src/share/classes/com/sun/tools/javac/code/Types.java

Fri, 30 Nov 2012 15:14:25 +0000

author
mcimadamore
date
Fri, 30 Nov 2012 15:14:25 +0000
changeset 1434
34d1ebaf4645
parent 1430
4d68e2a05b50
child 1436
f6f1fd261f57
permissions
-rw-r--r--

8004102: Add support for generic functional descriptors
Summary: Method references are allowed to have a generic functional interface descriptor target
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.Comparator;
    30 import java.util.HashSet;
    31 import java.util.HashMap;
    32 import java.util.Locale;
    33 import java.util.Map;
    34 import java.util.Set;
    35 import java.util.WeakHashMap;
    37 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    38 import com.sun.tools.javac.code.Lint.LintCategory;
    39 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    40 import com.sun.tools.javac.comp.Check;
    41 import com.sun.tools.javac.jvm.ClassReader;
    42 import com.sun.tools.javac.util.*;
    43 import com.sun.tools.javac.util.List;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.code.Flags.*;
    46 import static com.sun.tools.javac.code.Scope.*;
    47 import static com.sun.tools.javac.code.Symbol.*;
    48 import static com.sun.tools.javac.code.Type.*;
    49 import static com.sun.tools.javac.code.TypeTag.*;
    50 import static com.sun.tools.javac.util.ListBuffer.lb;
    52 /**
    53  * Utility class containing various operations on types.
    54  *
    55  * <p>Unless other names are more illustrative, the following naming
    56  * conventions should be observed in this file:
    57  *
    58  * <dl>
    59  * <dt>t</dt>
    60  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    61  * <dt>s</dt>
    62  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    63  * <dt>ts</dt>
    64  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    65  * <dt>ss</dt>
    66  * <dd>A second list of types should be named ss.</dd>
    67  * </dl>
    68  *
    69  * <p><b>This is NOT part of any supported API.
    70  * If you write code that depends on this, you do so at your own risk.
    71  * This code and its internal interfaces are subject to change or
    72  * deletion without notice.</b>
    73  */
    74 public class Types {
    75     protected static final Context.Key<Types> typesKey =
    76         new Context.Key<Types>();
    78     final Symtab syms;
    79     final JavacMessages messages;
    80     final Names names;
    81     final boolean allowBoxing;
    82     final boolean allowCovariantReturns;
    83     final boolean allowObjectToPrimitiveCast;
    84     final boolean allowDefaultMethods;
    85     final ClassReader reader;
    86     final Check chk;
    87     JCDiagnostic.Factory diags;
    88     List<Warner> warnStack = List.nil();
    89     final Name capturedName;
    90     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    92     public final Warner noWarnings;
    94     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    95     public static Types instance(Context context) {
    96         Types instance = context.get(typesKey);
    97         if (instance == null)
    98             instance = new Types(context);
    99         return instance;
   100     }
   102     protected Types(Context context) {
   103         context.put(typesKey, this);
   104         syms = Symtab.instance(context);
   105         names = Names.instance(context);
   106         Source source = Source.instance(context);
   107         allowBoxing = source.allowBoxing();
   108         allowCovariantReturns = source.allowCovariantReturns();
   109         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   110         allowDefaultMethods = source.allowDefaultMethods();
   111         reader = ClassReader.instance(context);
   112         chk = Check.instance(context);
   113         capturedName = names.fromString("<captured wildcard>");
   114         messages = JavacMessages.instance(context);
   115         diags = JCDiagnostic.Factory.instance(context);
   116         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   117         noWarnings = new Warner(null);
   118     }
   119     // </editor-fold>
   121     // <editor-fold defaultstate="collapsed" desc="upperBound">
   122     /**
   123      * The "rvalue conversion".<br>
   124      * The upper bound of most types is the type
   125      * itself.  Wildcards, on the other hand have upper
   126      * and lower bounds.
   127      * @param t a type
   128      * @return the upper bound of the given type
   129      */
   130     public Type upperBound(Type t) {
   131         return upperBound.visit(t);
   132     }
   133     // where
   134         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   136             @Override
   137             public Type visitWildcardType(WildcardType t, Void ignored) {
   138                 if (t.isSuperBound())
   139                     return t.bound == null ? syms.objectType : t.bound.bound;
   140                 else
   141                     return visit(t.type);
   142             }
   144             @Override
   145             public Type visitCapturedType(CapturedType t, Void ignored) {
   146                 return visit(t.bound);
   147             }
   148         };
   149     // </editor-fold>
   151     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   152     /**
   153      * The "lvalue conversion".<br>
   154      * The lower bound of most types is the type
   155      * itself.  Wildcards, on the other hand have upper
   156      * and lower bounds.
   157      * @param t a type
   158      * @return the lower bound of the given type
   159      */
   160     public Type lowerBound(Type t) {
   161         return lowerBound.visit(t);
   162     }
   163     // where
   164         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   166             @Override
   167             public Type visitWildcardType(WildcardType t, Void ignored) {
   168                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   169             }
   171             @Override
   172             public Type visitCapturedType(CapturedType t, Void ignored) {
   173                 return visit(t.getLowerBound());
   174             }
   175         };
   176     // </editor-fold>
   178     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   179     /**
   180      * Checks that all the arguments to a class are unbounded
   181      * wildcards or something else that doesn't make any restrictions
   182      * on the arguments. If a class isUnbounded, a raw super- or
   183      * subclass can be cast to it without a warning.
   184      * @param t a type
   185      * @return true iff the given type is unbounded or raw
   186      */
   187     public boolean isUnbounded(Type t) {
   188         return isUnbounded.visit(t);
   189     }
   190     // where
   191         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   193             public Boolean visitType(Type t, Void ignored) {
   194                 return true;
   195             }
   197             @Override
   198             public Boolean visitClassType(ClassType t, Void ignored) {
   199                 List<Type> parms = t.tsym.type.allparams();
   200                 List<Type> args = t.allparams();
   201                 while (parms.nonEmpty()) {
   202                     WildcardType unb = new WildcardType(syms.objectType,
   203                                                         BoundKind.UNBOUND,
   204                                                         syms.boundClass,
   205                                                         (TypeVar)parms.head);
   206                     if (!containsType(args.head, unb))
   207                         return false;
   208                     parms = parms.tail;
   209                     args = args.tail;
   210                 }
   211                 return true;
   212             }
   213         };
   214     // </editor-fold>
   216     // <editor-fold defaultstate="collapsed" desc="asSub">
   217     /**
   218      * Return the least specific subtype of t that starts with symbol
   219      * sym.  If none exists, return null.  The least specific subtype
   220      * is determined as follows:
   221      *
   222      * <p>If there is exactly one parameterized instance of sym that is a
   223      * subtype of t, that parameterized instance is returned.<br>
   224      * Otherwise, if the plain type or raw type `sym' is a subtype of
   225      * type t, the type `sym' itself is returned.  Otherwise, null is
   226      * returned.
   227      */
   228     public Type asSub(Type t, Symbol sym) {
   229         return asSub.visit(t, sym);
   230     }
   231     // where
   232         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   234             public Type visitType(Type t, Symbol sym) {
   235                 return null;
   236             }
   238             @Override
   239             public Type visitClassType(ClassType t, Symbol sym) {
   240                 if (t.tsym == sym)
   241                     return t;
   242                 Type base = asSuper(sym.type, t.tsym);
   243                 if (base == null)
   244                     return null;
   245                 ListBuffer<Type> from = new ListBuffer<Type>();
   246                 ListBuffer<Type> to = new ListBuffer<Type>();
   247                 try {
   248                     adapt(base, t, from, to);
   249                 } catch (AdaptFailure ex) {
   250                     return null;
   251                 }
   252                 Type res = subst(sym.type, from.toList(), to.toList());
   253                 if (!isSubtype(res, t))
   254                     return null;
   255                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   256                 for (List<Type> l = sym.type.allparams();
   257                      l.nonEmpty(); l = l.tail)
   258                     if (res.contains(l.head) && !t.contains(l.head))
   259                         openVars.append(l.head);
   260                 if (openVars.nonEmpty()) {
   261                     if (t.isRaw()) {
   262                         // The subtype of a raw type is raw
   263                         res = erasure(res);
   264                     } else {
   265                         // Unbound type arguments default to ?
   266                         List<Type> opens = openVars.toList();
   267                         ListBuffer<Type> qs = new ListBuffer<Type>();
   268                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   269                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   270                         }
   271                         res = subst(res, opens, qs.toList());
   272                     }
   273                 }
   274                 return res;
   275             }
   277             @Override
   278             public Type visitErrorType(ErrorType t, Symbol sym) {
   279                 return t;
   280             }
   281         };
   282     // </editor-fold>
   284     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   285     /**
   286      * Is t a subtype of or convertible via boxing/unboxing
   287      * conversion to s?
   288      */
   289     public boolean isConvertible(Type t, Type s, Warner warn) {
   290         if (t.tag == ERROR)
   291             return true;
   292         boolean tPrimitive = t.isPrimitive();
   293         boolean sPrimitive = s.isPrimitive();
   294         if (tPrimitive == sPrimitive) {
   295             return isSubtypeUnchecked(t, s, warn);
   296         }
   297         if (!allowBoxing) return false;
   298         return tPrimitive
   299             ? isSubtype(boxedClass(t).type, s)
   300             : isSubtype(unboxedType(t), s);
   301     }
   303     /**
   304      * Is t a subtype of or convertiable via boxing/unboxing
   305      * convertions to s?
   306      */
   307     public boolean isConvertible(Type t, Type s) {
   308         return isConvertible(t, s, noWarnings);
   309     }
   310     // </editor-fold>
   312     // <editor-fold defaultstate="collapsed" desc="findSam">
   314     /**
   315      * Exception used to report a function descriptor lookup failure. The exception
   316      * wraps a diagnostic that can be used to generate more details error
   317      * messages.
   318      */
   319     public static class FunctionDescriptorLookupError extends RuntimeException {
   320         private static final long serialVersionUID = 0;
   322         JCDiagnostic diagnostic;
   324         FunctionDescriptorLookupError() {
   325             this.diagnostic = null;
   326         }
   328         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   329             this.diagnostic = diag;
   330             return this;
   331         }
   333         public JCDiagnostic getDiagnostic() {
   334             return diagnostic;
   335         }
   336     }
   338     /**
   339      * A cache that keeps track of function descriptors associated with given
   340      * functional interfaces.
   341      */
   342     class DescriptorCache {
   344         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   346         class FunctionDescriptor {
   347             Symbol descSym;
   349             FunctionDescriptor(Symbol descSym) {
   350                 this.descSym = descSym;
   351             }
   353             public Symbol getSymbol() {
   354                 return descSym;
   355             }
   357             public Type getType(Type origin) {
   358                 return memberType(origin, descSym);
   359             }
   360         }
   362         class Entry {
   363             final FunctionDescriptor cachedDescRes;
   364             final int prevMark;
   366             public Entry(FunctionDescriptor cachedDescRes,
   367                     int prevMark) {
   368                 this.cachedDescRes = cachedDescRes;
   369                 this.prevMark = prevMark;
   370             }
   372             boolean matches(int mark) {
   373                 return  this.prevMark == mark;
   374             }
   375         }
   377         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   378             Entry e = _map.get(origin);
   379             CompoundScope members = membersClosure(origin.type, false);
   380             if (e == null ||
   381                     !e.matches(members.getMark())) {
   382                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   383                 _map.put(origin, new Entry(descRes, members.getMark()));
   384                 return descRes;
   385             }
   386             else {
   387                 return e.cachedDescRes;
   388             }
   389         }
   391         /**
   392          * Scope filter used to skip methods that should be ignored during
   393          * function interface conversion (such as methods overridden by
   394          * j.l.Object)
   395          */
   396         class DescriptorFilter implements Filter<Symbol> {
   398             TypeSymbol origin;
   400             DescriptorFilter(TypeSymbol origin) {
   401                 this.origin = origin;
   402             }
   404             @Override
   405             public boolean accepts(Symbol sym) {
   406                 return sym.kind == Kinds.MTH &&
   407                         (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   408                         !overridesObjectMethod(origin, sym) &&
   409                         (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   410             }
   411         };
   413         /**
   414          * Compute the function descriptor associated with a given functional interface
   415          */
   416         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   417             if (!origin.isInterface()) {
   418                 //t must be an interface
   419                 throw failure("not.a.functional.intf");
   420             }
   422             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   423             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   424                 Type mtype = memberType(origin.type, sym);
   425                 if (abstracts.isEmpty() ||
   426                         (sym.name == abstracts.first().name &&
   427                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   428                     abstracts.append(sym);
   429                 } else {
   430                     //the target method(s) should be the only abstract members of t
   431                     throw failure("not.a.functional.intf.1",
   432                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   433                 }
   434             }
   435             if (abstracts.isEmpty()) {
   436                 //t must define a suitable non-generic method
   437                 throw failure("not.a.functional.intf.1",
   438                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   439             } else if (abstracts.size() == 1) {
   440                 return new FunctionDescriptor(abstracts.first());
   441             } else { // size > 1
   442                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   443                 if (descRes == null) {
   444                     //we can get here if the functional interface is ill-formed
   445                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   446                     for (Symbol desc : abstracts) {
   447                         String key = desc.type.getThrownTypes().nonEmpty() ?
   448                                 "descriptor.throws" : "descriptor";
   449                         descriptors.append(diags.fragment(key, desc.name,
   450                                 desc.type.getParameterTypes(),
   451                                 desc.type.getReturnType(),
   452                                 desc.type.getThrownTypes()));
   453                     }
   454                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   455                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   456                             Kinds.kindName(origin), origin), descriptors.toList());
   457                     throw failure(incompatibleDescriptors);
   458                 }
   459                 return descRes;
   460             }
   461         }
   463         /**
   464          * Compute a synthetic type for the target descriptor given a list
   465          * of override-equivalent methods in the functional interface type.
   466          * The resulting method type is a method type that is override-equivalent
   467          * and return-type substitutable with each method in the original list.
   468          */
   469         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   470             //pick argument types - simply take the signature that is a
   471             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   472             List<Symbol> mostSpecific = List.nil();
   473             outer: for (Symbol msym1 : methodSyms) {
   474                 Type mt1 = memberType(origin.type, msym1);
   475                 for (Symbol msym2 : methodSyms) {
   476                     Type mt2 = memberType(origin.type, msym2);
   477                     if (!isSubSignature(mt1, mt2)) {
   478                         continue outer;
   479                     }
   480                 }
   481                 mostSpecific = mostSpecific.prepend(msym1);
   482             }
   483             if (mostSpecific.isEmpty()) {
   484                 return null;
   485             }
   488             //pick return types - this is done in two phases: (i) first, the most
   489             //specific return type is chosen using strict subtyping; if this fails,
   490             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   491             boolean phase2 = false;
   492             Symbol bestSoFar = null;
   493             while (bestSoFar == null) {
   494                 outer: for (Symbol msym1 : mostSpecific) {
   495                     Type mt1 = memberType(origin.type, msym1);
   496                     for (Symbol msym2 : methodSyms) {
   497                         Type mt2 = memberType(origin.type, msym2);
   498                         if (phase2 ?
