src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 18 Feb 2013 14:33:25 +0000

author
vromero
date
Mon, 18 Feb 2013 14:33:25 +0000
changeset 1588
2620c953e9fe
parent 1579
0baaae675b19
child 1603
6118072811e5
permissions
-rw-r--r--

6563143: javac should issue a warning for overriding equals without hashCode
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.tree.JCTree.*;
    47 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    49 import static com.sun.tools.javac.code.Flags.*;
    50 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    51 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    52 import static com.sun.tools.javac.code.Kinds.*;
    53 import static com.sun.tools.javac.code.TypeTag.*;
    54 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    56 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    58 /** Type checking helper class for the attribution phase.
    59  *
    60  *  <p><b>This is NOT part of any supported API.
    61  *  If you write code that depends on this, you do so at your own risk.
    62  *  This code and its internal interfaces are subject to change or
    63  *  deletion without notice.</b>
    64  */
    65 public class Check {
    66     protected static final Context.Key<Check> checkKey =
    67         new Context.Key<Check>();
    69     private final Names names;
    70     private final Log log;
    71     private final Resolve rs;
    72     private final Symtab syms;
    73     private final Enter enter;
    74     private final DeferredAttr deferredAttr;
    75     private final Infer infer;
    76     private final Types types;
    77     private final JCDiagnostic.Factory diags;
    78     private boolean warnOnSyntheticConflicts;
    79     private boolean suppressAbortOnBadClassFile;
    80     private boolean enableSunApiLintControl;
    81     private final TreeInfo treeinfo;
    82     private final JavaFileManager fileManager;
    84     // The set of lint options currently in effect. It is initialized
    85     // from the context, and then is set/reset as needed by Attr as it
    86     // visits all the various parts of the trees during attribution.
    87     private Lint lint;
    89     // The method being analyzed in Attr - it is set/reset as needed by
    90     // Attr as it visits new method declarations.
    91     private MethodSymbol method;
    93     public static Check instance(Context context) {
    94         Check instance = context.get(checkKey);
    95         if (instance == null)
    96             instance = new Check(context);
    97         return instance;
    98     }
   100     protected Check(Context context) {
   101         context.put(checkKey, this);
   103         names = Names.instance(context);
   104         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
   105             names.FIELD, names.METHOD, names.CONSTRUCTOR,
   106             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
   107         log = Log.instance(context);
   108         rs = Resolve.instance(context);
   109         syms = Symtab.instance(context);
   110         enter = Enter.instance(context);
   111         deferredAttr = DeferredAttr.instance(context);
   112         infer = Infer.instance(context);
   113         this.types = Types.instance(context);
   114         diags = JCDiagnostic.Factory.instance(context);
   115         Options options = Options.instance(context);
   116         lint = Lint.instance(context);
   117         treeinfo = TreeInfo.instance(context);
   118         fileManager = context.get(JavaFileManager.class);
   120         Source source = Source.instance(context);
   121         allowGenerics = source.allowGenerics();
   122         allowVarargs = source.allowVarargs();
   123         allowAnnotations = source.allowAnnotations();
   124         allowCovariantReturns = source.allowCovariantReturns();
   125         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   126         allowDefaultMethods = source.allowDefaultMethods();
   127         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
   128         complexInference = options.isSet("complexinference");
   129         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   130         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   131         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   133         Target target = Target.instance(context);
   134         syntheticNameChar = target.syntheticNameChar();
   136         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   137         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   138         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   139         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   141         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   142                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   143         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   144                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   145         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   146                 enforceMandatoryWarnings, "sunapi", null);
   148         deferredLintHandler = DeferredLintHandler.immediateHandler;
   149     }
   151     /** Switch: generics enabled?
   152      */
   153     boolean allowGenerics;
   155     /** Switch: varargs enabled?
   156      */
   157     boolean allowVarargs;
   159     /** Switch: annotations enabled?
   160      */
   161     boolean allowAnnotations;
   163     /** Switch: covariant returns enabled?
   164      */
   165     boolean allowCovariantReturns;
   167     /** Switch: simplified varargs enabled?
   168      */
   169     boolean allowSimplifiedVarargs;
   171     /** Switch: default methods enabled?
   172      */
   173     boolean allowDefaultMethods;
   175     /** Switch: should unrelated return types trigger a method clash?
   176      */
   177     boolean allowStrictMethodClashCheck;
   179     /** Switch: -complexinference option set?
   180      */
   181     boolean complexInference;
   183     /** Character for synthetic names
   184      */
   185     char syntheticNameChar;
   187     /** A table mapping flat names of all compiled classes in this run to their
   188      *  symbols; maintained from outside.
   189      */
   190     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   192     /** A handler for messages about deprecated usage.
   193      */
   194     private MandatoryWarningHandler deprecationHandler;
   196     /** A handler for messages about unchecked or unsafe usage.
   197      */
   198     private MandatoryWarningHandler uncheckedHandler;
   200     /** A handler for messages about using proprietary API.
   201      */
   202     private MandatoryWarningHandler sunApiHandler;
   204     /** A handler for deferred lint warnings.
   205      */
   206     private DeferredLintHandler deferredLintHandler;
   208 /* *************************************************************************
   209  * Errors and Warnings
   210  **************************************************************************/
   212     Lint setLint(Lint newLint) {
   213         Lint prev = lint;
   214         lint = newLint;
   215         return prev;
   216     }
   218     DeferredLintHandler setDeferredLintHandler(DeferredLintHandler newDeferredLintHandler) {
   219         DeferredLintHandler prev = deferredLintHandler;
   220         deferredLintHandler = newDeferredLintHandler;
   221         return prev;
   222     }
   224     MethodSymbol setMethod(MethodSymbol newMethod) {
   225         MethodSymbol prev = method;
   226         method = newMethod;
   227         return prev;
   228     }
   230     /** Warn about deprecated symbol.
   231      *  @param pos        Position to be used for error reporting.
   232      *  @param sym        The deprecated symbol.
   233      */
   234     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   235         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   236             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   237     }
   239     /** Warn about unchecked operation.
   240      *  @param pos        Position to be used for error reporting.
   241      *  @param msg        A string describing the problem.
   242      */
   243     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   244         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   245             uncheckedHandler.report(pos, msg, args);
   246     }
   248     /** Warn about unsafe vararg method decl.
   249      *  @param pos        Position to be used for error reporting.
   250      */
   251     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   252         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   253             log.warning(LintCategory.VARARGS, pos, key, args);
   254     }
   256     /** Warn about using proprietary API.
   257      *  @param pos        Position to be used for error reporting.
   258      *  @param msg        A string describing the problem.
   259      */
   260     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   261         if (!lint.isSuppressed(LintCategory.SUNAPI))
   262             sunApiHandler.report(pos, msg, args);
   263     }
   265     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   266         if (lint.isEnabled(LintCategory.STATIC))
   267             log.warning(LintCategory.STATIC, pos, msg, args);
   268     }
   270     /**
   271      * Report any deferred diagnostics.
   272      */
   273     public void reportDeferredDiagnostics() {
   274         deprecationHandler.reportDeferredDiagnostic();
   275         uncheckedHandler.reportDeferredDiagnostic();
   276         sunApiHandler.reportDeferredDiagnostic();
   277     }
   280     /** Report a failure to complete a class.
   281      *  @param pos        Position to be used for error reporting.
   282      *  @param ex         The failure to report.
   283      */
   284     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   285         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   286         if (ex instanceof ClassReader.BadClassFile
   287                 && !suppressAbortOnBadClassFile) throw new Abort();
   288         else return syms.errType;
   289     }
   291     /** Report an error that wrong type tag was found.
   292      *  @param pos        Position to be used for error reporting.
   293      *  @param required   An internationalized string describing the type tag
   294      *                    required.
   295      *  @param found      The type that was found.
   296      */
   297     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   298         // this error used to be raised by the parser,
   299         // but has been delayed to this point:
   300         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   301             log.error(pos, "illegal.start.of.type");
   302             return syms.errType;
   303         }
   304         log.error(pos, "type.found.req", found, required);
   305         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   306     }
   308     /** Report an error that symbol cannot be referenced before super
   309      *  has been called.
   310      *  @param pos        Position to be used for error reporting.
   311      *  @param sym        The referenced symbol.
   312      */
   313     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   314         log.error(pos, "cant.ref.before.ctor.called", sym);
   315     }
   317     /** Report duplicate declaration error.
   318      */
   319     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   320         if (!sym.type.isErroneous()) {
   321             Symbol location = sym.location();
   322             if (location.kind == MTH &&
   323                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   324                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   325                         kindName(sym.location()), kindName(sym.location().enclClass()),
   326                         sym.location().enclClass());
   327             } else {
   328                 log.error(pos, "already.defined", kindName(sym), sym,
   329                         kindName(sym.location()), sym.location());
   330             }
   331         }
   332     }
   334     /** Report array/varargs duplicate declaration
   335      */
   336     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   337         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   338             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   339         }
   340     }
   342 /* ************************************************************************
   343  * duplicate declaration checking
   344  *************************************************************************/
   346     /** Check that variable does not hide variable with same name in
   347      *  immediately enclosing local scope.
   348      *  @param pos           Position for error reporting.
   349      *  @param v             The symbol.
   350      *  @param s             The scope.
   351      */
   352     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   353         if (s.next != null) {
   354             for (Scope.Entry e = s.next.lookup(v.name);
   355                  e.scope != null && e.sym.owner == v.owner;
   356                  e = e.next()) {
   357                 if (e.sym.kind == VAR &&
   358                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   359                     v.name != names.error) {
   360                     duplicateError(pos, e.sym);
   361                     return;
   362                 }
   363             }
   364         }
   365     }
   367     /** Check that a class or interface does not hide a class or
   368      *  interface with same name in immediately enclosing local scope.
   369      *  @param pos           Position for error reporting.
   370      *  @param c             The symbol.
   371      *  @param s             The scope.
   372      */
   373     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   374         if (s.next != null) {
   375             for (Scope.Entry e = s.next.lookup(c.name);
   376                  e.scope != null && e.sym.owner == c.owner;
   377                  e = e.next()) {
   378                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   379                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   380                     c.name != names.error) {
   381                     duplicateError(pos, e.sym);
   382                     return;
   383                 }
   384             }
   385         }
   386     }
   388     /** Check that class does not have the same name as one of
   389      *  its enclosing classes, or as a class defined in its enclosing scope.
   390      *  return true if class is unique in its enclosing scope.
   391      *  @param pos           Position for error reporting.
   392      *  @param name          The class name.
   393      *  @param s             The enclosing scope.
   394      */
   395     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   396         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   397             if (e.sym.kind == TYP && e.sym.name != names.error) {
   398                 duplicateError(pos, e.sym);
   399                 return false;
   400             }
   401         }
   402         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   403             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   404                 duplicateError(pos, sym);
   405                 return true;
   406             }
   407         }
   408         return true;
   409     }
   411 /* *************************************************************************
   412  * Class name generation
   413  **************************************************************************/
   415     /** Return name of local class.
   416      *  This is of the form   {@code <enclClass> $ n <classname> }
   417      *  where
   418      *    enclClass is the flat name of the enclosing class,
   419      *    classname is the simple name of the local class
   420      */
   421     Name localClassName(ClassSymbol c) {
   422         for (int i=1; ; i++) {
   423             Name flatname = names.
   424                 fromString("" + c.owner.enclClass().flatname +
   425                            syntheticNameChar + i +
   426                            c.name);
   427             if (compiled.get(flatname) == null) return flatname;
   428         }
   429     }
   431 /* *************************************************************************
   432  * Type Checking
   433  **************************************************************************/
   435     /**
   436      * A check context is an object that can be used to perform compatibility
   437      * checks - depending on the check context, meaning of 'compatibility' might
   438      * vary significantly.
   439      */
   440     public interface CheckContext {
   441         /**
   442          * Is type 'found' compatible with type 'req' in given context
   443          */
   444         boolean compatible(Type found, Type req, Warner warn);
   445         /**
   446          * Report a check error
   447          */
   448         void report(DiagnosticPosition pos, JCDiagnostic details);
   449         /**
   450          * Obtain a warner for this check context
   451          */
   452         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   454         public Infer.InferenceContext inferenceContext();
   456         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   457     }
   459     /**
   460      * This class represent a check context that is nested within another check
   461      * context - useful to check sub-expressions. The default behavior simply
   462      * redirects all method calls to the enclosing check context leveraging
   463      * the forwarding pattern.
