src/share/classes/com/sun/tools/javac/comp/Lower.java

Sun, 08 Sep 2013 11:54:21 +0100

author
vromero
date
Sun, 08 Sep 2013 11:54:21 +0100
changeset 2013
2de3750d65a5
parent 2009
7c7b4aea6d50
child 2027
4932bb04c4b8
permissions
-rw-r--r--

8024398: javac, compiler crashes with try with empty body
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.code.Type.AnnotatedType;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.main.Option.PkgInfo;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.code.Symbol.*;
    40 import com.sun.tools.javac.tree.JCTree.*;
    41 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.jvm.Target;
    44 import com.sun.tools.javac.tree.EndPosTable;
    46 import static com.sun.tools.javac.code.Flags.*;
    47 import static com.sun.tools.javac.code.Flags.BLOCK;
    48 import static com.sun.tools.javac.code.Kinds.*;
    49 import static com.sun.tools.javac.code.TypeTag.*;
    50 import static com.sun.tools.javac.jvm.ByteCodes.*;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    53 /** This pass translates away some syntactic sugar: inner classes,
    54  *  class literals, assertions, foreach loops, etc.
    55  *
    56  *  <p><b>This is NOT part of any supported API.
    57  *  If you write code that depends on this, you do so at your own risk.
    58  *  This code and its internal interfaces are subject to change or
    59  *  deletion without notice.</b>
    60  */
    61 public class Lower extends TreeTranslator {
    62     protected static final Context.Key<Lower> lowerKey =
    63         new Context.Key<Lower>();
    65     public static Lower instance(Context context) {
    66         Lower instance = context.get(lowerKey);
    67         if (instance == null)
    68             instance = new Lower(context);
    69         return instance;
    70     }
    72     private Names names;
    73     private Log log;
    74     private Symtab syms;
    75     private Resolve rs;
    76     private Check chk;
    77     private Attr attr;
    78     private TreeMaker make;
    79     private DiagnosticPosition make_pos;
    80     private ClassWriter writer;
    81     private ClassReader reader;
    82     private ConstFold cfolder;
    83     private Target target;
    84     private Source source;
    85     private boolean allowEnums;
    86     private final Name dollarAssertionsDisabled;
    87     private final Name classDollar;
    88     private Types types;
    89     private boolean debugLower;
    90     private PkgInfo pkginfoOpt;
    92     protected Lower(Context context) {
    93         context.put(lowerKey, this);
    94         names = Names.instance(context);
    95         log = Log.instance(context);
    96         syms = Symtab.instance(context);
    97         rs = Resolve.instance(context);
    98         chk = Check.instance(context);
    99         attr = Attr.instance(context);
   100         make = TreeMaker.instance(context);
   101         writer = ClassWriter.instance(context);
   102         reader = ClassReader.instance(context);
   103         cfolder = ConstFold.instance(context);
   104         target = Target.instance(context);
   105         source = Source.instance(context);
   106         allowEnums = source.allowEnums();
   107         dollarAssertionsDisabled = names.
   108             fromString(target.syntheticNameChar() + "assertionsDisabled");
   109         classDollar = names.
   110             fromString("class" + target.syntheticNameChar());
   112         types = Types.instance(context);
   113         Options options = Options.instance(context);
   114         debugLower = options.isSet("debuglower");
   115         pkginfoOpt = PkgInfo.get(options);
   116     }
   118     /** The currently enclosing class.
   119      */
   120     ClassSymbol currentClass;
   122     /** A queue of all translated classes.
   123      */
   124     ListBuffer<JCTree> translated;
   126     /** Environment for symbol lookup, set by translateTopLevelClass.
   127      */
   128     Env<AttrContext> attrEnv;
   130     /** A hash table mapping syntax trees to their ending source positions.
   131      */
   132     EndPosTable endPosTable;
   134 /**************************************************************************
   135  * Global mappings
   136  *************************************************************************/
   138     /** A hash table mapping local classes to their definitions.
   139      */
   140     Map<ClassSymbol, JCClassDecl> classdefs;
   142     /** A hash table mapping local classes to a list of pruned trees.
   143      */
   144     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
   146     /** A hash table mapping virtual accessed symbols in outer subclasses
   147      *  to the actually referred symbol in superclasses.
   148      */
   149     Map<Symbol,Symbol> actualSymbols;
   151     /** The current method definition.
   152      */
   153     JCMethodDecl currentMethodDef;
   155     /** The current method symbol.
   156      */
   157     MethodSymbol currentMethodSym;
   159     /** The currently enclosing outermost class definition.
   160      */
   161     JCClassDecl outermostClassDef;
   163     /** The currently enclosing outermost member definition.
   164      */
   165     JCTree outermostMemberDef;
   167     /** A map from local variable symbols to their translation (as per LambdaToMethod).
   168      * This is required when a capturing local class is created from a lambda (in which
   169      * case the captured symbols should be replaced with the translated lambda symbols).
   170      */
   171     Map<Symbol, Symbol> lambdaTranslationMap = null;
   173     /** A navigator class for assembling a mapping from local class symbols
   174      *  to class definition trees.
   175      *  There is only one case; all other cases simply traverse down the tree.
   176      */
   177     class ClassMap extends TreeScanner {
   179         /** All encountered class defs are entered into classdefs table.
   180          */
   181         public void visitClassDef(JCClassDecl tree) {
   182             classdefs.put(tree.sym, tree);
   183             super.visitClassDef(tree);
   184         }
   185     }
   186     ClassMap classMap = new ClassMap();
   188     /** Map a class symbol to its definition.
   189      *  @param c    The class symbol of which we want to determine the definition.
   190      */
   191     JCClassDecl classDef(ClassSymbol c) {
   192         // First lookup the class in the classdefs table.
   193         JCClassDecl def = classdefs.get(c);
   194         if (def == null && outermostMemberDef != null) {
   195             // If this fails, traverse outermost member definition, entering all
   196             // local classes into classdefs, and try again.
   197             classMap.scan(outermostMemberDef);
   198             def = classdefs.get(c);
   199         }
   200         if (def == null) {
   201             // If this fails, traverse outermost class definition, entering all
   202             // local classes into classdefs, and try again.
   203             classMap.scan(outermostClassDef);
   204             def = classdefs.get(c);
   205         }
   206         return def;
   207     }
   209     /** A hash table mapping class symbols to lists of free variables.
   210      *  accessed by them. Only free variables of the method immediately containing
   211      *  a class are associated with that class.
   212      */
   213     Map<ClassSymbol,List<VarSymbol>> freevarCache;
   215     /** A navigator class for collecting the free variables accessed
   216      *  from a local class. There is only one case; all other cases simply
   217      *  traverse down the tree. This class doesn't deal with the specific
   218      *  of Lower - it's an abstract visitor that is meant to be reused in
   219      *  order to share the local variable capture logic.
   220      */
   221     abstract class BasicFreeVarCollector extends TreeScanner {
   223         /** Add all free variables of class c to fvs list
   224          *  unless they are already there.
   225          */
   226         abstract void addFreeVars(ClassSymbol c);
   228         /** If tree refers to a variable in owner of local class, add it to
   229          *  free variables list.
   230          */
   231         public void visitIdent(JCIdent tree) {
   232             visitSymbol(tree.sym);
   233         }
   234         // where
   235         abstract void visitSymbol(Symbol _sym);
   237         /** If tree refers to a class instance creation expression
   238          *  add all free variables of the freshly created class.
   239          */
   240         public void visitNewClass(JCNewClass tree) {
   241             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   242             addFreeVars(c);
   243             super.visitNewClass(tree);
   244         }
   246         /** If tree refers to a superclass constructor call,
   247          *  add all free variables of the superclass.
   248          */
   249         public void visitApply(JCMethodInvocation tree) {
   250             if (TreeInfo.name(tree.meth) == names._super) {
   251                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
   252             }
   253             super.visitApply(tree);
   254         }
   255     }
   257     /**
   258      * Lower-specific subclass of {@code BasicFreeVarCollector}.
   259      */
   260     class FreeVarCollector extends BasicFreeVarCollector {
   262         /** The owner of the local class.
   263          */
   264         Symbol owner;
   266         /** The local class.
   267          */
   268         ClassSymbol clazz;
   270         /** The list of owner's variables accessed from within the local class,
   271          *  without any duplicates.
   272          */
   273         List<VarSymbol> fvs;
   275         FreeVarCollector(ClassSymbol clazz) {
   276             this.clazz = clazz;
   277             this.owner = clazz.owner;
   278             this.fvs = List.nil();
   279         }
   281         /** Add free variable to fvs list unless it is already there.
   282          */
   283         private void addFreeVar(VarSymbol v) {
   284             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
   285                 if (l.head == v) return;
   286             fvs = fvs.prepend(v);
   287         }
   289         @Override
   290         void addFreeVars(ClassSymbol c) {
   291             List<VarSymbol> fvs = freevarCache.get(c);
   292             if (fvs != null) {
   293                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
   294                     addFreeVar(l.head);
   295                 }
   296             }
   297         }
   299         @Override
   300         void visitSymbol(Symbol _sym) {
   301             Symbol sym = _sym;
   302             if (sym.kind == VAR || sym.kind == MTH) {
   303                 while (sym != null && sym.owner != owner)
   304                     sym = proxies.lookup(proxyName(sym.name)).sym;
   305                 if (sym != null && sym.owner == owner) {
   306                     VarSymbol v = (VarSymbol)sym;
   307                     if (v.getConstValue() == null) {
   308                         addFreeVar(v);
   309                     }
   310                 } else {
   311                     if (outerThisStack.head != null &&
   312                         outerThisStack.head != _sym)
   313                         visitSymbol(outerThisStack.head);
   314                 }
   315             }
   316         }
   318         /** If tree refers to a class instance creation expression
   319          *  add all free variables of the freshly created class.
   320          */
   321         public void visitNewClass(JCNewClass tree) {
   322             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   323             if (tree.encl == null &&
   324                 c.hasOuterInstance() &&
   325                 outerThisStack.head != null)
   326                 visitSymbol(outerThisStack.head);
   327             super.visitNewClass(tree);
   328         }
   330         /** If tree refers to a qualified this or super expression
   331          *  for anything but the current class, add the outer this
   332          *  stack as a free variable.
   333          */
   334         public void visitSelect(JCFieldAccess tree) {
   335             if ((tree.name == names._this || tree.name == names._super) &&
   336                 tree.selected.type.tsym != clazz &&
   337                 outerThisStack.head != null)
   338                 visitSymbol(outerThisStack.head);
   339             super.visitSelect(tree);
   340         }
   342         /** If tree refers to a superclass constructor call,
   343          *  add all free variables of the superclass.
   344          */
   345         public void visitApply(JCMethodInvocation tree) {
   346             if (TreeInfo.name(tree.meth) == names._super) {
   347                 Symbol constructor = TreeInfo.symbol(tree.meth);
   348                 ClassSymbol c = (ClassSymbol)constructor.owner;
   349                 if (c.hasOuterInstance() &&
   350                     !tree.meth.hasTag(SELECT) &&
   351                     outerThisStack.head != null)
   352                     visitSymbol(outerThisStack.head);
   353             }
   354             super.visitApply(tree);
   355         }
   356     }
   358     ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
   359         if (!c.isLocal()) {
   360             return null;
   361         }
   362         Symbol currentOwner = c.owner;
   363         while ((currentOwner.owner.kind & TYP) != 0 && currentOwner.isLocal()) {
   364             currentOwner = currentOwner.owner;
   365         }
   366         if ((currentOwner.owner.kind & (VAR | MTH)) != 0 && c.isSubClass(currentOwner, types)) {
   367             return (ClassSymbol)currentOwner;
   368         }
   369         return null;
   370     }
   372     /** Return the variables accessed from within a local class, which
   373      *  are declared in the local class' owner.
   374      *  (in reverse order of first access).
   375      */
   376     List<VarSymbol> freevars(ClassSymbol c)  {
   377         List<VarSymbol> fvs = freevarCache.get(c);
   378         if (fvs != null) {
   379             return fvs;
   380         }
   381         if ((c.owner.kind & (VAR | MTH)) != 0) {
   382             FreeVarCollector collector = new FreeVarCollector(c);
   383             collector.scan(classDef(c));
   384             fvs = collector.fvs;
   385             freevarCache.put(c, fvs);
   386             return fvs;
   387         } else {
   388             ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
   389             if (owner != null) {
   390                 fvs = freevarCache.get(owner);
   391                 freevarCache.put(c, fvs);
   392                 return fvs;
   393             } else {
   394                 return List.nil();
   395             }
   396         }
   397     }
   399     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
   401     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
   402         EnumMapping map = enumSwitchMap.get(enumClass);
   403         if (map == null)
   404             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
   405         return map;
   406     }
   408     /** This map gives a translation table to be used for enum
   409      *  switches.
   410      *
   411      *  <p>For each enum that appears as the type of a switch
   412      *  expression, we maintain an EnumMapping to assist in the
   413      *  translation, as exemplified by the following example:
   414      *
   415      *  <p>we translate
   416      *  <pre>
   417      *          switch(colorExpression) {
   418      *          case red: stmt1;
   419      *          case green: stmt2;
   420      *          }
   421      *  </pre>
   422      *  into
   423      *  <pre>
   424      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
   425      *          case 1: stmt1;
   426      *          case 2: stmt2
   427      *          }
   428      *  </pre>
   429      *  with the auxiliary table initialized as follows:
   430      *  <pre>
   431      *          class Outer$0 {
   432      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
   433      *              static {
   434      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
   435      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
   436      *              }
   437      *          }
   438      *  </pre>
   439      *  class EnumMapping provides mapping data and support methods for this translation.
   440      */
   441     class EnumMapping {
   442         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
   443             this.forEnum = forEnum;
   444             this.values = new LinkedHashMap<VarSymbol,Integer>();
   445             this.pos = pos;
   446             Name varName = names
   447                 .fromString(target.syntheticNameChar() +
   448                             "SwitchMap" +
   449                             target.syntheticNameChar() +
   450                             writer.xClassName(forEnum.type).toString()
   451                             .replace('/', '.')
   452                             .replace('.', target.syntheticNameChar()));
   453             ClassSymbol outerCacheClass = outerCacheClass();
   454             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
   455                                         varName,
   456                                         new ArrayType(syms.intType, syms.arrayClass),
   457                                         outerCacheClass);
   458             enterSynthetic(pos, mapVar, outerCacheClass.members());
   459         }
   461         DiagnosticPosition pos = null;
   463         // the next value to use
   464         int next = 1; // 0 (unused map elements) go to the default label
   466         // the enum for which this is a map
   467         final TypeSymbol forEnum;
   469         // the field containing the map
   470         final VarSymbol mapVar;
   472         // the mapped values
   473         final Map<VarSymbol,Integer> values;
   475         JCLiteral forConstant(VarSymbol v) {
   476             Integer result = values.get(v);
   477             if (result == null)
   478                 values.put(v, result = next++);
   479             return make.Literal(result);
   480         }
   482         // generate the field initializer for the map
   483         void translate() {
   484             make.at(pos.getStartPosition());
   485             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
   487             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
   488             MethodSymbol valuesMethod = lookupMethod(pos,
   489                                                      names.values,
   490                                                      forEnum.type,
   491                                                      List.<Type>nil());
   492             JCExpression size = make // Color.values().length
   493                 .Select(make.App(make.QualIdent(valuesMethod)),
   494                         syms.lengthVar);
   495             JCExpression mapVarInit = make
   496                 .NewArray(make.Type(syms.intType), List.of(size), null)
   497                 .setType(new ArrayType(syms.intType, syms.arrayClass));
   499             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
   500             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
   501             Symbol ordinalMethod = lookupMethod(pos,
   502                                                 names.ordinal,
   503                                                 forEnum.type,
   504                                                 List.<Type>nil());
   505             List<JCCatch> catcher = List.<JCCatch>nil()
   506                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
   507                                                               syms.noSuchFieldErrorType,
   508                                                               syms.noSymbol),
   509                                                 null),
   510                                     make.Block(0, List.<JCStatement>nil())));
   511             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
   512                 VarSymbol enumerator = e.getKey();
   513                 Integer mappedValue = e.getValue();
   514                 JCExpression assign = make
   515                     .Assign(make.Indexed(mapVar,
   516                                          make.App(make.Select(make.QualIdent(enumerator),
   517                                                               ordinalMethod))),
   518                             make.Literal(mappedValue))
   519                     .setType(syms.intType);
   520                 JCStatement exec = make.Exec(assign);
   521                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
   522                 stmts.append(_try);
   523             }
   525             owner.defs = owner.defs
   526                 .prepend(make.Block(STATIC, stmts.toList()))
   527                 .prepend(make.VarDef(mapVar, mapVarInit));
   528         }
   529     }
   532 /**************************************************************************
   533  * Tree building blocks
   534  *************************************************************************/
   536     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
   537      *  pos as make_pos, for use in diagnostics.
   538      **/
   539     TreeMaker make_at(DiagnosticPosition pos) {
   540         make_pos = pos;
   541         return make.at(pos);
   542     }
   544     /** Make an attributed tree representing a literal. This will be an
   545      *  Ident node in the case of boolean literals, a Literal node in all
   546      *  other cases.
   547      *  @param type       The literal's type.
   548      *  @param value      The literal's value.
   549      */
   550     JCExpression makeLit(Type type, Object value) {
   551         return make.Literal(type.getTag(), value).setType(type.constType(value));
   552     }
   554     /** Make an attributed tree representing null.
   555      */
   556     JCExpression makeNull() {
   557         return makeLit(syms.botType, null);
   558     }
   560     /** Make an attributed class instance creation expression.
   561      *  @param ctype    The class type.
   562      *  @param args     The constructor arguments.
   563      */
   564     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
   565         JCNewClass tree = make.NewClass(null,
   566             null, make.QualIdent(ctype.tsym), args, null);
   567         tree.constructor = rs.resolveConstructor(
   568             make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
   569         tree.type = ctype;
   570         return tree;
   571     }
   573     /** Make an attributed unary expression.
   574      *  @param optag    The operators tree tag.
   575      *  @param arg      The operator's argument.
   576      */
   577     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
   578         JCUnary tree = make.Unary(optag, arg);
   579         tree.operator = rs.resolveUnaryOperator(
   580             make_pos, optag, attrEnv, arg.type);
   581         tree.type = tree.operator.type.getReturnType();
   582         return tree;
   583     }
   585     /** Make an attributed binary expression.
   586      *  @param optag    The operators tree tag.
   587      *  @param lhs      The operator's left argument.
   588      *  @param rhs      The operator's right argument.
   589      */
   590     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
   591         JCBinary tree = make.Binary(optag, lhs, rhs);
   592         tree.operator = rs.resolveBinaryOperator(
   593             make_pos, optag, attrEnv, lhs.type, rhs.type);
   594         tree.type = tree.operator.type.getReturnType();
   595         return tree;
   596     }
   598     /** Make an attributed assignop expression.
   599      *  @param optag    The operators tree tag.
   600      *  @param lhs      The operator's left argument.
   601      *  @param rhs      The operator's right argument.
   602      */
   603     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
   604         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
   605         tree.operator = rs.resolveBinaryOperator(
   606             make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
   607         tree.type = lhs.type;
   608         return tree;
   609     }
   611     /** Convert tree into string object, unless it has already a
   612      *  reference type..
   613      */
   614     JCExpression makeString(JCExpression tree) {
   615         if (!tree.type.isPrimitiveOrVoid()) {
   616             return tree;
   617         } else {
   618             Symbol valueOfSym = lookupMethod(tree.pos(),
   619                                              names.valueOf,
   620                                              syms.stringType,
   621                                              List.of(tree.type));
   622             return make.App(make.QualIdent(valueOfSym), List.of(tree));
   623         }
   624     }
   626     /** Create an empty anonymous class definition and enter and complete
   627      *  its symbol. Return the class definition's symbol.
   628      *  and create
   629      *  @param flags    The class symbol's flags
   630      *  @param owner    The class symbol's owner
   631      */
   632     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
   633         return makeEmptyClass(flags, owner, null, true);
   634     }
   636     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
   637             boolean addToDefs) {
   638         // Create class symbol.
   639         ClassSymbol c = reader.defineClass(names.empty, owner);
   640         if (flatname != null) {
   641             c.flatname = flatname;
   642         } else {
   643             c.flatname = chk.localClassName(c);
   644         }
   645         c.sourcefile = owner.sourcefile;
   646         c.completer = null;
   647         c.members_field = new Scope(c);
   648         c.flags_field = flags;
   649         ClassType ctype = (ClassType) c.type;
   650         ctype.supertype_field = syms.objectType;
   651         ctype.interfaces_field = List.nil();
   653         JCClassDecl odef = classDef(owner);
   655         // Enter class symbol in owner scope and compiled table.
   656         enterSynthetic(odef.pos(), c, owner.members());
   657         chk.compiled.put(c.flatname, c);
   659         // Create class definition tree.
   660         JCClassDecl cdef = make.ClassDef(
   661             make.Modifiers(flags), names.empty,
   662             List.<JCTypeParameter>nil(),
   663             null, List.<JCExpression>nil(), List.<JCTree>nil());
   664         cdef.sym = c;
   665         cdef.type = c.type;
   667         // Append class definition tree to owner's definitions.
   668         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
   669         return cdef;
   670     }
   672 /**************************************************************************
   673  * Symbol manipulation utilities
   674  *************************************************************************/
   676     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
   677      *  @param pos           Position for error reporting.
   678      *  @param sym           The symbol.
   679      *  @param s             The scope.
   680      */
   681     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
   682         s.enter(sym);
   683     }
   685     /** Create a fresh synthetic name within a given scope - the unique name is
   686      *  obtained by appending '$' chars at the end of the name until no match
   687      *  is found.
   688      *
   689      * @param name base name
   690      * @param s scope in which the name has to be unique
   691      * @return fresh synthetic name
   692      */
   693     private Name makeSyntheticName(Name name, Scope s) {
   694         do {
   695             name = name.append(
   696                     target.syntheticNameChar(),
   697                     names.empty);
   698         } while (lookupSynthetic(name, s) != null);
   699         return name;
   700     }
   702     /** Check whether synthetic symbols generated during lowering conflict
   703      *  with user-defined symbols.
   704      *
   705      *  @param translatedTrees lowered class trees
   706      */
   707     void checkConflicts(List<JCTree> translatedTrees) {
   708         for (JCTree t : translatedTrees) {
   709             t.accept(conflictsChecker);
   710         }
   711     }
   713     JCTree.Visitor conflictsChecker = new TreeScanner() {
   715         TypeSymbol currentClass;
   717         @Override
   718         public void visitMethodDef(JCMethodDecl that) {
   719             chk.checkConflicts(that.pos(), that.sym, currentClass);
   720             super.visitMethodDef(that);
   721         }
   723         @Override
   724         public void visitVarDef(JCVariableDecl that) {
   725             if (that.sym.owner.kind == TYP) {
   726                 chk.checkConflicts(that.pos(), that.sym, currentClass);
   727             }
   728             super.visitVarDef(that);
   729         }
   731         @Override
   732         public void visitClassDef(JCClassDecl that) {
   733             TypeSymbol prevCurrentClass = currentClass;
   734             currentClass = that.sym;
   735             try {
   736                 super.visitClassDef(that);
   737             }
   738             finally {
   739                 currentClass = prevCurrentClass;
   740             }
   741         }
   742     };
   744     /** Look up a synthetic name in a given scope.
   745      *  @param s            The scope.
   746      *  @param name         The name.
   747      */
   748     private Symbol lookupSynthetic(Name name, Scope s) {
   749         Symbol sym = s.lookup(name).sym;
   750         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
   751     }
   753     /** Look up a method in a given scope.
   754      */
   755     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
   756         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
   757     }
   759     /** Look up a constructor.
   760      */
   761     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
   762         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
   763     }
   765     /** Look up a field.
   766      */
   767     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
   768         return rs.resolveInternalField(pos, attrEnv, qual, name);
   769     }
   771     /** Anon inner classes are used as access constructor tags.
   772      * accessConstructorTag will use an existing anon class if one is available,
   773      * and synthethise a class (with makeEmptyClass) if one is not available.
   774      * However, there is a small possibility that an existing class will not
   775      * be generated as expected if it is inside a conditional with a constant
   776      * expression. If that is found to be the case, create an empty class tree here.
   777      */
   778     private void checkAccessConstructorTags() {
   779         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
   780             ClassSymbol c = l.head;
   781             if (isTranslatedClassAvailable(c))
   782                 continue;
   783             // Create class definition tree.
   784             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
   785                     c.outermostClass(), c.flatname, false);
   786             swapAccessConstructorTag(c, cdec.sym);
   787             translated.append(cdec);
   788         }
   789     }
   790     // where
   791     private boolean isTranslatedClassAvailable(ClassSymbol c) {
   792         for (JCTree tree: translated) {
   793             if (tree.hasTag(CLASSDEF)
   794                     && ((JCClassDecl) tree).sym == c) {
   795                 return true;
   796             }
   797         }
   798         return false;
   799     }
   801     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
   802         for (MethodSymbol methodSymbol : accessConstrs.values()) {
   803             Assert.check(methodSymbol.type.hasTag(METHOD));
   804             MethodType oldMethodType =
   805                     (MethodType)methodSymbol.type;
   806             if (oldMethodType.argtypes.head.tsym == oldCTag)
   807                 methodSymbol.type =
   808                     types.createMethodTypeWithParameters(oldMethodType,
   809                         oldMethodType.getParameterTypes().tail
   810                             .prepend(newCTag.erasure(types)));
   811         }
   812     }
   814 /**************************************************************************
   815  * Access methods
   816  *************************************************************************/
   818     /** Access codes for dereferencing, assignment,
   819      *  and pre/post increment/decrement.
   820      *  Access codes for assignment operations are determined by method accessCode
   821      *  below.
   822      *
   823      *  All access codes for accesses to the current class are even.
   824      *  If a member of the superclass should be accessed instead (because
   825      *  access was via a qualified super), add one to the corresponding code
   826      *  for the current class, making the number odd.
   827      *  This numbering scheme is used by the backend to decide whether
   828      *  to issue an invokevirtual or invokespecial call.
   829      *
   830      *  @see Gen#visitSelect(JCFieldAccess tree)
   831      */
   832     private static final int
   833         DEREFcode = 0,
   834         ASSIGNcode = 2,
   835         PREINCcode = 4,
   836         PREDECcode = 6,
   837         POSTINCcode = 8,
   838         POSTDECcode = 10,
   839         FIRSTASGOPcode = 12;
   841     /** Number of access codes
   842      */
   843     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
   845     /** A mapping from symbols to their access numbers.
   846      */
   847     private Map<Symbol,Integer> accessNums;
   849     /** A mapping from symbols to an array of access symbols, indexed by
   850      *  access code.
   851      */
   852     private Map<Symbol,MethodSymbol[]> accessSyms;
   854     /** A mapping from (constructor) symbols to access constructor symbols.
   855      */
   856     private Map<Symbol,MethodSymbol> accessConstrs;
   858     /** A list of all class symbols used for access constructor tags.
   859      */
   860     private List<ClassSymbol> accessConstrTags;
   862     /** A queue for all accessed symbols.
   863      */
   864     private ListBuffer<Symbol> accessed;
   866     /** Map bytecode of binary operation to access code of corresponding
   867      *  assignment operation. This is always an even number.
   868      */
   869     private static int accessCode(int bytecode) {
   870         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
   871             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
   872         else if (bytecode == ByteCodes.string_add)
   873             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
   874         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
   875             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
   876         else
   877             return -1;
   878     }
   880     /** return access code for identifier,
   881      *  @param tree     The tree representing the identifier use.
   882      *  @param enclOp   The closest enclosing operation node of tree,
   883      *                  null if tree is not a subtree of an operation.
   884      */
   885     private static int accessCode(JCTree tree, JCTree enclOp) {
   886         if (enclOp == null)
   887             return DEREFcode;
   888         else if (enclOp.hasTag(ASSIGN) &&
   889                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
   890             return ASSIGNcode;
   891         else if (enclOp.getTag().isIncOrDecUnaryOp() &&
   892                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
   893             return mapTagToUnaryOpCode(enclOp.getTag());
   894         else if (enclOp.getTag().isAssignop() &&
   895                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
   896             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
   897         else
   898             return DEREFcode;
   899     }
   901     /** Return binary operator that corresponds to given access code.
   902      */
   903     private OperatorSymbol binaryAccessOperator(int acode) {
   904         for (Scope.Entry e = syms.predefClass.members().elems;
   905              e != null;
   906              e = e.sibling) {
   907             if (e.sym instanceof OperatorSymbol) {
   908                 OperatorSymbol op = (OperatorSymbol)e.sym;
   909                 if (accessCode(op.opcode) == acode) return op;
   910             }
   911         }
   912         return null;
   913     }
   915     /** Return tree tag for assignment operation corresponding
   916      *  to given binary operator.
   917      */
   918     private static JCTree.Tag treeTag(OperatorSymbol operator) {
   919         switch (operator.opcode) {
   920         case ByteCodes.ior: case ByteCodes.lor:
   921             return BITOR_ASG;
   922         case ByteCodes.ixor: case ByteCodes.lxor:
   923             return BITXOR_ASG;
   924         case ByteCodes.iand: case ByteCodes.land:
   925             return BITAND_ASG;
   926         case ByteCodes.ishl: case ByteCodes.lshl:
   927         case ByteCodes.ishll: case ByteCodes.lshll:
   928             return SL_ASG;
   929         case ByteCodes.ishr: case ByteCodes.lshr:
   930         case ByteCodes.ishrl: case ByteCodes.lshrl:
   931             return SR_ASG;
   932         case ByteCodes.iushr: case ByteCodes.lushr:
   933         case ByteCodes.iushrl: case ByteCodes.lushrl:
   934             return USR_ASG;
   935         case ByteCodes.iadd: case ByteCodes.ladd:
   936         case ByteCodes.fadd: case ByteCodes.dadd:
   937         case ByteCodes.string_add:
   938             return PLUS_ASG;
   939         case ByteCodes.isub: case ByteCodes.lsub:
   940         case ByteCodes.fsub: case ByteCodes.dsub:
   941             return MINUS_ASG;
   942         case ByteCodes.imul: case ByteCodes.lmul:
   943         case ByteCodes.fmul: case ByteCodes.dmul:
   944             return MUL_ASG;
   945         case ByteCodes.idiv: case ByteCodes.ldiv:
   946         case ByteCodes.fdiv: case ByteCodes.ddiv:
   947             return DIV_ASG;
   948         case ByteCodes.imod: case ByteCodes.lmod:
   949         case ByteCodes.fmod: case ByteCodes.dmod:
   950             return MOD_ASG;
   951         default:
   952             throw new AssertionError();
   953         }
   954     }
   956     /** The name of the access method with number `anum' and access code `acode'.
   957      */
   958     Name accessName(int anum, int acode) {
   959         return names.fromString(
   960             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
   961     }
   963     /** Return access symbol for a private or protected symbol from an inner class.
   964      *  @param sym        The accessed private symbol.
   965      *  @param tree       The accessing tree.
   966      *  @param enclOp     The closest enclosing operation node of tree,
   967      *                    null if tree is not a subtree of an operation.
   968      *  @param protAccess Is access to a protected symbol in another
   969      *                    package?
   970      *  @param refSuper   Is access via a (qualified) C.super?
   971      */
   972     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
   973                               boolean protAccess, boolean refSuper) {
   974         ClassSymbol accOwner = refSuper && protAccess
   975             // For access via qualified super (T.super.x), place the
   976             // access symbol on T.
   977             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
   978             // Otherwise pretend that the owner of an accessed
   979             // protected symbol is the enclosing class of the current
   980             // class which is a subclass of the symbol's owner.
   981             : accessClass(sym, protAccess, tree);
   983         Symbol vsym = sym;
   984         if (sym.owner != accOwner) {
   985             vsym = sym.clone(accOwner);
   986             actualSymbols.put(vsym, sym);
   987         }
   989         Integer anum              // The access number of the access method.
   990             = accessNums.get(vsym);
   991         if (anum == null) {
   992             anum = accessed.length();
   993             accessNums.put(vsym, anum);
   994             accessSyms.put(vsym, new MethodSymbol[NCODES]);
   995             accessed.append(vsym);
   996             // System.out.println("accessing " + vsym + " in " + vsym.location());
   997         }
   999         int acode;                // The access code of the access method.
  1000         List<Type> argtypes;      // The argument types of the access method.
  1001         Type restype;             // The result type of the access method.
  1002         List<Type> thrown;        // The thrown exceptions of the access method.
  1003         switch (vsym.kind) {
  1004         case VAR:
  1005             acode = accessCode(tree, enclOp);
  1006             if (acode >= FIRSTASGOPcode) {
  1007                 OperatorSymbol operator = binaryAccessOperator(acode);
  1008                 if (operator.opcode == string_add)
  1009                     argtypes = List.of(syms.objectType);
  1010                 else
  1011                     argtypes = operator.type.getParameterTypes().tail;
  1012             } else if (acode == ASSIGNcode)
  1013                 argtypes = List.of(vsym.erasure(types));
  1014             else
  1015                 argtypes = List.nil();
  1016             restype = vsym.erasure(types);
  1017             thrown = List.nil();
  1018             break;
  1019         case MTH:
  1020             acode = DEREFcode;
  1021             argtypes = vsym.erasure(types).getParameterTypes();
  1022             restype = vsym.erasure(types).getReturnType();
  1023             thrown = vsym.type.getThrownTypes();
  1024             break;
  1025         default:
  1026             throw new AssertionError();
  1029         // For references via qualified super, increment acode by one,
  1030         // making it odd.
  1031         if (protAccess && refSuper) acode++;
  1033         // Instance access methods get instance as first parameter.
  1034         // For protected symbols this needs to be the instance as a member
  1035         // of the type containing the accessed symbol, not the class
  1036         // containing the access method.
  1037         if ((vsym.flags() & STATIC) == 0) {
  1038             argtypes = argtypes.prepend(vsym.owner.erasure(types));
  1040         MethodSymbol[] accessors = accessSyms.get(vsym);
  1041         MethodSymbol accessor = accessors[acode];
  1042         if (accessor == null) {
  1043             accessor = new MethodSymbol(
  1044                 STATIC | SYNTHETIC,
  1045                 accessName(anum.intValue(), acode),
  1046                 new MethodType(argtypes, restype, thrown, syms.methodClass),
  1047                 accOwner);
  1048             enterSynthetic(tree.pos(), accessor, accOwner.members());
  1049             accessors[acode] = accessor;
  1051         return accessor;
  1054     /** The qualifier to be used for accessing a symbol in an outer class.
  1055      *  This is either C.sym or C.this.sym, depending on whether or not
  1056      *  sym is static.
  1057      *  @param sym   The accessed symbol.
  1058      */
  1059     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
  1060         return (sym.flags() & STATIC) != 0
  1061             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
  1062             : makeOwnerThis(pos, sym, true);
  1065     /** Do we need an access method to reference private symbol?
  1066      */
  1067     boolean needsPrivateAccess(Symbol sym) {
  1068         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
  1069             return false;
  1070         } else if (sym.name == names.init && sym.owner.isLocal()) {
  1071             // private constructor in local class: relax protection
  1072             sym.flags_field &= ~PRIVATE;
  1073             return false;
  1074         } else {
  1075             return true;
  1079     /** Do we need an access method to reference symbol in other package?
  1080      */
  1081     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
  1082         if ((sym.flags() & PROTECTED) == 0 ||
  1083             sym.owner.owner == currentClass.owner || // fast special case
  1084             sym.packge() == currentClass.packge())
  1085             return false;
  1086         if (!currentClass.isSubClass(sym.owner, types))
  1087             return true;
  1088         if ((sym.flags() & STATIC) != 0 ||
  1089             !tree.hasTag(SELECT) ||
  1090             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
  1091             return false;
  1092         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
  1095     /** The class in which an access method for given symbol goes.
  1096      *  @param sym        The access symbol
  1097      *  @param protAccess Is access to a protected symbol in another
  1098      *                    package?
  1099      */
  1100     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
  1101         if (protAccess) {
  1102             Symbol qualifier = null;
  1103             ClassSymbol c = currentClass;
  1104             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
  1105                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
  1106                 while (!qualifier.isSubClass(c, types)) {
  1107                     c = c.owner.enclClass();
  1109                 return c;
  1110             } else {
  1111                 while (!c.isSubClass(sym.owner, types)) {
  1112                     c = c.owner.enclClass();
  1115             return c;
  1116         } else {
  1117             // the symbol is private
  1118             return sym.owner.enclClass();
  1122     private void addPrunedInfo(JCTree tree) {
  1123         List<JCTree> infoList = prunedTree.get(currentClass);
  1124         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
  1125         prunedTree.put(currentClass, infoList);
  1128     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1129      *  @param sym      The accessed symbol.
  1130      *  @param tree     The tree referring to the symbol.
  1131      *  @param enclOp   The closest enclosing operation node of tree,
  1132      *                  null if tree is not a subtree of an operation.
  1133      *  @param refSuper Is access via a (qualified) C.super?
  1134      */
  1135     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
  1136         // Access a free variable via its proxy, or its proxy's proxy
  1137         while (sym.kind == VAR && sym.owner.kind == MTH &&
  1138             sym.owner.enclClass() != currentClass) {
  1139             // A constant is replaced by its constant value.
  1140             Object cv = ((VarSymbol)sym).getConstValue();
  1141             if (cv != null) {
  1142                 make.at(tree.pos);
  1143                 return makeLit(sym.type, cv);
  1145             // Otherwise replace the variable by its proxy.
  1146             sym = proxies.lookup(proxyName(sym.name)).sym;
  1147             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
  1148             tree = make.at(tree.pos).Ident(sym);
  1150         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
  1151         switch (sym.kind) {
  1152         case TYP:
  1153             if (sym.owner.kind != PCK) {
  1154                 // Convert type idents to
  1155                 // <flat name> or <package name> . <flat name>
  1156                 Name flatname = Convert.shortName(sym.flatName());
  1157                 while (base != null &&
  1158                        TreeInfo.symbol(base) != null &&
  1159                        TreeInfo.symbol(base).kind != PCK) {
  1160                     base = (base.hasTag(SELECT))
  1161                         ? ((JCFieldAccess) base).selected
  1162                         : null;
  1164                 if (tree.hasTag(IDENT)) {
  1165                     ((JCIdent) tree).name = flatname;
  1166                 } else if (base == null) {
  1167                     tree = make.at(tree.pos).Ident(sym);
  1168                     ((JCIdent) tree).name = flatname;
  1169                 } else {
  1170                     ((JCFieldAccess) tree).selected = base;
  1171                     ((JCFieldAccess) tree).name = flatname;
  1174             break;
  1175         case MTH: case VAR:
  1176             if (sym.owner.kind == TYP) {
  1178                 // Access methods are required for
  1179                 //  - private members,
  1180                 //  - protected members in a superclass of an
  1181                 //    enclosing class contained in another package.
  1182                 //  - all non-private members accessed via a qualified super.
  1183                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
  1184                     || needsProtectedAccess(sym, tree);
  1185                 boolean accReq = protAccess || needsPrivateAccess(sym);
  1187                 // A base has to be supplied for
  1188                 //  - simple identifiers accessing variables in outer classes.
  1189                 boolean baseReq =
  1190                     base == null &&
  1191                     sym.owner != syms.predefClass &&
  1192                     !sym.isMemberOf(currentClass, types);
  1194                 if (accReq || baseReq) {
  1195                     make.at(tree.pos);
  1197                     // Constants are replaced by their constant value.
  1198                     if (sym.kind == VAR) {
  1199                         Object cv = ((VarSymbol)sym).getConstValue();
  1200                         if (cv != null) {
  1201                             addPrunedInfo(tree);
  1202                             return makeLit(sym.type, cv);
  1206                     // Private variables and methods are replaced by calls
  1207                     // to their access methods.
  1208                     if (accReq) {
  1209                         List<JCExpression> args = List.nil();
  1210                         if ((sym.flags() & STATIC) == 0) {
  1211                             // Instance access methods get instance
  1212                             // as first parameter.
  1213                             if (base == null)
  1214                                 base = makeOwnerThis(tree.pos(), sym, true);
  1215                             args = args.prepend(base);
  1216                             base = null;   // so we don't duplicate code
  1218                         Symbol access = accessSymbol(sym, tree,
  1219                                                      enclOp, protAccess,
  1220                                                      refSuper);
  1221                         JCExpression receiver = make.Select(
  1222                             base != null ? base : make.QualIdent(access.owner),
  1223                             access);
  1224                         return make.App(receiver, args);
  1226                     // Other accesses to members of outer classes get a
  1227                     // qualifier.
  1228                     } else if (baseReq) {
  1229                         return make.at(tree.pos).Select(
  1230                             accessBase(tree.pos(), sym), sym).setType(tree.type);
  1233             } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
  1234                 //sym is a local variable - check the lambda translation map to
  1235                 //see if sym has been translated to something else in the current
  1236                 //scope (by LambdaToMethod)
  1237                 Symbol translatedSym = lambdaTranslationMap.get(sym);
  1238                 if (translatedSym != null) {
  1239                     tree = make.at(tree.pos).Ident(translatedSym);
  1243         return tree;
  1246     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1247      *  @param tree     The identifier tree.
  1248      */
  1249     JCExpression access(JCExpression tree) {
  1250         Symbol sym = TreeInfo.symbol(tree);
  1251         return sym == null ? tree : access(sym, tree, null, false);
  1254     /** Return access constructor for a private constructor,
  1255      *  or the constructor itself, if no access constructor is needed.
  1256      *  @param pos       The position to report diagnostics, if any.
  1257      *  @param constr    The private constructor.
  1258      */
  1259     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
  1260         if (needsPrivateAccess(constr)) {
  1261             ClassSymbol accOwner = constr.owner.enclClass();
  1262             MethodSymbol aconstr = accessConstrs.get(constr);
  1263             if (aconstr == null) {
  1264                 List<Type> argtypes = constr.type.getParameterTypes();
  1265                 if ((accOwner.flags_field & ENUM) != 0)
  1266                     argtypes = argtypes
  1267                         .prepend(syms.intType)
  1268                         .prepend(syms.stringType);
  1269                 aconstr = new MethodSymbol(
  1270                     SYNTHETIC,
  1271                     names.init,
  1272                     new MethodType(
  1273                         argtypes.append(
  1274                             accessConstructorTag().erasure(types)),
  1275                         constr.type.getReturnType(),
  1276                         constr.type.getThrownTypes(),
  1277                         syms.methodClass),
  1278                     accOwner);
  1279                 enterSynthetic(pos, aconstr, accOwner.members());
  1280                 accessConstrs.put(constr, aconstr);
  1281                 accessed.append(constr);
  1283             return aconstr;
  1284         } else {
  1285             return constr;
  1289     /** Return an anonymous class nested in this toplevel class.
  1290      */
  1291     ClassSymbol accessConstructorTag() {
  1292         ClassSymbol topClass = currentClass.outermostClass();
  1293         Name flatname = names.fromString("" + topClass.getQualifiedName() +
  1294                                          target.syntheticNameChar() +
  1295                                          "1");
  1296         ClassSymbol ctag = chk.compiled.get(flatname);
  1297         if (ctag == null)
  1298             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
  1299         // keep a record of all tags, to verify that all are generated as required
  1300         accessConstrTags = accessConstrTags.prepend(ctag);
  1301         return ctag;
  1304     /** Add all required access methods for a private symbol to enclosing class.
  1305      *  @param sym       The symbol.
  1306      */
  1307     void makeAccessible(Symbol sym) {
  1308         JCClassDecl cdef = classDef(sym.owner.enclClass());
  1309         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
  1310         if (sym.name == names.init) {
  1311             cdef.defs = cdef.defs.prepend(
  1312                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
  1313         } else {
  1314             MethodSymbol[] accessors = accessSyms.get(sym);
  1315             for (int i = 0; i < NCODES; i++) {
  1316                 if (accessors[i] != null)
  1317                     cdef.defs = cdef.defs.prepend(
  1318                         accessDef(cdef.pos, sym, accessors[i], i));
  1323     /** Maps unary operator integer codes to JCTree.Tag objects
  1324      *  @param unaryOpCode the unary operator code
  1325      */
  1326     private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
  1327         switch (unaryOpCode){
  1328             case PREINCcode:
  1329                 return PREINC;
  1330             case PREDECcode:
  1331                 return PREDEC;
  1332             case POSTINCcode:
  1333                 return POSTINC;
  1334             case POSTDECcode:
  1335                 return POSTDEC;
  1336             default:
  1337                 return NO_TAG;
  1341     /** Maps JCTree.Tag objects to unary operator integer codes
  1342      *  @param tag the JCTree.Tag
  1343      */
  1344     private static int mapTagToUnaryOpCode(Tag tag){
  1345         switch (tag){
  1346             case PREINC:
  1347                 return PREINCcode;
  1348             case PREDEC:
  1349                 return PREDECcode;
  1350             case POSTINC:
  1351                 return POSTINCcode;
  1352             case POSTDEC:
  1353                 return POSTDECcode;
  1354             default:
  1355                 return -1;
  1359     /** Construct definition of an access method.
  1360      *  @param pos        The source code position of the definition.
  1361      *  @param vsym       The private or protected symbol.
  1362      *  @param accessor   The access method for the symbol.
  1363      *  @param acode      The access code.
  1364      */
  1365     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
  1366 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
  1367         currentClass = vsym.owner.enclClass();
  1368         make.at(pos);
  1369         JCMethodDecl md = make.MethodDef(accessor, null);
  1371         // Find actual symbol
  1372         Symbol sym = actualSymbols.get(vsym);
  1373         if (sym == null) sym = vsym;
  1375         JCExpression ref;           // The tree referencing the private symbol.
  1376         List<JCExpression> args;    // Any additional arguments to be passed along.
  1377         if ((sym.flags() & STATIC) != 0) {
  1378             ref = make.Ident(sym);
  1379             args = make.Idents(md.params);
  1380         } else {
  1381             ref = make.Select(make.Ident(md.params.head), sym);
  1382             args = make.Idents(md.params.tail);
  1384         JCStatement stat;          // The statement accessing the private symbol.
  1385         if (sym.kind == VAR) {
  1386             // Normalize out all odd access codes by taking floor modulo 2:
  1387             int acode1 = acode - (acode & 1);
  1389             JCExpression expr;      // The access method's return value.
  1390             switch (acode1) {
  1391             case DEREFcode:
  1392                 expr = ref;
  1393                 break;
  1394             case ASSIGNcode:
  1395                 expr = make.Assign(ref, args.head);
  1396                 break;
  1397             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
  1398                 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
  1399                 break;
  1400             default:
  1401                 expr = make.Assignop(
  1402                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
  1403                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
  1405             stat = make.Return(expr.setType(sym.type));
  1406         } else {
  1407             stat = make.Call(make.App(ref, args));
  1409         md.body = make.Block(0, List.of(stat));
  1411         // Make sure all parameters, result types and thrown exceptions
  1412         // are accessible.
  1413         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
  1414             l.head.vartype = access(l.head.vartype);
  1415         md.restype = access(md.restype);
  1416         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
  1417             l.head = access(l.head);
  1419         return md;
  1422     /** Construct definition of an access constructor.
  1423      *  @param pos        The source code position of the definition.
  1424      *  @param constr     The private constructor.
  1425      *  @param accessor   The access method for the constructor.
  1426      */
  1427     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
  1428         make.at(pos);
  1429         JCMethodDecl md = make.MethodDef(accessor,
  1430                                       accessor.externalType(types),
  1431                                       null);
  1432         JCIdent callee = make.Ident(names._this);
  1433         callee.sym = constr;
  1434         callee.type = constr.type;
  1435         md.body =
  1436             make.Block(0, List.<JCStatement>of(
  1437                 make.Call(
  1438                     make.App(
  1439                         callee,
  1440                         make.Idents(md.params.reverse().tail.reverse())))));
  1441         return md;
  1444 /**************************************************************************
  1445  * Free variables proxies and this$n
  1446  *************************************************************************/
  1448     /** A scope containing all free variable proxies for currently translated
  1449      *  class, as well as its this$n symbol (if needed).
  1450      *  Proxy scopes are nested in the same way classes are.
  1451      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1452      *  in an additional innermost scope, where they represent the constructor
  1453      *  parameters.
  1454      */
  1455     Scope proxies;
  1457     /** A scope containing all unnamed resource variables/saved
  1458      *  exception variables for translated TWR blocks
  1459      */
  1460     Scope twrVars;
  1462     /** A stack containing the this$n field of the currently translated
  1463      *  classes (if needed) in innermost first order.
  1464      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1465      *  in an additional innermost scope, where they represent the constructor
  1466      *  parameters.
  1467      */
  1468     List<VarSymbol> outerThisStack;
  1470     /** The name of a free variable proxy.
  1471      */
  1472     Name proxyName(Name name) {
  1473         return names.fromString("val" + target.syntheticNameChar() + name);
  1476     /** Proxy definitions for all free variables in given list, in reverse order.
  1477      *  @param pos        The source code position of the definition.
  1478      *  @param freevars   The free variables.
  1479      *  @param owner      The class in which the definitions go.
  1480      */
  1481     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
  1482         long flags = FINAL | SYNTHETIC;
  1483         if (owner.kind == TYP &&
  1484             target.usePrivateSyntheticFields())
  1485             flags |= PRIVATE;
  1486         List<JCVariableDecl> defs = List.nil();
  1487         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
  1488             VarSymbol v = l.head;
  1489             VarSymbol proxy = new VarSymbol(
  1490                 flags, proxyName(v.name), v.erasure(types), owner);
  1491             proxies.enter(proxy);
  1492             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
  1493             vd.vartype = access(vd.vartype);
  1494             defs = defs.prepend(vd);
  1496         return defs;
  1499     /** The name of a this$n field
  1500      *  @param type   The class referenced by the this$n field
  1501      */
  1502     Name outerThisName(Type type, Symbol owner) {
  1503         Type t = type.getEnclosingType();
  1504         int nestingLevel = 0;
  1505         while (t.hasTag(CLASS)) {
  1506             t = t.getEnclosingType();
  1507             nestingLevel++;
  1509         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
  1510         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
  1511             result = names.fromString(result.toString() + target.syntheticNameChar());
  1512         return result;
  1515     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
  1516         if (owner.kind == TYP &&
  1517             target.usePrivateSyntheticFields())
  1518             flags |= PRIVATE;
  1519         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
  1520         VarSymbol outerThis =
  1521             new VarSymbol(flags, outerThisName(target, owner), target, owner);
  1522         outerThisStack = outerThisStack.prepend(outerThis);
  1523         return outerThis;
  1526     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
  1527         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
  1528         vd.vartype = access(vd.vartype);
  1529         return vd;
  1532     /** Definition for this$n field.
  1533      *  @param pos        The source code position of the definition.
  1534      *  @param owner      The method in which the definition goes.
  1535      */
  1536     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
  1537         ClassSymbol c = owner.enclClass();
  1538         boolean isMandated =
  1539             // Anonymous constructors
  1540             (owner.isConstructor() && owner.isAnonymous()) ||
  1541             // Constructors of non-private inner member classes
  1542             (owner.isConstructor() && c.isInner() &&
  1543              !c.isPrivate() && !c.isStatic());
  1544         long flags =
  1545             FINAL | (isMandated ? MANDATED : SYNTHETIC);
  1546         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
  1547         owner.extraParams = owner.extraParams.prepend(outerThis);
  1548         return makeOuterThisVarDecl(pos, outerThis);
  1551     /** Definition for this$n field.
  1552      *  @param pos        The source code position of the definition.
  1553      *  @param owner      The class in which the definition goes.
  1554      */
  1555     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
  1556         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
  1557         return makeOuterThisVarDecl(pos, outerThis);
  1560     /** Return a list of trees that load the free variables in given list,
  1561      *  in reverse order.
  1562      *  @param pos          The source code position to be used for the trees.
  1563      *  @param freevars     The list of free variables.
  1564      */
  1565     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
  1566         List<JCExpression> args = List.nil();
  1567         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
  1568             args = args.prepend(loadFreevar(pos, l.head));
  1569         return args;
  1571 //where
  1572         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
  1573             return access(v, make.at(pos).Ident(v), null, false);
  1576     /** Construct a tree simulating the expression {@code C.this}.
  1577      *  @param pos           The source code position to be used for the tree.
  1578      *  @param c             The qualifier class.
  1579      */
  1580     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
  1581         if (currentClass == c) {
  1582             // in this case, `this' works fine
  1583             return make.at(pos).This(c.erasure(types));
  1584         } else {
  1585             // need to go via this$n
  1586             return makeOuterThis(pos, c);
  1590     /**
  1591      * Optionally replace a try statement with the desugaring of a
  1592      * try-with-resources statement.  The canonical desugaring of
  1594      * try ResourceSpecification
  1595      *   Block
  1597      * is
  1599      * {
  1600      *   final VariableModifiers_minus_final R #resource = Expression;
  1601      *   Throwable #primaryException = null;
  1603      *   try ResourceSpecificationtail
  1604      *     Block
  1605      *   catch (Throwable #t) {
  1606      *     #primaryException = t;
  1607      *     throw #t;
  1608      *   } finally {
  1609      *     if (#resource != null) {
  1610      *       if (#primaryException != null) {
  1611      *         try {
  1612      *           #resource.close();
  1613      *         } catch(Throwable #suppressedException) {
  1614      *           #primaryException.addSuppressed(#suppressedException);
  1615      *         }
  1616      *       } else {
  1617      *         #resource.close();
  1618      *       }
  1619      *     }
  1620      *   }
  1622      * @param tree  The try statement to inspect.
  1623      * @return A a desugared try-with-resources tree, or the original
  1624      * try block if there are no resources to manage.
  1625      */
  1626     JCTree makeTwrTry(JCTry tree) {
  1627         make_at(tree.pos());
  1628         twrVars = twrVars.dup();
  1629         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
  1630         if (tree.catchers.isEmpty() && tree.finalizer == null)
  1631             result = translate(twrBlock);
  1632         else
  1633             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
  1634         twrVars = twrVars.leave();
  1635         return result;
  1638     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
  1639         if (resources.isEmpty())
  1640             return block;
  1642         // Add resource declaration or expression to block statements
  1643         ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
  1644         JCTree resource = resources.head;
  1645         JCExpression expr = null;
  1646         if (resource instanceof JCVariableDecl) {
  1647             JCVariableDecl var = (JCVariableDecl) resource;
  1648             expr = make.Ident(var.sym).setType(resource.type);
  1649             stats.add(var);
  1650         } else {
  1651             Assert.check(resource instanceof JCExpression);
  1652             VarSymbol syntheticTwrVar =
  1653             new VarSymbol(SYNTHETIC | FINAL,
  1654                           makeSyntheticName(names.fromString("twrVar" +
  1655                                            depth), twrVars),
  1656                           (resource.type.hasTag(BOT)) ?
  1657                           syms.autoCloseableType : resource.type,
  1658                           currentMethodSym);
  1659             twrVars.enter(syntheticTwrVar);
  1660             JCVariableDecl syntheticTwrVarDecl =
  1661                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
  1662             expr = (JCExpression)make.Ident(syntheticTwrVar);
  1663             stats.add(syntheticTwrVarDecl);
  1666         // Add primaryException declaration
  1667         VarSymbol primaryException =
  1668             new VarSymbol(SYNTHETIC,
  1669                           makeSyntheticName(names.fromString("primaryException" +
  1670                           depth), twrVars),
  1671                           syms.throwableType,
  1672                           currentMethodSym);
  1673         twrVars.enter(primaryException);
  1674         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
  1675         stats.add(primaryExceptionTreeDecl);
  1677         // Create catch clause that saves exception and then rethrows it
  1678         VarSymbol param =
  1679             new VarSymbol(FINAL|SYNTHETIC,
  1680                           names.fromString("t" +
  1681                                            target.syntheticNameChar()),
  1682                           syms.throwableType,
  1683                           currentMethodSym);
  1684         JCVariableDecl paramTree = make.VarDef(param, null);
  1685         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
  1686         JCStatement rethrowStat = make.Throw(make.Ident(param));
  1687         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
  1688         JCCatch catchClause = make.Catch(paramTree, catchBlock);
  1690         int oldPos = make.pos;
  1691         make.at(TreeInfo.endPos(block));
  1692         JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
  1693         make.at(oldPos);
  1694         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
  1695                                   List.<JCCatch>of(catchClause),
  1696                                   finallyClause);
  1697         stats.add(outerTry);
  1698         return make.Block(0L, stats.toList());
  1701     private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
  1702         // primaryException.addSuppressed(catchException);
  1703         VarSymbol catchException =
  1704             new VarSymbol(0, make.paramName(2),
  1705                           syms.throwableType,
  1706                           currentMethodSym);
  1707         JCStatement addSuppressionStatement =
  1708             make.Exec(makeCall(make.Ident(primaryException),
  1709                                names.addSuppressed,
  1710                                List.<JCExpression>of(make.Ident(catchException))));
  1712         // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
  1713         JCBlock tryBlock =
  1714             make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
  1715         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
  1716         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
  1717         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
  1718         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
  1720         // if (primaryException != null) {try...} else resourceClose;
  1721         JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
  1722                                         tryTree,
  1723                                         makeResourceCloseInvocation(resource));
  1725         // if (#resource != null) { if (primaryException ...  }
  1726         return make.Block(0L,
  1727                           List.<JCStatement>of(make.If(makeNonNullCheck(resource),
  1728                                                        closeIfStatement,
  1729                                                        null)));
  1732     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
  1733         // convert to AutoCloseable if needed
  1734         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
  1735             resource = (JCExpression) convert(resource, syms.autoCloseableType);
  1738         // create resource.close() method invocation
  1739         JCExpression resourceClose = makeCall(resource,
  1740                                               names.close,
  1741                                               List.<JCExpression>nil());
  1742         return make.Exec(resourceClose);
  1745     private JCExpression makeNonNullCheck(JCExpression expression) {
  1746         return makeBinary(NE, expression, makeNull());
  1749     /** Construct a tree that represents the outer instance
  1750      *  {@code C.this}. Never pick the current `this'.
  1751      *  @param pos           The source code position to be used for the tree.
  1752      *  @param c             The qualifier class.
  1753      */
  1754     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
  1755         List<VarSymbol> ots = outerThisStack;
  1756         if (ots.isEmpty()) {
  1757             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1758             Assert.error();
  1759             return makeNull();
  1761         VarSymbol ot = ots.head;
  1762         JCExpression tree = access(make.at(pos).Ident(ot));
  1763         TypeSymbol otc = ot.type.tsym;
  1764         while (otc != c) {
  1765             do {
  1766                 ots = ots.tail;
  1767                 if (ots.isEmpty()) {
  1768                     log.error(pos,
  1769                               "no.encl.instance.of.type.in.scope",
  1770                               c);
  1771                     Assert.error(); // should have been caught in Attr
  1772                     return tree;
  1774                 ot = ots.head;
  1775             } while (ot.owner != otc);
  1776             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
  1777                 chk.earlyRefError(pos, c);
  1778                 Assert.error(); // should have been caught in Attr
  1779                 return makeNull();
  1781             tree = access(make.at(pos).Select(tree, ot));
  1782             otc = ot.type.tsym;
  1784         return tree;
  1787     /** Construct a tree that represents the closest outer instance
  1788      *  {@code C.this} such that the given symbol is a member of C.
  1789      *  @param pos           The source code position to be used for the tree.
  1790      *  @param sym           The accessed symbol.
  1791      *  @param preciseMatch  should we accept a type that is a subtype of
  1792      *                       sym's owner, even if it doesn't contain sym
  1793      *                       due to hiding, overriding, or non-inheritance
  1794      *                       due to protection?
  1795      */
  1796     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1797         Symbol c = sym.owner;
  1798         if (preciseMatch ? sym.isMemberOf(currentClass, types)
  1799                          : currentClass.isSubClass(sym.owner, types)) {
  1800             // in this case, `this' works fine
  1801             return make.at(pos).This(c.erasure(types));
  1802         } else {
  1803             // need to go via this$n
  1804             return makeOwnerThisN(pos, sym, preciseMatch);
  1808     /**
  1809      * Similar to makeOwnerThis but will never pick "this".
  1810      */
  1811     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1812         Symbol c = sym.owner;
  1813         List<VarSymbol> ots = outerThisStack;
  1814         if (ots.isEmpty()) {
  1815             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1816             Assert.error();
  1817             return makeNull();
  1819         VarSymbol ot = ots.head;
  1820         JCExpression tree = access(make.at(pos).Ident(ot));
  1821         TypeSymbol otc = ot.type.tsym;
  1822         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
  1823             do {
  1824                 ots = ots.tail;
  1825                 if (ots.isEmpty()) {
  1826                     log.error(pos,
  1827                         "no.encl.instance.of.type.in.scope",
  1828                         c);
  1829                     Assert.error();
  1830                     return tree;
  1832                 ot = ots.head;
  1833             } while (ot.owner != otc);
  1834             tree = access(make.at(pos).Select(tree, ot));
  1835             otc = ot.type.tsym;
  1837         return tree;
  1840     /** Return tree simulating the assignment {@code this.name = name}, where
  1841      *  name is the name of a free variable.
  1842      */
  1843     JCStatement initField(int pos, Name name) {
  1844         Scope.Entry e = proxies.lookup(name);
  1845         Symbol rhs = e.sym;
  1846         Assert.check(rhs.owner.kind == MTH);
  1847         Symbol lhs = e.next().sym;
  1848         Assert.check(rhs.owner.owner == lhs.owner);
  1849         make.at(pos);
  1850         return
  1851             make.Exec(
  1852                 make.Assign(
  1853                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1854                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1857     /** Return tree simulating the assignment {@code this.this$n = this$n}.
  1858      */
  1859     JCStatement initOuterThis(int pos) {
  1860         VarSymbol rhs = outerThisStack.head;
  1861         Assert.check(rhs.owner.kind == MTH);
  1862         VarSymbol lhs = outerThisStack.tail.head;
  1863         Assert.check(rhs.owner.owner == lhs.owner);
  1864         make.at(pos);
  1865         return
  1866             make.Exec(
  1867                 make.Assign(
  1868                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1869                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1872 /**************************************************************************
  1873  * Code for .class
  1874  *************************************************************************/
  1876     /** Return the symbol of a class to contain a cache of
  1877      *  compiler-generated statics such as class$ and the
  1878      *  $assertionsDisabled flag.  We create an anonymous nested class
  1879      *  (unless one already exists) and return its symbol.  However,
  1880      *  for backward compatibility in 1.4 and earlier we use the
  1881      *  top-level class itself.
  1882      */
  1883     private ClassSymbol outerCacheClass() {
  1884         ClassSymbol clazz = outermostClassDef.sym;
  1885         if ((clazz.flags() & INTERFACE) == 0 &&
  1886             !target.useInnerCacheClass()) return clazz;
  1887         Scope s = clazz.members();
  1888         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
  1889             if (e.sym.kind == TYP &&
  1890                 e.sym.name == names.empty &&
  1891                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
  1892         return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
  1895     /** Return symbol for "class$" method. If there is no method definition
  1896      *  for class$, construct one as follows:
  1898      *    class class$(String x0) {
  1899      *      try {
  1900      *        return Class.forName(x0);
  1901      *      } catch (ClassNotFoundException x1) {
  1902      *        throw new NoClassDefFoundError(x1.getMessage());
  1903      *      }
  1904      *    }
  1905      */
  1906     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
  1907         ClassSymbol outerCacheClass = outerCacheClass();
  1908         MethodSymbol classDollarSym =
  1909             (MethodSymbol)lookupSynthetic(classDollar,
  1910                                           outerCacheClass.members());
  1911         if (classDollarSym == null) {
  1912             classDollarSym = new MethodSymbol(
  1913                 STATIC | SYNTHETIC,
  1914                 classDollar,
  1915                 new MethodType(
  1916                     List.of(syms.stringType),
  1917                     types.erasure(syms.classType),
  1918                     List.<Type>nil(),
  1919                     syms.methodClass),
  1920                 outerCacheClass);
  1921             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
  1923             JCMethodDecl md = make.MethodDef(classDollarSym, null);
  1924             try {
  1925                 md.body = classDollarSymBody(pos, md);
  1926             } catch (CompletionFailure ex) {
  1927                 md.body = make.Block(0, List.<JCStatement>nil());
  1928                 chk.completionError(pos, ex);
  1930             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1931             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
  1933         return classDollarSym;
  1936     /** Generate code for class$(String name). */
  1937     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
  1938         MethodSymbol classDollarSym = md.sym;
  1939         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
  1941         JCBlock returnResult;
  1943         // in 1.4.2 and above, we use
  1944         // Class.forName(String name, boolean init, ClassLoader loader);
  1945         // which requires we cache the current loader in cl$
  1946         if (target.classLiteralsNoInit()) {
  1947             // clsym = "private static ClassLoader cl$"
  1948             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
  1949                                             names.fromString("cl" + target.syntheticNameChar()),
  1950                                             syms.classLoaderType,
  1951                                             outerCacheClass);
  1952             enterSynthetic(pos, clsym, outerCacheClass.members());
  1954             // emit "private static ClassLoader cl$;"
  1955             JCVariableDecl cldef = make.VarDef(clsym, null);
  1956             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1957             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
  1959             // newcache := "new cache$1[0]"
  1960             JCNewArray newcache = make.
  1961                 NewArray(make.Type(outerCacheClass.type),
  1962                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
  1963                          null);
  1964             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
  1965                                           syms.arrayClass);
  1967             // forNameSym := java.lang.Class.forName(
  1968             //     String s,boolean init,ClassLoader loader)
  1969             Symbol forNameSym = lookupMethod(make_pos, names.forName,
  1970                                              types.erasure(syms.classType),
  1971                                              List.of(syms.stringType,
  1972                                                      syms.booleanType,
  1973                                                      syms.classLoaderType));
  1974             // clvalue := "(cl$ == null) ?
  1975             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
  1976             JCExpression clvalue =
  1977                 make.Conditional(
  1978                     makeBinary(EQ, make.Ident(clsym), makeNull()),
  1979                     make.Assign(
  1980                         make.Ident(clsym),
  1981                         makeCall(
  1982                             makeCall(makeCall(newcache,
  1983                                               names.getClass,
  1984                                               List.<JCExpression>nil()),
  1985                                      names.getComponentType,
  1986                                      List.<JCExpression>nil()),
  1987                             names.getClassLoader,
  1988                             List.<JCExpression>nil())).setType(syms.classLoaderType),
  1989                     make.Ident(clsym)).setType(syms.classLoaderType);
  1991             // returnResult := "{ return Class.forName(param1, false, cl$); }"
  1992             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
  1993                                               makeLit(syms.booleanType, 0),
  1994                                               clvalue);
  1995             returnResult = make.
