src/share/classes/com/sun/tools/javac/comp/Attr.java

Wed, 14 Nov 2012 17:23:10 -0800

author
jjg
date
Wed, 14 Nov 2012 17:23:10 -0800
changeset 1409
33abf479f202
parent 1406
2901c7b5339e
child 1415
01c9d4161882
permissions
-rw-r--r--

7021614: extend com.sun.source API to support parsing javadoc comments
Reviewed-by: ksrini, strarup

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import javax.lang.model.element.ElementKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.jvm.Target;
    49 import com.sun.tools.javac.tree.*;
    50 import com.sun.tools.javac.tree.JCTree.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTag.*;
    60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    63 /** This is the main context-dependent analysis phase in GJC. It
    64  *  encompasses name resolution, type checking and constant folding as
    65  *  subtasks. Some subtasks involve auxiliary classes.
    66  *  @see Check
    67  *  @see Resolve
    68  *  @see ConstFold
    69  *  @see Infer
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Attr extends JCTree.Visitor {
    77     protected static final Context.Key<Attr> attrKey =
    78         new Context.Key<Attr>();
    80     final Names names;
    81     final Log log;
    82     final Symtab syms;
    83     final Resolve rs;
    84     final Infer infer;
    85     final DeferredAttr deferredAttr;
    86     final Check chk;
    87     final Flow flow;
    88     final MemberEnter memberEnter;
    89     final TreeMaker make;
    90     final ConstFold cfolder;
    91     final Enter enter;
    92     final Target target;
    93     final Types types;
    94     final JCDiagnostic.Factory diags;
    95     final Annotate annotate;
    96     final DeferredLintHandler deferredLintHandler;
    98     public static Attr instance(Context context) {
    99         Attr instance = context.get(attrKey);
   100         if (instance == null)
   101             instance = new Attr(context);
   102         return instance;
   103     }
   105     protected Attr(Context context) {
   106         context.put(attrKey, this);
   108         names = Names.instance(context);
   109         log = Log.instance(context);
   110         syms = Symtab.instance(context);
   111         rs = Resolve.instance(context);
   112         chk = Check.instance(context);
   113         flow = Flow.instance(context);
   114         memberEnter = MemberEnter.instance(context);
   115         make = TreeMaker.instance(context);
   116         enter = Enter.instance(context);
   117         infer = Infer.instance(context);
   118         deferredAttr = DeferredAttr.instance(context);
   119         cfolder = ConstFold.instance(context);
   120         target = Target.instance(context);
   121         types = Types.instance(context);
   122         diags = JCDiagnostic.Factory.instance(context);
   123         annotate = Annotate.instance(context);
   124         deferredLintHandler = DeferredLintHandler.instance(context);
   126         Options options = Options.instance(context);
   128         Source source = Source.instance(context);
   129         allowGenerics = source.allowGenerics();
   130         allowVarargs = source.allowVarargs();
   131         allowEnums = source.allowEnums();
   132         allowBoxing = source.allowBoxing();
   133         allowCovariantReturns = source.allowCovariantReturns();
   134         allowAnonOuterThis = source.allowAnonOuterThis();
   135         allowStringsInSwitch = source.allowStringsInSwitch();
   136         allowPoly = source.allowPoly() && options.isSet("allowPoly");
   137         allowLambda = source.allowLambda();
   138         allowDefaultMethods = source.allowDefaultMethods();
   139         sourceName = source.name;
   140         relax = (options.isSet("-retrofit") ||
   141                  options.isSet("-relax"));
   142         findDiamonds = options.get("findDiamond") != null &&
   143                  source.allowDiamond();
   144         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   145         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   147         statInfo = new ResultInfo(NIL, Type.noType);
   148         varInfo = new ResultInfo(VAR, Type.noType);
   149         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   150         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   151         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   152     }
   154     /** Switch: relax some constraints for retrofit mode.
   155      */
   156     boolean relax;
   158     /** Switch: support target-typing inference
   159      */
   160     boolean allowPoly;
   162     /** Switch: support generics?
   163      */
   164     boolean allowGenerics;
   166     /** Switch: allow variable-arity methods.
   167      */
   168     boolean allowVarargs;
   170     /** Switch: support enums?
   171      */
   172     boolean allowEnums;
   174     /** Switch: support boxing and unboxing?
   175      */
   176     boolean allowBoxing;
   178     /** Switch: support covariant result types?
   179      */
   180     boolean allowCovariantReturns;
   182     /** Switch: support default methods ?
   183      */
   184     boolean allowDefaultMethods;
   186     /** Switch: support lambda expressions ?
   187      */
   188     boolean allowLambda;
   190     /** Switch: allow references to surrounding object from anonymous
   191      * objects during constructor call?
   192      */
   193     boolean allowAnonOuterThis;
   195     /** Switch: generates a warning if diamond can be safely applied
   196      *  to a given new expression
   197      */
   198     boolean findDiamonds;
   200     /**
   201      * Internally enables/disables diamond finder feature
   202      */
   203     static final boolean allowDiamondFinder = true;
   205     /**
   206      * Switch: warn about use of variable before declaration?
   207      * RFE: 6425594
   208      */
   209     boolean useBeforeDeclarationWarning;
   211     /**
   212      * Switch: generate warnings whenever an anonymous inner class that is convertible
   213      * to a lambda expression is found
   214      */
   215     boolean identifyLambdaCandidate;
   217     /**
   218      * Switch: allow strings in switch?
   219      */
   220     boolean allowStringsInSwitch;
   222     /**
   223      * Switch: name of source level; used for error reporting.
   224      */
   225     String sourceName;
   227     /** Check kind and type of given tree against protokind and prototype.
   228      *  If check succeeds, store type in tree and return it.
   229      *  If check fails, store errType in tree and return it.
   230      *  No checks are performed if the prototype is a method type.
   231      *  It is not necessary in this case since we know that kind and type
   232      *  are correct.
   233      *
   234      *  @param tree     The tree whose kind and type is checked
   235      *  @param ownkind  The computed kind of the tree
   236      *  @param resultInfo  The expected result of the tree
   237      */
   238     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   239         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   240         Type owntype = found;
   241         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   242             if (inferenceContext.free(found)) {
   243                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   244                     @Override
   245                     public void typesInferred(InferenceContext inferenceContext) {
   246                         ResultInfo pendingResult =
   247                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt, types));
   248                         check(tree, inferenceContext.asInstType(found, types), ownkind, pendingResult);
   249                     }
   250                 });
   251                 return tree.type = resultInfo.pt;
   252             } else {
   253                 if ((ownkind & ~resultInfo.pkind) == 0) {
   254                     owntype = resultInfo.check(tree, owntype);
   255                 } else {
   256                     log.error(tree.pos(), "unexpected.type",
   257                             kindNames(resultInfo.pkind),
   258                             kindName(ownkind));
   259                     owntype = types.createErrorType(owntype);
   260                 }
   261             }
   262         }
   263         tree.type = owntype;
   264         return owntype;
   265     }
   267     /** Is given blank final variable assignable, i.e. in a scope where it
   268      *  may be assigned to even though it is final?
   269      *  @param v      The blank final variable.
   270      *  @param env    The current environment.
   271      */
   272     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   273         Symbol owner = owner(env);
   274            // owner refers to the innermost variable, method or
   275            // initializer block declaration at this point.
   276         return
   277             v.owner == owner
   278             ||
   279             ((owner.name == names.init ||    // i.e. we are in a constructor
   280               owner.kind == VAR ||           // i.e. we are in a variable initializer
   281               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   282              &&
   283              v.owner == owner.owner
   284              &&
   285              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   286     }
   288     /**
   289      * Return the innermost enclosing owner symbol in a given attribution context
   290      */
   291     Symbol owner(Env<AttrContext> env) {
   292         while (true) {
   293             switch (env.tree.getTag()) {
   294                 case VARDEF:
   295                     //a field can be owner
   296                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   297                     if (vsym.owner.kind == TYP) {
   298                         return vsym;
   299                     }
   300                     break;
   301                 case METHODDEF:
   302                     //method def is always an owner
   303                     return ((JCMethodDecl)env.tree).sym;
   304                 case CLASSDEF:
   305                     //class def is always an owner
   306                     return ((JCClassDecl)env.tree).sym;
   307                 case LAMBDA:
   308                     //a lambda is an owner - return a fresh synthetic method symbol
   309                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   310                 case BLOCK:
   311                     //static/instance init blocks are owner
   312                     Symbol blockSym = env.info.scope.owner;
   313                     if ((blockSym.flags() & BLOCK) != 0) {
   314                         return blockSym;
   315                     }
   316                     break;
   317                 case TOPLEVEL:
   318                     //toplevel is always an owner (for pkge decls)
   319                     return env.info.scope.owner;
   320             }
   321             Assert.checkNonNull(env.next);
   322             env = env.next;
   323         }
   324     }
   326     /** Check that variable can be assigned to.
   327      *  @param pos    The current source code position.
   328      *  @param v      The assigned varaible
   329      *  @param base   If the variable is referred to in a Select, the part
   330      *                to the left of the `.', null otherwise.
   331      *  @param env    The current environment.
   332      */
   333     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   334         if ((v.flags() & FINAL) != 0 &&
   335             ((v.flags() & HASINIT) != 0
   336              ||
   337              !((base == null ||
   338                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   339                isAssignableAsBlankFinal(v, env)))) {
   340             if (v.isResourceVariable()) { //TWR resource
   341                 log.error(pos, "try.resource.may.not.be.assigned", v);
   342             } else {
   343                 log.error(pos, "cant.assign.val.to.final.var", v);
   344             }
   345         }
   346     }
   348     /** Does tree represent a static reference to an identifier?
   349      *  It is assumed that tree is either a SELECT or an IDENT.
   350      *  We have to weed out selects from non-type names here.
   351      *  @param tree    The candidate tree.
   352      */
   353     boolean isStaticReference(JCTree tree) {
   354         if (tree.hasTag(SELECT)) {
   355             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   356             if (lsym == null || lsym.kind != TYP) {
   357                 return false;
   358             }
   359         }
   360         return true;
   361     }
   363     /** Is this symbol a type?
   364      */
   365     static boolean isType(Symbol sym) {
   366         return sym != null && sym.kind == TYP;
   367     }
   369     /** The current `this' symbol.
   370      *  @param env    The current environment.
   371      */
   372     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   373         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   374     }
   376     /** Attribute a parsed identifier.
   377      * @param tree Parsed identifier name
   378      * @param topLevel The toplevel to use
   379      */
   380     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   381         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   382         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   383                                            syms.errSymbol.name,
   384                                            null, null, null, null);
   385         localEnv.enclClass.sym = syms.errSymbol;
   386         return tree.accept(identAttributer, localEnv);
   387     }
   388     // where
   389         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   390         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   391             @Override
   392             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   393                 Symbol site = visit(node.getExpression(), env);
   394                 if (site.kind == ERR)
   395                     return site;
   396                 Name name = (Name)node.getIdentifier();
   397                 if (site.kind == PCK) {
   398                     env.toplevel.packge = (PackageSymbol)site;
   399                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   400                 } else {
   401                     env.enclClass.sym = (ClassSymbol)site;
   402                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   403                 }
   404             }
   406             @Override
   407             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   408                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   409             }
   410         }
   412     public Type coerce(Type etype, Type ttype) {
   413         return cfolder.coerce(etype, ttype);
   414     }
   416     public Type attribType(JCTree node, TypeSymbol sym) {
   417         Env<AttrContext> env = enter.typeEnvs.get(sym);
   418         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   419         return attribTree(node, localEnv, unknownTypeInfo);
   420     }
   422     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   423         // Attribute qualifying package or class.
   424         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   425         return attribTree(s.selected,
   426                        env,
   427                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   428                        Type.noType));
   429     }
   431     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   432         breakTree = tree;
   433         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   434         try {
   435             attribExpr(expr, env);
   436         } catch (BreakAttr b) {
   437             return b.env;
   438         } catch (AssertionError ae) {
   439             if (ae.getCause() instanceof BreakAttr) {
   440                 return ((BreakAttr)(ae.getCause())).env;
   441             } else {
   442                 throw ae;
   443             }
   444         } finally {
   445             breakTree = null;
   446             log.useSource(prev);
   447         }
   448         return env;
   449     }
   451     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   452         breakTree = tree;
   453         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   454         try {
   455             attribStat(stmt, env);
   456         } catch (BreakAttr b) {
   457             return b.env;
   458         } catch (AssertionError ae) {
   459             if (ae.getCause() instanceof BreakAttr) {
   460                 return ((BreakAttr)(ae.getCause())).env;
   461             } else {
   462                 throw ae;
   463             }
   464         } finally {
   465             breakTree = null;
   466             log.useSource(prev);
   467         }
   468         return env;
   469     }
   471     private JCTree breakTree = null;
   473     private static class BreakAttr extends RuntimeException {
   474         static final long serialVersionUID = -6924771130405446405L;
   475         private Env<AttrContext> env;
   476         private BreakAttr(Env<AttrContext> env) {
   477             this.env = copyEnv(env);
   478         }
   480         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
   481             Env<AttrContext> newEnv =
   482                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   483             if (newEnv.outer != null) {
   484                 newEnv.outer = copyEnv(newEnv.outer);
   485             }
   486             return newEnv;
   487         }
   489         private Scope copyScope(Scope sc) {
   490             Scope newScope = new Scope(sc.owner);
   491             List<Symbol> elemsList = List.nil();
   492             while (sc != null) {
   493                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   494                     elemsList = elemsList.prepend(e.sym);
   495                 }
   496                 sc = sc.next;
   497             }
   498             for (Symbol s : elemsList) {
   499                 newScope.enter(s);
   500             }
   501             return newScope;
   502         }
   503     }
   505     class ResultInfo {
   506         final int pkind;
   507         final Type pt;
   508         final CheckContext checkContext;
   510         ResultInfo(int pkind, Type pt) {
   511             this(pkind, pt, chk.basicHandler);
   512         }
   514         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   515             this.pkind = pkind;
   516             this.pt = pt;
   517             this.checkContext = checkContext;
   518         }
   520         protected Type check(final DiagnosticPosition pos, final Type found) {
   521             return chk.checkType(pos, found, pt, checkContext);
   522         }
   524         protected ResultInfo dup(Type newPt) {
   525             return new ResultInfo(pkind, newPt, checkContext);
   526         }
   527     }
   529     class RecoveryInfo extends ResultInfo {
   531         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   532             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   533                 @Override
   534                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   535                     return deferredAttrContext;
   536                 }
   537                 @Override
   538                 public boolean compatible(Type found, Type req, Warner warn) {
   539                     return true;
   540                 }
   541                 @Override
   542                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   543                     //do nothing
   544                 }
   545             });
   546         }
   548         @Override
   549         protected Type check(DiagnosticPosition pos, Type found) {
   550             return chk.checkNonVoid(pos, super.check(pos, found));
   551         }
   552     }
   554     final ResultInfo statInfo;
   555     final ResultInfo varInfo;
   556     final ResultInfo unknownExprInfo;
   557     final ResultInfo unknownTypeInfo;
   558     final ResultInfo recoveryInfo;
   560     Type pt() {
   561         return resultInfo.pt;
   562     }
   564     int pkind() {
   565         return resultInfo.pkind;
   566     }
   568 /* ************************************************************************
   569  * Visitor methods
   570  *************************************************************************/
   572     /** Visitor argument: the current environment.
   573      */
   574     Env<AttrContext> env;
   576     /** Visitor argument: the currently expected attribution result.
   577      */
   578     ResultInfo resultInfo;
   580     /** Visitor result: the computed type.
   581      */
   582     Type result;
   584     /** Visitor method: attribute a tree, catching any completion failure
   585      *  exceptions. Return the tree's type.
   586      *
   587      *  @param tree    The tree to be visited.