   499                                 !returnTypeSubstitutable(mt1, mt2) :
   500                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   501                             continue outer;
   502                         }
   503                     }
   504                     bestSoFar = msym1;
   505                 }
   506                 if (phase2) {
   507                     break;
   508                 } else {
   509                     phase2 = true;
   510                 }
   511             }
   512             if (bestSoFar == null) return null;
   514             //merge thrown types - form the intersection of all the thrown types in
   515             //all the signatures in the list
   516             List<Type> thrown = null;
   517             for (Symbol msym1 : methodSyms) {
   518                 Type mt1 = memberType(origin.type, msym1);
   519                 thrown = (thrown == null) ?
   520                     mt1.getThrownTypes() :
   521                     chk.intersect(mt1.getThrownTypes(), thrown);
   522             }
   524             final List<Type> thrown1 = thrown;
   525             return new FunctionDescriptor(bestSoFar) {
   526                 @Override
   527                 public Type getType(Type origin) {
   528                     Type mt = memberType(origin, getSymbol());
   529                     return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
   530                 }
   531             };
   532         }
   534         boolean isSubtypeInternal(Type s, Type t) {
   535             return (s.isPrimitive() && t.isPrimitive()) ?
   536                     isSameType(t, s) :
   537                     isSubtype(s, t);
   538         }
   540         FunctionDescriptorLookupError failure(String msg, Object... args) {
   541             return failure(diags.fragment(msg, args));
   542         }
   544         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   545             return functionDescriptorLookupError.setMessage(diag);
   546         }
   547     }
   549     private DescriptorCache descCache = new DescriptorCache();
   551     /**
   552      * Find the method descriptor associated to this class symbol - if the
   553      * symbol 'origin' is not a functional interface, an exception is thrown.
   554      */
   555     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   556         return descCache.get(origin).getSymbol();
   557     }
   559     /**
   560      * Find the type of the method descriptor associated to this class symbol -
   561      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   562      */
   563     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   564         return descCache.get(origin.tsym).getType(origin);
   565     }
   567     /**
   568      * Is given type a functional interface?
   569      */
   570     public boolean isFunctionalInterface(TypeSymbol tsym) {
   571         try {
   572             findDescriptorSymbol(tsym);
   573             return true;
   574         } catch (FunctionDescriptorLookupError ex) {
   575             return false;
   576         }
   577     }
   578     // </editor-fold>
   580     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   581     /**
   582      * Is t an unchecked subtype of s?
   583      */
   584     public boolean isSubtypeUnchecked(Type t, Type s) {
   585         return isSubtypeUnchecked(t, s, noWarnings);
   586     }
   587     /**
   588      * Is t an unchecked subtype of s?
   589      */
   590     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   591         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   592         if (result) {
   593             checkUnsafeVarargsConversion(t, s, warn);
   594         }
   595         return result;
   596     }
   597     //where
   598         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   599             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   600                 if (((ArrayType)t).elemtype.isPrimitive()) {
   601                     return isSameType(elemtype(t), elemtype(s));
   602                 } else {
   603                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   604                 }
   605             } else if (isSubtype(t, s)) {
   606                 return true;
   607             }
   608             else if (t.tag == TYPEVAR) {
   609                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   610             }
   611             else if (!s.isRaw()) {
   612                 Type t2 = asSuper(t, s.tsym);
   613                 if (t2 != null && t2.isRaw()) {
   614                     if (isReifiable(s))
   615                         warn.silentWarn(LintCategory.UNCHECKED);
   616                     else
   617                         warn.warn(LintCategory.UNCHECKED);
   618                     return true;
   619                 }
   620             }
   621             return false;
   622         }
   624         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   625             if (t.tag != ARRAY || isReifiable(t)) return;
   626             ArrayType from = (ArrayType)t;
   627             boolean shouldWarn = false;
   628             switch (s.tag) {
   629                 case ARRAY:
   630                     ArrayType to = (ArrayType)s;
   631                     shouldWarn = from.isVarargs() &&
   632                             !to.isVarargs() &&
   633                             !isReifiable(from);
   634                     break;
   635                 case CLASS:
   636                     shouldWarn = from.isVarargs();
   637                     break;
   638             }
   639             if (shouldWarn) {
   640                 warn.warn(LintCategory.VARARGS);
   641             }
   642         }
   644     /**
   645      * Is t a subtype of s?<br>
   646      * (not defined for Method and ForAll types)
   647      */
   648     final public boolean isSubtype(Type t, Type s) {
   649         return isSubtype(t, s, true);
   650     }
   651     final public boolean isSubtypeNoCapture(Type t, Type s) {
   652         return isSubtype(t, s, false);
   653     }
   654     public boolean isSubtype(Type t, Type s, boolean capture) {
   655         if (t == s)
   656             return true;
   658         if (s.isPartial())
   659             return isSuperType(s, t);
   661         if (s.isCompound()) {
   662             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   663                 if (!isSubtype(t, s2, capture))
   664                     return false;
   665             }
   666             return true;
   667         }
   669         Type lower = lowerBound(s);
   670         if (s != lower)
   671             return isSubtype(capture ? capture(t) : t, lower, false);
   673         return isSubtype.visit(capture ? capture(t) : t, s);
   674     }
   675     // where
   676         private TypeRelation isSubtype = new TypeRelation()
   677         {
   678             public Boolean visitType(Type t, Type s) {
   679                 switch (t.tag) {
   680                  case BYTE:
   681                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   682                  case CHAR:
   683                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   684                  case SHORT: case INT: case LONG:
   685                  case FLOAT: case DOUBLE:
   686                      return t.getTag().isSubRangeOf(s.getTag());
   687                  case BOOLEAN: case VOID:
   688                      return t.hasTag(s.getTag());
   689                  case TYPEVAR:
   690                      return isSubtypeNoCapture(t.getUpperBound(), s);
   691                  case BOT:
   692                      return
   693                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   694                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   695                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   696                  case NONE:
   697                      return false;
   698                  default:
   699                      throw new AssertionError("isSubtype " + t.tag);
   700                  }
   701             }
   703             private Set<TypePair> cache = new HashSet<TypePair>();
   705             private boolean containsTypeRecursive(Type t, Type s) {
   706                 TypePair pair = new TypePair(t, s);
   707                 if (cache.add(pair)) {
   708                     try {
   709                         return containsType(t.getTypeArguments(),
   710                                             s.getTypeArguments());
   711                     } finally {
   712                         cache.remove(pair);
   713                     }
   714                 } else {
   715                     return containsType(t.getTypeArguments(),
   716                                         rewriteSupers(s).getTypeArguments());
   717                 }
   718             }
   720             private Type rewriteSupers(Type t) {
   721                 if (!t.isParameterized())
   722                     return t;
   723                 ListBuffer<Type> from = lb();
   724                 ListBuffer<Type> to = lb();
   725                 adaptSelf(t, from, to);
   726                 if (from.isEmpty())
   727                     return t;
   728                 ListBuffer<Type> rewrite = lb();
   729                 boolean changed = false;
   730                 for (Type orig : to.toList()) {
   731                     Type s = rewriteSupers(orig);
   732                     if (s.isSuperBound() && !s.isExtendsBound()) {
   733                         s = new WildcardType(syms.objectType,
   734                                              BoundKind.UNBOUND,
   735                                              syms.boundClass);
   736                         changed = true;
   737                     } else if (s != orig) {
   738                         s = new WildcardType(upperBound(s),
   739                                              BoundKind.EXTENDS,
   740                                              syms.boundClass);
   741                         changed = true;
   742                     }
   743                     rewrite.append(s);
   744                 }
   745                 if (changed)
   746                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   747                 else
   748                     return t;
   749             }
   751             @Override
   752             public Boolean visitClassType(ClassType t, Type s) {
   753                 Type sup = asSuper(t, s.tsym);
   754                 return sup != null
   755                     && sup.tsym == s.tsym
   756                     // You're not allowed to write
   757                     //     Vector<Object> vec = new Vector<String>();
   758                     // But with wildcards you can write
   759                     //     Vector<? extends Object> vec = new Vector<String>();
   760                     // which means that subtype checking must be done
   761                     // here instead of same-type checking (via containsType).
   762                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   763                     && isSubtypeNoCapture(sup.getEnclosingType(),
   764                                           s.getEnclosingType());
   765             }
   767             @Override
   768             public Boolean visitArrayType(ArrayType t, Type s) {
   769                 if (s.tag == ARRAY) {
   770                     if (t.elemtype.isPrimitive())
   771                         return isSameType(t.elemtype, elemtype(s));
   772                     else
   773                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   774                 }
   776                 if (s.tag == CLASS) {
   777                     Name sname = s.tsym.getQualifiedName();
   778                     return sname == names.java_lang_Object
   779                         || sname == names.java_lang_Cloneable
   780                         || sname == names.java_io_Serializable;
   781                 }
   783                 return false;
   784             }
   786             @Override
   787             public Boolean visitUndetVar(UndetVar t, Type s) {
   788                 //todo: test against origin needed? or replace with substitution?
   789                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   790                     return true;
   791                 } else if (s.tag == BOT) {
   792                     //if 's' is 'null' there's no instantiated type U for which
   793                     //U <: s (but 'null' itself, which is not a valid type)
   794                     return false;
   795                 }
   797                 t.addBound(InferenceBound.UPPER, s, Types.this);
   798                 return true;
   799             }
   801             @Override
   802             public Boolean visitErrorType(ErrorType t, Type s) {
   803                 return true;
   804             }
   805         };
   807     /**
   808      * Is t a subtype of every type in given list `ts'?<br>
   809      * (not defined for Method and ForAll types)<br>
   810      * Allows unchecked conversions.
   811      */
   812     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   813         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   814             if (!isSubtypeUnchecked(t, l.head, warn))
   815                 return false;
   816         return true;
   817     }
   819     /**
   820      * Are corresponding elements of ts subtypes of ss?  If lists are
   821      * of different length, return false.
   822      */
   823     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   824         while (ts.tail != null && ss.tail != null
   825                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   826                isSubtype(ts.head, ss.head)) {
   827             ts = ts.tail;
   828             ss = ss.tail;
   829         }
   830         return ts.tail == null && ss.tail == null;
   831         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   832     }
   834     /**
   835      * Are corresponding elements of ts subtypes of ss, allowing
   836      * unchecked conversions?  If lists are of different length,
   837      * return false.
   838      **/
   839     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   840         while (ts.tail != null && ss.tail != null
   841                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   842                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   843             ts = ts.tail;
   844             ss = ss.tail;
   845         }
   846         return ts.tail == null && ss.tail == null;
   847         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   848     }
   849     // </editor-fold>
   851     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   852     /**
   853      * Is t a supertype of s?
   854      */
   855     public boolean isSuperType(Type t, Type s) {
   856         switch (t.tag) {
   857         case ERROR:
   858             return true;
   859         case UNDETVAR: {
   860             UndetVar undet = (UndetVar)t;
   861             if (t == s ||
   862                 undet.qtype == s ||
   863                 s.tag == ERROR ||
   864                 s.tag == BOT) return true;
   865             undet.addBound(InferenceBound.LOWER, s, this);
   866             return true;
   867         }
   868         default:
   869             return isSubtype(s, t);
   870         }
   871     }
   872     // </editor-fold>
   874     // <editor-fold defaultstate="collapsed" desc="isSameType">
   875     /**
   876      * Are corresponding elements of the lists the same type?  If
   877      * lists are of different length, return false.
   878      */
   879     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   880         while (ts.tail != null && ss.tail != null
   881                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   882                isSameType(ts.head, ss.head)) {
   883             ts = ts.tail;
   884             ss = ss.tail;
   885         }
   886         return ts.tail == null && ss.tail == null;
   887         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   888     }
   890     /**
   891      * Is t the same type as s?
   892      */
   893     public boolean isSameType(Type t, Type s) {
   894         return isSameType.visit(t, s);
   895     }
   896     // where
   897         private TypeRelation isSameType = new TypeRelation() {
   899             public Boolean visitType(Type t, Type s) {
   900                 if (t == s)
   901                     return true;
   903                 if (s.isPartial())
   904                     return visit(s, t);
   906                 switch (t.tag) {
   907                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   908                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   909                     return t.tag == s.tag;
   910                 case TYPEVAR: {
   911                     if (s.tag == TYPEVAR) {
   912                         //type-substitution does not preserve type-var types
   913                         //check that type var symbols and bounds are indeed the same
   914                         return t.tsym == s.tsym &&
   915                                 visit(t.getUpperBound(), s.getUpperBound());
   916                     }
   917                     else {
   918                         //special case for s == ? super X, where upper(s) = u
   919                         //check that u == t, where u has been set by Type.withTypeVar
   920                         return s.isSuperBound() &&
   921                                 !s.isExtendsBound() &&
   922                                 visit(t, upperBound(s));
   923                     }
   924                 }
   925                 default:
   926                     throw new AssertionError("isSameType " + t.tag);
   927                 }
   928             }
   930             @Override
   931             public Boolean visitWildcardType(WildcardType t, Type s) {
   932                 if (s.isPartial())
   933                     return visit(s, t);
   934                 else
   935                     return false;
   936             }
   938             @Override
   939             public Boolean visitClassType(ClassType t, Type s) {
   940                 if (t == s)
   941                     return true;
   943                 if (s.isPartial())
   944                     return visit(s, t);
   946                 if (s.isSuperBound() && !s.isExtendsBound())
   947                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
   949                 if (t.isCompound() && s.isCompound()) {
   950                     if (!visit(supertype(t), supertype(s)))
   951                         return false;
   953                     HashSet<SingletonType> set = new HashSet<SingletonType>();
   954                     for (Type x : interfaces(t))
   955                         set.add(new SingletonType(x));
   956                     for (Type x : interfaces(s)) {
   957                         if (!set.remove(new SingletonType(x)))
   958                             return false;
   959                     }
   960                     return (set.isEmpty());
   961                 }
   962                 return t.tsym == s.tsym
   963                     && visit(t.getEnclosingType(), s.getEnclosingType())
   964                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
   965             }
   967             @Override
   968             public Boolean visitArrayType(ArrayType t, Type s) {
   969                 if (t == s)
   970                     return true;
   972                 if (s.isPartial())
   973                     return visit(s, t);
   975                 return s.hasTag(ARRAY)
   976                     && containsTypeEquivalent(t.elemtype, elemtype(s));
   977             }
   979             @Override
   980             public Boolean visitMethodType(MethodType t, Type s) {
   981                 // isSameType for methods does not take thrown
   982                 // exceptions into account!
   983                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
   984             }
   986             @Override
   987             public Boolean visitPackageType(PackageType t, Type s) {
   988                 return t == s;
   989             }
   991             @Override
   992             public Boolean visitForAll(ForAll t, Type s) {
   993                 if (s.tag != FORALL)
   994                     return false;
   996                 ForAll forAll = (ForAll)s;
   997                 return hasSameBounds(t, forAll)
   998                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
   999             }
  1001             @Override
  1002             public Boolean visitUndetVar(UndetVar t, Type s) {
  1003                 if (s.tag == WILDCARD)
  1004                     // FIXME, this might be leftovers from before capture conversion
  1005                     return false;
  1007                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1008                     return true;
  1010                 t.addBound(InferenceBound.EQ, s, Types.this);
  1012                 return true;
  1015             @Override
  1016             public Boolean visitErrorType(ErrorType t, Type s) {
  1017                 return true;
  1019         };
  1020     // </editor-fold>
  1022     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1023     public boolean containedBy(Type t, Type s) {
  1024         switch (t.tag) {
  1025         case UNDETVAR:
  1026             if (s.tag == WILDCARD) {
  1027                 UndetVar undetvar = (UndetVar)t;
  1028                 WildcardType wt = (WildcardType)s;
  1029                 switch(wt.kind) {
  1030                     case UNBOUND: //similar to ? extends Object
  1031                     case EXTENDS: {
  1032                         Type bound = upperBound(s);
  1033                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1034                         break;
  1036                     case SUPER: {
  1037                         Type bound = lowerBound(s);
  1038                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1039                         break;
  1042                 return true;
  1043             } else {
  1044                 return isSameType(t, s);
  1046         case ERROR:
  1047             return true;
  1048         default:
  1049             return containsType(s, t);
  1053     boolean containsType(List<Type> ts, List<Type> ss) {
  1054         while (ts.nonEmpty() && ss.nonEmpty()
  1055                && containsType(ts.head, ss.head)) {
  1056             ts = ts.tail;
  1057             ss = ss.tail;
  1059         return ts.isEmpty() && ss.isEmpty();
  1062     /**
  1063      * Check if t contains s.