   464      */
   465     static class NestedCheckContext implements CheckContext {
   466         CheckContext enclosingContext;
   468         NestedCheckContext(CheckContext enclosingContext) {
   469             this.enclosingContext = enclosingContext;
   470         }
   472         public boolean compatible(Type found, Type req, Warner warn) {
   473             return enclosingContext.compatible(found, req, warn);
   474         }
   476         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   477             enclosingContext.report(pos, details);
   478         }
   480         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   481             return enclosingContext.checkWarner(pos, found, req);
   482         }
   484         public Infer.InferenceContext inferenceContext() {
   485             return enclosingContext.inferenceContext();
   486         }
   488         public DeferredAttrContext deferredAttrContext() {
   489             return enclosingContext.deferredAttrContext();
   490         }
   491     }
   493     /**
   494      * Check context to be used when evaluating assignment/return statements
   495      */
   496     CheckContext basicHandler = new CheckContext() {
   497         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   498             log.error(pos, "prob.found.req", details);
   499         }
   500         public boolean compatible(Type found, Type req, Warner warn) {
   501             return types.isAssignable(found, req, warn);
   502         }
   504         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   505             return convertWarner(pos, found, req);
   506         }
   508         public InferenceContext inferenceContext() {
   509             return infer.emptyContext;
   510         }
   512         public DeferredAttrContext deferredAttrContext() {
   513             return deferredAttr.emptyDeferredAttrContext;
   514         }
   515     };
   517     /** Check that a given type is assignable to a given proto-type.
   518      *  If it is, return the type, otherwise return errType.
   519      *  @param pos        Position to be used for error reporting.
   520      *  @param found      The type that was found.
   521      *  @param req        The type that was required.
   522      */
   523     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   524         return checkType(pos, found, req, basicHandler);
   525     }
   527     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   528         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   529         if (inferenceContext.free(req)) {
   530             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
   531                 @Override
   532                 public void typesInferred(InferenceContext inferenceContext) {
   533                     checkType(pos, found, inferenceContext.asInstType(req), checkContext);
   534                 }
   535             });
   536         }
   537         if (req.hasTag(ERROR))
   538             return req;
   539         if (req.hasTag(NONE))
   540             return found;
   541         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   542             return found;
   543         } else {
   544             if (found.getTag().isSubRangeOf(DOUBLE) && req.getTag().isSubRangeOf(DOUBLE)) {
   545                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   546                 return types.createErrorType(found);
   547             }
   548             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   549             return types.createErrorType(found);
   550         }
   551     }
   553     /** Check that a given type can be cast to a given target type.
   554      *  Return the result of the cast.
   555      *  @param pos        Position to be used for error reporting.
   556      *  @param found      The type that is being cast.
   557      *  @param req        The target type of the cast.
   558      */
   559     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   560         return checkCastable(pos, found, req, basicHandler);
   561     }
   562     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   563         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   564             return req;
   565         } else {
   566             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   567             return types.createErrorType(found);
   568         }
   569     }
   571     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   572      * The problem should only be reported for non-292 cast
   573      */
   574     public void checkRedundantCast(Env<AttrContext> env, JCTypeCast tree) {
   575         if (!tree.type.isErroneous() &&
   576                 (env.info.lint == null || env.info.lint.isEnabled(Lint.LintCategory.CAST))
   577                 && types.isSameType(tree.expr.type, tree.clazz.type)
   578                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
   579                 && !is292targetTypeCast(tree)) {
   580             log.warning(Lint.LintCategory.CAST,
   581                     tree.pos(), "redundant.cast", tree.expr.type);
   582         }
   583     }
   584     //where
   585         private boolean is292targetTypeCast(JCTypeCast tree) {
   586             boolean is292targetTypeCast = false;
   587             JCExpression expr = TreeInfo.skipParens(tree.expr);
   588             if (expr.hasTag(APPLY)) {
   589                 JCMethodInvocation apply = (JCMethodInvocation)expr;
   590                 Symbol sym = TreeInfo.symbol(apply.meth);
   591                 is292targetTypeCast = sym != null &&
   592                     sym.kind == MTH &&
   593                     (sym.flags() & HYPOTHETICAL) != 0;
   594             }
   595             return is292targetTypeCast;
   596         }
   598         private static final boolean ignoreAnnotatedCasts = true;
   600     /** Check that a type is within some bounds.
   601      *
   602      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   603      *  type argument.
   604      *  @param a             The type that should be bounded by bs.
   605      *  @param bound         The bound.
   606      */
   607     private boolean checkExtends(Type a, Type bound) {
   608          if (a.isUnbound()) {
   609              return true;
   610          } else if (!a.hasTag(WILDCARD)) {
   611              a = types.upperBound(a);
   612              return types.isSubtype(a, bound);
   613          } else if (a.isExtendsBound()) {
   614              return types.isCastable(bound, types.upperBound(a), types.noWarnings);
   615          } else if (a.isSuperBound()) {
   616              return !types.notSoftSubtype(types.lowerBound(a), bound);
   617          }
   618          return true;
   619      }
   621     /** Check that type is different from 'void'.
   622      *  @param pos           Position to be used for error reporting.
   623      *  @param t             The type to be checked.
   624      */
   625     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   626         if (t.hasTag(VOID)) {
   627             log.error(pos, "void.not.allowed.here");
   628             return types.createErrorType(t);
   629         } else {
   630             return t;
   631         }
   632     }
   634     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
   635         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   636             return typeTagError(pos,
   637                                 diags.fragment("type.req.class.array"),
   638                                 asTypeParam(t));
   639         } else {
   640             return t;
   641         }
   642     }
   644     /** Check that type is a class or interface type.
   645      *  @param pos           Position to be used for error reporting.
   646      *  @param t             The type to be checked.
   647      */
   648     Type checkClassType(DiagnosticPosition pos, Type t) {
   649         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
   650             return typeTagError(pos,
   651                                 diags.fragment("type.req.class"),
   652                                 asTypeParam(t));
   653         } else {
   654             return t;
   655         }
   656     }
   657     //where
   658         private Object asTypeParam(Type t) {
   659             return (t.hasTag(TYPEVAR))
   660                                     ? diags.fragment("type.parameter", t)
   661                                     : t;
   662         }
   664     /** Check that type is a valid qualifier for a constructor reference expression
   665      */
   666     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   667         t = checkClassOrArrayType(pos, t);
   668         if (t.hasTag(CLASS)) {
   669             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   670                 log.error(pos, "abstract.cant.be.instantiated");
   671                 t = types.createErrorType(t);
   672             } else if ((t.tsym.flags() & ENUM) != 0) {
   673                 log.error(pos, "enum.cant.be.instantiated");
   674                 t = types.createErrorType(t);
   675             }
   676         }
   677         return t;
   678     }
   680     /** Check that type is a class or interface type.
   681      *  @param pos           Position to be used for error reporting.
   682      *  @param t             The type to be checked.
   683      *  @param noBounds    True if type bounds are illegal here.
   684      */
   685     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   686         t = checkClassType(pos, t);
   687         if (noBounds && t.isParameterized()) {
   688             List<Type> args = t.getTypeArguments();
   689             while (args.nonEmpty()) {
   690                 if (args.head.hasTag(WILDCARD))
   691                     return typeTagError(pos,
   692                                         diags.fragment("type.req.exact"),
   693                                         args.head);
   694                 args = args.tail;
   695             }
   696         }
   697         return t;
   698     }
   700     /** Check that type is a reifiable class, interface or array type.
   701      *  @param pos           Position to be used for error reporting.
   702      *  @param t             The type to be checked.
   703      */
   704     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   705         t = checkClassOrArrayType(pos, t);
   706         if (!t.isErroneous() && !types.isReifiable(t)) {
   707             log.error(pos, "illegal.generic.type.for.instof");
   708             return types.createErrorType(t);
   709         } else {
   710             return t;
   711         }
   712     }
   714     /** Check that type is a reference type, i.e. a class, interface or array type
   715      *  or a type variable.
   716      *  @param pos           Position to be used for error reporting.
   717      *  @param t             The type to be checked.
   718      */
   719     Type checkRefType(DiagnosticPosition pos, Type t) {
   720         if (t.isReference())
   721             return t;
   722         else
   723             return typeTagError(pos,
   724                                 diags.fragment("type.req.ref"),
   725                                 t);
   726     }
   728     /** Check that each type is a reference type, i.e. a class, interface or array type
   729      *  or a type variable.
   730      *  @param trees         Original trees, used for error reporting.
   731      *  @param types         The types to be checked.
   732      */
   733     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   734         List<JCExpression> tl = trees;
   735         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   736             l.head = checkRefType(tl.head.pos(), l.head);
   737             tl = tl.tail;
   738         }
   739         return types;
   740     }
   742     /** Check that type is a null or reference type.
   743      *  @param pos           Position to be used for error reporting.
   744      *  @param t             The type to be checked.
   745      */
   746     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   747         if (t.isNullOrReference())
   748             return t;
   749         else
   750             return typeTagError(pos,
   751                                 diags.fragment("type.req.ref"),
   752                                 t);
   753     }
   755     /** Check that flag set does not contain elements of two conflicting sets. s
   756      *  Return true if it doesn't.
   757      *  @param pos           Position to be used for error reporting.
   758      *  @param flags         The set of flags to be checked.
   759      *  @param set1          Conflicting flags set #1.
   760      *  @param set2          Conflicting flags set #2.
   761      */
   762     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   763         if ((flags & set1) != 0 && (flags & set2) != 0) {
   764             log.error(pos,
   765                       "illegal.combination.of.modifiers",
   766                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   767                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   768             return false;
   769         } else
   770             return true;
   771     }
   773     /** Check that usage of diamond operator is correct (i.e. diamond should not
   774      * be used with non-generic classes or in anonymous class creation expressions)
   775      */
   776     Type checkDiamond(JCNewClass tree, Type t) {
   777         if (!TreeInfo.isDiamond(tree) ||
   778                 t.isErroneous()) {
   779             return checkClassType(tree.clazz.pos(), t, true);
   780         } else if (tree.def != null) {
   781             log.error(tree.clazz.pos(),
   782                     "cant.apply.diamond.1",
   783                     t, diags.fragment("diamond.and.anon.class", t));
   784             return types.createErrorType(t);
   785         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   786             log.error(tree.clazz.pos(),
   787                 "cant.apply.diamond.1",
   788                 t, diags.fragment("diamond.non.generic", t));
   789             return types.createErrorType(t);
   790         } else if (tree.typeargs != null &&
   791                 tree.typeargs.nonEmpty()) {
   792             log.error(tree.clazz.pos(),
   793                 "cant.apply.diamond.1",
   794                 t, diags.fragment("diamond.and.explicit.params", t));
   795             return types.createErrorType(t);
   796         } else {
   797             return t;
   798         }
   799     }
   801     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   802         MethodSymbol m = tree.sym;
   803         if (!allowSimplifiedVarargs) return;
   804         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   805         Type varargElemType = null;
   806         if (m.isVarArgs()) {
   807             varargElemType = types.elemtype(tree.params.last().type);
   808         }
   809         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   810             if (varargElemType != null) {
   811                 log.error(tree,
   812                         "varargs.invalid.trustme.anno",
   813                         syms.trustMeType.tsym,
   814                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   815             } else {
   816                 log.error(tree,
   817                             "varargs.invalid.trustme.anno",
   818                             syms.trustMeType.tsym,
   819                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   820             }
   821         } else if (hasTrustMeAnno && varargElemType != null &&
   822                             types.isReifiable(varargElemType)) {
   823             warnUnsafeVararg(tree,
   824                             "varargs.redundant.trustme.anno",
   825                             syms.trustMeType.tsym,
   826                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   827         }
   828         else if (!hasTrustMeAnno && varargElemType != null &&
   829                 !types.isReifiable(varargElemType)) {
   830             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   831         }
   832     }
   833     //where
   834         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   835             return (s.flags() & VARARGS) != 0 &&
   836                 (s.isConstructor() ||
   837                     (s.flags() & (STATIC | FINAL)) != 0);
   838         }
   840     Type checkMethod(Type owntype,
   841                             Symbol sym,
   842                             Env<AttrContext> env,
   843                             final List<JCExpression> argtrees,
   844                             List<Type> argtypes,
   845                             boolean useVarargs,
   846                             boolean unchecked) {
   847         // System.out.println("call   : " + env.tree);
   848         // System.out.println("method : " + owntype);
   849         // System.out.println("actuals: " + argtypes);
   850         List<Type> formals = owntype.getParameterTypes();
   851         Type last = useVarargs ? formals.last() : null;
   852         if (sym.name == names.init &&
   853                 sym.owner == syms.enumSym)
   854                 formals = formals.tail.tail;
   855         List<JCExpression> args = argtrees;
   856         DeferredAttr.DeferredTypeMap checkDeferredMap =
   857                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
   858         if (args != null) {
   859             //this is null when type-checking a method reference
   860             while (formals.head != last) {
   861                 JCTree arg = args.head;
   862                 Warner warn = convertWarner(arg.pos(), arg.type, formals.head);
   863                 assertConvertible(arg, arg.type, formals.head, warn);
   864                 args = args.tail;
   865                 formals = formals.tail;
   866             }
   867             if (useVarargs) {
   868                 Type varArg = types.elemtype(last);
   869                 while (args.tail != null) {
   870                     JCTree arg = args.head;
   871                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   872                     assertConvertible(arg, arg.type, varArg, warn);
   873                     args = args.tail;
   874                 }
   875             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
   876                 // non-varargs call to varargs method
   877                 Type varParam = owntype.getParameterTypes().last();
   878                 Type lastArg = checkDeferredMap.apply(argtypes.last());
   879                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   880                         !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   881                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   882                             types.elemtype(varParam), varParam);
   883             }
   884         }
   885         if (unchecked) {
   886             warnUnchecked(env.tree.pos(),
   887                     "unchecked.meth.invocation.applied",
   888                     kindName(sym),
   889                     sym.name,
   890                     rs.methodArguments(sym.type.getParameterTypes()),
   891                     rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
   892                     kindName(sym.location()),
   893                     sym.location());
   894            owntype = new MethodType(owntype.getParameterTypes(),
   895                    types.erasure(owntype.getReturnType()),
   896                    types.erasure(owntype.getThrownTypes()),
   897                    syms.methodClass);
   898         }
   899         if (useVarargs) {
   900             Type argtype = owntype.getParameterTypes().last();
   901             if (!types.isReifiable(argtype) &&
   902                     (!allowSimplifiedVarargs ||
   903                     sym.attribute(syms.trustMeType.tsym) == null ||
   904                     !isTrustMeAllowedOnMethod(sym))) {
   905                 warnUnchecked(env.tree.pos(),
   906                                   "unchecked.generic.array.creation",
   907                                   argtype);
   908             }
   909             if (!((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types)) {
   910                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
   911             }
   912          }
   913          PolyKind pkind = (sym.type.hasTag(FORALL) &&
   914                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
   915                  PolyKind.POLY : PolyKind.STANDALONE;
   916          TreeInfo.setPolyKind(env.tree, pkind);
   917          return owntype;
   918     }
   919     //where
   920         private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   921             if (types.isConvertible(actual, formal, warn))
   922                 return;
   924             if (formal.isCompound()
   925                 && types.isSubtype(actual, types.supertype(formal))
   926                 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   927                 return;
   928         }
   930     /**
   931      * Check that type 't' is a valid instantiation of a generic class
   932      * (see JLS 4.5)
   933      *
   934      * @param t class type to be checked
   935      * @return true if 't' is well-formed
   936      */
   937     public boolean checkValidGenericType(Type t) {
   938         return firstIncompatibleTypeArg(t) == null;
   939     }
   940     //WHERE
   941         private Type firstIncompatibleTypeArg(Type type) {
   942             List<Type> formals = type.tsym.type.allparams();
   943             List<Type> actuals = type.allparams();
   944             List<Type> args = type.getTypeArguments();
   945             List<Type> forms = type.tsym.type.getTypeArguments();
   946             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   948             // For matching pairs of actual argument types `a' and
   949             // formal type parameters with declared bound `b' ...