   588      *  @param env     The environment visitor argument.
   589      *  @param resultInfo   The result info visitor argument.
   590      */
   591     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   592         Env<AttrContext> prevEnv = this.env;
   593         ResultInfo prevResult = this.resultInfo;
   594         try {
   595             this.env = env;
   596             this.resultInfo = resultInfo;
   597             tree.accept(this);
   598             if (tree == breakTree)
   599                 throw new BreakAttr(env);
   600             return result;
   601         } catch (CompletionFailure ex) {
   602             tree.type = syms.errType;
   603             return chk.completionError(tree.pos(), ex);
   604         } finally {
   605             this.env = prevEnv;
   606             this.resultInfo = prevResult;
   607         }
   608     }
   610     /** Derived visitor method: attribute an expression tree.
   611      */
   612     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   613         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   614     }
   616     /** Derived visitor method: attribute an expression tree with
   617      *  no constraints on the computed type.
   618      */
   619     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   620         return attribTree(tree, env, unknownExprInfo);
   621     }
   623     /** Derived visitor method: attribute a type tree.
   624      */
   625     public Type attribType(JCTree tree, Env<AttrContext> env) {
   626         Type result = attribType(tree, env, Type.noType);
   627         return result;
   628     }
   630     /** Derived visitor method: attribute a type tree.
   631      */
   632     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   633         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   634         return result;
   635     }
   637     /** Derived visitor method: attribute a statement or definition tree.
   638      */
   639     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   640         return attribTree(tree, env, statInfo);
   641     }
   643     /** Attribute a list of expressions, returning a list of types.
   644      */
   645     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   646         ListBuffer<Type> ts = new ListBuffer<Type>();
   647         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   648             ts.append(attribExpr(l.head, env, pt));
   649         return ts.toList();
   650     }
   652     /** Attribute a list of statements, returning nothing.
   653      */
   654     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   655         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   656             attribStat(l.head, env);
   657     }
   659     /** Attribute the arguments in a method call, returning a list of types.
   660      */
   661     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   662         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   663         for (JCExpression arg : trees) {
   664             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
   665                     deferredAttr.new DeferredType(arg, env) :
   666                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
   667             argtypes.append(argtype);
   668         }
   669         return argtypes.toList();
   670     }
   672     /** Attribute a type argument list, returning a list of types.
   673      *  Caller is responsible for calling checkRefTypes.
   674      */
   675     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   676         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   677         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   678             argtypes.append(attribType(l.head, env));
   679         return argtypes.toList();
   680     }
   682     /** Attribute a type argument list, returning a list of types.
   683      *  Check that all the types are references.
   684      */
   685     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   686         List<Type> types = attribAnyTypes(trees, env);
   687         return chk.checkRefTypes(trees, types);
   688     }
   690     /**
   691      * Attribute type variables (of generic classes or methods).
   692      * Compound types are attributed later in attribBounds.
   693      * @param typarams the type variables to enter
   694      * @param env      the current environment
   695      */
   696     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   697         for (JCTypeParameter tvar : typarams) {
   698             TypeVar a = (TypeVar)tvar.type;
   699             a.tsym.flags_field |= UNATTRIBUTED;
   700             a.bound = Type.noType;
   701             if (!tvar.bounds.isEmpty()) {
   702                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   703                 for (JCExpression bound : tvar.bounds.tail)
   704                     bounds = bounds.prepend(attribType(bound, env));
   705                 types.setBounds(a, bounds.reverse());
   706             } else {
   707                 // if no bounds are given, assume a single bound of
   708                 // java.lang.Object.
   709                 types.setBounds(a, List.of(syms.objectType));
   710             }
   711             a.tsym.flags_field &= ~UNATTRIBUTED;
   712         }
   713         for (JCTypeParameter tvar : typarams)
   714             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   715         attribStats(typarams, env);
   716     }
   718     void attribBounds(List<JCTypeParameter> typarams) {
   719         for (JCTypeParameter typaram : typarams) {
   720             Type bound = typaram.type.getUpperBound();
   721             if (bound != null && bound.tsym instanceof ClassSymbol) {
   722                 ClassSymbol c = (ClassSymbol)bound.tsym;
   723                 if ((c.flags_field & COMPOUND) != 0) {
   724                     Assert.check((c.flags_field & UNATTRIBUTED) != 0, c);
   725                     attribClass(typaram.pos(), c);
   726                 }
   727             }
   728         }
   729     }
   731     /**
   732      * Attribute the type references in a list of annotations.
   733      */
   734     void attribAnnotationTypes(List<JCAnnotation> annotations,
   735                                Env<AttrContext> env) {
   736         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   737             JCAnnotation a = al.head;
   738             attribType(a.annotationType, env);
   739         }
   740     }
   742     /**
   743      * Attribute a "lazy constant value".
   744      *  @param env         The env for the const value
   745      *  @param initializer The initializer for the const value
   746      *  @param type        The expected type, or null
   747      *  @see VarSymbol#setLazyConstValue
   748      */
   749     public Object attribLazyConstantValue(Env<AttrContext> env,
   750                                       JCTree.JCExpression initializer,
   751                                       Type type) {
   753         // in case no lint value has been set up for this env, scan up
   754         // env stack looking for smallest enclosing env for which it is set.
   755         Env<AttrContext> lintEnv = env;
   756         while (lintEnv.info.lint == null)
   757             lintEnv = lintEnv.next;
   759         // Having found the enclosing lint value, we can initialize the lint value for this class
   760         // ... but ...
   761         // There's a problem with evaluating annotations in the right order, such that
   762         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
   763         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
   764         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
   765         if (env.info.enclVar.annotations.pendingCompletion()) {
   766             env.info.lint = lintEnv.info.lint;
   767         } else {
   768             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
   769                                                       env.info.enclVar.flags());
   770         }
   772         Lint prevLint = chk.setLint(env.info.lint);
   773         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   775         try {
   776             Type itype = attribExpr(initializer, env, type);
   777             if (itype.constValue() != null)
   778                 return coerce(itype, type).constValue();
   779             else
   780                 return null;
   781         } finally {
   782             env.info.lint = prevLint;
   783             log.useSource(prevSource);
   784         }
   785     }
   787     /** Attribute type reference in an `extends' or `implements' clause.
   788      *  Supertypes of anonymous inner classes are usually already attributed.
   789      *
   790      *  @param tree              The tree making up the type reference.
   791      *  @param env               The environment current at the reference.
   792      *  @param classExpected     true if only a class is expected here.
   793      *  @param interfaceExpected true if only an interface is expected here.
   794      */
   795     Type attribBase(JCTree tree,
   796                     Env<AttrContext> env,
   797                     boolean classExpected,
   798                     boolean interfaceExpected,
   799                     boolean checkExtensible) {
   800         Type t = tree.type != null ?
   801             tree.type :
   802             attribType(tree, env);
   803         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   804     }
   805     Type checkBase(Type t,
   806                    JCTree tree,
   807                    Env<AttrContext> env,
   808                    boolean classExpected,
   809                    boolean interfaceExpected,
   810                    boolean checkExtensible) {
   811         if (t.isErroneous())
   812             return t;
   813         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   814             // check that type variable is already visible
   815             if (t.getUpperBound() == null) {
   816                 log.error(tree.pos(), "illegal.forward.ref");
   817                 return types.createErrorType(t);
   818             }
   819         } else {
   820             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   821         }
   822         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   823             log.error(tree.pos(), "intf.expected.here");
   824             // return errType is necessary since otherwise there might
   825             // be undetected cycles which cause attribution to loop
   826             return types.createErrorType(t);
   827         } else if (checkExtensible &&
   828                    classExpected &&
   829                    (t.tsym.flags() & INTERFACE) != 0) {
   830                 log.error(tree.pos(), "no.intf.expected.here");
   831             return types.createErrorType(t);
   832         }
   833         if (checkExtensible &&
   834             ((t.tsym.flags() & FINAL) != 0)) {
   835             log.error(tree.pos(),
   836                       "cant.inherit.from.final", t.tsym);
   837         }
   838         chk.checkNonCyclic(tree.pos(), t);
   839         return t;
   840     }
   842     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   843         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   844         id.type = env.info.scope.owner.type;
   845         id.sym = env.info.scope.owner;
   846         return id.type;
   847     }
   849     public void visitClassDef(JCClassDecl tree) {
   850         // Local classes have not been entered yet, so we need to do it now:
   851         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   852             enter.classEnter(tree, env);
   854         ClassSymbol c = tree.sym;
   855         if (c == null) {
   856             // exit in case something drastic went wrong during enter.
   857             result = null;
   858         } else {
   859             // make sure class has been completed:
   860             c.complete();
   862             // If this class appears as an anonymous class
   863             // in a superclass constructor call where
   864             // no explicit outer instance is given,
   865             // disable implicit outer instance from being passed.
   866             // (This would be an illegal access to "this before super").
   867             if (env.info.isSelfCall &&
   868                 env.tree.hasTag(NEWCLASS) &&
   869                 ((JCNewClass) env.tree).encl == null)
   870             {
   871                 c.flags_field |= NOOUTERTHIS;
   872             }
   873             attribClass(tree.pos(), c);
   874             result = tree.type = c.type;
   875         }
   876     }
   878     public void visitMethodDef(JCMethodDecl tree) {
   879         MethodSymbol m = tree.sym;
   880         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   882         Lint lint = env.info.lint.augment(m.annotations, m.flags());
   883         Lint prevLint = chk.setLint(lint);
   884         MethodSymbol prevMethod = chk.setMethod(m);
   885         try {
   886             deferredLintHandler.flush(tree.pos());
   887             chk.checkDeprecatedAnnotation(tree.pos(), m);
   889             attribBounds(tree.typarams);
   891             // If we override any other methods, check that we do so properly.
   892             // JLS ???
   893             if (m.isStatic()) {
   894                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   895             } else {
   896                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   897             }
   898             chk.checkOverride(tree, m);
   900             // Create a new environment with local scope
   901             // for attributing the method.
   902             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   904             localEnv.info.lint = lint;
   906             if (isDefaultMethod && types.overridesObjectMethod(m)) {
   907                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   908             }
   910             // Enter all type parameters into the local method scope.
   911             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   912                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   914             ClassSymbol owner = env.enclClass.sym;
   915             if ((owner.flags() & ANNOTATION) != 0 &&
   916                 tree.params.nonEmpty())
   917                 log.error(tree.params.head.pos(),
   918                           "intf.annotation.members.cant.have.params");
   920             // Attribute all value parameters.
   921             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   922                 attribStat(l.head, localEnv);
   923             }
   925             chk.checkVarargsMethodDecl(localEnv, tree);
   927             // Check that type parameters are well-formed.
   928             chk.validate(tree.typarams, localEnv);
   930             // Check that result type is well-formed.
   931             chk.validate(tree.restype, localEnv);
   933             // annotation method checks
   934             if ((owner.flags() & ANNOTATION) != 0) {
   935                 // annotation method cannot have throws clause
   936                 if (tree.thrown.nonEmpty()) {
   937                     log.error(tree.thrown.head.pos(),
   938                             "throws.not.allowed.in.intf.annotation");
   939                 }
   940                 // annotation method cannot declare type-parameters
   941                 if (tree.typarams.nonEmpty()) {
   942                     log.error(tree.typarams.head.pos(),
   943                             "intf.annotation.members.cant.have.type.params");
   944                 }
   945                 // validate annotation method's return type (could be an annotation type)
   946                 chk.validateAnnotationType(tree.restype);
   947                 // ensure that annotation method does not clash with members of Object/Annotation
   948                 chk.validateAnnotationMethod(tree.pos(), m);
   950                 if (tree.defaultValue != null) {
   951                     // if default value is an annotation, check it is a well-formed
   952                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   953                     chk.validateAnnotationTree(tree.defaultValue);
   954                 }
   955             }
   957             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   958                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   960             if (tree.body == null) {
   961                 // Empty bodies are only allowed for
   962                 // abstract, native, or interface methods, or for methods
   963                 // in a retrofit signature class.
   964                 if (isDefaultMethod || ((owner.flags() & INTERFACE) == 0 &&
   965                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0) &&
   966                     !relax)
   967                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   968                 if (tree.defaultValue != null) {
   969                     if ((owner.flags() & ANNOTATION) == 0)
   970                         log.error(tree.pos(),
   971                                   "default.allowed.in.intf.annotation.member");
   972                 }
   973             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   974                 if ((owner.flags() & INTERFACE) != 0) {
   975                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   976                 } else {
   977                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   978                 }
   979             } else if ((tree.mods.flags & NATIVE) != 0) {
   980                 log.error(tree.pos(), "native.meth.cant.have.body");
   981             } else {
   982                 // Add an implicit super() call unless an explicit call to
   983                 // super(...) or this(...) is given
   984                 // or we are compiling class java.lang.Object.
   985                 if (tree.name == names.init && owner.type != syms.objectType) {
   986                     JCBlock body = tree.body;
   987                     if (body.stats.isEmpty() ||
   988                         !TreeInfo.isSelfCall(body.stats.head)) {
   989                         body.stats = body.stats.
   990                             prepend(memberEnter.SuperCall(make.at(body.pos),
   991                                                           List.<Type>nil(),
   992                                                           List.<JCVariableDecl>nil(),
   993                                                           false));
   994                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   995                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   996                                TreeInfo.isSuperCall(body.stats.head)) {
   997                         // enum constructors are not allowed to call super
   998                         // directly, so make sure there aren't any super calls
   999                         // in enum constructors, except in the compiler
  1000                         // generated one.
  1001                         log.error(tree.body.stats.head.pos(),
  1002                                   "call.to.super.not.allowed.in.enum.ctor",
  1003                                   env.enclClass.sym);
  1007                 // Attribute method body.
  1008                 attribStat(tree.body, localEnv);
  1010             localEnv.info.scope.leave();
  1011             result = tree.type = m.type;
  1012             chk.validateAnnotations(tree.mods.annotations, m);
  1014         finally {
  1015             chk.setLint(prevLint);
  1016             chk.setMethod(prevMethod);
  1020     public void visitVarDef(JCVariableDecl tree) {
  1021         // Local variables have not been entered yet, so we need to do it now:
  1022         if (env.info.scope.owner.kind == MTH) {
  1023             if (tree.sym != null) {
  1024                 // parameters have already been entered
  1025                 env.info.scope.enter(tree.sym);
  1026             } else {
  1027                 memberEnter.memberEnter(tree, env);
  1028                 annotate.flush();
  1032         VarSymbol v = tree.sym;
  1033         Lint lint = env.info.lint.augment(v.annotations, v.flags());
  1034         Lint prevLint = chk.setLint(lint);
  1036         // Check that the variable's declared type is well-formed.
  1037         chk.validate(tree.vartype, env);
  1038         deferredLintHandler.flush(tree.pos());
  1040         try {
  1041             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1043             if (tree.init != null) {
  1044                 if ((v.flags_field & FINAL) != 0 &&
  1045                         !tree.init.hasTag(NEWCLASS) &&
  1046                         !tree.init.hasTag(LAMBDA) &&
  1047                         !tree.init.hasTag(REFERENCE)) {
  1048                     // In this case, `v' is final.  Ensure that it's initializer is
  1049                     // evaluated.
  1050                     v.getConstValue(); // ensure initializer is evaluated
  1051                 } else {
  1052                     // Attribute initializer in a new environment
  1053                     // with the declared variable as owner.
  1054                     // Check that initializer conforms to variable's declared type.
  1055                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1056                     initEnv.info.lint = lint;
  1057                     // In order to catch self-references, we set the variable's
  1058                     // declaration position to maximal possible value, effectively
  1059                     // marking the variable as undefined.