  1065      * <p>T contains S if:
  1067      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1069      * <p>This relation is only used by ClassType.isSubtype(), that
  1070      * is,
  1072      * <p>{@code C<S> <: C<T> if T contains S.}
  1074      * <p>Because of F-bounds, this relation can lead to infinite
  1075      * recursion.  Thus we must somehow break that recursion.  Notice
  1076      * that containsType() is only called from ClassType.isSubtype().
  1077      * Since the arguments have already been checked against their
  1078      * bounds, we know:
  1080      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1082      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1084      * @param t a type
  1085      * @param s a type
  1086      */
  1087     public boolean containsType(Type t, Type s) {
  1088         return containsType.visit(t, s);
  1090     // where
  1091         private TypeRelation containsType = new TypeRelation() {
  1093             private Type U(Type t) {
  1094                 while (t.tag == WILDCARD) {
  1095                     WildcardType w = (WildcardType)t;
  1096                     if (w.isSuperBound())
  1097                         return w.bound == null ? syms.objectType : w.bound.bound;
  1098                     else
  1099                         t = w.type;
  1101                 return t;
  1104             private Type L(Type t) {
  1105                 while (t.tag == WILDCARD) {
  1106                     WildcardType w = (WildcardType)t;
  1107                     if (w.isExtendsBound())
  1108                         return syms.botType;
  1109                     else
  1110                         t = w.type;
  1112                 return t;
  1115             public Boolean visitType(Type t, Type s) {
  1116                 if (s.isPartial())
  1117                     return containedBy(s, t);
  1118                 else
  1119                     return isSameType(t, s);
  1122 //            void debugContainsType(WildcardType t, Type s) {
  1123 //                System.err.println();
  1124 //                System.err.format(" does %s contain %s?%n", t, s);
  1125 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1126 //                                  upperBound(s), s, t, U(t),
  1127 //                                  t.isSuperBound()
  1128 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1129 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1130 //                                  L(t), t, s, lowerBound(s),
  1131 //                                  t.isExtendsBound()
  1132 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1133 //                System.err.println();
  1134 //            }
  1136             @Override
  1137             public Boolean visitWildcardType(WildcardType t, Type s) {
  1138                 if (s.isPartial())
  1139                     return containedBy(s, t);
  1140                 else {
  1141 //                    debugContainsType(t, s);
  1142                     return isSameWildcard(t, s)
  1143                         || isCaptureOf(s, t)
  1144                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1145                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1149             @Override
  1150             public Boolean visitUndetVar(UndetVar t, Type s) {
  1151                 if (s.tag != WILDCARD)
  1152                     return isSameType(t, s);
  1153                 else
  1154                     return false;
  1157             @Override
  1158             public Boolean visitErrorType(ErrorType t, Type s) {
  1159                 return true;
  1161         };
  1163     public boolean isCaptureOf(Type s, WildcardType t) {
  1164         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1165             return false;
  1166         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1169     public boolean isSameWildcard(WildcardType t, Type s) {
  1170         if (s.tag != WILDCARD)
  1171             return false;
  1172         WildcardType w = (WildcardType)s;
  1173         return w.kind == t.kind && w.type == t.type;
  1176     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1177         while (ts.nonEmpty() && ss.nonEmpty()
  1178                && containsTypeEquivalent(ts.head, ss.head)) {
  1179             ts = ts.tail;
  1180             ss = ss.tail;
  1182         return ts.isEmpty() && ss.isEmpty();
  1184     // </editor-fold>
  1186     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1187     public boolean isCastable(Type t, Type s) {
  1188         return isCastable(t, s, noWarnings);
  1191     /**
  1192      * Is t is castable to s?<br>
  1193      * s is assumed to be an erased type.<br>
  1194      * (not defined for Method and ForAll types).
  1195      */
  1196     public boolean isCastable(Type t, Type s, Warner warn) {
  1197         if (t == s)
  1198             return true;
  1200         if (t.isPrimitive() != s.isPrimitive())
  1201             return allowBoxing && (
  1202                     isConvertible(t, s, warn)
  1203                     || (allowObjectToPrimitiveCast &&
  1204                         s.isPrimitive() &&
  1205                         isSubtype(boxedClass(s).type, t)));
  1206         if (warn != warnStack.head) {
  1207             try {
  1208                 warnStack = warnStack.prepend(warn);
  1209                 checkUnsafeVarargsConversion(t, s, warn);
  1210                 return isCastable.visit(t,s);
  1211             } finally {
  1212                 warnStack = warnStack.tail;
  1214         } else {
  1215             return isCastable.visit(t,s);
  1218     // where
  1219         private TypeRelation isCastable = new TypeRelation() {
  1221             public Boolean visitType(Type t, Type s) {
  1222                 if (s.tag == ERROR)
  1223                     return true;
  1225                 switch (t.tag) {
  1226                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1227                 case DOUBLE:
  1228                     return s.isNumeric();
  1229                 case BOOLEAN:
  1230                     return s.tag == BOOLEAN;
  1231                 case VOID:
  1232                     return false;
  1233                 case BOT:
  1234                     return isSubtype(t, s);
  1235                 default:
  1236                     throw new AssertionError();
  1240             @Override
  1241             public Boolean visitWildcardType(WildcardType t, Type s) {
  1242                 return isCastable(upperBound(t), s, warnStack.head);
  1245             @Override
  1246             public Boolean visitClassType(ClassType t, Type s) {
  1247                 if (s.tag == ERROR || s.tag == BOT)
  1248                     return true;
  1250                 if (s.tag == TYPEVAR) {
  1251                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1252                         warnStack.head.warn(LintCategory.UNCHECKED);
  1253                         return true;
  1254                     } else {
  1255                         return false;
  1259                 if (t.isCompound()) {
  1260                     Warner oldWarner = warnStack.head;
  1261                     warnStack.head = noWarnings;
  1262                     if (!visit(supertype(t), s))
  1263                         return false;
  1264                     for (Type intf : interfaces(t)) {
  1265                         if (!visit(intf, s))
  1266                             return false;
  1268                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1269                         oldWarner.warn(LintCategory.UNCHECKED);
  1270                     return true;
  1273                 if (s.isCompound()) {
  1274                     // call recursively to reuse the above code
  1275                     return visitClassType((ClassType)s, t);
  1278                 if (s.tag == CLASS || s.tag == ARRAY) {
  1279                     boolean upcast;
  1280                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1281                         || isSubtype(erasure(s), erasure(t))) {
  1282                         if (!upcast && s.tag == ARRAY) {
  1283                             if (!isReifiable(s))
  1284                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1285                             return true;
  1286                         } else if (s.isRaw()) {
  1287                             return true;
  1288                         } else if (t.isRaw()) {
  1289                             if (!isUnbounded(s))
  1290                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1291                             return true;
  1293                         // Assume |a| <: |b|
  1294                         final Type a = upcast ? t : s;
  1295                         final Type b = upcast ? s : t;
  1296                         final boolean HIGH = true;
  1297                         final boolean LOW = false;
  1298                         final boolean DONT_REWRITE_TYPEVARS = false;
  1299                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1300                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1301                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1302                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1303                         Type lowSub = asSub(bLow, aLow.tsym);
  1304                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1305                         if (highSub == null) {
  1306                             final boolean REWRITE_TYPEVARS = true;
  1307                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1308                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1309                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1310                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1311                             lowSub = asSub(bLow, aLow.tsym);
  1312                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1314                         if (highSub != null) {
  1315                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1316                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1318                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1319                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1320                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1321                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1322                                 if (upcast ? giveWarning(a, b) :
  1323                                     giveWarning(b, a))
  1324                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1325                                 return true;
  1328                         if (isReifiable(s))
  1329                             return isSubtypeUnchecked(a, b);
  1330                         else
  1331                             return isSubtypeUnchecked(a, b, warnStack.head);
  1334                     // Sidecast
  1335                     if (s.tag == CLASS) {
  1336                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1337                             return ((t.tsym.flags() & FINAL) == 0)
  1338                                 ? sideCast(t, s, warnStack.head)
  1339                                 : sideCastFinal(t, s, warnStack.head);
  1340                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1341                             return ((s.tsym.flags() & FINAL) == 0)
  1342                                 ? sideCast(t, s, warnStack.head)
  1343                                 : sideCastFinal(t, s, warnStack.head);
  1344                         } else {
  1345                             // unrelated class types
  1346                             return false;
  1350                 return false;
  1353             @Override
  1354             public Boolean visitArrayType(ArrayType t, Type s) {
  1355                 switch (s.tag) {
  1356                 case ERROR:
  1357                 case BOT:
  1358                     return true;
  1359                 case TYPEVAR:
  1360                     if (isCastable(s, t, noWarnings)) {
  1361                         warnStack.head.warn(LintCategory.UNCHECKED);
  1362                         return true;
  1363                     } else {
  1364                         return false;
  1366                 case CLASS:
  1367                     return isSubtype(t, s);
  1368                 case ARRAY:
  1369                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1370                         return elemtype(t).tag == elemtype(s).tag;
  1371                     } else {
  1372                         return visit(elemtype(t), elemtype(s));
  1374                 default:
  1375                     return false;
  1379             @Override
  1380             public Boolean visitTypeVar(TypeVar t, Type s) {
  1381                 switch (s.tag) {
  1382                 case ERROR:
  1383                 case BOT:
  1384                     return true;
  1385                 case TYPEVAR:
  1386                     if (isSubtype(t, s)) {
  1387                         return true;
  1388                     } else if (isCastable(t.bound, s, noWarnings)) {
  1389                         warnStack.head.warn(LintCategory.UNCHECKED);
  1390                         return true;
  1391                     } else {
  1392                         return false;
  1394                 default:
  1395                     return isCastable(t.bound, s, warnStack.head);
  1399             @Override
  1400             public Boolean visitErrorType(ErrorType t, Type s) {
  1401                 return true;
  1403         };
  1404     // </editor-fold>
  1406     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1407     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1408         while (ts.tail != null && ss.tail != null) {
  1409             if (disjointType(ts.head, ss.head)) return true;
  1410             ts = ts.tail;
  1411             ss = ss.tail;
  1413         return false;
  1416     /**
  1417      * Two types or wildcards are considered disjoint if it can be
  1418      * proven that no type can be contained in both. It is
  1419      * conservative in that it is allowed to say that two types are
  1420      * not disjoint, even though they actually are.
  1422      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1423      * {@code X} and {@code Y} are not disjoint.
  1424      */
  1425     public boolean disjointType(Type t, Type s) {
  1426         return disjointType.visit(t, s);
  1428     // where
  1429         private TypeRelation disjointType = new TypeRelation() {
  1431             private Set<TypePair> cache = new HashSet<TypePair>();
  1433             public Boolean visitType(Type t, Type s) {
  1434                 if (s.tag == WILDCARD)
  1435                     return visit(s, t);
  1436                 else
  1437                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1440             private boolean isCastableRecursive(Type t, Type s) {
  1441                 TypePair pair = new TypePair(t, s);
  1442                 if (cache.add(pair)) {
  1443                     try {
  1444                         return Types.this.isCastable(t, s);
  1445                     } finally {
  1446                         cache.remove(pair);
  1448                 } else {
  1449                     return true;
  1453             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1454                 TypePair pair = new TypePair(t, s);
  1455                 if (cache.add(pair)) {
  1456                     try {
  1457                         return Types.this.notSoftSubtype(t, s);
  1458                     } finally {
  1459                         cache.remove(pair);
  1461                 } else {
  1462                     return false;
  1466             @Override
  1467             public Boolean visitWildcardType(WildcardType t, Type s) {
  1468                 if (t.isUnbound())
  1469                     return false;
  1471                 if (s.tag != WILDCARD) {
  1472                     if (t.isExtendsBound())
  1473                         return notSoftSubtypeRecursive(s, t.type);
  1474                     else // isSuperBound()
  1475                         return notSoftSubtypeRecursive(t.type, s);
  1478                 if (s.isUnbound())
  1479                     return false;
  1481                 if (t.isExtendsBound()) {
  1482                     if (s.isExtendsBound())
  1483                         return !isCastableRecursive(t.type, upperBound(s));
  1484                     else if (s.isSuperBound())
  1485                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1486                 } else if (t.isSuperBound()) {
  1487                     if (s.isExtendsBound())
  1488                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1490                 return false;
  1492         };
  1493     // </editor-fold>
  1495     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1496     /**
  1497      * Returns the lower bounds of the formals of a method.
  1498      */
  1499     public List<Type> lowerBoundArgtypes(Type t) {
  1500         return lowerBounds(t.getParameterTypes());
  1502     public List<Type> lowerBounds(List<Type> ts) {
  1503         return map(ts, lowerBoundMapping);
  1505     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1506             public Type apply(Type t) {
  1507                 return lowerBound(t);
  1509         };
  1510     // </editor-fold>
  1512     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1513     /**
  1514      * This relation answers the question: is impossible that
  1515      * something of type `t' can be a subtype of `s'? This is
  1516      * different from the question "is `t' not a subtype of `s'?"
  1517      * when type variables are involved: Integer is not a subtype of T
  1518      * where {@code <T extends Number>} but it is not true that Integer cannot
  1519      * possibly be a subtype of T.
  1520      */
  1521     public boolean notSoftSubtype(Type t, Type s) {
  1522         if (t == s) return false;
  1523         if (t.tag == TYPEVAR) {
  1524             TypeVar tv = (TypeVar) t;
  1525             return !isCastable(tv.bound,
  1526                                relaxBound(s),
  1527                                noWarnings);
  1529         if (s.tag != WILDCARD)
  1530             s = upperBound(s);
  1532         return !isSubtype(t, relaxBound(s));
  1535     private Type relaxBound(Type t) {
  1536         if (t.tag == TYPEVAR) {
  1537             while (t.tag == TYPEVAR)
  1538                 t = t.getUpperBound();
  1539             t = rewriteQuantifiers(t, true, true);
  1541         return t;
  1543     // </editor-fold>
  1545     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1546     public boolean isReifiable(Type t) {
  1547         return isReifiable.visit(t);
  1549     // where
  1550         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1552             public Boolean visitType(Type t, Void ignored) {
  1553                 return true;
  1556             @Override
  1557             public Boolean visitClassType(ClassType t, Void ignored) {
  1558                 if (t.isCompound())
  1559                     return false;
  1560                 else {
  1561                     if (!t.isParameterized())
  1562                         return true;
  1564                     for (Type param : t.allparams()) {
  1565                         if (!param.isUnbound())
  1566                             return false;
  1568                     return true;
  1572             @Override
  1573             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1574                 return visit(t.elemtype);
  1577             @Override
  1578             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1579                 return false;
  1581         };
  1582     // </editor-fold>
  1584     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1585     public boolean isArray(Type t) {
  1586         while (t.tag == WILDCARD)
  1587             t = upperBound(t);
  1588         return t.tag == ARRAY;
  1591     /**
  1592      * The element type of an array.
