src/share/classes/com/sun/tools/javac/comp/Resolve.java

Thu, 13 Sep 2012 14:29:36 -0700

author
jjg
date
Thu, 13 Sep 2012 14:29:36 -0700
changeset 1326
30c36e23f154
parent 1296
cddc2c894cc6
child 1335
99983a4a593b
permissions
-rw-r--r--

7177970: fix issues in langtools doc comments
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Type.*;
    31 import com.sun.tools.javac.code.Symbol.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    35 import com.sun.tools.javac.jvm.*;
    36 import com.sun.tools.javac.tree.*;
    37 import com.sun.tools.javac.tree.JCTree.*;
    38 import com.sun.tools.javac.util.*;
    39 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    40 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    41 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    43 import java.util.Arrays;
    44 import java.util.Collection;
    45 import java.util.EnumMap;
    46 import java.util.EnumSet;
    47 import java.util.HashSet;
    48 import java.util.Map;
    49 import java.util.Set;
    51 import javax.lang.model.element.ElementVisitor;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.BLOCK;
    55 import static com.sun.tools.javac.code.Kinds.*;
    56 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    57 import static com.sun.tools.javac.code.TypeTags.*;
    58 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    59 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    61 /** Helper class for name resolution, used mostly by the attribution phase.
    62  *
    63  *  <p><b>This is NOT part of any supported API.
    64  *  If you write code that depends on this, you do so at your own risk.
    65  *  This code and its internal interfaces are subject to change or
    66  *  deletion without notice.</b>
    67  */
    68 public class Resolve {
    69     protected static final Context.Key<Resolve> resolveKey =
    70         new Context.Key<Resolve>();
    72     Names names;
    73     Log log;
    74     Symtab syms;
    75     Attr attr;
    76     Check chk;
    77     Infer infer;
    78     ClassReader reader;
    79     TreeInfo treeinfo;
    80     Types types;
    81     JCDiagnostic.Factory diags;
    82     public final boolean boxingEnabled; // = source.allowBoxing();
    83     public final boolean varargsEnabled; // = source.allowVarargs();
    84     public final boolean allowMethodHandles;
    85     private final boolean debugResolve;
    86     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    88     Scope polymorphicSignatureScope;
    90     protected Resolve(Context context) {
    91         context.put(resolveKey, this);
    92         syms = Symtab.instance(context);
    94         varNotFound = new
    95             SymbolNotFoundError(ABSENT_VAR);
    96         wrongMethod = new
    97             InapplicableSymbolError();
    98         wrongMethods = new
    99             InapplicableSymbolsError();
   100         methodNotFound = new
   101             SymbolNotFoundError(ABSENT_MTH);
   102         typeNotFound = new
   103             SymbolNotFoundError(ABSENT_TYP);
   105         names = Names.instance(context);
   106         log = Log.instance(context);
   107         attr = Attr.instance(context);
   108         chk = Check.instance(context);
   109         infer = Infer.instance(context);
   110         reader = ClassReader.instance(context);
   111         treeinfo = TreeInfo.instance(context);
   112         types = Types.instance(context);
   113         diags = JCDiagnostic.Factory.instance(context);
   114         Source source = Source.instance(context);
   115         boxingEnabled = source.allowBoxing();
   116         varargsEnabled = source.allowVarargs();
   117         Options options = Options.instance(context);
   118         debugResolve = options.isSet("debugresolve");
   119         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   120         Target target = Target.instance(context);
   121         allowMethodHandles = target.hasMethodHandles();
   122         polymorphicSignatureScope = new Scope(syms.noSymbol);
   124         inapplicableMethodException = new InapplicableMethodException(diags);
   125     }
   127     /** error symbols, which are returned when resolution fails
   128      */
   129     private final SymbolNotFoundError varNotFound;
   130     private final InapplicableSymbolError wrongMethod;
   131     private final InapplicableSymbolsError wrongMethods;
   132     private final SymbolNotFoundError methodNotFound;
   133     private final SymbolNotFoundError typeNotFound;
   135     public static Resolve instance(Context context) {
   136         Resolve instance = context.get(resolveKey);
   137         if (instance == null)
   138             instance = new Resolve(context);
   139         return instance;
   140     }
   142     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   143     enum VerboseResolutionMode {
   144         SUCCESS("success"),
   145         FAILURE("failure"),
   146         APPLICABLE("applicable"),
   147         INAPPLICABLE("inapplicable"),
   148         DEFERRED_INST("deferred-inference"),
   149         PREDEF("predef"),
   150         OBJECT_INIT("object-init"),
   151         INTERNAL("internal");
   153         String opt;
   155         private VerboseResolutionMode(String opt) {
   156             this.opt = opt;
   157         }
   159         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   160             String s = opts.get("verboseResolution");
   161             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   162             if (s == null) return res;
   163             if (s.contains("all")) {
   164                 res = EnumSet.allOf(VerboseResolutionMode.class);
   165             }
   166             Collection<String> args = Arrays.asList(s.split(","));
   167             for (VerboseResolutionMode mode : values()) {
   168                 if (args.contains(mode.opt)) {
   169                     res.add(mode);
   170                 } else if (args.contains("-" + mode.opt)) {
   171                     res.remove(mode);
   172                 }
   173             }
   174             return res;
   175         }
   176     }
   178     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   179             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   180         boolean success = bestSoFar.kind < ERRONEOUS;
   182         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   183             return;
   184         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   185             return;
   186         }
   188         if (bestSoFar.name == names.init &&
   189                 bestSoFar.owner == syms.objectType.tsym &&
   190                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   191             return; //skip diags for Object constructor resolution
   192         } else if (site == syms.predefClass.type &&
   193                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   194             return; //skip spurious diags for predef symbols (i.e. operators)
   195         } else if (currentResolutionContext.internalResolution &&
   196                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   197             return;
   198         }
   200         int pos = 0;
   201         int mostSpecificPos = -1;
   202         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   203         for (Candidate c : currentResolutionContext.candidates) {
   204             if (currentResolutionContext.step != c.step ||
   205                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   206                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   207                 continue;
   208             } else {
   209                 subDiags.append(c.isApplicable() ?
   210                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   211                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   212                 if (c.sym == bestSoFar)
   213                     mostSpecificPos = pos;
   214                 pos++;
   215             }
   216         }
   217         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   218         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   219                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   220                 methodArguments(argtypes), methodArguments(typeargtypes));
   221         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   222         log.report(d);
   223     }
   225     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   226         JCDiagnostic subDiag = null;
   227         if (sym.type.tag == FORALL) {
   228             subDiag = diags.fragment("partial.inst.sig", inst);
   229         }
   231         String key = subDiag == null ?
   232                 "applicable.method.found" :
   233                 "applicable.method.found.1";
   235         return diags.fragment(key, pos, sym, subDiag);
   236     }
   238     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   239         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   240     }
   241     // </editor-fold>
   243 /* ************************************************************************
   244  * Identifier resolution
   245  *************************************************************************/
   247     /** An environment is "static" if its static level is greater than
   248      *  the one of its outer environment
   249      */
   250     static boolean isStatic(Env<AttrContext> env) {
   251         return env.info.staticLevel > env.outer.info.staticLevel;
   252     }
   254     /** An environment is an "initializer" if it is a constructor or
   255      *  an instance initializer.
   256      */
   257     static boolean isInitializer(Env<AttrContext> env) {
   258         Symbol owner = env.info.scope.owner;
   259         return owner.isConstructor() ||
   260             owner.owner.kind == TYP &&
   261             (owner.kind == VAR ||
   262              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   263             (owner.flags() & STATIC) == 0;
   264     }
   266     /** Is class accessible in given evironment?
   267      *  @param env    The current environment.
   268      *  @param c      The class whose accessibility is checked.
   269      */
   270     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   271         return isAccessible(env, c, false);
   272     }
   274     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   275         boolean isAccessible = false;
   276         switch ((short)(c.flags() & AccessFlags)) {
   277             case PRIVATE:
   278                 isAccessible =
   279                     env.enclClass.sym.outermostClass() ==
   280                     c.owner.outermostClass();
   281                 break;
   282             case 0:
   283                 isAccessible =
   284                     env.toplevel.packge == c.owner // fast special case
   285                     ||
   286                     env.toplevel.packge == c.packge()
   287                     ||
   288                     // Hack: this case is added since synthesized default constructors
   289                     // of anonymous classes should be allowed to access
   290                     // classes which would be inaccessible otherwise.
   291                     env.enclMethod != null &&
   292                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   293                 break;
   294             default: // error recovery
   295             case PUBLIC:
   296                 isAccessible = true;
   297                 break;
   298             case PROTECTED:
   299                 isAccessible =
   300                     env.toplevel.packge == c.owner // fast special case
   301                     ||
   302                     env.toplevel.packge == c.packge()
   303                     ||
   304                     isInnerSubClass(env.enclClass.sym, c.owner);
   305                 break;
   306         }
   307         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   308             isAccessible :
   309             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   310     }
   311     //where
   312         /** Is given class a subclass of given base class, or an inner class
   313          *  of a subclass?
   314          *  Return null if no such class exists.
   315          *  @param c     The class which is the subclass or is contained in it.
   316          *  @param base  The base class
   317          */
   318         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   319             while (c != null && !c.isSubClass(base, types)) {
   320                 c = c.owner.enclClass();
   321             }
   322             return c != null;
   323         }
   325     boolean isAccessible(Env<AttrContext> env, Type t) {
   326         return isAccessible(env, t, false);
   327     }
   329     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   330         return (t.tag == ARRAY)
   331             ? isAccessible(env, types.elemtype(t))
   332             : isAccessible(env, t.tsym, checkInner);
   333     }
   335     /** Is symbol accessible as a member of given type in given evironment?
   336      *  @param env    The current environment.
   337      *  @param site   The type of which the tested symbol is regarded
   338      *                as a member.
   339      *  @param sym    The symbol.
   340      */
   341     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   342         return isAccessible(env, site, sym, false);
   343     }
   344     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   345         if (sym.name == names.init && sym.owner != site.tsym) return false;
   346         switch ((short)(sym.flags() & AccessFlags)) {
   347         case PRIVATE:
   348             return
   349                 (env.enclClass.sym == sym.owner // fast special case
   350                  ||
   351                  env.enclClass.sym.outermostClass() ==
   352                  sym.owner.outermostClass())
   353                 &&
   354                 sym.isInheritedIn(site.tsym, types);
   355         case 0:
   356             return
   357                 (env.toplevel.packge == sym.owner.owner // fast special case
   358                  ||
   359                  env.toplevel.packge == sym.packge())
   360                 &&
   361                 isAccessible(env, site, checkInner)
   362                 &&
   363                 sym.isInheritedIn(site.tsym, types)
   364                 &&
   365                 notOverriddenIn(site, sym);
   366         case PROTECTED:
   367             return
   368                 (env.toplevel.packge == sym.owner.owner // fast special case
   369                  ||
   370                  env.toplevel.packge == sym.packge()
   371                  ||
   372                  isProtectedAccessible(sym, env.enclClass.sym, site)
   373                  ||
   374                  // OK to select instance method or field from 'super' or type name
   375                  // (but type names should be disallowed elsewhere!)