  1060                     initEnv.info.enclVar = v;
  1061                     attribExpr(tree.init, initEnv, v.type);
  1064             result = tree.type = v.type;
  1065             chk.validateAnnotations(tree.mods.annotations, v);
  1067         finally {
  1068             chk.setLint(prevLint);
  1072     public void visitSkip(JCSkip tree) {
  1073         result = null;
  1076     public void visitBlock(JCBlock tree) {
  1077         if (env.info.scope.owner.kind == TYP) {
  1078             // Block is a static or instance initializer;
  1079             // let the owner of the environment be a freshly
  1080             // created BLOCK-method.
  1081             Env<AttrContext> localEnv =
  1082                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1083             localEnv.info.scope.owner =
  1084                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
  1085                                  env.info.scope.owner);
  1086             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1087             attribStats(tree.stats, localEnv);
  1088         } else {
  1089             // Create a new local environment with a local scope.
  1090             Env<AttrContext> localEnv =
  1091                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1092             try {
  1093                 attribStats(tree.stats, localEnv);
  1094             } finally {
  1095                 localEnv.info.scope.leave();
  1098         result = null;
  1101     public void visitDoLoop(JCDoWhileLoop tree) {
  1102         attribStat(tree.body, env.dup(tree));
  1103         attribExpr(tree.cond, env, syms.booleanType);
  1104         result = null;
  1107     public void visitWhileLoop(JCWhileLoop tree) {
  1108         attribExpr(tree.cond, env, syms.booleanType);
  1109         attribStat(tree.body, env.dup(tree));
  1110         result = null;
  1113     public void visitForLoop(JCForLoop tree) {
  1114         Env<AttrContext> loopEnv =
  1115             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1116         try {
  1117             attribStats(tree.init, loopEnv);
  1118             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1119             loopEnv.tree = tree; // before, we were not in loop!
  1120             attribStats(tree.step, loopEnv);
  1121             attribStat(tree.body, loopEnv);
  1122             result = null;
  1124         finally {
  1125             loopEnv.info.scope.leave();
  1129     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1130         Env<AttrContext> loopEnv =
  1131             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1132         try {
  1133             attribStat(tree.var, loopEnv);
  1134             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1135             chk.checkNonVoid(tree.pos(), exprType);
  1136             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1137             if (elemtype == null) {
  1138                 // or perhaps expr implements Iterable<T>?
  1139                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1140                 if (base == null) {
  1141                     log.error(tree.expr.pos(),
  1142                             "foreach.not.applicable.to.type",
  1143                             exprType,
  1144                             diags.fragment("type.req.array.or.iterable"));
  1145                     elemtype = types.createErrorType(exprType);
  1146                 } else {
  1147                     List<Type> iterableParams = base.allparams();
  1148                     elemtype = iterableParams.isEmpty()
  1149                         ? syms.objectType
  1150                         : types.upperBound(iterableParams.head);
  1153             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1154             loopEnv.tree = tree; // before, we were not in loop!
  1155             attribStat(tree.body, loopEnv);
  1156             result = null;
  1158         finally {
  1159             loopEnv.info.scope.leave();
  1163     public void visitLabelled(JCLabeledStatement tree) {
  1164         // Check that label is not used in an enclosing statement
  1165         Env<AttrContext> env1 = env;
  1166         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1167             if (env1.tree.hasTag(LABELLED) &&
  1168                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1169                 log.error(tree.pos(), "label.already.in.use",
  1170                           tree.label);
  1171                 break;
  1173             env1 = env1.next;
  1176         attribStat(tree.body, env.dup(tree));
  1177         result = null;
  1180     public void visitSwitch(JCSwitch tree) {
  1181         Type seltype = attribExpr(tree.selector, env);
  1183         Env<AttrContext> switchEnv =
  1184             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1186         try {
  1188             boolean enumSwitch =
  1189                 allowEnums &&
  1190                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1191             boolean stringSwitch = false;
  1192             if (types.isSameType(seltype, syms.stringType)) {
  1193                 if (allowStringsInSwitch) {
  1194                     stringSwitch = true;
  1195                 } else {
  1196                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1199             if (!enumSwitch && !stringSwitch)
  1200                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1202             // Attribute all cases and
  1203             // check that there are no duplicate case labels or default clauses.
  1204             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1205             boolean hasDefault = false;      // Is there a default label?
  1206             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1207                 JCCase c = l.head;
  1208                 Env<AttrContext> caseEnv =
  1209                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1210                 try {
  1211                     if (c.pat != null) {
  1212                         if (enumSwitch) {
  1213                             Symbol sym = enumConstant(c.pat, seltype);
  1214                             if (sym == null) {
  1215                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1216                             } else if (!labels.add(sym)) {
  1217                                 log.error(c.pos(), "duplicate.case.label");
  1219                         } else {
  1220                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1221                             if (!pattype.hasTag(ERROR)) {
  1222                                 if (pattype.constValue() == null) {
  1223                                     log.error(c.pat.pos(),
  1224                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1225                                 } else if (labels.contains(pattype.constValue())) {
  1226                                     log.error(c.pos(), "duplicate.case.label");
  1227                                 } else {
  1228                                     labels.add(pattype.constValue());
  1232                     } else if (hasDefault) {
  1233                         log.error(c.pos(), "duplicate.default.label");
  1234                     } else {
  1235                         hasDefault = true;
  1237                     attribStats(c.stats, caseEnv);
  1238                 } finally {
  1239                     caseEnv.info.scope.leave();
  1240                     addVars(c.stats, switchEnv.info.scope);
  1244             result = null;
  1246         finally {
  1247             switchEnv.info.scope.leave();
  1250     // where
  1251         /** Add any variables defined in stats to the switch scope. */
  1252         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1253             for (;stats.nonEmpty(); stats = stats.tail) {
  1254                 JCTree stat = stats.head;
  1255                 if (stat.hasTag(VARDEF))
  1256                     switchScope.enter(((JCVariableDecl) stat).sym);
  1259     // where
  1260     /** Return the selected enumeration constant symbol, or null. */
  1261     private Symbol enumConstant(JCTree tree, Type enumType) {
  1262         if (!tree.hasTag(IDENT)) {
  1263             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1264             return syms.errSymbol;
  1266         JCIdent ident = (JCIdent)tree;
  1267         Name name = ident.name;
  1268         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1269              e.scope != null; e = e.next()) {
  1270             if (e.sym.kind == VAR) {
  1271                 Symbol s = ident.sym = e.sym;
  1272                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1273                 ident.type = s.type;
  1274                 return ((s.flags_field & Flags.ENUM) == 0)
  1275                     ? null : s;
  1278         return null;
  1281     public void visitSynchronized(JCSynchronized tree) {
  1282         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1283         attribStat(tree.body, env);
  1284         result = null;
  1287     public void visitTry(JCTry tree) {
  1288         // Create a new local environment with a local
  1289         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1290         try {
  1291             boolean isTryWithResource = tree.resources.nonEmpty();
  1292             // Create a nested environment for attributing the try block if needed
  1293             Env<AttrContext> tryEnv = isTryWithResource ?
  1294                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1295                 localEnv;
  1296             try {
  1297                 // Attribute resource declarations
  1298                 for (JCTree resource : tree.resources) {
  1299                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1300                         @Override
  1301                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1302                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1304                     };
  1305                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1306                     if (resource.hasTag(VARDEF)) {
  1307                         attribStat(resource, tryEnv);
  1308                         twrResult.check(resource, resource.type);
  1310                         //check that resource type cannot throw InterruptedException
  1311                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1313                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1314                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1315                     } else {
  1316                         attribTree(resource, tryEnv, twrResult);
  1319                 // Attribute body
  1320                 attribStat(tree.body, tryEnv);
  1321             } finally {
  1322                 if (isTryWithResource)
  1323                     tryEnv.info.scope.leave();
  1326             // Attribute catch clauses
  1327             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1328                 JCCatch c = l.head;
  1329                 Env<AttrContext> catchEnv =
  1330                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1331                 try {
  1332                     Type ctype = attribStat(c.param, catchEnv);
  1333                     if (TreeInfo.isMultiCatch(c)) {
  1334                         //multi-catch parameter is implicitly marked as final
  1335                         c.param.sym.flags_field |= FINAL | UNION;
  1337                     if (c.param.sym.kind == Kinds.VAR) {
  1338                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1340                     chk.checkType(c.param.vartype.pos(),
  1341                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1342                                   syms.throwableType);
  1343                     attribStat(c.body, catchEnv);
  1344                 } finally {
  1345                     catchEnv.info.scope.leave();
  1349             // Attribute finalizer
  1350             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1351             result = null;
  1353         finally {
  1354             localEnv.info.scope.leave();
  1358     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1359         if (!resource.isErroneous() &&
  1360             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1361             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1362             Symbol close = syms.noSymbol;
  1363             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1364             try {
  1365                 close = rs.resolveQualifiedMethod(pos,
  1366                         env,
  1367                         resource,
  1368                         names.close,
  1369                         List.<Type>nil(),
  1370                         List.<Type>nil());
  1372             finally {
  1373                 log.popDiagnosticHandler(discardHandler);
  1375             if (close.kind == MTH &&
  1376                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1377                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1378                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1379                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1384     public void visitConditional(JCConditional tree) {
  1385         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1387         boolean standaloneConditional = !allowPoly ||
  1388                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1389                 isBooleanOrNumeric(env, tree);
  1391         if (!standaloneConditional && resultInfo.pt.hasTag(VOID)) {
  1392             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1393             result = tree.type = types.createErrorType(resultInfo.pt);
  1394             return;
  1397         ResultInfo condInfo = standaloneConditional ?
  1398                 unknownExprInfo :
  1399                 new ResultInfo(VAL, pt(), new Check.NestedCheckContext(resultInfo.checkContext) {
  1400                     //this will use enclosing check context to check compatibility of
  1401                     //subexpression against target type; if we are in a method check context,
  1402                     //depending on whether boxing is allowed, we could have incompatibilities
  1403                     @Override
  1404                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1405                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1407                 });
  1409         Type truetype = attribTree(tree.truepart, env, condInfo);
  1410         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1412         Type owntype = standaloneConditional ? condType(tree, truetype, falsetype) : pt();
  1413         if (condtype.constValue() != null &&
  1414                 truetype.constValue() != null &&
  1415                 falsetype.constValue() != null) {
  1416             //constant folding
  1417             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1419         result = check(tree, owntype, VAL, resultInfo);
  1421     //where
  1422         @SuppressWarnings("fallthrough")
  1423         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1424             switch (tree.getTag()) {
  1425                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1426                               ((JCLiteral)tree).typetag == BOOLEAN;
  1427                 case LAMBDA: case REFERENCE: return false;
  1428                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1429                 case CONDEXPR:
  1430                     JCConditional condTree = (JCConditional)tree;
  1431                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1432                             isBooleanOrNumeric(env, condTree.falsepart);
  1433                 default:
  1434                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1435                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1436                     return speculativeType.isPrimitive();
  1440         /** Compute the type of a conditional expression, after
  1441          *  checking that it exists.  See JLS 15.25. Does not take into
  1442          *  account the special case where condition and both arms
  1443          *  are constants.
  1445          *  @param pos      The source position to be used for error
  1446          *                  diagnostics.
  1447          *  @param thentype The type of the expression's then-part.
  1448          *  @param elsetype The type of the expression's else-part.
  1449          */
  1450         private Type condType(DiagnosticPosition pos,
  1451                                Type thentype, Type elsetype) {
  1452             // If same type, that is the result
  1453             if (types.isSameType(thentype, elsetype))
  1454                 return thentype.baseType();
  1456             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1457                 ? thentype : types.unboxedType(thentype);
  1458             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1459                 ? elsetype : types.unboxedType(elsetype);
  1461             // Otherwise, if both arms can be converted to a numeric
  1462             // type, return the least numeric type that fits both arms
  1463             // (i.e. return larger of the two, or return int if one
  1464             // arm is short, the other is char).
  1465             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1466                 // If one arm has an integer subrange type (i.e., byte,
  1467                 // short, or char), and the other is an integer constant
  1468                 // that fits into the subrange, return the subrange type.
  1469                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) &&
  1470                     types.isAssignable(elseUnboxed, thenUnboxed))
  1471                     return thenUnboxed.baseType();
  1472                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) &&
  1473                     types.isAssignable(thenUnboxed, elseUnboxed))
  1474                     return elseUnboxed.baseType();
  1476                 for (TypeTag tag : TypeTag.values()) {
  1477                     if (tag.ordinal() >= TypeTag.getTypeTagCount()) break;
  1478                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1479                     if (candidate != null &&
  1480                         candidate.isPrimitive() &&
  1481                         types.isSubtype(thenUnboxed, candidate) &&
  1482                         types.isSubtype(elseUnboxed, candidate))
  1483                         return candidate;
  1487             // Those were all the cases that could result in a primitive
  1488             if (allowBoxing) {
  1489                 if (thentype.isPrimitive())
  1490                     thentype = types.boxedClass(thentype).type;
  1491                 if (elsetype.isPrimitive())
  1492                     elsetype = types.boxedClass(elsetype).type;
  1495             if (types.isSubtype(thentype, elsetype))
  1496                 return elsetype.baseType();
  1497             if (types.isSubtype(elsetype, thentype))
  1498                 return thentype.baseType();
  1500             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1501                 log.error(pos, "neither.conditional.subtype",
  1502                           thentype, elsetype);
  1503                 return thentype.baseType();
  1506             // both are known to be reference types.  The result is
  1507             // lub(thentype,elsetype). This cannot fail, as it will
  1508             // always be possible to infer "Object" if nothing better.
  1509             return types.lub(thentype.baseType(), elsetype.baseType());
  1512     public void visitIf(JCIf tree) {
  1513         attribExpr(tree.cond, env, syms.booleanType);
  1514         attribStat(tree.thenpart, env);
  1515         if (tree.elsepart != null)
  1516             attribStat(tree.elsepart, env);
  1517         chk.checkEmptyIf(tree);
  1518         result = null;
  1521     public void visitExec(JCExpressionStatement tree) {
  1522         //a fresh environment is required for 292 inference to work properly ---
  1523         //see Infer.instantiatePolymorphicSignatureInstance()
  1524         Env<AttrContext> localEnv = env.dup(tree);
  1525         attribExpr(tree.expr, localEnv);
  1526         result = null;
  1529     public void visitBreak(JCBreak tree) {
  1530         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1531         result = null;
  1534     public void visitContinue(JCContinue tree) {
  1535         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1536         result = null;
  1538     //where
  1539         /** Return the target of a break or continue statement, if it exists,
  1540          *  report an error if not.
  1541          *  Note: The target of a labelled break or continue is the
  1542          *  (non-labelled) statement tree referred to by the label,
  1543          *  not the tree representing the labelled statement itself.
  1545          *  @param pos     The position to be used for error diagnostics
  1546          *  @param tag     The tag of the jump statement. This is either
  1547          *                 Tree.BREAK or Tree.CONTINUE.
  1548          *  @param label   The label of the jump statement, or null if no
  1549          *                 label is given.
  1550          *  @param env     The environment current at the jump statement.
  1551          */
  1552         private JCTree findJumpTarget(DiagnosticPosition pos,
  1553                                     JCTree.Tag tag,
  1554                                     Name label,
  1555                                     Env<AttrContext> env) {
  1556             // Search environments outwards from the point of jump.
  1557             Env<AttrContext> env1 = env;
  1558             LOOP:
  1559             while (env1 != null) {
  1560                 switch (env1.tree.getTag()) {
  1561                     case LABELLED:
  1562                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1563                         if (label == labelled.label) {
  1564                             // If jump is a continue, check that target is a loop.
  1565                             if (tag == CONTINUE) {
  1566                                 if (!labelled.body.hasTag(DOLOOP) &&
  1567                                         !labelled.body.hasTag(WHILELOOP) &&
  1568                                         !labelled.body.hasTag(FORLOOP) &&
  1569                                         !labelled.body.hasTag(FOREACHLOOP))
  1570                                     log.error(pos, "not.loop.label", label);
  1571                                 // Found labelled statement target, now go inwards
  1572                                 // to next non-labelled tree.
