeListeners.put(new FreeTypeListener() {
  1552                     public void typesInferred(InferenceContext inferenceContext) {
  1553                         InferenceContext.this.notifyChange();
  1555                 }, List.of(t));
  1559         /**
  1560          * Solve with given graph strategy.
  1561          */
  1562         private void solve(GraphStrategy ss, Warner warn) {
  1563             GraphSolver s = new GraphSolver(this, warn);
  1564             s.solve(ss);
  1567         /**
  1568          * Solve all variables in this context.
  1569          */
  1570         public void solve(Warner warn) {
  1571             solve(new LeafSolver() {
  1572                 public boolean done() {
  1573                     return restvars().isEmpty();
  1575             }, warn);
  1578         /**
  1579          * Solve all variables in the given list.
  1580          */
  1581         public void solve(final List<Type> vars, Warner warn) {
  1582             solve(new BestLeafSolver(vars) {
  1583                 public boolean done() {
  1584                     return !free(asInstTypes(vars));
  1586             }, warn);
  1589         /**
  1590          * Solve at least one variable in given list.
  1591          */
  1592         public void solveAny(List<Type> varsToSolve, Warner warn) {
  1593             checkWithinBounds(this, warn); //propagate bounds
  1594             List<Type> boundedVars = boundedVars().intersect(restvars()).intersect(varsToSolve);
  1595             if (boundedVars.isEmpty()) {
  1596                 throw inferenceException.setMessage("cyclic.inference",
  1597                                 freeVarsIn(varsToSolve));
  1599             solve(new BestLeafSolver(boundedVars) {
  1600                 public boolean done() {
  1601                     return instvars().intersect(varsToSolve).nonEmpty();
  1603             }, warn);
  1606         /**
  1607          * Apply a set of inference steps
  1608          */
  1609         private boolean solveBasic(EnumSet<InferenceStep> steps) {
  1610             return solveBasic(inferencevars, steps);
  1613         private boolean solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps) {
  1614             boolean changed = false;
  1615             for (Type t : varsToSolve.intersect(restvars())) {
  1616                 UndetVar uv = (UndetVar)asFree(t);
  1617                 for (InferenceStep step : steps) {
  1618                     if (step.accepts(uv, this)) {
  1619                         uv.inst = step.solve(uv, this);
  1620                         changed = true;
  1621                         break;
  1625             return changed;
  1628         /**
  1629          * Instantiate inference variables in legacy mode (JLS 15.12.2.7, 15.12.2.8).
  1630          * During overload resolution, instantiation is done by doing a partial
  1631          * inference process using eq/lower bound instantiation. During check,
  1632          * we also instantiate any remaining vars by repeatedly using eq/upper
  1633          * instantiation, until all variables are solved.
  1634          */
  1635         public void solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps) {
  1636             while (true) {
  1637                 boolean stuck = !solveBasic(steps);
  1638                 if (restvars().isEmpty() || partial) {
  1639                     //all variables have been instantiated - exit
  1640                     break;
  1641                 } else if (stuck) {
  1642                     //some variables could not be instantiated because of cycles in
  1643                     //upper bounds - provide a (possibly recursive) default instantiation
  1644                     instantiateAsUninferredVars(restvars(), this);
  1645                     break;
  1646                 } else {
  1647                     //some variables have been instantiated - replace newly instantiated
  1648                     //variables in remaining upper bounds and continue
  1649                     for (Type t : undetvars) {
  1650                         UndetVar uv = (UndetVar)t;
  1651                         uv.substBounds(inferenceVars(), instTypes(), types);
  1655             checkWithinBounds(this, warn);
  1658         private Infer infer() {
  1659             //back-door to infer
  1660             return Infer.this;
  1664     final InferenceContext emptyContext = new InferenceContext(List.<Type>nil());
  1665     // </editor-fold>

mercurial