   376                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   377                 &&
   378                 isAccessible(env, site, checkInner)
   379                 &&
   380                 notOverriddenIn(site, sym);
   381         default: // this case includes erroneous combinations as well
   382             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   383         }
   384     }
   385     //where
   386     /* `sym' is accessible only if not overridden by
   387      * another symbol which is a member of `site'
   388      * (because, if it is overridden, `sym' is not strictly
   389      * speaking a member of `site'). A polymorphic signature method
   390      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   391      */
   392     private boolean notOverriddenIn(Type site, Symbol sym) {
   393         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   394             return true;
   395         else {
   396             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   397             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   398                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   399         }
   400     }
   401     //where
   402         /** Is given protected symbol accessible if it is selected from given site
   403          *  and the selection takes place in given class?
   404          *  @param sym     The symbol with protected access
   405          *  @param c       The class where the access takes place
   406          *  @site          The type of the qualifier
   407          */
   408         private
   409         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   410             while (c != null &&
   411                    !(c.isSubClass(sym.owner, types) &&
   412                      (c.flags() & INTERFACE) == 0 &&
   413                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   414                      // only to instance fields and methods -- types are excluded
   415                      // regardless of whether they are declared 'static' or not.
   416                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   417                 c = c.owner.enclClass();
   418             return c != null;
   419         }
   421     /** Try to instantiate the type of a method so that it fits
   422      *  given type arguments and argument types. If succesful, return
   423      *  the method's instantiated type, else return null.
   424      *  The instantiation will take into account an additional leading
   425      *  formal parameter if the method is an instance method seen as a member
   426      *  of un underdetermined site In this case, we treat site as an additional
   427      *  parameter and the parameters of the class containing the method as
   428      *  additional type variables that get instantiated.
   429      *
   430      *  @param env         The current environment
   431      *  @param site        The type of which the method is a member.
   432      *  @param m           The method symbol.
   433      *  @param argtypes    The invocation's given value arguments.
   434      *  @param typeargtypes    The invocation's given type arguments.
   435      *  @param allowBoxing Allow boxing conversions of arguments.
   436      *  @param useVarargs Box trailing arguments into an array for varargs.
   437      */
   438     Type rawInstantiate(Env<AttrContext> env,
   439                         Type site,
   440                         Symbol m,
   441                         ResultInfo resultInfo,
   442                         List<Type> argtypes,
   443                         List<Type> typeargtypes,
   444                         boolean allowBoxing,
   445                         boolean useVarargs,
   446                         Warner warn)
   447         throws Infer.InferenceException {
   448         if (useVarargs && (m.flags() & VARARGS) == 0)
   449             throw inapplicableMethodException.setMessage();
   450         Type mt = types.memberType(site, m);
   452         // tvars is the list of formal type variables for which type arguments
   453         // need to inferred.
   454         List<Type> tvars = List.nil();
   455         if (typeargtypes == null) typeargtypes = List.nil();
   456         if (mt.tag != FORALL && typeargtypes.nonEmpty()) {
   457             // This is not a polymorphic method, but typeargs are supplied
   458             // which is fine, see JLS 15.12.2.1
   459         } else if (mt.tag == FORALL && typeargtypes.nonEmpty()) {
   460             ForAll pmt = (ForAll) mt;
   461             if (typeargtypes.length() != pmt.tvars.length())
   462                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   463             // Check type arguments are within bounds
   464             List<Type> formals = pmt.tvars;
   465             List<Type> actuals = typeargtypes;
   466             while (formals.nonEmpty() && actuals.nonEmpty()) {
   467                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   468                                                 pmt.tvars, typeargtypes);
   469                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   470                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   471                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   472                 formals = formals.tail;
   473                 actuals = actuals.tail;
   474             }
   475             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   476         } else if (mt.tag == FORALL) {
   477             ForAll pmt = (ForAll) mt;
   478             List<Type> tvars1 = types.newInstances(pmt.tvars);
   479             tvars = tvars.appendList(tvars1);
   480             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   481         }
   483         // find out whether we need to go the slow route via infer
   484         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   485         for (List<Type> l = argtypes;
   486              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   487              l = l.tail) {
   488             if (l.head.tag == FORALL) instNeeded = true;
   489         }
   491         if (instNeeded)
   492             return infer.instantiateMethod(env,
   493                                     tvars,
   494                                     (MethodType)mt,
   495                                     resultInfo,
   496                                     m,
   497                                     argtypes,
   498                                     allowBoxing,
   499                                     useVarargs,
   500                                     warn);
   502         checkRawArgumentsAcceptable(env, argtypes, mt.getParameterTypes(),
   503                                 allowBoxing, useVarargs, warn);
   504         return mt;
   505     }
   507     /** Same but returns null instead throwing a NoInstanceException
   508      */
   509     Type instantiate(Env<AttrContext> env,
   510                      Type site,
   511                      Symbol m,
   512                      ResultInfo resultInfo,
   513                      List<Type> argtypes,
   514                      List<Type> typeargtypes,
   515                      boolean allowBoxing,
   516                      boolean useVarargs,
   517                      Warner warn) {
   518         try {
   519             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   520                                   allowBoxing, useVarargs, warn);
   521         } catch (InapplicableMethodException ex) {
   522             return null;
   523         }
   524     }
   526     /** Check if a parameter list accepts a list of args.
   527      */
   528     boolean argumentsAcceptable(Env<AttrContext> env,
   529                                 List<Type> argtypes,
   530                                 List<Type> formals,
   531                                 boolean allowBoxing,
   532                                 boolean useVarargs,
   533                                 Warner warn) {
   534         try {
   535             checkRawArgumentsAcceptable(env, argtypes, formals, allowBoxing, useVarargs, warn);
   536             return true;
   537         } catch (InapplicableMethodException ex) {
   538             return false;
   539         }
   540     }
   541     /**
   542      * A check handler is used by the main method applicability routine in order
   543      * to handle specific method applicability failures. It is assumed that a class
   544      * implementing this interface should throw exceptions that are a subtype of
   545      * InapplicableMethodException (see below). Such exception will terminate the
   546      * method applicability check and propagate important info outwards (for the
   547      * purpose of generating better diagnostics).
   548      */
   549     interface MethodCheckHandler {
   550         /* The number of actuals and formals differ */
   551         InapplicableMethodException arityMismatch();
   552         /* An actual argument type does not conform to the corresponding formal type */
   553         InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details);
   554         /* The element type of a varargs is not accessible in the current context */
   555         InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected);
   556     }
   558     /**
   559      * Basic method check handler used within Resolve - all methods end up
   560      * throwing InapplicableMethodException; a diagnostic fragment that describes
   561      * the cause as to why the method is not applicable is set on the exception
   562      * before it is thrown.
   563      */
   564     MethodCheckHandler resolveHandler = new MethodCheckHandler() {
   565             public InapplicableMethodException arityMismatch() {
   566                 return inapplicableMethodException.setMessage("arg.length.mismatch");
   567             }
   568             public InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details) {
   569                 String key = varargs ?
   570                         "varargs.argument.mismatch" :
   571                         "no.conforming.assignment.exists";
   572                 return inapplicableMethodException.setMessage(key,
   573                         details);
   574             }
   575             public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
   576                 return inapplicableMethodException.setMessage("inaccessible.varargs.type",
   577                         expected, Kinds.kindName(location), location);
   578             }
   579     };
   581     void checkRawArgumentsAcceptable(Env<AttrContext> env,
   582                                 List<Type> argtypes,
   583                                 List<Type> formals,
   584                                 boolean allowBoxing,
   585                                 boolean useVarargs,
   586                                 Warner warn) {
   587         checkRawArgumentsAcceptable(env, List.<Type>nil(), argtypes, formals,
   588                 allowBoxing, useVarargs, warn, resolveHandler);
   589     }
   591     /**
   592      * Main method applicability routine. Given a list of actual types A,
   593      * a list of formal types F, determines whether the types in A are
   594      * compatible (by method invocation conversion) with the types in F.
   595      *
   596      * Since this routine is shared between overload resolution and method
   597      * type-inference, it is crucial that actual types are converted to the
   598      * corresponding 'undet' form (i.e. where inference variables are replaced
   599      * with undetvars) so that constraints can be propagated and collected.
   600      *
   601      * Moreover, if one or more types in A is a poly type, this routine calls
   602      * Infer.instantiateArg in order to complete the poly type (this might involve
   603      * deferred attribution).
   604      *
   605      * A method check handler (see above) is used in order to report errors.
   606      */
   607     List<Type> checkRawArgumentsAcceptable(Env<AttrContext> env,
   608                                 List<Type> undetvars,
   609                                 List<Type> argtypes,
   610                                 List<Type> formals,
   611                                 boolean allowBoxing,
   612                                 boolean useVarargs,
   613                                 Warner warn,
   614                                 MethodCheckHandler handler) {
   615         Type varargsFormal = useVarargs ? formals.last() : null;
   616         ListBuffer<Type> checkedArgs = ListBuffer.lb();
   618         if (varargsFormal == null &&
   619                 argtypes.size() != formals.size()) {
   620             throw handler.arityMismatch(); // not enough args
   621         }
   623         while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   624             ResultInfo resultInfo = methodCheckResult(formals.head, allowBoxing, false, undetvars, handler, warn);
   625             checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
   626             argtypes = argtypes.tail;
   627             formals = formals.tail;
   628         }
   630         if (formals.head != varargsFormal) {
   631             throw handler.arityMismatch(); // not enough args
   632         }
   634         if (useVarargs) {
   635             //note: if applicability check is triggered by most specific test,
   636             //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   637             Type elt = types.elemtype(varargsFormal);
   638             while (argtypes.nonEmpty()) {
   639                 ResultInfo resultInfo = methodCheckResult(elt, allowBoxing, true, undetvars, handler, warn);
   640                 checkedArgs.append(resultInfo.check(env.tree.pos(), argtypes.head));
   641                 argtypes = argtypes.tail;
   642             }
   643             //check varargs element type accessibility
   644             if (undetvars.isEmpty() && !isAccessible(env, elt)) {
   645                 Symbol location = env.enclClass.sym;
   646                 throw handler.inaccessibleVarargs(location, elt);
   647             }
   648         }
   649         return checkedArgs.toList();
   650     }
   652     /**
   653      * Check context to be used during method applicability checks. A method check
   654      * context might contain inference variables.
   655      */
   656     abstract class MethodCheckContext implements CheckContext {
   658         MethodCheckHandler handler;
   659         boolean useVarargs;
   660         List<Type> undetvars;
   661         Warner rsWarner;
   663         public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   664             this.handler = handler;
   665             this.useVarargs = useVarargs;
   666             this.undetvars = undetvars;
   667             this.rsWarner = rsWarner;
   668         }
   670         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   671             throw handler.argumentMismatch(useVarargs, details);
   672         }
   674         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   675             return rsWarner;
   676         }
   677     }
   679     /**
   680      * Subclass of method check context class that implements strict method conversion.
   681      * Strict method conversion checks compatibility between types using subtyping tests.
   682      */
   683     class StrictMethodContext extends MethodCheckContext {
   685         public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   686             super(handler, useVarargs, undetvars, rsWarner);
   687         }
   689         public boolean compatible(Type found, Type req, Warner warn) {
   690             return types.isSubtypeUnchecked(found, infer.asUndetType(req, undetvars), warn);
   691         }
   692     }
   694     /**
   695      * Subclass of method check context class that implements loose method conversion.
   696      * Loose method conversion checks compatibility between types using method conversion tests.