  1573                                 return TreeInfo.referencedStatement(labelled);
  1574                             } else {
  1575                                 return labelled;
  1578                         break;
  1579                     case DOLOOP:
  1580                     case WHILELOOP:
  1581                     case FORLOOP:
  1582                     case FOREACHLOOP:
  1583                         if (label == null) return env1.tree;
  1584                         break;
  1585                     case SWITCH:
  1586                         if (label == null && tag == BREAK) return env1.tree;
  1587                         break;
  1588                     case LAMBDA:
  1589                     case METHODDEF:
  1590                     case CLASSDEF:
  1591                         break LOOP;
  1592                     default:
  1594                 env1 = env1.next;
  1596             if (label != null)
  1597                 log.error(pos, "undef.label", label);
  1598             else if (tag == CONTINUE)
  1599                 log.error(pos, "cont.outside.loop");
  1600             else
  1601                 log.error(pos, "break.outside.switch.loop");
  1602             return null;
  1605     public void visitReturn(JCReturn tree) {
  1606         // Check that there is an enclosing method which is
  1607         // nested within than the enclosing class.
  1608         if (env.info.returnResult == null) {
  1609             log.error(tree.pos(), "ret.outside.meth");
  1610         } else {
  1611             // Attribute return expression, if it exists, and check that
  1612             // it conforms to result type of enclosing method.
  1613             if (tree.expr != null) {
  1614                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1615                     log.error(tree.expr.pos(),
  1616                               "cant.ret.val.from.meth.decl.void");
  1618                 attribTree(tree.expr, env, env.info.returnResult);
  1619             } else if (!env.info.returnResult.pt.hasTag(VOID)) {
  1620                 log.error(tree.pos(), "missing.ret.val");
  1623         result = null;
  1626     public void visitThrow(JCThrow tree) {
  1627         attribExpr(tree.expr, env, syms.throwableType);
  1628         result = null;
  1631     public void visitAssert(JCAssert tree) {
  1632         attribExpr(tree.cond, env, syms.booleanType);
  1633         if (tree.detail != null) {
  1634             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1636         result = null;
  1639      /** Visitor method for method invocations.
  1640      *  NOTE: The method part of an application will have in its type field
  1641      *        the return type of the method, not the method's type itself!
  1642      */
  1643     public void visitApply(JCMethodInvocation tree) {
  1644         // The local environment of a method application is
  1645         // a new environment nested in the current one.
  1646         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1648         // The types of the actual method arguments.
  1649         List<Type> argtypes;
  1651         // The types of the actual method type arguments.
  1652         List<Type> typeargtypes = null;
  1654         Name methName = TreeInfo.name(tree.meth);
  1656         boolean isConstructorCall =
  1657             methName == names._this || methName == names._super;
  1659         if (isConstructorCall) {
  1660             // We are seeing a ...this(...) or ...super(...) call.
  1661             // Check that this is the first statement in a constructor.
  1662             if (checkFirstConstructorStat(tree, env)) {
  1664                 // Record the fact
  1665                 // that this is a constructor call (using isSelfCall).
  1666                 localEnv.info.isSelfCall = true;
  1668                 // Attribute arguments, yielding list of argument types.
  1669                 argtypes = attribArgs(tree.args, localEnv);
  1670                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1672                 // Variable `site' points to the class in which the called
  1673                 // constructor is defined.
  1674                 Type site = env.enclClass.sym.type;
  1675                 if (methName == names._super) {
  1676                     if (site == syms.objectType) {
  1677                         log.error(tree.meth.pos(), "no.superclass", site);
  1678                         site = types.createErrorType(syms.objectType);
  1679                     } else {
  1680                         site = types.supertype(site);
  1684                 if (site.hasTag(CLASS)) {
  1685                     Type encl = site.getEnclosingType();
  1686                     while (encl != null && encl.hasTag(TYPEVAR))
  1687                         encl = encl.getUpperBound();
  1688                     if (encl.hasTag(CLASS)) {
  1689                         // we are calling a nested class
  1691                         if (tree.meth.hasTag(SELECT)) {
  1692                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1694                             // We are seeing a prefixed call, of the form
  1695                             //     <expr>.super(...).
  1696                             // Check that the prefix expression conforms
  1697                             // to the outer instance type of the class.
  1698                             chk.checkRefType(qualifier.pos(),
  1699                                              attribExpr(qualifier, localEnv,
  1700                                                         encl));
  1701                         } else if (methName == names._super) {
  1702                             // qualifier omitted; check for existence
  1703                             // of an appropriate implicit qualifier.
  1704                             rs.resolveImplicitThis(tree.meth.pos(),
  1705                                                    localEnv, site, true);
  1707                     } else if (tree.meth.hasTag(SELECT)) {
  1708                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1709                                   site.tsym);
  1712                     // if we're calling a java.lang.Enum constructor,
  1713                     // prefix the implicit String and int parameters
  1714                     if (site.tsym == syms.enumSym && allowEnums)
  1715                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1717                     // Resolve the called constructor under the assumption
  1718                     // that we are referring to a superclass instance of the
  1719                     // current instance (JLS ???).
  1720                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1721                     localEnv.info.selectSuper = true;
  1722                     localEnv.info.pendingResolutionPhase = null;
  1723                     Symbol sym = rs.resolveConstructor(
  1724                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1725                     localEnv.info.selectSuper = selectSuperPrev;
  1727                     // Set method symbol to resolved constructor...
  1728                     TreeInfo.setSymbol(tree.meth, sym);
  1730                     // ...and check that it is legal in the current context.
  1731                     // (this will also set the tree's type)
  1732                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1733                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1735                 // Otherwise, `site' is an error type and we do nothing
  1737             result = tree.type = syms.voidType;
  1738         } else {
  1739             // Otherwise, we are seeing a regular method call.
  1740             // Attribute the arguments, yielding list of argument types, ...
  1741             argtypes = attribArgs(tree.args, localEnv);
  1742             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1744             // ... and attribute the method using as a prototype a methodtype
  1745             // whose formal argument types is exactly the list of actual
  1746             // arguments (this will also set the method symbol).
  1747             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1748             localEnv.info.pendingResolutionPhase = null;
  1749             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
  1751             // Compute the result type.
  1752             Type restype = mtype.getReturnType();
  1753             if (restype.hasTag(WILDCARD))
  1754                 throw new AssertionError(mtype);
  1756             Type qualifier = (tree.meth.hasTag(SELECT))
  1757                     ? ((JCFieldAccess) tree.meth).selected.type
  1758                     : env.enclClass.sym.type;
  1759             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1761             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1763             // Check that value of resulting type is admissible in the
  1764             // current context.  Also, capture the return type
  1765             result = check(tree, capture(restype), VAL, resultInfo);
  1767             if (localEnv.info.lastResolveVarargs())
  1768                 Assert.check(result.isErroneous() || tree.varargsElement != null);
  1770         chk.validate(tree.typeargs, localEnv);
  1772     //where
  1773         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1774             if (allowCovariantReturns &&
  1775                     methodName == names.clone &&
  1776                 types.isArray(qualifierType)) {
  1777                 // as a special case, array.clone() has a result that is
  1778                 // the same as static type of the array being cloned
  1779                 return qualifierType;
  1780             } else if (allowGenerics &&
  1781                     methodName == names.getClass &&
  1782                     argtypes.isEmpty()) {
  1783                 // as a special case, x.getClass() has type Class<? extends |X|>
  1784                 return new ClassType(restype.getEnclosingType(),
  1785                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1786                                                                BoundKind.EXTENDS,
  1787                                                                syms.boundClass)),
  1788                               restype.tsym);
  1789             } else {
  1790                 return restype;
  1794         /** Check that given application node appears as first statement
  1795          *  in a constructor call.
  1796          *  @param tree   The application node
  1797          *  @param env    The environment current at the application.
  1798          */
  1799         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1800             JCMethodDecl enclMethod = env.enclMethod;
  1801             if (enclMethod != null && enclMethod.name == names.init) {
  1802                 JCBlock body = enclMethod.body;
  1803                 if (body.stats.head.hasTag(EXEC) &&
  1804                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1805                     return true;
  1807             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1808                       TreeInfo.name(tree.meth));
  1809             return false;
  1812         /** Obtain a method type with given argument types.
  1813          */
  1814         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1815             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1816             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1819     public void visitNewClass(final JCNewClass tree) {
  1820         Type owntype = types.createErrorType(tree.type);
  1822         // The local environment of a class creation is
  1823         // a new environment nested in the current one.
  1824         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1826         // The anonymous inner class definition of the new expression,
  1827         // if one is defined by it.
  1828         JCClassDecl cdef = tree.def;
  1830         // If enclosing class is given, attribute it, and
  1831         // complete class name to be fully qualified
  1832         JCExpression clazz = tree.clazz; // Class field following new
  1833         JCExpression clazzid =          // Identifier in class field
  1834             (clazz.hasTag(TYPEAPPLY))
  1835             ? ((JCTypeApply) clazz).clazz
  1836             : clazz;
  1838         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1840         if (tree.encl != null) {
  1841             // We are seeing a qualified new, of the form
  1842             //    <expr>.new C <...> (...) ...
  1843             // In this case, we let clazz stand for the name of the
  1844             // allocated class C prefixed with the type of the qualifier
  1845             // expression, so that we can
  1846             // resolve it with standard techniques later. I.e., if
  1847             // <expr> has type T, then <expr>.new C <...> (...)
  1848             // yields a clazz T.C.
  1849             Type encltype = chk.checkRefType(tree.encl.pos(),
  1850                                              attribExpr(tree.encl, env));
  1851             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1852                                                  ((JCIdent) clazzid).name);
  1853             if (clazz.hasTag(TYPEAPPLY))
  1854                 clazz = make.at(tree.pos).
  1855                     TypeApply(clazzid1,
  1856                               ((JCTypeApply) clazz).arguments);
  1857             else
  1858                 clazz = clazzid1;
  1861         // Attribute clazz expression and store
  1862         // symbol + type back into the attributed tree.
  1863         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1864             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1865             attribType(clazz, env);
  1867         clazztype = chk.checkDiamond(tree, clazztype);
  1868         chk.validate(clazz, localEnv);
  1869         if (tree.encl != null) {
  1870             // We have to work in this case to store
  1871             // symbol + type back into the attributed tree.
  1872             tree.clazz.type = clazztype;
  1873             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1874             clazzid.type = ((JCIdent) clazzid).sym.type;
  1875             if (!clazztype.isErroneous()) {
  1876                 if (cdef != null && clazztype.tsym.isInterface()) {
  1877                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1878                 } else if (clazztype.tsym.isStatic()) {
  1879                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1882         } else if (!clazztype.tsym.isInterface() &&
  1883                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1884             // Check for the existence of an apropos outer instance
  1885             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1888         // Attribute constructor arguments.
  1889         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1890         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1892         // If we have made no mistakes in the class type...
  1893         if (clazztype.hasTag(CLASS)) {
  1894             // Enums may not be instantiated except implicitly
  1895             if (allowEnums &&
  1896                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1897                 (!env.tree.hasTag(VARDEF) ||
  1898                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1899                  ((JCVariableDecl) env.tree).init != tree))
  1900                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1901             // Check that class is not abstract
  1902             if (cdef == null &&
  1903                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1904                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1905                           clazztype.tsym);
  1906             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1907                 // Check that no constructor arguments are given to
  1908                 // anonymous classes implementing an interface
  1909                 if (!argtypes.isEmpty())
  1910                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1912                 if (!typeargtypes.isEmpty())
  1913                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1915                 // Error recovery: pretend no arguments were supplied.
  1916                 argtypes = List.nil();
  1917                 typeargtypes = List.nil();
  1918             } else if (TreeInfo.isDiamond(tree)) {
  1919                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  1920                             clazztype.tsym.type.getTypeArguments(),
  1921                             clazztype.tsym);
  1923                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  1924                 diamondEnv.info.selectSuper = cdef != null;
  1925                 diamondEnv.info.pendingResolutionPhase = null;
  1927                 //if the type of the instance creation expression is a class type
  1928                 //apply method resolution inference (JLS 15.12.2.7). The return type
  1929                 //of the resolved constructor will be a partially instantiated type
  1930                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  1931                             diamondEnv,
  1932                             site,
  1933                             argtypes,
  1934                             typeargtypes);
  1935                 tree.constructor = constructor.baseSymbol();
  1937                 final TypeSymbol csym = clazztype.tsym;
  1938                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  1939                     @Override
  1940                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  1941                         enclosingContext.report(tree.clazz,
  1942                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  1944                 });
  1945                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  1946                 constructorType = checkId(tree, site,
  1947                         constructor,
  1948                         diamondEnv,
  1949                         diamondResult);
  1951                 tree.clazz.type = types.createErrorType(clazztype);
  1952                 if (!constructorType.isErroneous()) {
  1953                     tree.clazz.type = clazztype = constructorType.getReturnType();
  1954                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  1956                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  1959             // Resolve the called constructor under the assumption
  1960             // that we are referring to a superclass instance of the
  1961             // current instance (JLS ???).
  1962             else {
  1963                 //the following code alters some of the fields in the current
  1964                 //AttrContext - hence, the current context must be dup'ed in
  1965                 //order to avoid downstream failures
  1966                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  1967                 rsEnv.info.selectSuper = cdef != null;
  1968                 rsEnv.info.pendingResolutionPhase = null;
  1969                 tree.constructor = rs.resolveConstructor(
  1970                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  1971                 if (cdef == null) { //do not check twice!
  1972                     tree.constructorType = checkId(tree,
  1973                             clazztype,
  1974                             tree.constructor,
  1975                             rsEnv,
  1976                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  1977                     if (rsEnv.info.lastResolveVarargs())
  1978                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  1980                 findDiamondIfNeeded(localEnv, tree, clazztype);
  1983             if (cdef != null) {
  1984                 // We are seeing an anonymous class instance creation.
  1985                 // In this case, the class instance creation
  1986                 // expression
  1987                 //
  1988                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1989                 //
  1990                 // is represented internally as
  1991                 //
  1992                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1993                 //
  1994                 // This expression is then *transformed* as follows:
  1995                 //
  1996                 // (1) add a STATIC flag to the class definition
  1997                 //     if the current environment is static
  1998                 // (2) add an extends or implements clause
  1999                 // (3) add a constructor.
  2000                 //
  2001                 // For instance, if C is a class, and ET is the type of E,
  2002                 // the expression
  2003                 //
  2004                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2005                 //
  2006                 // is translated to (where X is a fresh name and typarams is the
  2007                 // parameter list of the super constructor):
  2008                 //
  2009                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2010                 //     X extends C<typargs2> {
  2011                 //       <typarams> X(ET e, args) {
  2012                 //         e.<typeargs1>super(args)
  2013                 //       }
  2014                 //       ...
  2015                 //     }
  2016                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2018                 if (clazztype.tsym.isInterface()) {
  2019                     cdef.implementing = List.of(clazz);
  2020                 } else {
  2021                     cdef.extending = clazz;
  2024                 attribStat(cdef, localEnv);
  2026                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2028                 // If an outer instance is given,
  2029                 // prefix it to the constructor arguments
  2030                 // and delete it from the new expression
  2031                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2032                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2033                     argtypes = argtypes.prepend(tree.encl.type);
  2034                     tree.encl = null;
  2037                 // Reassign clazztype and recompute constructor.