  1593      */
  1594     public Type elemtype(Type t) {
  1595         switch (t.tag) {
  1596         case WILDCARD:
  1597             return elemtype(upperBound(t));
  1598         case ARRAY:
  1599             return ((ArrayType)t).elemtype;
  1600         case FORALL:
  1601             return elemtype(((ForAll)t).qtype);
  1602         case ERROR:
  1603             return t;
  1604         default:
  1605             return null;
  1609     public Type elemtypeOrType(Type t) {
  1610         Type elemtype = elemtype(t);
  1611         return elemtype != null ?
  1612             elemtype :
  1613             t;
  1616     /**
  1617      * Mapping to take element type of an arraytype
  1618      */
  1619     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1620         public Type apply(Type t) { return elemtype(t); }
  1621     };
  1623     /**
  1624      * The number of dimensions of an array type.
  1625      */
  1626     public int dimensions(Type t) {
  1627         int result = 0;
  1628         while (t.tag == ARRAY) {
  1629             result++;
  1630             t = elemtype(t);
  1632         return result;
  1635     /**
  1636      * Returns an ArrayType with the component type t
  1638      * @param t The component type of the ArrayType
  1639      * @return the ArrayType for the given component
  1640      */
  1641     public ArrayType makeArrayType(Type t) {
  1642         if (t.tag == VOID ||
  1643             t.tag == PACKAGE) {
  1644             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1646         return new ArrayType(t, syms.arrayClass);
  1648     // </editor-fold>
  1650     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1651     /**
  1652      * Return the (most specific) base type of t that starts with the
  1653      * given symbol.  If none exists, return null.
  1655      * @param t a type
  1656      * @param sym a symbol
  1657      */
  1658     public Type asSuper(Type t, Symbol sym) {
  1659         return asSuper.visit(t, sym);
  1661     // where
  1662         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1664             public Type visitType(Type t, Symbol sym) {
  1665                 return null;
  1668             @Override
  1669             public Type visitClassType(ClassType t, Symbol sym) {
  1670                 if (t.tsym == sym)
  1671                     return t;
  1673                 Type st = supertype(t);
  1674                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1675                     Type x = asSuper(st, sym);
  1676                     if (x != null)
  1677                         return x;
  1679                 if ((sym.flags() & INTERFACE) != 0) {
  1680                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1681                         Type x = asSuper(l.head, sym);
  1682                         if (x != null)
  1683                             return x;
  1686                 return null;
  1689             @Override
  1690             public Type visitArrayType(ArrayType t, Symbol sym) {
  1691                 return isSubtype(t, sym.type) ? sym.type : null;
  1694             @Override
  1695             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1696                 if (t.tsym == sym)
  1697                     return t;
  1698                 else
  1699                     return asSuper(t.bound, sym);
  1702             @Override
  1703             public Type visitErrorType(ErrorType t, Symbol sym) {
  1704                 return t;
  1706         };
  1708     /**
  1709      * Return the base type of t or any of its outer types that starts
  1710      * with the given symbol.  If none exists, return null.
  1712      * @param t a type
  1713      * @param sym a symbol
  1714      */
  1715     public Type asOuterSuper(Type t, Symbol sym) {
  1716         switch (t.tag) {
  1717         case CLASS:
  1718             do {
  1719                 Type s = asSuper(t, sym);
  1720                 if (s != null) return s;
  1721                 t = t.getEnclosingType();
  1722             } while (t.tag == CLASS);
  1723             return null;
  1724         case ARRAY:
  1725             return isSubtype(t, sym.type) ? sym.type : null;
  1726         case TYPEVAR:
  1727             return asSuper(t, sym);
  1728         case ERROR:
  1729             return t;
  1730         default:
  1731             return null;
  1735     /**
  1736      * Return the base type of t or any of its enclosing types that
  1737      * starts with the given symbol.  If none exists, return null.
  1739      * @param t a type
  1740      * @param sym a symbol
  1741      */
  1742     public Type asEnclosingSuper(Type t, Symbol sym) {
  1743         switch (t.tag) {
  1744         case CLASS:
  1745             do {
  1746                 Type s = asSuper(t, sym);
  1747                 if (s != null) return s;
  1748                 Type outer = t.getEnclosingType();
  1749                 t = (outer.tag == CLASS) ? outer :
  1750                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1751                     Type.noType;
  1752             } while (t.tag == CLASS);
  1753             return null;
  1754         case ARRAY:
  1755             return isSubtype(t, sym.type) ? sym.type : null;
  1756         case TYPEVAR:
  1757             return asSuper(t, sym);
  1758         case ERROR:
  1759             return t;
  1760         default:
  1761             return null;
  1764     // </editor-fold>
  1766     // <editor-fold defaultstate="collapsed" desc="memberType">
  1767     /**
  1768      * The type of given symbol, seen as a member of t.
  1770      * @param t a type
  1771      * @param sym a symbol
  1772      */
  1773     public Type memberType(Type t, Symbol sym) {
  1774         return (sym.flags() & STATIC) != 0
  1775             ? sym.type
  1776             : memberType.visit(t, sym);
  1778     // where
  1779         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1781             public Type visitType(Type t, Symbol sym) {
  1782                 return sym.type;
  1785             @Override
  1786             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1787                 return memberType(upperBound(t), sym);
  1790             @Override
  1791             public Type visitClassType(ClassType t, Symbol sym) {
  1792                 Symbol owner = sym.owner;
  1793                 long flags = sym.flags();
  1794                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1795                     Type base = asOuterSuper(t, owner);
  1796                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1797                     //its supertypes CT, I1, ... In might contain wildcards
  1798                     //so we need to go through capture conversion
  1799                     base = t.isCompound() ? capture(base) : base;
  1800                     if (base != null) {
  1801                         List<Type> ownerParams = owner.type.allparams();
  1802                         List<Type> baseParams = base.allparams();
  1803                         if (ownerParams.nonEmpty()) {
  1804                             if (baseParams.isEmpty()) {
  1805                                 // then base is a raw type
  1806                                 return erasure(sym.type);
  1807                             } else {
  1808                                 return subst(sym.type, ownerParams, baseParams);
  1813                 return sym.type;
  1816             @Override
  1817             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1818                 return memberType(t.bound, sym);
  1821             @Override
  1822             public Type visitErrorType(ErrorType t, Symbol sym) {
  1823                 return t;
  1825         };
  1826     // </editor-fold>
  1828     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1829     public boolean isAssignable(Type t, Type s) {
  1830         return isAssignable(t, s, noWarnings);
  1833     /**
  1834      * Is t assignable to s?<br>
  1835      * Equivalent to subtype except for constant values and raw
  1836      * types.<br>
  1837      * (not defined for Method and ForAll types)
  1838      */
  1839     public boolean isAssignable(Type t, Type s, Warner warn) {
  1840         if (t.tag == ERROR)
  1841             return true;
  1842         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  1843             int value = ((Number)t.constValue()).intValue();
  1844             switch (s.tag) {
  1845             case BYTE:
  1846                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1847                     return true;
  1848                 break;
  1849             case CHAR:
  1850                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1851                     return true;
  1852                 break;
  1853             case SHORT:
  1854                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1855                     return true;
  1856                 break;
  1857             case INT:
  1858                 return true;
  1859             case CLASS:
  1860                 switch (unboxedType(s).tag) {
  1861                 case BYTE:
  1862                 case CHAR:
  1863                 case SHORT:
  1864                     return isAssignable(t, unboxedType(s), warn);
  1866                 break;
  1869         return isConvertible(t, s, warn);
  1871     // </editor-fold>
  1873     // <editor-fold defaultstate="collapsed" desc="erasure">
  1874     /**
  1875      * The erasure of t {@code |t|} -- the type that results when all
  1876      * type parameters in t are deleted.
  1877      */
  1878     public Type erasure(Type t) {
  1879         return eraseNotNeeded(t)? t : erasure(t, false);
  1881     //where
  1882     private boolean eraseNotNeeded(Type t) {
  1883         // We don't want to erase primitive types and String type as that
  1884         // operation is idempotent. Also, erasing these could result in loss
  1885         // of information such as constant values attached to such types.
  1886         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  1889     private Type erasure(Type t, boolean recurse) {
  1890         if (t.isPrimitive())
  1891             return t; /* fast special case */
  1892         else
  1893             return erasure.visit(t, recurse);
  1895     // where
  1896         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1897             public Type visitType(Type t, Boolean recurse) {
  1898                 if (t.isPrimitive())
  1899                     return t; /*fast special case*/
  1900                 else
  1901                     return t.map(recurse ? erasureRecFun : erasureFun);
  1904             @Override
  1905             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1906                 return erasure(upperBound(t), recurse);
  1909             @Override
  1910             public Type visitClassType(ClassType t, Boolean recurse) {
  1911                 Type erased = t.tsym.erasure(Types.this);
  1912                 if (recurse) {
  1913                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1915                 return erased;
  1918             @Override
  1919             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1920                 return erasure(t.bound, recurse);
  1923             @Override
  1924             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1925                 return t;
  1927         };
  1929     private Mapping erasureFun = new Mapping ("erasure") {
  1930             public Type apply(Type t) { return erasure(t); }
  1931         };
  1933     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1934         public Type apply(Type t) { return erasureRecursive(t); }
  1935     };
  1937     public List<Type> erasure(List<Type> ts) {
  1938         return Type.map(ts, erasureFun);
  1941     public Type erasureRecursive(Type t) {
  1942         return erasure(t, true);
  1945     public List<Type> erasureRecursive(List<Type> ts) {
  1946         return Type.map(ts, erasureRecFun);
  1948     // </editor-fold>
  1950     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  1951     /**
  1952      * Make a compound type from non-empty list of types
  1954      * @param bounds            the types from which the compound type is formed
  1955      * @param supertype         is objectType if all bounds are interfaces,
  1956      *                          null otherwise.
  1957      */
  1958     public Type makeCompoundType(List<Type> bounds,
  1959                                  Type supertype) {
  1960         ClassSymbol bc =
  1961             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  1962                             Type.moreInfo
  1963                                 ? names.fromString(bounds.toString())
  1964                                 : names.empty,
  1965                             syms.noSymbol);
  1966         if (bounds.head.tag == TYPEVAR)
  1967             // error condition, recover
  1968                 bc.erasure_field = syms.objectType;
  1969             else
  1970                 bc.erasure_field = erasure(bounds.head);
  1971             bc.members_field = new Scope(bc);
  1972         ClassType bt = (ClassType)bc.type;
  1973         bt.allparams_field = List.nil();
  1974         if (supertype != null) {
  1975             bt.supertype_field = supertype;
  1976             bt.interfaces_field = bounds;
  1977         } else {
  1978             bt.supertype_field = bounds.head;
  1979             bt.interfaces_field = bounds.tail;
  1981         Assert.check(bt.supertype_field.tsym.completer != null
  1982                 || !bt.supertype_field.isInterface(),
  1983             bt.supertype_field);
  1984         return bt;
  1987     /**
  1988      * Same as {@link #makeCompoundType(List,Type)}, except that the
  1989      * second parameter is computed directly. Note that this might
  1990      * cause a symbol completion.  Hence, this version of
  1991      * makeCompoundType may not be called during a classfile read.
  1992      */
  1993     public Type makeCompoundType(List<Type> bounds) {
  1994         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  1995             supertype(bounds.head) : null;
  1996         return makeCompoundType(bounds, supertype);
  1999     /**
  2000      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2001      * arguments are converted to a list and passed to the other
  2002      * method.  Note that this might cause a symbol completion.
  2003      * Hence, this version of makeCompoundType may not be called
  2004      * during a classfile read.
  2005      */
  2006     public Type makeCompoundType(Type bound1, Type bound2) {
  2007         return makeCompoundType(List.of(bound1, bound2));
  2009     // </editor-fold>
  2011     // <editor-fold defaultstate="collapsed" desc="supertype">
  2012     public Type supertype(Type t) {
  2013         return supertype.visit(t);
  2015     // where
  2016         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2018             public Type visitType(Type t, Void ignored) {
  2019                 // A note on wildcards: there is no good way to
  2020                 // determine a supertype for a super bounded wildcard.
  2021                 return null;
  2024             @Override
  2025             public Type visitClassType(ClassType t, Void ignored) {
  2026                 if (t.supertype_field == null) {
  2027                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2028                     // An interface has no superclass; its supertype is Object.
  2029                     if (t.isInterface())
  2030                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2031                     if (t.supertype_field == null) {
  2032                         List<Type> actuals = classBound(t).allparams();
  2033                         List<Type> formals = t.tsym.type.allparams();
  2034                         if (t.hasErasedSupertypes()) {
  2035                             t.supertype_field = erasureRecursive(supertype);
  2036                         } else if (formals.nonEmpty()) {
  2037                             t.supertype_field = subst(supertype, formals, actuals);
  2039                         else {
  2040                             t.supertype_field = supertype;
  2044                 return t.supertype_field;
  2047             /**
  2048              * The supertype is always a class type. If the type
  2049              * variable's bounds start with a class type, this is also
  2050              * the supertype.  Otherwise, the supertype is
  2051              * java.lang.Object.
  2052              */
  2053             @Override
  2054             public Type visitTypeVar(TypeVar t, Void ignored) {
  2055                 if (t.bound.tag == TYPEVAR ||
  2056                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2057                     return t.bound;
  2058                 } else {
  2059                     return supertype(t.bound);
  2063             @Override
  2064             public Type visitArrayType(ArrayType t, Void ignored) {
  2065                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2066                     return arraySuperType();
  2067                 else
  2068                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2071             @Override
  2072             public Type visitErrorType(ErrorType t, Void ignored) {
  2073                 return t;
  2075         };
  2076     // </editor-fold>
  2078     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2079     /**
  2080      * Return the interfaces implemented by this class.
  2081      */
  2082     public List<Type> interfaces(Type t) {
  2083         return interfaces.visit(t);
  2085     // where
  2086         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2088             public List<Type> visitType(Type t, Void ignored) {
  2089                 return List.nil();
  2092             @Override
  2093             public List<Type> visitClassType(ClassType t, Void ignored) {
  2094                 if (t.interfaces_field == null) {
  2095                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2096                     if (t.interfaces_field == null) {
  2097                         // If t.interfaces_field is null, then t must
  2098                         // be a parameterized type (not to be confused
  2099                         // with a generic type declaration).
  2100                         // Terminology:
  2101                         //    Parameterized type: List<String>
  2102                         //    Generic type declaration: class List<E> { ... }
  2103                         // So t corresponds to List<String> and
  2104                         // t.tsym.type corresponds to List<E>.
  2105                         // The reason t must be parameterized type is
  2106                         // that completion will happen as a side
  2107                         // effect of calling
  2108                         // ClassSymbol.getInterfaces.  Since
  2109                         // t.interfaces_field is null after
  2110                         // completion, we can assume that t is not the
  2111                         // type of a class/interface declaration.