  1996                 Block(0, List.<JCStatement>of(make.
  1997                               Call(make. // return
  1998                                    App(make.
  1999                                        Ident(forNameSym), args))));
  2000         } else {
  2001             // forNameSym := java.lang.Class.forName(String s)
  2002             Symbol forNameSym = lookupMethod(make_pos,
  2003                                              names.forName,
  2004                                              types.erasure(syms.classType),
  2005                                              List.of(syms.stringType));
  2006             // returnResult := "{ return Class.forName(param1); }"
  2007             returnResult = make.
  2008                 Block(0, List.of(make.
  2009                           Call(make. // return
  2010                               App(make.
  2011                                   QualIdent(forNameSym),
  2012                                   List.<JCExpression>of(make.
  2013                                                         Ident(md.params.
  2014                                                               head.sym))))));
  2017         // catchParam := ClassNotFoundException e1
  2018         VarSymbol catchParam =
  2019             new VarSymbol(0, make.paramName(1),
  2020                           syms.classNotFoundExceptionType,
  2021                           classDollarSym);
  2023         JCStatement rethrow;
  2024         if (target.hasInitCause()) {
  2025             // rethrow = "throw new NoClassDefFoundError().initCause(e);
  2026             JCExpression throwExpr =
  2027                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
  2028                                       List.<JCExpression>nil()),
  2029                          names.initCause,
  2030                          List.<JCExpression>of(make.Ident(catchParam)));
  2031             rethrow = make.Throw(throwExpr);
  2032         } else {
  2033             // getMessageSym := ClassNotFoundException.getMessage()
  2034             Symbol getMessageSym = lookupMethod(make_pos,
  2035                                                 names.getMessage,
  2036                                                 syms.classNotFoundExceptionType,
  2037                                                 List.<Type>nil());
  2038             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
  2039             rethrow = make.
  2040                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
  2041                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
  2042                                                                      getMessageSym),
  2043                                                          List.<JCExpression>nil()))));
  2046         // rethrowStmt := "( $rethrow )"
  2047         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
  2049         // catchBlock := "catch ($catchParam) $rethrowStmt"
  2050         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
  2051                                       rethrowStmt);
  2053         // tryCatch := "try $returnResult $catchBlock"
  2054         JCStatement tryCatch = make.Try(returnResult,
  2055                                         List.of(catchBlock), null);
  2057         return make.Block(0, List.of(tryCatch));
  2059     // where
  2060         /** Create an attributed tree of the form left.name(). */
  2061         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
  2062             Assert.checkNonNull(left.type);
  2063             Symbol funcsym = lookupMethod(make_pos, name, left.type,
  2064                                           TreeInfo.types(args));
  2065             return make.App(make.Select(left, funcsym), args);
  2068     /** The Name Of The variable to cache T.class values.
  2069      *  @param sig      The signature of type T.
  2070      */
  2071     private Name cacheName(String sig) {
  2072         StringBuilder buf = new StringBuilder();
  2073         if (sig.startsWith("[")) {
  2074             buf = buf.append("array");
  2075             while (sig.startsWith("[")) {
  2076                 buf = buf.append(target.syntheticNameChar());
  2077                 sig = sig.substring(1);
  2079             if (sig.startsWith("L")) {
  2080                 sig = sig.substring(0, sig.length() - 1);
  2082         } else {
  2083             buf = buf.append("class" + target.syntheticNameChar());
  2085         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
  2086         return names.fromString(buf.toString());
  2089     /** The variable symbol that caches T.class values.
  2090      *  If none exists yet, create a definition.
  2091      *  @param sig      The signature of type T.
  2092      *  @param pos      The position to report diagnostics, if any.
  2093      */
  2094     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
  2095         ClassSymbol outerCacheClass = outerCacheClass();
  2096         Name cname = cacheName(sig);
  2097         VarSymbol cacheSym =
  2098             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
  2099         if (cacheSym == null) {
  2100             cacheSym = new VarSymbol(
  2101                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
  2102             enterSynthetic(pos, cacheSym, outerCacheClass.members());
  2104             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
  2105             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  2106             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
  2108         return cacheSym;
  2111     /** The tree simulating a T.class expression.
  2112      *  @param clazz      The tree identifying type T.
  2113      */
  2114     private JCExpression classOf(JCTree clazz) {
  2115         return classOfType(clazz.type, clazz.pos());
  2118     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
  2119         switch (type.getTag()) {
  2120         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
  2121         case DOUBLE: case BOOLEAN: case VOID:
  2122             // replace with <BoxedClass>.TYPE
  2123             ClassSymbol c = types.boxedClass(type);
  2124             Symbol typeSym =
  2125                 rs.accessBase(
  2126                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
  2127                     pos, c.type, names.TYPE, true);
  2128             if (typeSym.kind == VAR)
  2129                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
  2130             return make.QualIdent(typeSym);
  2131         case CLASS: case ARRAY:
  2132             if (target.hasClassLiterals()) {
  2133                 VarSymbol sym = new VarSymbol(
  2134                         STATIC | PUBLIC | FINAL, names._class,
  2135                         syms.classType, type.tsym);
  2136                 return make_at(pos).Select(make.Type(type), sym);
  2138             // replace with <cache == null ? cache = class$(tsig) : cache>
  2139             // where
  2140             //  - <tsig>  is the type signature of T,
  2141             //  - <cache> is the cache variable for tsig.
  2142             String sig =
  2143                 writer.xClassName(type).toString().replace('/', '.');
  2144             Symbol cs = cacheSym(pos, sig);
  2145             return make_at(pos).Conditional(
  2146                 makeBinary(EQ, make.Ident(cs), makeNull()),
  2147                 make.Assign(
  2148                     make.Ident(cs),
  2149                     make.App(
  2150                         make.Ident(classDollarSym(pos)),
  2151                         List.<JCExpression>of(make.Literal(CLASS, sig)
  2152                                               .setType(syms.stringType))))
  2153                 .setType(types.erasure(syms.classType)),
  2154                 make.Ident(cs)).setType(types.erasure(syms.classType));
  2155         default:
  2156             throw new AssertionError();
  2160 /**************************************************************************
  2161  * Code for enabling/disabling assertions.
  2162  *************************************************************************/
  2164     // This code is not particularly robust if the user has
  2165     // previously declared a member named '$assertionsDisabled'.
  2166     // The same faulty idiom also appears in the translation of
  2167     // class literals above.  We should report an error if a
  2168     // previous declaration is not synthetic.
  2170     private JCExpression assertFlagTest(DiagnosticPosition pos) {
  2171         // Outermost class may be either true class or an interface.
  2172         ClassSymbol outermostClass = outermostClassDef.sym;
  2174         // note that this is a class, as an interface can't contain a statement.
  2175         ClassSymbol container = currentClass;
  2177         VarSymbol assertDisabledSym =
  2178             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
  2179                                        container.members());
  2180         if (assertDisabledSym == null) {
  2181             assertDisabledSym =
  2182                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
  2183                               dollarAssertionsDisabled,
  2184                               syms.booleanType,
  2185                               container);
  2186             enterSynthetic(pos, assertDisabledSym, container.members());
  2187             Symbol desiredAssertionStatusSym = lookupMethod(pos,
  2188                                                             names.desiredAssertionStatus,
  2189                                                             types.erasure(syms.classType),
  2190                                                             List.<Type>nil());
  2191             JCClassDecl containerDef = classDef(container);
  2192             make_at(containerDef.pos());
  2193             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
  2194                     classOfType(types.erasure(outermostClass.type),
  2195                                 containerDef.pos()),
  2196                     desiredAssertionStatusSym)));
  2197             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
  2198                                                    notStatus);
  2199             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
  2201         make_at(pos);
  2202         return makeUnary(NOT, make.Ident(assertDisabledSym));
  2206 /**************************************************************************
  2207  * Building blocks for let expressions
  2208  *************************************************************************/
  2210     interface TreeBuilder {
  2211         JCTree build(JCTree arg);
  2214     /** Construct an expression using the builder, with the given rval
  2215      *  expression as an argument to the builder.  However, the rval
  2216      *  expression must be computed only once, even if used multiple
  2217      *  times in the result of the builder.  We do that by
  2218      *  constructing a "let" expression that saves the rvalue into a
  2219      *  temporary variable and then uses the temporary variable in
  2220      *  place of the expression built by the builder.  The complete
  2221      *  resulting expression is of the form
  2222      *  <pre>
  2223      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
  2224      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
  2225      *  </pre>
  2226      *  where <code><b>TEMP</b></code> is a newly declared variable
  2227      *  in the let expression.
  2228      */
  2229     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
  2230         rval = TreeInfo.skipParens(rval);
  2231         switch (rval.getTag()) {
  2232         case LITERAL:
  2233             return builder.build(rval);
  2234         case IDENT:
  2235             JCIdent id = (JCIdent) rval;
  2236             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
  2237                 return builder.build(rval);
  2239         VarSymbol var =
  2240             new VarSymbol(FINAL|SYNTHETIC,
  2241                           names.fromString(
  2242                                           target.syntheticNameChar()
  2243                                           + "" + rval.hashCode()),
  2244                                       type,
  2245                                       currentMethodSym);
  2246         rval = convert(rval,type);
  2247         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
  2248         JCTree built = builder.build(make.Ident(var));
  2249         JCTree res = make.LetExpr(def, built);
  2250         res.type = built.type;
  2251         return res;
  2254     // same as above, with the type of the temporary variable computed
  2255     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
  2256         return abstractRval(rval, rval.type, builder);
  2259     // same as above, but for an expression that may be used as either
  2260     // an rvalue or an lvalue.  This requires special handling for
  2261     // Select expressions, where we place the left-hand-side of the
  2262     // select in a temporary, and for Indexed expressions, where we
  2263     // place both the indexed expression and the index value in temps.
  2264     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
  2265         lval = TreeInfo.skipParens(lval);
  2266         switch (lval.getTag()) {
  2267         case IDENT:
  2268             return builder.build(lval);
  2269         case SELECT: {
  2270             final JCFieldAccess s = (JCFieldAccess)lval;
  2271             JCTree selected = TreeInfo.skipParens(s.selected);
  2272             Symbol lid = TreeInfo.symbol(s.selected);
  2273             if (lid != null && lid.kind == TYP) return builder.build(lval);
  2274             return abstractRval(s.selected, new TreeBuilder() {
  2275                     public JCTree build(final JCTree selected) {
  2276                         return builder.build(make.Select((JCExpression)selected, s.sym));
  2278                 });
  2280         case INDEXED: {
  2281             final JCArrayAccess i = (JCArrayAccess)lval;
  2282             return abstractRval(i.indexed, new TreeBuilder() {
  2283                     public JCTree build(final JCTree indexed) {
  2284                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
  2285                                 public JCTree build(final JCTree index) {
  2286                                     JCTree newLval = make.Indexed((JCExpression)indexed,
  2287                                                                 (JCExpression)index);
  2288                                     newLval.setType(i.type);
  2289                                     return builder.build(newLval);
  2291                             });
  2293                 });
  2295         case TYPECAST: {
  2296             return abstractLval(((JCTypeCast)lval).expr, builder);
  2299         throw new AssertionError(lval);
  2302     // evaluate and discard the first expression, then evaluate the second.
  2303     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
  2304         return abstractRval(expr1, new TreeBuilder() {
  2305                 public JCTree build(final JCTree discarded) {
  2306                     return expr2;
  2308             });
  2311 /**************************************************************************
  2312  * Translation methods
  2313  *************************************************************************/
  2315     /** Visitor argument: enclosing operator node.
  2316      */
  2317     private JCExpression enclOp;
  2319     /** Visitor method: Translate a single node.
  2320      *  Attach the source position from the old tree to its replacement tree.
  2321      */
  2322     public <T extends JCTree> T translate(T tree) {
  2323         if (tree == null) {
  2324             return null;
  2325         } else {
  2326             make_at(tree.pos());
  2327             T result = super.translate(tree);
  2328             if (endPosTable != null && result != tree) {
  2329                 endPosTable.replaceTree(tree, result);
  2331             return result;
  2335     /** Visitor method: Translate a single node, boxing or unboxing if needed.
  2336      */
  2337     public <T extends JCTree> T translate(T tree, Type type) {
  2338         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
  2341     /** Visitor method: Translate tree.
  2342      */
  2343     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
  2344         JCExpression prevEnclOp = this.enclOp;
  2345         this.enclOp = enclOp;
  2346         T res = translate(tree);
  2347         this.enclOp = prevEnclOp;
  2348         return res;
  2351     /** Visitor method: Translate list of trees.
  2352      */
  2353     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
  2354         JCExpression prevEnclOp = this.enclOp;
  2355         this.enclOp = enclOp;
  2356         List<T> res = translate(trees);
  2357         this.enclOp = prevEnclOp;
  2358         return res;
  2361     /** Visitor method: Translate list of trees.
  2362      */
  2363     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
  2364         if (trees == null) return null;
  2365         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
  2366             l.head = translate(l.head, type);
  2367         return trees;
  2370     public void visitTopLevel(JCCompilationUnit tree) {
  2371         if (needPackageInfoClass(tree)) {
  2372             Name name = names.package_info;
  2373             long flags = Flags.ABSTRACT | Flags.INTERFACE;
  2374             if (target.isPackageInfoSynthetic())
  2375                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
  2376                 flags = flags | Flags.SYNTHETIC;
  2377             JCClassDecl packageAnnotationsClass
  2378                 = make.ClassDef(make.Modifiers(flags,
  2379                                                tree.packageAnnotations),
  2380                                 name, List.<JCTypeParameter>nil(),
  2381                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
  2382             ClassSymbol c = tree.packge.package_info;
  2383             c.flags_field |= flags;
  2384             c.setAttributes(tree.packge);
  2385             ClassType ctype = (ClassType) c.type;
  2386             ctype.supertype_field = syms.objectType;
  2387             ctype.interfaces_field = List.nil();
  2388             packageAnnotationsClass.sym = c;
  2390             translated.append(packageAnnotationsClass);
  2393     // where
  2394     private boolean needPackageInfoClass(JCCompilationUnit tree) {
  2395         switch (pkginfoOpt) {
  2396             case ALWAYS:
  2397                 return true;
  2398             case LEGACY:
  2399                 return tree.packageAnnotations.nonEmpty();
  2400             case NONEMPTY:
  2401                 for (Attribute.Compound a :
  2402                          tree.packge.getDeclarationAttributes()) {
  2403                     Attribute.RetentionPolicy p = types.getRetention(a);
  2404                     if (p != Attribute.RetentionPolicy.SOURCE)
  2405                         return true;
  2407                 return false;
  2409         throw new AssertionError();
  2412     public void visitClassDef(JCClassDecl tree) {
  2413         ClassSymbol currentClassPrev = currentClass;
  2414         MethodSymbol currentMethodSymPrev = currentMethodSym;
  2415         currentClass = tree.sym;
  2416         currentMethodSym = null;
  2417         classdefs.put(currentClass, tree);
  2419         proxies = proxies.dup(currentClass);
  2420         List<VarSymbol> prevOuterThisStack = outerThisStack;
  2422         // If this is an enum definition
  2423         if ((tree.mods.flags & ENUM) != 0 &&
  2424             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
  2425             visitEnumDef(tree);
  2427         // If this is a nested class, define a this$n field for
  2428         // it and add to proxies.
  2429         JCVariableDecl otdef = null;
  2430         if (currentClass.hasOuterInstance())
  2431             otdef = outerThisDef(tree.pos, currentClass);
  2433         // If this is a local class, define proxies for all its free variables.
  2434         List<JCVariableDecl> fvdefs = freevarDefs(
  2435             tree.pos, freevars(currentClass), currentClass);
  2437         // Recursively translate superclass, interfaces.
  2438         tree.extending = translate(tree.extending);
  2439         tree.implementing = translate(tree.implementing);
  2441         if (currentClass.isLocal()) {
  2442             ClassSymbol encl = currentClass.owner.enclClass();
  2443             if (encl.trans_local == null) {
  2444                 encl.trans_local = List.nil();
  2446             encl.trans_local = encl.trans_local.prepend(currentClass);
  2449         // Recursively translate members, taking into account that new members
  2450         // might be created during the translation and prepended to the member
  2451         // list `tree.defs'.
  2452         List<JCTree> seen = List.nil();
  2453         while (tree.defs != seen) {
  2454             List<JCTree> unseen = tree.defs;
  2455             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
  2456                 JCTree outermostMemberDefPrev = outermostMemberDef;
  2457                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
  2458                 l.head = translate(l.head);
  2459                 outermostMemberDef = outermostMemberDefPrev;
  2461             seen = unseen;
  2464         // Convert a protected modifier to public, mask static modifier.
  2465         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
  2466         tree.mods.flags &= ClassFlags;
  2468         // Convert name to flat representation, replacing '.' by '$'.
  2469         tree.name = Convert.shortName(currentClass.flatName());
  2471         // Add this$n and free variables proxy definitions to class.
  2473         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
  2474             tree.defs = tree.defs.prepend(l.head);
  2475             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
  2477         if (currentClass.hasOuterInstance()) {
  2478             tree.defs = tree.defs.prepend(otdef);
  2479             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
  2482         proxies = proxies.leave();
  2483         outerThisStack = prevOuterThisStack;
  2485         // Append translated tree to `translated' queue.
  2486         translated.append(tree);
  2488         currentClass = currentClassPrev;
  2489         currentMethodSym = currentMethodSymPrev;
  2491         // Return empty block {} as a placeholder for an inner class.
  2492         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
  2495     /** Translate an enum class. */
  2496     private void visitEnumDef(JCClassDecl tree) {
  2497         make_at(tree.pos());
  2499         // add the supertype, if needed
  2500         if (tree.extending == null)
  2501             tree.extending = make.Type(types.supertype(tree.type));
  2503         // classOfType adds a cache field to tree.defs unless
  2504         // target.hasClassLiterals().
  2505         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
  2506             setType(types.erasure(syms.classType));
  2508         // process each enumeration constant, adding implicit constructor parameters
  2509         int nextOrdinal = 0;
  2510         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
  2511         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
  2512         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
  2513         for (List<JCTree> defs = tree.defs;
  2514              defs.nonEmpty();
  2515              defs=defs.tail) {
  2516             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
  2517                 JCVariableDecl var = (JCVariableDecl)defs.head;
  2518                 visitEnumConstantDef(var, nextOrdinal++);
  2519                 values.append(make.QualIdent(var.sym));
  2520                 enumDefs.append(var);
  2521             } else {
  2522                 otherDefs.append(defs.head);
  2526         // private static final T[] #VALUES = { a, b, c };
  2527         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
  2528         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
  2529             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
  2530         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
  2531         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
  2532                                             valuesName,
  2533                                             arrayType,
  2534                                             tree.type.tsym);
  2535         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2536                                           List.<JCExpression>nil(),
  2537                                           values.toList());
  2538         newArray.type = arrayType;
  2539         enumDefs.append(make.VarDef(valuesVar, newArray));
  2540         tree.sym.members().enter(valuesVar);
  2542         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
  2543                                         tree.type, List.<Type>nil());
  2544         List<JCStatement> valuesBody;
  2545         if (useClone()) {
  2546             // return (T[]) $VALUES.clone();
  2547             JCTypeCast valuesResult =
  2548                 make.TypeCast(valuesSym.type.getReturnType(),
  2549                               make.App(make.Select(make.Ident(valuesVar),
  2550                                                    syms.arrayCloneMethod)));
  2551             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
  2552         } else {
  2553             // template: T[] $result = new T[$values.length];
  2554             Name resultName = names.fromString(target.syntheticNameChar() + "result");
  2555             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
  2556                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
  2557             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
  2558                                                 resultName,
  2559                                                 arrayType,
  2560                                                 valuesSym);
  2561             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2562                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
  2563                                   null);
  2564             resultArray.type = arrayType;
  2565             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
  2567             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
  2568             if (systemArraycopyMethod == null) {
  2569                 systemArraycopyMethod =
  2570                     new MethodSymbol(PUBLIC | STATIC,
  2571                                      names.fromString("arraycopy"),
  2572                                      new MethodType(List.<Type>of(syms.objectType,
  2573                                                             syms.intType,
  2574                                                             syms.objectType,
  2575                                                             syms.intType,
  2576                                                             syms.intType),
  2577                                                     syms.voidType,
  2578                                                     List.<Type>nil(),
  2579                                                     syms.methodClass),
  2580                                      syms.systemType.tsym);
  2582             JCStatement copy =
  2583                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
  2584                                                systemArraycopyMethod),
  2585                           List.of(make.Ident(valuesVar), make.Literal(0),
  2586                                   make.Ident(resultVar), make.Literal(0),
  2587                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
  2589             // template: return $result;
  2590             JCStatement ret = make.Return(make.Ident(resultVar));
  2591             valuesBody = List.<JCStatement>of(decl, copy, ret);
  2594         JCMethodDecl valuesDef =
  2595              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
  2597         enumDefs.append(valuesDef);
  2599         if (debugLower)
  2600             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
  2602         /** The template for the following code is:
  2604          *     public static E valueOf(String name) {
  2605          *         return (E)Enum.valueOf(E.class, name);
  2606          *     }
  2608          *  where E is tree.sym
  2609          */
  2610         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
  2611                          names.valueOf,
  2612                          tree.sym.type,
  2613                          List.of(syms.stringType));
  2614         Assert.check((valueOfSym.flags() & STATIC) != 0);
  2615         VarSymbol nameArgSym = valueOfSym.params.head;
  2616         JCIdent nameVal = make.Ident(nameArgSym);
  2617         JCStatement enum_ValueOf =
  2618             make.Return(make.TypeCast(tree.sym.type,
  2619                                       makeCall(make.Ident(syms.enumSym),
  2620                                                names.valueOf,
  2621                                                List.of(e_class, nameVal))));
  2622         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
  2623                                            make.Block(0, List.of(enum_ValueOf)));
  2624         nameVal.sym = valueOf.params.head.sym;
  2625         if (debugLower)
  2626             System.err.println(tree.sym + ".valueOf = " + valueOf);
  2627         enumDefs.append(valueOf);
  2629         enumDefs.appendList(otherDefs.toList());
  2630         tree.defs = enumDefs.toList();
  2632         // where
  2633         private MethodSymbol systemArraycopyMethod;
  2634         private boolean useClone() {
  2635             try {
  2636                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
  2637                 return (e.sym != null);
  2639             catch (CompletionFailure e) {
  2640                 return false;
  2644     /** Translate an enumeration constant and its initializer. */
  2645     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
  2646         JCNewClass varDef = (JCNewClass)var.init;
  2647         varDef.args = varDef.args.
  2648             prepend(makeLit(syms.intType, ordinal)).
  2649             prepend(makeLit(syms.stringType, var.name.toString()));
  2652     public void visitMethodDef(JCMethodDecl tree) {
  2653         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
  2654             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
  2655             // argument list for each constructor of an enum.
  2656             JCVariableDecl nameParam = make_at(tree.pos()).
  2657                 Param(names.fromString(target.syntheticNameChar() +
  2658                                        "enum" + target.syntheticNameChar() + "name"),
  2659                       syms.stringType, tree.sym);
  2660             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
  2661             JCVariableDecl ordParam = make.
  2662                 Param(names.fromString(target.syntheticNameChar() +
  2663                                        "enum" + target.syntheticNameChar() +
  2664                                        "ordinal"),
  2665                       syms.intType, tree.sym);
  2666             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
  2668             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
  2670             MethodSymbol m = tree.sym;
  2671             m.extraParams = m.extraParams.prepend(ordParam.sym);
  2672             m.extraParams = m.extraParams.prepend(nameParam.sym);
  2673             Type olderasure = m.erasure(types);
  2674             m.erasure_field = new MethodType(
  2675                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
  2676                 olderasure.getReturnType(),
  2677                 olderasure.getThrownTypes(),
  2678                 syms.methodClass);
  2681         JCMethodDecl prevMethodDef = currentMethodDef;
  2682         MethodSymbol prevMethodSym = currentMethodSym;
  2683         try {
  2684             currentMethodDef = tree;
  2685             currentMethodSym = tree.sym;
  2686             visitMethodDefInternal(tree);
  2687         } finally {
  2688             currentMethodDef = prevMethodDef;
  2689             currentMethodSym = prevMethodSym;
  2692     //where
  2693     private void visitMethodDefInternal(JCMethodDecl tree) {
  2694         if (tree.name == names.init &&
  2695             (currentClass.isInner() || currentClass.isLocal())) {
  2696             // We are seeing a constructor of an inner class.
  2697             MethodSymbol m = tree.sym;
  2699             // Push a new proxy scope for constructor parameters.
  2700             // and create definitions for any this$n and proxy parameters.
  2701             proxies = proxies.dup(m);
  2702             List<VarSymbol> prevOuterThisStack = outerThisStack;
  2703             List<VarSymbol> fvs = freevars(currentClass);
  2704             JCVariableDecl otdef = null;
  2705             if (currentClass.hasOuterInstance())
  2706                 otdef = outerThisDef(tree.pos, m);
  2707             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
  2709             // Recursively translate result type, parameters and thrown list.
  2710             tree.restype = translate(tree.restype);
  2711             tree.params = translateVarDefs(tree.params);
  2712             tree.thrown = translate(tree.thrown);
  2714             // when compiling stubs, don't process body
  2715             if (tree.body == null) {
  2716                 result = tree;
  2717                 return;
  2720             // Add this$n (if needed) in front of and free variables behind
  2721             // constructor parameter list.
  2722             tree.params = tree.params.appendList(fvdefs);
  2723             if (currentClass.hasOuterInstance())
  2724                 tree.params = tree.params.prepend(otdef);
  2726             // If this is an initial constructor, i.e., it does not start with
  2727             // this(...), insert initializers for this$n and proxies
  2728             // before (pre-1.4, after) the call to superclass constructor.
  2729             JCStatement selfCall = translate(tree.body.stats.head);
  2731             List<JCStatement> added = List.nil();
  2732             if (fvs.nonEmpty()) {
  2733                 List<Type> addedargtypes = List.nil();
  2734                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
  2735                     if (TreeInfo.isInitialConstructor(tree)) {
  2736                         final Name pName = proxyName(l.head.name);
  2737                         m.capturedLocals =
  2738                             m.capturedLocals.append((VarSymbol)
  2739                                                     (proxies.lookup(pName).sym));
  2740                         added = added.prepend(
  2741                           initField(tree.body.pos, pName));
  2743                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
  2745                 Type olderasure = m.erasure(types);
  2746                 m.erasure_field = new MethodType(
  2747                     olderasure.getParameterTypes().appendList(addedargtypes),
  2748                     olderasure.getReturnType(),
  2749                     olderasure.getThrownTypes(),
  2750                     syms.methodClass);
  2752             if (currentClass.hasOuterInstance() &&
  2753                 TreeInfo.isInitialConstructor(tree))
  2755                 added = added.prepend(initOuterThis(tree.body.pos));
  2758             // pop local variables from proxy stack
  2759             proxies = proxies.leave();
  2761             // recursively translate following local statements and
  2762             // combine with this- or super-call
  2763             List<JCStatement> stats = translate(tree.body.stats.tail);
  2764             if (target.initializeFieldsBeforeSuper())
  2765                 tree.body.stats = stats.prepend(selfCall).prependList(added);
  2766             else
  2767                 tree.body.stats = stats.prependList(added).prepend(selfCall);
  2769             outerThisStack = prevOuterThisStack;
  2770         } else {
  2771             Map<Symbol, Symbol> prevLambdaTranslationMap =
  2772                     lambdaTranslationMap;
  2773             try {
  2774                 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
  2775                         tree.sym.name.startsWith(names.lambda) ?
  2776                         makeTranslationMap(tree) : null;
  2777                 super.visitMethodDef(tree);
  2778             } finally {
  2779                 lambdaTranslationMap = prevLambdaTranslationMap;
  2782         result = tree;
  2784     //where
  2785         private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
  2786             Map<Symbol, Symbol> translationMap = new HashMap<Symbol,Symbol>();
  2787             for (JCVariableDecl vd : tree.params) {
  2788                 Symbol p = vd.sym;
  2789                 if (p != p.baseSymbol()) {
  2790                     translationMap.put(p.baseSymbol(), p);
  2793             return translationMap;
  2796     public void visitAnnotatedType(JCAnnotatedType tree) {
  2797         // No need to retain type annotations in the tree
  2798         // tree.annotations = translate(tree.annotations);
  2799         tree.annotations = List.nil();
  2800         tree.underlyingType = translate(tree.underlyingType);
  2801         // but maintain type annotations in the type.
  2802         if (tree.type.isAnnotated()) {
  2803             if (tree.underlyingType.type.isAnnotated()) {
  2804                 // The erasure of a type variable might be annotated.
  2805                 // Merge all annotations.
  2806                 AnnotatedType newat = (AnnotatedType) tree.underlyingType.type;
  2807                 AnnotatedType at = (AnnotatedType) tree.type;
  2808                 at.underlyingType = newat.underlyingType;
  2809                 newat.typeAnnotations = at.typeAnnotations.appendList(newat.typeAnnotations);
  2810                 tree.type = newat;
  2811             } else {
  2812                 // Create a new AnnotatedType to have the correct tag.
  2813                 AnnotatedType oldat = (AnnotatedType) tree.type;
  2814                 tree.type = new AnnotatedType(tree.underlyingType.type);
  2815                 ((AnnotatedType) tree.type).typeAnnotations = oldat.typeAnnotations;
  2818         result = tree;
  2821     public void visitTypeCast(JCTypeCast tree) {
  2822         tree.clazz = translate(tree.clazz);
  2823         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
  2824             tree.expr = translate(tree.expr, tree.type);
  2825         else
  2826             tree.expr = translate(tree.expr);
  2827         result = tree;
  2830     public void visitNewClass(JCNewClass tree) {
  2831         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
  2833         // Box arguments, if necessary
  2834         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
  2835         List<Type> argTypes = tree.constructor.type.getParameterTypes();
  2836         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
  2837         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
  2838         tree.varargsElement = null;
  2840         // If created class is local, add free variables after
  2841         // explicit constructor arguments.
  2842         if (c.isLocal()) {
  2843             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2846         // If an access constructor is used, append null as a last argument.
  2847         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
  2848         if (constructor != tree.constructor) {
  2849             tree.args = tree.args.append(makeNull());
  2850             tree.constructor = constructor;
  2853         // If created class has an outer instance, and new is qualified, pass
  2854         // qualifier as first argument. If new is not qualified, pass the
  2855         // correct outer instance as first argument.
  2856         if (c.hasOuterInstance()) {
  2857             JCExpression thisArg;
  2858             if (tree.encl != null) {
  2859                 thisArg = attr.makeNullCheck(translate(tree.encl));
  2860                 thisArg.type = tree.encl.type;
  2861             } else if (c.isLocal()) {
  2862                 // local class
  2863                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
  2864             } else {
  2865                 // nested class
  2866                 thisArg = makeOwnerThis(tree.pos(), c, false);
  2868             tree.args = tree.args.prepend(thisArg);
  2870         tree.encl = null;
  2872         // If we have an anonymous class, create its flat version, rather
  2873         // than the class or interface following new.
  2874         if (tree.def != null) {
  2875             translate(tree.def);
  2876             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
  2877             tree.def = null;
  2878         } else {
  2879             tree.clazz = access(c, tree.clazz, enclOp, false);
  2881         result = tree;
  2884     // Simplify conditionals with known constant controlling expressions.
  2885     // This allows us to avoid generating supporting declarations for
  2886     // the dead code, which will not be eliminated during code generation.
  2887     // Note that Flow.isFalse and Flow.isTrue only return true
  2888     // for constant expressions in the sense of JLS 15.27, which
  2889     // are guaranteed to have no side-effects.  More aggressive
  2890     // constant propagation would require that we take care to
  2891     // preserve possible side-effects in the condition expression.
  2893     /** Visitor method for conditional expressions.
  2894      */
  2895     @Override
  2896     public void visitConditional(JCConditional tree) {
  2897         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2898         if (cond.type.isTrue()) {
  2899             result = convert(translate(tree.truepart, tree.type), tree.type);
  2900             addPrunedInfo(cond);
  2901         } else if (cond.type.isFalse()) {
  2902             result = convert(translate(tree.falsepart, tree.type), tree.type);
  2903             addPrunedInfo(cond);
  2904         } else {
  2905             // Condition is not a compile-time constant.
  2906             tree.truepart = translate(tree.truepart, tree.type);
  2907             tree.falsepart = translate(tree.falsepart, tree.type);
  2908             result = tree;
  2911 //where
  2912     private JCTree convert(JCTree tree, Type pt) {
  2913         if (tree.type == pt || tree.type.hasTag(BOT))
  2914             return tree;
  2915         JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
  2916         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
  2917                                                        : pt;
  2918         return result;
  2921     /** Visitor method for if statements.
  2922      */
  2923     public void visitIf(JCIf tree) {
  2924         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2925         if (cond.type.isTrue()) {
  2926             result = translate(tree.thenpart);
  2927             addPrunedInfo(cond);
  2928         } else if (cond.type.isFalse()) {
  2929             if (tree.elsepart != null) {
  2930                 result = translate(tree.elsepart);
  2931             } else {
  2932                 result = make.Skip();
  2934             addPrunedInfo(cond);
  2935         } else {
  2936             // Condition is not a compile-time constant.
  2937             tree.thenpart = translate(tree.thenpart);
  2938             tree.elsepart = translate(tree.elsepart);
  2939             result = tree;
  2943     /** Visitor method for assert statements. Translate them away.
  2944      */
  2945     public void visitAssert(JCAssert tree) {
  2946         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
  2947         tree.cond = translate(tree.cond, syms.booleanType);
  2948         if (!tree.cond.type.isTrue()) {
  2949             JCExpression cond = assertFlagTest(tree.pos());
  2950             List<JCExpression> exnArgs = (tree.detail == null) ?
  2951                 List.<JCExpression>nil() : List.of(translate(tree.detail));
  2952             if (!tree.cond.type.isFalse()) {
  2953                 cond = makeBinary
  2954                     (AND,
  2955                      cond,
  2956                      makeUnary(NOT, tree.cond));
  2958             result =
  2959                 make.If(cond,
  2960                         make_at(tree).
  2961                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
  2962                         null);
  2963         } else {
  2964             result = make.Skip();
  2968     public void visitApply(JCMethodInvocation tree) {
  2969         Symbol meth = TreeInfo.symbol(tree.meth);
  2970         List<Type> argtypes = meth.type.getParameterTypes();
  2971         if (allowEnums &&
  2972             meth.name==names.init &&
  2973             meth.owner == syms.enumSym)
  2974             argtypes = argtypes.tail.tail;
  2975         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
  2976         tree.varargsElement = null;
  2977         Name methName = TreeInfo.name(tree.meth);
  2978         if (meth.name==names.init) {
  2979             // We are seeing a this(...) or super(...) constructor call.
  2980             // If an access constructor is used, append null as a last argument.
  2981             Symbol constructor = accessConstructor(tree.pos(), meth);
  2982             if (constructor != meth) {
  2983                 tree.args = tree.args.append(makeNull());
  2984                 TreeInfo.setSymbol(tree.meth, constructor);
  2987             // If we are calling a constructor of a local class, add
  2988             // free variables after explicit constructor arguments.
  2989             ClassSymbol c = (ClassSymbol)constructor.owner;
  2990             if (c.isLocal()) {
  2991                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2994             // If we are calling a constructor of an enum class, pass
  2995             // along the name and ordinal arguments
  2996             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
  2997                 List<JCVariableDecl> params = currentMethodDef.params;
  2998                 if (currentMethodSym.owner.hasOuterInstance())
  2999                     params = params.tail; // drop this$n
  3000                 tree.args = tree.args
  3001                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
  3002                     .prepend(make.Ident(params.head.sym)); // name
  3005             // If we are calling a constructor of a class with an outer
  3006             // instance, and the call
  3007             // is qualified, pass qualifier as first argument in front of
  3008             // the explicit constructor arguments. If the call
  3009             // is not qualified, pass the correct outer instance as
  3010             // first argument.
  3011             if (c.hasOuterInstance()) {
  3012                 JCExpression thisArg;
  3013                 if (tree.meth.hasTag(SELECT)) {
  3014                     thisArg = attr.
  3015                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
  3016                     tree.meth = make.Ident(constructor);
  3017                     ((JCIdent) tree.meth).name = methName;
  3018                 } else if (c.isLocal() || methName == names._this){
  3019                     // local class or this() call
  3020                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
  3021                 } else {
  3022                     // super() call of nested class - never pick 'this'
  3023                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
  3025                 tree.args = tree.args.prepend(thisArg);
  3027         } else {
  3028             // We are seeing a normal method invocation; translate this as usual.
  3029             tree.meth = translate(tree.meth);
  3031             // If the translated method itself is an Apply tree, we are
  3032             // seeing an access method invocation. In this case, append
  3033             // the method arguments to the arguments of the access method.
  3034             if (tree.meth.hasTag(APPLY)) {
  3035                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
  3036                 app.args = tree.args.prependList(app.args);
  3037                 result = app;
  3038                 return;
  3041         result = tree;
  3044     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
  3045         List<JCExpression> args = _args;
  3046         if (parameters.isEmpty()) return args;
  3047         boolean anyChanges = false;
  3048         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
  3049         while (parameters.tail.nonEmpty()) {
  3050             JCExpression arg = translate(args.head, parameters.head);
  3051             anyChanges |= (arg != args.head);
  3052             result.append(arg);
  3053             args = args.tail;
  3054             parameters = parameters.tail;
  3056         Type parameter = parameters.head;
  3057         if (varargsElement != null) {
  3058             anyChanges = true;
  3059             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
  3060             while (args.nonEmpty()) {
  3061                 JCExpression arg = translate(args.head, varargsElement);
  3062                 elems.append(arg);
  3063                 args = args.tail;
  3065             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
  3066                                                List.<JCExpression>nil(),
  3067                                                elems.toList());
  3068             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
  3069             result.append(boxedArgs);
  3070         } else {
  3071             if (args.length() != 1) throw new AssertionError(args);
  3072             JCExpression arg = translate(args.head, parameter);
  3073             anyChanges |= (arg != args.head);
  3074             result.append(arg);
  3075             if (!anyChanges) return _args;
  3077         return result.toList();
  3080     /** Expand a boxing or unboxing conversion if needed. */
  3081     @SuppressWarnings("unchecked") // XXX unchecked
  3082     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
  3083         boolean havePrimitive = tree.type.isPrimitive();
  3084         if (havePrimitive == type.isPrimitive())
  3085             return tree;
  3086         if (havePrimitive) {
  3087             Type unboxedTarget = types.unboxedType(type);
  3088             if (!unboxedTarget.hasTag(NONE)) {
  3089                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
  3090                     tree.type = unboxedTarget.constType(tree.type.constValue());
  3091                 return (T)boxPrimitive((JCExpression)tree, type);
  3092             } else {
  3093                 tree = (T)boxPrimitive((JCExpression)tree);
  3095         } else {
  3096             tree = (T)unbox((JCExpression)tree, type);
  3098         return tree;
  3101     /** Box up a single primitive expression. */
  3102     JCExpression boxPrimitive(JCExpression tree) {
  3103         return boxPrimitive(tree, types.boxedClass(tree.type).type);
  3106     /** Box up a single primitive expression. */
  3107     JCExpression boxPrimitive(JCExpression tree, Type box) {
  3108         make_at(tree.pos());
  3109         if (target.boxWithConstructors()) {
  3110             Symbol ctor = lookupConstructor(tree.pos(),
  3111                                             box,
  3112                                             List.<Type>nil()
  3113                                             .prepend(tree.type));
  3114             return make.Create(ctor, List.of(tree));
  3115         } else {
  3116             Symbol valueOfSym = lookupMethod(tree.pos(),
  3117                                              names.valueOf,
  3118                                              box,
  3119                                              List.<Type>nil()
  3120                                              .prepend(tree.type));
  3121             return make.App(make.QualIdent(valueOfSym), List.of(tree));
  3125     /** Unbox an object to a primitive value. */
  3126     JCExpression unbox(JCExpression tree, Type primitive) {
  3127         Type unboxedType = types.unboxedType(tree.type);
  3128         if (unboxedType.hasTag(NONE)) {
  3129             unboxedType = primitive;
  3130             if (!unboxedType.isPrimitive())
  3131                 throw new AssertionError(unboxedType);
  3132             make_at(tree.pos());
  3133             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
  3134         } else {
  3135             // There must be a conversion from unboxedType to primitive.
  3136             if (!types.isSubtype(unboxedType, primitive))
  3137                 throw new AssertionError(tree);
  3139         make_at(tree.pos());
  3140         Symbol valueSym = lookupMethod(tree.pos(),
  3141                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
  3142                                        tree.type,
  3143                                        List.<Type>nil());
  3144         return make.App(make.Select(tree, valueSym));
  3147     /** Visitor method for parenthesized expressions.
  3148      *  If the subexpression has changed, omit the parens.
  3149      */
  3150     public void visitParens(JCParens tree) {
  3151         JCTree expr = translate(tree.expr);
  3152         result = ((expr == tree.expr) ? tree : expr);
  3155     public void visitIndexed(JCArrayAccess tree) {
  3156         tree.indexed = translate(tree.indexed);
  3157         tree.index = translate(tree.index, syms.intType);
  3158         result = tree;
  3161     public void visitAssign(JCAssign tree) {
  3162         tree.lhs = translate(tree.lhs, tree);
  3163         tree.rhs = translate(tree.rhs, tree.lhs.type);
  3165         // If translated left hand side is an Apply, we are
  3166         // seeing an access method invocation. In this case, append
  3167         // right hand side as last argument of the access method.
  3168         if (tree.lhs.hasTag(APPLY)) {
  3169             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  3170             app.args = List.of(tree.rhs).prependList(app.args);
  3171             result = app;
  3172         } else {
  3173             result = tree;
  3177     public void visitAssignop(final JCAssignOp tree) {
  3178         JCTree lhsAccess = access(TreeInfo.skipParens(tree.lhs));
  3179         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
  3180             tree.operator.type.getReturnType().isPrimitive();
  3182         if (boxingReq || lhsAccess.hasTag(APPLY)) {
  3183             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
  3184             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
  3185             // (but without recomputing x)
  3186             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
  3187                     public JCTree build(final JCTree lhs) {
  3188                         JCTree.Tag newTag = tree.getTag().noAssignOp();
  3189                         // Erasure (TransTypes) can change the type of
  3190                         // tree.lhs.  However, we can still get the
  3191                         // unerased type of tree.lhs as it is stored
  3192                         // in tree.type in Attr.
  3193                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
  3194                                                                       newTag,
  3195                                                                       attrEnv,
  3196                                                                       tree.type,
  3197                                                                       tree.rhs.type);
  3198                         JCExpression expr = (JCExpression)lhs;
  3199                         if (expr.type != tree.type)
  3200                             expr = make.TypeCast(tree.type, expr);
  3201                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
  3202                         opResult.operator = newOperator;
  3203                         opResult.type = newOperator.type.getReturnType();
  3204                         JCExpression newRhs = boxingReq ?
  3205                             make.TypeCast(types.unboxedType(tree.type), opResult) :
  3206                             opResult;
  3207                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
  3209                 });
  3210             result = translate(newTree);
  3211             return;
  3213         tree.lhs = translate(tree.lhs, tree);
  3214         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
  3216         // If translated left hand side is an Apply, we are
  3217         // seeing an access method invocation. In this case, append
  3218         // right hand side as last argument of the access method.
  3219         if (tree.lhs.hasTag(APPLY)) {
  3220             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  3221             // if operation is a += on strings,
  3222             // make sure to convert argument to string
  3223             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
  3224               ? makeString(tree.rhs)
  3225               : tree.rhs;
  3226             app.args = List.of(rhs).prependList(app.args);
  3227             result = app;
  3228         } else {
  3229             result = tree;
  3233     /** Lower a tree of the form e++ or e-- where e is an object type */
  3234     JCTree lowerBoxedPostop(final JCUnary tree) {
  3235         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
  3236         // or
  3237         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
  3238         // where OP is += or -=
  3239         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
  3240         return abstractLval(tree.arg, new TreeBuilder() {
  3241                 public JCTree build(final JCTree tmp1) {
  3242                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
  3243                             public JCTree build(final JCTree tmp2) {
  3244                                 JCTree.Tag opcode = (tree.hasTag(POSTINC))
  3245                                     ? PLUS_ASG : MINUS_ASG;
  3246                                 JCTree lhs = cast
  3247                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
  3248                                     : tmp1;
  3249                                 JCTree update = makeAssignop(opcode,
  3250                                                              lhs,
  3251                                                              make.Literal(1));
  3252                                 return makeComma(update, tmp2);
  3254                         });
  3256             });
  3259     public void visitUnary(JCUnary tree) {
  3260         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
  3261         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
  3262             switch(tree.getTag()) {
  3263             case PREINC:            // ++ e
  3264                     // translate to e += 1
  3265             case PREDEC:            // -- e
  3266                     // translate to e -= 1
  3268                     JCTree.Tag opcode = (tree.hasTag(PREINC))
  3269                         ? PLUS_ASG : MINUS_ASG;
  3270                     JCAssignOp newTree = makeAssignop(opcode,
  3271                                                     tree.arg,
  3272                                                     make.Literal(1));
  3273                     result = translate(newTree, tree.type);
  3274                     return;
  3276             case POSTINC:           // e ++
  3277             case POSTDEC:           // e --
  3279                     result = translate(lowerBoxedPostop(tree), tree.type);
  3280                     return;
  3283             throw new AssertionError(tree);
  3286         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
  3288         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
  3289             tree.type = cfolder.fold1(bool_not, tree.arg.type);
  3292         // If translated left hand side is an Apply, we are
  3293         // seeing an access method invocation. In this case, return
  3294         // that access method invocation as result.
  3295         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
  3296             result = tree.arg;
  3297         } else {
  3298             result = tree;
  3302     public void visitBinary(JCBinary tree) {
  3303         List<Type> formals = tree.operator.type.getParameterTypes();
  3304         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
  3305         switch (tree.getTag()) {
  3306         case OR:
  3307             if (lhs.type.isTrue()) {
  3308                 result = lhs;
  3309                 return;
  3311             if (lhs.type.isFalse()) {
  3312                 result = translate(tree.rhs, formals.tail.head);
  3313                 return;
  3315             break;
  3316         case AND:
  3317             if (lhs.type.isFalse()) {
  3318                 result = lhs;
  3319                 return;
  3321             if (lhs.type.isTrue()) {
  3322                 result = translate(tree.rhs, formals.tail.head);
  3323                 return;
  3325             break;
  3327         tree.rhs = translate(tree.rhs, formals.tail.head);
  3328         result = tree;
  3331     public void visitIdent(JCIdent tree) {
  3332         result = access(tree.sym, tree, enclOp, false);
  3335     /** Translate away the foreach loop.  */
  3336     public void visitForeachLoop(JCEnhancedForLoop tree) {
  3337         if (types.elemtype(tree.expr.type) == null)
  3338             visitIterableForeachLoop(tree);
  3339         else
  3340             visitArrayForeachLoop(tree);
  3342         // where
  3343         /**
  3344          * A statement of the form
  3346          * <pre>
  3347          *     for ( T v : arrayexpr ) stmt;
  3348          * </pre>
  3350          * (where arrayexpr is of an array type) gets translated to
  3352          * <pre>{@code
  3353          *     for ( { arraytype #arr = arrayexpr;
  3354          *             int #len = array.length;
  3355          *             int #i = 0; };
  3356          *           #i < #len; i$++ ) {
  3357          *         T v = arr$[#i];
  3358          *         stmt;
  3359          *     }
  3360          * }</pre>
  3362          * where #arr, #len, and #i are freshly named synthetic local variables.
  3363          */
  3364         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
  3365             make_at(tree.expr.pos());
  3366             VarSymbol arraycache = new VarSymbol(0,
  3367                                                  names.fromString("arr" + target.syntheticNameChar()),
  3368                                                  tree.expr.type,
  3369                                                  currentMethodSym);
  3370             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
  3371             VarSymbol lencache = new VarSymbol(0,
  3372                                                names.fromString("len" + target.syntheticNameChar()),
  3373                                                syms.intType,
  3374                                                currentMethodSym);
  3375             JCStatement lencachedef = make.
  3376                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
  3377             VarSymbol index = new VarSymbol(0,
  3378                                             names.fromString("i" + target.syntheticNameChar()),
  3379                                             syms.intType,
  3380                                             currentMethodSym);
  3382             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
  3383             indexdef.init.type = indexdef.type = syms.intType.constType(0);
  3385             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
  3386             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
  3388             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
  3390             Type elemtype = types.elemtype(tree.expr.type);
  3391             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
  3392                                                     make.Ident(index)).setType(elemtype);
  3393             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3394                                                   tree.var.name,
  3395                                                   tree.var.vartype,
  3396                                                   loopvarinit).setType(tree.var.type);
  3397             loopvardef.sym = tree.var.sym;
  3398             JCBlock body = make.
  3399                 Block(0, List.of(loopvardef, tree.body));
  3401             result = translate(make.
  3402                                ForLoop(loopinit,
  3403                                        cond,
  3404                                        List.of(step),
  3405                                        body));
  3406             patchTargets(body, tree, result);
  3408         /** Patch up break and continue targets. */
  3409         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
  3410             class Patcher extends TreeScanner {
  3411                 public void visitBreak(JCBreak tree) {
  3412                     if (tree.target == src)
  3413                         tree.target = dest;
  3415                 public void visitContinue(JCContinue tree) {
  3416                     if (tree.target == src)
  3417                         tree.target = dest;
  3419                 public void visitClassDef(JCClassDecl tree) {}
  3421             new Patcher().scan(body);
  3423         /**
  3424          * A statement of the form
  3426          * <pre>
  3427          *     for ( T v : coll ) stmt ;
  3428          * </pre>
  3430          * (where coll implements {@code Iterable<? extends T>}) gets translated to
  3432          * <pre>{@code
  3433          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
  3434          *         T v = (T) #i.next();
  3435          *         stmt;
  3436          *     }
  3437          * }</pre>
  3439          * where #i is a freshly named synthetic local variable.
  3440          */
  3441         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
  3442             make_at(tree.expr.pos());
  3443             Type iteratorTarget = syms.objectType;
  3444             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
  3445                                               syms.iterableType.tsym);
  3446             if (iterableType.getTypeArguments().nonEmpty())
  3447                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
  3448             Type eType = tree.expr.type;
  3449             while (eType.hasTag(TYPEVAR)) {
  3450                 eType = eType.getUpperBound();
  3452             tree.expr.type = types.erasure(eType);
  3453             if (eType.isCompound())
  3454                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
  3455             Symbol iterator = lookupMethod(tree.expr.pos(),
  3456                                            names.iterator,
  3457                                            eType,
  3458                                            List.<Type>nil());
  3459             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
  3460                                             types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)),
  3461                                             currentMethodSym);
  3463              JCStatement init = make.
  3464                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
  3465                      .setType(types.erasure(iterator.type))));
  3467             Symbol hasNext = lookupMethod(tree.expr.pos(),
  3468                                           names.hasNext,
  3469                                           itvar.type,
  3470                                           List.<Type>nil());
  3471             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
  3472             Symbol next = lookupMethod(tree.expr.pos(),
  3473                                        names.next,
  3474                                        itvar.type,
  3475                                        List.<Type>nil());
  3476             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
  3477             if (tree.var.type.isPrimitive())
  3478                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
  3479             else
  3480                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
  3481             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3482                                                   tree.var.name,
  3483                                                   tree.var.vartype,
  3484                                                   vardefinit).setType(tree.var.type);
  3485             indexDef.sym = tree.var.sym;
  3486             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
  3487             body.endpos = TreeInfo.endPos(tree.body);
  3488             result = translate(make.
  3489                 ForLoop(List.of(init),
  3490                         cond,
  3491                         List.<JCExpressionStatement>nil(),
  3492                         body));
  3493             patchTargets(body, tree, result);
  3496     public void visitVarDef(JCVariableDecl tree) {
  3497         MethodSymbol oldMethodSym = currentMethodSym;
  3498         tree.mods = translate(tree.mods);
  3499         tree.vartype = translate(tree.vartype);
  3500         if (currentMethodSym == null) {
  3501             // A class or instance field initializer.
  3502             currentMethodSym =
  3503                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
  3504                                  names.empty, null,
  3505                                  currentClass);
  3507         if (tree.init != null) tree.init = translate(tree.init, tree.type);
  3508         result = tree;
  3509         currentMethodSym = oldMethodSym;
  3512     public void visitBlock(JCBlock tree) {
  3513         MethodSymbol oldMethodSym = currentMethodSym;
  3514         if (currentMethodSym == null) {
  3515             // Block is a static or instance initializer.
  3516             currentMethodSym =
  3517                 new MethodSymbol(tree.flags | BLOCK,
  3518                                  names.empty, null,
  3519                                  currentClass);
  3521         super.visitBlock(tree);
  3522         currentMethodSym = oldMethodSym;
  3525     public void visitDoLoop(JCDoWhileLoop tree) {
  3526         tree.body = translate(tree.body);
  3527         tree.cond = translate(tree.cond, syms.booleanType);
  3528         result = tree;
  3531     public void visitWhileLoop(JCWhileLoop tree) {
  3532         tree.cond = translate(tree.cond, syms.booleanType);
  3533         tree.body = translate(tree.body);
  3534         result = tree;
  3537     public void visitForLoop(JCForLoop tree) {
  3538         tree.init = translate(tree.init);
  3539         if (tree.cond != null)
  3540             tree.cond = translate(tree.cond, syms.booleanType);
  3541         tree.step = translate(tree.step);
  3542         tree.body = translate(tree.body);
  3543         result = tree;
  3546     public void visitReturn(JCReturn tree) {
  3547         if (tree.expr != null)
  3548             tree.expr = translate(tree.expr,
  3549                                   types.erasure(currentMethodDef
  3550                                                 .restype.type));
  3551         result = tree;
  3554     public void visitSwitch(JCSwitch tree) {
  3555         Type selsuper = types.supertype(tree.selector.type);
  3556         boolean enumSwitch = selsuper != null &&
  3557             (tree.selector.type.tsym.flags() & ENUM) != 0;
  3558         boolean stringSwitch = selsuper != null &&
  3559             types.isSameType(tree.selector.type, syms.stringType);
  3560         Type target = enumSwitch ? tree.selector.type :
  3561             (stringSwitch? syms.stringType : syms.intType);
  3562         tree.selector = translate(tree.selector, target);
  3563         tree.cases = translateCases(tree.cases);
  3564         if (enumSwitch) {
  3565             result = visitEnumSwitch(tree);
  3566         } else if (stringSwitch) {
  3567             result = visitStringSwitch(tree);
  3568         } else {
  3569             result = tree;
  3573     public JCTree visitEnumSwitch(JCSwitch tree) {
  3574         TypeSymbol enumSym = tree.selector.type.tsym;
  3575         EnumMapping map = mapForEnum(tree.pos(), enumSym);
  3576         make_at(tree.pos());
  3577         Symbol ordinalMethod = lookupMethod(tree.pos(),
  3578                                             names.ordinal,
  3579                                             tree.selector.type,
  3580                                             List.<Type>nil());
  3581         JCArrayAccess selector = make.Indexed(map.mapVar,
  3582                                         make.App(make.Select(tree.selector,
  3583                                                              ordinalMethod)));
  3584         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
  3585         for (JCCase c : tree.cases) {
  3586             if (c.pat != null) {
  3587                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
  3588                 JCLiteral pat = map.forConstant(label);
  3589                 cases.append(make.Case(pat, c.stats));
  3590             } else {
  3591                 cases.append(c);
  3594         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
  3595         patchTargets(enumSwitch, tree, enumSwitch);
  3596         return enumSwitch;
  3599     public JCTree visitStringSwitch(JCSwitch tree) {
  3600         List<JCCase> caseList = tree.getCases();
  3601         int alternatives = caseList.size();
  3603         if (alternatives == 0) { // Strange but legal possibility
  3604             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
  3605         } else {
  3606             /*
  3607              * The general approach used is to translate a single
  3608              * string switch statement into a series of two chained
  3609              * switch statements: the first a synthesized statement
  3610              * switching on the argument string's hash value and
  3611              * computing a string's position in the list of original
  3612              * case labels, if any, followed by a second switch on the
  3613              * computed integer value.  The second switch has the same
  3614              * code structure as the original string switch statement
  3615              * except that the string case labels are replaced with
  3616              * positional integer constants starting at 0.
  3618              * The first switch statement can be thought of as an
  3619              * inlined map from strings to their position in the case
  3620              * label list.  An alternate implementation would use an
  3621              * actual Map for this purpose, as done for enum switches.
  3623              * With some additional effort, it would be possible to
  3624              * use a single switch statement on the hash code of the
  3625              * argument, but care would need to be taken to preserve
  3626              * the proper control flow in the presence of hash
  3627              * collisions and other complications, such as
  3628              * fallthroughs.  Switch statements with one or two
  3629              * alternatives could also be specially translated into
  3630              * if-then statements to omit the computation of the hash
  3631              * code.
  3633              * The generated code assumes that the hashing algorithm
  3634              * of String is the same in the compilation environment as
  3635              * in the environment the code will run in.  The string
  3636              * hashing algorithm in the SE JDK has been unchanged
  3637              * since at least JDK 1.2.  Since the algorithm has been
  3638              * specified since that release as well, it is very
  3639              * unlikely to be changed in the future.
  3641              * Different hashing algorithms, such as the length of the
  3642              * strings or a perfect hashing algorithm over the
  3643              * particular set of case labels, could potentially be
  3644              * used instead of String.hashCode.
  3645              */
  3647             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
  3649             // Map from String case labels to their original position in
  3650             // the list of case labels.
  3651             Map<String, Integer> caseLabelToPosition =
  3652                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
  3654             // Map of hash codes to the string case labels having that hashCode.
  3655             Map<Integer, Set<String>> hashToString =
  3656                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
  3658             int casePosition = 0;
  3659             for(JCCase oneCase : caseList) {
  3660                 JCExpression expression = oneCase.getExpression();
  3662                 if (expression != null) { // expression for a "default" case is null
  3663                     String labelExpr = (String) expression.type.constValue();
  3664                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
  3665                     Assert.checkNull(mapping);
  3666                     int hashCode = labelExpr.hashCode();
  3668                     Set<String> stringSet = hashToString.get(hashCode);
  3669                     if (stringSet == null) {
  3670                         stringSet = new LinkedHashSet<String>(1, 1.0f);
  3671                         stringSet.add(labelExpr);
  3672                         hashToString.put(hashCode, stringSet);
  3673                     } else {
  3674                         boolean added = stringSet.add(labelExpr);
  3675                         Assert.check(added);
  3678                 casePosition++;
  3681             // Synthesize a switch statement that has the effect of
  3682             // mapping from a string to the integer position of that
  3683             // string in the list of case labels.  This is done by
  3684             // switching on the hashCode of the string followed by an
  3685             // if-then-else chain comparing the input for equality
  3686             // with all the case labels having that hash value.
  3688             /*
  3689              * s$ = top of stack;
  3690              * tmp$ = -1;
  3691              * switch($s.hashCode()) {
  3692              *     case caseLabel.hashCode:
  3693              *         if (s$.equals("caseLabel_1")
  3694              *           tmp$ = caseLabelToPosition("caseLabel_1");
  3695              *         else if (s$.equals("caseLabel_2"))
  3696              *           tmp$ = caseLabelToPosition("caseLabel_2");
  3697              *         ...
  3698              *         break;
  3699              * ...
  3700              * }
  3701              */
  3703             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
  3704                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
  3705                                                syms.stringType,
  3706                                                currentMethodSym);
  3707             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
  3709             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
  3710                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
  3711                                                  syms.intType,
  3712                                                  currentMethodSym);
  3713             JCVariableDecl dollar_tmp_def =
  3714                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
  3715             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
  3716             stmtList.append(dollar_tmp_def);
  3717             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
  3718             // hashCode will trigger nullcheck on original switch expression
  3719             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
  3720                                                        names.hashCode,
  3721                                                        List.<JCExpression>nil()).setType(syms.intType);
  3722             JCSwitch switch1 = make.Switch(hashCodeCall,
  3723                                         caseBuffer.toList());
  3724             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
  3725                 int hashCode = entry.getKey();
  3726                 Set<String> stringsWithHashCode = entry.getValue();
  3727                 Assert.check(stringsWithHashCode.size() >= 1);
  3729                 JCStatement elsepart = null;
  3730                 for(String caseLabel : stringsWithHashCode ) {
  3731                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
  3732                                                                    names.equals,
  3733                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
  3734                     elsepart = make.If(stringEqualsCall,
  3735                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
  3736                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
  3737                                                  setType(dollar_tmp.type)),
  3738                                        elsepart);
  3741                 ListBuffer<JCStatement> lb = ListBuffer.lb();
  3742                 JCBreak breakStmt = make.Break(null);
  3743                 breakStmt.target = switch1;
  3744                 lb.append(elsepart).append(breakStmt);
  3746                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
  3749             switch1.cases = caseBuffer.toList();
  3750             stmtList.append(switch1);
  3752             // Make isomorphic switch tree replacing string labels
  3753             // with corresponding integer ones from the label to
  3754             // position map.
  3756             ListBuffer<JCCase> lb = ListBuffer.lb();
  3757             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
  3758             for(JCCase oneCase : caseList ) {
  3759                 // Rewire up old unlabeled break statements to the
  3760                 // replacement switch being created.
  3761                 patchTargets(oneCase, tree, switch2);
  3763                 boolean isDefault = (oneCase.getExpression() == null);
  3764                 JCExpression caseExpr;
  3765                 if (isDefault)
  3766                     caseExpr = null;
  3767                 else {
  3768                     caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
  3769                                                                                                 getExpression()).
  3770                                                                     type.constValue()));
  3773                 lb.append(make.Case(caseExpr,
  3774                                     oneCase.getStatements()));
  3777             switch2.cases = lb.toList();
  3778             stmtList.append(switch2);
  3780             return make.Block(0L, stmtList.toList());
  3784     public void visitNewArray(JCNewArray tree) {
  3785         tree.elemtype = translate(tree.elemtype);
  3786         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
  3787             if (t.head != null) t.head = translate(t.head, syms.intType);
  3788         tree.elems = translate(tree.elems, types.elemtype(tree.type));
  3789         result = tree;
  3792     public void visitSelect(JCFieldAccess tree) {
  3793         // need to special case-access of the form C.super.x
  3794         // these will always need an access method, unless C
  3795         // is a default interface subclassed by the current class.
  3796         boolean qualifiedSuperAccess =
  3797             tree.selected.hasTag(SELECT) &&
  3798             TreeInfo.name(tree.selected) == names._super &&
  3799             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
  3800         tree.selected = translate(tree.selected);
  3801         if (tree.name == names._class) {
  3802             result = classOf(tree.selected);
  3804         else if (tree.name == names._super &&
  3805                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
  3806             //default super call!! Not a classic qualified super call
  3807             TypeSymbol supSym = tree.selected.type.tsym;
  3808             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
  3809             result = tree;
  3811         else if (tree.name == names._this || tree.name == names._super) {
  3812             result = makeThis(tree.pos(), tree.selected.type.tsym);
  3814         else
  3815             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
  3818     public void visitLetExpr(LetExpr tree) {
  3819         tree.defs = translateVarDefs(tree.defs);
  3820         tree.expr = translate(tree.expr, tree.type);
  3821         result = tree;
  3824     // There ought to be nothing to rewrite here;
  3825     // we don't generate code.
  3826     public void visitAnnotation(JCAnnotation tree) {
  3827         result = tree;
  3830     @Override
  3831     public void visitTry(JCTry tree) {
  3832         if (tree.resources.nonEmpty()) {
  3833             result = makeTwrTry(tree);
  3834             return;
  3837         boolean hasBody = tree.body.getStatements().nonEmpty();
  3838         boolean hasCatchers = tree.catchers.nonEmpty();
  3839         boolean hasFinally = tree.finalizer != null &&
  3840                 tree.finalizer.getStatements().nonEmpty();
  3842         if (!hasCatchers && !hasFinally) {
  3843             result = translate(tree.body);
  3844             return;
  3847         if (!hasBody) {
  3848             if (hasFinally) {
  3849                 result = translate(tree.finalizer);
  3850             } else {
  3851                 result = translate(tree.body);
  3853             return;
  3856         // no optimizations possible
  3857         super.visitTry(tree);
  3860 /**************************************************************************
  3861  * main method
  3862  *************************************************************************/
  3864     /** Translate a toplevel class and return a list consisting of
  3865      *  the translated class and translated versions of all inner classes.
  3866      *  @param env   The attribution environment current at the class definition.
  3867      *               We need this for resolving some additional symbols.
  3868      *  @param cdef  The tree representing the class definition.
  3869      */
  3870     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
  3871         ListBuffer<JCTree> translated = null;
  3872         try {
  3873             attrEnv = env;
  3874             this.make = make;
  3875             endPosTable = env.toplevel.endPositions;
  3876             currentClass = null;
  3877             currentMethodDef = null;
  3878             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
  3879             outermostMemberDef = null;
  3880             this.translated = new ListBuffer<JCTree>();
  3881             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
  3882             actualSymbols = new HashMap<Symbol,Symbol>();
  3883             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
  3884             proxies = new Scope(syms.noSymbol);
  3885             twrVars = new Scope(syms.noSymbol);
  3886             outerThisStack = List.nil();
  3887             accessNums = new HashMap<Symbol,Integer>();
  3888             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
  3889             accessConstrs = new HashMap<Symbol,MethodSymbol>();
  3890             accessConstrTags = List.nil();
  3891             accessed = new ListBuffer<Symbol>();
  3892             translate(cdef, (JCExpression)null);
  3893             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
  3894                 makeAccessible(l.head);
  3895             for (EnumMapping map : enumSwitchMap.values())
  3896                 map.translate();
  3897             checkConflicts(this.translated.toList());
  3898             checkAccessConstructorTags();
  3899             translated = this.translated;
  3900         } finally {
  3901             // note that recursive invocations of this method fail hard
  3902             attrEnv = null;
  3903             this.make = null;
  3904             endPosTable = null;
  3905             currentClass = null;
  3906             currentMethodDef = null;
  3907             outermostClassDef = null;
  3908             outermostMemberDef = null;
  3909             this.translated = null;
  3910             classdefs = null;
  3911             actualSymbols = null;
  3912             freevarCache = null;
  3913             proxies = null;
  3914             outerThisStack = null;
  3915             accessNums = null;
  3916             accessSyms = null;
  3917             accessConstrs = null;
  3918             accessConstrTags = null;
  3919             accessed = null;
  3920             enumSwitchMap.clear();
  3922         return translated.toList();

mercurial