   950             while (args.nonEmpty() && forms.nonEmpty()) {
   951                 // exact type arguments needs to know their
   952                 // bounds (for upper and lower bound
   953                 // calculations).  So we create new bounds where
   954                 // type-parameters are replaced with actuals argument types.
   955                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   956                 args = args.tail;
   957                 forms = forms.tail;
   958             }
   960             args = type.getTypeArguments();
   961             List<Type> tvars_cap = types.substBounds(formals,
   962                                       formals,
   963                                       types.capture(type).allparams());
   964             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   965                 // Let the actual arguments know their bound
   966                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   967                 args = args.tail;
   968                 tvars_cap = tvars_cap.tail;
   969             }
   971             args = type.getTypeArguments();
   972             List<Type> bounds = bounds_buf.toList();
   974             while (args.nonEmpty() && bounds.nonEmpty()) {
   975                 Type actual = args.head;
   976                 if (!isTypeArgErroneous(actual) &&
   977                         !bounds.head.isErroneous() &&
   978                         !checkExtends(actual, bounds.head)) {
   979                     return args.head;
   980                 }
   981                 args = args.tail;
   982                 bounds = bounds.tail;
   983             }
   985             args = type.getTypeArguments();
   986             bounds = bounds_buf.toList();
   988             for (Type arg : types.capture(type).getTypeArguments()) {
   989                 if (arg.hasTag(TYPEVAR) &&
   990                         arg.getUpperBound().isErroneous() &&
   991                         !bounds.head.isErroneous() &&
   992                         !isTypeArgErroneous(args.head)) {
   993                     return args.head;
   994                 }
   995                 bounds = bounds.tail;
   996                 args = args.tail;
   997             }
   999             return null;
  1001         //where
  1002         boolean isTypeArgErroneous(Type t) {
  1003             return isTypeArgErroneous.visit(t);
  1006         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1007             public Boolean visitType(Type t, Void s) {
  1008                 return t.isErroneous();
  1010             @Override
  1011             public Boolean visitTypeVar(TypeVar t, Void s) {
  1012                 return visit(t.getUpperBound());
  1014             @Override
  1015             public Boolean visitCapturedType(CapturedType t, Void s) {
  1016                 return visit(t.getUpperBound()) ||
  1017                         visit(t.getLowerBound());
  1019             @Override
  1020             public Boolean visitWildcardType(WildcardType t, Void s) {
  1021                 return visit(t.type);
  1023         };
  1025     /** Check that given modifiers are legal for given symbol and
  1026      *  return modifiers together with any implicit modifiers for that symbol.
  1027      *  Warning: we can't use flags() here since this method
  1028      *  is called during class enter, when flags() would cause a premature
  1029      *  completion.
  1030      *  @param pos           Position to be used for error reporting.
  1031      *  @param flags         The set of modifiers given in a definition.
  1032      *  @param sym           The defined symbol.
  1033      */
  1034     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1035         long mask;
  1036         long implicit = 0;
  1037         switch (sym.kind) {
  1038         case VAR:
  1039             if (sym.owner.kind != TYP)
  1040                 mask = LocalVarFlags;
  1041             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1042                 mask = implicit = InterfaceVarFlags;
  1043             else
  1044                 mask = VarFlags;
  1045             break;
  1046         case MTH:
  1047             if (sym.name == names.init) {
  1048                 if ((sym.owner.flags_field & ENUM) != 0) {
  1049                     // enum constructors cannot be declared public or
  1050                     // protected and must be implicitly or explicitly
  1051                     // private
  1052                     implicit = PRIVATE;
  1053                     mask = PRIVATE;
  1054                 } else
  1055                     mask = ConstructorFlags;
  1056             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1057                 if ((flags & (DEFAULT | STATIC)) != 0) {
  1058                     mask = InterfaceMethodMask;
  1059                     implicit = PUBLIC;
  1060                     if ((flags & DEFAULT) != 0) {
  1061                         implicit |= ABSTRACT;
  1063                 } else {
  1064                     mask = implicit = InterfaceMethodFlags;
  1067             else {
  1068                 mask = MethodFlags;
  1070             // Imply STRICTFP if owner has STRICTFP set.
  1071             if (((flags|implicit) & Flags.ABSTRACT) == 0)
  1072                 implicit |= sym.owner.flags_field & STRICTFP;
  1073             break;
  1074         case TYP:
  1075             if (sym.isLocal()) {
  1076                 mask = LocalClassFlags;
  1077                 if (sym.name.isEmpty()) { // Anonymous class
  1078                     // Anonymous classes in static methods are themselves static;
  1079                     // that's why we admit STATIC here.
  1080                     mask |= STATIC;
  1081                     // JLS: Anonymous classes are final.
  1082                     implicit |= FINAL;
  1084                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1085                     (flags & ENUM) != 0)
  1086                     log.error(pos, "enums.must.be.static");
  1087             } else if (sym.owner.kind == TYP) {
  1088                 mask = MemberClassFlags;
  1089                 if (sym.owner.owner.kind == PCK ||
  1090                     (sym.owner.flags_field & STATIC) != 0)
  1091                     mask |= STATIC;
  1092                 else if ((flags & ENUM) != 0)
  1093                     log.error(pos, "enums.must.be.static");
  1094                 // Nested interfaces and enums are always STATIC (Spec ???)
  1095                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1096             } else {
  1097                 mask = ClassFlags;
  1099             // Interfaces are always ABSTRACT
  1100             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1102             if ((flags & ENUM) != 0) {
  1103                 // enums can't be declared abstract or final
  1104                 mask &= ~(ABSTRACT | FINAL);
  1105                 implicit |= implicitEnumFinalFlag(tree);
  1107             // Imply STRICTFP if owner has STRICTFP set.
  1108             implicit |= sym.owner.flags_field & STRICTFP;
  1109             break;
  1110         default:
  1111             throw new AssertionError();
  1113         long illegal = flags & ExtendedStandardFlags & ~mask;
  1114         if (illegal != 0) {
  1115             if ((illegal & INTERFACE) != 0) {
  1116                 log.error(pos, "intf.not.allowed.here");
  1117                 mask |= INTERFACE;
  1119             else {
  1120                 log.error(pos,
  1121                           "mod.not.allowed.here", asFlagSet(illegal));
  1124         else if ((sym.kind == TYP ||
  1125                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1126                   // in the presence of inner classes. Should it be deleted here?
  1127                   checkDisjoint(pos, flags,
  1128                                 ABSTRACT,
  1129                                 PRIVATE | STATIC | DEFAULT))
  1130                  &&
  1131                  checkDisjoint(pos, flags,
  1132                                 STATIC,
  1133                                 DEFAULT)
  1134                  &&
  1135                  checkDisjoint(pos, flags,
  1136                                ABSTRACT | INTERFACE,
  1137                                FINAL | NATIVE | SYNCHRONIZED)
  1138                  &&
  1139                  checkDisjoint(pos, flags,
  1140                                PUBLIC,
  1141                                PRIVATE | PROTECTED)
  1142                  &&
  1143                  checkDisjoint(pos, flags,
  1144                                PRIVATE,
  1145                                PUBLIC | PROTECTED)
  1146                  &&
  1147                  checkDisjoint(pos, flags,
  1148                                FINAL,
  1149                                VOLATILE)
  1150                  &&
  1151                  (sym.kind == TYP ||
  1152                   checkDisjoint(pos, flags,
  1153                                 ABSTRACT | NATIVE,
  1154                                 STRICTFP))) {
  1155             // skip
  1157         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1161     /** Determine if this enum should be implicitly final.
  1163      *  If the enum has no specialized enum contants, it is final.
  1165      *  If the enum does have specialized enum contants, it is
  1166      *  <i>not</i> final.
  1167      */
  1168     private long implicitEnumFinalFlag(JCTree tree) {
  1169         if (!tree.hasTag(CLASSDEF)) return 0;
  1170         class SpecialTreeVisitor extends JCTree.Visitor {
  1171             boolean specialized;
  1172             SpecialTreeVisitor() {
  1173                 this.specialized = false;
  1174             };
  1176             @Override
  1177             public void visitTree(JCTree tree) { /* no-op */ }
  1179             @Override
  1180             public void visitVarDef(JCVariableDecl tree) {
  1181                 if ((tree.mods.flags & ENUM) != 0) {
  1182                     if (tree.init instanceof JCNewClass &&
  1183                         ((JCNewClass) tree.init).def != null) {
  1184                         specialized = true;
  1190         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1191         JCClassDecl cdef = (JCClassDecl) tree;
  1192         for (JCTree defs: cdef.defs) {
  1193             defs.accept(sts);
  1194             if (sts.specialized) return 0;
  1196         return FINAL;
  1199 /* *************************************************************************
  1200  * Type Validation
  1201  **************************************************************************/
  1203     /** Validate a type expression. That is,
  1204      *  check that all type arguments of a parametric type are within
  1205      *  their bounds. This must be done in a second phase after type attributon
  1206      *  since a class might have a subclass as type parameter bound. E.g:
  1208      *  <pre>{@code
  1209      *  class B<A extends C> { ... }
  1210      *  class C extends B<C> { ... }
  1211      *  }</pre>
  1213      *  and we can't make sure that the bound is already attributed because
  1214      *  of possible cycles.
  1216      * Visitor method: Validate a type expression, if it is not null, catching
  1217      *  and reporting any completion failures.
  1218      */
  1219     void validate(JCTree tree, Env<AttrContext> env) {
  1220         validate(tree, env, true);
  1222     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1223         new Validator(env).validateTree(tree, checkRaw, true);
  1226     /** Visitor method: Validate a list of type expressions.
  1227      */
  1228     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1229         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1230             validate(l.head, env);
  1233     /** A visitor class for type validation.
  1234      */
  1235     class Validator extends JCTree.Visitor {
  1237         boolean isOuter;
  1238         Env<AttrContext> env;
  1240         Validator(Env<AttrContext> env) {
  1241             this.env = env;
  1244         @Override
  1245         public void visitTypeArray(JCArrayTypeTree tree) {
  1246             tree.elemtype.accept(this);
  1249         @Override
  1250         public void visitTypeApply(JCTypeApply tree) {
  1251             if (tree.type.hasTag(CLASS)) {
  1252                 List<JCExpression> args = tree.arguments;
  1253                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1255                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1256                 if (incompatibleArg != null) {
  1257                     for (JCTree arg : tree.arguments) {
  1258                         if (arg.type == incompatibleArg) {
  1259                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1261                         forms = forms.tail;
  1265                 forms = tree.type.tsym.type.getTypeArguments();
  1267                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1269                 // For matching pairs of actual argument types `a' and
  1270                 // formal type parameters with declared bound `b' ...