   697      */
   698     class LooseMethodContext extends MethodCheckContext {
   700         public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs, List<Type> undetvars, Warner rsWarner) {
   701             super(handler, useVarargs, undetvars, rsWarner);
   702         }
   704         public boolean compatible(Type found, Type req, Warner warn) {
   705             return types.isConvertible(found, infer.asUndetType(req, undetvars), warn);
   706         }
   707     }
   709     /**
   710      * Create a method check context to be used during method applicability check
   711      */
   712     ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
   713             List<Type> undetvars, MethodCheckHandler methodHandler, Warner rsWarner) {
   714         MethodCheckContext checkContext = allowBoxing ?
   715                 new LooseMethodContext(methodHandler, useVarargs, undetvars, rsWarner) :
   716                 new StrictMethodContext(methodHandler, useVarargs, undetvars, rsWarner);
   717         return attr.new ResultInfo(VAL, to, checkContext) {
   718             @Override
   719             protected Type check(DiagnosticPosition pos, Type found) {
   720                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found))));
   721             }
   722         };
   723     }
   725     public static class InapplicableMethodException extends RuntimeException {
   726         private static final long serialVersionUID = 0;
   728         JCDiagnostic diagnostic;
   729         JCDiagnostic.Factory diags;
   731         InapplicableMethodException(JCDiagnostic.Factory diags) {
   732             this.diagnostic = null;
   733             this.diags = diags;
   734         }
   735         InapplicableMethodException setMessage() {
   736             this.diagnostic = null;
   737             return this;
   738         }
   739         InapplicableMethodException setMessage(String key) {
   740             this.diagnostic = key != null ? diags.fragment(key) : null;
   741             return this;
   742         }
   743         InapplicableMethodException setMessage(String key, Object... args) {
   744             this.diagnostic = key != null ? diags.fragment(key, args) : null;
   745             return this;
   746         }
   747         InapplicableMethodException setMessage(JCDiagnostic diag) {
   748             this.diagnostic = diag;
   749             return this;
   750         }
   752         public JCDiagnostic getDiagnostic() {
   753             return diagnostic;
   754         }
   755     }
   756     private final InapplicableMethodException inapplicableMethodException;
   758 /* ***************************************************************************
   759  *  Symbol lookup
   760  *  the following naming conventions for arguments are used
   761  *
   762  *       env      is the environment where the symbol was mentioned
   763  *       site     is the type of which the symbol is a member
   764  *       name     is the symbol's name
   765  *                if no arguments are given
   766  *       argtypes are the value arguments, if we search for a method
   767  *
   768  *  If no symbol was found, a ResolveError detailing the problem is returned.
   769  ****************************************************************************/
   771     /** Find field. Synthetic fields are always skipped.
   772      *  @param env     The current environment.
   773      *  @param site    The original type from where the selection takes place.
   774      *  @param name    The name of the field.
   775      *  @param c       The class to search for the field. This is always
   776      *                 a superclass or implemented interface of site's class.
   777      */
   778     Symbol findField(Env<AttrContext> env,
   779                      Type site,
   780                      Name name,
   781                      TypeSymbol c) {
   782         while (c.type.tag == TYPEVAR)
   783             c = c.type.getUpperBound().tsym;
   784         Symbol bestSoFar = varNotFound;
   785         Symbol sym;
   786         Scope.Entry e = c.members().lookup(name);
   787         while (e.scope != null) {
   788             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   789                 return isAccessible(env, site, e.sym)
   790                     ? e.sym : new AccessError(env, site, e.sym);
   791             }
   792             e = e.next();
   793         }
   794         Type st = types.supertype(c.type);
   795         if (st != null && (st.tag == CLASS || st.tag == TYPEVAR)) {
   796             sym = findField(env, site, name, st.tsym);
   797             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   798         }
   799         for (List<Type> l = types.interfaces(c.type);
   800              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   801              l = l.tail) {
   802             sym = findField(env, site, name, l.head.tsym);
   803             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   804                 sym.owner != bestSoFar.owner)
   805                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   806             else if (sym.kind < bestSoFar.kind)
   807                 bestSoFar = sym;
   808         }
   809         return bestSoFar;
   810     }
   812     /** Resolve a field identifier, throw a fatal error if not found.
   813      *  @param pos       The position to use for error reporting.
   814      *  @param env       The environment current at the method invocation.
   815      *  @param site      The type of the qualifying expression, in which
   816      *                   identifier is searched.
   817      *  @param name      The identifier's name.
   818      */
   819     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   820                                           Type site, Name name) {
   821         Symbol sym = findField(env, site, name, site.tsym);
   822         if (sym.kind == VAR) return (VarSymbol)sym;
   823         else throw new FatalError(
   824                  diags.fragment("fatal.err.cant.locate.field",
   825                                 name));
   826     }
   828     /** Find unqualified variable or field with given name.
   829      *  Synthetic fields always skipped.
   830      *  @param env     The current environment.
   831      *  @param name    The name of the variable or field.
   832      */
   833     Symbol findVar(Env<AttrContext> env, Name name) {
   834         Symbol bestSoFar = varNotFound;
   835         Symbol sym;
   836         Env<AttrContext> env1 = env;
   837         boolean staticOnly = false;
   838         while (env1.outer != null) {
   839             if (isStatic(env1)) staticOnly = true;
   840             Scope.Entry e = env1.info.scope.lookup(name);
   841             while (e.scope != null &&
   842                    (e.sym.kind != VAR ||
   843                     (e.sym.flags_field & SYNTHETIC) != 0))
   844                 e = e.next();
   845             sym = (e.scope != null)
   846                 ? e.sym
   847                 : findField(
   848                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   849             if (sym.exists()) {
   850                 if (staticOnly &&
   851                     sym.kind == VAR &&
   852                     sym.owner.kind == TYP &&
   853                     (sym.flags() & STATIC) == 0)
   854                     return new StaticError(sym);
   855                 else
   856                     return sym;
   857             } else if (sym.kind < bestSoFar.kind) {
   858                 bestSoFar = sym;
   859             }
   861             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   862             env1 = env1.outer;
   863         }
   865         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   866         if (sym.exists())
   867             return sym;
   868         if (bestSoFar.exists())
   869             return bestSoFar;
   871         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   872         for (; e.scope != null; e = e.next()) {
   873             sym = e.sym;
   874             Type origin = e.getOrigin().owner.type;
   875             if (sym.kind == VAR) {
   876                 if (e.sym.owner.type != origin)
   877                     sym = sym.clone(e.getOrigin().owner);
   878                 return isAccessible(env, origin, sym)
   879                     ? sym : new AccessError(env, origin, sym);
   880             }
   881         }
   883         Symbol origin = null;
   884         e = env.toplevel.starImportScope.lookup(name);
   885         for (; e.scope != null; e = e.next()) {
   886             sym = e.sym;
   887             if (sym.kind != VAR)
   888                 continue;
   889             // invariant: sym.kind == VAR
   890             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
   891                 return new AmbiguityError(bestSoFar, sym);
   892             else if (bestSoFar.kind >= VAR) {
   893                 origin = e.getOrigin().owner;
   894                 bestSoFar = isAccessible(env, origin.type, sym)
   895                     ? sym : new AccessError(env, origin.type, sym);
   896             }
   897         }
   898         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
   899             return bestSoFar.clone(origin);
   900         else
   901             return bestSoFar;
   902     }
   904     Warner noteWarner = new Warner();
   906     /** Select the best method for a call site among two choices.
   907      *  @param env              The current environment.
   908      *  @param site             The original type from where the
   909      *                          selection takes place.
   910      *  @param argtypes         The invocation's value arguments,
   911      *  @param typeargtypes     The invocation's type arguments,
   912      *  @param sym              Proposed new best match.
   913      *  @param bestSoFar        Previously found best match.
   914      *  @param allowBoxing Allow boxing conversions of arguments.
   915      *  @param useVarargs Box trailing arguments into an array for varargs.
   916      */
   917     @SuppressWarnings("fallthrough")
   918     Symbol selectBest(Env<AttrContext> env,
   919                       Type site,
   920                       List<Type> argtypes,
   921                       List<Type> typeargtypes,
   922                       Symbol sym,
   923                       Symbol bestSoFar,
   924                       boolean allowBoxing,
   925                       boolean useVarargs,
   926                       boolean operator) {
   927         if (sym.kind == ERR) return bestSoFar;
   928         if (!sym.isInheritedIn(site.tsym, types)) return bestSoFar;
   929         Assert.check(sym.kind < AMBIGUOUS);
   930         try {
   931             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
   932                                allowBoxing, useVarargs, Warner.noWarnings);
   933             if (!operator)
   934                 currentResolutionContext.addApplicableCandidate(sym, mt);
   935         } catch (InapplicableMethodException ex) {
   936             if (!operator)
   937                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
   938             switch (bestSoFar.kind) {
   939             case ABSENT_MTH:
   940                 return wrongMethod;
   941             case WRONG_MTH:
   942                 if (operator) return bestSoFar;
   943             case WRONG_MTHS:
   944                 return wrongMethods;
   945             default:
   946                 return bestSoFar;
   947             }
   948         }
   949         if (!isAccessible(env, site, sym)) {
   950             return (bestSoFar.kind == ABSENT_MTH)
   951                 ? new AccessError(env, site, sym)
   952                 : bestSoFar;
   953         }
   954         return (bestSoFar.kind > AMBIGUOUS)
   955             ? sym
   956             : mostSpecific(sym, bestSoFar, env, site,
   957                            allowBoxing && operator, useVarargs);
   958     }
   960     /* Return the most specific of the two methods for a call,
   961      *  given that both are accessible and applicable.
   962      *  @param m1               A new candidate for most specific.
   963      *  @param m2               The previous most specific candidate.
   964      *  @param env              The current environment.
   965      *  @param site             The original type from where the selection
   966      *                          takes place.
   967      *  @param allowBoxing Allow boxing conversions of arguments.
   968      *  @param useVarargs Box trailing arguments into an array for varargs.