  2038                 clazztype = cdef.sym.type;
  2039                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2040                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2041                 Assert.check(sym.kind < AMBIGUOUS);
  2042                 tree.constructor = sym;
  2043                 tree.constructorType = checkId(tree,
  2044                     clazztype,
  2045                     tree.constructor,
  2046                     localEnv,
  2047                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2050             if (tree.constructor != null && tree.constructor.kind == MTH)
  2051                 owntype = clazztype;
  2053         result = check(tree, owntype, VAL, resultInfo);
  2054         chk.validate(tree.typeargs, localEnv);
  2056     //where
  2057         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2058             if (tree.def == null &&
  2059                     !clazztype.isErroneous() &&
  2060                     clazztype.getTypeArguments().nonEmpty() &&
  2061                     findDiamonds) {
  2062                 JCTypeApply ta = (JCTypeApply)tree.clazz;
  2063                 List<JCExpression> prevTypeargs = ta.arguments;
  2064                 try {
  2065                     //create a 'fake' diamond AST node by removing type-argument trees
  2066                     ta.arguments = List.nil();
  2067                     ResultInfo findDiamondResult = new ResultInfo(VAL,
  2068                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2069                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2070                     if (!inferred.isErroneous() &&
  2071                         types.isAssignable(inferred, pt().hasTag(NONE) ? syms.objectType : pt(), Warner.noWarnings)) {
  2072                         String key = types.isSameType(clazztype, inferred) ?
  2073                             "diamond.redundant.args" :
  2074                             "diamond.redundant.args.1";
  2075                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2077                 } finally {
  2078                     ta.arguments = prevTypeargs;
  2083             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2084                 if (allowLambda &&
  2085                         identifyLambdaCandidate &&
  2086                         clazztype.hasTag(CLASS) &&
  2087                         !pt().hasTag(NONE) &&
  2088                         types.isFunctionalInterface(clazztype.tsym)) {
  2089                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2090                     int count = 0;
  2091                     boolean found = false;
  2092                     for (Symbol sym : csym.members().getElements()) {
  2093                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2094                                 sym.isConstructor()) continue;
  2095                         count++;
  2096                         if (sym.kind != MTH ||
  2097                                 !sym.name.equals(descriptor.name)) continue;
  2098                         Type mtype = types.memberType(clazztype, sym);
  2099                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2100                             found = true;
  2103                     if (found && count == 1) {
  2104                         log.note(tree.def, "potential.lambda.found");
  2109     /** Make an attributed null check tree.
  2110      */
  2111     public JCExpression makeNullCheck(JCExpression arg) {
  2112         // optimization: X.this is never null; skip null check
  2113         Name name = TreeInfo.name(arg);
  2114         if (name == names._this || name == names._super) return arg;
  2116         JCTree.Tag optag = NULLCHK;
  2117         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2118         tree.operator = syms.nullcheck;
  2119         tree.type = arg.type;
  2120         return tree;
  2123     public void visitNewArray(JCNewArray tree) {
  2124         Type owntype = types.createErrorType(tree.type);
  2125         Env<AttrContext> localEnv = env.dup(tree);
  2126         Type elemtype;
  2127         if (tree.elemtype != null) {
  2128             elemtype = attribType(tree.elemtype, localEnv);
  2129             chk.validate(tree.elemtype, localEnv);
  2130             owntype = elemtype;
  2131             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2132                 attribExpr(l.head, localEnv, syms.intType);
  2133                 owntype = new ArrayType(owntype, syms.arrayClass);
  2135         } else {
  2136             // we are seeing an untyped aggregate { ... }
  2137             // this is allowed only if the prototype is an array
  2138             if (pt().hasTag(ARRAY)) {
  2139                 elemtype = types.elemtype(pt());
  2140             } else {
  2141                 if (!pt().hasTag(ERROR)) {
  2142                     log.error(tree.pos(), "illegal.initializer.for.type",
  2143                               pt());
  2145                 elemtype = types.createErrorType(pt());
  2148         if (tree.elems != null) {
  2149             attribExprs(tree.elems, localEnv, elemtype);
  2150             owntype = new ArrayType(elemtype, syms.arrayClass);
  2152         if (!types.isReifiable(elemtype))
  2153             log.error(tree.pos(), "generic.array.creation");
  2154         result = check(tree, owntype, VAL, resultInfo);
  2157     /*
  2158      * A lambda expression can only be attributed when a target-type is available.
  2159      * In addition, if the target-type is that of a functional interface whose
  2160      * descriptor contains inference variables in argument position the lambda expression
  2161      * is 'stuck' (see DeferredAttr).
  2162      */
  2163     @Override
  2164     public void visitLambda(final JCLambda that) {
  2165         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2166             if (pt().hasTag(NONE)) {
  2167                 //lambda only allowed in assignment or method invocation/cast context
  2168                 log.error(that.pos(), "unexpected.lambda");
  2170             result = that.type = types.createErrorType(pt());
  2171             return;
  2173         //create an environment for attribution of the lambda expression
  2174         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2175         boolean needsRecovery = resultInfo.checkContext.deferredAttrContext() == deferredAttr.emptyDeferredAttrContext ||
  2176                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2177         try {
  2178             List<Type> explicitParamTypes = null;
  2179             if (TreeInfo.isExplicitLambda(that)) {
  2180                 //attribute lambda parameters
  2181                 attribStats(that.params, localEnv);
  2182                 explicitParamTypes = TreeInfo.types(that.params);
  2185             Type target = infer.instantiateFunctionalInterface(that, pt(), explicitParamTypes, resultInfo.checkContext);
  2186             Type lambdaType = (target == Type.recoveryType) ?
  2187                     fallbackDescriptorType(that) :
  2188                     types.findDescriptorType(target);
  2190             if (!TreeInfo.isExplicitLambda(that)) {
  2191                 //add param type info in the AST
  2192                 List<Type> actuals = lambdaType.getParameterTypes();
  2193                 List<JCVariableDecl> params = that.params;
  2195                 boolean arityMismatch = false;
  2197                 while (params.nonEmpty()) {
  2198                     if (actuals.isEmpty()) {
  2199                         //not enough actuals to perform lambda parameter inference
  2200                         arityMismatch = true;
  2202                     //reset previously set info
  2203                     Type argType = arityMismatch ?
  2204                             syms.errType :
  2205                             actuals.head;
  2206                     params.head.vartype = make.Type(argType);
  2207                     params.head.sym = null;
  2208                     actuals = actuals.isEmpty() ?
  2209                             actuals :
  2210                             actuals.tail;
  2211                     params = params.tail;
  2214                 //attribute lambda parameters
  2215                 attribStats(that.params, localEnv);
  2217                 if (arityMismatch) {
  2218                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2219                         result = that.type = types.createErrorType(target);
  2220                         return;
  2224             //from this point on, no recovery is needed; if we are in assignment context
  2225             //we will be able to attribute the whole lambda body, regardless of errors;
  2226             //if we are in a 'check' method context, and the lambda is not compatible
  2227             //with the target-type, it will be recovered anyway in Attr.checkId
  2228             needsRecovery = false;
  2230             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2231                 recoveryInfo :
  2232                 new ResultInfo(VAL, lambdaType.getReturnType(), new LambdaReturnContext(resultInfo.checkContext));
  2233             localEnv.info.returnResult = bodyResultInfo;
  2235             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2236                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2237             } else {
  2238                 JCBlock body = (JCBlock)that.body;
  2239                 attribStats(body.stats, localEnv);
  2242             result = check(that, target, VAL, resultInfo);
  2244             boolean isSpeculativeRound =
  2245                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2247             postAttr(that);
  2248             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2250             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
  2252             if (!isSpeculativeRound) {
  2253                 checkAccessibleFunctionalDescriptor(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType);
  2255             result = check(that, target, VAL, resultInfo);
  2256         } catch (Types.FunctionDescriptorLookupError ex) {
  2257             JCDiagnostic cause = ex.getDiagnostic();
  2258             resultInfo.checkContext.report(that, cause);
  2259             result = that.type = types.createErrorType(pt());
  2260             return;
  2261         } finally {
  2262             localEnv.info.scope.leave();
  2263             if (needsRecovery) {
  2264                 attribTree(that, env, recoveryInfo);
  2268     //where
  2269         private Type fallbackDescriptorType(JCExpression tree) {
  2270             switch (tree.getTag()) {
  2271                 case LAMBDA:
  2272                     JCLambda lambda = (JCLambda)tree;
  2273                     List<Type> argtypes = List.nil();
  2274                     for (JCVariableDecl param : lambda.params) {
  2275                         argtypes = param.vartype != null ?
  2276                                 argtypes.append(param.vartype.type) :
  2277                                 argtypes.append(syms.errType);
  2279                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2280                 case REFERENCE:
  2281                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2282                 default:
  2283                     Assert.error("Cannot get here!");
  2285             return null;
  2288         private void checkAccessibleFunctionalDescriptor(final DiagnosticPosition pos,
  2289                 final Env<AttrContext> env, final InferenceContext inferenceContext, final Type desc) {
  2290             if (inferenceContext.free(desc)) {
  2291                 inferenceContext.addFreeTypeListener(List.of(desc), new FreeTypeListener() {
  2292                     @Override
  2293                     public void typesInferred(InferenceContext inferenceContext) {
  2294                         checkAccessibleFunctionalDescriptor(pos, env, inferenceContext, inferenceContext.asInstType(desc, types));
  2296                 });
  2297             } else {
  2298                 chk.checkAccessibleFunctionalDescriptor(pos, env, desc);
  2302         /**
  2303          * Lambda/method reference have a special check context that ensures
  2304          * that i.e. a lambda return type is compatible with the expected
  2305          * type according to both the inherited context and the assignment
  2306          * context.
  2307          */
  2308         class LambdaReturnContext extends Check.NestedCheckContext {
  2309             public LambdaReturnContext(CheckContext enclosingContext) {
  2310                 super(enclosingContext);
  2313             @Override
  2314             public boolean compatible(Type found, Type req, Warner warn) {
  2315                 //return type must be compatible in both current context and assignment context
  2316                 return types.isAssignable(found, inferenceContext().asFree(req, types), warn) &&
  2317                         super.compatible(found, req, warn);
  2319             @Override
  2320             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2321                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2325         /**
  2326         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2327         * are compatible with the expected functional interface descriptor. This means that:
  2328         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2329         * types must be compatible with the return type of the expected descriptor;
  2330         * (iii) thrown types must be 'included' in the thrown types list of the expected
  2331         * descriptor.
  2332         */
  2333         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
  2334             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2336             //return values have already been checked - but if lambda has no return
  2337             //values, we must ensure that void/value compatibility is correct;
  2338             //this amounts at checking that, if a lambda body can complete normally,
  2339             //the descriptor's return type must be void
  2340             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2341                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2342                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2343                         diags.fragment("missing.ret.val", returnType)));
  2346             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes(), types);
  2347             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2348                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2351             if (!speculativeAttr) {
  2352                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2353                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
  2354                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
  2359         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2360             Env<AttrContext> lambdaEnv;
  2361             Symbol owner = env.info.scope.owner;
  2362             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2363                 //field initializer
  2364                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2365                 lambdaEnv.info.scope.owner =
  2366                     new MethodSymbol(0, names.empty, null,
  2367                                      env.info.scope.owner);
  2368             } else {
  2369                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2371             return lambdaEnv;
  2374     @Override
  2375     public void visitReference(final JCMemberReference that) {
  2376         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2377             if (pt().hasTag(NONE)) {
  2378                 //method reference only allowed in assignment or method invocation/cast context
  2379                 log.error(that.pos(), "unexpected.mref");
  2381             result = that.type = types.createErrorType(pt());
  2382             return;
  2384         final Env<AttrContext> localEnv = env.dup(that);
  2385         try {
  2386             //attribute member reference qualifier - if this is a constructor
  2387             //reference, the expected kind must be a type
  2388             Type exprType = attribTree(that.expr,
  2389                     env, new ResultInfo(that.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType));
  2391             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2392                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2395             if (exprType.isErroneous()) {
  2396                 //if the qualifier expression contains problems,
  2397                 //give up atttribution of method reference
  2398                 result = that.type = exprType;
  2399                 return;
  2402             if (TreeInfo.isStaticSelector(that.expr, names) &&
  2403                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
  2404                 //if the qualifier is a type, validate it
  2405                 chk.validate(that.expr, env);
  2408             //attrib type-arguments
  2409             List<Type> typeargtypes = null;
  2410             if (that.typeargs != null) {
  2411                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2414             Type target = infer.instantiateFunctionalInterface(that, pt(), null, resultInfo.checkContext);
  2415             Type desc = (target == Type.recoveryType) ?
  2416                     fallbackDescriptorType(that) :
  2417                     types.findDescriptorType(target);
  2419             List<Type> argtypes = desc.getParameterTypes();
  2421             boolean allowBoxing =
  2422                     resultInfo.checkContext.deferredAttrContext() == deferredAttr.emptyDeferredAttrContext ||
  2423                     resultInfo.checkContext.deferredAttrContext().phase.isBoxingRequired();
  2424             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
  2425                     that.expr.type, that.name, argtypes, typeargtypes, allowBoxing);
  2427             Symbol refSym = refResult.fst;
  2428             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2430             if (refSym.kind != MTH) {
  2431                 boolean targetError;
  2432                 switch (refSym.kind) {
  2433                     case ABSENT_MTH:
  2434                         targetError = false;
  2435                         break;
  2436                     case WRONG_MTH:
  2437                     case WRONG_MTHS:
  2438                     case AMBIGUOUS:
  2439                     case HIDDEN:
  2440                     case STATICERR:
  2441                     case MISSING_ENCL:
  2442                         targetError = true;
  2443                         break;
  2444                     default:
  2445                         Assert.error("unexpected result kind " + refSym.kind);
  2446                         targetError = false;
  2449                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2450                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2452                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2453                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2455                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2456                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2458                 if (targetError) {
  2459                     resultInfo.checkContext.report(that, diag);
  2460                 } else {
  2461                     log.report(diag);
  2463                 result = that.type = types.createErrorType(target);
  2464                 return;
  2467             if (desc.getReturnType() == Type.recoveryType) {
  2468                 // stop here
  2469                 result = that.type = types.createErrorType(target);
  2470                 return;
  2473             that.sym = refSym.baseSymbol();
  2474             that.kind = lookupHelper.referenceKind(that.sym);
  2476             ResultInfo checkInfo =
  2477                     resultInfo.dup(newMethodTemplate(
  2478                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2479                         lookupHelper.argtypes,
  2480                         typeargtypes));
  2482             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2484             if (!refType.isErroneous()) {
  2485                 refType = types.createMethodTypeWithReturn(refType,
  2486                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2489             //go ahead with standard method reference compatibility check - note that param check
  2490             //is a no-op (as this has been taken care during method applicability)
  2491             boolean isSpeculativeRound =
  2492                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2493             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2494             if (!isSpeculativeRound) {
  2495                 checkAccessibleFunctionalDescriptor(that, localEnv, resultInfo.checkContext.inferenceContext(), desc);
  2497             result = check(that, target, VAL, resultInfo);
  2498         } catch (Types.FunctionDescriptorLookupError ex) {
  2499             JCDiagnostic cause = ex.getDiagnostic();
  2500             resultInfo.checkContext.report(that, cause);
  2501             result = that.type = types.createErrorType(pt());
  2502             return;
  2506     @SuppressWarnings("fallthrough")
  2507     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2508         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2510         Type resType;
  2511         switch (tree.getMode()) {
  2512             case NEW:
  2513                 if (!tree.expr.type.isRaw()) {
  2514                     resType = tree.expr.type;
  2515                     break;
  2517             default:
  2518                 resType = refType.getReturnType();
  2521         Type incompatibleReturnType = resType;
  2523         if (returnType.hasTag(VOID)) {
  2524             incompatibleReturnType = null;
  2527         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2528             if (resType.isErroneous() ||
  2529                     new LambdaReturnContext(checkContext).compatible(resType, returnType, Warner.noWarnings)) {
  2530                 incompatibleReturnType = null;
  2534         if (incompatibleReturnType != null) {
  2535             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2536                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2539         if (!speculativeAttr) {
  2540             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2541             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2542                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2547     public void visitParens(JCParens tree) {
  2548         Type owntype = attribTree(tree.expr, env, resultInfo);
  2549         result = check(tree, owntype, pkind(), resultInfo);
  2550         Symbol sym = TreeInfo.symbol(tree);
  2551         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2552             log.error(tree.pos(), "illegal.start.of.type");
  2555     public void visitAssign(JCAssign tree) {
  2556         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2557         Type capturedType = capture(owntype);
  2558         attribExpr(tree.rhs, env, owntype);
  2559         result = check(tree, capturedType, VAL, resultInfo);
  2562     public void visitAssignop(JCAssignOp tree) {
  2563         // Attribute arguments.