  1271                 while (args.nonEmpty() && forms.nonEmpty()) {
  1272                     validateTree(args.head,
  1273                             !(isOuter && is_java_lang_Class),
  1274                             false);
  1275                     args = args.tail;
  1276                     forms = forms.tail;
  1279                 // Check that this type is either fully parameterized, or
  1280                 // not parameterized at all.
  1281                 if (tree.type.getEnclosingType().isRaw())
  1282                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1283                 if (tree.clazz.hasTag(SELECT))
  1284                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1288         @Override
  1289         public void visitTypeParameter(JCTypeParameter tree) {
  1290             validateTrees(tree.bounds, true, isOuter);
  1291             checkClassBounds(tree.pos(), tree.type);
  1294         @Override
  1295         public void visitWildcard(JCWildcard tree) {
  1296             if (tree.inner != null)
  1297                 validateTree(tree.inner, true, isOuter);
  1300         @Override
  1301         public void visitSelect(JCFieldAccess tree) {
  1302             if (tree.type.hasTag(CLASS)) {
  1303                 visitSelectInternal(tree);
  1305                 // Check that this type is either fully parameterized, or
  1306                 // not parameterized at all.
  1307                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1308                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1312         public void visitSelectInternal(JCFieldAccess tree) {
  1313             if (tree.type.tsym.isStatic() &&
  1314                 tree.selected.type.isParameterized()) {
  1315                 // The enclosing type is not a class, so we are
  1316                 // looking at a static member type.  However, the
  1317                 // qualifying expression is parameterized.
  1318                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1319             } else {
  1320                 // otherwise validate the rest of the expression
  1321                 tree.selected.accept(this);
  1325         @Override
  1326         public void visitAnnotatedType(JCAnnotatedType tree) {
  1327             tree.underlyingType.accept(this);
  1330         /** Default visitor method: do nothing.
  1331          */
  1332         @Override
  1333         public void visitTree(JCTree tree) {
  1336         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1337             try {
  1338                 if (tree != null) {
  1339                     this.isOuter = isOuter;
  1340                     tree.accept(this);
  1341                     if (checkRaw)
  1342                         checkRaw(tree, env);
  1344             } catch (CompletionFailure ex) {
  1345                 completionError(tree.pos(), ex);
  1349         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1350             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1351                 validateTree(l.head, checkRaw, isOuter);
  1354         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1355             if (lint.isEnabled(LintCategory.RAW) &&
  1356                 tree.type.hasTag(CLASS) &&
  1357                 !TreeInfo.isDiamond(tree) &&
  1358                 !withinAnonConstr(env) &&
  1359                 tree.type.isRaw()) {
  1360                 log.warning(LintCategory.RAW,
  1361                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1365         boolean withinAnonConstr(Env<AttrContext> env) {
  1366             return env.enclClass.name.isEmpty() &&
  1367                     env.enclMethod != null && env.enclMethod.name == names.init;
  1371 /* *************************************************************************
  1372  * Exception checking
  1373  **************************************************************************/
  1375     /* The following methods treat classes as sets that contain
  1376      * the class itself and all their subclasses
  1377      */
  1379     /** Is given type a subtype of some of the types in given list?
  1380      */
  1381     boolean subset(Type t, List<Type> ts) {
  1382         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1383             if (types.isSubtype(t, l.head)) return true;
  1384         return false;
  1387     /** Is given type a subtype or supertype of
  1388      *  some of the types in given list?
  1389      */
  1390     boolean intersects(Type t, List<Type> ts) {
  1391         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1392             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1393         return false;
  1396     /** Add type set to given type list, unless it is a subclass of some class
  1397      *  in the list.
  1398      */
  1399     List<Type> incl(Type t, List<Type> ts) {
  1400         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1403     /** Remove type set from type set list.
  1404      */
  1405     List<Type> excl(Type t, List<Type> ts) {
  1406         if (ts.isEmpty()) {
  1407             return ts;
  1408         } else {
  1409             List<Type> ts1 = excl(t, ts.tail);
  1410             if (types.isSubtype(ts.head, t)) return ts1;
  1411             else if (ts1 == ts.tail) return ts;
  1412             else return ts1.prepend(ts.head);
  1416     /** Form the union of two type set lists.
  1417      */
  1418     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1419         List<Type> ts = ts1;
  1420         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1421             ts = incl(l.head, ts);
  1422         return ts;
  1425     /** Form the difference of two type lists.
  1426      */
  1427     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1428         List<Type> ts = ts1;
  1429         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1430             ts = excl(l.head, ts);
  1431         return ts;
  1434     /** Form the intersection of two type lists.
  1435      */
  1436     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1437         List<Type> ts = List.nil();
  1438         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1439             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1440         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1441             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1442         return ts;
  1445     /** Is exc an exception symbol that need not be declared?
  1446      */
  1447     boolean isUnchecked(ClassSymbol exc) {
  1448         return
  1449             exc.kind == ERR ||
  1450             exc.isSubClass(syms.errorType.tsym, types) ||
  1451             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1454     /** Is exc an exception type that need not be declared?
  1455      */
  1456     boolean isUnchecked(Type exc) {
  1457         return
  1458             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1459             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1460             exc.hasTag(BOT);
  1463     /** Same, but handling completion failures.
  1464      */
  1465     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1466         try {
  1467             return isUnchecked(exc);
  1468         } catch (CompletionFailure ex) {
  1469             completionError(pos, ex);
  1470             return true;
  1474     /** Is exc handled by given exception list?
  1475      */
  1476     boolean isHandled(Type exc, List<Type> handled) {
  1477         return isUnchecked(exc) || subset(exc, handled);
  1480     /** Return all exceptions in thrown list that are not in handled list.
  1481      *  @param thrown     The list of thrown exceptions.
  1482      *  @param handled    The list of handled exceptions.
  1483      */
  1484     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1485         List<Type> unhandled = List.nil();
  1486         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1487             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1488         return unhandled;
  1491 /* *************************************************************************
  1492  * Overriding/Implementation checking
  1493  **************************************************************************/
  1495     /** The level of access protection given by a flag set,
  1496      *  where PRIVATE is highest and PUBLIC is lowest.
  1497      */
  1498     static int protection(long flags) {
  1499         switch ((short)(flags & AccessFlags)) {
  1500         case PRIVATE: return 3;
  1501         case PROTECTED: return 1;
  1502         default:
  1503         case PUBLIC: return 0;
  1504         case 0: return 2;
  1508     /** A customized "cannot override" error message.
  1509      *  @param m      The overriding method.
  1510      *  @param other  The overridden method.
  1511      *  @return       An internationalized string.
  1512      */
  1513     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1514         String key;
  1515         if ((other.owner.flags() & INTERFACE) == 0)
  1516             key = "cant.override";
  1517         else if ((m.owner.flags() & INTERFACE) == 0)
  1518             key = "cant.implement";
  1519         else
  1520             key = "clashes.with";
  1521         return diags.fragment(key, m, m.location(), other, other.location());
  1524     /** A customized "override" warning message.
  1525      *  @param m      The overriding method.
  1526      *  @param other  The overridden method.
  1527      *  @return       An internationalized string.
  1528      */
  1529     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1530         String key;
  1531         if ((other.owner.flags() & INTERFACE) == 0)
  1532             key = "unchecked.override";
  1533         else if ((m.owner.flags() & INTERFACE) == 0)
  1534             key = "unchecked.implement";
  1535         else
  1536             key = "unchecked.clash.with";
  1537         return diags.fragment(key, m, m.location(), other, other.location());
  1540     /** A customized "override" warning message.
  1541      *  @param m      The overriding method.
  1542      *  @param other  The overridden method.
  1543      *  @return       An internationalized string.
  1544      */
  1545     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1546         String key;
  1547         if ((other.owner.flags() & INTERFACE) == 0)
  1548             key = "varargs.override";
  1549         else  if ((m.owner.flags() & INTERFACE) == 0)
  1550             key = "varargs.implement";
  1551         else
  1552             key = "varargs.clash.with";
  1553         return diags.fragment(key, m, m.location(), other, other.location());
  1556     /** Check that this method conforms with overridden method 'other'.
  1557      *  where `origin' is the class where checking started.
  1558      *  Complications:
  1559      *  (1) Do not check overriding of synthetic methods
  1560      *      (reason: they might be final).
  1561      *      todo: check whether this is still necessary.
  1562      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1563      *      than the method it implements. Augment the proxy methods with the
  1564      *      undeclared exceptions in this case.
  1565      *  (3) When generics are enabled, admit the case where an interface proxy
  1566      *      has a result type
  1567      *      extended by the result type of the method it implements.
  1568      *      Change the proxies result type to the smaller type in this case.
  1570      *  @param tree         The tree from which positions
  1571      *                      are extracted for errors.
  1572      *  @param m            The overriding method.
  1573      *  @param other        The overridden method.
  1574      *  @param origin       The class of which the overriding method
  1575      *                      is a member.
  1576      */
  1577     void checkOverride(JCTree tree,
  1578                        MethodSymbol m,
  1579                        MethodSymbol other,
  1580                        ClassSymbol origin) {
  1581         // Don't check overriding of synthetic methods or by bridge methods.
  1582         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1583             return;
  1586         // Error if static method overrides instance method (JLS 8.4.6.2).
  1587         if ((m.flags() & STATIC) != 0 &&
  1588                    (other.flags() & STATIC) == 0) {
  1589             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1590                       cannotOverride(m, other));
  1591             m.flags_field |= BAD_OVERRIDE;
  1592             return;
  1595         // Error if instance method overrides static or final
  1596         // method (JLS 8.4.6.1).
  1597         if ((other.flags() & FINAL) != 0 ||
  1598                  (m.flags() & STATIC) == 0 &&
  1599                  (other.flags() & STATIC) != 0) {
  1600             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1601                       cannotOverride(m, other),
  1602                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1603             m.flags_field |= BAD_OVERRIDE;
  1604             return;
  1607         if ((m.owner.flags() & ANNOTATION) != 0) {
  1608             // handled in validateAnnotationMethod
  1609             return;
  1612         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1613         if ((origin.flags() & INTERFACE) == 0 &&
  1614                  protection(m.flags()) > protection(other.flags())) {
  1615             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1616                       cannotOverride(m, other),
  1617                       other.flags() == 0 ?
  1618                           Flag.PACKAGE :
  1619                           asFlagSet(other.flags() & AccessFlags));
  1620             m.flags_field |= BAD_OVERRIDE;
  1621             return;
  1624         Type mt = types.memberType(origin.type, m);
  1625         Type ot = types.memberType(origin.type, other);
  1626         // Error if overriding result type is different
  1627         // (or, in the case of generics mode, not a subtype) of
  1628         // overridden result type. We have to rename any type parameters
  1629         // before comparing types.
  1630         List<Type> mtvars = mt.getTypeArguments();
  1631         List<Type> otvars = ot.getTypeArguments();
  1632         Type mtres = mt.getReturnType();
  1633         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1635         overrideWarner.clear();
  1636         boolean resultTypesOK =
  1637             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1638         if (!resultTypesOK) {
  1639             if (!allowCovariantReturns &&
  1640                 m.owner != origin &&
  1641                 m.owner.isSubClass(other.owner, types)) {
  1642                 // allow limited interoperability with covariant returns
  1643             } else {
  1644                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1645                           "override.incompatible.ret",
  1646                           cannotOverride(m, other),
  1647                           mtres, otres);
  1648                 m.flags_field |= BAD_OVERRIDE;
  1649                 return;
  1651         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1652             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1653                     "override.unchecked.ret",
  1654                     uncheckedOverrides(m, other),
  1655                     mtres, otres);
  1658         // Error if overriding method throws an exception not reported
  1659         // by overridden method.
  1660         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1661         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1662         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1663         if (unhandledErased.nonEmpty()) {
  1664             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1665                       "override.meth.doesnt.throw",
  1666                       cannotOverride(m, other),
  1667                       unhandledUnerased.head);
  1668             m.flags_field |= BAD_OVERRIDE;
  1669             return;
  1671         else if (unhandledUnerased.nonEmpty()) {
  1672             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1673                           "override.unchecked.thrown",
  1674                          cannotOverride(m, other),
  1675                          unhandledUnerased.head);
  1676             return;
  1679         // Optional warning if varargs don't agree
  1680         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1681             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1682             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1683                         ((m.flags() & Flags.VARARGS) != 0)
  1684                         ? "override.varargs.missing"
  1685                         : "override.varargs.extra",
  1686                         varargsOverrides(m, other));
  1689         // Warn if instance method overrides bridge method (compiler spec ??)