   969      */
   970     Symbol mostSpecific(Symbol m1,
   971                         Symbol m2,
   972                         Env<AttrContext> env,
   973                         final Type site,
   974                         boolean allowBoxing,
   975                         boolean useVarargs) {
   976         switch (m2.kind) {
   977         case MTH:
   978             if (m1 == m2) return m1;
   979             boolean m1SignatureMoreSpecific = signatureMoreSpecific(env, site, m1, m2, allowBoxing, useVarargs);
   980             boolean m2SignatureMoreSpecific = signatureMoreSpecific(env, site, m2, m1, allowBoxing, useVarargs);
   981             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
   982                 Type mt1 = types.memberType(site, m1);
   983                 Type mt2 = types.memberType(site, m2);
   984                 if (!types.overrideEquivalent(mt1, mt2))
   985                     return ambiguityError(m1, m2);
   987                 // same signature; select (a) the non-bridge method, or
   988                 // (b) the one that overrides the other, or (c) the concrete
   989                 // one, or (d) merge both abstract signatures
   990                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
   991                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
   993                 // if one overrides or hides the other, use it
   994                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
   995                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
   996                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
   997                     ((m1.owner.flags_field & INTERFACE) == 0 ||
   998                      (m2.owner.flags_field & INTERFACE) != 0) &&
   999                     m1.overrides(m2, m1Owner, types, false))
  1000                     return m1;
  1001                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1002                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1003                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1004                     m2.overrides(m1, m2Owner, types, false))
  1005                     return m2;
  1006                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1007                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1008                 if (m1Abstract && !m2Abstract) return m2;
  1009                 if (m2Abstract && !m1Abstract) return m1;
  1010                 // both abstract or both concrete
  1011                 if (!m1Abstract && !m2Abstract)
  1012                     return ambiguityError(m1, m2);
  1013                 // check that both signatures have the same erasure
  1014                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1015                                        m2.erasure(types).getParameterTypes()))
  1016                     return ambiguityError(m1, m2);
  1017                 // both abstract, neither overridden; merge throws clause and result type
  1018                 Type mst = mostSpecificReturnType(mt1, mt2);
  1019                 if (mst == null) {
  1020                     // Theoretically, this can't happen, but it is possible
  1021                     // due to error recovery or mixing incompatible class files
  1022                     return ambiguityError(m1, m2);
  1024                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1025                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1026                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1027                 MethodSymbol result = new MethodSymbol(
  1028                         mostSpecific.flags(),
  1029                         mostSpecific.name,
  1030                         newSig,
  1031                         mostSpecific.owner) {
  1032                     @Override
  1033                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1034                         if (origin == site.tsym)
  1035                             return this;
  1036                         else
  1037                             return super.implementation(origin, types, checkResult);
  1039                 };
  1040                 return result;
  1042             if (m1SignatureMoreSpecific) return m1;
  1043             if (m2SignatureMoreSpecific) return m2;
  1044             return ambiguityError(m1, m2);
  1045         case AMBIGUOUS:
  1046             AmbiguityError e = (AmbiguityError)m2;
  1047             Symbol err1 = mostSpecific(m1, e.sym, env, site, allowBoxing, useVarargs);
  1048             Symbol err2 = mostSpecific(m1, e.sym2, env, site, allowBoxing, useVarargs);
  1049             if (err1 == err2) return err1;
  1050             if (err1 == e.sym && err2 == e.sym2) return m2;
  1051             if (err1 instanceof AmbiguityError &&
  1052                 err2 instanceof AmbiguityError &&
  1053                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1054                 return ambiguityError(m1, m2);
  1055             else
  1056                 return ambiguityError(err1, err2);
  1057         default:
  1058             throw new AssertionError();
  1061     //where
  1062     private boolean signatureMoreSpecific(Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1063         noteWarner.clear();
  1064         Type mtype1 = types.memberType(site, adjustVarargs(m1, m2, useVarargs));
  1065         Type mtype2 = instantiate(env, site, adjustVarargs(m2, m1, useVarargs), null,
  1066                 types.lowerBoundArgtypes(mtype1), null,
  1067                 allowBoxing, false, noteWarner);
  1068         return mtype2 != null &&
  1069                 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1071     //where
  1072     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1073         List<Type> fromArgs = from.type.getParameterTypes();
  1074         List<Type> toArgs = to.type.getParameterTypes();
  1075         if (useVarargs &&
  1076                 (from.flags() & VARARGS) != 0 &&
  1077                 (to.flags() & VARARGS) != 0) {
  1078             Type varargsTypeFrom = fromArgs.last();
  1079             Type varargsTypeTo = toArgs.last();
  1080             ListBuffer<Type> args = ListBuffer.lb();
  1081             if (toArgs.length() < fromArgs.length()) {
  1082                 //if we are checking a varargs method 'from' against another varargs
  1083                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1084                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1085                 //until 'to' signature has the same arity as 'from')
  1086                 while (fromArgs.head != varargsTypeFrom) {
  1087                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1088                     fromArgs = fromArgs.tail;
  1089                     toArgs = toArgs.head == varargsTypeTo ?
  1090                         toArgs :
  1091                         toArgs.tail;
  1093             } else {
  1094                 //formal argument list is same as original list where last
  1095                 //argument (array type) is removed
  1096                 args.appendList(toArgs.reverse().tail.reverse());
  1098             //append varargs element type as last synthetic formal
  1099             args.append(types.elemtype(varargsTypeTo));
  1100             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1101             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1102         } else {
  1103             return to;
  1106     //where
  1107     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1108         Type rt1 = mt1.getReturnType();
  1109         Type rt2 = mt2.getReturnType();
  1111         if (mt1.tag == FORALL && mt2.tag == FORALL) {
  1112             //if both are generic methods, adjust return type ahead of subtyping check
  1113             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1115         //first use subtyping, then return type substitutability
  1116         if (types.isSubtype(rt1, rt2)) {
  1117             return mt1;
  1118         } else if (types.isSubtype(rt2, rt1)) {
  1119             return mt2;
  1120         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1121             return mt1;
  1122         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1123             return mt2;
  1124         } else {
  1125             return null;
  1128     //where
  1129     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1130         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1131             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1132         } else {
  1133             return new AmbiguityError(m1, m2);
  1137     /** Find best qualified method matching given name, type and value
  1138      *  arguments.
  1139      *  @param env       The current environment.
  1140      *  @param site      The original type from where the selection
  1141      *                   takes place.
  1142      *  @param name      The method's name.
  1143      *  @param argtypes  The method's value arguments.
  1144      *  @param typeargtypes The method's type arguments
  1145      *  @param allowBoxing Allow boxing conversions of arguments.
  1146      *  @param useVarargs Box trailing arguments into an array for varargs.
  1147      */
  1148     Symbol findMethod(Env<AttrContext> env,
  1149                       Type site,
  1150                       Name name,
  1151                       List<Type> argtypes,
  1152                       List<Type> typeargtypes,
  1153                       boolean allowBoxing,
  1154                       boolean useVarargs,
  1155                       boolean operator) {
  1156         Symbol bestSoFar = methodNotFound;
  1157         bestSoFar = findMethod(env,
  1158                           site,
  1159                           name,
  1160                           argtypes,
  1161                           typeargtypes,
  1162                           site.tsym.type,
  1163                           true,
  1164                           bestSoFar,
  1165                           allowBoxing,
  1166                           useVarargs,
  1167                           operator,
  1168                           new HashSet<TypeSymbol>());
  1169         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1170         return bestSoFar;
  1172     // where
  1173     private Symbol findMethod(Env<AttrContext> env,
  1174                               Type site,
  1175                               Name name,
  1176                               List<Type> argtypes,
  1177                               List<Type> typeargtypes,
  1178                               Type intype,
  1179                               boolean abstractok,
  1180                               Symbol bestSoFar,
  1181                               boolean allowBoxing,
  1182                               boolean useVarargs,
  1183                               boolean operator,
  1184                               Set<TypeSymbol> seen) {
  1185         for (Type ct = intype; ct.tag == CLASS || ct.tag == TYPEVAR; ct = types.supertype(ct)) {
  1186             while (ct.tag == TYPEVAR)
  1187                 ct = ct.getUpperBound();
  1188             ClassSymbol c = (ClassSymbol)ct.tsym;
  1189             if (!seen.add(c)) return bestSoFar;
  1190             if ((c.flags() & (ABSTRACT | INTERFACE | ENUM)) == 0)
  1191                 abstractok = false;
  1192             for (Scope.Entry e = c.members().lookup(name);
  1193                  e.scope != null;
  1194                  e = e.next()) {
  1195                 //- System.out.println(" e " + e.sym);
  1196                 if (e.sym.kind == MTH &&
  1197                     (e.sym.flags_field & SYNTHETIC) == 0) {
  1198                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  1199                                            e.sym, bestSoFar,
  1200                                            allowBoxing,
  1201                                            useVarargs,
  1202                                            operator);
  1205             if (name == names.init)
  1206                 break;
  1207             //- System.out.println(" - " + bestSoFar);
  1208             if (abstractok) {
  1209                 Symbol concrete = methodNotFound;
  1210                 if ((bestSoFar.flags() & ABSTRACT) == 0)
  1211                     concrete = bestSoFar;
  1212                 for (List<Type> l = types.interfaces(c.type);
  1213                      l.nonEmpty();
  1214                      l = l.tail) {
  1215                     bestSoFar = findMethod(env, site, name, argtypes,
  1216                                            typeargtypes,
  1217                                            l.head, abstractok, bestSoFar,
  1218                                            allowBoxing, useVarargs, operator, seen);
  1220                 if (concrete != bestSoFar &&
  1221                     concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1222                     types.isSubSignature(concrete.type, bestSoFar.type))
  1223                     bestSoFar = concrete;
  1226         return bestSoFar;
  1229     /** Find unqualified method matching given name, type and value arguments.
  1230      *  @param env       The current environment.
  1231      *  @param name      The method's name.
  1232      *  @param argtypes  The method's value arguments.
  1233      *  @param typeargtypes  The method's type arguments.
  1234      *  @param allowBoxing Allow boxing conversions of arguments.
  1235      *  @param useVarargs Box trailing arguments into an array for varargs.
  1236      */
  1237     Symbol findFun(Env<AttrContext> env, Name name,
  1238                    List<Type> argtypes, List<Type> typeargtypes,
  1239                    boolean allowBoxing, boolean useVarargs) {
  1240         Symbol bestSoFar = methodNotFound;
  1241         Symbol sym;
  1242         Env<AttrContext> env1 = env;
  1243         boolean staticOnly = false;
  1244         while (env1.outer != null) {
  1245             if (isStatic(env1)) staticOnly = true;
  1246             sym = findMethod(
  1247                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1248                 allowBoxing, useVarargs, false);
  1249             if (sym.exists()) {
  1250                 if (staticOnly &&
  1251                     sym.kind == MTH &&
  1252                     sym.owner.kind == TYP &&
  1253                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1254                 else return sym;
  1255             } else if (sym.kind < bestSoFar.kind) {
  1256                 bestSoFar = sym;
  1258             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1259             env1 = env1.outer;
  1262         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1263                          typeargtypes, allowBoxing, useVarargs, false);
  1264         if (sym.exists())
  1265             return sym;
  1267         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1268         for (; e.scope != null; e = e.next()) {
  1269             sym = e.sym;
  1270             Type origin = e.getOrigin().owner.type;
  1271             if (sym.kind == MTH) {
  1272                 if (e.sym.owner.type != origin)
  1273                     sym = sym.clone(e.getOrigin().owner);
  1274                 if (!isAccessible(env, origin, sym))
  1275                     sym = new AccessError(env, origin, sym);
  1276                 bestSoFar = selectBest(env, origin,
  1277                                        argtypes, typeargtypes,
  1278                                        sym, bestSoFar,
  1279                                        allowBoxing, useVarargs, false);
  1282         if (bestSoFar.exists())
  1283             return bestSoFar;
  1285         e = env.toplevel.starImportScope.lookup(name);
  1286         for (; e.scope != null; e = e.next()) {
  1287             sym = e.sym;
  1288             Type origin = e.getOrigin().owner.type;
  1289             if (sym.kind == MTH) {
  1290                 if (e.sym.owner.type != origin)
  1291                     sym = sym.clone(e.getOrigin().owner);
  1292                 if (!isAccessible(env, origin, sym))
  1293                     sym = new AccessError(env, origin, sym);
  1294                 bestSoFar = selectBest(env, origin,
  1295                                        argtypes, typeargtypes,
  1296                                        sym, bestSoFar,
  1297                                        allowBoxing, useVarargs, false);
  1300         return bestSoFar;
  1303     /** Load toplevel or member class with given fully qualified name and
  1304      *  verify that it is accessible.
  1305      *  @param env       The current environment.
  1306      *  @param name      The fully qualified name of the class to be loaded.
  1307      */
  1308     Symbol loadClass(Env<AttrContext> env, Name name) {
  1309         try {
  1310             ClassSymbol c = reader.loadClass(name);
  1311             return isAccessible(env, c) ? c : new AccessError(c);
  1312         } catch (ClassReader.BadClassFile err) {
  1313             throw err;
  1314         } catch (CompletionFailure ex) {
  1315             return typeNotFound;
  1319     /** Find qualified member type.
  1320      *  @param env       The current environment.
  1321      *  @param site      The original type from where the selection takes
  1322      *                   place.
  1323      *  @param name      The type's name.
  1324      *  @param c         The class to search for the member type. This is
  1325      *                   always a superclass or implemented interface of
  1326      *                   site's class.
  1327      */
  1328     Symbol findMemberType(Env<AttrContext> env,
  1329                           Type site,
  1330                           Name name,
  1331                           TypeSymbol c) {
  1332         Symbol bestSoFar = typeNotFound;
  1333         Symbol sym;
  1334         Scope.Entry e = c.members().lookup(name);
  1335         while (e.scope != null) {
  1336             if (e.sym.kind == TYP) {
  1337                 return isAccessible(env, site, e.sym)
  1338                     ? e.sym
  1339                     : new AccessError(env, site, e.sym);
  1341             e = e.next();
  1343         Type st = types.supertype(c.type);
  1344         if (st != null && st.tag == CLASS) {
  1345             sym = findMemberType(env, site, name, st.tsym);
  1346             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1348         for (List<Type> l = types.interfaces(c.type);
  1349              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1350              l = l.tail) {
  1351             sym = findMemberType(env, site, name, l.head.tsym);
  1352             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1353                 sym.owner != bestSoFar.owner)
  1354                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1355             else if (sym.kind < bestSoFar.kind)
  1356                 bestSoFar = sym;
  1358         return bestSoFar;
  1361     /** Find a global type in given scope and load corresponding class.
  1362      *  @param env       The current environment.
  1363      *  @param scope     The scope in which to look for the type.
  1364      *  @param name      The type's name.
  1365      */
  1366     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1367         Symbol bestSoFar = typeNotFound;
  1368         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1369             Symbol sym = loadClass(env, e.sym.flatName());
  1370             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1371                 bestSoFar != sym)
  1372                 return new AmbiguityError(bestSoFar, sym);
  1373             else if (sym.kind < bestSoFar.kind)
  1374                 bestSoFar = sym;
  1376         return bestSoFar;
  1379     /** Find an unqualified type symbol.
  1380      *  @param env       The current environment.
  1381      *  @param name      The type's name.
  1382      */
  1383     Symbol findType(Env<AttrContext> env, Name name) {
  1384         Symbol bestSoFar = typeNotFound;
  1385         Symbol sym;
  1386         boolean staticOnly = false;
  1387         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1388             if (isStatic(env1)) staticOnly = true;
  1389             for (Scope.Entry e = env1.info.scope.lookup(name);
  1390                  e.scope != null;
  1391                  e = e.next()) {
  1392                 if (e.sym.kind == TYP) {
  1393                     if (staticOnly &&
  1394                         e.sym.type.tag == TYPEVAR &&
  1395                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1396                     return e.sym;
  1400             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1401                                  env1.enclClass.sym);
  1402             if (staticOnly && sym.kind == TYP &&
  1403                 sym.type.tag == CLASS &&
  1404                 sym.type.getEnclosingType().tag == CLASS &&
  1405                 env1.enclClass.sym.type.isParameterized() &&
  1406                 sym.type.getEnclosingType().isParameterized())
  1407                 return new StaticError(sym);
  1408             else if (sym.exists()) return sym;
  1409             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1411             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1412             if ((encl.sym.flags() & STATIC) != 0)
  1413                 staticOnly = true;
  1416         if (!env.tree.hasTag(IMPORT)) {
  1417             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1418             if (sym.exists()) return sym;
  1419             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1421             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1422             if (sym.exists()) return sym;
  1423             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1425             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1426             if (sym.exists()) return sym;
  1427             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1430         return bestSoFar;
  1433     /** Find an unqualified identifier which matches a specified kind set.
  1434      *  @param env       The current environment.
  1435      *  @param name      The indentifier's name.
  1436      *  @param kind      Indicates the possible symbol kinds
  1437      *                   (a subset of VAL, TYP, PCK).
  1438      */
  1439     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1440         Symbol bestSoFar = typeNotFound;
  1441         Symbol sym;
  1443         if ((kind & VAR) != 0) {
  1444             sym = findVar(env, name);
  1445             if (sym.exists()) return sym;
  1446             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1449         if ((kind & TYP) != 0) {
  1450             sym = findType(env, name);
  1451             if (sym.exists()) return sym;
  1452             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1455         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1456         else return bestSoFar;
  1459     /** Find an identifier in a package which matches a specified kind set.
  1460      *  @param env       The current environment.
  1461      *  @param name      The identifier's name.
  1462      *  @param kind      Indicates the possible symbol kinds
  1463      *                   (a nonempty subset of TYP, PCK).
  1464      */
  1465     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1466                               Name name, int kind) {
  1467         Name fullname = TypeSymbol.formFullName(name, pck);
  1468         Symbol bestSoFar = typeNotFound;
  1469         PackageSymbol pack = null;
  1470         if ((kind & PCK) != 0) {
  1471             pack = reader.enterPackage(fullname);
  1472             if (pack.exists()) return pack;
  1474         if ((kind & TYP) != 0) {
  1475             Symbol sym = loadClass(env, fullname);
  1476             if (sym.exists()) {
  1477                 // don't allow programs to use flatnames
  1478                 if (name == sym.name) return sym;
  1480             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1482         return (pack != null) ? pack : bestSoFar;
  1485     /** Find an identifier among the members of a given type `site'.
  1486      *  @param env       The current environment.
  1487      *  @param site      The type containing the symbol to be found.
  1488      *  @param name      The identifier's name.
  1489      *  @param kind      Indicates the possible symbol kinds
  1490      *                   (a subset of VAL, TYP).
  1491      */
  1492     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1493                            Name name, int kind) {
  1494         Symbol bestSoFar = typeNotFound;
  1495         Symbol sym;
  1496         if ((kind & VAR) != 0) {
  1497             sym = findField(env, site, name, site.tsym);
  1498             if (sym.exists()) return sym;
  1499             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1502         if ((kind & TYP) != 0) {
  1503             sym = findMemberType(env, site, name, site.tsym);
  1504             if (sym.exists()) return sym;
  1505             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1507         return bestSoFar;
  1510 /* ***************************************************************************
  1511  *  Access checking
  1512  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1513  *  an error message in the process
  1514  ****************************************************************************/
  1516     /** If `sym' is a bad symbol: report error and return errSymbol
  1517      *  else pass through unchanged,
  1518      *  additional arguments duplicate what has been used in trying to find the
  1519      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  1520      *  expect misses to happen frequently.
  1522      *  @param sym       The symbol that was found, or a ResolveError.
  1523      *  @param pos       The position to use for error reporting.
  1524      *  @param site      The original type from where the selection took place.
  1525      *  @param name      The symbol's name.
  1526      *  @param argtypes  The invocation's value arguments,
  1527      *                   if we looked for a method.
  1528      *  @param typeargtypes  The invocation's type arguments,
  1529      *                   if we looked for a method.
  1530      */
  1531     Symbol access(Symbol sym,
  1532                   DiagnosticPosition pos,
  1533                   Symbol location,
  1534                   Type site,
  1535                   Name name,
  1536                   boolean qualified,
  1537                   List<Type> argtypes,
  1538                   List<Type> typeargtypes) {
  1539         if (sym.kind >= AMBIGUOUS) {
  1540             ResolveError errSym = (ResolveError)sym;
  1541             if (!site.isErroneous() &&
  1542                 !Type.isErroneous(argtypes) &&
  1543                 (typeargtypes==null || !Type.isErroneous(typeargtypes)))
  1544                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1545             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1547         return sym;
  1550     /** Same as original access(), but without location.
  1551      */
  1552     Symbol access(Symbol sym,
  1553                   DiagnosticPosition pos,
  1554                   Type site,
  1555                   Name name,
  1556                   boolean qualified,
  1557                   List<Type> argtypes,
  1558                   List<Type> typeargtypes) {
  1559         return access(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1562     /** Same as original access(), but without type arguments and arguments.
  1563      */
  1564     Symbol access(Symbol sym,
  1565                   DiagnosticPosition pos,
  1566                   Symbol location,
  1567                   Type site,
  1568                   Name name,
  1569                   boolean qualified) {
  1570         if (sym.kind >= AMBIGUOUS)
  1571             return access(sym, pos, location, site, name, qualified, List.<Type>nil(), null);
  1572         else
  1573             return sym;
  1576     /** Same as original access(), but without location, type arguments and arguments.
  1577      */
  1578     Symbol access(Symbol sym,
  1579                   DiagnosticPosition pos,
  1580                   Type site,
  1581                   Name name,
  1582                   boolean qualified) {
  1583         return access(sym, pos, site.tsym, site, name, qualified);
  1586     /** Check that sym is not an abstract method.
  1587      */
  1588     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1589         if ((sym.flags() & ABSTRACT) != 0)
  1590             log.error(pos, "abstract.cant.be.accessed.directly",
  1591                       kindName(sym), sym, sym.location());
  1594 /* ***************************************************************************
  1595  *  Debugging
  1596  ****************************************************************************/
  1598     /** print all scopes starting with scope s and proceeding outwards.
  1599      *  used for debugging.
  1600      */
  1601     public void printscopes(Scope s) {
  1602         while (s != null) {
  1603             if (s.owner != null)
  1604                 System.err.print(s.owner + ": ");
  1605             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1606                 if ((e.sym.flags() & ABSTRACT) != 0)
  1607                     System.err.print("abstract ");
  1608                 System.err.print(e.sym + " ");
  1610             System.err.println();
  1611             s = s.next;
  1615     void printscopes(Env<AttrContext> env) {
  1616         while (env.outer != null) {
  1617             System.err.println("------------------------------");
  1618             printscopes(env.info.scope);
  1619             env = env.outer;
  1623     public void printscopes(Type t) {
  1624         while (t.tag == CLASS) {
  1625             printscopes(t.tsym.members());
  1626             t = types.supertype(t);
  1630 /* ***************************************************************************
  1631  *  Name resolution
  1632  *  Naming conventions are as for symbol lookup
  1633  *  Unlike the find... methods these methods will report access errors
  1634  ****************************************************************************/
  1636     /** Resolve an unqualified (non-method) identifier.
  1637      *  @param pos       The position to use for error reporting.
  1638      *  @param env       The environment current at the identifier use.
  1639      *  @param name      The identifier's name.
  1640      *  @param kind      The set of admissible symbol kinds for the identifier.
  1641      */
  1642     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  1643                         Name name, int kind) {
  1644         return access(
  1645             findIdent(env, name, kind),
  1646             pos, env.enclClass.sym.type, name, false);
  1649     /** Resolve an unqualified method identifier.
  1650      *  @param pos       The position to use for error reporting.
  1651      *  @param env       The environment current at the method invocation.
  1652      *  @param name      The identifier's name.
  1653      *  @param argtypes  The types of the invocation's value arguments.
  1654      *  @param typeargtypes  The types of the invocation's type arguments.
  1655      */
  1656     Symbol resolveMethod(DiagnosticPosition pos,
  1657                          Env<AttrContext> env,
  1658                          Name name,
  1659                          List<Type> argtypes,
  1660                          List<Type> typeargtypes) {
  1661         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1662         try {
  1663             currentResolutionContext = new MethodResolutionContext();
  1664             Symbol sym = methodNotFound;
  1665             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1666             while (steps.nonEmpty() &&
  1667                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1668                    sym.kind >= ERRONEOUS) {
  1669                 currentResolutionContext.step = steps.head;
  1670                 sym = findFun(env, name, argtypes, typeargtypes,
  1671                         steps.head.isBoxingRequired,
  1672                         env.info.varArgs = steps.head.isVarargsRequired);
  1673                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1674                 steps = steps.tail;
  1676             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1677                 MethodResolutionPhase errPhase =
  1678                         currentResolutionContext.firstErroneousResolutionPhase();
  1679                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1680                         pos, env.enclClass.sym.type, name, false, argtypes, typeargtypes);
  1681                 env.info.varArgs = errPhase.isVarargsRequired;
  1683             return sym;
  1685         finally {
  1686             currentResolutionContext = prevResolutionContext;
  1690     /** Resolve a qualified method identifier
  1691      *  @param pos       The position to use for error reporting.
  1692      *  @param env       The environment current at the method invocation.
  1693      *  @param site      The type of the qualifying expression, in which
  1694      *                   identifier is searched.
  1695      *  @param name      The identifier's name.
  1696      *  @param argtypes  The types of the invocation's value arguments.
  1697      *  @param typeargtypes  The types of the invocation's type arguments.
  1698      */
  1699     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1700                                   Type site, Name name, List<Type> argtypes,
  1701                                   List<Type> typeargtypes) {
  1702         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  1704     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1705                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1706                                   List<Type> typeargtypes) {
  1707         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  1709     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  1710                                   DiagnosticPosition pos, Env<AttrContext> env,
  1711                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1712                                   List<Type> typeargtypes) {
  1713         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1714         try {
  1715             currentResolutionContext = resolveContext;
  1716             Symbol sym = methodNotFound;
  1717             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1718             while (steps.nonEmpty() &&
  1719                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1720                    sym.kind >= ERRONEOUS) {
  1721                 currentResolutionContext.step = steps.head;
  1722                 sym = findMethod(env, site, name, argtypes, typeargtypes,
  1723                         steps.head.isBoxingRequired(),
  1724                         env.info.varArgs = steps.head.isVarargsRequired(), false);
  1725                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1726                 steps = steps.tail;
  1728             if (sym.kind >= AMBIGUOUS) {
  1729                 //if nothing is found return the 'first' error
  1730                 MethodResolutionPhase errPhase =
  1731                         currentResolutionContext.firstErroneousResolutionPhase();
  1732                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1733                         pos, location, site, name, true, argtypes, typeargtypes);
  1734                 env.info.varArgs = errPhase.isVarargsRequired;
  1735             } else if (allowMethodHandles) {
  1736                 MethodSymbol msym = (MethodSymbol)sym;
  1737                 if (msym.isSignaturePolymorphic(types)) {
  1738                     env.info.varArgs = false;
  1739                     return findPolymorphicSignatureInstance(env, sym, argtypes);
  1742             return sym;
  1744         finally {
  1745             currentResolutionContext = prevResolutionContext;
  1749     /** Find or create an implicit method of exactly the given type (after erasure).
  1750      *  Searches in a side table, not the main scope of the site.
  1751      *  This emulates the lookup process required by JSR 292 in JVM.
  1752      *  @param env       Attribution environment
  1753      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  1754      *  @param argtypes  The required argument types
  1755      */
  1756     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  1757                                             Symbol spMethod,
  1758                                             List<Type> argtypes) {
  1759         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  1760                 (MethodSymbol)spMethod, argtypes);
  1761         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  1762             if (types.isSameType(mtype, sym.type)) {
  1763                return sym;
  1767         // create the desired method
  1768         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  1769         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner);
  1770         polymorphicSignatureScope.enter(msym);
  1771         return msym;
  1774     /** Resolve a qualified method identifier, throw a fatal error if not
  1775      *  found.
  1776      *  @param pos       The position to use for error reporting.
  1777      *  @param env       The environment current at the method invocation.
  1778      *  @param site      The type of the qualifying expression, in which
  1779      *                   identifier is searched.
  1780      *  @param name      The identifier's name.
  1781      *  @param argtypes  The types of the invocation's value arguments.
  1782      *  @param typeargtypes  The types of the invocation's type arguments.
  1783      */
  1784     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1785                                         Type site, Name name,
  1786                                         List<Type> argtypes,
  1787                                         List<Type> typeargtypes) {
  1788         MethodResolutionContext resolveContext = new MethodResolutionContext();
  1789         resolveContext.internalResolution = true;
  1790         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  1791                 site, name, argtypes, typeargtypes);
  1792         if (sym.kind == MTH) return (MethodSymbol)sym;
  1793         else throw new FatalError(
  1794                  diags.fragment("fatal.err.cant.locate.meth",
  1795                                 name));
  1798     /** Resolve constructor.
  1799      *  @param pos       The position to use for error reporting.
  1800      *  @param env       The environment current at the constructor invocation.
  1801      *  @param site      The type of class for which a constructor is searched.
  1802      *  @param argtypes  The types of the constructor invocation's value
  1803      *                   arguments.
  1804      *  @param typeargtypes  The types of the constructor invocation's type
  1805      *                   arguments.
  1806      */
  1807     Symbol resolveConstructor(DiagnosticPosition pos,
  1808                               Env<AttrContext> env,
  1809                               Type site,
  1810                               List<Type> argtypes,
  1811                               List<Type> typeargtypes) {
  1812         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  1814     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  1815                               DiagnosticPosition pos,
  1816                               Env<AttrContext> env,
  1817                               Type site,
  1818                               List<Type> argtypes,
  1819                               List<Type> typeargtypes) {
  1820         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1821         try {
  1822             currentResolutionContext = resolveContext;
  1823             Symbol sym = methodNotFound;
  1824             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1825             while (steps.nonEmpty() &&
  1826                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1827                    sym.kind >= ERRONEOUS) {
  1828                 currentResolutionContext.step = steps.head;
  1829                 sym = findConstructor(pos, env, site, argtypes, typeargtypes,
  1830                         steps.head.isBoxingRequired(),
  1831                         env.info.varArgs = steps.head.isVarargsRequired());
  1832                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1833                 steps = steps.tail;
  1835             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1836                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  1837                 sym = access(currentResolutionContext.resolutionCache.get(errPhase),
  1838                         pos, site, names.init, true, argtypes, typeargtypes);
  1839                 env.info.varArgs = errPhase.isVarargsRequired();
  1841             return sym;
  1843         finally {
  1844             currentResolutionContext = prevResolutionContext;
  1848     /** Resolve constructor using diamond inference.
  1849      *  @param pos       The position to use for error reporting.
  1850      *  @param env       The environment current at the constructor invocation.
  1851      *  @param site      The type of class for which a constructor is searched.
  1852      *                   The scope of this class has been touched in attribution.
  1853      *  @param argtypes  The types of the constructor invocation's value
  1854      *                   arguments.
  1855      *  @param typeargtypes  The types of the constructor invocation's type
  1856      *                   arguments.
  1857      */
  1858     Symbol resolveDiamond(DiagnosticPosition pos,
  1859                               Env<AttrContext> env,
  1860                               Type site,
  1861                               List<Type> argtypes,
  1862                               List<Type> typeargtypes) {
  1863         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1864         try {
  1865             currentResolutionContext = new MethodResolutionContext();
  1866             Symbol sym = methodNotFound;
  1867             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1868             while (steps.nonEmpty() &&
  1869                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1870                    sym.kind >= ERRONEOUS) {
  1871                 currentResolutionContext.step = steps.head;
  1872                 sym = findDiamond(env, site, argtypes, typeargtypes,
  1873                         steps.head.isBoxingRequired(),
  1874                         env.info.varArgs = steps.head.isVarargsRequired());
  1875                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1876                 steps = steps.tail;
  1878             if (sym.kind >= AMBIGUOUS) {
  1879                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
  1880                                 currentResolutionContext.candidates.head.details :
  1881                                 null;
  1882                 Symbol errSym = new ResolveError(WRONG_MTH, "diamond error") {
  1883                     @Override
  1884                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  1885                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  1886                         String key = details == null ?
  1887                             "cant.apply.diamond" :
  1888                             "cant.apply.diamond.1";
  1889                         return diags.create(dkind, log.currentSource(), pos, key,
  1890                                 diags.fragment("diamond", site.tsym), details);
  1892                 };
  1893                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  1894                 sym = access(errSym, pos, site, names.init, true, argtypes, typeargtypes);
  1895                 env.info.varArgs = errPhase.isVarargsRequired();
  1897             return sym;
  1899         finally {
  1900             currentResolutionContext = prevResolutionContext;
  1904     /** This method scans all the constructor symbol in a given class scope -
  1905      *  assuming that the original scope contains a constructor of the kind:
  1906      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  1907      *  a method check is executed against the modified constructor type:
  1908      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  1909      *  inference. The inferred return type of the synthetic constructor IS
  1910      *  the inferred type for the diamond operator.
  1911      */
  1912     private Symbol findDiamond(Env<AttrContext> env,
  1913                               Type site,
  1914                               List<Type> argtypes,
  1915                               List<Type> typeargtypes,
  1916                               boolean allowBoxing,
  1917                               boolean useVarargs) {
  1918         Symbol bestSoFar = methodNotFound;
  1919         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  1920              e.scope != null;
  1921              e = e.next()) {
  1922             //- System.out.println(" e " + e.sym);
  1923             if (e.sym.kind == MTH &&
  1924                 (e.sym.flags_field & SYNTHETIC) == 0) {
  1925                     List<Type> oldParams = e.sym.type.tag == FORALL ?
  1926                             ((ForAll)e.sym.type).tvars :
  1927                             List.<Type>nil();
  1928                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  1929                             types.createMethodTypeWithReturn(e.sym.type.asMethodType(), site));
  1930                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  1931                             new MethodSymbol(e.sym.flags(), names.init, constrType, site.tsym),
  1932                             bestSoFar,
  1933                             allowBoxing,
  1934                             useVarargs,
  1935                             false);
  1938         return bestSoFar;
  1941     /** Resolve constructor.
  1942      *  @param pos       The position to use for error reporting.
  1943      *  @param env       The environment current at the constructor invocation.
  1944      *  @param site      The type of class for which a constructor is searched.
  1945      *  @param argtypes  The types of the constructor invocation's value
  1946      *                   arguments.
  1947      *  @param typeargtypes  The types of the constructor invocation's type
  1948      *                   arguments.
  1949      *  @param allowBoxing Allow boxing and varargs conversions.
  1950      *  @param useVarargs Box trailing arguments into an array for varargs.
  1951      */
  1952     Symbol resolveConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1953                               Type site, List<Type> argtypes,
  1954                               List<Type> typeargtypes,
  1955                               boolean allowBoxing,
  1956                               boolean useVarargs) {
  1957         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1958         try {
  1959             currentResolutionContext = new MethodResolutionContext();
  1960             return findConstructor(pos, env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
  1962         finally {
  1963             currentResolutionContext = prevResolutionContext;
  1967     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1968                               Type site, List<Type> argtypes,
  1969                               List<Type> typeargtypes,
  1970                               boolean allowBoxing,
  1971                               boolean useVarargs) {
  1972         Symbol sym = findMethod(env, site,
  1973                                     names.init, argtypes,
  1974                                     typeargtypes, allowBoxing,
  1975                                     useVarargs, false);
  1976         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  1977         return sym;
  1980     /** Resolve a constructor, throw a fatal error if not found.
  1981      *  @param pos       The position to use for error reporting.
  1982      *  @param env       The environment current at the method invocation.
  1983      *  @param site      The type to be constructed.
  1984      *  @param argtypes  The types of the invocation's value arguments.
  1985      *  @param typeargtypes  The types of the invocation's type arguments.
  1986      */
  1987     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  1988                                         Type site,
  1989                                         List<Type> argtypes,
  1990                                         List<Type> typeargtypes) {
  1991         MethodResolutionContext resolveContext = new MethodResolutionContext();
  1992         resolveContext.internalResolution = true;
  1993         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  1994         if (sym.kind == MTH) return (MethodSymbol)sym;
  1995         else throw new FatalError(
  1996                  diags.fragment("fatal.err.cant.locate.ctor", site));
  1999     /** Resolve operator.
  2000      *  @param pos       The position to use for error reporting.
  2001      *  @param optag     The tag of the operation tree.
  2002      *  @param env       The environment current at the operation.
  2003      *  @param argtypes  The types of the operands.
  2004      */
  2005     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2006                            Env<AttrContext> env, List<Type> argtypes) {
  2007         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2008         try {
  2009             currentResolutionContext = new MethodResolutionContext();
  2010             Name name = treeinfo.operatorName(optag);
  2011             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2012                                     null, false, false, true);
  2013             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2014                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2015                                  null, true, false, true);
  2016             return access(sym, pos, env.enclClass.sym.type, name,
  2017                           false, argtypes, null);
  2019         finally {
  2020             currentResolutionContext = prevResolutionContext;
  2024     /** Resolve operator.
  2025      *  @param pos       The position to use for error reporting.
  2026      *  @param optag     The tag of the operation tree.
  2027      *  @param env       The environment current at the operation.
  2028      *  @param arg       The type of the operand.
  2029      */
  2030     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2031         return resolveOperator(pos, optag, env, List.of(arg));
  2034     /** Resolve binary operator.
  2035      *  @param pos       The position to use for error reporting.
  2036      *  @param optag     The tag of the operation tree.
  2037      *  @param env       The environment current at the operation.
  2038      *  @param left      The types of the left operand.
  2039      *  @param right     The types of the right operand.
  2040      */
  2041     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2042                                  JCTree.Tag optag,
  2043                                  Env<AttrContext> env,
  2044                                  Type left,
  2045                                  Type right) {
  2046         return resolveOperator(pos, optag, env, List.of(left, right));
  2049     /**
  2050      * Resolve `c.name' where name == this or name == super.
  2051      * @param pos           The position to use for error reporting.
  2052      * @param env           The environment current at the expression.
  2053      * @param c             The qualifier.
  2054      * @param name          The identifier's name.
  2055      */
  2056     Symbol resolveSelf(DiagnosticPosition pos,
  2057                        Env<AttrContext> env,
  2058                        TypeSymbol c,
  2059                        Name name) {
  2060         Env<AttrContext> env1 = env;
  2061         boolean staticOnly = false;
  2062         while (env1.outer != null) {
  2063             if (isStatic(env1)) staticOnly = true;
  2064             if (env1.enclClass.sym == c) {
  2065                 Symbol sym = env1.info.scope.lookup(name).sym;
  2066                 if (sym != null) {
  2067                     if (staticOnly) sym = new StaticError(sym);
  2068                     return access(sym, pos, env.enclClass.sym.type,
  2069                                   name, true);
  2072             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2073             env1 = env1.outer;
  2075         log.error(pos, "not.encl.class", c);
  2076         return syms.errSymbol;
  2079     /**
  2080      * Resolve `c.this' for an enclosing class c that contains the
  2081      * named member.
  2082      * @param pos           The position to use for error reporting.
  2083      * @param env           The environment current at the expression.
  2084      * @param member        The member that must be contained in the result.
  2085      */
  2086     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2087                                  Env<AttrContext> env,
  2088                                  Symbol member,
  2089                                  boolean isSuperCall) {
  2090         Name name = names._this;
  2091         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2092         boolean staticOnly = false;
  2093         if (env1 != null) {
  2094             while (env1 != null && env1.outer != null) {
  2095                 if (isStatic(env1)) staticOnly = true;
  2096                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2097                     Symbol sym = env1.info.scope.lookup(name).sym;
  2098                     if (sym != null) {
  2099                         if (staticOnly) sym = new StaticError(sym);
  2100                         return access(sym, pos, env.enclClass.sym.type,
  2101                                       name, true);
  2104                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2105                     staticOnly = true;
  2106                 env1 = env1.outer;
  2109         log.error(pos, "encl.class.required", member);
  2110         return syms.errSymbol;
  2113     /**
  2114      * Resolve an appropriate implicit this instance for t's container.
  2115      * JLS 8.8.5.1 and 15.9.2
  2116      */
  2117     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2118         return resolveImplicitThis(pos, env, t, false);
  2121     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2122         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2123                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2124                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2125         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2126             log.error(pos, "cant.ref.before.ctor.called", "this");
  2127         return thisType;
  2130 /* ***************************************************************************
  2131  *  ResolveError classes, indicating error situations when accessing symbols
  2132  ****************************************************************************/
  2134     //used by TransTypes when checking target type of synthetic cast
  2135     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2136         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2137         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2139     //where
  2140     private void logResolveError(ResolveError error,
  2141             DiagnosticPosition pos,
  2142             Symbol location,
  2143             Type site,
  2144             Name name,
  2145             List<Type> argtypes,
  2146             List<Type> typeargtypes) {
  2147         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2148                 pos, location, site, name, argtypes, typeargtypes);
  2149         if (d != null) {
  2150             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2151             log.report(d);
  2155     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2157     public Object methodArguments(List<Type> argtypes) {
  2158         return argtypes == null || argtypes.isEmpty() ? noArgs : argtypes;
  2161     /**
  2162      * Root class for resolution errors. Subclass of ResolveError
  2163      * represent a different kinds of resolution error - as such they must
  2164      * specify how they map into concrete compiler diagnostics.
  2165      */
  2166     private abstract class ResolveError extends Symbol {
  2168         /** The name of the kind of error, for debugging only. */
  2169         final String debugName;
  2171         ResolveError(int kind, String debugName) {
  2172             super(kind, 0, null, null, null);
  2173             this.debugName = debugName;
  2176         @Override
  2177         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2178             throw new AssertionError();
  2181         @Override
  2182         public String toString() {
  2183             return debugName;
  2186         @Override
  2187         public boolean exists() {
  2188             return false;
  2191         /**
  2192          * Create an external representation for this erroneous symbol to be
  2193          * used during attribution - by default this returns the symbol of a
  2194          * brand new error type which stores the original type found
  2195          * during resolution.
  2197          * @param name     the name used during resolution
  2198          * @param location the location from which the symbol is accessed
  2199          */
  2200         protected Symbol access(Name name, TypeSymbol location) {
  2201             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2204         /**
  2205          * Create a diagnostic representing this resolution error.
  2207          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2208          * @param pos       The position to be used for error reporting.
  2209          * @param site      The original type from where the selection took place.
  2210          * @param name      The name of the symbol to be resolved.
  2211          * @param argtypes  The invocation's value arguments,
  2212          *                  if we looked for a method.
  2213          * @param typeargtypes  The invocation's type arguments,
  2214          *                      if we looked for a method.
  2215          */
  2216         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2217                 DiagnosticPosition pos,
  2218                 Symbol location,
  2219                 Type site,
  2220                 Name name,
  2221                 List<Type> argtypes,
  2222                 List<Type> typeargtypes);
  2224         /**
  2225          * A name designates an operator if it consists
  2226          * of a non-empty sequence of operator symbols {@literal +-~!/*%&|^<>= }
  2227          */
  2228         boolean isOperator(Name name) {
  2229             int i = 0;
  2230             while (i < name.getByteLength() &&
  2231                    "+-~!*/%&|^<>=".indexOf(name.getByteAt(i)) >= 0) i++;
  2232             return i > 0 && i == name.getByteLength();
  2236     /**
  2237      * This class is the root class of all resolution errors caused by
  2238      * an invalid symbol being found during resolution.
  2239      */
  2240     abstract class InvalidSymbolError extends ResolveError {
  2242         /** The invalid symbol found during resolution */
  2243         Symbol sym;
  2245         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2246             super(kind, debugName);
  2247             this.sym = sym;
  2250         @Override
  2251         public boolean exists() {
  2252             return true;
  2255         @Override
  2256         public String toString() {
  2257              return super.toString() + " wrongSym=" + sym;
  2260         @Override
  2261         public Symbol access(Name name, TypeSymbol location) {
  2262             if (sym.kind >= AMBIGUOUS)
  2263                 return ((ResolveError)sym).access(name, location);
  2264             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  2265                 return types.createErrorType(name, location, sym.type).tsym;
  2266             else
  2267                 return sym;
  2271     /**
  2272      * InvalidSymbolError error class indicating that a symbol matching a
  2273      * given name does not exists in a given site.
  2274      */
  2275     class SymbolNotFoundError extends ResolveError {
  2277         SymbolNotFoundError(int kind) {
  2278             super(kind, "symbol not found error");
  2281         @Override
  2282         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2283                 DiagnosticPosition pos,
  2284                 Symbol location,
  2285                 Type site,
  2286                 Name name,
  2287                 List<Type> argtypes,
  2288                 List<Type> typeargtypes) {
  2289             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  2290             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  2291             if (name == names.error)
  2292                 return null;
  2294             if (isOperator(name)) {
  2295                 boolean isUnaryOp = argtypes.size() == 1;
  2296                 String key = argtypes.size() == 1 ?
  2297                     "operator.cant.be.applied" :
  2298                     "operator.cant.be.applied.1";
  2299                 Type first = argtypes.head;
  2300                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2301                 return diags.create(dkind, log.currentSource(), pos,
  2302                         key, name, first, second);
  2304             boolean hasLocation = false;
  2305             if (location == null) {
  2306                 location = site.tsym;
  2308             if (!location.name.isEmpty()) {
  2309                 if (location.kind == PCK && !site.tsym.exists()) {
  2310                     return diags.create(dkind, log.currentSource(), pos,
  2311                         "doesnt.exist", location);
  2313                 hasLocation = !location.name.equals(names._this) &&
  2314                         !location.name.equals(names._super);
  2316             boolean isConstructor = kind == ABSENT_MTH &&
  2317                     name == names.table.names.init;
  2318             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  2319             Name idname = isConstructor ? site.tsym.name : name;
  2320             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  2321             if (hasLocation) {
  2322                 return diags.create(dkind, log.currentSource(), pos,
  2323                         errKey, kindname, idname, //symbol kindname, name
  2324                         typeargtypes, argtypes, //type parameters and arguments (if any)
  2325                         getLocationDiag(location, site)); //location kindname, type
  2327             else {
  2328                 return diags.create(dkind, log.currentSource(), pos,
  2329                         errKey, kindname, idname, //symbol kindname, name
  2330                         typeargtypes, argtypes); //type parameters and arguments (if any)
  2333         //where
  2334         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  2335             String key = "cant.resolve";
  2336             String suffix = hasLocation ? ".location" : "";
  2337             switch (kindname) {
  2338                 case METHOD:
  2339                 case CONSTRUCTOR: {
  2340                     suffix += ".args";
  2341                     suffix += hasTypeArgs ? ".params" : "";
  2344             return key + suffix;
  2346         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  2347             if (location.kind == VAR) {
  2348                 return diags.fragment("location.1",
  2349                     kindName(location),
  2350                     location,
  2351                     location.type);
  2352             } else {
  2353                 return diags.fragment("location",
  2354                     typeKindName(site),
  2355                     site,
  2356                     null);
  2361     /**
  2362      * InvalidSymbolError error class indicating that a given symbol
  2363      * (either a method, a constructor or an operand) is not applicable
  2364      * given an actual arguments/type argument list.
  2365      */
  2366     class InapplicableSymbolError extends ResolveError {
  2368         InapplicableSymbolError() {
  2369             super(WRONG_MTH, "inapplicable symbol error");
  2372         protected InapplicableSymbolError(int kind, String debugName) {
  2373             super(kind, debugName);
  2376         @Override
  2377         public String toString() {
  2378             return super.toString();
  2381         @Override
  2382         public boolean exists() {
  2383             return true;
  2386         @Override
  2387         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2388                 DiagnosticPosition pos,
  2389                 Symbol location,
  2390                 Type site,
  2391                 Name name,
  2392                 List<Type> argtypes,
  2393                 List<Type> typeargtypes) {
  2394             if (name == names.error)
  2395                 return null;
  2397             if (isOperator(name)) {
  2398                 boolean isUnaryOp = argtypes.size() == 1;
  2399                 String key = argtypes.size() == 1 ?
  2400                     "operator.cant.be.applied" :
  2401                     "operator.cant.be.applied.1";
  2402                 Type first = argtypes.head;
  2403                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2404                 return diags.create(dkind, log.currentSource(), pos,
  2405                         key, name, first, second);
  2407             else {
  2408                 Candidate c = errCandidate();
  2409                 Symbol ws = c.sym.asMemberOf(site, types);
  2410                 return diags.create(dkind, log.currentSource(), pos,
  2411                           "cant.apply.symbol" + (c.details != null ? ".1" : ""),
  2412                           kindName(ws),
  2413                           ws.name == names.init ? ws.owner.name : ws.name,
  2414                           methodArguments(ws.type.getParameterTypes()),
  2415                           methodArguments(argtypes),
  2416                           kindName(ws.owner),
  2417                           ws.owner.type,
  2418                           c.details);
  2422         @Override
  2423         public Symbol access(Name name, TypeSymbol location) {
  2424             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2427         protected boolean shouldReport(Candidate c) {
  2428             return !c.isApplicable() &&
  2429                     (((c.sym.flags() & VARARGS) != 0 && c.step == VARARITY) ||
  2430                       (c.sym.flags() & VARARGS) == 0 && c.step == (boxingEnabled ? BOX : BASIC));
  2433         private Candidate errCandidate() {
  2434             for (Candidate c : currentResolutionContext.candidates) {
  2435                 if (shouldReport(c)) {
  2436                     return c;
  2439             Assert.error();
  2440             return null;
  2444     /**
  2445      * ResolveError error class indicating that a set of symbols
  2446      * (either methods, constructors or operands) is not applicable
  2447      * given an actual arguments/type argument list.
  2448      */
  2449     class InapplicableSymbolsError extends InapplicableSymbolError {
  2451         InapplicableSymbolsError() {
  2452             super(WRONG_MTHS, "inapplicable symbols");
  2455         @Override
  2456         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2457                 DiagnosticPosition pos,
  2458                 Symbol location,
  2459                 Type site,
  2460                 Name name,
  2461                 List<Type> argtypes,
  2462                 List<Type> typeargtypes) {
  2463             if (currentResolutionContext.candidates.nonEmpty()) {
  2464                 JCDiagnostic err = diags.create(dkind,
  2465                         log.currentSource(),
  2466                         pos,
  2467                         "cant.apply.symbols",
  2468                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  2469                         getName(),
  2470                         argtypes);
  2471                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  2472             } else {
  2473                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  2474                     location, site, name, argtypes, typeargtypes);
  2478         //where
  2479         List<JCDiagnostic> candidateDetails(Type site) {
  2480             List<JCDiagnostic> details = List.nil();
  2481             for (Candidate c : currentResolutionContext.candidates) {
  2482                 if (!shouldReport(c)) continue;
  2483                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  2484                         Kinds.kindName(c.sym),
  2485                         c.sym.location(site, types),
  2486                         c.sym.asMemberOf(site, types),
  2487                         c.details);
  2488                 details = details.prepend(detailDiag);
  2490             return details.reverse();
  2493         private Name getName() {
  2494             Symbol sym = currentResolutionContext.candidates.head.sym;
  2495             return sym.name == names.init ?
  2496                 sym.owner.name :
  2497                 sym.name;
  2501     /**
  2502      * An InvalidSymbolError error class indicating that a symbol is not
  2503      * accessible from a given site
  2504      */
  2505     class AccessError extends InvalidSymbolError {
  2507         private Env<AttrContext> env;
  2508         private Type site;
  2510         AccessError(Symbol sym) {
  2511             this(null, null, sym);
  2514         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  2515             super(HIDDEN, sym, "access error");
  2516             this.env = env;
  2517             this.site = site;
  2518             if (debugResolve)
  2519                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  2522         @Override
  2523         public boolean exists() {
  2524             return false;
  2527         @Override
  2528         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2529                 DiagnosticPosition pos,
  2530                 Symbol location,
  2531                 Type site,
  2532                 Name name,
  2533                 List<Type> argtypes,
  2534                 List<Type> typeargtypes) {
  2535             if (sym.owner.type.tag == ERROR)
  2536                 return null;
  2538             if (sym.name == names.init && sym.owner != site.tsym) {
  2539                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  2540                         pos, location, site, name, argtypes, typeargtypes);
  2542             else if ((sym.flags() & PUBLIC) != 0
  2543                 || (env != null && this.site != null
  2544                     && !isAccessible(env, this.site))) {
  2545                 return diags.create(dkind, log.currentSource(),
  2546                         pos, "not.def.access.class.intf.cant.access",
  2547                     sym, sym.location());
  2549             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  2550                 return diags.create(dkind, log.currentSource(),
  2551                         pos, "report.access", sym,
  2552                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  2553                         sym.location());
  2555             else {
  2556                 return diags.create(dkind, log.currentSource(),
  2557                         pos, "not.def.public.cant.access", sym, sym.location());
  2562     /**
  2563      * InvalidSymbolError error class indicating that an instance member
  2564      * has erroneously been accessed from a static context.
  2565      */
  2566     class StaticError extends InvalidSymbolError {
  2568         StaticError(Symbol sym) {
  2569             super(STATICERR, sym, "static error");
  2572         @Override
  2573         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2574                 DiagnosticPosition pos,
  2575                 Symbol location,
  2576                 Type site,
  2577                 Name name,
  2578                 List<Type> argtypes,
  2579                 List<Type> typeargtypes) {
  2580             Symbol errSym = ((sym.kind == TYP && sym.type.tag == CLASS)
  2581                 ? types.erasure(sym.type).tsym
  2582                 : sym);
  2583             return diags.create(dkind, log.currentSource(), pos,
  2584                     "non-static.cant.be.ref", kindName(sym), errSym);
  2588     /**
  2589      * InvalidSymbolError error class indicating that a pair of symbols
  2590      * (either methods, constructors or operands) are ambiguous
  2591      * given an actual arguments/type argument list.
  2592      */
  2593     class AmbiguityError extends InvalidSymbolError {
  2595         /** The other maximally specific symbol */
  2596         Symbol sym2;
  2598         AmbiguityError(Symbol sym1, Symbol sym2) {
  2599             super(AMBIGUOUS, sym1, "ambiguity error");
  2600             this.sym2 = sym2;
  2603         @Override
  2604         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2605                 DiagnosticPosition pos,
  2606                 Symbol location,
  2607                 Type site,
  2608                 Name name,
  2609                 List<Type> argtypes,
  2610                 List<Type> typeargtypes) {
  2611             AmbiguityError pair = this;
  2612             while (true) {
  2613                 if (pair.sym.kind == AMBIGUOUS)
  2614                     pair = (AmbiguityError)pair.sym;
  2615                 else if (pair.sym2.kind == AMBIGUOUS)
  2616                     pair = (AmbiguityError)pair.sym2;
  2617                 else break;
  2619             Name sname = pair.sym.name;
  2620             if (sname == names.init) sname = pair.sym.owner.name;
  2621             return diags.create(dkind, log.currentSource(),
  2622                       pos, "ref.ambiguous", sname,
  2623                       kindName(pair.sym),
  2624                       pair.sym,
  2625                       pair.sym.location(site, types),
  2626                       kindName(pair.sym2),
  2627                       pair.sym2,
  2628                       pair.sym2.location(site, types));
  2632     enum MethodResolutionPhase {
  2633         BASIC(false, false),
  2634         BOX(true, false),
  2635         VARARITY(true, true);
  2637         boolean isBoxingRequired;
  2638         boolean isVarargsRequired;
  2640         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  2641            this.isBoxingRequired = isBoxingRequired;
  2642            this.isVarargsRequired = isVarargsRequired;
  2645         public boolean isBoxingRequired() {
  2646             return isBoxingRequired;
  2649         public boolean isVarargsRequired() {
  2650             return isVarargsRequired;
  2653         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  2654             return (varargsEnabled || !isVarargsRequired) &&
  2655                    (boxingEnabled || !isBoxingRequired);
  2659     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  2661     /**
  2662      * A resolution context is used to keep track of intermediate results of
  2663      * overload resolution, such as list of method that are not applicable
  2664      * (used to generate more precise diagnostics) and so on. Resolution contexts
  2665      * can be nested - this means that when each overload resolution routine should
  2666      * work within the resolution context it created.
  2667      */
  2668     class MethodResolutionContext {
  2670         private List<Candidate> candidates = List.nil();
  2672         private Map<MethodResolutionPhase, Symbol> resolutionCache =
  2673             new EnumMap<MethodResolutionPhase, Symbol>(MethodResolutionPhase.class);
  2675         private MethodResolutionPhase step = null;
  2677         private boolean internalResolution = false;
  2679         private MethodResolutionPhase firstErroneousResolutionPhase() {
  2680             MethodResolutionPhase bestSoFar = BASIC;
  2681             Symbol sym = methodNotFound;
  2682             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2683             while (steps.nonEmpty() &&
  2684                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2685                    sym.kind >= WRONG_MTHS) {
  2686                 sym = resolutionCache.get(steps.head);
  2687                 bestSoFar = steps.head;
  2688                 steps = steps.tail;
  2690             return bestSoFar;
  2693         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  2694             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  2695             if (!candidates.contains(c))
  2696                 candidates = candidates.append(c);
  2699         void addApplicableCandidate(Symbol sym, Type mtype) {
  2700             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  2701             candidates = candidates.append(c);
  2704         /**
  2705          * This class represents an overload resolution candidate. There are two
  2706          * kinds of candidates: applicable methods and inapplicable methods;
  2707          * applicable methods have a pointer to the instantiated method type,
  2708          * while inapplicable candidates contain further details about the
  2709          * reason why the method has been considered inapplicable.
  2710          */
  2711         class Candidate {
  2713             final MethodResolutionPhase step;
  2714             final Symbol sym;
  2715             final JCDiagnostic details;
  2716             final Type mtype;
  2718             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  2719                 this.step = step;
  2720                 this.sym = sym;
  2721                 this.details = details;
  2722                 this.mtype = mtype;
  2725             @Override
  2726             public boolean equals(Object o) {
  2727                 if (o instanceof Candidate) {
  2728                     Symbol s1 = this.sym;
  2729                     Symbol s2 = ((Candidate)o).sym;
  2730                     if  ((s1 != s2 &&
  2731                         (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  2732                         (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  2733                         ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  2734                         return true;
  2736                 return false;
  2739             boolean isApplicable() {
  2740                 return mtype != null;
  2745     MethodResolutionContext currentResolutionContext = null;

mercurial