  2564         Type owntype = attribTree(tree.lhs, env, varInfo);
  2565         Type operand = attribExpr(tree.rhs, env);
  2566         // Find operator.
  2567         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2568             tree.pos(), tree.getTag().noAssignOp(), env,
  2569             owntype, operand);
  2571         if (operator.kind == MTH &&
  2572                 !owntype.isErroneous() &&
  2573                 !operand.isErroneous()) {
  2574             chk.checkOperator(tree.pos(),
  2575                               (OperatorSymbol)operator,
  2576                               tree.getTag().noAssignOp(),
  2577                               owntype,
  2578                               operand);
  2579             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2580             chk.checkCastable(tree.rhs.pos(),
  2581                               operator.type.getReturnType(),
  2582                               owntype);
  2584         result = check(tree, owntype, VAL, resultInfo);
  2587     public void visitUnary(JCUnary tree) {
  2588         // Attribute arguments.
  2589         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2590             ? attribTree(tree.arg, env, varInfo)
  2591             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2593         // Find operator.
  2594         Symbol operator = tree.operator =
  2595             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2597         Type owntype = types.createErrorType(tree.type);
  2598         if (operator.kind == MTH &&
  2599                 !argtype.isErroneous()) {
  2600             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2601                 ? tree.arg.type
  2602                 : operator.type.getReturnType();
  2603             int opc = ((OperatorSymbol)operator).opcode;
  2605             // If the argument is constant, fold it.
  2606             if (argtype.constValue() != null) {
  2607                 Type ctype = cfolder.fold1(opc, argtype);
  2608                 if (ctype != null) {
  2609                     owntype = cfolder.coerce(ctype, owntype);
  2611                     // Remove constant types from arguments to
  2612                     // conserve space. The parser will fold concatenations
  2613                     // of string literals; the code here also
  2614                     // gets rid of intermediate results when some of the
  2615                     // operands are constant identifiers.
  2616                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2617                         tree.arg.type = syms.stringType;
  2622         result = check(tree, owntype, VAL, resultInfo);
  2625     public void visitBinary(JCBinary tree) {
  2626         // Attribute arguments.
  2627         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2628         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2630         // Find operator.
  2631         Symbol operator = tree.operator =
  2632             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2634         Type owntype = types.createErrorType(tree.type);
  2635         if (operator.kind == MTH &&
  2636                 !left.isErroneous() &&
  2637                 !right.isErroneous()) {
  2638             owntype = operator.type.getReturnType();
  2639             int opc = chk.checkOperator(tree.lhs.pos(),
  2640                                         (OperatorSymbol)operator,
  2641                                         tree.getTag(),
  2642                                         left,
  2643                                         right);
  2645             // If both arguments are constants, fold them.
  2646             if (left.constValue() != null && right.constValue() != null) {
  2647                 Type ctype = cfolder.fold2(opc, left, right);
  2648                 if (ctype != null) {
  2649                     owntype = cfolder.coerce(ctype, owntype);
  2651                     // Remove constant types from arguments to
  2652                     // conserve space. The parser will fold concatenations
  2653                     // of string literals; the code here also
  2654                     // gets rid of intermediate results when some of the
  2655                     // operands are constant identifiers.
  2656                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2657                         tree.lhs.type = syms.stringType;
  2659                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2660                         tree.rhs.type = syms.stringType;
  2665             // Check that argument types of a reference ==, != are
  2666             // castable to each other, (JLS???).
  2667             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2668                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2669                     log.error(tree.pos(), "incomparable.types", left, right);
  2673             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2675         result = check(tree, owntype, VAL, resultInfo);
  2678     public void visitTypeCast(final JCTypeCast tree) {
  2679         Type clazztype = attribType(tree.clazz, env);
  2680         chk.validate(tree.clazz, env, false);
  2681         //a fresh environment is required for 292 inference to work properly ---
  2682         //see Infer.instantiatePolymorphicSignatureInstance()
  2683         Env<AttrContext> localEnv = env.dup(tree);
  2684         //should we propagate the target type?
  2685         final ResultInfo castInfo;
  2686         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
  2687         if (isPoly) {
  2688             //expression is a poly - we need to propagate target type info
  2689             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  2690                 @Override
  2691                 public boolean compatible(Type found, Type req, Warner warn) {
  2692                     return types.isCastable(found, req, warn);
  2694             });
  2695         } else {
  2696             //standalone cast - target-type info is not propagated
  2697             castInfo = unknownExprInfo;
  2699         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  2700         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2701         if (exprtype.constValue() != null)
  2702             owntype = cfolder.coerce(exprtype, owntype);
  2703         result = check(tree, capture(owntype), VAL, resultInfo);
  2704         if (!isPoly)
  2705             chk.checkRedundantCast(localEnv, tree);
  2708     public void visitTypeTest(JCInstanceOf tree) {
  2709         Type exprtype = chk.checkNullOrRefType(
  2710             tree.expr.pos(), attribExpr(tree.expr, env));
  2711         Type clazztype = chk.checkReifiableReferenceType(
  2712             tree.clazz.pos(), attribType(tree.clazz, env));
  2713         chk.validate(tree.clazz, env, false);
  2714         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2715         result = check(tree, syms.booleanType, VAL, resultInfo);
  2718     public void visitIndexed(JCArrayAccess tree) {
  2719         Type owntype = types.createErrorType(tree.type);
  2720         Type atype = attribExpr(tree.indexed, env);
  2721         attribExpr(tree.index, env, syms.intType);
  2722         if (types.isArray(atype))
  2723             owntype = types.elemtype(atype);
  2724         else if (!atype.hasTag(ERROR))
  2725             log.error(tree.pos(), "array.req.but.found", atype);
  2726         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  2727         result = check(tree, owntype, VAR, resultInfo);
  2730     public void visitIdent(JCIdent tree) {
  2731         Symbol sym;
  2733         // Find symbol
  2734         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  2735             // If we are looking for a method, the prototype `pt' will be a
  2736             // method type with the type of the call's arguments as parameters.
  2737             env.info.pendingResolutionPhase = null;
  2738             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  2739         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2740             sym = tree.sym;
  2741         } else {
  2742             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  2744         tree.sym = sym;
  2746         // (1) Also find the environment current for the class where
  2747         //     sym is defined (`symEnv').
  2748         // Only for pre-tiger versions (1.4 and earlier):
  2749         // (2) Also determine whether we access symbol out of an anonymous
  2750         //     class in a this or super call.  This is illegal for instance
  2751         //     members since such classes don't carry a this$n link.
  2752         //     (`noOuterThisPath').
  2753         Env<AttrContext> symEnv = env;
  2754         boolean noOuterThisPath = false;
  2755         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2756             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2757             sym.owner.kind == TYP &&
  2758             tree.name != names._this && tree.name != names._super) {
  2760             // Find environment in which identifier is defined.
  2761             while (symEnv.outer != null &&
  2762                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2763                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2764                     noOuterThisPath = !allowAnonOuterThis;
  2765                 symEnv = symEnv.outer;
  2769         // If symbol is a variable, ...
  2770         if (sym.kind == VAR) {
  2771             VarSymbol v = (VarSymbol)sym;
  2773             // ..., evaluate its initializer, if it has one, and check for
  2774             // illegal forward reference.
  2775             checkInit(tree, env, v, false);
  2777             // If we are expecting a variable (as opposed to a value), check
  2778             // that the variable is assignable in the current environment.
  2779             if (pkind() == VAR)
  2780                 checkAssignable(tree.pos(), v, null, env);
  2783         // In a constructor body,
  2784         // if symbol is a field or instance method, check that it is
  2785         // not accessed before the supertype constructor is called.
  2786         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2787             (sym.kind & (VAR | MTH)) != 0 &&
  2788             sym.owner.kind == TYP &&
  2789             (sym.flags() & STATIC) == 0) {
  2790             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2792         Env<AttrContext> env1 = env;
  2793         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2794             // If the found symbol is inaccessible, then it is
  2795             // accessed through an enclosing instance.  Locate this
  2796             // enclosing instance:
  2797             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2798                 env1 = env1.outer;
  2800         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  2803     public void visitSelect(JCFieldAccess tree) {
  2804         // Determine the expected kind of the qualifier expression.
  2805         int skind = 0;
  2806         if (tree.name == names._this || tree.name == names._super ||
  2807             tree.name == names._class)
  2809             skind = TYP;
  2810         } else {
  2811             if ((pkind() & PCK) != 0) skind = skind | PCK;
  2812             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  2813             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2816         // Attribute the qualifier expression, and determine its symbol (if any).
  2817         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  2818         if ((pkind() & (PCK | TYP)) == 0)
  2819             site = capture(site); // Capture field access
  2821         // don't allow T.class T[].class, etc
  2822         if (skind == TYP) {
  2823             Type elt = site;
  2824             while (elt.hasTag(ARRAY))
  2825                 elt = ((ArrayType)elt).elemtype;
  2826             if (elt.hasTag(TYPEVAR)) {
  2827                 log.error(tree.pos(), "type.var.cant.be.deref");
  2828                 result = types.createErrorType(tree.type);
  2829                 return;
  2833         // If qualifier symbol is a type or `super', assert `selectSuper'
  2834         // for the selection. This is relevant for determining whether
  2835         // protected symbols are accessible.
  2836         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2837         boolean selectSuperPrev = env.info.selectSuper;
  2838         env.info.selectSuper =
  2839             sitesym != null &&
  2840             sitesym.name == names._super;
  2842         // Determine the symbol represented by the selection.
  2843         env.info.pendingResolutionPhase = null;
  2844         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  2845         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  2846             site = capture(site);
  2847             sym = selectSym(tree, sitesym, site, env, resultInfo);
  2849         boolean varArgs = env.info.lastResolveVarargs();
  2850         tree.sym = sym;
  2852         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  2853             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  2854             site = capture(site);
  2857         // If that symbol is a variable, ...
  2858         if (sym.kind == VAR) {
  2859             VarSymbol v = (VarSymbol)sym;
  2861             // ..., evaluate its initializer, if it has one, and check for
  2862             // illegal forward reference.
  2863             checkInit(tree, env, v, true);
  2865             // If we are expecting a variable (as opposed to a value), check
  2866             // that the variable is assignable in the current environment.
  2867             if (pkind() == VAR)
  2868                 checkAssignable(tree.pos(), v, tree.selected, env);
  2871         if (sitesym != null &&
  2872                 sitesym.kind == VAR &&
  2873                 ((VarSymbol)sitesym).isResourceVariable() &&
  2874                 sym.kind == MTH &&
  2875                 sym.name.equals(names.close) &&
  2876                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  2877                 env.info.lint.isEnabled(LintCategory.TRY)) {
  2878             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  2881         // Disallow selecting a type from an expression
  2882         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  2883             tree.type = check(tree.selected, pt(),
  2884                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  2887         if (isType(sitesym)) {
  2888             if (sym.name == names._this) {
  2889                 // If `C' is the currently compiled class, check that
  2890                 // C.this' does not appear in a call to a super(...)
  2891                 if (env.info.isSelfCall &&
  2892                     site.tsym == env.enclClass.sym) {
  2893                     chk.earlyRefError(tree.pos(), sym);
  2895             } else {
  2896                 // Check if type-qualified fields or methods are static (JLS)
  2897                 if ((sym.flags() & STATIC) == 0 &&
  2898                     !env.next.tree.hasTag(REFERENCE) &&
  2899                     sym.name != names._super &&
  2900                     (sym.kind == VAR || sym.kind == MTH)) {
  2901                     rs.accessBase(rs.new StaticError(sym),
  2902                               tree.pos(), site, sym.name, true);
  2905         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  2906             // If the qualified item is not a type and the selected item is static, report
  2907             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  2908             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  2911         // If we are selecting an instance member via a `super', ...
  2912         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2914             // Check that super-qualified symbols are not abstract (JLS)
  2915             rs.checkNonAbstract(tree.pos(), sym);
  2917             if (site.isRaw()) {
  2918                 // Determine argument types for site.
  2919                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2920                 if (site1 != null) site = site1;
  2924         env.info.selectSuper = selectSuperPrev;
  2925         result = checkId(tree, site, sym, env, resultInfo);
  2927     //where
  2928         /** Determine symbol referenced by a Select expression,
  2930          *  @param tree   The select tree.
  2931          *  @param site   The type of the selected expression,
  2932          *  @param env    The current environment.
  2933          *  @param resultInfo The current result.
  2934          */
  2935         private Symbol selectSym(JCFieldAccess tree,
  2936                                  Symbol location,
  2937                                  Type site,
  2938                                  Env<AttrContext> env,
  2939                                  ResultInfo resultInfo) {
  2940             DiagnosticPosition pos = tree.pos();
  2941             Name name = tree.name;
  2942             switch (site.getTag()) {
  2943             case PACKAGE:
  2944                 return rs.accessBase(
  2945                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  2946                     pos, location, site, name, true);
  2947             case ARRAY:
  2948             case CLASS:
  2949                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  2950                     return rs.resolveQualifiedMethod(
  2951                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  2952                 } else if (name == names._this || name == names._super) {
  2953                     return rs.resolveSelf(pos, env, site.tsym, name);
  2954                 } else if (name == names._class) {
  2955                     // In this case, we have already made sure in
  2956                     // visitSelect that qualifier expression is a type.
  2957                     Type t = syms.classType;
  2958                     List<Type> typeargs = allowGenerics
  2959                         ? List.of(types.erasure(site))
  2960                         : List.<Type>nil();
  2961                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2962                     return new VarSymbol(
  2963                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2964                 } else {
  2965                     // We are seeing a plain identifier as selector.
  2966                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  2967                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  2968                         sym = rs.accessBase(sym, pos, location, site, name, true);
  2969                     return sym;
  2971             case WILDCARD:
  2972                 throw new AssertionError(tree);
  2973             case TYPEVAR:
  2974                 // Normally, site.getUpperBound() shouldn't be null.
  2975                 // It should only happen during memberEnter/attribBase
  2976                 // when determining the super type which *must* beac
  2977                 // done before attributing the type variables.  In
  2978                 // other words, we are seeing this illegal program:
  2979                 // class B<T> extends A<T.foo> {}
  2980                 Symbol sym = (site.getUpperBound() != null)
  2981                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  2982                     : null;
  2983                 if (sym == null) {
  2984                     log.error(pos, "type.var.cant.be.deref");
  2985                     return syms.errSymbol;
  2986                 } else {
  2987                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2988                         rs.new AccessError(env, site, sym) :
  2989                                 sym;
  2990                     rs.accessBase(sym2, pos, location, site, name, true);
  2991                     return sym;
  2993             case ERROR:
  2994                 // preserve identifier names through errors
  2995                 return types.createErrorType(name, site.tsym, site).tsym;
  2996             default:
  2997                 // The qualifier expression is of a primitive type -- only
  2998                 // .class is allowed for these.
  2999                 if (name == names._class) {
  3000                     // In this case, we have already made sure in Select that
  3001                     // qualifier expression is a type.
  3002                     Type t = syms.classType;
  3003                     Type arg = types.boxedClass(site).type;
  3004                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3005                     return new VarSymbol(
  3006                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3007                 } else {
  3008                     log.error(pos, "cant.deref", site);
  3009                     return syms.errSymbol;
  3014         /** Determine type of identifier or select expression and check that
  3015          *  (1) the referenced symbol is not deprecated
  3016          *  (2) the symbol's type is safe (@see checkSafe)
  3017          *  (3) if symbol is a variable, check that its type and kind are
  3018          *      compatible with the prototype and protokind.
  3019          *  (4) if symbol is an instance field of a raw type,
  3020          *      which is being assigned to, issue an unchecked warning if its
  3021          *      type changes under erasure.
  3022          *  (5) if symbol is an instance method of a raw type, issue an
  3023          *      unchecked warning if its argument types change under erasure.
  3024          *  If checks succeed:
  3025          *    If symbol is a constant, return its constant type
  3026          *    else if symbol is a method, return its result type
  3027          *    otherwise return its type.
  3028          *  Otherwise return errType.
  3030          *  @param tree       The syntax tree representing the identifier
  3031          *  @param site       If this is a select, the type of the selected
  3032          *                    expression, otherwise the type of the current class.
  3033          *  @param sym        The symbol representing the identifier.
  3034          *  @param env        The current environment.
  3035          *  @param resultInfo    The expected result
  3036          */
  3037         Type checkId(JCTree tree,
  3038                      Type site,
  3039                      Symbol sym,
  3040                      Env<AttrContext> env,
  3041                      ResultInfo resultInfo) {
  3042             Type pt = resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD) ?
  3043                     resultInfo.pt.map(deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase)) :
  3044                     resultInfo.pt;
  3046             DeferredAttr.DeferredTypeMap recoveryMap =
  3047                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3049             if (pt.isErroneous()) {
  3050                 Type.map(resultInfo.pt.getParameterTypes(), recoveryMap);
  3051                 return types.createErrorType(site);
  3053             Type owntype; // The computed type of this identifier occurrence.
  3054             switch (sym.kind) {
  3055             case TYP:
  3056                 // For types, the computed type equals the symbol's type,
  3057                 // except for two situations:
  3058                 owntype = sym.type;
  3059                 if (owntype.hasTag(CLASS)) {
  3060                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3061                     Type ownOuter = owntype.getEnclosingType();
  3063                     // (a) If the symbol's type is parameterized, erase it
  3064                     // because no type parameters were given.
  3065                     // We recover generic outer type later in visitTypeApply.
  3066                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3067                         owntype = types.erasure(owntype);
  3070                     // (b) If the symbol's type is an inner class, then
  3071                     // we have to interpret its outer type as a superclass
  3072                     // of the site type. Example:
  3073                     //
  3074                     // class Tree<A> { class Visitor { ... } }
  3075                     // class PointTree extends Tree<Point> { ... }
  3076                     // ...PointTree.Visitor...
  3077                     //
  3078                     // Then the type of the last expression above is
  3079                     // Tree<Point>.Visitor.
  3080                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3081                         Type normOuter = site;
  3082                         if (normOuter.hasTag(CLASS))
  3083                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3084                         if (normOuter == null) // perhaps from an import
  3085                             normOuter = types.erasure(ownOuter);
  3086                         if (normOuter != ownOuter)
  3087                             owntype = new ClassType(
  3088                                 normOuter, List.<Type>nil(), owntype.tsym);
  3091                 break;
  3092             case VAR:
  3093                 VarSymbol v = (VarSymbol)sym;
  3094                 // Test (4): if symbol is an instance field of a raw type,
  3095                 // which is being assigned to, issue an unchecked warning if
  3096                 // its type changes under erasure.
  3097                 if (allowGenerics &&
  3098                     resultInfo.pkind == VAR &&
  3099                     v.owner.kind == TYP &&
  3100                     (v.flags() & STATIC) == 0 &&
  3101                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3102                     Type s = types.asOuterSuper(site, v.owner);
  3103                     if (s != null &&
  3104                         s.isRaw() &&
  3105                         !types.isSameType(v.type, v.erasure(types))) {
  3106                         chk.warnUnchecked(tree.pos(),
  3107                                           "unchecked.assign.to.var",
  3108                                           v, s);
  3111                 // The computed type of a variable is the type of the
  3112                 // variable symbol, taken as a member of the site type.
  3113                 owntype = (sym.owner.kind == TYP &&
  3114                            sym.name != names._this && sym.name != names._super)
  3115                     ? types.memberType(site, sym)
  3116                     : sym.type;
  3118                 // If the variable is a constant, record constant value in
  3119                 // computed type.
  3120                 if (v.getConstValue() != null && isStaticReference(tree))
  3121                     owntype = owntype.constType(v.getConstValue());
  3123                 if (resultInfo.pkind == VAL) {
  3124                     owntype = capture(owntype); // capture "names as expressions"
  3126                 break;
  3127             case MTH: {
  3128                 owntype = checkMethod(site, sym,
  3129                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3130                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3131                         resultInfo.pt.getTypeArguments());
  3132                 break;
  3134             case PCK: case ERR:
  3135                 Type.map(resultInfo.pt.getParameterTypes(), recoveryMap);
  3136                 owntype = sym.type;
  3137                 break;
  3138             default:
  3139                 throw new AssertionError("unexpected kind: " + sym.kind +
  3140                                          " in tree " + tree);
  3143             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3144             // (for constructors, the error was given when the constructor was
  3145             // resolved)
  3147             if (sym.name != names.init) {
  3148                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3149                 chk.checkSunAPI(tree.pos(), sym);
  3152             // Test (3): if symbol is a variable, check that its type and
  3153             // kind are compatible with the prototype and protokind.
  3154             return check(tree, owntype, sym.kind, resultInfo);
  3157         /** Check that variable is initialized and evaluate the variable's
  3158          *  initializer, if not yet done. Also check that variable is not
  3159          *  referenced before it is defined.
  3160          *  @param tree    The tree making up the variable reference.
  3161          *  @param env     The current environment.
  3162          *  @param v       The variable's symbol.
  3163          */
  3164         private void checkInit(JCTree tree,
  3165                                Env<AttrContext> env,
  3166                                VarSymbol v,
  3167                                boolean onlyWarning) {
  3168 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3169 //                             tree.pos + " " + v.pos + " " +
  3170 //                             Resolve.isStatic(env));//DEBUG
  3172             // A forward reference is diagnosed if the declaration position
  3173             // of the variable is greater than the current tree position
  3174             // and the tree and variable definition occur in the same class
  3175             // definition.  Note that writes don't count as references.
  3176             // This check applies only to class and instance
  3177             // variables.  Local variables follow different scope rules,
  3178             // and are subject to definite assignment checking.
  3179             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3180                 v.owner.kind == TYP &&
  3181                 canOwnInitializer(owner(env)) &&
  3182                 v.owner == env.info.scope.owner.enclClass() &&
  3183                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3184                 (!env.tree.hasTag(ASSIGN) ||
  3185                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3186                 String suffix = (env.info.enclVar == v) ?
  3187                                 "self.ref" : "forward.ref";
  3188                 if (!onlyWarning || isStaticEnumField(v)) {
  3189                     log.error(tree.pos(), "illegal." + suffix);
  3190                 } else if (useBeforeDeclarationWarning) {
  3191                     log.warning(tree.pos(), suffix, v);
  3195             v.getConstValue(); // ensure initializer is evaluated
  3197             checkEnumInitializer(tree, env, v);
  3200         /**
  3201          * Check for illegal references to static members of enum.  In
  3202          * an enum type, constructors and initializers may not
  3203          * reference its static members unless they are constant.
  3205          * @param tree    The tree making up the variable reference.
  3206          * @param env     The current environment.
  3207          * @param v       The variable's symbol.
  3208          * @jls  section 8.9 Enums
  3209          */
  3210         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3211             // JLS:
  3212             //
  3213             // "It is a compile-time error to reference a static field
  3214             // of an enum type that is not a compile-time constant
  3215             // (15.28) from constructors, instance initializer blocks,
  3216             // or instance variable initializer expressions of that
  3217             // type. It is a compile-time error for the constructors,
  3218             // instance initializer blocks, or instance variable
  3219             // initializer expressions of an enum constant e to refer
  3220             // to itself or to an enum constant of the same type that
  3221             // is declared to the right of e."
  3222             if (isStaticEnumField(v)) {
  3223                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3225                 if (enclClass == null || enclClass.owner == null)
  3226                     return;
  3228                 // See if the enclosing class is the enum (or a
  3229                 // subclass thereof) declaring v.  If not, this
  3230                 // reference is OK.
  3231                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3232                     return;
  3234                 // If the reference isn't from an initializer, then
  3235                 // the reference is OK.
  3236                 if (!Resolve.isInitializer(env))
  3237                     return;
  3239                 log.error(tree.pos(), "illegal.enum.static.ref");
  3243         /** Is the given symbol a static, non-constant field of an Enum?
  3244          *  Note: enum literals should not be regarded as such
  3245          */
  3246         private boolean isStaticEnumField(VarSymbol v) {
  3247             return Flags.isEnum(v.owner) &&
  3248                    Flags.isStatic(v) &&
  3249                    !Flags.isConstant(v) &&
  3250                    v.name != names._class;
  3253         /** Can the given symbol be the owner of code which forms part
  3254          *  if class initialization? This is the case if the symbol is
  3255          *  a type or field, or if the symbol is the synthetic method.
  3256          *  owning a block.
  3257          */
  3258         private boolean canOwnInitializer(Symbol sym) {
  3259             return
  3260                 (sym.kind & (VAR | TYP)) != 0 ||
  3261                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3264     Warner noteWarner = new Warner();
  3266     /**
  3267      * Check that method arguments conform to its instantiation.
  3268      **/
  3269     public Type checkMethod(Type site,
  3270                             Symbol sym,
  3271                             ResultInfo resultInfo,
  3272                             Env<AttrContext> env,
  3273                             final List<JCExpression> argtrees,
  3274                             List<Type> argtypes,
  3275                             List<Type> typeargtypes) {
  3276         // Test (5): if symbol is an instance method of a raw type, issue
  3277         // an unchecked warning if its argument types change under erasure.
  3278         if (allowGenerics &&
  3279             (sym.flags() & STATIC) == 0 &&
  3280             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3281             Type s = types.asOuterSuper(site, sym.owner);
  3282             if (s != null && s.isRaw() &&
  3283                 !types.isSameTypes(sym.type.getParameterTypes(),
  3284                                    sym.erasure(types).getParameterTypes())) {
  3285                 chk.warnUnchecked(env.tree.pos(),
  3286                                   "unchecked.call.mbr.of.raw.type",
  3287                                   sym, s);
  3291         if (env.info.defaultSuperCallSite != null &&
  3292                 !types.interfaceCandidates(env.enclClass.type, (MethodSymbol)sym, true).contains(sym)) {
  3293             Symbol ovSym = null;
  3294             for (MethodSymbol msym : types.interfaceCandidates(env.enclClass.type, (MethodSymbol)sym, true)) {
  3295                 if (msym.overrides(sym, msym.enclClass(), types, true)) {
  3296                     for (Type i : types.interfaces(env.enclClass.type)) {
  3297                         if (i.tsym.isSubClass(msym.owner, types)) {
  3298                             ovSym = i.tsym;
  3299                             break;
  3304             log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3305                     diags.fragment("overridden.default", sym, ovSym));
  3308         // Compute the identifier's instantiated type.
  3309         // For methods, we need to compute the instance type by
  3310         // Resolve.instantiate from the symbol's type as well as
  3311         // any type arguments and value arguments.
  3312         noteWarner.clear();
  3313         try {
  3314             Type owntype = rs.checkMethod(
  3315                     env,
  3316                     site,
  3317                     sym,
  3318                     resultInfo,
  3319                     argtypes,
  3320                     typeargtypes,
  3321                     noteWarner);
  3323             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3324                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
  3325         } catch (Infer.InferenceException ex) {
  3326             //invalid target type - propagate exception outwards or report error
  3327             //depending on the current check context
  3328             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3329             return types.createErrorType(site);
  3330         } catch (Resolve.InapplicableMethodException ex) {
  3331             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
  3332             return null;
  3336     public void visitLiteral(JCLiteral tree) {
  3337         result = check(
  3338             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3340     //where
  3341     /** Return the type of a literal with given type tag.
  3342      */
  3343     Type litType(TypeTag tag) {
  3344         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3347     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3348         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3351     public void visitTypeArray(JCArrayTypeTree tree) {
  3352         Type etype = attribType(tree.elemtype, env);
  3353         Type type = new ArrayType(etype, syms.arrayClass);
  3354         result = check(tree, type, TYP, resultInfo);
  3357     /** Visitor method for parameterized types.
  3358      *  Bound checking is left until later, since types are attributed
  3359      *  before supertype structure is completely known
  3360      */
  3361     public void visitTypeApply(JCTypeApply tree) {
  3362         Type owntype = types.createErrorType(tree.type);
  3364         // Attribute functor part of application and make sure it's a class.
  3365         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3367         // Attribute type parameters
  3368         List<Type> actuals = attribTypes(tree.arguments, env);
  3370         if (clazztype.hasTag(CLASS)) {
  3371             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3372             if (actuals.isEmpty()) //diamond
  3373                 actuals = formals;
  3375             if (actuals.length() == formals.length()) {
  3376                 List<Type> a = actuals;
  3377                 List<Type> f = formals;
  3378                 while (a.nonEmpty()) {
  3379                     a.head = a.head.withTypeVar(f.head);
  3380                     a = a.tail;
  3381                     f = f.tail;
  3383                 // Compute the proper generic outer
  3384                 Type clazzOuter = clazztype.getEnclosingType();
  3385                 if (clazzOuter.hasTag(CLASS)) {
  3386                     Type site;
  3387                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3388                     if (clazz.hasTag(IDENT)) {
  3389                         site = env.enclClass.sym.type;
  3390                     } else if (clazz.hasTag(SELECT)) {
  3391                         site = ((JCFieldAccess) clazz).selected.type;
  3392                     } else throw new AssertionError(""+tree);
  3393                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3394                         if (site.hasTag(CLASS))
  3395                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3396                         if (site == null)
  3397                             site = types.erasure(clazzOuter);
  3398                         clazzOuter = site;
  3401                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3402             } else {
  3403                 if (formals.length() != 0) {
  3404                     log.error(tree.pos(), "wrong.number.type.args",
  3405                               Integer.toString(formals.length()));
  3406                 } else {
  3407                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3409                 owntype = types.createErrorType(tree.type);
  3412         result = check(tree, owntype, TYP, resultInfo);
  3415     public void visitTypeUnion(JCTypeUnion tree) {
  3416         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  3417         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3418         for (JCExpression typeTree : tree.alternatives) {
  3419             Type ctype = attribType(typeTree, env);
  3420             ctype = chk.checkType(typeTree.pos(),
  3421                           chk.checkClassType(typeTree.pos(), ctype),
  3422                           syms.throwableType);
  3423             if (!ctype.isErroneous()) {
  3424                 //check that alternatives of a union type are pairwise
  3425                 //unrelated w.r.t. subtyping
  3426                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3427                     for (Type t : multicatchTypes) {
  3428                         boolean sub = types.isSubtype(ctype, t);
  3429                         boolean sup = types.isSubtype(t, ctype);
  3430                         if (sub || sup) {
  3431                             //assume 'a' <: 'b'
  3432                             Type a = sub ? ctype : t;
  3433                             Type b = sub ? t : ctype;
  3434                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3438                 multicatchTypes.append(ctype);
  3439                 if (all_multicatchTypes != null)
  3440                     all_multicatchTypes.append(ctype);
  3441             } else {
  3442                 if (all_multicatchTypes == null) {
  3443                     all_multicatchTypes = ListBuffer.lb();
  3444                     all_multicatchTypes.appendList(multicatchTypes);
  3446                 all_multicatchTypes.append(ctype);
  3449         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3450         if (t.hasTag(CLASS)) {
  3451             List<Type> alternatives =
  3452                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3453             t = new UnionClassType((ClassType) t, alternatives);
  3455         tree.type = result = t;
  3458     public void visitTypeParameter(JCTypeParameter tree) {
  3459         TypeVar a = (TypeVar)tree.type;
  3460         Set<Type> boundSet = new HashSet<Type>();
  3461         if (a.bound.isErroneous())
  3462             return;
  3463         List<Type> bs = types.getBounds(a);
  3464         if (tree.bounds.nonEmpty()) {
  3465             // accept class or interface or typevar as first bound.
  3466             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  3467             boundSet.add(types.erasure(b));
  3468             if (b.isErroneous()) {
  3469                 a.bound = b;
  3471             else if (b.hasTag(TYPEVAR)) {
  3472                 // if first bound was a typevar, do not accept further bounds.
  3473                 if (tree.bounds.tail.nonEmpty()) {
  3474                     log.error(tree.bounds.tail.head.pos(),
  3475                               "type.var.may.not.be.followed.by.other.bounds");
  3476                     tree.bounds = List.of(tree.bounds.head);
  3477                     a.bound = bs.head;
  3479             } else {
  3480                 // if first bound was a class or interface, accept only interfaces
  3481                 // as further bounds.
  3482                 for (JCExpression bound : tree.bounds.tail) {
  3483                     bs = bs.tail;
  3484                     Type i = checkBase(bs.head, bound, env, false, true, false);
  3485                     if (i.isErroneous())
  3486                         a.bound = i;
  3487                     else if (i.hasTag(CLASS))
  3488                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  3492         bs = types.getBounds(a);
  3494         // in case of multiple bounds ...
  3495         if (bs.length() > 1) {
  3496             // ... the variable's bound is a class type flagged COMPOUND
  3497             // (see comment for TypeVar.bound).
  3498             // In this case, generate a class tree that represents the
  3499             // bound class, ...
  3500             JCExpression extending;
  3501             List<JCExpression> implementing;
  3502             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  3503                 extending = tree.bounds.head;
  3504                 implementing = tree.bounds.tail;
  3505             } else {
  3506                 extending = null;
  3507                 implementing = tree.bounds;
  3509             JCClassDecl cd = make.at(tree.pos).ClassDef(
  3510                 make.Modifiers(PUBLIC | ABSTRACT),
  3511                 tree.name, List.<JCTypeParameter>nil(),
  3512                 extending, implementing, List.<JCTree>nil());
  3514             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  3515             Assert.check((c.flags() & COMPOUND) != 0);
  3516             cd.sym = c;
  3517             c.sourcefile = env.toplevel.sourcefile;
  3519             // ... and attribute the bound class
  3520             c.flags_field |= UNATTRIBUTED;
  3521             Env<AttrContext> cenv = enter.classEnv(cd, env);
  3522             enter.typeEnvs.put(c, cenv);
  3527     public void visitWildcard(JCWildcard tree) {
  3528         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  3529         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  3530             ? syms.objectType
  3531             : attribType(tree.inner, env);
  3532         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  3533                                               tree.kind.kind,
  3534                                               syms.boundClass),
  3535                        TYP, resultInfo);
  3538     public void visitAnnotation(JCAnnotation tree) {
  3539         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  3540         result = tree.type = syms.errType;
  3543     public void visitErroneous(JCErroneous tree) {
  3544         if (tree.errs != null)
  3545             for (JCTree err : tree.errs)
  3546                 attribTree(err, env, new ResultInfo(ERR, pt()));
  3547         result = tree.type = syms.errType;
  3550     /** Default visitor method for all other trees.
  3551      */
  3552     public void visitTree(JCTree tree) {
  3553         throw new AssertionError();
  3556     /**
  3557      * Attribute an env for either a top level tree or class declaration.
  3558      */
  3559     public void attrib(Env<AttrContext> env) {
  3560         if (env.tree.hasTag(TOPLEVEL))
  3561             attribTopLevel(env);
  3562         else
  3563             attribClass(env.tree.pos(), env.enclClass.sym);
  3566     /**
  3567      * Attribute a top level tree. These trees are encountered when the
  3568      * package declaration has annotations.
  3569      */
  3570     public void attribTopLevel(Env<AttrContext> env) {
  3571         JCCompilationUnit toplevel = env.toplevel;
  3572         try {
  3573             annotate.flush();
  3574             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  3575         } catch (CompletionFailure ex) {
  3576             chk.completionError(toplevel.pos(), ex);
  3580     /** Main method: attribute class definition associated with given class symbol.
  3581      *  reporting completion failures at the given position.
  3582      *  @param pos The source position at which completion errors are to be
  3583      *             reported.
  3584      *  @param c   The class symbol whose definition will be attributed.
  3585      */
  3586     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3587         try {
  3588             annotate.flush();
  3589             attribClass(c);
  3590         } catch (CompletionFailure ex) {
  3591             chk.completionError(pos, ex);
  3595     /** Attribute class definition associated with given class symbol.
  3596      *  @param c   The class symbol whose definition will be attributed.
  3597      */
  3598     void attribClass(ClassSymbol c) throws CompletionFailure {
  3599         if (c.type.hasTag(ERROR)) return;
  3601         // Check for cycles in the inheritance graph, which can arise from
  3602         // ill-formed class files.
  3603         chk.checkNonCyclic(null, c.type);
  3605         Type st = types.supertype(c.type);
  3606         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3607             // First, attribute superclass.
  3608             if (st.hasTag(CLASS))
  3609                 attribClass((ClassSymbol)st.tsym);
  3611             // Next attribute owner, if it is a class.
  3612             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  3613                 attribClass((ClassSymbol)c.owner);
  3616         // The previous operations might have attributed the current class
  3617         // if there was a cycle. So we test first whether the class is still
  3618         // UNATTRIBUTED.
  3619         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3620             c.flags_field &= ~UNATTRIBUTED;
  3622             // Get environment current at the point of class definition.
  3623             Env<AttrContext> env = enter.typeEnvs.get(c);
  3625             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3626             // because the annotations were not available at the time the env was created. Therefore,
  3627             // we look up the environment chain for the first enclosing environment for which the
  3628             // lint value is set. Typically, this is the parent env, but might be further if there
  3629             // are any envs created as a result of TypeParameter nodes.
  3630             Env<AttrContext> lintEnv = env;
  3631             while (lintEnv.info.lint == null)
  3632                 lintEnv = lintEnv.next;
  3634             // Having found the enclosing lint value, we can initialize the lint value for this class
  3635             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
  3637             Lint prevLint = chk.setLint(env.info.lint);
  3638             JavaFileObject prev = log.useSource(c.sourcefile);
  3639             ResultInfo prevReturnRes = env.info.returnResult;
  3641             try {
  3642                 env.info.returnResult = null;
  3643                 // java.lang.Enum may not be subclassed by a non-enum
  3644                 if (st.tsym == syms.enumSym &&
  3645                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3646                     log.error(env.tree.pos(), "enum.no.subclassing");
  3648                 // Enums may not be extended by source-level classes
  3649                 if (st.tsym != null &&
  3650                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3651                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3652                     !target.compilerBootstrap(c)) {
  3653                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3655                 attribClassBody(env, c);
  3657                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3658             } finally {
  3659                 env.info.returnResult = prevReturnRes;
  3660                 log.useSource(prev);
  3661                 chk.setLint(prevLint);
  3667     public void visitImport(JCImport tree) {
  3668         // nothing to do
  3671     /** Finish the attribution of a class. */
  3672     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3673         JCClassDecl tree = (JCClassDecl)env.tree;
  3674         Assert.check(c == tree.sym);
  3676         // Validate annotations
  3677         chk.validateAnnotations(tree.mods.annotations, c);
  3679         // Validate type parameters, supertype and interfaces.
  3680         attribBounds(tree.typarams);
  3681         if (!c.isAnonymous()) {
  3682             //already checked if anonymous
  3683             chk.validate(tree.typarams, env);
  3684             chk.validate(tree.extending, env);
  3685             chk.validate(tree.implementing, env);
  3688         // If this is a non-abstract class, check that it has no abstract
  3689         // methods or unimplemented methods of an implemented interface.
  3690         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3691             if (!relax)
  3692                 chk.checkAllDefined(tree.pos(), c);
  3695         if ((c.flags() & ANNOTATION) != 0) {
  3696             if (tree.implementing.nonEmpty())
  3697                 log.error(tree.implementing.head.pos(),
  3698                           "cant.extend.intf.annotation");
  3699             if (tree.typarams.nonEmpty())
  3700                 log.error(tree.typarams.head.pos(),
  3701                           "intf.annotation.cant.have.type.params");
  3703             // If this annotation has a @ContainedBy, validate
  3704             Attribute.Compound containedBy = c.attribute(syms.containedByType.tsym);
  3705             if (containedBy != null) {
  3706                 // get diagnositc position for error reporting
  3707                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, containedBy.type);
  3708                 Assert.checkNonNull(cbPos);
  3710                 chk.validateContainedBy(c, containedBy, cbPos);
  3713             // If this annotation has a @ContainerFor, validate
  3714             Attribute.Compound containerFor = c.attribute(syms.containerForType.tsym);
  3715             if (containerFor != null) {
  3716                 // get diagnositc position for error reporting
  3717                 DiagnosticPosition cfPos = getDiagnosticPosition(tree, containerFor.type);
  3718                 Assert.checkNonNull(cfPos);
  3720                 chk.validateContainerFor(c, containerFor, cfPos);
  3722         } else {
  3723             // Check that all extended classes and interfaces
  3724             // are compatible (i.e. no two define methods with same arguments
  3725             // yet different return types).  (JLS 8.4.6.3)
  3726             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3727             if (allowDefaultMethods) {
  3728                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  3732         // Check that class does not import the same parameterized interface
  3733         // with two different argument lists.
  3734         chk.checkClassBounds(tree.pos(), c.type);
  3736         tree.type = c.type;
  3738         for (List<JCTypeParameter> l = tree.typarams;
  3739              l.nonEmpty(); l = l.tail) {
  3740              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  3743         // Check that a generic class doesn't extend Throwable
  3744         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3745             log.error(tree.extending.pos(), "generic.throwable");
  3747         // Check that all methods which implement some
  3748         // method conform to the method they implement.
  3749         chk.checkImplementations(tree);
  3751         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  3752         checkAutoCloseable(tree.pos(), env, c.type);
  3754         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3755             // Attribute declaration
  3756             attribStat(l.head, env);
  3757             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3758             // Make an exception for static constants.
  3759             if (c.owner.kind != PCK &&
  3760                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3761                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3762                 Symbol sym = null;
  3763                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  3764                 if (sym == null ||
  3765                     sym.kind != VAR ||
  3766                     ((VarSymbol) sym).getConstValue() == null)
  3767                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  3771         // Check for cycles among non-initial constructors.
  3772         chk.checkCyclicConstructors(tree);
  3774         // Check for cycles among annotation elements.
  3775         chk.checkNonCyclicElements(tree);
  3777         // Check for proper use of serialVersionUID
  3778         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  3779             isSerializable(c) &&
  3780             (c.flags() & Flags.ENUM) == 0 &&
  3781             (c.flags() & ABSTRACT) == 0) {
  3782             checkSerialVersionUID(tree, c);
  3785         // where
  3786         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  3787         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  3788             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  3789                 if (types.isSameType(al.head.annotationType.type, t))
  3790                     return al.head.pos();
  3793             return null;
  3796         /** check if a class is a subtype of Serializable, if that is available. */
  3797         private boolean isSerializable(ClassSymbol c) {
  3798             try {
  3799                 syms.serializableType.complete();
  3801             catch (CompletionFailure e) {
  3802                 return false;
  3804             return types.isSubtype(c.type, syms.serializableType);
  3807         /** Check that an appropriate serialVersionUID member is defined. */
  3808         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  3810             // check for presence of serialVersionUID
  3811             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  3812             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  3813             if (e.scope == null) {
  3814                 log.warning(LintCategory.SERIAL,
  3815                         tree.pos(), "missing.SVUID", c);
  3816                 return;
  3819             // check that it is static final
  3820             VarSymbol svuid = (VarSymbol)e.sym;
  3821             if ((svuid.flags() & (STATIC | FINAL)) !=
  3822                 (STATIC | FINAL))
  3823                 log.warning(LintCategory.SERIAL,
  3824                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  3826             // check that it is long
  3827             else if (!svuid.type.hasTag(LONG))
  3828                 log.warning(LintCategory.SERIAL,
  3829                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  3831             // check constant
  3832             else if (svuid.getConstValue() == null)
  3833                 log.warning(LintCategory.SERIAL,
  3834                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  3837     private Type capture(Type type) {
  3838         return types.capture(type);
  3841     // <editor-fold desc="post-attribution visitor">
  3843     /**
  3844      * Handle missing types/symbols in an AST. This routine is useful when
  3845      * the compiler has encountered some errors (which might have ended up
  3846      * terminating attribution abruptly); if the compiler is used in fail-over
  3847      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  3848      * prevents NPE to be progagated during subsequent compilation steps.
  3849      */
  3850     public void postAttr(JCTree tree) {
  3851         new PostAttrAnalyzer().scan(tree);
  3854     class PostAttrAnalyzer extends TreeScanner {
  3856         private void initTypeIfNeeded(JCTree that) {
  3857             if (that.type == null) {
  3858                 that.type = syms.unknownType;
  3862         @Override
  3863         public void scan(JCTree tree) {
  3864             if (tree == null) return;
  3865             if (tree instanceof JCExpression) {
  3866                 initTypeIfNeeded(tree);
  3868             super.scan(tree);
  3871         @Override
  3872         public void visitIdent(JCIdent that) {
  3873             if (that.sym == null) {
  3874                 that.sym = syms.unknownSymbol;
  3878         @Override
  3879         public void visitSelect(JCFieldAccess that) {
  3880             if (that.sym == null) {
  3881                 that.sym = syms.unknownSymbol;
  3883             super.visitSelect(that);
  3886         @Override
  3887         public void visitClassDef(JCClassDecl that) {
  3888             initTypeIfNeeded(that);
  3889             if (that.sym == null) {
  3890                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  3892             super.visitClassDef(that);
  3895         @Override
  3896         public void visitMethodDef(JCMethodDecl that) {
  3897             initTypeIfNeeded(that);
  3898             if (that.sym == null) {
  3899                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  3901             super.visitMethodDef(that);
  3904         @Override
  3905         public void visitVarDef(JCVariableDecl that) {
  3906             initTypeIfNeeded(that);
  3907             if (that.sym == null) {
  3908                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  3909                 that.sym.adr = 0;
  3911             super.visitVarDef(that);
  3914         @Override
  3915         public void visitNewClass(JCNewClass that) {
  3916             if (that.constructor == null) {
  3917                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  3919             if (that.constructorType == null) {
  3920                 that.constructorType = syms.unknownType;
  3922             super.visitNewClass(that);
  3925         @Override
  3926         public void visitAssignop(JCAssignOp that) {
  3927             if (that.operator == null)
  3928                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3929             super.visitAssignop(that);
  3932         @Override
  3933         public void visitBinary(JCBinary that) {
  3934             if (that.operator == null)
  3935                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3936             super.visitBinary(that);
  3939         @Override
  3940         public void visitUnary(JCUnary that) {
  3941             if (that.operator == null)
  3942                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3943             super.visitUnary(that);
  3946         @Override
  3947         public void visitReference(JCMemberReference that) {
  3948             super.visitReference(that);
  3949             if (that.sym == null) {
  3950                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  3954     // </editor-fold>

mercurial