  1690         if ((other.flags() & BRIDGE) != 0) {
  1691             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1692                         uncheckedOverrides(m, other));
  1695         // Warn if a deprecated method overridden by a non-deprecated one.
  1696         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1697             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1700     // where
  1701         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1702             // If the method, m, is defined in an interface, then ignore the issue if the method
  1703             // is only inherited via a supertype and also implemented in the supertype,
  1704             // because in that case, we will rediscover the issue when examining the method
  1705             // in the supertype.
  1706             // If the method, m, is not defined in an interface, then the only time we need to
  1707             // address the issue is when the method is the supertype implemementation: any other
  1708             // case, we will have dealt with when examining the supertype classes
  1709             ClassSymbol mc = m.enclClass();
  1710             Type st = types.supertype(origin.type);
  1711             if (!st.hasTag(CLASS))
  1712                 return true;
  1713             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1715             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1716                 List<Type> intfs = types.interfaces(origin.type);
  1717                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1719             else
  1720                 return (stimpl != m);
  1724     // used to check if there were any unchecked conversions
  1725     Warner overrideWarner = new Warner();
  1727     /** Check that a class does not inherit two concrete methods
  1728      *  with the same signature.
  1729      *  @param pos          Position to be used for error reporting.
  1730      *  @param site         The class type to be checked.
  1731      */
  1732     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1733         Type sup = types.supertype(site);
  1734         if (!sup.hasTag(CLASS)) return;
  1736         for (Type t1 = sup;
  1737              t1.tsym.type.isParameterized();
  1738              t1 = types.supertype(t1)) {
  1739             for (Scope.Entry e1 = t1.tsym.members().elems;
  1740                  e1 != null;
  1741                  e1 = e1.sibling) {
  1742                 Symbol s1 = e1.sym;
  1743                 if (s1.kind != MTH ||
  1744                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1745                     !s1.isInheritedIn(site.tsym, types) ||
  1746                     ((MethodSymbol)s1).implementation(site.tsym,
  1747                                                       types,
  1748                                                       true) != s1)
  1749                     continue;
  1750                 Type st1 = types.memberType(t1, s1);
  1751                 int s1ArgsLength = st1.getParameterTypes().length();
  1752                 if (st1 == s1.type) continue;
  1754                 for (Type t2 = sup;
  1755                      t2.hasTag(CLASS);
  1756                      t2 = types.supertype(t2)) {
  1757                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1758                          e2.scope != null;
  1759                          e2 = e2.next()) {
  1760                         Symbol s2 = e2.sym;
  1761                         if (s2 == s1 ||
  1762                             s2.kind != MTH ||
  1763                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1764                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1765                             !s2.isInheritedIn(site.tsym, types) ||
  1766                             ((MethodSymbol)s2).implementation(site.tsym,
  1767                                                               types,
  1768                                                               true) != s2)
  1769                             continue;
  1770                         Type st2 = types.memberType(t2, s2);
  1771                         if (types.overrideEquivalent(st1, st2))
  1772                             log.error(pos, "concrete.inheritance.conflict",
  1773                                       s1, t1, s2, t2, sup);
  1780     /** Check that classes (or interfaces) do not each define an abstract
  1781      *  method with same name and arguments but incompatible return types.
  1782      *  @param pos          Position to be used for error reporting.
  1783      *  @param t1           The first argument type.
  1784      *  @param t2           The second argument type.
  1785      */
  1786     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1787                                             Type t1,
  1788                                             Type t2) {
  1789         return checkCompatibleAbstracts(pos, t1, t2,
  1790                                         types.makeCompoundType(t1, t2));
  1793     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1794                                             Type t1,
  1795                                             Type t2,
  1796                                             Type site) {
  1797         return firstIncompatibility(pos, t1, t2, site) == null;
  1800     /** Return the first method which is defined with same args
  1801      *  but different return types in two given interfaces, or null if none
  1802      *  exists.
  1803      *  @param t1     The first type.
  1804      *  @param t2     The second type.
  1805      *  @param site   The most derived type.
  1806      *  @returns symbol from t2 that conflicts with one in t1.
  1807      */
  1808     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1809         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1810         closure(t1, interfaces1);
  1811         Map<TypeSymbol,Type> interfaces2;
  1812         if (t1 == t2)
  1813             interfaces2 = interfaces1;
  1814         else
  1815             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1817         for (Type t3 : interfaces1.values()) {
  1818             for (Type t4 : interfaces2.values()) {
  1819                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1820                 if (s != null) return s;
  1823         return null;
  1826     /** Compute all the supertypes of t, indexed by type symbol. */
  1827     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1828         if (!t.hasTag(CLASS)) return;
  1829         if (typeMap.put(t.tsym, t) == null) {
  1830             closure(types.supertype(t), typeMap);
  1831             for (Type i : types.interfaces(t))
  1832                 closure(i, typeMap);
  1836     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1837     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1838         if (!t.hasTag(CLASS)) return;
  1839         if (typesSkip.get(t.tsym) != null) return;
  1840         if (typeMap.put(t.tsym, t) == null) {
  1841             closure(types.supertype(t), typesSkip, typeMap);
  1842             for (Type i : types.interfaces(t))
  1843                 closure(i, typesSkip, typeMap);
  1847     /** Return the first method in t2 that conflicts with a method from t1. */
  1848     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1849         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1850             Symbol s1 = e1.sym;
  1851             Type st1 = null;
  1852             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
  1853                     (s1.flags() & SYNTHETIC) != 0) continue;
  1854             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1855             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1856             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1857                 Symbol s2 = e2.sym;
  1858                 if (s1 == s2) continue;
  1859                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
  1860                         (s2.flags() & SYNTHETIC) != 0) continue;
  1861                 if (st1 == null) st1 = types.memberType(t1, s1);
  1862                 Type st2 = types.memberType(t2, s2);
  1863                 if (types.overrideEquivalent(st1, st2)) {
  1864                     List<Type> tvars1 = st1.getTypeArguments();
  1865                     List<Type> tvars2 = st2.getTypeArguments();
  1866                     Type rt1 = st1.getReturnType();
  1867                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1868                     boolean compat =
  1869                         types.isSameType(rt1, rt2) ||
  1870                         !rt1.isPrimitiveOrVoid() &&
  1871                         !rt2.isPrimitiveOrVoid() &&
  1872                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
  1873                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
  1874                          checkCommonOverriderIn(s1,s2,site);
  1875                     if (!compat) {
  1876                         log.error(pos, "types.incompatible.diff.ret",
  1877                             t1, t2, s2.name +
  1878                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1879                         return s2;
  1881                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1882                         !checkCommonOverriderIn(s1, s2, site)) {
  1883                     log.error(pos,
  1884                             "name.clash.same.erasure.no.override",
  1885                             s1, s1.location(),
  1886                             s2, s2.location());
  1887                     return s2;
  1891         return null;
  1893     //WHERE
  1894     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1895         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1896         Type st1 = types.memberType(site, s1);
  1897         Type st2 = types.memberType(site, s2);
  1898         closure(site, supertypes);
  1899         for (Type t : supertypes.values()) {
  1900             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1901                 Symbol s3 = e.sym;
  1902                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1903                 Type st3 = types.memberType(site,s3);
  1904                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1905                     if (s3.owner == site.tsym) {
  1906                         return true;
  1908                     List<Type> tvars1 = st1.getTypeArguments();
  1909                     List<Type> tvars2 = st2.getTypeArguments();
  1910                     List<Type> tvars3 = st3.getTypeArguments();
  1911                     Type rt1 = st1.getReturnType();
  1912                     Type rt2 = st2.getReturnType();
  1913                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1914                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1915                     boolean compat =
  1916                         !rt13.isPrimitiveOrVoid() &&
  1917                         !rt23.isPrimitiveOrVoid() &&
  1918                         (types.covariantReturnType(rt13, rt1, types.noWarnings) &&
  1919                          types.covariantReturnType(rt23, rt2, types.noWarnings));
  1920                     if (compat)
  1921                         return true;
  1925         return false;
  1928     /** Check that a given method conforms with any method it overrides.
  1929      *  @param tree         The tree from which positions are extracted
  1930      *                      for errors.
  1931      *  @param m            The overriding method.
  1932      */
  1933     void checkOverride(JCTree tree, MethodSymbol m) {
  1934         ClassSymbol origin = (ClassSymbol)m.owner;
  1935         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1936             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1937                 log.error(tree.pos(), "enum.no.finalize");
  1938                 return;
  1940         for (Type t = origin.type; t.hasTag(CLASS);
  1941              t = types.supertype(t)) {
  1942             if (t != origin.type) {
  1943                 checkOverride(tree, t, origin, m);
  1945             for (Type t2 : types.interfaces(t)) {
  1946                 checkOverride(tree, t2, origin, m);
  1951     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1952         TypeSymbol c = site.tsym;
  1953         Scope.Entry e = c.members().lookup(m.name);
  1954         while (e.scope != null) {
  1955             if (m.overrides(e.sym, origin, types, false)) {
  1956                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1957                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1960             e = e.next();
  1964     public void checkClassOverrideEqualsAndHash(ClassSymbol someClass) {
  1965         if (lint.isEnabled(LintCategory.OVERRIDES)) {
  1966             boolean hasEquals = false;
  1967             boolean hasHashCode = false;
  1969             Scope.Entry equalsAtObject = syms.objectType.tsym.members().lookup(names.equals);
  1970             Scope.Entry hashCodeAtObject = syms.objectType.tsym.members().lookup(names.hashCode);
  1971             for (Symbol s: someClass.members().getElements(new Filter<Symbol>() {
  1972                     public boolean accepts(Symbol s) {
  1973                         return s.kind == Kinds.MTH &&
  1974                                 (s.flags() & BAD_OVERRIDE) == 0;
  1976                 })) {
  1977                 MethodSymbol m = (MethodSymbol)s;
  1978                 hasEquals |= m.name.equals(names.equals) &&
  1979                         m.overrides(equalsAtObject.sym, someClass, types, false);
  1981                 hasHashCode |= m.name.equals(names.hashCode) &&
  1982                         m.overrides(hashCodeAtObject.sym, someClass, types, false);
  1984             if (hasEquals && !hasHashCode) {
  1985                 log.warning(LintCategory.OVERRIDES, (DiagnosticPosition) null,
  1986                         "override.equals.but.not.hashcode", someClass.fullname);
  1991     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  1992         ClashFilter cf = new ClashFilter(origin.type);
  1993         return (cf.accepts(s1) &&
  1994                 cf.accepts(s2) &&
  1995                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  1999     /** Check that all abstract members of given class have definitions.
  2000      *  @param pos          Position to be used for error reporting.
  2001      *  @param c            The class.
  2002      */
  2003     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2004         try {
  2005             MethodSymbol undef = firstUndef(c, c);
  2006             if (undef != null) {
  2007                 if ((c.flags() & ENUM) != 0 &&
  2008                     types.supertype(c.type).tsym == syms.enumSym &&
  2009                     (c.flags() & FINAL) == 0) {
  2010                     // add the ABSTRACT flag to an enum
  2011                     c.flags_field |= ABSTRACT;
  2012                 } else {
  2013                     MethodSymbol undef1 =
  2014                         new MethodSymbol(undef.flags(), undef.name,
  2015                                          types.memberType(c.type, undef), undef.owner);
  2016                     log.error(pos, "does.not.override.abstract",
  2017                               c, undef1, undef1.location());
  2020         } catch (CompletionFailure ex) {
  2021             completionError(pos, ex);
  2024 //where
  2025         /** Return first abstract member of class `c' that is not defined
  2026          *  in `impl', null if there is none.
  2027          */
  2028         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  2029             MethodSymbol undef = null;
  2030             // Do not bother to search in classes that are not abstract,
  2031             // since they cannot have abstract members.