  2112                         Assert.check(t != t.tsym.type, t);
  2113                         List<Type> actuals = t.allparams();
  2114                         List<Type> formals = t.tsym.type.allparams();
  2115                         if (t.hasErasedSupertypes()) {
  2116                             t.interfaces_field = erasureRecursive(interfaces);
  2117                         } else if (formals.nonEmpty()) {
  2118                             t.interfaces_field =
  2119                                 upperBounds(subst(interfaces, formals, actuals));
  2121                         else {
  2122                             t.interfaces_field = interfaces;
  2126                 return t.interfaces_field;
  2129             @Override
  2130             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2131                 if (t.bound.isCompound())
  2132                     return interfaces(t.bound);
  2134                 if (t.bound.isInterface())
  2135                     return List.of(t.bound);
  2137                 return List.nil();
  2139         };
  2141     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2142         for (Type i2 : interfaces(origin.type)) {
  2143             if (isym == i2.tsym) return true;
  2145         return false;
  2147     // </editor-fold>
  2149     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2150     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2152     public boolean isDerivedRaw(Type t) {
  2153         Boolean result = isDerivedRawCache.get(t);
  2154         if (result == null) {
  2155             result = isDerivedRawInternal(t);
  2156             isDerivedRawCache.put(t, result);
  2158         return result;
  2161     public boolean isDerivedRawInternal(Type t) {
  2162         if (t.isErroneous())
  2163             return false;
  2164         return
  2165             t.isRaw() ||
  2166             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2167             isDerivedRaw(interfaces(t));
  2170     public boolean isDerivedRaw(List<Type> ts) {
  2171         List<Type> l = ts;
  2172         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2173         return l.nonEmpty();
  2175     // </editor-fold>
  2177     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2178     /**
  2179      * Set the bounds field of the given type variable to reflect a
  2180      * (possibly multiple) list of bounds.
  2181      * @param t                 a type variable
  2182      * @param bounds            the bounds, must be nonempty
  2183      * @param supertype         is objectType if all bounds are interfaces,
  2184      *                          null otherwise.
  2185      */
  2186     public void setBounds(TypeVar t, List<Type> bounds, Type supertype) {
  2187         if (bounds.tail.isEmpty())
  2188             t.bound = bounds.head;
  2189         else
  2190             t.bound = makeCompoundType(bounds, supertype);
  2191         t.rank_field = -1;
  2194     /**
  2195      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2196      * third parameter is computed directly, as follows: if all
  2197      * all bounds are interface types, the computed supertype is Object,
  2198      * otherwise the supertype is simply left null (in this case, the supertype
  2199      * is assumed to be the head of the bound list passed as second argument).
  2200      * Note that this check might cause a symbol completion. Hence, this version of
  2201      * setBounds may not be called during a classfile read.
  2202      */
  2203     public void setBounds(TypeVar t, List<Type> bounds) {
  2204         Type supertype = (bounds.head.tsym.flags() & INTERFACE) != 0 ?
  2205             syms.objectType : null;
  2206         setBounds(t, bounds, supertype);
  2207         t.rank_field = -1;
  2209     // </editor-fold>
  2211     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2212     /**
  2213      * Return list of bounds of the given type variable.
  2214      */
  2215     public List<Type> getBounds(TypeVar t) {
  2216                 if (t.bound.hasTag(NONE))
  2217             return List.nil();
  2218         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2219             return List.of(t.bound);
  2220         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2221             return interfaces(t).prepend(supertype(t));
  2222         else
  2223             // No superclass was given in bounds.
  2224             // In this case, supertype is Object, erasure is first interface.
  2225             return interfaces(t);
  2227     // </editor-fold>
  2229     // <editor-fold defaultstate="collapsed" desc="classBound">
  2230     /**
  2231      * If the given type is a (possibly selected) type variable,
  2232      * return the bounding class of this type, otherwise return the
  2233      * type itself.
  2234      */
  2235     public Type classBound(Type t) {
  2236         return classBound.visit(t);
  2238     // where
  2239         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2241             public Type visitType(Type t, Void ignored) {
  2242                 return t;
  2245             @Override
  2246             public Type visitClassType(ClassType t, Void ignored) {
  2247                 Type outer1 = classBound(t.getEnclosingType());
  2248                 if (outer1 != t.getEnclosingType())
  2249                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2250                 else
  2251                     return t;
  2254             @Override
  2255             public Type visitTypeVar(TypeVar t, Void ignored) {
  2256                 return classBound(supertype(t));
  2259             @Override
  2260             public Type visitErrorType(ErrorType t, Void ignored) {
  2261                 return t;
  2263         };
  2264     // </editor-fold>
  2266     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2267     /**
  2268      * Returns true iff the first signature is a <em>sub
  2269      * signature</em> of the other.  This is <b>not</b> an equivalence
  2270      * relation.
  2272      * @jls section 8.4.2.
  2273      * @see #overrideEquivalent(Type t, Type s)
  2274      * @param t first signature (possibly raw).
  2275      * @param s second signature (could be subjected to erasure).
  2276      * @return true if t is a sub signature of s.
  2277      */
  2278     public boolean isSubSignature(Type t, Type s) {
  2279         return isSubSignature(t, s, true);
  2282     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2283         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2286     /**
  2287      * Returns true iff these signatures are related by <em>override
  2288      * equivalence</em>.  This is the natural extension of
  2289      * isSubSignature to an equivalence relation.
  2291      * @jls section 8.4.2.
  2292      * @see #isSubSignature(Type t, Type s)
  2293      * @param t a signature (possible raw, could be subjected to
  2294      * erasure).
  2295      * @param s a signature (possible raw, could be subjected to
  2296      * erasure).
  2297      * @return true if either argument is a sub signature of the other.
  2298      */
  2299     public boolean overrideEquivalent(Type t, Type s) {
  2300         return hasSameArgs(t, s) ||
  2301             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2304     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2305         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2306             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2307                 return true;
  2310         return false;
  2313     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2314     class ImplementationCache {
  2316         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2317                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2319         class Entry {
  2320             final MethodSymbol cachedImpl;
  2321             final Filter<Symbol> implFilter;
  2322             final boolean checkResult;
  2323             final int prevMark;
  2325             public Entry(MethodSymbol cachedImpl,
  2326                     Filter<Symbol> scopeFilter,
  2327                     boolean checkResult,
  2328                     int prevMark) {
  2329                 this.cachedImpl = cachedImpl;
  2330                 this.implFilter = scopeFilter;
  2331                 this.checkResult = checkResult;
  2332                 this.prevMark = prevMark;
  2335             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2336                 return this.implFilter == scopeFilter &&
  2337                         this.checkResult == checkResult &&
  2338                         this.prevMark == mark;
  2342         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2343             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2344             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2345             if (cache == null) {
  2346                 cache = new HashMap<TypeSymbol, Entry>();
  2347                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2349             Entry e = cache.get(origin);
  2350             CompoundScope members = membersClosure(origin.type, true);
  2351             if (e == null ||
  2352                     !e.matches(implFilter, checkResult, members.getMark())) {
  2353                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2354                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2355                 return impl;
  2357             else {
  2358                 return e.cachedImpl;
  2362         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2363             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2364                 while (t.tag == TYPEVAR)
  2365                     t = t.getUpperBound();
  2366                 TypeSymbol c = t.tsym;
  2367                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2368                      e.scope != null;
  2369                      e = e.next(implFilter)) {
  2370                     if (e.sym != null &&
  2371                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2372                         return (MethodSymbol)e.sym;
  2375             return null;
  2379     private ImplementationCache implCache = new ImplementationCache();
  2381     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2382         return implCache.get(ms, origin, checkResult, implFilter);
  2384     // </editor-fold>
  2386     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2387     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2389         private WeakHashMap<TypeSymbol, Entry> _map =
  2390                 new WeakHashMap<TypeSymbol, Entry>();
  2392         class Entry {
  2393             final boolean skipInterfaces;
  2394             final CompoundScope compoundScope;
  2396             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2397                 this.skipInterfaces = skipInterfaces;
  2398                 this.compoundScope = compoundScope;
  2401             boolean matches(boolean skipInterfaces) {
  2402                 return this.skipInterfaces == skipInterfaces;
  2406         List<TypeSymbol> seenTypes = List.nil();
  2408         /** members closure visitor methods **/
  2410         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2411             return null;
  2414         @Override
  2415         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2416             if (seenTypes.contains(t.tsym)) {
  2417                 //this is possible when an interface is implemented in multiple
  2418                 //superclasses, or when a classs hierarchy is circular - in such
  2419                 //cases we don't need to recurse (empty scope is returned)
  2420                 return new CompoundScope(t.tsym);
  2422             try {
  2423                 seenTypes = seenTypes.prepend(t.tsym);
  2424                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2425                 Entry e = _map.get(csym);
  2426                 if (e == null || !e.matches(skipInterface)) {
  2427                     CompoundScope membersClosure = new CompoundScope(csym);
  2428                     if (!skipInterface) {
  2429                         for (Type i : interfaces(t)) {
  2430                             membersClosure.addSubScope(visit(i, skipInterface));
  2433                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2434                     membersClosure.addSubScope(csym.members());
  2435                     e = new Entry(skipInterface, membersClosure);
  2436                     _map.put(csym, e);
  2438                 return e.compoundScope;
  2440             finally {
  2441                 seenTypes = seenTypes.tail;
  2445         @Override
  2446         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2447             return visit(t.getUpperBound(), skipInterface);
  2451     private MembersClosureCache membersCache = new MembersClosureCache();
  2453     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2454         return membersCache.visit(site, skipInterface);
  2456     // </editor-fold>
  2459     //where
  2460     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2461         Filter<Symbol> filter = new MethodFilter(ms, site);
  2462         List<MethodSymbol> candidates = List.nil();
  2463         for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2464             if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2465                 return List.of((MethodSymbol)s);
  2466             } else if (!candidates.contains(s)) {
  2467                 candidates = candidates.prepend((MethodSymbol)s);
  2470         return prune(candidates, ownerComparator);
  2473     public List<MethodSymbol> prune(List<MethodSymbol> methods, Comparator<MethodSymbol> cmp) {
  2474         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2475         for (MethodSymbol m1 : methods) {
  2476             boolean isMin_m1 = true;
  2477             for (MethodSymbol m2 : methods) {
  2478                 if (m1 == m2) continue;
  2479                 if (cmp.compare(m2, m1) < 0) {
  2480                     isMin_m1 = false;
  2481                     break;
  2484             if (isMin_m1)
  2485                 methodsMin.append(m1);
  2487         return methodsMin.toList();
  2490     Comparator<MethodSymbol> ownerComparator = new Comparator<MethodSymbol>() {
  2491         public int compare(MethodSymbol s1, MethodSymbol s2) {
  2492             return s1.owner.isSubClass(s2.owner, Types.this) ? -1 : 1;
  2494     };
  2495     // where
  2496             private class MethodFilter implements Filter<Symbol> {
  2498                 Symbol msym;
  2499                 Type site;
  2501                 MethodFilter(Symbol msym, Type site) {
  2502                     this.msym = msym;
  2503                     this.site = site;
  2506                 public boolean accepts(Symbol s) {
  2507                     return s.kind == Kinds.MTH &&
  2508                             s.name == msym.name &&
  2509                             s.isInheritedIn(site.tsym, Types.this) &&
  2510                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2512             };
  2513     // </editor-fold>
  2515     /**
  2516      * Does t have the same arguments as s?  It is assumed that both
  2517      * types are (possibly polymorphic) method types.  Monomorphic
  2518      * method types "have the same arguments", if their argument lists
  2519      * are equal.  Polymorphic method types "have the same arguments",
  2520      * if they have the same arguments after renaming all type
  2521      * variables of one to corresponding type variables in the other,
  2522      * where correspondence is by position in the type parameter list.
  2523      */
  2524     public boolean hasSameArgs(Type t, Type s) {
  2525         return hasSameArgs(t, s, true);
  2528     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2529         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2532     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2533         return hasSameArgs.visit(t, s);
  2535     // where
  2536         private class HasSameArgs extends TypeRelation {
  2538             boolean strict;
  2540             public HasSameArgs(boolean strict) {
  2541                 this.strict = strict;
  2544             public Boolean visitType(Type t, Type s) {
  2545                 throw new AssertionError();
  2548             @Override
  2549             public Boolean visitMethodType(MethodType t, Type s) {
  2550                 return s.tag == METHOD
  2551                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2554             @Override
  2555             public Boolean visitForAll(ForAll t, Type s) {
  2556                 if (s.tag != FORALL)
  2557                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2559                 ForAll forAll = (ForAll)s;
  2560                 return hasSameBounds(t, forAll)
  2561                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2564             @Override
  2565             public Boolean visitErrorType(ErrorType t, Type s) {
  2566                 return false;
  2568         };
  2570         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2571         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2573     // </editor-fold>
  2575     // <editor-fold defaultstate="collapsed" desc="subst">
  2576     public List<Type> subst(List<Type> ts,
  2577                             List<Type> from,
  2578                             List<Type> to) {
  2579         return new Subst(from, to).subst(ts);
  2582     /**
  2583      * Substitute all occurrences of a type in `from' with the
  2584      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2585      * from the right: If lists have different length, discard leading
  2586      * elements of the longer list.