  2032             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2033                 Scope s = c.members();
  2034                 for (Scope.Entry e = s.elems;
  2035                      undef == null && e != null;
  2036                      e = e.sibling) {
  2037                     if (e.sym.kind == MTH &&
  2038                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  2039                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2040                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  2041                         if (implmeth == null || implmeth == absmeth) {
  2042                             //look for default implementations
  2043                             if (allowDefaultMethods) {
  2044                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
  2045                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
  2046                                     implmeth = prov;
  2050                         if (implmeth == null || implmeth == absmeth) {
  2051                             undef = absmeth;
  2055                 if (undef == null) {
  2056                     Type st = types.supertype(c.type);
  2057                     if (st.hasTag(CLASS))
  2058                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  2060                 for (List<Type> l = types.interfaces(c.type);
  2061                      undef == null && l.nonEmpty();
  2062                      l = l.tail) {
  2063                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  2066             return undef;
  2069     void checkNonCyclicDecl(JCClassDecl tree) {
  2070         CycleChecker cc = new CycleChecker();
  2071         cc.scan(tree);
  2072         if (!cc.errorFound && !cc.partialCheck) {
  2073             tree.sym.flags_field |= ACYCLIC;
  2077     class CycleChecker extends TreeScanner {
  2079         List<Symbol> seenClasses = List.nil();
  2080         boolean errorFound = false;
  2081         boolean partialCheck = false;
  2083         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2084             if (sym != null && sym.kind == TYP) {
  2085                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2086                 if (classEnv != null) {
  2087                     DiagnosticSource prevSource = log.currentSource();
  2088                     try {
  2089                         log.useSource(classEnv.toplevel.sourcefile);
  2090                         scan(classEnv.tree);
  2092                     finally {
  2093                         log.useSource(prevSource.getFile());
  2095                 } else if (sym.kind == TYP) {
  2096                     checkClass(pos, sym, List.<JCTree>nil());
  2098             } else {
  2099                 //not completed yet
  2100                 partialCheck = true;
  2104         @Override
  2105         public void visitSelect(JCFieldAccess tree) {
  2106             super.visitSelect(tree);
  2107             checkSymbol(tree.pos(), tree.sym);
  2110         @Override
  2111         public void visitIdent(JCIdent tree) {
  2112             checkSymbol(tree.pos(), tree.sym);
  2115         @Override
  2116         public void visitTypeApply(JCTypeApply tree) {
  2117             scan(tree.clazz);
  2120         @Override
  2121         public void visitTypeArray(JCArrayTypeTree tree) {
  2122             scan(tree.elemtype);
  2125         @Override
  2126         public void visitClassDef(JCClassDecl tree) {
  2127             List<JCTree> supertypes = List.nil();
  2128             if (tree.getExtendsClause() != null) {
  2129                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2131             if (tree.getImplementsClause() != null) {
  2132                 for (JCTree intf : tree.getImplementsClause()) {
  2133                     supertypes = supertypes.prepend(intf);
  2136             checkClass(tree.pos(), tree.sym, supertypes);
  2139         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2140             if ((c.flags_field & ACYCLIC) != 0)
  2141                 return;
  2142             if (seenClasses.contains(c)) {
  2143                 errorFound = true;
  2144                 noteCyclic(pos, (ClassSymbol)c);
  2145             } else if (!c.type.isErroneous()) {
  2146                 try {
  2147                     seenClasses = seenClasses.prepend(c);
  2148                     if (c.type.hasTag(CLASS)) {
  2149                         if (supertypes.nonEmpty()) {
  2150                             scan(supertypes);
  2152                         else {
  2153                             ClassType ct = (ClassType)c.type;
  2154                             if (ct.supertype_field == null ||
  2155                                     ct.interfaces_field == null) {
  2156                                 //not completed yet
  2157                                 partialCheck = true;
  2158                                 return;
  2160                             checkSymbol(pos, ct.supertype_field.tsym);
  2161                             for (Type intf : ct.interfaces_field) {
  2162                                 checkSymbol(pos, intf.tsym);
  2165                         if (c.owner.kind == TYP) {
  2166                             checkSymbol(pos, c.owner);
  2169                 } finally {
  2170                     seenClasses = seenClasses.tail;
  2176     /** Check for cyclic references. Issue an error if the
  2177      *  symbol of the type referred to has a LOCKED flag set.
  2179      *  @param pos      Position to be used for error reporting.
  2180      *  @param t        The type referred to.
  2181      */
  2182     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2183         checkNonCyclicInternal(pos, t);
  2187     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2188         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2191     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2192         final TypeVar tv;
  2193         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2194             return;
  2195         if (seen.contains(t)) {
  2196             tv = (TypeVar)t;
  2197             tv.bound = types.createErrorType(t);
  2198             log.error(pos, "cyclic.inheritance", t);
  2199         } else if (t.hasTag(TYPEVAR)) {
  2200             tv = (TypeVar)t;
  2201             seen = seen.prepend(tv);
  2202             for (Type b : types.getBounds(tv))
  2203                 checkNonCyclic1(pos, b, seen);
  2207     /** Check for cyclic references. Issue an error if the
  2208      *  symbol of the type referred to has a LOCKED flag set.
  2210      *  @param pos      Position to be used for error reporting.
  2211      *  @param t        The type referred to.
  2212      *  @returns        True if the check completed on all attributed classes
  2213      */
  2214     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2215         boolean complete = true; // was the check complete?
  2216         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2217         Symbol c = t.tsym;
  2218         if ((c.flags_field & ACYCLIC) != 0) return true;
  2220         if ((c.flags_field & LOCKED) != 0) {
  2221             noteCyclic(pos, (ClassSymbol)c);
  2222         } else if (!c.type.isErroneous()) {
  2223             try {
  2224                 c.flags_field |= LOCKED;
  2225                 if (c.type.hasTag(CLASS)) {
  2226                     ClassType clazz = (ClassType)c.type;
  2227                     if (clazz.interfaces_field != null)
  2228                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2229                             complete &= checkNonCyclicInternal(pos, l.head);
  2230                     if (clazz.supertype_field != null) {
  2231                         Type st = clazz.supertype_field;
  2232                         if (st != null && st.hasTag(CLASS))
  2233                             complete &= checkNonCyclicInternal(pos, st);
  2235                     if (c.owner.kind == TYP)
  2236                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2238             } finally {
  2239                 c.flags_field &= ~LOCKED;
  2242         if (complete)
  2243             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2244         if (complete) c.flags_field |= ACYCLIC;
  2245         return complete;
  2248     /** Note that we found an inheritance cycle. */
  2249     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2250         log.error(pos, "cyclic.inheritance", c);
  2251         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2252             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2253         Type st = types.supertype(c.type);
  2254         if (st.hasTag(CLASS))
  2255             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2256         c.type = types.createErrorType(c, c.type);
  2257         c.flags_field |= ACYCLIC;
  2260     /**
  2261      * Check that functional interface methods would make sense when seen
  2262      * from the perspective of the implementing class
  2263      */
  2264     void checkFunctionalInterface(JCTree tree, Type funcInterface) {
  2265         ClassType c = new ClassType(Type.noType, List.<Type>nil(), null);
  2266         ClassSymbol csym = new ClassSymbol(0, names.empty, c, syms.noSymbol);
  2267         c.interfaces_field = List.of(types.removeWildcards(funcInterface));
  2268         c.supertype_field = syms.objectType;
  2269         c.tsym = csym;
  2270         csym.members_field = new Scope(csym);
  2271         Symbol descSym = types.findDescriptorSymbol(funcInterface.tsym);
  2272         Type descType = types.findDescriptorType(funcInterface);
  2273         csym.members_field.enter(new MethodSymbol(PUBLIC, descSym.name, descType, csym));
  2274         csym.completer = null;
  2275         checkImplementations(tree, csym, csym);
  2278     /** Check that all methods which implement some
  2279      *  method conform to the method they implement.
  2280      *  @param tree         The class definition whose members are checked.
  2281      */
  2282     void checkImplementations(JCClassDecl tree) {
  2283         checkImplementations(tree, tree.sym, tree.sym);
  2285     //where
  2286         /** Check that all methods which implement some
  2287          *  method in `ic' conform to the method they implement.
  2288          */
  2289         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
  2290             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2291                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2292                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2293                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2294                         if (e.sym.kind == MTH &&
  2295                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2296                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2297                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2298                             if (implmeth != null && implmeth != absmeth &&
  2299                                 (implmeth.owner.flags() & INTERFACE) ==
  2300                                 (origin.flags() & INTERFACE)) {
  2301                                 // don't check if implmeth is in a class, yet
  2302                                 // origin is an interface. This case arises only
  2303                                 // if implmeth is declared in Object. The reason is
  2304                                 // that interfaces really don't inherit from
  2305                                 // Object it's just that the compiler represents
  2306                                 // things that way.
  2307                                 checkOverride(tree, implmeth, absmeth, origin);
  2315     /** Check that all abstract methods implemented by a class are
  2316      *  mutually compatible.
  2317      *  @param pos          Position to be used for error reporting.
  2318      *  @param c            The class whose interfaces are checked.
  2319      */
  2320     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2321         List<Type> supertypes = types.interfaces(c);
  2322         Type supertype = types.supertype(c);
  2323         if (supertype.hasTag(CLASS) &&
  2324             (supertype.tsym.flags() & ABSTRACT) != 0)
  2325             supertypes = supertypes.prepend(supertype);
  2326         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2327             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2328                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2329                 return;
  2330             for (List<Type> m = supertypes; m != l; m = m.tail)
  2331                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2332                     return;
  2334         checkCompatibleConcretes(pos, c);
  2337     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2338         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2339             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2340                 // VM allows methods and variables with differing types
  2341                 if (sym.kind == e.sym.kind &&
  2342                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2343                     sym != e.sym &&
  2344                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2345                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2346                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2347                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2348                     return;
  2354     /** Check that all non-override equivalent methods accessible from 'site'
  2355      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2357      *  @param pos  Position to be used for error reporting.
  2358      *  @param site The class whose methods are checked.
  2359      *  @param sym  The method symbol to be checked.
  2360      */
  2361     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2362          ClashFilter cf = new ClashFilter(site);
  2363         //for each method m1 that is overridden (directly or indirectly)
  2364         //by method 'sym' in 'site'...
  2365         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2366             if (!sym.overrides(m1, site.tsym, types, false)) continue;
  2367              //...check each method m2 that is a member of 'site'
  2368              for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2369                 if (m2 == m1) continue;
  2370                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2371                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2372                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2373                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2374                     sym.flags_field |= CLASH;
  2375                     String key = m1 == sym ?
  2376                             "name.clash.same.erasure.no.override" :
  2377                             "name.clash.same.erasure.no.override.1";
  2378                     log.error(pos,
  2379                             key,
  2380                             sym, sym.location(),
  2381                             m2, m2.location(),
  2382                             m1, m1.location());
  2383                     return;
  2391     /** Check that all static methods accessible from 'site' are
  2392      *  mutually compatible (JLS 8.4.8).
  2394      *  @param pos  Position to be used for error reporting.
  2395      *  @param site The class whose methods are checked.
  2396      *  @param sym  The method symbol to be checked.
  2397      */
  2398     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2399         ClashFilter cf = new ClashFilter(site);
  2400         //for each method m1 that is a member of 'site'...
  2401         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2402             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2403             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2404             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck) &&
  2405                     types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2406                 log.error(pos,
  2407                         "name.clash.same.erasure.no.hide",
  2408                         sym, sym.location(),
  2409                         s, s.location());
  2410                 return;
  2415      //where
  2416      private class ClashFilter implements Filter<Symbol> {
  2418          Type site;
  2420          ClashFilter(Type site) {
  2421              this.site = site;
  2424          boolean shouldSkip(Symbol s) {
  2425              return (s.flags() & CLASH) != 0 &&
  2426                 s.owner == site.tsym;
  2429          public boolean accepts(Symbol s) {
  2430              return s.kind == MTH &&
  2431                      (s.flags() & SYNTHETIC) == 0 &&
  2432                      !shouldSkip(s) &&
  2433                      s.isInheritedIn(site.tsym, types) &&
  2434                      !s.isConstructor();
  2438     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2439         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2440         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2441             Assert.check(m.kind == MTH);
  2442             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2443             if (prov.size() > 1) {
  2444                 ListBuffer<Symbol> abstracts = ListBuffer.lb();
  2445                 ListBuffer<Symbol> defaults = ListBuffer.lb();
  2446                 for (MethodSymbol provSym : prov) {
  2447                     if ((provSym.flags() & DEFAULT) != 0) {
  2448                         defaults = defaults.append(provSym);
  2449                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2450                         abstracts = abstracts.append(provSym);
  2452                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2453                         //strong semantics - issue an error if two sibling interfaces
  2454                         //have two override-equivalent defaults - or if one is abstract
  2455                         //and the other is default
  2456                         String errKey;
  2457                         Symbol s1 = defaults.first();
  2458                         Symbol s2;
  2459                         if (defaults.size() > 1) {
  2460                             errKey = "types.incompatible.unrelated.defaults";
  2461                             s2 = defaults.toList().tail.head;
  2462                         } else {
  2463                             errKey = "types.incompatible.abstract.default";
  2464                             s2 = abstracts.first();
  2466                         log.error(pos, errKey,
  2467                                 Kinds.kindName(site.tsym), site,
  2468                                 m.name, types.memberType(site, m).getParameterTypes(),
  2469                                 s1.location(), s2.location());
  2470                         break;
  2477     //where
  2478      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2480          Type site;
  2482          DefaultMethodClashFilter(Type site) {
  2483              this.site = site;
  2486          public boolean accepts(Symbol s) {
  2487              return s.kind == MTH &&
  2488                      (s.flags() & DEFAULT) != 0 &&
  2489                      s.isInheritedIn(site.tsym, types) &&
  2490                      !s.isConstructor();
  2494     /** Report a conflict between a user symbol and a synthetic symbol.