  2587      */
  2588     public Type subst(Type t, List<Type> from, List<Type> to) {
  2589         return new Subst(from, to).subst(t);
  2592     private class Subst extends UnaryVisitor<Type> {
  2593         List<Type> from;
  2594         List<Type> to;
  2596         public Subst(List<Type> from, List<Type> to) {
  2597             int fromLength = from.length();
  2598             int toLength = to.length();
  2599             while (fromLength > toLength) {
  2600                 fromLength--;
  2601                 from = from.tail;
  2603             while (fromLength < toLength) {
  2604                 toLength--;
  2605                 to = to.tail;
  2607             this.from = from;
  2608             this.to = to;
  2611         Type subst(Type t) {
  2612             if (from.tail == null)
  2613                 return t;
  2614             else
  2615                 return visit(t);
  2618         List<Type> subst(List<Type> ts) {
  2619             if (from.tail == null)
  2620                 return ts;
  2621             boolean wild = false;
  2622             if (ts.nonEmpty() && from.nonEmpty()) {
  2623                 Type head1 = subst(ts.head);
  2624                 List<Type> tail1 = subst(ts.tail);
  2625                 if (head1 != ts.head || tail1 != ts.tail)
  2626                     return tail1.prepend(head1);
  2628             return ts;
  2631         public Type visitType(Type t, Void ignored) {
  2632             return t;
  2635         @Override
  2636         public Type visitMethodType(MethodType t, Void ignored) {
  2637             List<Type> argtypes = subst(t.argtypes);
  2638             Type restype = subst(t.restype);
  2639             List<Type> thrown = subst(t.thrown);
  2640             if (argtypes == t.argtypes &&
  2641                 restype == t.restype &&
  2642                 thrown == t.thrown)
  2643                 return t;
  2644             else
  2645                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2648         @Override
  2649         public Type visitTypeVar(TypeVar t, Void ignored) {
  2650             for (List<Type> from = this.from, to = this.to;
  2651                  from.nonEmpty();
  2652                  from = from.tail, to = to.tail) {
  2653                 if (t == from.head) {
  2654                     return to.head.withTypeVar(t);
  2657             return t;
  2660         @Override
  2661         public Type visitClassType(ClassType t, Void ignored) {
  2662             if (!t.isCompound()) {
  2663                 List<Type> typarams = t.getTypeArguments();
  2664                 List<Type> typarams1 = subst(typarams);
  2665                 Type outer = t.getEnclosingType();
  2666                 Type outer1 = subst(outer);
  2667                 if (typarams1 == typarams && outer1 == outer)
  2668                     return t;
  2669                 else
  2670                     return new ClassType(outer1, typarams1, t.tsym);
  2671             } else {
  2672                 Type st = subst(supertype(t));
  2673                 List<Type> is = upperBounds(subst(interfaces(t)));
  2674                 if (st == supertype(t) && is == interfaces(t))
  2675                     return t;
  2676                 else
  2677                     return makeCompoundType(is.prepend(st));
  2681         @Override
  2682         public Type visitWildcardType(WildcardType t, Void ignored) {
  2683             Type bound = t.type;
  2684             if (t.kind != BoundKind.UNBOUND)
  2685                 bound = subst(bound);
  2686             if (bound == t.type) {
  2687                 return t;
  2688             } else {
  2689                 if (t.isExtendsBound() && bound.isExtendsBound())
  2690                     bound = upperBound(bound);
  2691                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2695         @Override
  2696         public Type visitArrayType(ArrayType t, Void ignored) {
  2697             Type elemtype = subst(t.elemtype);
  2698             if (elemtype == t.elemtype)
  2699                 return t;
  2700             else
  2701                 return new ArrayType(upperBound(elemtype), t.tsym);
  2704         @Override
  2705         public Type visitForAll(ForAll t, Void ignored) {
  2706             if (Type.containsAny(to, t.tvars)) {
  2707                 //perform alpha-renaming of free-variables in 't'
  2708                 //if 'to' types contain variables that are free in 't'
  2709                 List<Type> freevars = newInstances(t.tvars);
  2710                 t = new ForAll(freevars,
  2711                         Types.this.subst(t.qtype, t.tvars, freevars));
  2713             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2714             Type qtype1 = subst(t.qtype);
  2715             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2716                 return t;
  2717             } else if (tvars1 == t.tvars) {
  2718                 return new ForAll(tvars1, qtype1);
  2719             } else {
  2720                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2724         @Override
  2725         public Type visitErrorType(ErrorType t, Void ignored) {
  2726             return t;
  2730     public List<Type> substBounds(List<Type> tvars,
  2731                                   List<Type> from,
  2732                                   List<Type> to) {
  2733         if (tvars.isEmpty())
  2734             return tvars;
  2735         ListBuffer<Type> newBoundsBuf = lb();
  2736         boolean changed = false;
  2737         // calculate new bounds
  2738         for (Type t : tvars) {
  2739             TypeVar tv = (TypeVar) t;
  2740             Type bound = subst(tv.bound, from, to);
  2741             if (bound != tv.bound)
  2742                 changed = true;
  2743             newBoundsBuf.append(bound);
  2745         if (!changed)
  2746             return tvars;
  2747         ListBuffer<Type> newTvars = lb();
  2748         // create new type variables without bounds
  2749         for (Type t : tvars) {
  2750             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2752         // the new bounds should use the new type variables in place
  2753         // of the old
  2754         List<Type> newBounds = newBoundsBuf.toList();
  2755         from = tvars;
  2756         to = newTvars.toList();
  2757         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2758             newBounds.head = subst(newBounds.head, from, to);
  2760         newBounds = newBoundsBuf.toList();
  2761         // set the bounds of new type variables to the new bounds
  2762         for (Type t : newTvars.toList()) {
  2763             TypeVar tv = (TypeVar) t;
  2764             tv.bound = newBounds.head;
  2765             newBounds = newBounds.tail;
  2767         return newTvars.toList();
  2770     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2771         Type bound1 = subst(t.bound, from, to);
  2772         if (bound1 == t.bound)
  2773             return t;
  2774         else {
  2775             // create new type variable without bounds
  2776             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2777             // the new bound should use the new type variable in place
  2778             // of the old
  2779             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2780             return tv;
  2783     // </editor-fold>
  2785     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2786     /**
  2787      * Does t have the same bounds for quantified variables as s?
  2788      */
  2789     boolean hasSameBounds(ForAll t, ForAll s) {
  2790         List<Type> l1 = t.tvars;
  2791         List<Type> l2 = s.tvars;
  2792         while (l1.nonEmpty() && l2.nonEmpty() &&
  2793                isSameType(l1.head.getUpperBound(),
  2794                           subst(l2.head.getUpperBound(),
  2795                                 s.tvars,
  2796                                 t.tvars))) {
  2797             l1 = l1.tail;
  2798             l2 = l2.tail;
  2800         return l1.isEmpty() && l2.isEmpty();
  2802     // </editor-fold>
  2804     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2805     /** Create new vector of type variables from list of variables
  2806      *  changing all recursive bounds from old to new list.
  2807      */
  2808     public List<Type> newInstances(List<Type> tvars) {
  2809         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2810         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2811             TypeVar tv = (TypeVar) l.head;
  2812             tv.bound = subst(tv.bound, tvars, tvars1);
  2814         return tvars1;
  2816     static private Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2817             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2818         };
  2819     // </editor-fold>
  2821     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2822         return original.accept(methodWithParameters, newParams);
  2824     // where
  2825         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2826             public Type visitType(Type t, List<Type> newParams) {
  2827                 throw new IllegalArgumentException("Not a method type: " + t);
  2829             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2830                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2832             public Type visitForAll(ForAll t, List<Type> newParams) {
  2833                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2835         };
  2837     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2838         return original.accept(methodWithThrown, newThrown);
  2840     // where
  2841         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2842             public Type visitType(Type t, List<Type> newThrown) {
  2843                 throw new IllegalArgumentException("Not a method type: " + t);
  2845             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2846                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2848             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2849                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2851         };
  2853     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2854         return original.accept(methodWithReturn, newReturn);
  2856     // where
  2857         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2858             public Type visitType(Type t, Type newReturn) {
  2859                 throw new IllegalArgumentException("Not a method type: " + t);
  2861             public Type visitMethodType(MethodType t, Type newReturn) {
  2862                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2864             public Type visitForAll(ForAll t, Type newReturn) {
  2865                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2867         };
  2869     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2870     public Type createErrorType(Type originalType) {
  2871         return new ErrorType(originalType, syms.errSymbol);
  2874     public Type createErrorType(ClassSymbol c, Type originalType) {
  2875         return new ErrorType(c, originalType);
  2878     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2879         return new ErrorType(name, container, originalType);
  2881     // </editor-fold>
  2883     // <editor-fold defaultstate="collapsed" desc="rank">
  2884     /**
  2885      * The rank of a class is the length of the longest path between
  2886      * the class and java.lang.Object in the class inheritance
  2887      * graph. Undefined for all but reference types.
  2888      */
  2889     public int rank(Type t) {
  2890         switch(t.tag) {
  2891         case CLASS: {
  2892             ClassType cls = (ClassType)t;
  2893             if (cls.rank_field < 0) {
  2894                 Name fullname = cls.tsym.getQualifiedName();
  2895                 if (fullname == names.java_lang_Object)
  2896                     cls.rank_field = 0;
  2897                 else {
  2898                     int r = rank(supertype(cls));
  2899                     for (List<Type> l = interfaces(cls);
  2900                          l.nonEmpty();
  2901                          l = l.tail) {
  2902                         if (rank(l.head) > r)
  2903                             r = rank(l.head);
  2905                     cls.rank_field = r + 1;
  2908             return cls.rank_field;
  2910         case TYPEVAR: {
  2911             TypeVar tvar = (TypeVar)t;
  2912             if (tvar.rank_field < 0) {
  2913                 int r = rank(supertype(tvar));
  2914                 for (List<Type> l = interfaces(tvar);
  2915                      l.nonEmpty();
  2916                      l = l.tail) {
  2917                     if (rank(l.head) > r) r = rank(l.head);
  2919                 tvar.rank_field = r + 1;
  2921             return tvar.rank_field;
  2923         case ERROR:
  2924             return 0;
  2925         default:
  2926             throw new AssertionError();
  2929     // </editor-fold>
  2931     /**
  2932      * Helper method for generating a string representation of a given type
  2933      * accordingly to a given locale
  2934      */
  2935     public String toString(Type t, Locale locale) {
  2936         return Printer.createStandardPrinter(messages).visit(t, locale);
  2939     /**
  2940      * Helper method for generating a string representation of a given type
  2941      * accordingly to a given locale
  2942      */
  2943     public String toString(Symbol t, Locale locale) {
  2944         return Printer.createStandardPrinter(messages).visit(t, locale);
  2947     // <editor-fold defaultstate="collapsed" desc="toString">
  2948     /**
  2949      * This toString is slightly more descriptive than the one on Type.
  2951      * @deprecated Types.toString(Type t, Locale l) provides better support
  2952      * for localization
  2953      */
  2954     @Deprecated
  2955     public String toString(Type t) {
  2956         if (t.tag == FORALL) {
  2957             ForAll forAll = (ForAll)t;
  2958             return typaramsString(forAll.tvars) + forAll.qtype;
  2960         return "" + t;
  2962     // where
  2963         private String typaramsString(List<Type> tvars) {
  2964             StringBuilder s = new StringBuilder();
  2965             s.append('<');
  2966             boolean first = true;
  2967             for (Type t : tvars) {
  2968                 if (!first) s.append(", ");
  2969                 first = false;
  2970                 appendTyparamString(((TypeVar)t), s);
  2972             s.append('>');
  2973             return s.toString();
  2975         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  2976             buf.append(t);
  2977             if (t.bound == null ||
  2978                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  2979                 return;
  2980             buf.append(" extends "); // Java syntax; no need for i18n
  2981             Type bound = t.bound;
  2982             if (!bound.isCompound()) {
  2983                 buf.append(bound);
  2984             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  2985                 buf.append(supertype(t));
  2986                 for (Type intf : interfaces(t)) {
  2987                     buf.append('&');
  2988                     buf.append(intf);
  2990             } else {
  2991                 // No superclass was given in bounds.
  2992                 // In this case, supertype is Object, erasure is first interface.
  2993                 boolean first = true;
  2994                 for (Type intf : interfaces(t)) {
  2995                     if (!first) buf.append('&');
  2996                     first = false;
  2997                     buf.append(intf);
  3001     // </editor-fold>
  3003     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3004     /**
  3005      * A cache for closures.
  3007      * <p>A closure is a list of all the supertypes and interfaces of
  3008      * a class or interface type, ordered by ClassSymbol.precedes
  3009      * (that is, subclasses come first, arbitrary but fixed
  3010      * otherwise).
  3011      */
  3012     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3014     /**
  3015      * Returns the closure of a class or interface type.
  3016      */
  3017     public List<Type> closure(Type t) {
  3018         List<Type> cl = closureCache.get(t);
  3019         if (cl == null) {
  3020             Type st = supertype(t);
  3021             if (!t.isCompound()) {
  3022                 if (st.tag == CLASS) {
  3023                     cl = insert(closure(st), t);
  3024                 } else if (st.tag == TYPEVAR) {
  3025                     cl = closure(st).prepend(t);
  3026                 } else {
  3027                     cl = List.of(t);
  3029             } else {
  3030                 cl = closure(supertype(t));
  3032             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3033                 cl = union(cl, closure(l.head));
  3034             closureCache.put(t, cl);
  3036         return cl;
  3039     /**
  3040      * Insert a type in a closure
  3041      */
  3042     public List<Type> insert(List<Type> cl, Type t) {
  3043         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3044             return cl.prepend(t);
  3045         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3046             return insert(cl.tail, t).prepend(cl.head);
  3047         } else {
  3048             return cl;
  3052     /**
  3053      * Form the union of two closures
  3054      */
  3055     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3056         if (cl1.isEmpty()) {
  3057             return cl2;
  3058         } else if (cl2.isEmpty()) {
  3059             return cl1;
  3060         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3061             return union(cl1.tail, cl2).prepend(cl1.head);
  3062         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3063             return union(cl1, cl2.tail).prepend(cl2.head);
  3064         } else {
  3065             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3069     /**
  3070      * Intersect two closures
  3071      */
  3072     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3073         if (cl1 == cl2)
  3074             return cl1;
  3075         if (cl1.isEmpty() || cl2.isEmpty())
  3076             return List.nil();
  3077         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3078             return intersect(cl1.tail, cl2);
  3079         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3080             return intersect(cl1, cl2.tail);
  3081         if (isSameType(cl1.head, cl2.head))
  3082             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3083         if (cl1.head.tsym == cl2.head.tsym &&
  3084             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3085             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3086                 Type merge = merge(cl1.head,cl2.head);
  3087                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3089             if (cl1.head.isRaw() || cl2.head.isRaw())
  3090                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3092         return intersect(cl1.tail, cl2.tail);
  3094     // where
  3095         class TypePair {
  3096             final Type t1;
  3097             final Type t2;
  3098             TypePair(Type t1, Type t2) {
  3099                 this.t1 = t1;
  3100                 this.t2 = t2;
  3102             @Override
  3103             public int hashCode() {
  3104                 return 127 * Types.hashCode(t1) + Types.hashCode(t2);
  3106             @Override
  3107             public boolean equals(Object obj) {
  3108                 if (!(obj instanceof TypePair))
  3109                     return false;
  3110                 TypePair typePair = (TypePair)obj;
  3111                 return isSameType(t1, typePair.t1)
  3112                     && isSameType(t2, typePair.t2);
  3115         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3116         private Type merge(Type c1, Type c2) {
  3117             ClassType class1 = (ClassType) c1;
  3118             List<Type> act1 = class1.getTypeArguments();
  3119             ClassType class2 = (ClassType) c2;
  3120             List<Type> act2 = class2.getTypeArguments();
  3121             ListBuffer<Type> merged = new ListBuffer<Type>();
  3122             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3124             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3125                 if (containsType(act1.head, act2.head)) {
  3126                     merged.append(act1.head);
  3127                 } else if (containsType(act2.head, act1.head)) {
  3128                     merged.append(act2.head);
  3129                 } else {
  3130                     TypePair pair = new TypePair(c1, c2);
  3131                     Type m;
  3132                     if (mergeCache.add(pair)) {
  3133                         m = new WildcardType(lub(upperBound(act1.head),
  3134                                                  upperBound(act2.head)),
  3135                                              BoundKind.EXTENDS,
  3136                                              syms.boundClass);
  3137                         mergeCache.remove(pair);
  3138                     } else {
  3139                         m = new WildcardType(syms.objectType,
  3140                                              BoundKind.UNBOUND,
  3141                                              syms.boundClass);
  3143                     merged.append(m.withTypeVar(typarams.head));
  3145                 act1 = act1.tail;
  3146                 act2 = act2.tail;
  3147                 typarams = typarams.tail;
  3149             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3150             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3153     /**
  3154      * Return the minimum type of a closure, a compound type if no
  3155      * unique minimum exists.
  3156      */
  3157     private Type compoundMin(List<Type> cl) {
  3158         if (cl.isEmpty()) return syms.objectType;
  3159         List<Type> compound = closureMin(cl);
  3160         if (compound.isEmpty())
  3161             return null;
  3162         else if (compound.tail.isEmpty())
  3163             return compound.head;
  3164         else
  3165             return makeCompoundType(compound);
  3168     /**
  3169      * Return the minimum types of a closure, suitable for computing
  3170      * compoundMin or glb.
  3171      */
  3172     private List<Type> closureMin(List<Type> cl) {
  3173         ListBuffer<Type> classes = lb();
  3174         ListBuffer<Type> interfaces = lb();
  3175         while (!cl.isEmpty()) {
  3176             Type current = cl.head;
  3177             if (current.isInterface())
  3178                 interfaces.append(current);
  3179             else
  3180                 classes.append(current);
  3181             ListBuffer<Type> candidates = lb();
  3182             for (Type t : cl.tail) {
  3183                 if (!isSubtypeNoCapture(current, t))
  3184                     candidates.append(t);
  3186             cl = candidates.toList();
  3188         return classes.appendList(interfaces).toList();
  3191     /**
  3192      * Return the least upper bound of pair of types.  if the lub does
  3193      * not exist return null.
  3194      */
  3195     public Type lub(Type t1, Type t2) {
  3196         return lub(List.of(t1, t2));
  3199     /**
  3200      * Return the least upper bound (lub) of set of types.  If the lub
  3201      * does not exist return the type of null (bottom).
  3202      */
  3203     public Type lub(List<Type> ts) {
  3204         final int ARRAY_BOUND = 1;
  3205         final int CLASS_BOUND = 2;
  3206         int boundkind = 0;
  3207         for (Type t : ts) {
  3208             switch (t.tag) {
  3209             case CLASS:
  3210                 boundkind |= CLASS_BOUND;
  3211                 break;
  3212             case ARRAY:
  3213                 boundkind |= ARRAY_BOUND;
  3214                 break;
  3215             case  TYPEVAR:
  3216                 do {
  3217                     t = t.getUpperBound();
  3218                 } while (t.tag == TYPEVAR);
  3219                 if (t.tag == ARRAY) {
  3220                     boundkind |= ARRAY_BOUND;
  3221                 } else {
  3222                     boundkind |= CLASS_BOUND;
  3224                 break;
  3225             default:
  3226                 if (t.isPrimitive())
  3227                     return syms.errType;
  3230         switch (boundkind) {
  3231         case 0:
  3232             return syms.botType;
  3234         case ARRAY_BOUND:
  3235             // calculate lub(A[], B[])
  3236             List<Type> elements = Type.map(ts, elemTypeFun);
  3237             for (Type t : elements) {
  3238                 if (t.isPrimitive()) {
  3239                     // if a primitive type is found, then return
  3240                     // arraySuperType unless all the types are the
  3241                     // same
  3242                     Type first = ts.head;
  3243                     for (Type s : ts.tail) {
  3244                         if (!isSameType(first, s)) {
  3245                              // lub(int[], B[]) is Cloneable & Serializable
  3246                             return arraySuperType();
  3249                     // all the array types are the same, return one
  3250                     // lub(int[], int[]) is int[]
  3251                     return first;
  3254             // lub(A[], B[]) is lub(A, B)[]
  3255             return new ArrayType(lub(elements), syms.arrayClass);
  3257         case CLASS_BOUND:
  3258             // calculate lub(A, B)
  3259             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3260                 ts = ts.tail;
  3261             Assert.check(!ts.isEmpty());
  3262             //step 1 - compute erased candidate set (EC)
  3263             List<Type> cl = erasedSupertypes(ts.head);
  3264             for (Type t : ts.tail) {
  3265                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3266                     cl = intersect(cl, erasedSupertypes(t));
  3268             //step 2 - compute minimal erased candidate set (MEC)
  3269             List<Type> mec = closureMin(cl);
  3270             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3271             List<Type> candidates = List.nil();
  3272             for (Type erasedSupertype : mec) {
  3273                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3274                 for (Type t : ts) {
  3275                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3277                 candidates = candidates.appendList(lci);
  3279             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3280             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3281             return compoundMin(candidates);
  3283         default:
  3284             // calculate lub(A, B[])
  3285             List<Type> classes = List.of(arraySuperType());
  3286             for (Type t : ts) {
  3287                 if (t.tag != ARRAY) // Filter out any arrays
  3288                     classes = classes.prepend(t);
  3290             // lub(A, B[]) is lub(A, arraySuperType)
  3291             return lub(classes);
  3294     // where
  3295         List<Type> erasedSupertypes(Type t) {
  3296             ListBuffer<Type> buf = lb();
  3297             for (Type sup : closure(t)) {
  3298                 if (sup.tag == TYPEVAR) {
  3299                     buf.append(sup);
  3300                 } else {
  3301                     buf.append(erasure(sup));
  3304             return buf.toList();
  3307         private Type arraySuperType = null;
  3308         private Type arraySuperType() {
  3309             // initialized lazily to avoid problems during compiler startup
  3310             if (arraySuperType == null) {
  3311                 synchronized (this) {
  3312                     if (arraySuperType == null) {
  3313                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3314                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3315                                                                   syms.cloneableType),
  3316                                                           syms.objectType);
  3320             return arraySuperType;
  3322     // </editor-fold>
  3324     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3325     public Type glb(List<Type> ts) {
  3326         Type t1 = ts.head;
  3327         for (Type t2 : ts.tail) {
  3328             if (t1.isErroneous())
  3329                 return t1;
  3330             t1 = glb(t1, t2);
  3332         return t1;
  3334     //where
  3335     public Type glb(Type t, Type s) {
  3336         if (s == null)
  3337             return t;
  3338         else if (t.isPrimitive() || s.isPrimitive())
  3339             return syms.errType;
  3340         else if (isSubtypeNoCapture(t, s))
  3341             return t;
  3342         else if (isSubtypeNoCapture(s, t))
  3343             return s;
  3345         List<Type> closure = union(closure(t), closure(s));
  3346         List<Type> bounds = closureMin(closure);
  3348         if (bounds.isEmpty()) {             // length == 0
  3349             return syms.objectType;
  3350         } else if (bounds.tail.isEmpty()) { // length == 1
  3351             return bounds.head;
  3352         } else {                            // length > 1
  3353             int classCount = 0;
  3354             for (Type bound : bounds)
  3355                 if (!bound.isInterface())
  3356                     classCount++;
  3357             if (classCount > 1)
  3358                 return createErrorType(t);
  3360         return makeCompoundType(bounds);
  3362     // </editor-fold>
  3364     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3365     /**
  3366      * Compute a hash code on a type.
  3367      */
  3368     public static int hashCode(Type t) {
  3369         return hashCode.visit(t);
  3371     // where
  3372         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3374             public Integer visitType(Type t, Void ignored) {
  3375                 return t.tag.ordinal();
  3378             @Override
  3379             public Integer visitClassType(ClassType t, Void ignored) {
  3380                 int result = visit(t.getEnclosingType());
  3381                 result *= 127;
  3382                 result += t.tsym.flatName().hashCode();
  3383                 for (Type s : t.getTypeArguments()) {
  3384                     result *= 127;
  3385                     result += visit(s);
  3387                 return result;
  3390             @Override
  3391             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3392                 int result = t.kind.hashCode();
  3393                 if (t.type != null) {
  3394                     result *= 127;
  3395                     result += visit(t.type);
  3397                 return result;
  3400             @Override
  3401             public Integer visitArrayType(ArrayType t, Void ignored) {
  3402                 return visit(t.elemtype) + 12;
  3405             @Override
  3406             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3407                 return System.identityHashCode(t.tsym);
  3410             @Override
  3411             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3412                 return System.identityHashCode(t);
  3415             @Override
  3416             public Integer visitErrorType(ErrorType t, Void ignored) {
  3417                 return 0;
  3419         };
  3420     // </editor-fold>
  3422     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3423     /**
  3424      * Does t have a result that is a subtype of the result type of s,
  3425      * suitable for covariant returns?  It is assumed that both types
  3426      * are (possibly polymorphic) method types.  Monomorphic method
  3427      * types are handled in the obvious way.  Polymorphic method types
  3428      * require renaming all type variables of one to corresponding
  3429      * type variables in the other, where correspondence is by
  3430      * position in the type parameter list. */
  3431     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3432         List<Type> tvars = t.getTypeArguments();
  3433         List<Type> svars = s.getTypeArguments();
  3434         Type tres = t.getReturnType();
  3435         Type sres = subst(s.getReturnType(), svars, tvars);
  3436         return covariantReturnType(tres, sres, warner);
  3439     /**
  3440      * Return-Type-Substitutable.
  3441      * @jls section 8.4.5
  3442      */
  3443     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3444         if (hasSameArgs(r1, r2))
  3445             return resultSubtype(r1, r2, noWarnings);
  3446         else
  3447             return covariantReturnType(r1.getReturnType(),
  3448                                        erasure(r2.getReturnType()),
  3449                                        noWarnings);
  3452     public boolean returnTypeSubstitutable(Type r1,
  3453                                            Type r2, Type r2res,
  3454                                            Warner warner) {
  3455         if (isSameType(r1.getReturnType(), r2res))
  3456             return true;
  3457         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3458             return false;
  3460         if (hasSameArgs(r1, r2))
  3461             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3462         if (!allowCovariantReturns)
  3463             return false;
  3464         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3465             return true;
  3466         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3467             return false;
  3468         warner.warn(LintCategory.UNCHECKED);
  3469         return true;
  3472     /**
  3473      * Is t an appropriate return type in an overrider for a
  3474      * method that returns s?
  3475      */
  3476     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3477         return
  3478             isSameType(t, s) ||
  3479             allowCovariantReturns &&
  3480             !t.isPrimitive() &&
  3481             !s.isPrimitive() &&
  3482             isAssignable(t, s, warner);
  3484     // </editor-fold>
  3486     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3487     /**
  3488      * Return the class that boxes the given primitive.
  3489      */
  3490     public ClassSymbol boxedClass(Type t) {
  3491         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3494     /**
  3495      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3496      */
  3497     public Type boxedTypeOrType(Type t) {
  3498         return t.isPrimitive() ?
  3499             boxedClass(t).type :
  3500             t;
  3503     /**
  3504      * Return the primitive type corresponding to a boxed type.
  3505      */
  3506     public Type unboxedType(Type t) {
  3507         if (allowBoxing) {
  3508             for (int i=0; i<syms.boxedName.length; i++) {
  3509                 Name box = syms.boxedName[i];
  3510                 if (box != null &&
  3511                     asSuper(t, reader.enterClass(box)) != null)
  3512                     return syms.typeOfTag[i];
  3515         return Type.noType;
  3518     /**
  3519      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3520      */
  3521     public Type unboxedTypeOrType(Type t) {
  3522         Type unboxedType = unboxedType(t);
  3523         return unboxedType.tag == NONE ? t : unboxedType;
  3525     // </editor-fold>
  3527     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3528     /*
  3529      * JLS 5.1.10 Capture Conversion:
  3531      * Let G name a generic type declaration with n formal type
  3532      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3533      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3534      * where, for 1 <= i <= n:
  3536      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3537      *   Si is a fresh type variable whose upper bound is
  3538      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3539      *   type.
  3541      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3542      *   then Si is a fresh type variable whose upper bound is
  3543      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3544      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3545      *   a compile-time error if for any two classes (not interfaces)
  3546      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3548      * + If Ti is a wildcard type argument of the form ? super Bi,
  3549      *   then Si is a fresh type variable whose upper bound is
  3550      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3552      * + Otherwise, Si = Ti.
  3554      * Capture conversion on any type other than a parameterized type
  3555      * (4.5) acts as an identity conversion (5.1.1). Capture
  3556      * conversions never require a special action at run time and
  3557      * therefore never throw an exception at run time.
  3559      * Capture conversion is not applied recursively.
  3560      */
  3561     /**
  3562      * Capture conversion as specified by the JLS.
  3563      */
  3565     public List<Type> capture(List<Type> ts) {
  3566         List<Type> buf = List.nil();
  3567         for (Type t : ts) {
  3568             buf = buf.prepend(capture(t));
  3570         return buf.reverse();
  3572     public Type capture(Type t) {
  3573         if (t.tag != CLASS)
  3574             return t;
  3575         if (t.getEnclosingType() != Type.noType) {
  3576             Type capturedEncl = capture(t.getEnclosingType());
  3577             if (capturedEncl != t.getEnclosingType()) {
  3578                 Type type1 = memberType(capturedEncl, t.tsym);
  3579                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3582         ClassType cls = (ClassType)t;
  3583         if (cls.isRaw() || !cls.isParameterized())
  3584             return cls;
  3586         ClassType G = (ClassType)cls.asElement().asType();
  3587         List<Type> A = G.getTypeArguments();
  3588         List<Type> T = cls.getTypeArguments();
  3589         List<Type> S = freshTypeVariables(T);
  3591         List<Type> currentA = A;
  3592         List<Type> currentT = T;
  3593         List<Type> currentS = S;
  3594         boolean captured = false;
  3595         while (!currentA.isEmpty() &&
  3596                !currentT.isEmpty() &&
  3597                !currentS.isEmpty()) {
  3598             if (currentS.head != currentT.head) {
  3599                 captured = true;
  3600                 WildcardType Ti = (WildcardType)currentT.head;
  3601                 Type Ui = currentA.head.getUpperBound();
  3602                 CapturedType Si = (CapturedType)currentS.head;
  3603                 if (Ui == null)
  3604                     Ui = syms.objectType;
  3605                 switch (Ti.kind) {
  3606                 case UNBOUND:
  3607                     Si.bound = subst(Ui, A, S);
  3608                     Si.lower = syms.botType;
  3609                     break;
  3610                 case EXTENDS:
  3611                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3612                     Si.lower = syms.botType;
  3613                     break;
  3614                 case SUPER:
  3615                     Si.bound = subst(Ui, A, S);
  3616                     Si.lower = Ti.getSuperBound();
  3617                     break;
  3619                 if (Si.bound == Si.lower)
  3620                     currentS.head = Si.bound;
  3622             currentA = currentA.tail;
  3623             currentT = currentT.tail;
  3624             currentS = currentS.tail;
  3626         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3627             return erasure(t); // some "rare" type involved
  3629         if (captured)
  3630             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3631         else
  3632             return t;
  3634     // where
  3635         public List<Type> freshTypeVariables(List<Type> types) {
  3636             ListBuffer<Type> result = lb();
  3637             for (Type t : types) {
  3638                 if (t.tag == WILDCARD) {
  3639                     Type bound = ((WildcardType)t).getExtendsBound();
  3640                     if (bound == null)
  3641                         bound = syms.objectType;
  3642                     result.append(new CapturedType(capturedName,
  3643                                                    syms.noSymbol,
  3644                                                    bound,
  3645                                                    syms.botType,
  3646                                                    (WildcardType)t));
  3647                 } else {
  3648                     result.append(t);
  3651             return result.toList();
  3653     // </editor-fold>
  3655     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3656     private List<Type> upperBounds(List<Type> ss) {
  3657         if (ss.isEmpty()) return ss;
  3658         Type head = upperBound(ss.head);
  3659         List<Type> tail = upperBounds(ss.tail);
  3660         if (head != ss.head || tail != ss.tail)
  3661             return tail.prepend(head);
  3662         else
  3663             return ss;
  3666     private boolean sideCast(Type from, Type to, Warner warn) {
  3667         // We are casting from type $from$ to type $to$, which are
  3668         // non-final unrelated types.  This method
  3669         // tries to reject a cast by transferring type parameters
  3670         // from $to$ to $from$ by common superinterfaces.
  3671         boolean reverse = false;
  3672         Type target = to;
  3673         if ((to.tsym.flags() & INTERFACE) == 0) {
  3674             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3675             reverse = true;
  3676             to = from;
  3677             from = target;
  3679         List<Type> commonSupers = superClosure(to, erasure(from));
  3680         boolean giveWarning = commonSupers.isEmpty();
  3681         // The arguments to the supers could be unified here to
  3682         // get a more accurate analysis
  3683         while (commonSupers.nonEmpty()) {
  3684             Type t1 = asSuper(from, commonSupers.head.tsym);
  3685             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3686             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3687                 return false;
  3688             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3689             commonSupers = commonSupers.tail;
  3691         if (giveWarning && !isReifiable(reverse ? from : to))
  3692             warn.warn(LintCategory.UNCHECKED);
  3693         if (!allowCovariantReturns)
  3694             // reject if there is a common method signature with
  3695             // incompatible return types.
  3696             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3697         return true;
  3700     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3701         // We are casting from type $from$ to type $to$, which are
  3702         // unrelated types one of which is final and the other of
  3703         // which is an interface.  This method
  3704         // tries to reject a cast by transferring type parameters
  3705         // from the final class to the interface.
  3706         boolean reverse = false;
  3707         Type target = to;
  3708         if ((to.tsym.flags() & INTERFACE) == 0) {
  3709             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3710             reverse = true;
  3711             to = from;
  3712             from = target;
  3714         Assert.check((from.tsym.flags() & FINAL) != 0);
  3715         Type t1 = asSuper(from, to.tsym);
  3716         if (t1 == null) return false;
  3717         Type t2 = to;
  3718         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3719             return false;
  3720         if (!allowCovariantReturns)
  3721             // reject if there is a common method signature with
  3722             // incompatible return types.
  3723             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3724         if (!isReifiable(target) &&
  3725             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3726             warn.warn(LintCategory.UNCHECKED);
  3727         return true;
  3730     private boolean giveWarning(Type from, Type to) {
  3731         Type subFrom = asSub(from, to.tsym);
  3732         return to.isParameterized() &&
  3733                 (!(isUnbounded(to) ||
  3734                 isSubtype(from, to) ||
  3735                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3738     private List<Type> superClosure(Type t, Type s) {
  3739         List<Type> cl = List.nil();
  3740         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3741             if (isSubtype(s, erasure(l.head))) {
  3742                 cl = insert(cl, l.head);
  3743             } else {
  3744                 cl = union(cl, superClosure(l.head, s));
  3747         return cl;
  3750     private boolean containsTypeEquivalent(Type t, Type s) {
  3751         return
  3752             isSameType(t, s) || // shortcut
  3753             containsType(t, s) && containsType(s, t);
  3756     // <editor-fold defaultstate="collapsed" desc="adapt">
  3757     /**
  3758      * Adapt a type by computing a substitution which maps a source
  3759      * type to a target type.
  3761      * @param source    the source type
  3762      * @param target    the target type
  3763      * @param from      the type variables of the computed substitution
  3764      * @param to        the types of the computed substitution.
  3765      */
  3766     public void adapt(Type source,
  3767                        Type target,
  3768                        ListBuffer<Type> from,
  3769                        ListBuffer<Type> to) throws AdaptFailure {
  3770         new Adapter(from, to).adapt(source, target);
  3773     class Adapter extends SimpleVisitor<Void, Type> {
  3775         ListBuffer<Type> from;
  3776         ListBuffer<Type> to;
  3777         Map<Symbol,Type> mapping;
  3779         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3780             this.from = from;
  3781             this.to = to;
  3782             mapping = new HashMap<Symbol,Type>();
  3785         public void adapt(Type source, Type target) throws AdaptFailure {
  3786             visit(source, target);
  3787             List<Type> fromList = from.toList();
  3788             List<Type> toList = to.toList();
  3789             while (!fromList.isEmpty()) {
  3790                 Type val = mapping.get(fromList.head.tsym);
  3791                 if (toList.head != val)
  3792                     toList.head = val;
  3793                 fromList = fromList.tail;
  3794                 toList = toList.tail;
  3798         @Override
  3799         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3800             if (target.tag == CLASS)
  3801                 adaptRecursive(source.allparams(), target.allparams());
  3802             return null;
  3805         @Override
  3806         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3807             if (target.tag == ARRAY)
  3808                 adaptRecursive(elemtype(source), elemtype(target));
  3809             return null;
  3812         @Override
  3813         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3814             if (source.isExtendsBound())
  3815                 adaptRecursive(upperBound(source), upperBound(target));
  3816             else if (source.isSuperBound())
  3817                 adaptRecursive(lowerBound(source), lowerBound(target));
  3818             return null;
  3821         @Override
  3822         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3823             // Check to see if there is
  3824             // already a mapping for $source$, in which case
  3825             // the old mapping will be merged with the new
  3826             Type val = mapping.get(source.tsym);
  3827             if (val != null) {
  3828                 if (val.isSuperBound() && target.isSuperBound()) {
  3829                     val = isSubtype(lowerBound(val), lowerBound(target))
  3830                         ? target : val;
  3831                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3832                     val = isSubtype(upperBound(val), upperBound(target))
  3833                         ? val : target;
  3834                 } else if (!isSameType(val, target)) {
  3835                     throw new AdaptFailure();
  3837             } else {
  3838                 val = target;
  3839                 from.append(source);
  3840                 to.append(target);
  3842             mapping.put(source.tsym, val);
  3843             return null;
  3846         @Override
  3847         public Void visitType(Type source, Type target) {
  3848             return null;
  3851         private Set<TypePair> cache = new HashSet<TypePair>();
  3853         private void adaptRecursive(Type source, Type target) {
  3854             TypePair pair = new TypePair(source, target);
  3855             if (cache.add(pair)) {
  3856                 try {
  3857                     visit(source, target);
  3858                 } finally {
  3859                     cache.remove(pair);
  3864         private void adaptRecursive(List<Type> source, List<Type> target) {
  3865             if (source.length() == target.length()) {
  3866                 while (source.nonEmpty()) {
  3867                     adaptRecursive(source.head, target.head);
  3868                     source = source.tail;
  3869                     target = target.tail;
  3875     public static class AdaptFailure extends RuntimeException {
  3876         static final long serialVersionUID = -7490231548272701566L;
  3879     private void adaptSelf(Type t,
  3880                            ListBuffer<Type> from,
  3881                            ListBuffer<Type> to) {
  3882         try {
  3883             //if (t.tsym.type != t)
  3884                 adapt(t.tsym.type, t, from, to);
  3885         } catch (AdaptFailure ex) {
  3886             // Adapt should never fail calculating a mapping from
  3887             // t.tsym.type to t as there can be no merge problem.
  3888             throw new AssertionError(ex);
  3891     // </editor-fold>
  3893     /**
  3894      * Rewrite all type variables (universal quantifiers) in the given
  3895      * type to wildcards (existential quantifiers).  This is used to
  3896      * determine if a cast is allowed.  For example, if high is true
  3897      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3898      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3899      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3900      * List<Integer>} with a warning.
  3901      * @param t a type
  3902      * @param high if true return an upper bound; otherwise a lower
  3903      * bound
  3904      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3905      * otherwise rewrite all type variables
  3906      * @return the type rewritten with wildcards (existential
  3907      * quantifiers) only
  3908      */
  3909     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3910         return new Rewriter(high, rewriteTypeVars).visit(t);
  3913     class Rewriter extends UnaryVisitor<Type> {
  3915         boolean high;
  3916         boolean rewriteTypeVars;
  3918         Rewriter(boolean high, boolean rewriteTypeVars) {
  3919             this.high = high;
  3920             this.rewriteTypeVars = rewriteTypeVars;
  3923         @Override
  3924         public Type visitClassType(ClassType t, Void s) {
  3925             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3926             boolean changed = false;
  3927             for (Type arg : t.allparams()) {
  3928                 Type bound = visit(arg);
  3929                 if (arg != bound) {
  3930                     changed = true;
  3932                 rewritten.append(bound);
  3934             if (changed)
  3935                 return subst(t.tsym.type,
  3936                         t.tsym.type.allparams(),
  3937                         rewritten.toList());
  3938             else
  3939                 return t;
  3942         public Type visitType(Type t, Void s) {
  3943             return high ? upperBound(t) : lowerBound(t);
  3946         @Override
  3947         public Type visitCapturedType(CapturedType t, Void s) {
  3948             Type w_bound = t.wildcard.type;
  3949             Type bound = w_bound.contains(t) ?
  3950                         erasure(w_bound) :
  3951                         visit(w_bound);
  3952             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  3955         @Override
  3956         public Type visitTypeVar(TypeVar t, Void s) {
  3957             if (rewriteTypeVars) {
  3958                 Type bound = t.bound.contains(t) ?
  3959                         erasure(t.bound) :
  3960                         visit(t.bound);
  3961                 return rewriteAsWildcardType(bound, t, EXTENDS);
  3962             } else {
  3963                 return t;
  3967         @Override
  3968         public Type visitWildcardType(WildcardType t, Void s) {
  3969             Type bound2 = visit(t.type);
  3970             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  3973         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  3974             switch (bk) {
  3975                case EXTENDS: return high ?
  3976                        makeExtendsWildcard(B(bound), formal) :
  3977                        makeExtendsWildcard(syms.objectType, formal);
  3978                case SUPER: return high ?
  3979                        makeSuperWildcard(syms.botType, formal) :
  3980                        makeSuperWildcard(B(bound), formal);
  3981                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  3982                default:
  3983                    Assert.error("Invalid bound kind " + bk);
  3984                    return null;
  3988         Type B(Type t) {
  3989             while (t.tag == WILDCARD) {
  3990                 WildcardType w = (WildcardType)t;
  3991                 t = high ?
  3992                     w.getExtendsBound() :
  3993                     w.getSuperBound();
  3994                 if (t == null) {
  3995                     t = high ? syms.objectType : syms.botType;
  3998             return t;
  4003     /**
  4004      * Create a wildcard with the given upper (extends) bound; create
  4005      * an unbounded wildcard if bound is Object.
  4007      * @param bound the upper bound
  4008      * @param formal the formal type parameter that will be
  4009      * substituted by the wildcard
  4010      */
  4011     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4012         if (bound == syms.objectType) {
  4013             return new WildcardType(syms.objectType,
  4014                                     BoundKind.UNBOUND,
  4015                                     syms.boundClass,
  4016                                     formal);
  4017         } else {
  4018             return new WildcardType(bound,
  4019                                     BoundKind.EXTENDS,
  4020                                     syms.boundClass,
  4021                                     formal);
  4025     /**
  4026      * Create a wildcard with the given lower (super) bound; create an
  4027      * unbounded wildcard if bound is bottom (type of {@code null}).
  4029      * @param bound the lower bound
  4030      * @param formal the formal type parameter that will be
  4031      * substituted by the wildcard
  4032      */
  4033     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4034         if (bound.tag == BOT) {
  4035             return new WildcardType(syms.objectType,
  4036                                     BoundKind.UNBOUND,
  4037                                     syms.boundClass,
  4038                                     formal);
  4039         } else {
  4040             return new WildcardType(bound,
  4041                                     BoundKind.SUPER,
  4042                                     syms.boundClass,
  4043                                     formal);
  4047     /**
  4048      * A wrapper for a type that allows use in sets.
  4049      */
  4050     class SingletonType {
  4051         final Type t;
  4052         SingletonType(Type t) {
  4053             this.t = t;
  4055         public int hashCode() {
  4056             return Types.hashCode(t);
  4058         public boolean equals(Object obj) {
  4059             return (obj instanceof SingletonType) &&
  4060                 isSameType(t, ((SingletonType)obj).t);
  4062         public String toString() {
  4063             return t.toString();
  4066     // </editor-fold>
  4068     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4069     /**
  4070      * A default visitor for types.  All visitor methods except
  4071      * visitType are implemented by delegating to visitType.  Concrete
  4072      * subclasses must provide an implementation of visitType and can
  4073      * override other methods as needed.
  4075      * @param <R> the return type of the operation implemented by this
  4076      * visitor; use Void if no return type is needed.
  4077      * @param <S> the type of the second argument (the first being the
  4078      * type itself) of the operation implemented by this visitor; use
  4079      * Void if a second argument is not needed.
  4080      */
  4081     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4082         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4083         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4084         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4085         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4086         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4087         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4088         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4089         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4090         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4091         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4092         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4095     /**
  4096      * A default visitor for symbols.  All visitor methods except
  4097      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4098      * subclasses must provide an implementation of visitSymbol and can
  4099      * override other methods as needed.
  4101      * @param <R> the return type of the operation implemented by this
  4102      * visitor; use Void if no return type is needed.
  4103      * @param <S> the type of the second argument (the first being the
  4104      * symbol itself) of the operation implemented by this visitor; use
  4105      * Void if a second argument is not needed.
  4106      */
  4107     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4108         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4109         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4110         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4111         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4112         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4113         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4114         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4117     /**
  4118      * A <em>simple</em> visitor for types.  This visitor is simple as
  4119      * captured wildcards, for-all types (generic methods), and
  4120      * undetermined type variables (part of inference) are hidden.
  4121      * Captured wildcards are hidden by treating them as type
  4122      * variables and the rest are hidden by visiting their qtypes.
  4124      * @param <R> the return type of the operation implemented by this
  4125      * visitor; use Void if no return type is needed.
  4126      * @param <S> the type of the second argument (the first being the
  4127      * type itself) of the operation implemented by this visitor; use
  4128      * Void if a second argument is not needed.
  4129      */
  4130     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4131         @Override
  4132         public R visitCapturedType(CapturedType t, S s) {
  4133             return visitTypeVar(t, s);
  4135         @Override
  4136         public R visitForAll(ForAll t, S s) {
  4137             return visit(t.qtype, s);
  4139         @Override
  4140         public R visitUndetVar(UndetVar t, S s) {
  4141             return visit(t.qtype, s);
  4145     /**
  4146      * A plain relation on types.  That is a 2-ary function on the
  4147      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4148      * <!-- In plain text: Type x Type -> Boolean -->
  4149      */
  4150     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4152     /**
  4153      * A convenience visitor for implementing operations that only
  4154      * require one argument (the type itself), that is, unary
  4155      * operations.
  4157      * @param <R> the return type of the operation implemented by this
  4158      * visitor; use Void if no return type is needed.
  4159      */
  4160     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4161         final public R visit(Type t) { return t.accept(this, null); }
  4164     /**
  4165      * A visitor for implementing a mapping from types to types.  The
  4166      * default behavior of this class is to implement the identity
  4167      * mapping (mapping a type to itself).  This can be overridden in
  4168      * subclasses.
  4170      * @param <S> the type of the second argument (the first being the
  4171      * type itself) of this mapping; use Void if a second argument is
  4172      * not needed.
  4173      */
  4174     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4175         final public Type visit(Type t) { return t.accept(this, null); }
  4176         public Type visitType(Type t, S s) { return t; }
  4178     // </editor-fold>
  4181     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4183     public RetentionPolicy getRetention(Attribute.Compound a) {
  4184         return getRetention(a.type.tsym);
  4187     public RetentionPolicy getRetention(Symbol sym) {
  4188         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4189         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4190         if (c != null) {
  4191             Attribute value = c.member(names.value);
  4192             if (value != null && value instanceof Attribute.Enum) {
  4193                 Name levelName = ((Attribute.Enum)value).value.name;
  4194                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4195                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4196                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4197                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4200         return vis;
  4202     // </editor-fold>

mercurial