  2495      */
  2496     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2497         if (!sym.type.isErroneous()) {
  2498             if (warnOnSyntheticConflicts) {
  2499                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2501             else {
  2502                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2507     /** Check that class c does not implement directly or indirectly
  2508      *  the same parameterized interface with two different argument lists.
  2509      *  @param pos          Position to be used for error reporting.
  2510      *  @param type         The type whose interfaces are checked.
  2511      */
  2512     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2513         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2515 //where
  2516         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2517          *  with their class symbol as key and their type as value. Make
  2518          *  sure no class is entered with two different types.
  2519          */
  2520         void checkClassBounds(DiagnosticPosition pos,
  2521                               Map<TypeSymbol,Type> seensofar,
  2522                               Type type) {
  2523             if (type.isErroneous()) return;
  2524             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2525                 Type it = l.head;
  2526                 Type oldit = seensofar.put(it.tsym, it);
  2527                 if (oldit != null) {
  2528                     List<Type> oldparams = oldit.allparams();
  2529                     List<Type> newparams = it.allparams();
  2530                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2531                         log.error(pos, "cant.inherit.diff.arg",
  2532                                   it.tsym, Type.toString(oldparams),
  2533                                   Type.toString(newparams));
  2535                 checkClassBounds(pos, seensofar, it);
  2537             Type st = types.supertype(type);
  2538             if (st != null) checkClassBounds(pos, seensofar, st);
  2541     /** Enter interface into into set.
  2542      *  If it existed already, issue a "repeated interface" error.
  2543      */
  2544     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2545         if (its.contains(it))
  2546             log.error(pos, "repeated.interface");
  2547         else {
  2548             its.add(it);
  2552 /* *************************************************************************
  2553  * Check annotations
  2554  **************************************************************************/
  2556     /**
  2557      * Recursively validate annotations values
  2558      */
  2559     void validateAnnotationTree(JCTree tree) {
  2560         class AnnotationValidator extends TreeScanner {
  2561             @Override
  2562             public void visitAnnotation(JCAnnotation tree) {
  2563                 if (!tree.type.isErroneous()) {
  2564                     super.visitAnnotation(tree);
  2565                     validateAnnotation(tree);
  2569         tree.accept(new AnnotationValidator());
  2572     /**
  2573      *  {@literal
  2574      *  Annotation types are restricted to primitives, String, an
  2575      *  enum, an annotation, Class, Class<?>, Class<? extends
  2576      *  Anything>, arrays of the preceding.
  2577      *  }
  2578      */
  2579     void validateAnnotationType(JCTree restype) {
  2580         // restype may be null if an error occurred, so don't bother validating it
  2581         if (restype != null) {
  2582             validateAnnotationType(restype.pos(), restype.type);
  2586     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2587         if (type.isPrimitive()) return;
  2588         if (types.isSameType(type, syms.stringType)) return;
  2589         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2590         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2591         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2592         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2593             validateAnnotationType(pos, types.elemtype(type));
  2594             return;
  2596         log.error(pos, "invalid.annotation.member.type");
  2599     /**
  2600      * "It is also a compile-time error if any method declared in an
  2601      * annotation type has a signature that is override-equivalent to
  2602      * that of any public or protected method declared in class Object
  2603      * or in the interface annotation.Annotation."
  2605      * @jls 9.6 Annotation Types
  2606      */
  2607     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2608         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2609             Scope s = sup.tsym.members();
  2610             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2611                 if (e.sym.kind == MTH &&
  2612                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2613                     types.overrideEquivalent(m.type, e.sym.type))
  2614                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2619     /** Check the annotations of a symbol.
  2620      */
  2621     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2622         for (JCAnnotation a : annotations)
  2623             validateAnnotation(a, s);
  2626     /** Check the type annotations.
  2627      */
  2628     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
  2629         for (JCAnnotation a : annotations)
  2630             validateTypeAnnotation(a, isTypeParameter);
  2633     /** Check an annotation of a symbol.
  2634      */
  2635     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2636         validateAnnotationTree(a);
  2638         if (!annotationApplicable(a, s))
  2639             log.error(a.pos(), "annotation.type.not.applicable");
  2641         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2642             if (!isOverrider(s))
  2643                 log.error(a.pos(), "method.does.not.override.superclass");
  2646         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  2647             if (s.kind != TYP) {
  2648                 log.error(a.pos(), "bad.functional.intf.anno");
  2649             } else {
  2650                 try {
  2651                     types.findDescriptorSymbol((TypeSymbol)s);
  2652                 } catch (Types.FunctionDescriptorLookupError ex) {
  2653                     log.error(a.pos(), "bad.functional.intf.anno.1", ex.getDiagnostic());
  2659     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2660         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
  2661         validateAnnotationTree(a);
  2663         if (!isTypeAnnotation(a, isTypeParameter))
  2664             log.error(a.pos(), "annotation.type.not.applicable");
  2667     /**
  2668      * Validate the proposed container 'repeatable' on the
  2669      * annotation type symbol 's'. Report errors at position
  2670      * 'pos'.
  2672      * @param s The (annotation)type declaration annotated with a @Repeatable
  2673      * @param repeatable the @Repeatable on 's'
  2674      * @param pos where to report errors
  2675      */
  2676     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
  2677         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
  2679         Type t = null;
  2680         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
  2681         if (!l.isEmpty()) {
  2682             Assert.check(l.head.fst.name == names.value);
  2683             t = ((Attribute.Class)l.head.snd).getValue();
  2686         if (t == null) {
  2687             // errors should already have been reported during Annotate
  2688             return;
  2691         validateValue(t.tsym, s, pos);
  2692         validateRetention(t.tsym, s, pos);
  2693         validateDocumented(t.tsym, s, pos);
  2694         validateInherited(t.tsym, s, pos);
  2695         validateTarget(t.tsym, s, pos);
  2696         validateDefault(t.tsym, s, pos);
  2699     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2700         Scope.Entry e = container.members().lookup(names.value);
  2701         if (e.scope != null && e.sym.kind == MTH) {
  2702             MethodSymbol m = (MethodSymbol) e.sym;
  2703             Type ret = m.getReturnType();
  2704             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
  2705                 log.error(pos, "invalid.repeatable.annotation.value.return",
  2706                         container, ret, types.makeArrayType(contained.type));
  2708         } else {
  2709             log.error(pos, "invalid.repeatable.annotation.no.value", container);
  2713     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2714         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2715         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2717         boolean error = false;
  2718         switch (containedRetention) {
  2719         case RUNTIME:
  2720             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2721                 error = true;
  2723             break;
  2724         case CLASS:
  2725             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2726                 error = true;
  2729         if (error ) {
  2730             log.error(pos, "invalid.repeatable.annotation.retention",
  2731                       container, containerRetention,
  2732                       contained, containedRetention);
  2736     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2737         if (contained.attribute(syms.documentedType.tsym) != null) {
  2738             if (container.attribute(syms.documentedType.tsym) == null) {
  2739                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
  2744     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2745         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2746             if (container.attribute(syms.inheritedType.tsym) == null) {
  2747                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
  2752     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2753         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2755         // If contained has no Target, we are done
  2756         if (containedTarget == null) {
  2757             return;
  2760         // If contained has Target m1, container must have a Target
  2761         // annotation, m2, and m2 must be a subset of m1. (This is
  2762         // trivially true if contained has no target as per above).
  2764         // contained has target, but container has not, error
  2765         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2766         if (containerTarget == null) {
  2767             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
  2768             return;
  2771         Set<Name> containerTargets = new HashSet<Name>();
  2772         for (Attribute app : containerTarget.values) {
  2773             if (!(app instanceof Attribute.Enum)) {
  2774                 continue; // recovery
  2776             Attribute.Enum e = (Attribute.Enum)app;
  2777             containerTargets.add(e.value.name);
  2780         Set<Name> containedTargets = new HashSet<Name>();
  2781         for (Attribute app : containedTarget.values) {
  2782             if (!(app instanceof Attribute.Enum)) {
  2783                 continue; // recovery
  2785             Attribute.Enum e = (Attribute.Enum)app;
  2786             containedTargets.add(e.value.name);
  2789         if (!isTargetSubset(containedTargets, containerTargets)) {
  2790             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
  2794     /** Checks that t is a subset of s, with respect to ElementType
  2795      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE}
  2796      */
  2797     private boolean isTargetSubset(Set<Name> s, Set<Name> t) {
  2798         // Check that all elements in t are present in s
  2799         for (Name n2 : t) {
  2800             boolean currentElementOk = false;
  2801             for (Name n1 : s) {
  2802                 if (n1 == n2) {
  2803                     currentElementOk = true;
  2804                     break;
  2805                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2806                     currentElementOk = true;
  2807                     break;
  2810             if (!currentElementOk)
  2811                 return false;
  2813         return true;
  2816     private void validateDefault(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2817         // validate that all other elements of containing type has defaults
  2818         Scope scope = container.members();
  2819         for(Symbol elm : scope.getElements()) {
  2820             if (elm.name != names.value &&
  2821                 elm.kind == Kinds.MTH &&
  2822                 ((MethodSymbol)elm).defaultValue == null) {
  2823                 log.error(pos,
  2824                           "invalid.repeatable.annotation.elem.nondefault",
  2825                           container,
  2826                           elm);
  2831     /** Is s a method symbol that overrides a method in a superclass? */
  2832     boolean isOverrider(Symbol s) {
  2833         if (s.kind != MTH || s.isStatic())
  2834             return false;
  2835         MethodSymbol m = (MethodSymbol)s;
  2836         TypeSymbol owner = (TypeSymbol)m.owner;
  2837         for (Type sup : types.closure(owner.type)) {
  2838             if (sup == owner.type)
  2839                 continue; // skip "this"
  2840             Scope scope = sup.tsym.members();
  2841             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2842                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2843                     return true;
  2846         return false;
  2849     /** Is the annotation applicable to type annotations? */
  2850     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2851         Attribute.Compound atTarget =
  2852             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2853         if (atTarget == null) {
  2854             // An annotation without @Target is not a type annotation.
  2855             return false;
  2858         Attribute atValue = atTarget.member(names.value);
  2859         if (!(atValue instanceof Attribute.Array)) {
  2860             return false; // error recovery
  2863         Attribute.Array arr = (Attribute.Array) atValue;
  2864         for (Attribute app : arr.values) {
  2865             if (!(app instanceof Attribute.Enum)) {
  2866                 return false; // recovery
  2868             Attribute.Enum e = (Attribute.Enum) app;
  2870             if (e.value.name == names.TYPE_USE)
  2871                 return true;
  2872             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2873                 return true;
  2875         return false;
  2878     /** Is the annotation applicable to the symbol? */
  2879     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2880         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2881         Name[] targets;
  2883         if (arr == null) {
  2884             targets = defaultTargetMetaInfo(a, s);
  2885         } else {
  2886             // TODO: can we optimize this?
  2887             targets = new Name[arr.values.length];
  2888             for (int i=0; i<arr.values.length; ++i) {
  2889                 Attribute app = arr.values[i];
  2890                 if (!(app instanceof Attribute.Enum)) {
  2891                     return true; // recovery
  2893                 Attribute.Enum e = (Attribute.Enum) app;
  2894                 targets[i] = e.value.name;
  2897         for (Name target : targets) {
  2898             if (target == names.TYPE)
  2899                 { if (s.kind == TYP) return true; }
  2900             else if (target == names.FIELD)
  2901                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2902             else if (target == names.METHOD)
  2903                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2904             else if (target == names.PARAMETER)
  2905                 { if (s.kind == VAR &&
  2906                       s.owner.kind == MTH &&
  2907                       (s.flags() & PARAMETER) != 0)
  2908                     return true;
  2910             else if (target == names.CONSTRUCTOR)
  2911                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2912             else if (target == names.LOCAL_VARIABLE)
  2913                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2914                       (s.flags() & PARAMETER) == 0)
  2915                     return true;
  2917             else if (target == names.ANNOTATION_TYPE)
  2918                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2919                     return true;
  2921             else if (target == names.PACKAGE)
  2922                 { if (s.kind == PCK) return true; }
  2923             else if (target == names.TYPE_USE)
  2924                 { if (s.kind == TYP ||
  2925                       s.kind == VAR ||
  2926                       (s.kind == MTH && !s.isConstructor() &&
  2927                       !s.type.getReturnType().hasTag(VOID)) ||
  2928                       (s.kind == MTH && s.isConstructor()))
  2929                     return true;
  2931             else if (target == names.TYPE_PARAMETER)
  2932                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
  2933                     return true;
  2935             else
  2936                 return true; // recovery
  2938         return false;
  2942     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  2943         Attribute.Compound atTarget =
  2944             s.attribute(syms.annotationTargetType.tsym);
  2945         if (atTarget == null) return null; // ok, is applicable
  2946         Attribute atValue = atTarget.member(names.value);
  2947         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  2948         return (Attribute.Array) atValue;
  2951     private final Name[] dfltTargetMeta;
  2952     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
  2953         return dfltTargetMeta;
  2956     /** Check an annotation value.
  2958      * @param a The annotation tree to check
  2959      * @return true if this annotation tree is valid, otherwise false
  2960      */
  2961     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
  2962         boolean res = false;
  2963         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
  2964         try {
  2965             res = validateAnnotation(a);
  2966         } finally {
  2967             log.popDiagnosticHandler(diagHandler);
  2969         return res;
  2972     private boolean validateAnnotation(JCAnnotation a) {
  2973         boolean isValid = true;
  2974         // collect an inventory of the annotation elements
  2975         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
  2976         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2977              e != null;
  2978              e = e.sibling)
  2979             if (e.sym.kind == MTH)
  2980                 members.add((MethodSymbol) e.sym);
  2982         // remove the ones that are assigned values
  2983         for (JCTree arg : a.args) {
  2984             if (!arg.hasTag(ASSIGN)) continue; // recovery
  2985             JCAssign assign = (JCAssign) arg;
  2986             Symbol m = TreeInfo.symbol(assign.lhs);
  2987             if (m == null || m.type.isErroneous()) continue;
  2988             if (!members.remove(m)) {
  2989                 isValid = false;
  2990                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2991                           m.name, a.type);
  2995         // all the remaining ones better have default values
  2996         List<Name> missingDefaults = List.nil();
  2997         for (MethodSymbol m : members) {
  2998             if (m.defaultValue == null && !m.type.isErroneous()) {
  2999                 missingDefaults = missingDefaults.append(m.name);
  3002         missingDefaults = missingDefaults.reverse();
  3003         if (missingDefaults.nonEmpty()) {
  3004             isValid = false;
  3005             String key = (missingDefaults.size() > 1)
  3006                     ? "annotation.missing.default.value.1"
  3007                     : "annotation.missing.default.value";
  3008             log.error(a.pos(), key, a.type, missingDefaults);
  3011         // special case: java.lang.annotation.Target must not have
  3012         // repeated values in its value member
  3013         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  3014             a.args.tail == null)
  3015             return isValid;
  3017         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
  3018         JCAssign assign = (JCAssign) a.args.head;
  3019         Symbol m = TreeInfo.symbol(assign.lhs);
  3020         if (m.name != names.value) return false;
  3021         JCTree rhs = assign.rhs;
  3022         if (!rhs.hasTag(NEWARRAY)) return false;
  3023         JCNewArray na = (JCNewArray) rhs;
  3024         Set<Symbol> targets = new HashSet<Symbol>();
  3025         for (JCTree elem : na.elems) {
  3026             if (!targets.add(TreeInfo.symbol(elem))) {
  3027                 isValid = false;
  3028                 log.error(elem.pos(), "repeated.annotation.target");
  3031         return isValid;
  3034     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  3035         if (allowAnnotations &&
  3036             lint.isEnabled(LintCategory.DEP_ANN) &&
  3037             (s.flags() & DEPRECATED) != 0 &&
  3038             !syms.deprecatedType.isErroneous() &&
  3039             s.attribute(syms.deprecatedType.tsym) == null) {
  3040             log.warning(LintCategory.DEP_ANN,
  3041                     pos, "missing.deprecated.annotation");
  3045     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  3046         if ((s.flags() & DEPRECATED) != 0 &&
  3047                 (other.flags() & DEPRECATED) == 0 &&
  3048                 s.outermostClass() != other.outermostClass()) {
  3049             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3050                 @Override
  3051                 public void report() {
  3052                     warnDeprecated(pos, s);
  3054             });
  3058     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  3059         if ((s.flags() & PROPRIETARY) != 0) {
  3060             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3061                 public void report() {
  3062                     if (enableSunApiLintControl)
  3063                       warnSunApi(pos, "sun.proprietary", s);
  3064                     else
  3065                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3067             });
  3071 /* *************************************************************************
  3072  * Check for recursive annotation elements.
  3073  **************************************************************************/
  3075     /** Check for cycles in the graph of annotation elements.
  3076      */
  3077     void checkNonCyclicElements(JCClassDecl tree) {
  3078         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3079         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3080         try {
  3081             tree.sym.flags_field |= LOCKED;
  3082             for (JCTree def : tree.defs) {
  3083                 if (!def.hasTag(METHODDEF)) continue;
  3084                 JCMethodDecl meth = (JCMethodDecl)def;
  3085                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3087         } finally {
  3088             tree.sym.flags_field &= ~LOCKED;
  3089             tree.sym.flags_field |= ACYCLIC_ANN;
  3093     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3094         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3095             return;
  3096         if ((tsym.flags_field & LOCKED) != 0) {
  3097             log.error(pos, "cyclic.annotation.element");
  3098             return;
  3100         try {
  3101             tsym.flags_field |= LOCKED;
  3102             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3103                 Symbol s = e.sym;
  3104                 if (s.kind != Kinds.MTH)
  3105                     continue;
  3106                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3108         } finally {
  3109             tsym.flags_field &= ~LOCKED;
  3110             tsym.flags_field |= ACYCLIC_ANN;
  3114     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3115         switch (type.getTag()) {
  3116         case CLASS:
  3117             if ((type.tsym.flags() & ANNOTATION) != 0)
  3118                 checkNonCyclicElementsInternal(pos, type.tsym);
  3119             break;
  3120         case ARRAY:
  3121             checkAnnotationResType(pos, types.elemtype(type));
  3122             break;
  3123         default:
  3124             break; // int etc
  3128 /* *************************************************************************
  3129  * Check for cycles in the constructor call graph.
  3130  **************************************************************************/
  3132     /** Check for cycles in the graph of constructors calling other
  3133      *  constructors.
  3134      */
  3135     void checkCyclicConstructors(JCClassDecl tree) {
  3136         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3138         // enter each constructor this-call into the map
  3139         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3140             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3141             if (app == null) continue;
  3142             JCMethodDecl meth = (JCMethodDecl) l.head;
  3143             if (TreeInfo.name(app.meth) == names._this) {
  3144                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3145             } else {
  3146                 meth.sym.flags_field |= ACYCLIC;
  3150         // Check for cycles in the map
  3151         Symbol[] ctors = new Symbol[0];
  3152         ctors = callMap.keySet().toArray(ctors);
  3153         for (Symbol caller : ctors) {
  3154             checkCyclicConstructor(tree, caller, callMap);
  3158     /** Look in the map to see if the given constructor is part of a
  3159      *  call cycle.
  3160      */
  3161     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3162                                         Map<Symbol,Symbol> callMap) {
  3163         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3164             if ((ctor.flags_field & LOCKED) != 0) {
  3165                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3166                           "recursive.ctor.invocation");
  3167             } else {
  3168                 ctor.flags_field |= LOCKED;
  3169                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3170                 ctor.flags_field &= ~LOCKED;
  3172             ctor.flags_field |= ACYCLIC;
  3176 /* *************************************************************************
  3177  * Miscellaneous
  3178  **************************************************************************/
  3180     /**
  3181      * Return the opcode of the operator but emit an error if it is an
  3182      * error.
  3183      * @param pos        position for error reporting.
  3184      * @param operator   an operator
  3185      * @param tag        a tree tag
  3186      * @param left       type of left hand side
  3187      * @param right      type of right hand side
  3188      */
  3189     int checkOperator(DiagnosticPosition pos,
  3190                        OperatorSymbol operator,
  3191                        JCTree.Tag tag,
  3192                        Type left,
  3193                        Type right) {
  3194         if (operator.opcode == ByteCodes.error) {
  3195             log.error(pos,
  3196                       "operator.cant.be.applied.1",
  3197                       treeinfo.operatorName(tag),
  3198                       left, right);
  3200         return operator.opcode;
  3204     /**
  3205      *  Check for division by integer constant zero
  3206      *  @param pos           Position for error reporting.
  3207      *  @param operator      The operator for the expression
  3208      *  @param operand       The right hand operand for the expression
  3209      */
  3210     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3211         if (operand.constValue() != null
  3212             && lint.isEnabled(LintCategory.DIVZERO)
  3213             && (operand.getTag().isSubRangeOf(LONG))
  3214             && ((Number) (operand.constValue())).longValue() == 0) {
  3215             int opc = ((OperatorSymbol)operator).opcode;
  3216             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3217                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3218                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3223     /**
  3224      * Check for empty statements after if
  3225      */
  3226     void checkEmptyIf(JCIf tree) {
  3227         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3228                 lint.isEnabled(LintCategory.EMPTY))
  3229             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3232     /** Check that symbol is unique in given scope.
  3233      *  @param pos           Position for error reporting.
  3234      *  @param sym           The symbol.
  3235      *  @param s             The scope.
  3236      */
  3237     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3238         if (sym.type.isErroneous())
  3239             return true;
  3240         if (sym.owner.name == names.any) return false;
  3241         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3242             if (sym != e.sym &&
  3243                     (e.sym.flags() & CLASH) == 0 &&
  3244                     sym.kind == e.sym.kind &&
  3245                     sym.name != names.error &&
  3246                     (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3247                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3248                     varargsDuplicateError(pos, sym, e.sym);
  3249                     return true;
  3250                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3251                     duplicateErasureError(pos, sym, e.sym);
  3252                     sym.flags_field |= CLASH;
  3253                     return true;
  3254                 } else {
  3255                     duplicateError(pos, e.sym);
  3256                     return false;
  3260         return true;
  3263     /** Report duplicate declaration error.
  3264      */
  3265     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3266         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3267             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3271     /** Check that single-type import is not already imported or top-level defined,
  3272      *  but make an exception for two single-type imports which denote the same type.
  3273      *  @param pos           Position for error reporting.
  3274      *  @param sym           The symbol.
  3275      *  @param s             The scope
  3276      */
  3277     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3278         return checkUniqueImport(pos, sym, s, false);
  3281     /** Check that static single-type import is not already imported or top-level defined,
  3282      *  but make an exception for two single-type imports which denote the same type.
  3283      *  @param pos           Position for error reporting.
  3284      *  @param sym           The symbol.
  3285      *  @param s             The scope
  3286      */
  3287     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3288         return checkUniqueImport(pos, sym, s, true);
  3291     /** Check that single-type import is not already imported or top-level defined,
  3292      *  but make an exception for two single-type imports which denote the same type.
  3293      *  @param pos           Position for error reporting.
  3294      *  @param sym           The symbol.
  3295      *  @param s             The scope.
  3296      *  @param staticImport  Whether or not this was a static import
  3297      */
  3298     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3299         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3300             // is encountered class entered via a class declaration?
  3301             boolean isClassDecl = e.scope == s;
  3302             if ((isClassDecl || sym != e.sym) &&
  3303                 sym.kind == e.sym.kind &&
  3304                 sym.name != names.error) {
  3305                 if (!e.sym.type.isErroneous()) {
  3306                     String what = e.sym.toString();
  3307                     if (!isClassDecl) {
  3308                         if (staticImport)
  3309                             log.error(pos, "already.defined.static.single.import", what);
  3310                         else
  3311                             log.error(pos, "already.defined.single.import", what);
  3313                     else if (sym != e.sym)
  3314                         log.error(pos, "already.defined.this.unit", what);
  3316                 return false;
  3319         return true;
  3322     /** Check that a qualified name is in canonical form (for import decls).
  3323      */
  3324     public void checkCanonical(JCTree tree) {
  3325         if (!isCanonical(tree))
  3326             log.error(tree.pos(), "import.requires.canonical",
  3327                       TreeInfo.symbol(tree));
  3329         // where
  3330         private boolean isCanonical(JCTree tree) {
  3331             while (tree.hasTag(SELECT)) {
  3332                 JCFieldAccess s = (JCFieldAccess) tree;
  3333                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3334                     return false;
  3335                 tree = s.selected;
  3337             return true;
  3340     /** Check that an auxiliary class is not accessed from any other file than its own.
  3341      */
  3342     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3343         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3344             (c.flags() & AUXILIARY) != 0 &&
  3345             rs.isAccessible(env, c) &&
  3346             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3348             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3349                         c, c.sourcefile);
  3353     private class ConversionWarner extends Warner {
  3354         final String uncheckedKey;
  3355         final Type found;
  3356         final Type expected;
  3357         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3358             super(pos);
  3359             this.uncheckedKey = uncheckedKey;
  3360             this.found = found;
  3361             this.expected = expected;
  3364         @Override
  3365         public void warn(LintCategory lint) {
  3366             boolean warned = this.warned;
  3367             super.warn(lint);
  3368             if (warned) return; // suppress redundant diagnostics
  3369             switch (lint) {
  3370                 case UNCHECKED:
  3371                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3372                     break;
  3373                 case VARARGS:
  3374                     if (method != null &&
  3375                             method.attribute(syms.trustMeType.tsym) != null &&
  3376                             isTrustMeAllowedOnMethod(method) &&
  3377                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3378                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3380                     break;
  3381                 default:
  3382                     throw new AssertionError("Unexpected lint: " + lint);
  3387     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3388         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3391     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3392         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial