src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 10 Jun 2014 12:41:39 -0600

author
dlsmith
date
Tue, 10 Jun 2014 12:41:39 -0600
changeset 2418
16a698253f33
parent 2412
bf8edbcae43a
child 2425
76b61848c9a4
permissions
-rw-r--r--

8037385: constant pool errors with -target 1.7 and static default methods
Summary: Add error check for static interface methods invoked from -source 7
Reviewed-by: vromero, mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.source.tree.IdentifierTree;
    34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    35 import com.sun.source.tree.MemberSelectTree;
    36 import com.sun.source.tree.TreeVisitor;
    37 import com.sun.source.util.SimpleTreeVisitor;
    38 import com.sun.tools.javac.code.*;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Symbol.*;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.comp.Check.CheckContext;
    43 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.jvm.*;
    47 import com.sun.tools.javac.tree.*;
    48 import com.sun.tools.javac.tree.JCTree.*;
    49 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    50 import com.sun.tools.javac.util.*;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.List;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    55 import static com.sun.tools.javac.code.Flags.BLOCK;
    56 import static com.sun.tools.javac.code.Kinds.*;
    57 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    58 import static com.sun.tools.javac.code.TypeTag.*;
    59 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    60 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    62 /** This is the main context-dependent analysis phase in GJC. It
    63  *  encompasses name resolution, type checking and constant folding as
    64  *  subtasks. Some subtasks involve auxiliary classes.
    65  *  @see Check
    66  *  @see Resolve
    67  *  @see ConstFold
    68  *  @see Infer
    69  *
    70  *  <p><b>This is NOT part of any supported API.
    71  *  If you write code that depends on this, you do so at your own risk.
    72  *  This code and its internal interfaces are subject to change or
    73  *  deletion without notice.</b>
    74  */
    75 public class Attr extends JCTree.Visitor {
    76     protected static final Context.Key<Attr> attrKey =
    77         new Context.Key<Attr>();
    79     final Names names;
    80     final Log log;
    81     final Symtab syms;
    82     final Resolve rs;
    83     final Infer infer;
    84     final DeferredAttr deferredAttr;
    85     final Check chk;
    86     final Flow flow;
    87     final MemberEnter memberEnter;
    88     final TreeMaker make;
    89     final ConstFold cfolder;
    90     final Enter enter;
    91     final Target target;
    92     final Types types;
    93     final JCDiagnostic.Factory diags;
    94     final Annotate annotate;
    95     final TypeAnnotations typeAnnotations;
    96     final DeferredLintHandler deferredLintHandler;
    98     public static Attr instance(Context context) {
    99         Attr instance = context.get(attrKey);
   100         if (instance == null)
   101             instance = new Attr(context);
   102         return instance;
   103     }
   105     protected Attr(Context context) {
   106         context.put(attrKey, this);
   108         names = Names.instance(context);
   109         log = Log.instance(context);
   110         syms = Symtab.instance(context);
   111         rs = Resolve.instance(context);
   112         chk = Check.instance(context);
   113         flow = Flow.instance(context);
   114         memberEnter = MemberEnter.instance(context);
   115         make = TreeMaker.instance(context);
   116         enter = Enter.instance(context);
   117         infer = Infer.instance(context);
   118         deferredAttr = DeferredAttr.instance(context);
   119         cfolder = ConstFold.instance(context);
   120         target = Target.instance(context);
   121         types = Types.instance(context);
   122         diags = JCDiagnostic.Factory.instance(context);
   123         annotate = Annotate.instance(context);
   124         typeAnnotations = TypeAnnotations.instance(context);
   125         deferredLintHandler = DeferredLintHandler.instance(context);
   127         Options options = Options.instance(context);
   129         Source source = Source.instance(context);
   130         allowGenerics = source.allowGenerics();
   131         allowVarargs = source.allowVarargs();
   132         allowEnums = source.allowEnums();
   133         allowBoxing = source.allowBoxing();
   134         allowCovariantReturns = source.allowCovariantReturns();
   135         allowAnonOuterThis = source.allowAnonOuterThis();
   136         allowStringsInSwitch = source.allowStringsInSwitch();
   137         allowPoly = source.allowPoly();
   138         allowTypeAnnos = source.allowTypeAnnotations();
   139         allowLambda = source.allowLambda();
   140         allowDefaultMethods = source.allowDefaultMethods();
   141         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
   142         sourceName = source.name;
   143         relax = (options.isSet("-retrofit") ||
   144                  options.isSet("-relax"));
   145         findDiamonds = options.get("findDiamond") != null &&
   146                  source.allowDiamond();
   147         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   148         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   150         statInfo = new ResultInfo(NIL, Type.noType);
   151         varInfo = new ResultInfo(VAR, Type.noType);
   152         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   153         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   154         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   155         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   156         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   157     }
   159     /** Switch: relax some constraints for retrofit mode.
   160      */
   161     boolean relax;
   163     /** Switch: support target-typing inference
   164      */
   165     boolean allowPoly;
   167     /** Switch: support type annotations.
   168      */
   169     boolean allowTypeAnnos;
   171     /** Switch: support generics?
   172      */
   173     boolean allowGenerics;
   175     /** Switch: allow variable-arity methods.
   176      */
   177     boolean allowVarargs;
   179     /** Switch: support enums?
   180      */
   181     boolean allowEnums;
   183     /** Switch: support boxing and unboxing?
   184      */
   185     boolean allowBoxing;
   187     /** Switch: support covariant result types?
   188      */
   189     boolean allowCovariantReturns;
   191     /** Switch: support lambda expressions ?
   192      */
   193     boolean allowLambda;
   195     /** Switch: support default methods ?
   196      */
   197     boolean allowDefaultMethods;
   199     /** Switch: static interface methods enabled?
   200      */
   201     boolean allowStaticInterfaceMethods;
   203     /** Switch: allow references to surrounding object from anonymous
   204      * objects during constructor call?
   205      */
   206     boolean allowAnonOuterThis;
   208     /** Switch: generates a warning if diamond can be safely applied
   209      *  to a given new expression
   210      */
   211     boolean findDiamonds;
   213     /**
   214      * Internally enables/disables diamond finder feature
   215      */
   216     static final boolean allowDiamondFinder = true;
   218     /**
   219      * Switch: warn about use of variable before declaration?
   220      * RFE: 6425594
   221      */
   222     boolean useBeforeDeclarationWarning;
   224     /**
   225      * Switch: generate warnings whenever an anonymous inner class that is convertible
   226      * to a lambda expression is found
   227      */
   228     boolean identifyLambdaCandidate;
   230     /**
   231      * Switch: allow strings in switch?
   232      */
   233     boolean allowStringsInSwitch;
   235     /**
   236      * Switch: name of source level; used for error reporting.
   237      */
   238     String sourceName;
   240     /** Check kind and type of given tree against protokind and prototype.
   241      *  If check succeeds, store type in tree and return it.
   242      *  If check fails, store errType in tree and return it.
   243      *  No checks are performed if the prototype is a method type.
   244      *  It is not necessary in this case since we know that kind and type
   245      *  are correct.
   246      *
   247      *  @param tree     The tree whose kind and type is checked
   248      *  @param ownkind  The computed kind of the tree
   249      *  @param resultInfo  The expected result of the tree
   250      */
   251     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   252         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   253         Type owntype = found;
   254         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   255             if (allowPoly && inferenceContext.free(found)) {
   256                 if ((ownkind & ~resultInfo.pkind) == 0) {
   257                     owntype = resultInfo.check(tree, inferenceContext.asUndetVar(owntype));
   258                 } else {
   259                     log.error(tree.pos(), "unexpected.type",
   260                             kindNames(resultInfo.pkind),
   261                             kindName(ownkind));
   262                     owntype = types.createErrorType(owntype);
   263                 }
   264                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   265                     @Override
   266                     public void typesInferred(InferenceContext inferenceContext) {
   267                         ResultInfo pendingResult =
   268                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   269                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   270                     }
   271                 });
   272                 return tree.type = resultInfo.pt;
   273             } else {
   274                 if ((ownkind & ~resultInfo.pkind) == 0) {
   275                     owntype = resultInfo.check(tree, owntype);
   276                 } else {
   277                     log.error(tree.pos(), "unexpected.type",
   278                             kindNames(resultInfo.pkind),
   279                             kindName(ownkind));
   280                     owntype = types.createErrorType(owntype);
   281                 }
   282             }
   283         }
   284         tree.type = owntype;
   285         return owntype;
   286     }
   288     /** Is given blank final variable assignable, i.e. in a scope where it
   289      *  may be assigned to even though it is final?
   290      *  @param v      The blank final variable.
   291      *  @param env    The current environment.
   292      */
   293     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   294         Symbol owner = owner(env);
   295            // owner refers to the innermost variable, method or
   296            // initializer block declaration at this point.
   297         return
   298             v.owner == owner
   299             ||
   300             ((owner.name == names.init ||    // i.e. we are in a constructor
   301               owner.kind == VAR ||           // i.e. we are in a variable initializer
   302               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   303              &&
   304              v.owner == owner.owner
   305              &&
   306              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   307     }
   309     /**
   310      * Return the innermost enclosing owner symbol in a given attribution context
   311      */
   312     Symbol owner(Env<AttrContext> env) {
   313         while (true) {
   314             switch (env.tree.getTag()) {
   315                 case VARDEF:
   316                     //a field can be owner
   317                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   318                     if (vsym.owner.kind == TYP) {
   319                         return vsym;
   320                     }
   321                     break;
   322                 case METHODDEF:
   323                     //method def is always an owner
   324                     return ((JCMethodDecl)env.tree).sym;
   325                 case CLASSDEF:
   326                     //class def is always an owner
   327                     return ((JCClassDecl)env.tree).sym;
   328                 case BLOCK:
   329                     //static/instance init blocks are owner
   330                     Symbol blockSym = env.info.scope.owner;
   331                     if ((blockSym.flags() & BLOCK) != 0) {
   332                         return blockSym;
   333                     }
   334                     break;
   335                 case TOPLEVEL:
   336                     //toplevel is always an owner (for pkge decls)
   337                     return env.info.scope.owner;
   338             }
   339             Assert.checkNonNull(env.next);
   340             env = env.next;
   341         }
   342     }
   344     /** Check that variable can be assigned to.
   345      *  @param pos    The current source code position.
   346      *  @param v      The assigned varaible
   347      *  @param base   If the variable is referred to in a Select, the part
   348      *                to the left of the `.', null otherwise.
   349      *  @param env    The current environment.
   350      */
   351     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   352         if ((v.flags() & FINAL) != 0 &&
   353             ((v.flags() & HASINIT) != 0
   354              ||
   355              !((base == null ||
   356                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   357                isAssignableAsBlankFinal(v, env)))) {
   358             if (v.isResourceVariable()) { //TWR resource
   359                 log.error(pos, "try.resource.may.not.be.assigned", v);
   360             } else {
   361                 log.error(pos, "cant.assign.val.to.final.var", v);
   362             }
   363         }
   364     }
   366     /** Does tree represent a static reference to an identifier?
   367      *  It is assumed that tree is either a SELECT or an IDENT.
   368      *  We have to weed out selects from non-type names here.
   369      *  @param tree    The candidate tree.
   370      */
   371     boolean isStaticReference(JCTree tree) {
   372         if (tree.hasTag(SELECT)) {
   373             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   374             if (lsym == null || lsym.kind != TYP) {
   375                 return false;
   376             }
   377         }
   378         return true;
   379     }
   381     /** Is this symbol a type?
   382      */
   383     static boolean isType(Symbol sym) {
   384         return sym != null && sym.kind == TYP;
   385     }
   387     /** The current `this' symbol.
   388      *  @param env    The current environment.
   389      */
   390     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   391         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   392     }
   394     /** Attribute a parsed identifier.
   395      * @param tree Parsed identifier name
   396      * @param topLevel The toplevel to use
   397      */
   398     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   399         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   400         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   401                                            syms.errSymbol.name,
   402                                            null, null, null, null);
   403         localEnv.enclClass.sym = syms.errSymbol;
   404         return tree.accept(identAttributer, localEnv);
   405     }
   406     // where
   407         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   408         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   409             @Override
   410             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   411                 Symbol site = visit(node.getExpression(), env);
   412                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   413                     return site;
   414                 Name name = (Name)node.getIdentifier();
   415                 if (site.kind == PCK) {
   416                     env.toplevel.packge = (PackageSymbol)site;
   417                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   418                 } else {
   419                     env.enclClass.sym = (ClassSymbol)site;
   420                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   421                 }
   422             }
   424             @Override
   425             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   426                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   427             }
   428         }
   430     public Type coerce(Type etype, Type ttype) {
   431         return cfolder.coerce(etype, ttype);
   432     }
   434     public Type attribType(JCTree node, TypeSymbol sym) {
   435         Env<AttrContext> env = enter.typeEnvs.get(sym);
   436         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   437         return attribTree(node, localEnv, unknownTypeInfo);
   438     }
   440     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   441         // Attribute qualifying package or class.
   442         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   443         return attribTree(s.selected,
   444                        env,
   445                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   446                        Type.noType));
   447     }
   449     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   450         breakTree = tree;
   451         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   452         try {
   453             attribExpr(expr, env);
   454         } catch (BreakAttr b) {
   455             return b.env;
   456         } catch (AssertionError ae) {
   457             if (ae.getCause() instanceof BreakAttr) {
   458                 return ((BreakAttr)(ae.getCause())).env;
   459             } else {
   460                 throw ae;
   461             }
   462         } finally {
   463             breakTree = null;
   464             log.useSource(prev);
   465         }
   466         return env;
   467     }
   469     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   470         breakTree = tree;
   471         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   472         try {
   473             attribStat(stmt, env);
   474         } catch (BreakAttr b) {
   475             return b.env;
   476         } catch (AssertionError ae) {
   477             if (ae.getCause() instanceof BreakAttr) {
   478                 return ((BreakAttr)(ae.getCause())).env;
   479             } else {
   480                 throw ae;
   481             }
   482         } finally {
   483             breakTree = null;
   484             log.useSource(prev);
   485         }
   486         return env;
   487     }
   489     private JCTree breakTree = null;
   491     private static class BreakAttr extends RuntimeException {
   492         static final long serialVersionUID = -6924771130405446405L;
   493         private Env<AttrContext> env;
   494         private BreakAttr(Env<AttrContext> env) {
   495             this.env = env;
   496         }
   497     }
   499     class ResultInfo {
   500         final int pkind;
   501         final Type pt;
   502         final CheckContext checkContext;
   504         ResultInfo(int pkind, Type pt) {
   505             this(pkind, pt, chk.basicHandler);
   506         }
   508         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   509             this.pkind = pkind;
   510             this.pt = pt;
   511             this.checkContext = checkContext;
   512         }
   514         protected Type check(final DiagnosticPosition pos, final Type found) {
   515             return chk.checkType(pos, found, pt, checkContext);
   516         }
   518         protected ResultInfo dup(Type newPt) {
   519             return new ResultInfo(pkind, newPt, checkContext);
   520         }
   522         protected ResultInfo dup(CheckContext newContext) {
   523             return new ResultInfo(pkind, pt, newContext);
   524         }
   526         protected ResultInfo dup(Type newPt, CheckContext newContext) {
   527             return new ResultInfo(pkind, newPt, newContext);
   528         }
   530         @Override
   531         public String toString() {
   532             if (pt != null) {
   533                 return pt.toString();
   534             } else {
   535                 return "";
   536             }
   537         }
   538     }
   540     class RecoveryInfo extends ResultInfo {
   542         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   543             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   544                 @Override
   545                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   546                     return deferredAttrContext;
   547                 }
   548                 @Override
   549                 public boolean compatible(Type found, Type req, Warner warn) {
   550                     return true;
   551                 }
   552                 @Override
   553                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   554                     chk.basicHandler.report(pos, details);
   555                 }
   556             });
   557         }
   558     }
   560     final ResultInfo statInfo;
   561     final ResultInfo varInfo;
   562     final ResultInfo unknownAnyPolyInfo;
   563     final ResultInfo unknownExprInfo;
   564     final ResultInfo unknownTypeInfo;
   565     final ResultInfo unknownTypeExprInfo;
   566     final ResultInfo recoveryInfo;
   568     Type pt() {
   569         return resultInfo.pt;
   570     }
   572     int pkind() {
   573         return resultInfo.pkind;
   574     }
   576 /* ************************************************************************
   577  * Visitor methods
   578  *************************************************************************/
   580     /** Visitor argument: the current environment.
   581      */
   582     Env<AttrContext> env;
   584     /** Visitor argument: the currently expected attribution result.
   585      */
   586     ResultInfo resultInfo;
   588     /** Visitor result: the computed type.
   589      */
   590     Type result;
   592     /** Visitor method: attribute a tree, catching any completion failure
   593      *  exceptions. Return the tree's type.
   594      *
   595      *  @param tree    The tree to be visited.
   596      *  @param env     The environment visitor argument.
   597      *  @param resultInfo   The result info visitor argument.
   598      */
   599     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   600         Env<AttrContext> prevEnv = this.env;
   601         ResultInfo prevResult = this.resultInfo;
   602         try {
   603             this.env = env;
   604             this.resultInfo = resultInfo;
   605             tree.accept(this);
   606             if (tree == breakTree &&
   607                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   608                 throw new BreakAttr(copyEnv(env));
   609             }
   610             return result;
   611         } catch (CompletionFailure ex) {
   612             tree.type = syms.errType;
   613             return chk.completionError(tree.pos(), ex);
   614         } finally {
   615             this.env = prevEnv;
   616             this.resultInfo = prevResult;
   617         }
   618     }
   620     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   621         Env<AttrContext> newEnv =
   622                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   623         if (newEnv.outer != null) {
   624             newEnv.outer = copyEnv(newEnv.outer);
   625         }
   626         return newEnv;
   627     }
   629     Scope copyScope(Scope sc) {
   630         Scope newScope = new Scope(sc.owner);
   631         List<Symbol> elemsList = List.nil();
   632         while (sc != null) {
   633             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   634                 elemsList = elemsList.prepend(e.sym);
   635             }
   636             sc = sc.next;
   637         }
   638         for (Symbol s : elemsList) {
   639             newScope.enter(s);
   640         }
   641         return newScope;
   642     }
   644     /** Derived visitor method: attribute an expression tree.
   645      */
   646     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   647         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   648     }
   650     /** Derived visitor method: attribute an expression tree with
   651      *  no constraints on the computed type.
   652      */
   653     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   654         return attribTree(tree, env, unknownExprInfo);
   655     }
   657     /** Derived visitor method: attribute a type tree.
   658      */
   659     public Type attribType(JCTree tree, Env<AttrContext> env) {
   660         Type result = attribType(tree, env, Type.noType);
   661         return result;
   662     }
   664     /** Derived visitor method: attribute a type tree.
   665      */
   666     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   667         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   668         return result;
   669     }
   671     /** Derived visitor method: attribute a statement or definition tree.
   672      */
   673     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   674         return attribTree(tree, env, statInfo);
   675     }
   677     /** Attribute a list of expressions, returning a list of types.
   678      */
   679     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   680         ListBuffer<Type> ts = new ListBuffer<Type>();
   681         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   682             ts.append(attribExpr(l.head, env, pt));
   683         return ts.toList();
   684     }
   686     /** Attribute a list of statements, returning nothing.
   687      */
   688     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   689         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   690             attribStat(l.head, env);
   691     }
   693     /** Attribute the arguments in a method call, returning the method kind.
   694      */
   695     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   696         int kind = VAL;
   697         for (JCExpression arg : trees) {
   698             Type argtype;
   699             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   700                 argtype = deferredAttr.new DeferredType(arg, env);
   701                 kind |= POLY;
   702             } else {
   703                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   704             }
   705             argtypes.append(argtype);
   706         }
   707         return kind;
   708     }
   710     /** Attribute a type argument list, returning a list of types.
   711      *  Caller is responsible for calling checkRefTypes.
   712      */
   713     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   714         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   715         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   716             argtypes.append(attribType(l.head, env));
   717         return argtypes.toList();
   718     }
   720     /** Attribute a type argument list, returning a list of types.
   721      *  Check that all the types are references.
   722      */
   723     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   724         List<Type> types = attribAnyTypes(trees, env);
   725         return chk.checkRefTypes(trees, types);
   726     }
   728     /**
   729      * Attribute type variables (of generic classes or methods).
   730      * Compound types are attributed later in attribBounds.
   731      * @param typarams the type variables to enter
   732      * @param env      the current environment
   733      */
   734     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   735         for (JCTypeParameter tvar : typarams) {
   736             TypeVar a = (TypeVar)tvar.type;
   737             a.tsym.flags_field |= UNATTRIBUTED;
   738             a.bound = Type.noType;
   739             if (!tvar.bounds.isEmpty()) {
   740                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   741                 for (JCExpression bound : tvar.bounds.tail)
   742                     bounds = bounds.prepend(attribType(bound, env));
   743                 types.setBounds(a, bounds.reverse());
   744             } else {
   745                 // if no bounds are given, assume a single bound of
   746                 // java.lang.Object.
   747                 types.setBounds(a, List.of(syms.objectType));
   748             }
   749             a.tsym.flags_field &= ~UNATTRIBUTED;
   750         }
   751         for (JCTypeParameter tvar : typarams) {
   752             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   753         }
   754     }
   756     /**
   757      * Attribute the type references in a list of annotations.
   758      */
   759     void attribAnnotationTypes(List<JCAnnotation> annotations,
   760                                Env<AttrContext> env) {
   761         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   762             JCAnnotation a = al.head;
   763             attribType(a.annotationType, env);
   764         }
   765     }
   767     /**
   768      * Attribute a "lazy constant value".
   769      *  @param env         The env for the const value
   770      *  @param initializer The initializer for the const value
   771      *  @param type        The expected type, or null
   772      *  @see VarSymbol#setLazyConstValue
   773      */
   774     public Object attribLazyConstantValue(Env<AttrContext> env,
   775                                       JCVariableDecl variable,
   776                                       Type type) {
   778         DiagnosticPosition prevLintPos
   779                 = deferredLintHandler.setPos(variable.pos());
   781         try {
   782             // Use null as symbol to not attach the type annotation to any symbol.
   783             // The initializer will later also be visited and then we'll attach
   784             // to the symbol.
   785             // This prevents having multiple type annotations, just because of
   786             // lazy constant value evaluation.
   787             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   788             annotate.flush();
   789             Type itype = attribExpr(variable.init, env, type);
   790             if (itype.constValue() != null) {
   791                 return coerce(itype, type).constValue();
   792             } else {
   793                 return null;
   794             }
   795         } finally {
   796             deferredLintHandler.setPos(prevLintPos);
   797         }
   798     }
   800     /** Attribute type reference in an `extends' or `implements' clause.
   801      *  Supertypes of anonymous inner classes are usually already attributed.
   802      *
   803      *  @param tree              The tree making up the type reference.
   804      *  @param env               The environment current at the reference.
   805      *  @param classExpected     true if only a class is expected here.
   806      *  @param interfaceExpected true if only an interface is expected here.
   807      */
   808     Type attribBase(JCTree tree,
   809                     Env<AttrContext> env,
   810                     boolean classExpected,
   811                     boolean interfaceExpected,
   812                     boolean checkExtensible) {
   813         Type t = tree.type != null ?
   814             tree.type :
   815             attribType(tree, env);
   816         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   817     }
   818     Type checkBase(Type t,
   819                    JCTree tree,
   820                    Env<AttrContext> env,
   821                    boolean classExpected,
   822                    boolean interfaceExpected,
   823                    boolean checkExtensible) {
   824         if (t.tsym.isAnonymous()) {
   825             log.error(tree.pos(), "cant.inherit.from.anon");
   826             return types.createErrorType(t);
   827         }
   828         if (t.isErroneous())
   829             return t;
   830         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   831             // check that type variable is already visible
   832             if (t.getUpperBound() == null) {
   833                 log.error(tree.pos(), "illegal.forward.ref");
   834                 return types.createErrorType(t);
   835             }
   836         } else {
   837             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   838         }
   839         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   840             log.error(tree.pos(), "intf.expected.here");
   841             // return errType is necessary since otherwise there might
   842             // be undetected cycles which cause attribution to loop
   843             return types.createErrorType(t);
   844         } else if (checkExtensible &&
   845                    classExpected &&
   846                    (t.tsym.flags() & INTERFACE) != 0) {
   847             log.error(tree.pos(), "no.intf.expected.here");
   848             return types.createErrorType(t);
   849         }
   850         if (checkExtensible &&
   851             ((t.tsym.flags() & FINAL) != 0)) {
   852             log.error(tree.pos(),
   853                       "cant.inherit.from.final", t.tsym);
   854         }
   855         chk.checkNonCyclic(tree.pos(), t);
   856         return t;
   857     }
   859     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   860         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   861         id.type = env.info.scope.owner.type;
   862         id.sym = env.info.scope.owner;
   863         return id.type;
   864     }
   866     public void visitClassDef(JCClassDecl tree) {
   867         // Local classes have not been entered yet, so we need to do it now:
   868         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   869             enter.classEnter(tree, env);
   871         ClassSymbol c = tree.sym;
   872         if (c == null) {
   873             // exit in case something drastic went wrong during enter.
   874             result = null;
   875         } else {
   876             // make sure class has been completed:
   877             c.complete();
   879             // If this class appears as an anonymous class
   880             // in a superclass constructor call where
   881             // no explicit outer instance is given,
   882             // disable implicit outer instance from being passed.
   883             // (This would be an illegal access to "this before super").
   884             if (env.info.isSelfCall &&
   885                 env.tree.hasTag(NEWCLASS) &&
   886                 ((JCNewClass) env.tree).encl == null)
   887             {
   888                 c.flags_field |= NOOUTERTHIS;
   889             }
   890             attribClass(tree.pos(), c);
   891             result = tree.type = c.type;
   892         }
   893     }
   895     public void visitMethodDef(JCMethodDecl tree) {
   896         MethodSymbol m = tree.sym;
   897         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   899         Lint lint = env.info.lint.augment(m);
   900         Lint prevLint = chk.setLint(lint);
   901         MethodSymbol prevMethod = chk.setMethod(m);
   902         try {
   903             deferredLintHandler.flush(tree.pos());
   904             chk.checkDeprecatedAnnotation(tree.pos(), m);
   907             // Create a new environment with local scope
   908             // for attributing the method.
   909             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   910             localEnv.info.lint = lint;
   912             attribStats(tree.typarams, localEnv);
   914             // If we override any other methods, check that we do so properly.
   915             // JLS ???
   916             if (m.isStatic()) {
   917                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   918             } else {
   919                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   920             }
   921             chk.checkOverride(tree, m);
   923             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   924                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   925             }
   927             // Enter all type parameters into the local method scope.
   928             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   929                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   931             ClassSymbol owner = env.enclClass.sym;
   932             if ((owner.flags() & ANNOTATION) != 0 &&
   933                 tree.params.nonEmpty())
   934                 log.error(tree.params.head.pos(),
   935                           "intf.annotation.members.cant.have.params");
   937             // Attribute all value parameters.
   938             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   939                 attribStat(l.head, localEnv);
   940             }
   942             chk.checkVarargsMethodDecl(localEnv, tree);
   944             // Check that type parameters are well-formed.
   945             chk.validate(tree.typarams, localEnv);
   947             // Check that result type is well-formed.
   948             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
   949                 chk.validate(tree.restype, localEnv);
   951             // Check that receiver type is well-formed.
   952             if (tree.recvparam != null) {
   953                 // Use a new environment to check the receiver parameter.
   954                 // Otherwise I get "might not have been initialized" errors.
   955                 // Is there a better way?
   956                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   957                 attribType(tree.recvparam, newEnv);
   958                 chk.validate(tree.recvparam, newEnv);
   959             }
   961             // annotation method checks
   962             if ((owner.flags() & ANNOTATION) != 0) {
   963                 // annotation method cannot have throws clause
   964                 if (tree.thrown.nonEmpty()) {
   965                     log.error(tree.thrown.head.pos(),
   966                             "throws.not.allowed.in.intf.annotation");
   967                 }
   968                 // annotation method cannot declare type-parameters
   969                 if (tree.typarams.nonEmpty()) {
   970                     log.error(tree.typarams.head.pos(),
   971                             "intf.annotation.members.cant.have.type.params");
   972                 }
   973                 // validate annotation method's return type (could be an annotation type)
   974                 chk.validateAnnotationType(tree.restype);
   975                 // ensure that annotation method does not clash with members of Object/Annotation
   976                 chk.validateAnnotationMethod(tree.pos(), m);
   977             }
   979             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   980                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   982             if (tree.body == null) {
   983                 // Empty bodies are only allowed for
   984                 // abstract, native, or interface methods, or for methods
   985                 // in a retrofit signature class.
   986                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   987                     !relax)
   988                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   989                 if (tree.defaultValue != null) {
   990                     if ((owner.flags() & ANNOTATION) == 0)
   991                         log.error(tree.pos(),
   992                                   "default.allowed.in.intf.annotation.member");
   993                 }
   994             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   995                 if ((owner.flags() & INTERFACE) != 0) {
   996                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   997                 } else {
   998                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   999                 }
  1000             } else if ((tree.mods.flags & NATIVE) != 0) {
  1001                 log.error(tree.pos(), "native.meth.cant.have.body");
  1002             } else {
  1003                 // Add an implicit super() call unless an explicit call to
  1004                 // super(...) or this(...) is given
  1005                 // or we are compiling class java.lang.Object.
  1006                 if (tree.name == names.init && owner.type != syms.objectType) {
  1007                     JCBlock body = tree.body;
  1008                     if (body.stats.isEmpty() ||
  1009                         !TreeInfo.isSelfCall(body.stats.head)) {
  1010                         body.stats = body.stats.
  1011                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1012                                                           List.<Type>nil(),
  1013                                                           List.<JCVariableDecl>nil(),
  1014                                                           false));
  1015                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1016                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1017                                TreeInfo.isSuperCall(body.stats.head)) {
  1018                         // enum constructors are not allowed to call super
  1019                         // directly, so make sure there aren't any super calls
  1020                         // in enum constructors, except in the compiler
  1021                         // generated one.
  1022                         log.error(tree.body.stats.head.pos(),
  1023                                   "call.to.super.not.allowed.in.enum.ctor",
  1024                                   env.enclClass.sym);
  1028                 // Attribute all type annotations in the body
  1029                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1030                 annotate.flush();
  1032                 // Attribute method body.
  1033                 attribStat(tree.body, localEnv);
  1036             localEnv.info.scope.leave();
  1037             result = tree.type = m.type;
  1039         finally {
  1040             chk.setLint(prevLint);
  1041             chk.setMethod(prevMethod);
  1045     public void visitVarDef(JCVariableDecl tree) {
  1046         // Local variables have not been entered yet, so we need to do it now:
  1047         if (env.info.scope.owner.kind == MTH) {
  1048             if (tree.sym != null) {
  1049                 // parameters have already been entered
  1050                 env.info.scope.enter(tree.sym);
  1051             } else {
  1052                 memberEnter.memberEnter(tree, env);
  1053                 annotate.flush();
  1055         } else {
  1056             if (tree.init != null) {
  1057                 // Field initializer expression need to be entered.
  1058                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1059                 annotate.flush();
  1063         VarSymbol v = tree.sym;
  1064         Lint lint = env.info.lint.augment(v);
  1065         Lint prevLint = chk.setLint(lint);
  1067         // Check that the variable's declared type is well-formed.
  1068         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1069                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1070                 (tree.sym.flags() & PARAMETER) != 0;
  1071         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1073         try {
  1074             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1075             deferredLintHandler.flush(tree.pos());
  1076             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1078             if (tree.init != null) {
  1079                 if ((v.flags_field & FINAL) == 0 ||
  1080                     !memberEnter.needsLazyConstValue(tree.init)) {
  1081                     // Not a compile-time constant
  1082                     // Attribute initializer in a new environment
  1083                     // with the declared variable as owner.
  1084                     // Check that initializer conforms to variable's declared type.
  1085                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1086                     initEnv.info.lint = lint;
  1087                     // In order to catch self-references, we set the variable's
  1088                     // declaration position to maximal possible value, effectively
  1089                     // marking the variable as undefined.
  1090                     initEnv.info.enclVar = v;
  1091                     attribExpr(tree.init, initEnv, v.type);
  1094             result = tree.type = v.type;
  1096         finally {
  1097             chk.setLint(prevLint);
  1101     public void visitSkip(JCSkip tree) {
  1102         result = null;
  1105     public void visitBlock(JCBlock tree) {
  1106         if (env.info.scope.owner.kind == TYP) {
  1107             // Block is a static or instance initializer;
  1108             // let the owner of the environment be a freshly
  1109             // created BLOCK-method.
  1110             Env<AttrContext> localEnv =
  1111                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1112             localEnv.info.scope.owner =
  1113                 new MethodSymbol(tree.flags | BLOCK |
  1114                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1115                     env.info.scope.owner);
  1116             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1118             // Attribute all type annotations in the block
  1119             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1120             annotate.flush();
  1123                 // Store init and clinit type annotations with the ClassSymbol
  1124                 // to allow output in Gen.normalizeDefs.
  1125                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1126                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1127                 if ((tree.flags & STATIC) != 0) {
  1128                     cs.appendClassInitTypeAttributes(tas);
  1129                 } else {
  1130                     cs.appendInitTypeAttributes(tas);
  1134             attribStats(tree.stats, localEnv);
  1135         } else {
  1136             // Create a new local environment with a local scope.
  1137             Env<AttrContext> localEnv =
  1138                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1139             try {
  1140                 attribStats(tree.stats, localEnv);
  1141             } finally {
  1142                 localEnv.info.scope.leave();
  1145         result = null;
  1148     public void visitDoLoop(JCDoWhileLoop tree) {
  1149         attribStat(tree.body, env.dup(tree));
  1150         attribExpr(tree.cond, env, syms.booleanType);
  1151         result = null;
  1154     public void visitWhileLoop(JCWhileLoop tree) {
  1155         attribExpr(tree.cond, env, syms.booleanType);
  1156         attribStat(tree.body, env.dup(tree));
  1157         result = null;
  1160     public void visitForLoop(JCForLoop tree) {
  1161         Env<AttrContext> loopEnv =
  1162             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1163         try {
  1164             attribStats(tree.init, loopEnv);
  1165             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1166             loopEnv.tree = tree; // before, we were not in loop!
  1167             attribStats(tree.step, loopEnv);
  1168             attribStat(tree.body, loopEnv);
  1169             result = null;
  1171         finally {
  1172             loopEnv.info.scope.leave();
  1176     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1177         Env<AttrContext> loopEnv =
  1178             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1179         try {
  1180             //the Formal Parameter of a for-each loop is not in the scope when
  1181             //attributing the for-each expression; we mimick this by attributing
  1182             //the for-each expression first (against original scope).
  1183             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
  1184             attribStat(tree.var, loopEnv);
  1185             chk.checkNonVoid(tree.pos(), exprType);
  1186             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1187             if (elemtype == null) {
  1188                 // or perhaps expr implements Iterable<T>?
  1189                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1190                 if (base == null) {
  1191                     log.error(tree.expr.pos(),
  1192                             "foreach.not.applicable.to.type",
  1193                             exprType,
  1194                             diags.fragment("type.req.array.or.iterable"));
  1195                     elemtype = types.createErrorType(exprType);
  1196                 } else {
  1197                     List<Type> iterableParams = base.allparams();
  1198                     elemtype = iterableParams.isEmpty()
  1199                         ? syms.objectType
  1200                         : types.wildUpperBound(iterableParams.head);
  1203             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1204             loopEnv.tree = tree; // before, we were not in loop!
  1205             attribStat(tree.body, loopEnv);
  1206             result = null;
  1208         finally {
  1209             loopEnv.info.scope.leave();
  1213     public void visitLabelled(JCLabeledStatement tree) {
  1214         // Check that label is not used in an enclosing statement
  1215         Env<AttrContext> env1 = env;
  1216         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1217             if (env1.tree.hasTag(LABELLED) &&
  1218                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1219                 log.error(tree.pos(), "label.already.in.use",
  1220                           tree.label);
  1221                 break;
  1223             env1 = env1.next;
  1226         attribStat(tree.body, env.dup(tree));
  1227         result = null;
  1230     public void visitSwitch(JCSwitch tree) {
  1231         Type seltype = attribExpr(tree.selector, env);
  1233         Env<AttrContext> switchEnv =
  1234             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1236         try {
  1238             boolean enumSwitch =
  1239                 allowEnums &&
  1240                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1241             boolean stringSwitch = false;
  1242             if (types.isSameType(seltype, syms.stringType)) {
  1243                 if (allowStringsInSwitch) {
  1244                     stringSwitch = true;
  1245                 } else {
  1246                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1249             if (!enumSwitch && !stringSwitch)
  1250                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1252             // Attribute all cases and
  1253             // check that there are no duplicate case labels or default clauses.
  1254             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1255             boolean hasDefault = false;      // Is there a default label?
  1256             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1257                 JCCase c = l.head;
  1258                 Env<AttrContext> caseEnv =
  1259                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1260                 try {
  1261                     if (c.pat != null) {
  1262                         if (enumSwitch) {
  1263                             Symbol sym = enumConstant(c.pat, seltype);
  1264                             if (sym == null) {
  1265                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1266                             } else if (!labels.add(sym)) {
  1267                                 log.error(c.pos(), "duplicate.case.label");
  1269                         } else {
  1270                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1271                             if (!pattype.hasTag(ERROR)) {
  1272                                 if (pattype.constValue() == null) {
  1273                                     log.error(c.pat.pos(),
  1274                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1275                                 } else if (labels.contains(pattype.constValue())) {
  1276                                     log.error(c.pos(), "duplicate.case.label");
  1277                                 } else {
  1278                                     labels.add(pattype.constValue());
  1282                     } else if (hasDefault) {
  1283                         log.error(c.pos(), "duplicate.default.label");
  1284                     } else {
  1285                         hasDefault = true;
  1287                     attribStats(c.stats, caseEnv);
  1288                 } finally {
  1289                     caseEnv.info.scope.leave();
  1290                     addVars(c.stats, switchEnv.info.scope);
  1294             result = null;
  1296         finally {
  1297             switchEnv.info.scope.leave();
  1300     // where
  1301         /** Add any variables defined in stats to the switch scope. */
  1302         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1303             for (;stats.nonEmpty(); stats = stats.tail) {
  1304                 JCTree stat = stats.head;
  1305                 if (stat.hasTag(VARDEF))
  1306                     switchScope.enter(((JCVariableDecl) stat).sym);
  1309     // where
  1310     /** Return the selected enumeration constant symbol, or null. */
  1311     private Symbol enumConstant(JCTree tree, Type enumType) {
  1312         if (!tree.hasTag(IDENT)) {
  1313             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1314             return syms.errSymbol;
  1316         JCIdent ident = (JCIdent)tree;
  1317         Name name = ident.name;
  1318         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1319              e.scope != null; e = e.next()) {
  1320             if (e.sym.kind == VAR) {
  1321                 Symbol s = ident.sym = e.sym;
  1322                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1323                 ident.type = s.type;
  1324                 return ((s.flags_field & Flags.ENUM) == 0)
  1325                     ? null : s;
  1328         return null;
  1331     public void visitSynchronized(JCSynchronized tree) {
  1332         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1333         attribStat(tree.body, env);
  1334         result = null;
  1337     public void visitTry(JCTry tree) {
  1338         // Create a new local environment with a local
  1339         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1340         try {
  1341             boolean isTryWithResource = tree.resources.nonEmpty();
  1342             // Create a nested environment for attributing the try block if needed
  1343             Env<AttrContext> tryEnv = isTryWithResource ?
  1344                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1345                 localEnv;
  1346             try {
  1347                 // Attribute resource declarations
  1348                 for (JCTree resource : tree.resources) {
  1349                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1350                         @Override
  1351                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1352                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1354                     };
  1355                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1356                     if (resource.hasTag(VARDEF)) {
  1357                         attribStat(resource, tryEnv);
  1358                         twrResult.check(resource, resource.type);
  1360                         //check that resource type cannot throw InterruptedException
  1361                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1363                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1364                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1365                     } else {
  1366                         attribTree(resource, tryEnv, twrResult);
  1369                 // Attribute body
  1370                 attribStat(tree.body, tryEnv);
  1371             } finally {
  1372                 if (isTryWithResource)
  1373                     tryEnv.info.scope.leave();
  1376             // Attribute catch clauses
  1377             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1378                 JCCatch c = l.head;
  1379                 Env<AttrContext> catchEnv =
  1380                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1381                 try {
  1382                     Type ctype = attribStat(c.param, catchEnv);
  1383                     if (TreeInfo.isMultiCatch(c)) {
  1384                         //multi-catch parameter is implicitly marked as final
  1385                         c.param.sym.flags_field |= FINAL | UNION;
  1387                     if (c.param.sym.kind == Kinds.VAR) {
  1388                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1390                     chk.checkType(c.param.vartype.pos(),
  1391                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1392                                   syms.throwableType);
  1393                     attribStat(c.body, catchEnv);
  1394                 } finally {
  1395                     catchEnv.info.scope.leave();
  1399             // Attribute finalizer
  1400             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1401             result = null;
  1403         finally {
  1404             localEnv.info.scope.leave();
  1408     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1409         if (!resource.isErroneous() &&
  1410             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1411             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1412             Symbol close = syms.noSymbol;
  1413             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1414             try {
  1415                 close = rs.resolveQualifiedMethod(pos,
  1416                         env,
  1417                         resource,
  1418                         names.close,
  1419                         List.<Type>nil(),
  1420                         List.<Type>nil());
  1422             finally {
  1423                 log.popDiagnosticHandler(discardHandler);
  1425             if (close.kind == MTH &&
  1426                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1427                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1428                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1429                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1434     public void visitConditional(JCConditional tree) {
  1435         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1437         tree.polyKind = (!allowPoly ||
  1438                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1439                 isBooleanOrNumeric(env, tree)) ?
  1440                 PolyKind.STANDALONE : PolyKind.POLY;
  1442         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1443             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1444             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1445             result = tree.type = types.createErrorType(resultInfo.pt);
  1446             return;
  1449         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1450                 unknownExprInfo :
  1451                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1452                     //this will use enclosing check context to check compatibility of
  1453                     //subexpression against target type; if we are in a method check context,
  1454                     //depending on whether boxing is allowed, we could have incompatibilities
  1455                     @Override
  1456                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1457                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1459                 });
  1461         Type truetype = attribTree(tree.truepart, env, condInfo);
  1462         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1464         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1465         if (condtype.constValue() != null &&
  1466                 truetype.constValue() != null &&
  1467                 falsetype.constValue() != null &&
  1468                 !owntype.hasTag(NONE)) {
  1469             //constant folding
  1470             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1472         result = check(tree, owntype, VAL, resultInfo);
  1474     //where
  1475         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1476             switch (tree.getTag()) {
  1477                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1478                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1479                               ((JCLiteral)tree).typetag == BOT;
  1480                 case LAMBDA: case REFERENCE: return false;
  1481                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1482                 case CONDEXPR:
  1483                     JCConditional condTree = (JCConditional)tree;
  1484                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1485                             isBooleanOrNumeric(env, condTree.falsepart);
  1486                 case APPLY:
  1487                     JCMethodInvocation speculativeMethodTree =
  1488                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1489                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1490                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1491                 case NEWCLASS:
  1492                     JCExpression className =
  1493                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1494                     JCExpression speculativeNewClassTree =
  1495                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1496                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1497                 default:
  1498                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1499                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1500                     return speculativeType.isPrimitive();
  1503         //where
  1504             TreeTranslator removeClassParams = new TreeTranslator() {
  1505                 @Override
  1506                 public void visitTypeApply(JCTypeApply tree) {
  1507                     result = translate(tree.clazz);
  1509             };
  1511         /** Compute the type of a conditional expression, after
  1512          *  checking that it exists.  See JLS 15.25. Does not take into
  1513          *  account the special case where condition and both arms
  1514          *  are constants.
  1516          *  @param pos      The source position to be used for error
  1517          *                  diagnostics.
  1518          *  @param thentype The type of the expression's then-part.
  1519          *  @param elsetype The type of the expression's else-part.
  1520          */
  1521         private Type condType(DiagnosticPosition pos,
  1522                                Type thentype, Type elsetype) {
  1523             // If same type, that is the result
  1524             if (types.isSameType(thentype, elsetype))
  1525                 return thentype.baseType();
  1527             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1528                 ? thentype : types.unboxedType(thentype);
  1529             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1530                 ? elsetype : types.unboxedType(elsetype);
  1532             // Otherwise, if both arms can be converted to a numeric
  1533             // type, return the least numeric type that fits both arms
  1534             // (i.e. return larger of the two, or return int if one
  1535             // arm is short, the other is char).
  1536             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1537                 // If one arm has an integer subrange type (i.e., byte,
  1538                 // short, or char), and the other is an integer constant
  1539                 // that fits into the subrange, return the subrange type.
  1540                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1541                     elseUnboxed.hasTag(INT) &&
  1542                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1543                     return thenUnboxed.baseType();
  1545                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1546                     thenUnboxed.hasTag(INT) &&
  1547                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1548                     return elseUnboxed.baseType();
  1551                 for (TypeTag tag : primitiveTags) {
  1552                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1553                     if (types.isSubtype(thenUnboxed, candidate) &&
  1554                         types.isSubtype(elseUnboxed, candidate)) {
  1555                         return candidate;
  1560             // Those were all the cases that could result in a primitive
  1561             if (allowBoxing) {
  1562                 if (thentype.isPrimitive())
  1563                     thentype = types.boxedClass(thentype).type;
  1564                 if (elsetype.isPrimitive())
  1565                     elsetype = types.boxedClass(elsetype).type;
  1568             if (types.isSubtype(thentype, elsetype))
  1569                 return elsetype.baseType();
  1570             if (types.isSubtype(elsetype, thentype))
  1571                 return thentype.baseType();
  1573             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1574                 log.error(pos, "neither.conditional.subtype",
  1575                           thentype, elsetype);
  1576                 return thentype.baseType();
  1579             // both are known to be reference types.  The result is
  1580             // lub(thentype,elsetype). This cannot fail, as it will
  1581             // always be possible to infer "Object" if nothing better.
  1582             return types.lub(thentype.baseType(), elsetype.baseType());
  1585     final static TypeTag[] primitiveTags = new TypeTag[]{
  1586         BYTE,
  1587         CHAR,
  1588         SHORT,
  1589         INT,
  1590         LONG,
  1591         FLOAT,
  1592         DOUBLE,
  1593         BOOLEAN,
  1594     };
  1596     public void visitIf(JCIf tree) {
  1597         attribExpr(tree.cond, env, syms.booleanType);
  1598         attribStat(tree.thenpart, env);
  1599         if (tree.elsepart != null)
  1600             attribStat(tree.elsepart, env);
  1601         chk.checkEmptyIf(tree);
  1602         result = null;
  1605     public void visitExec(JCExpressionStatement tree) {
  1606         //a fresh environment is required for 292 inference to work properly ---
  1607         //see Infer.instantiatePolymorphicSignatureInstance()
  1608         Env<AttrContext> localEnv = env.dup(tree);
  1609         attribExpr(tree.expr, localEnv);
  1610         result = null;
  1613     public void visitBreak(JCBreak tree) {
  1614         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1615         result = null;
  1618     public void visitContinue(JCContinue tree) {
  1619         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1620         result = null;
  1622     //where
  1623         /** Return the target of a break or continue statement, if it exists,
  1624          *  report an error if not.
  1625          *  Note: The target of a labelled break or continue is the
  1626          *  (non-labelled) statement tree referred to by the label,
  1627          *  not the tree representing the labelled statement itself.
  1629          *  @param pos     The position to be used for error diagnostics
  1630          *  @param tag     The tag of the jump statement. This is either
  1631          *                 Tree.BREAK or Tree.CONTINUE.
  1632          *  @param label   The label of the jump statement, or null if no
  1633          *                 label is given.
  1634          *  @param env     The environment current at the jump statement.
  1635          */
  1636         private JCTree findJumpTarget(DiagnosticPosition pos,
  1637                                     JCTree.Tag tag,
  1638                                     Name label,
  1639                                     Env<AttrContext> env) {
  1640             // Search environments outwards from the point of jump.
  1641             Env<AttrContext> env1 = env;
  1642             LOOP:
  1643             while (env1 != null) {
  1644                 switch (env1.tree.getTag()) {
  1645                     case LABELLED:
  1646                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1647                         if (label == labelled.label) {
  1648                             // If jump is a continue, check that target is a loop.
  1649                             if (tag == CONTINUE) {
  1650                                 if (!labelled.body.hasTag(DOLOOP) &&
  1651                                         !labelled.body.hasTag(WHILELOOP) &&
  1652                                         !labelled.body.hasTag(FORLOOP) &&
  1653                                         !labelled.body.hasTag(FOREACHLOOP))
  1654                                     log.error(pos, "not.loop.label", label);
  1655                                 // Found labelled statement target, now go inwards
  1656                                 // to next non-labelled tree.
  1657                                 return TreeInfo.referencedStatement(labelled);
  1658                             } else {
  1659                                 return labelled;
  1662                         break;
  1663                     case DOLOOP:
  1664                     case WHILELOOP:
  1665                     case FORLOOP:
  1666                     case FOREACHLOOP:
  1667                         if (label == null) return env1.tree;
  1668                         break;
  1669                     case SWITCH:
  1670                         if (label == null && tag == BREAK) return env1.tree;
  1671                         break;
  1672                     case LAMBDA:
  1673                     case METHODDEF:
  1674                     case CLASSDEF:
  1675                         break LOOP;
  1676                     default:
  1678                 env1 = env1.next;
  1680             if (label != null)
  1681                 log.error(pos, "undef.label", label);
  1682             else if (tag == CONTINUE)
  1683                 log.error(pos, "cont.outside.loop");
  1684             else
  1685                 log.error(pos, "break.outside.switch.loop");
  1686             return null;
  1689     public void visitReturn(JCReturn tree) {
  1690         // Check that there is an enclosing method which is
  1691         // nested within than the enclosing class.
  1692         if (env.info.returnResult == null) {
  1693             log.error(tree.pos(), "ret.outside.meth");
  1694         } else {
  1695             // Attribute return expression, if it exists, and check that
  1696             // it conforms to result type of enclosing method.
  1697             if (tree.expr != null) {
  1698                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1699                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1700                               diags.fragment("unexpected.ret.val"));
  1702                 attribTree(tree.expr, env, env.info.returnResult);
  1703             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1704                     !env.info.returnResult.pt.hasTag(NONE)) {
  1705                 env.info.returnResult.checkContext.report(tree.pos(),
  1706                               diags.fragment("missing.ret.val"));
  1709         result = null;
  1712     public void visitThrow(JCThrow tree) {
  1713         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1714         if (allowPoly) {
  1715             chk.checkType(tree, owntype, syms.throwableType);
  1717         result = null;
  1720     public void visitAssert(JCAssert tree) {
  1721         attribExpr(tree.cond, env, syms.booleanType);
  1722         if (tree.detail != null) {
  1723             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1725         result = null;
  1728      /** Visitor method for method invocations.
  1729      *  NOTE: The method part of an application will have in its type field
  1730      *        the return type of the method, not the method's type itself!
  1731      */
  1732     public void visitApply(JCMethodInvocation tree) {
  1733         // The local environment of a method application is
  1734         // a new environment nested in the current one.
  1735         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1737         // The types of the actual method arguments.
  1738         List<Type> argtypes;
  1740         // The types of the actual method type arguments.
  1741         List<Type> typeargtypes = null;
  1743         Name methName = TreeInfo.name(tree.meth);
  1745         boolean isConstructorCall =
  1746             methName == names._this || methName == names._super;
  1748         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1749         if (isConstructorCall) {
  1750             // We are seeing a ...this(...) or ...super(...) call.
  1751             // Check that this is the first statement in a constructor.
  1752             if (checkFirstConstructorStat(tree, env)) {
  1754                 // Record the fact
  1755                 // that this is a constructor call (using isSelfCall).
  1756                 localEnv.info.isSelfCall = true;
  1758                 // Attribute arguments, yielding list of argument types.
  1759                 attribArgs(tree.args, localEnv, argtypesBuf);
  1760                 argtypes = argtypesBuf.toList();
  1761                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1763                 // Variable `site' points to the class in which the called
  1764                 // constructor is defined.
  1765                 Type site = env.enclClass.sym.type;
  1766                 if (methName == names._super) {
  1767                     if (site == syms.objectType) {
  1768                         log.error(tree.meth.pos(), "no.superclass", site);
  1769                         site = types.createErrorType(syms.objectType);
  1770                     } else {
  1771                         site = types.supertype(site);
  1775                 if (site.hasTag(CLASS)) {
  1776                     Type encl = site.getEnclosingType();
  1777                     while (encl != null && encl.hasTag(TYPEVAR))
  1778                         encl = encl.getUpperBound();
  1779                     if (encl.hasTag(CLASS)) {
  1780                         // we are calling a nested class
  1782                         if (tree.meth.hasTag(SELECT)) {
  1783                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1785                             // We are seeing a prefixed call, of the form
  1786                             //     <expr>.super(...).
  1787                             // Check that the prefix expression conforms
  1788                             // to the outer instance type of the class.
  1789                             chk.checkRefType(qualifier.pos(),
  1790                                              attribExpr(qualifier, localEnv,
  1791                                                         encl));
  1792                         } else if (methName == names._super) {
  1793                             // qualifier omitted; check for existence
  1794                             // of an appropriate implicit qualifier.
  1795                             rs.resolveImplicitThis(tree.meth.pos(),
  1796                                                    localEnv, site, true);
  1798                     } else if (tree.meth.hasTag(SELECT)) {
  1799                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1800                                   site.tsym);
  1803                     // if we're calling a java.lang.Enum constructor,
  1804                     // prefix the implicit String and int parameters
  1805                     if (site.tsym == syms.enumSym && allowEnums)
  1806                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1808                     // Resolve the called constructor under the assumption
  1809                     // that we are referring to a superclass instance of the
  1810                     // current instance (JLS ???).
  1811                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1812                     localEnv.info.selectSuper = true;
  1813                     localEnv.info.pendingResolutionPhase = null;
  1814                     Symbol sym = rs.resolveConstructor(
  1815                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1816                     localEnv.info.selectSuper = selectSuperPrev;
  1818                     // Set method symbol to resolved constructor...
  1819                     TreeInfo.setSymbol(tree.meth, sym);
  1821                     // ...and check that it is legal in the current context.
  1822                     // (this will also set the tree's type)
  1823                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1824                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1826                 // Otherwise, `site' is an error type and we do nothing
  1828             result = tree.type = syms.voidType;
  1829         } else {
  1830             // Otherwise, we are seeing a regular method call.
  1831             // Attribute the arguments, yielding list of argument types, ...
  1832             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
  1833             argtypes = argtypesBuf.toList();
  1834             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1836             // ... and attribute the method using as a prototype a methodtype
  1837             // whose formal argument types is exactly the list of actual
  1838             // arguments (this will also set the method symbol).
  1839             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1840             localEnv.info.pendingResolutionPhase = null;
  1841             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1843             // Compute the result type.
  1844             Type restype = mtype.getReturnType();
  1845             if (restype.hasTag(WILDCARD))
  1846                 throw new AssertionError(mtype);
  1848             Type qualifier = (tree.meth.hasTag(SELECT))
  1849                     ? ((JCFieldAccess) tree.meth).selected.type
  1850                     : env.enclClass.sym.type;
  1851             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1853             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1855             // Check that value of resulting type is admissible in the
  1856             // current context.  Also, capture the return type
  1857             result = check(tree, capture(restype), VAL, resultInfo);
  1859         chk.validate(tree.typeargs, localEnv);
  1861     //where
  1862         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1863             if (allowCovariantReturns &&
  1864                     methodName == names.clone &&
  1865                 types.isArray(qualifierType)) {
  1866                 // as a special case, array.clone() has a result that is
  1867                 // the same as static type of the array being cloned
  1868                 return qualifierType;
  1869             } else if (allowGenerics &&
  1870                     methodName == names.getClass &&
  1871                     argtypes.isEmpty()) {
  1872                 // as a special case, x.getClass() has type Class<? extends |X|>
  1873                 return new ClassType(restype.getEnclosingType(),
  1874                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1875                                                                BoundKind.EXTENDS,
  1876                                                                syms.boundClass)),
  1877                               restype.tsym);
  1878             } else {
  1879                 return restype;
  1883         /** Check that given application node appears as first statement
  1884          *  in a constructor call.
  1885          *  @param tree   The application node
  1886          *  @param env    The environment current at the application.
  1887          */
  1888         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1889             JCMethodDecl enclMethod = env.enclMethod;
  1890             if (enclMethod != null && enclMethod.name == names.init) {
  1891                 JCBlock body = enclMethod.body;
  1892                 if (body.stats.head.hasTag(EXEC) &&
  1893                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1894                     return true;
  1896             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1897                       TreeInfo.name(tree.meth));
  1898             return false;
  1901         /** Obtain a method type with given argument types.
  1902          */
  1903         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1904             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1905             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1908     public void visitNewClass(final JCNewClass tree) {
  1909         Type owntype = types.createErrorType(tree.type);
  1911         // The local environment of a class creation is
  1912         // a new environment nested in the current one.
  1913         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1915         // The anonymous inner class definition of the new expression,
  1916         // if one is defined by it.
  1917         JCClassDecl cdef = tree.def;
  1919         // If enclosing class is given, attribute it, and
  1920         // complete class name to be fully qualified
  1921         JCExpression clazz = tree.clazz; // Class field following new
  1922         JCExpression clazzid;            // Identifier in class field
  1923         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1924         annoclazzid = null;
  1926         if (clazz.hasTag(TYPEAPPLY)) {
  1927             clazzid = ((JCTypeApply) clazz).clazz;
  1928             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1929                 annoclazzid = (JCAnnotatedType) clazzid;
  1930                 clazzid = annoclazzid.underlyingType;
  1932         } else {
  1933             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1934                 annoclazzid = (JCAnnotatedType) clazz;
  1935                 clazzid = annoclazzid.underlyingType;
  1936             } else {
  1937                 clazzid = clazz;
  1941         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1943         if (tree.encl != null) {
  1944             // We are seeing a qualified new, of the form
  1945             //    <expr>.new C <...> (...) ...
  1946             // In this case, we let clazz stand for the name of the
  1947             // allocated class C prefixed with the type of the qualifier
  1948             // expression, so that we can
  1949             // resolve it with standard techniques later. I.e., if
  1950             // <expr> has type T, then <expr>.new C <...> (...)
  1951             // yields a clazz T.C.
  1952             Type encltype = chk.checkRefType(tree.encl.pos(),
  1953                                              attribExpr(tree.encl, env));
  1954             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1955             // from expr to the combined type, or not? Yes, do this.
  1956             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1957                                                  ((JCIdent) clazzid).name);
  1959             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1960             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1961             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1962                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1963                 List<JCAnnotation> annos = annoType.annotations;
  1965                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1966                     clazzid1 = make.at(tree.pos).
  1967                         TypeApply(clazzid1,
  1968                                   ((JCTypeApply) clazz).arguments);
  1971                 clazzid1 = make.at(tree.pos).
  1972                     AnnotatedType(annos, clazzid1);
  1973             } else if (clazz.hasTag(TYPEAPPLY)) {
  1974                 clazzid1 = make.at(tree.pos).
  1975                     TypeApply(clazzid1,
  1976                               ((JCTypeApply) clazz).arguments);
  1979             clazz = clazzid1;
  1982         // Attribute clazz expression and store
  1983         // symbol + type back into the attributed tree.
  1984         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1985             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1986             attribType(clazz, env);
  1988         clazztype = chk.checkDiamond(tree, clazztype);
  1989         chk.validate(clazz, localEnv);
  1990         if (tree.encl != null) {
  1991             // We have to work in this case to store
  1992             // symbol + type back into the attributed tree.
  1993             tree.clazz.type = clazztype;
  1994             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1995             clazzid.type = ((JCIdent) clazzid).sym.type;
  1996             if (annoclazzid != null) {
  1997                 annoclazzid.type = clazzid.type;
  1999             if (!clazztype.isErroneous()) {
  2000                 if (cdef != null && clazztype.tsym.isInterface()) {
  2001                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  2002                 } else if (clazztype.tsym.isStatic()) {
  2003                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  2006         } else if (!clazztype.tsym.isInterface() &&
  2007                    clazztype.getEnclosingType().hasTag(CLASS)) {
  2008             // Check for the existence of an apropos outer instance
  2009             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  2012         // Attribute constructor arguments.
  2013         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  2014         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
  2015         List<Type> argtypes = argtypesBuf.toList();
  2016         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  2018         // If we have made no mistakes in the class type...
  2019         if (clazztype.hasTag(CLASS)) {
  2020             // Enums may not be instantiated except implicitly
  2021             if (allowEnums &&
  2022                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2023                 (!env.tree.hasTag(VARDEF) ||
  2024                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2025                  ((JCVariableDecl) env.tree).init != tree))
  2026                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2027             // Check that class is not abstract
  2028             if (cdef == null &&
  2029                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2030                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2031                           clazztype.tsym);
  2032             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2033                 // Check that no constructor arguments are given to
  2034                 // anonymous classes implementing an interface
  2035                 if (!argtypes.isEmpty())
  2036                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2038                 if (!typeargtypes.isEmpty())
  2039                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2041                 // Error recovery: pretend no arguments were supplied.
  2042                 argtypes = List.nil();
  2043                 typeargtypes = List.nil();
  2044             } else if (TreeInfo.isDiamond(tree)) {
  2045                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2046                             clazztype.tsym.type.getTypeArguments(),
  2047                             clazztype.tsym);
  2049                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2050                 diamondEnv.info.selectSuper = cdef != null;
  2051                 diamondEnv.info.pendingResolutionPhase = null;
  2053                 //if the type of the instance creation expression is a class type
  2054                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2055                 //of the resolved constructor will be a partially instantiated type
  2056                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2057                             diamondEnv,
  2058                             site,
  2059                             argtypes,
  2060                             typeargtypes);
  2061                 tree.constructor = constructor.baseSymbol();
  2063                 final TypeSymbol csym = clazztype.tsym;
  2064                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2065                     @Override
  2066                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2067                         enclosingContext.report(tree.clazz,
  2068                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2070                 });
  2071                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2072                 constructorType = checkId(tree, site,
  2073                         constructor,
  2074                         diamondEnv,
  2075                         diamondResult);
  2077                 tree.clazz.type = types.createErrorType(clazztype);
  2078                 if (!constructorType.isErroneous()) {
  2079                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2080                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2082                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2085             // Resolve the called constructor under the assumption
  2086             // that we are referring to a superclass instance of the
  2087             // current instance (JLS ???).
  2088             else {
  2089                 //the following code alters some of the fields in the current
  2090                 //AttrContext - hence, the current context must be dup'ed in
  2091                 //order to avoid downstream failures
  2092                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2093                 rsEnv.info.selectSuper = cdef != null;
  2094                 rsEnv.info.pendingResolutionPhase = null;
  2095                 tree.constructor = rs.resolveConstructor(
  2096                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2097                 if (cdef == null) { //do not check twice!
  2098                     tree.constructorType = checkId(tree,
  2099                             clazztype,
  2100                             tree.constructor,
  2101                             rsEnv,
  2102                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2103                     if (rsEnv.info.lastResolveVarargs())
  2104                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2106                 if (cdef == null &&
  2107                         !clazztype.isErroneous() &&
  2108                         clazztype.getTypeArguments().nonEmpty() &&
  2109                         findDiamonds) {
  2110                     findDiamond(localEnv, tree, clazztype);
  2114             if (cdef != null) {
  2115                 // We are seeing an anonymous class instance creation.
  2116                 // In this case, the class instance creation
  2117                 // expression
  2118                 //
  2119                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2120                 //
  2121                 // is represented internally as
  2122                 //
  2123                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2124                 //
  2125                 // This expression is then *transformed* as follows:
  2126                 //
  2127                 // (1) add a STATIC flag to the class definition
  2128                 //     if the current environment is static
  2129                 // (2) add an extends or implements clause
  2130                 // (3) add a constructor.
  2131                 //
  2132                 // For instance, if C is a class, and ET is the type of E,
  2133                 // the expression
  2134                 //
  2135                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2136                 //
  2137                 // is translated to (where X is a fresh name and typarams is the
  2138                 // parameter list of the super constructor):
  2139                 //
  2140                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2141                 //     X extends C<typargs2> {
  2142                 //       <typarams> X(ET e, args) {
  2143                 //         e.<typeargs1>super(args)
  2144                 //       }
  2145                 //       ...
  2146                 //     }
  2147                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2149                 if (clazztype.tsym.isInterface()) {
  2150                     cdef.implementing = List.of(clazz);
  2151                 } else {
  2152                     cdef.extending = clazz;
  2155                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2156                     isSerializable(clazztype)) {
  2157                     localEnv.info.isSerializable = true;
  2160                 attribStat(cdef, localEnv);
  2162                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2164                 // If an outer instance is given,
  2165                 // prefix it to the constructor arguments
  2166                 // and delete it from the new expression
  2167                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2168                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2169                     argtypes = argtypes.prepend(tree.encl.type);
  2170                     tree.encl = null;
  2173                 // Reassign clazztype and recompute constructor.
  2174                 clazztype = cdef.sym.type;
  2175                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2176                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2177                 Assert.check(sym.kind < AMBIGUOUS);
  2178                 tree.constructor = sym;
  2179                 tree.constructorType = checkId(tree,
  2180                     clazztype,
  2181                     tree.constructor,
  2182                     localEnv,
  2183                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2186             if (tree.constructor != null && tree.constructor.kind == MTH)
  2187                 owntype = clazztype;
  2189         result = check(tree, owntype, VAL, resultInfo);
  2190         chk.validate(tree.typeargs, localEnv);
  2192     //where
  2193         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2194             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2195             List<JCExpression> prevTypeargs = ta.arguments;
  2196             try {
  2197                 //create a 'fake' diamond AST node by removing type-argument trees
  2198                 ta.arguments = List.nil();
  2199                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2200                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2201                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2202                 Type polyPt = allowPoly ?
  2203                         syms.objectType :
  2204                         clazztype;
  2205                 if (!inferred.isErroneous() &&
  2206                     (allowPoly && pt() == Infer.anyPoly ?
  2207                         types.isSameType(inferred, clazztype) :
  2208                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2209                     String key = types.isSameType(clazztype, inferred) ?
  2210                         "diamond.redundant.args" :
  2211                         "diamond.redundant.args.1";
  2212                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2214             } finally {
  2215                 ta.arguments = prevTypeargs;
  2219             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2220                 if (allowLambda &&
  2221                         identifyLambdaCandidate &&
  2222                         clazztype.hasTag(CLASS) &&
  2223                         !pt().hasTag(NONE) &&
  2224                         types.isFunctionalInterface(clazztype.tsym)) {
  2225                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2226                     int count = 0;
  2227                     boolean found = false;
  2228                     for (Symbol sym : csym.members().getElements()) {
  2229                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2230                                 sym.isConstructor()) continue;
  2231                         count++;
  2232                         if (sym.kind != MTH ||
  2233                                 !sym.name.equals(descriptor.name)) continue;
  2234                         Type mtype = types.memberType(clazztype, sym);
  2235                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2236                             found = true;
  2239                     if (found && count == 1) {
  2240                         log.note(tree.def, "potential.lambda.found");
  2245     /** Make an attributed null check tree.
  2246      */
  2247     public JCExpression makeNullCheck(JCExpression arg) {
  2248         // optimization: X.this is never null; skip null check
  2249         Name name = TreeInfo.name(arg);
  2250         if (name == names._this || name == names._super) return arg;
  2252         JCTree.Tag optag = NULLCHK;
  2253         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2254         tree.operator = syms.nullcheck;
  2255         tree.type = arg.type;
  2256         return tree;
  2259     public void visitNewArray(JCNewArray tree) {
  2260         Type owntype = types.createErrorType(tree.type);
  2261         Env<AttrContext> localEnv = env.dup(tree);
  2262         Type elemtype;
  2263         if (tree.elemtype != null) {
  2264             elemtype = attribType(tree.elemtype, localEnv);
  2265             chk.validate(tree.elemtype, localEnv);
  2266             owntype = elemtype;
  2267             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2268                 attribExpr(l.head, localEnv, syms.intType);
  2269                 owntype = new ArrayType(owntype, syms.arrayClass);
  2271         } else {
  2272             // we are seeing an untyped aggregate { ... }
  2273             // this is allowed only if the prototype is an array
  2274             if (pt().hasTag(ARRAY)) {
  2275                 elemtype = types.elemtype(pt());
  2276             } else {
  2277                 if (!pt().hasTag(ERROR)) {
  2278                     log.error(tree.pos(), "illegal.initializer.for.type",
  2279                               pt());
  2281                 elemtype = types.createErrorType(pt());
  2284         if (tree.elems != null) {
  2285             attribExprs(tree.elems, localEnv, elemtype);
  2286             owntype = new ArrayType(elemtype, syms.arrayClass);
  2288         if (!types.isReifiable(elemtype))
  2289             log.error(tree.pos(), "generic.array.creation");
  2290         result = check(tree, owntype, VAL, resultInfo);
  2293     /*
  2294      * A lambda expression can only be attributed when a target-type is available.
  2295      * In addition, if the target-type is that of a functional interface whose
  2296      * descriptor contains inference variables in argument position the lambda expression
  2297      * is 'stuck' (see DeferredAttr).
  2298      */
  2299     @Override
  2300     public void visitLambda(final JCLambda that) {
  2301         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2302             if (pt().hasTag(NONE)) {
  2303                 //lambda only allowed in assignment or method invocation/cast context
  2304                 log.error(that.pos(), "unexpected.lambda");
  2306             result = that.type = types.createErrorType(pt());
  2307             return;
  2309         //create an environment for attribution of the lambda expression
  2310         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2311         boolean needsRecovery =
  2312                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2313         try {
  2314             Type currentTarget = pt();
  2315             if (needsRecovery && isSerializable(currentTarget)) {
  2316                 localEnv.info.isSerializable = true;
  2318             List<Type> explicitParamTypes = null;
  2319             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2320                 //attribute lambda parameters
  2321                 attribStats(that.params, localEnv);
  2322                 explicitParamTypes = TreeInfo.types(that.params);
  2325             Type lambdaType;
  2326             if (pt() != Type.recoveryType) {
  2327                 /* We need to adjust the target. If the target is an
  2328                  * intersection type, for example: SAM & I1 & I2 ...
  2329                  * the target will be updated to SAM
  2330                  */
  2331                 currentTarget = targetChecker.visit(currentTarget, that);
  2332                 if (explicitParamTypes != null) {
  2333                     currentTarget = infer.instantiateFunctionalInterface(that,
  2334                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2336                 lambdaType = types.findDescriptorType(currentTarget);
  2337             } else {
  2338                 currentTarget = Type.recoveryType;
  2339                 lambdaType = fallbackDescriptorType(that);
  2342             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2344             if (lambdaType.hasTag(FORALL)) {
  2345                 //lambda expression target desc cannot be a generic method
  2346                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2347                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2348                 result = that.type = types.createErrorType(pt());
  2349                 return;
  2352             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2353                 //add param type info in the AST
  2354                 List<Type> actuals = lambdaType.getParameterTypes();
  2355                 List<JCVariableDecl> params = that.params;
  2357                 boolean arityMismatch = false;
  2359                 while (params.nonEmpty()) {
  2360                     if (actuals.isEmpty()) {
  2361                         //not enough actuals to perform lambda parameter inference
  2362                         arityMismatch = true;
  2364                     //reset previously set info
  2365                     Type argType = arityMismatch ?
  2366                             syms.errType :
  2367                             actuals.head;
  2368                     params.head.vartype = make.at(params.head).Type(argType);
  2369                     params.head.sym = null;
  2370                     actuals = actuals.isEmpty() ?
  2371                             actuals :
  2372                             actuals.tail;
  2373                     params = params.tail;
  2376                 //attribute lambda parameters
  2377                 attribStats(that.params, localEnv);
  2379                 if (arityMismatch) {
  2380                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2381                         result = that.type = types.createErrorType(currentTarget);
  2382                         return;
  2386             //from this point on, no recovery is needed; if we are in assignment context
  2387             //we will be able to attribute the whole lambda body, regardless of errors;
  2388             //if we are in a 'check' method context, and the lambda is not compatible
  2389             //with the target-type, it will be recovered anyway in Attr.checkId
  2390             needsRecovery = false;
  2392             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2393                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2394                     new FunctionalReturnContext(resultInfo.checkContext);
  2396             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2397                 recoveryInfo :
  2398                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2399             localEnv.info.returnResult = bodyResultInfo;
  2401             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2402                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2403             } else {
  2404                 JCBlock body = (JCBlock)that.body;
  2405                 attribStats(body.stats, localEnv);
  2408             result = check(that, currentTarget, VAL, resultInfo);
  2410             boolean isSpeculativeRound =
  2411                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2413             preFlow(that);
  2414             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2416             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2418             if (!isSpeculativeRound) {
  2419                 //add thrown types as bounds to the thrown types free variables if needed:
  2420                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2421                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2422                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
  2424                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2427                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2429             result = check(that, currentTarget, VAL, resultInfo);
  2430         } catch (Types.FunctionDescriptorLookupError ex) {
  2431             JCDiagnostic cause = ex.getDiagnostic();
  2432             resultInfo.checkContext.report(that, cause);
  2433             result = that.type = types.createErrorType(pt());
  2434             return;
  2435         } finally {
  2436             localEnv.info.scope.leave();
  2437             if (needsRecovery) {
  2438                 attribTree(that, env, recoveryInfo);
  2442     //where
  2443         void preFlow(JCLambda tree) {
  2444             new PostAttrAnalyzer() {
  2445                 @Override
  2446                 public void scan(JCTree tree) {
  2447                     if (tree == null ||
  2448                             (tree.type != null &&
  2449                             tree.type == Type.stuckType)) {
  2450                         //don't touch stuck expressions!
  2451                         return;
  2453                     super.scan(tree);
  2455             }.scan(tree);
  2458         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2460             @Override
  2461             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2462                 return t.isCompound() ?
  2463                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2466             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2467                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2468                 Type target = null;
  2469                 for (Type bound : ict.getExplicitComponents()) {
  2470                     TypeSymbol boundSym = bound.tsym;
  2471                     if (types.isFunctionalInterface(boundSym) &&
  2472                             types.findDescriptorSymbol(boundSym) == desc) {
  2473                         target = bound;
  2474                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2475                         //bound must be an interface
  2476                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2479                 return target != null ?
  2480                         target :
  2481                         ict.getExplicitComponents().head; //error recovery
  2484             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2485                 ListBuffer<Type> targs = new ListBuffer<>();
  2486                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2487                 for (Type i : ict.interfaces_field) {
  2488                     if (i.isParameterized()) {
  2489                         targs.appendList(i.tsym.type.allparams());
  2491                     supertypes.append(i.tsym.type);
  2493                 IntersectionClassType notionalIntf =
  2494                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2495                 notionalIntf.allparams_field = targs.toList();
  2496                 notionalIntf.tsym.flags_field |= INTERFACE;
  2497                 return notionalIntf.tsym;
  2500             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2501                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2502                         diags.fragment(key, args)));
  2504         };
  2506         private Type fallbackDescriptorType(JCExpression tree) {
  2507             switch (tree.getTag()) {
  2508                 case LAMBDA:
  2509                     JCLambda lambda = (JCLambda)tree;
  2510                     List<Type> argtypes = List.nil();
  2511                     for (JCVariableDecl param : lambda.params) {
  2512                         argtypes = param.vartype != null ?
  2513                                 argtypes.append(param.vartype.type) :
  2514                                 argtypes.append(syms.errType);
  2516                     return new MethodType(argtypes, Type.recoveryType,
  2517                             List.of(syms.throwableType), syms.methodClass);
  2518                 case REFERENCE:
  2519                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2520                             List.of(syms.throwableType), syms.methodClass);
  2521                 default:
  2522                     Assert.error("Cannot get here!");
  2524             return null;
  2527         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2528                 final InferenceContext inferenceContext, final Type... ts) {
  2529             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2532         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2533                 final InferenceContext inferenceContext, final List<Type> ts) {
  2534             if (inferenceContext.free(ts)) {
  2535                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2536                     @Override
  2537                     public void typesInferred(InferenceContext inferenceContext) {
  2538                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2540                 });
  2541             } else {
  2542                 for (Type t : ts) {
  2543                     rs.checkAccessibleType(env, t);
  2548         /**
  2549          * Lambda/method reference have a special check context that ensures
  2550          * that i.e. a lambda return type is compatible with the expected
  2551          * type according to both the inherited context and the assignment
  2552          * context.
  2553          */
  2554         class FunctionalReturnContext extends Check.NestedCheckContext {
  2556             FunctionalReturnContext(CheckContext enclosingContext) {
  2557                 super(enclosingContext);
  2560             @Override
  2561             public boolean compatible(Type found, Type req, Warner warn) {
  2562                 //return type must be compatible in both current context and assignment context
  2563                 return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
  2566             @Override
  2567             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2568                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2572         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2574             JCExpression expr;
  2576             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2577                 super(enclosingContext);
  2578                 this.expr = expr;
  2581             @Override
  2582             public boolean compatible(Type found, Type req, Warner warn) {
  2583                 //a void return is compatible with an expression statement lambda
  2584                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2585                         super.compatible(found, req, warn);
  2589         /**
  2590         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2591         * are compatible with the expected functional interface descriptor. This means that:
  2592         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2593         * types must be compatible with the return type of the expected descriptor.
  2594         */
  2595         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2596             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2598             //return values have already been checked - but if lambda has no return
  2599             //values, we must ensure that void/value compatibility is correct;
  2600             //this amounts at checking that, if a lambda body can complete normally,
  2601             //the descriptor's return type must be void
  2602             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2603                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2604                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2605                         diags.fragment("missing.ret.val", returnType)));
  2608             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
  2609             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2610                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2614         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
  2615          * static field and that lambda has type annotations, these annotations will
  2616          * also be stored at these fake clinit methods.
  2618          * LambdaToMethod also use fake clinit methods so they can be reused.
  2619          * Also as LTM is a phase subsequent to attribution, the methods from
  2620          * clinits can be safely removed by LTM to save memory.
  2621          */
  2622         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
  2624         public MethodSymbol removeClinit(ClassSymbol sym) {
  2625             return clinits.remove(sym);
  2628         /* This method returns an environment to be used to attribute a lambda
  2629          * expression.
  2631          * The owner of this environment is a method symbol. If the current owner
  2632          * is not a method, for example if the lambda is used to initialize
  2633          * a field, then if the field is:
  2635          * - an instance field, we use the first constructor.
  2636          * - a static field, we create a fake clinit method.
  2637          */
  2638         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2639             Env<AttrContext> lambdaEnv;
  2640             Symbol owner = env.info.scope.owner;
  2641             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2642                 //field initializer
  2643                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2644                 ClassSymbol enclClass = owner.enclClass();
  2645                 /* if the field isn't static, then we can get the first constructor
  2646                  * and use it as the owner of the environment. This is what
  2647                  * LTM code is doing to look for type annotations so we are fine.
  2648                  */
  2649                 if ((owner.flags() & STATIC) == 0) {
  2650                     for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
  2651                         lambdaEnv.info.scope.owner = s;
  2652                         break;
  2654                 } else {
  2655                     /* if the field is static then we need to create a fake clinit
  2656                      * method, this method can later be reused by LTM.
  2657                      */
  2658                     MethodSymbol clinit = clinits.get(enclClass);
  2659                     if (clinit == null) {
  2660                         Type clinitType = new MethodType(List.<Type>nil(),
  2661                                 syms.voidType, List.<Type>nil(), syms.methodClass);
  2662                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
  2663                                 names.clinit, clinitType, enclClass);
  2664                         clinit.params = List.<VarSymbol>nil();
  2665                         clinits.put(enclClass, clinit);
  2667                     lambdaEnv.info.scope.owner = clinit;
  2669             } else {
  2670                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2672             return lambdaEnv;
  2675     @Override
  2676     public void visitReference(final JCMemberReference that) {
  2677         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2678             if (pt().hasTag(NONE)) {
  2679                 //method reference only allowed in assignment or method invocation/cast context
  2680                 log.error(that.pos(), "unexpected.mref");
  2682             result = that.type = types.createErrorType(pt());
  2683             return;
  2685         final Env<AttrContext> localEnv = env.dup(that);
  2686         try {
  2687             //attribute member reference qualifier - if this is a constructor
  2688             //reference, the expected kind must be a type
  2689             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2691             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2692                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2693                 if (!exprType.isErroneous() &&
  2694                     exprType.isRaw() &&
  2695                     that.typeargs != null) {
  2696                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2697                         diags.fragment("mref.infer.and.explicit.params"));
  2698                     exprType = types.createErrorType(exprType);
  2702             if (exprType.isErroneous()) {
  2703                 //if the qualifier expression contains problems,
  2704                 //give up attribution of method reference
  2705                 result = that.type = exprType;
  2706                 return;
  2709             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2710                 //if the qualifier is a type, validate it; raw warning check is
  2711                 //omitted as we don't know at this stage as to whether this is a
  2712                 //raw selector (because of inference)
  2713                 chk.validate(that.expr, env, false);
  2716             //attrib type-arguments
  2717             List<Type> typeargtypes = List.nil();
  2718             if (that.typeargs != null) {
  2719                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2722             Type desc;
  2723             Type currentTarget = pt();
  2724             boolean isTargetSerializable =
  2725                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2726                     isSerializable(currentTarget);
  2727             if (currentTarget != Type.recoveryType) {
  2728                 currentTarget = targetChecker.visit(currentTarget, that);
  2729                 desc = types.findDescriptorType(currentTarget);
  2730             } else {
  2731                 currentTarget = Type.recoveryType;
  2732                 desc = fallbackDescriptorType(that);
  2735             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
  2736             List<Type> argtypes = desc.getParameterTypes();
  2737             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2739             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2740                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2743             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2744             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2745             try {
  2746                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
  2747                         that.name, argtypes, typeargtypes, referenceCheck,
  2748                         resultInfo.checkContext.inferenceContext(),
  2749                         resultInfo.checkContext.deferredAttrContext().mode);
  2750             } finally {
  2751                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2754             Symbol refSym = refResult.fst;
  2755             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2757             if (refSym.kind != MTH) {
  2758                 boolean targetError;
  2759                 switch (refSym.kind) {
  2760                     case ABSENT_MTH:
  2761                         targetError = false;
  2762                         break;
  2763                     case WRONG_MTH:
  2764                     case WRONG_MTHS:
  2765                     case AMBIGUOUS:
  2766                     case HIDDEN:
  2767                     case STATICERR:
  2768                     case MISSING_ENCL:
  2769                     case WRONG_STATICNESS:
  2770                         targetError = true;
  2771                         break;
  2772                     default:
  2773                         Assert.error("unexpected result kind " + refSym.kind);
  2774                         targetError = false;
  2777                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2778                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2780                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2781                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2783                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2784                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2786                 if (targetError && currentTarget == Type.recoveryType) {
  2787                     //a target error doesn't make sense during recovery stage
  2788                     //as we don't know what actual parameter types are
  2789                     result = that.type = currentTarget;
  2790                     return;
  2791                 } else {
  2792                     if (targetError) {
  2793                         resultInfo.checkContext.report(that, diag);
  2794                     } else {
  2795                         log.report(diag);
  2797                     result = that.type = types.createErrorType(currentTarget);
  2798                     return;
  2802             that.sym = refSym.baseSymbol();
  2803             that.kind = lookupHelper.referenceKind(that.sym);
  2804             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2806             if (desc.getReturnType() == Type.recoveryType) {
  2807                 // stop here
  2808                 result = that.type = currentTarget;
  2809                 return;
  2812             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2814                 if (that.getMode() == ReferenceMode.INVOKE &&
  2815                         TreeInfo.isStaticSelector(that.expr, names) &&
  2816                         that.kind.isUnbound() &&
  2817                         !desc.getParameterTypes().head.isParameterized()) {
  2818                     chk.checkRaw(that.expr, localEnv);
  2821                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2822                         exprType.getTypeArguments().nonEmpty()) {
  2823                     //static ref with class type-args
  2824                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2825                             diags.fragment("static.mref.with.targs"));
  2826                     result = that.type = types.createErrorType(currentTarget);
  2827                     return;
  2830                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2831                         !that.kind.isUnbound()) {
  2832                     //no static bound mrefs
  2833                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2834                             diags.fragment("static.bound.mref"));
  2835                     result = that.type = types.createErrorType(currentTarget);
  2836                     return;
  2839                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2840                     // Check that super-qualified symbols are not abstract (JLS)
  2841                     rs.checkNonAbstract(that.pos(), that.sym);
  2844                 if (isTargetSerializable) {
  2845                     chk.checkElemAccessFromSerializableLambda(that);
  2849             ResultInfo checkInfo =
  2850                     resultInfo.dup(newMethodTemplate(
  2851                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2852                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
  2853                         new FunctionalReturnContext(resultInfo.checkContext));
  2855             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2857             if (that.kind.isUnbound() &&
  2858                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2859                 //re-generate inference constraints for unbound receiver
  2860                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
  2861                     //cannot happen as this has already been checked - we just need
  2862                     //to regenerate the inference constraints, as that has been lost
  2863                     //as a result of the call to inferenceContext.save()
  2864                     Assert.error("Can't get here");
  2868             if (!refType.isErroneous()) {
  2869                 refType = types.createMethodTypeWithReturn(refType,
  2870                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2873             //go ahead with standard method reference compatibility check - note that param check
  2874             //is a no-op (as this has been taken care during method applicability)
  2875             boolean isSpeculativeRound =
  2876                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2877             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2878             if (!isSpeculativeRound) {
  2879                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
  2881             result = check(that, currentTarget, VAL, resultInfo);
  2882         } catch (Types.FunctionDescriptorLookupError ex) {
  2883             JCDiagnostic cause = ex.getDiagnostic();
  2884             resultInfo.checkContext.report(that, cause);
  2885             result = that.type = types.createErrorType(pt());
  2886             return;
  2889     //where
  2890         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2891             //if this is a constructor reference, the expected kind must be a type
  2892             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2896     @SuppressWarnings("fallthrough")
  2897     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2898         Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2900         Type resType;
  2901         switch (tree.getMode()) {
  2902             case NEW:
  2903                 if (!tree.expr.type.isRaw()) {
  2904                     resType = tree.expr.type;
  2905                     break;
  2907             default:
  2908                 resType = refType.getReturnType();
  2911         Type incompatibleReturnType = resType;
  2913         if (returnType.hasTag(VOID)) {
  2914             incompatibleReturnType = null;
  2917         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2918             if (resType.isErroneous() ||
  2919                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2920                 incompatibleReturnType = null;
  2924         if (incompatibleReturnType != null) {
  2925             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2926                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2929         if (!speculativeAttr) {
  2930             List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
  2931             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2932                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2937     /**
  2938      * Set functional type info on the underlying AST. Note: as the target descriptor
  2939      * might contain inference variables, we might need to register an hook in the
  2940      * current inference context.
  2941      */
  2942     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2943             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2944         if (checkContext.inferenceContext().free(descriptorType)) {
  2945             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2946                 public void typesInferred(InferenceContext inferenceContext) {
  2947                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2948                             inferenceContext.asInstType(primaryTarget), checkContext);
  2950             });
  2951         } else {
  2952             ListBuffer<Type> targets = new ListBuffer<>();
  2953             if (pt.hasTag(CLASS)) {
  2954                 if (pt.isCompound()) {
  2955                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2956                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2957                         if (t != primaryTarget) {
  2958                             targets.append(types.removeWildcards(t));
  2961                 } else {
  2962                     targets.append(types.removeWildcards(primaryTarget));
  2965             fExpr.targets = targets.toList();
  2966             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2967                     pt != Type.recoveryType) {
  2968                 //check that functional interface class is well-formed
  2969                 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2970                         names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2971                 if (csym != null) {
  2972                     chk.checkImplementations(env.tree, csym, csym);
  2978     public void visitParens(JCParens tree) {
  2979         Type owntype = attribTree(tree.expr, env, resultInfo);
  2980         result = check(tree, owntype, pkind(), resultInfo);
  2981         Symbol sym = TreeInfo.symbol(tree);
  2982         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2983             log.error(tree.pos(), "illegal.start.of.type");
  2986     public void visitAssign(JCAssign tree) {
  2987         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2988         Type capturedType = capture(owntype);
  2989         attribExpr(tree.rhs, env, owntype);
  2990         result = check(tree, capturedType, VAL, resultInfo);
  2993     public void visitAssignop(JCAssignOp tree) {
  2994         // Attribute arguments.
  2995         Type owntype = attribTree(tree.lhs, env, varInfo);
  2996         Type operand = attribExpr(tree.rhs, env);
  2997         // Find operator.
  2998         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2999             tree.pos(), tree.getTag().noAssignOp(), env,
  3000             owntype, operand);
  3002         if (operator.kind == MTH &&
  3003                 !owntype.isErroneous() &&
  3004                 !operand.isErroneous()) {
  3005             chk.checkOperator(tree.pos(),
  3006                               (OperatorSymbol)operator,
  3007                               tree.getTag().noAssignOp(),
  3008                               owntype,
  3009                               operand);
  3010             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  3011             chk.checkCastable(tree.rhs.pos(),
  3012                               operator.type.getReturnType(),
  3013                               owntype);
  3015         result = check(tree, owntype, VAL, resultInfo);
  3018     public void visitUnary(JCUnary tree) {
  3019         // Attribute arguments.
  3020         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  3021             ? attribTree(tree.arg, env, varInfo)
  3022             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  3024         // Find operator.
  3025         Symbol operator = tree.operator =
  3026             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  3028         Type owntype = types.createErrorType(tree.type);
  3029         if (operator.kind == MTH &&
  3030                 !argtype.isErroneous()) {
  3031             owntype = (tree.getTag().isIncOrDecUnaryOp())
  3032                 ? tree.arg.type
  3033                 : operator.type.getReturnType();
  3034             int opc = ((OperatorSymbol)operator).opcode;
  3036             // If the argument is constant, fold it.
  3037             if (argtype.constValue() != null) {
  3038                 Type ctype = cfolder.fold1(opc, argtype);
  3039                 if (ctype != null) {
  3040                     owntype = cfolder.coerce(ctype, owntype);
  3044         result = check(tree, owntype, VAL, resultInfo);
  3047     public void visitBinary(JCBinary tree) {
  3048         // Attribute arguments.
  3049         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3050         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3052         // Find operator.
  3053         Symbol operator = tree.operator =
  3054             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3056         Type owntype = types.createErrorType(tree.type);
  3057         if (operator.kind == MTH &&
  3058                 !left.isErroneous() &&
  3059                 !right.isErroneous()) {
  3060             owntype = operator.type.getReturnType();
  3061             // This will figure out when unboxing can happen and
  3062             // choose the right comparison operator.
  3063             int opc = chk.checkOperator(tree.lhs.pos(),
  3064                                         (OperatorSymbol)operator,
  3065                                         tree.getTag(),
  3066                                         left,
  3067                                         right);
  3069             // If both arguments are constants, fold them.
  3070             if (left.constValue() != null && right.constValue() != null) {
  3071                 Type ctype = cfolder.fold2(opc, left, right);
  3072                 if (ctype != null) {
  3073                     owntype = cfolder.coerce(ctype, owntype);
  3077             // Check that argument types of a reference ==, != are
  3078             // castable to each other, (JLS 15.21).  Note: unboxing
  3079             // comparisons will not have an acmp* opc at this point.
  3080             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3081                 if (!types.isEqualityComparable(left, right,
  3082                                                 new Warner(tree.pos()))) {
  3083                     log.error(tree.pos(), "incomparable.types", left, right);
  3087             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3089         result = check(tree, owntype, VAL, resultInfo);
  3092     public void visitTypeCast(final JCTypeCast tree) {
  3093         Type clazztype = attribType(tree.clazz, env);
  3094         chk.validate(tree.clazz, env, false);
  3095         //a fresh environment is required for 292 inference to work properly ---
  3096         //see Infer.instantiatePolymorphicSignatureInstance()
  3097         Env<AttrContext> localEnv = env.dup(tree);
  3098         //should we propagate the target type?
  3099         final ResultInfo castInfo;
  3100         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3101         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3102         if (isPoly) {
  3103             //expression is a poly - we need to propagate target type info
  3104             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3105                 @Override
  3106                 public boolean compatible(Type found, Type req, Warner warn) {
  3107                     return types.isCastable(found, req, warn);
  3109             });
  3110         } else {
  3111             //standalone cast - target-type info is not propagated
  3112             castInfo = unknownExprInfo;
  3114         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3115         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3116         if (exprtype.constValue() != null)
  3117             owntype = cfolder.coerce(exprtype, owntype);
  3118         result = check(tree, capture(owntype), VAL, resultInfo);
  3119         if (!isPoly)
  3120             chk.checkRedundantCast(localEnv, tree);
  3123     public void visitTypeTest(JCInstanceOf tree) {
  3124         Type exprtype = chk.checkNullOrRefType(
  3125             tree.expr.pos(), attribExpr(tree.expr, env));
  3126         Type clazztype = attribType(tree.clazz, env);
  3127         if (!clazztype.hasTag(TYPEVAR)) {
  3128             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3130         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3131             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3132             clazztype = types.createErrorType(clazztype);
  3134         chk.validate(tree.clazz, env, false);
  3135         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3136         result = check(tree, syms.booleanType, VAL, resultInfo);
  3139     public void visitIndexed(JCArrayAccess tree) {
  3140         Type owntype = types.createErrorType(tree.type);
  3141         Type atype = attribExpr(tree.indexed, env);
  3142         attribExpr(tree.index, env, syms.intType);
  3143         if (types.isArray(atype))
  3144             owntype = types.elemtype(atype);
  3145         else if (!atype.hasTag(ERROR))
  3146             log.error(tree.pos(), "array.req.but.found", atype);
  3147         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3148         result = check(tree, owntype, VAR, resultInfo);
  3151     public void visitIdent(JCIdent tree) {
  3152         Symbol sym;
  3154         // Find symbol
  3155         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3156             // If we are looking for a method, the prototype `pt' will be a
  3157             // method type with the type of the call's arguments as parameters.
  3158             env.info.pendingResolutionPhase = null;
  3159             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3160         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3161             sym = tree.sym;
  3162         } else {
  3163             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3165         tree.sym = sym;
  3167         // (1) Also find the environment current for the class where
  3168         //     sym is defined (`symEnv').
  3169         // Only for pre-tiger versions (1.4 and earlier):
  3170         // (2) Also determine whether we access symbol out of an anonymous
  3171         //     class in a this or super call.  This is illegal for instance
  3172         //     members since such classes don't carry a this$n link.
  3173         //     (`noOuterThisPath').
  3174         Env<AttrContext> symEnv = env;
  3175         boolean noOuterThisPath = false;
  3176         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3177             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3178             sym.owner.kind == TYP &&
  3179             tree.name != names._this && tree.name != names._super) {
  3181             // Find environment in which identifier is defined.
  3182             while (symEnv.outer != null &&
  3183                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3184                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3185                     noOuterThisPath = !allowAnonOuterThis;
  3186                 symEnv = symEnv.outer;
  3190         // If symbol is a variable, ...
  3191         if (sym.kind == VAR) {
  3192             VarSymbol v = (VarSymbol)sym;
  3194             // ..., evaluate its initializer, if it has one, and check for
  3195             // illegal forward reference.
  3196             checkInit(tree, env, v, false);
  3198             // If we are expecting a variable (as opposed to a value), check
  3199             // that the variable is assignable in the current environment.
  3200             if (pkind() == VAR)
  3201                 checkAssignable(tree.pos(), v, null, env);
  3204         // In a constructor body,
  3205         // if symbol is a field or instance method, check that it is
  3206         // not accessed before the supertype constructor is called.
  3207         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3208             (sym.kind & (VAR | MTH)) != 0 &&
  3209             sym.owner.kind == TYP &&
  3210             (sym.flags() & STATIC) == 0) {
  3211             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3213         Env<AttrContext> env1 = env;
  3214         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3215             // If the found symbol is inaccessible, then it is
  3216             // accessed through an enclosing instance.  Locate this
  3217             // enclosing instance:
  3218             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3219                 env1 = env1.outer;
  3222         if (env.info.isSerializable) {
  3223             chk.checkElemAccessFromSerializableLambda(tree);
  3226         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3229     public void visitSelect(JCFieldAccess tree) {
  3230         // Determine the expected kind of the qualifier expression.
  3231         int skind = 0;
  3232         if (tree.name == names._this || tree.name == names._super ||
  3233             tree.name == names._class)
  3235             skind = TYP;
  3236         } else {
  3237             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3238             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3239             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3242         // Attribute the qualifier expression, and determine its symbol (if any).
  3243         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3244         if ((pkind() & (PCK | TYP)) == 0)
  3245             site = capture(site); // Capture field access
  3247         // don't allow T.class T[].class, etc
  3248         if (skind == TYP) {
  3249             Type elt = site;
  3250             while (elt.hasTag(ARRAY))
  3251                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3252             if (elt.hasTag(TYPEVAR)) {
  3253                 log.error(tree.pos(), "type.var.cant.be.deref");
  3254                 result = types.createErrorType(tree.type);
  3255                 return;
  3259         // If qualifier symbol is a type or `super', assert `selectSuper'
  3260         // for the selection. This is relevant for determining whether
  3261         // protected symbols are accessible.
  3262         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3263         boolean selectSuperPrev = env.info.selectSuper;
  3264         env.info.selectSuper =
  3265             sitesym != null &&
  3266             sitesym.name == names._super;
  3268         // Determine the symbol represented by the selection.
  3269         env.info.pendingResolutionPhase = null;
  3270         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3271         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3272             site = capture(site);
  3273             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3275         boolean varArgs = env.info.lastResolveVarargs();
  3276         tree.sym = sym;
  3278         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3279             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3280             site = capture(site);
  3283         // If that symbol is a variable, ...
  3284         if (sym.kind == VAR) {
  3285             VarSymbol v = (VarSymbol)sym;
  3287             // ..., evaluate its initializer, if it has one, and check for
  3288             // illegal forward reference.
  3289             checkInit(tree, env, v, true);
  3291             // If we are expecting a variable (as opposed to a value), check
  3292             // that the variable is assignable in the current environment.
  3293             if (pkind() == VAR)
  3294                 checkAssignable(tree.pos(), v, tree.selected, env);
  3297         if (sitesym != null &&
  3298                 sitesym.kind == VAR &&
  3299                 ((VarSymbol)sitesym).isResourceVariable() &&
  3300                 sym.kind == MTH &&
  3301                 sym.name.equals(names.close) &&
  3302                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3303                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3304             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3307         // Disallow selecting a type from an expression
  3308         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3309             tree.type = check(tree.selected, pt(),
  3310                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3313         if (isType(sitesym)) {
  3314             if (sym.name == names._this) {
  3315                 // If `C' is the currently compiled class, check that
  3316                 // C.this' does not appear in a call to a super(...)
  3317                 if (env.info.isSelfCall &&
  3318                     site.tsym == env.enclClass.sym) {
  3319                     chk.earlyRefError(tree.pos(), sym);
  3321             } else {
  3322                 // Check if type-qualified fields or methods are static (JLS)
  3323                 if ((sym.flags() & STATIC) == 0 &&
  3324                     !env.next.tree.hasTag(REFERENCE) &&
  3325                     sym.name != names._super &&
  3326                     (sym.kind == VAR || sym.kind == MTH)) {
  3327                     rs.accessBase(rs.new StaticError(sym),
  3328                               tree.pos(), site, sym.name, true);
  3331             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
  3332                     sym.isStatic() && sym.kind == MTH) {
  3333                 log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
  3335         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3336             // If the qualified item is not a type and the selected item is static, report
  3337             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3338             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3341         // If we are selecting an instance member via a `super', ...
  3342         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3344             // Check that super-qualified symbols are not abstract (JLS)
  3345             rs.checkNonAbstract(tree.pos(), sym);
  3347             if (site.isRaw()) {
  3348                 // Determine argument types for site.
  3349                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3350                 if (site1 != null) site = site1;
  3354         if (env.info.isSerializable) {
  3355             chk.checkElemAccessFromSerializableLambda(tree);
  3358         env.info.selectSuper = selectSuperPrev;
  3359         result = checkId(tree, site, sym, env, resultInfo);
  3361     //where
  3362         /** Determine symbol referenced by a Select expression,
  3364          *  @param tree   The select tree.
  3365          *  @param site   The type of the selected expression,
  3366          *  @param env    The current environment.
  3367          *  @param resultInfo The current result.
  3368          */
  3369         private Symbol selectSym(JCFieldAccess tree,
  3370                                  Symbol location,
  3371                                  Type site,
  3372                                  Env<AttrContext> env,
  3373                                  ResultInfo resultInfo) {
  3374             DiagnosticPosition pos = tree.pos();
  3375             Name name = tree.name;
  3376             switch (site.getTag()) {
  3377             case PACKAGE:
  3378                 return rs.accessBase(
  3379                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3380                     pos, location, site, name, true);
  3381             case ARRAY:
  3382             case CLASS:
  3383                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3384                     return rs.resolveQualifiedMethod(
  3385                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3386                 } else if (name == names._this || name == names._super) {
  3387                     return rs.resolveSelf(pos, env, site.tsym, name);
  3388                 } else if (name == names._class) {
  3389                     // In this case, we have already made sure in
  3390                     // visitSelect that qualifier expression is a type.
  3391                     Type t = syms.classType;
  3392                     List<Type> typeargs = allowGenerics
  3393                         ? List.of(types.erasure(site))
  3394                         : List.<Type>nil();
  3395                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3396                     return new VarSymbol(
  3397                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3398                 } else {
  3399                     // We are seeing a plain identifier as selector.
  3400                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3401                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3402                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3403                     return sym;
  3405             case WILDCARD:
  3406                 throw new AssertionError(tree);
  3407             case TYPEVAR:
  3408                 // Normally, site.getUpperBound() shouldn't be null.
  3409                 // It should only happen during memberEnter/attribBase
  3410                 // when determining the super type which *must* beac
  3411                 // done before attributing the type variables.  In
  3412                 // other words, we are seeing this illegal program:
  3413                 // class B<T> extends A<T.foo> {}
  3414                 Symbol sym = (site.getUpperBound() != null)
  3415                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3416                     : null;
  3417                 if (sym == null) {
  3418                     log.error(pos, "type.var.cant.be.deref");
  3419                     return syms.errSymbol;
  3420                 } else {
  3421                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3422                         rs.new AccessError(env, site, sym) :
  3423                                 sym;
  3424                     rs.accessBase(sym2, pos, location, site, name, true);
  3425                     return sym;
  3427             case ERROR:
  3428                 // preserve identifier names through errors
  3429                 return types.createErrorType(name, site.tsym, site).tsym;
  3430             default:
  3431                 // The qualifier expression is of a primitive type -- only
  3432                 // .class is allowed for these.
  3433                 if (name == names._class) {
  3434                     // In this case, we have already made sure in Select that
  3435                     // qualifier expression is a type.
  3436                     Type t = syms.classType;
  3437                     Type arg = types.boxedClass(site).type;
  3438                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3439                     return new VarSymbol(
  3440                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3441                 } else {
  3442                     log.error(pos, "cant.deref", site);
  3443                     return syms.errSymbol;
  3448         /** Determine type of identifier or select expression and check that
  3449          *  (1) the referenced symbol is not deprecated
  3450          *  (2) the symbol's type is safe (@see checkSafe)
  3451          *  (3) if symbol is a variable, check that its type and kind are
  3452          *      compatible with the prototype and protokind.
  3453          *  (4) if symbol is an instance field of a raw type,
  3454          *      which is being assigned to, issue an unchecked warning if its
  3455          *      type changes under erasure.
  3456          *  (5) if symbol is an instance method of a raw type, issue an
  3457          *      unchecked warning if its argument types change under erasure.
  3458          *  If checks succeed:
  3459          *    If symbol is a constant, return its constant type
  3460          *    else if symbol is a method, return its result type
  3461          *    otherwise return its type.
  3462          *  Otherwise return errType.
  3464          *  @param tree       The syntax tree representing the identifier
  3465          *  @param site       If this is a select, the type of the selected
  3466          *                    expression, otherwise the type of the current class.
  3467          *  @param sym        The symbol representing the identifier.
  3468          *  @param env        The current environment.
  3469          *  @param resultInfo    The expected result
  3470          */
  3471         Type checkId(JCTree tree,
  3472                      Type site,
  3473                      Symbol sym,
  3474                      Env<AttrContext> env,
  3475                      ResultInfo resultInfo) {
  3476             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3477                     checkMethodId(tree, site, sym, env, resultInfo) :
  3478                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3481         Type checkMethodId(JCTree tree,
  3482                      Type site,
  3483                      Symbol sym,
  3484                      Env<AttrContext> env,
  3485                      ResultInfo resultInfo) {
  3486             boolean isPolymorhicSignature =
  3487                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3488             return isPolymorhicSignature ?
  3489                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3490                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3493         Type checkSigPolyMethodId(JCTree tree,
  3494                      Type site,
  3495                      Symbol sym,
  3496                      Env<AttrContext> env,
  3497                      ResultInfo resultInfo) {
  3498             //recover original symbol for signature polymorphic methods
  3499             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3500             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3501             return sym.type;
  3504         Type checkMethodIdInternal(JCTree tree,
  3505                      Type site,
  3506                      Symbol sym,
  3507                      Env<AttrContext> env,
  3508                      ResultInfo resultInfo) {
  3509             if ((resultInfo.pkind & POLY) != 0) {
  3510                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3511                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3512                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3513                 return owntype;
  3514             } else {
  3515                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3519         Type checkIdInternal(JCTree tree,
  3520                      Type site,
  3521                      Symbol sym,
  3522                      Type pt,
  3523                      Env<AttrContext> env,
  3524                      ResultInfo resultInfo) {
  3525             if (pt.isErroneous()) {
  3526                 return types.createErrorType(site);
  3528             Type owntype; // The computed type of this identifier occurrence.
  3529             switch (sym.kind) {
  3530             case TYP:
  3531                 // For types, the computed type equals the symbol's type,
  3532                 // except for two situations:
  3533                 owntype = sym.type;
  3534                 if (owntype.hasTag(CLASS)) {
  3535                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3536                     Type ownOuter = owntype.getEnclosingType();
  3538                     // (a) If the symbol's type is parameterized, erase it
  3539                     // because no type parameters were given.
  3540                     // We recover generic outer type later in visitTypeApply.
  3541                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3542                         owntype = types.erasure(owntype);
  3545                     // (b) If the symbol's type is an inner class, then
  3546                     // we have to interpret its outer type as a superclass
  3547                     // of the site type. Example:
  3548                     //
  3549                     // class Tree<A> { class Visitor { ... } }
  3550                     // class PointTree extends Tree<Point> { ... }
  3551                     // ...PointTree.Visitor...
  3552                     //
  3553                     // Then the type of the last expression above is
  3554                     // Tree<Point>.Visitor.
  3555                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3556                         Type normOuter = site;
  3557                         if (normOuter.hasTag(CLASS)) {
  3558                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3560                         if (normOuter == null) // perhaps from an import
  3561                             normOuter = types.erasure(ownOuter);
  3562                         if (normOuter != ownOuter)
  3563                             owntype = new ClassType(
  3564                                 normOuter, List.<Type>nil(), owntype.tsym);
  3567                 break;
  3568             case VAR:
  3569                 VarSymbol v = (VarSymbol)sym;
  3570                 // Test (4): if symbol is an instance field of a raw type,
  3571                 // which is being assigned to, issue an unchecked warning if
  3572                 // its type changes under erasure.
  3573                 if (allowGenerics &&
  3574                     resultInfo.pkind == VAR &&
  3575                     v.owner.kind == TYP &&
  3576                     (v.flags() & STATIC) == 0 &&
  3577                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3578                     Type s = types.asOuterSuper(site, v.owner);
  3579                     if (s != null &&
  3580                         s.isRaw() &&
  3581                         !types.isSameType(v.type, v.erasure(types))) {
  3582                         chk.warnUnchecked(tree.pos(),
  3583                                           "unchecked.assign.to.var",
  3584                                           v, s);
  3587                 // The computed type of a variable is the type of the
  3588                 // variable symbol, taken as a member of the site type.
  3589                 owntype = (sym.owner.kind == TYP &&
  3590                            sym.name != names._this && sym.name != names._super)
  3591                     ? types.memberType(site, sym)
  3592                     : sym.type;
  3594                 // If the variable is a constant, record constant value in
  3595                 // computed type.
  3596                 if (v.getConstValue() != null && isStaticReference(tree))
  3597                     owntype = owntype.constType(v.getConstValue());
  3599                 if (resultInfo.pkind == VAL) {
  3600                     owntype = capture(owntype); // capture "names as expressions"
  3602                 break;
  3603             case MTH: {
  3604                 owntype = checkMethod(site, sym,
  3605                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3606                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3607                         resultInfo.pt.getTypeArguments());
  3608                 break;
  3610             case PCK: case ERR:
  3611                 owntype = sym.type;
  3612                 break;
  3613             default:
  3614                 throw new AssertionError("unexpected kind: " + sym.kind +
  3615                                          " in tree " + tree);
  3618             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3619             // (for constructors, the error was given when the constructor was
  3620             // resolved)
  3622             if (sym.name != names.init) {
  3623                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3624                 chk.checkSunAPI(tree.pos(), sym);
  3625                 chk.checkProfile(tree.pos(), sym);
  3628             // Test (3): if symbol is a variable, check that its type and
  3629             // kind are compatible with the prototype and protokind.
  3630             return check(tree, owntype, sym.kind, resultInfo);
  3633         /** Check that variable is initialized and evaluate the variable's
  3634          *  initializer, if not yet done. Also check that variable is not
  3635          *  referenced before it is defined.
  3636          *  @param tree    The tree making up the variable reference.
  3637          *  @param env     The current environment.
  3638          *  @param v       The variable's symbol.
  3639          */
  3640         private void checkInit(JCTree tree,
  3641                                Env<AttrContext> env,
  3642                                VarSymbol v,
  3643                                boolean onlyWarning) {
  3644 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3645 //                             tree.pos + " " + v.pos + " " +
  3646 //                             Resolve.isStatic(env));//DEBUG
  3648             // A forward reference is diagnosed if the declaration position
  3649             // of the variable is greater than the current tree position
  3650             // and the tree and variable definition occur in the same class
  3651             // definition.  Note that writes don't count as references.
  3652             // This check applies only to class and instance
  3653             // variables.  Local variables follow different scope rules,
  3654             // and are subject to definite assignment checking.
  3655             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3656                 v.owner.kind == TYP &&
  3657                 canOwnInitializer(owner(env)) &&
  3658                 v.owner == env.info.scope.owner.enclClass() &&
  3659                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3660                 (!env.tree.hasTag(ASSIGN) ||
  3661                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3662                 String suffix = (env.info.enclVar == v) ?
  3663                                 "self.ref" : "forward.ref";
  3664                 if (!onlyWarning || isStaticEnumField(v)) {
  3665                     log.error(tree.pos(), "illegal." + suffix);
  3666                 } else if (useBeforeDeclarationWarning) {
  3667                     log.warning(tree.pos(), suffix, v);
  3671             v.getConstValue(); // ensure initializer is evaluated
  3673             checkEnumInitializer(tree, env, v);
  3676         /**
  3677          * Check for illegal references to static members of enum.  In
  3678          * an enum type, constructors and initializers may not
  3679          * reference its static members unless they are constant.
  3681          * @param tree    The tree making up the variable reference.
  3682          * @param env     The current environment.
  3683          * @param v       The variable's symbol.
  3684          * @jls  section 8.9 Enums
  3685          */
  3686         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3687             // JLS:
  3688             //
  3689             // "It is a compile-time error to reference a static field
  3690             // of an enum type that is not a compile-time constant
  3691             // (15.28) from constructors, instance initializer blocks,
  3692             // or instance variable initializer expressions of that
  3693             // type. It is a compile-time error for the constructors,
  3694             // instance initializer blocks, or instance variable
  3695             // initializer expressions of an enum constant e to refer
  3696             // to itself or to an enum constant of the same type that
  3697             // is declared to the right of e."
  3698             if (isStaticEnumField(v)) {
  3699                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3701                 if (enclClass == null || enclClass.owner == null)
  3702                     return;
  3704                 // See if the enclosing class is the enum (or a
  3705                 // subclass thereof) declaring v.  If not, this
  3706                 // reference is OK.
  3707                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3708                     return;
  3710                 // If the reference isn't from an initializer, then
  3711                 // the reference is OK.
  3712                 if (!Resolve.isInitializer(env))
  3713                     return;
  3715                 log.error(tree.pos(), "illegal.enum.static.ref");
  3719         /** Is the given symbol a static, non-constant field of an Enum?
  3720          *  Note: enum literals should not be regarded as such
  3721          */
  3722         private boolean isStaticEnumField(VarSymbol v) {
  3723             return Flags.isEnum(v.owner) &&
  3724                    Flags.isStatic(v) &&
  3725                    !Flags.isConstant(v) &&
  3726                    v.name != names._class;
  3729         /** Can the given symbol be the owner of code which forms part
  3730          *  if class initialization? This is the case if the symbol is
  3731          *  a type or field, or if the symbol is the synthetic method.
  3732          *  owning a block.
  3733          */
  3734         private boolean canOwnInitializer(Symbol sym) {
  3735             return
  3736                 (sym.kind & (VAR | TYP)) != 0 ||
  3737                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3740     Warner noteWarner = new Warner();
  3742     /**
  3743      * Check that method arguments conform to its instantiation.
  3744      **/
  3745     public Type checkMethod(Type site,
  3746                             final Symbol sym,
  3747                             ResultInfo resultInfo,
  3748                             Env<AttrContext> env,
  3749                             final List<JCExpression> argtrees,
  3750                             List<Type> argtypes,
  3751                             List<Type> typeargtypes) {
  3752         // Test (5): if symbol is an instance method of a raw type, issue
  3753         // an unchecked warning if its argument types change under erasure.
  3754         if (allowGenerics &&
  3755             (sym.flags() & STATIC) == 0 &&
  3756             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3757             Type s = types.asOuterSuper(site, sym.owner);
  3758             if (s != null && s.isRaw() &&
  3759                 !types.isSameTypes(sym.type.getParameterTypes(),
  3760                                    sym.erasure(types).getParameterTypes())) {
  3761                 chk.warnUnchecked(env.tree.pos(),
  3762                                   "unchecked.call.mbr.of.raw.type",
  3763                                   sym, s);
  3767         if (env.info.defaultSuperCallSite != null) {
  3768             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3769                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3770                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3771                 List<MethodSymbol> icand_sup =
  3772                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3773                 if (icand_sup.nonEmpty() &&
  3774                         icand_sup.head != sym &&
  3775                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3776                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3777                         diags.fragment("overridden.default", sym, sup));
  3778                     break;
  3781             env.info.defaultSuperCallSite = null;
  3784         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3785             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3786             if (app.meth.hasTag(SELECT) &&
  3787                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3788                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3792         // Compute the identifier's instantiated type.
  3793         // For methods, we need to compute the instance type by
  3794         // Resolve.instantiate from the symbol's type as well as
  3795         // any type arguments and value arguments.
  3796         noteWarner.clear();
  3797         try {
  3798             Type owntype = rs.checkMethod(
  3799                     env,
  3800                     site,
  3801                     sym,
  3802                     resultInfo,
  3803                     argtypes,
  3804                     typeargtypes,
  3805                     noteWarner);
  3807             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3808                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3810             argtypes = Type.map(argtypes, checkDeferredMap);
  3812             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3813                 chk.warnUnchecked(env.tree.pos(),
  3814                         "unchecked.meth.invocation.applied",
  3815                         kindName(sym),
  3816                         sym.name,
  3817                         rs.methodArguments(sym.type.getParameterTypes()),
  3818                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3819                         kindName(sym.location()),
  3820                         sym.location());
  3821                owntype = new MethodType(owntype.getParameterTypes(),
  3822                        types.erasure(owntype.getReturnType()),
  3823                        types.erasure(owntype.getThrownTypes()),
  3824                        syms.methodClass);
  3827             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3828                     resultInfo.checkContext.inferenceContext());
  3829         } catch (Infer.InferenceException ex) {
  3830             //invalid target type - propagate exception outwards or report error
  3831             //depending on the current check context
  3832             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3833             return types.createErrorType(site);
  3834         } catch (Resolve.InapplicableMethodException ex) {
  3835             final JCDiagnostic diag = ex.getDiagnostic();
  3836             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3837                 @Override
  3838                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3839                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3841             };
  3842             List<Type> argtypes2 = Type.map(argtypes,
  3843                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3844             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3845                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3846             log.report(errDiag);
  3847             return types.createErrorType(site);
  3851     public void visitLiteral(JCLiteral tree) {
  3852         result = check(
  3853             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3855     //where
  3856     /** Return the type of a literal with given type tag.
  3857      */
  3858     Type litType(TypeTag tag) {
  3859         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3862     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3863         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3866     public void visitTypeArray(JCArrayTypeTree tree) {
  3867         Type etype = attribType(tree.elemtype, env);
  3868         Type type = new ArrayType(etype, syms.arrayClass);
  3869         result = check(tree, type, TYP, resultInfo);
  3872     /** Visitor method for parameterized types.
  3873      *  Bound checking is left until later, since types are attributed
  3874      *  before supertype structure is completely known
  3875      */
  3876     public void visitTypeApply(JCTypeApply tree) {
  3877         Type owntype = types.createErrorType(tree.type);
  3879         // Attribute functor part of application and make sure it's a class.
  3880         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3882         // Attribute type parameters
  3883         List<Type> actuals = attribTypes(tree.arguments, env);
  3885         if (clazztype.hasTag(CLASS)) {
  3886             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3887             if (actuals.isEmpty()) //diamond
  3888                 actuals = formals;
  3890             if (actuals.length() == formals.length()) {
  3891                 List<Type> a = actuals;
  3892                 List<Type> f = formals;
  3893                 while (a.nonEmpty()) {
  3894                     a.head = a.head.withTypeVar(f.head);
  3895                     a = a.tail;
  3896                     f = f.tail;
  3898                 // Compute the proper generic outer
  3899                 Type clazzOuter = clazztype.getEnclosingType();
  3900                 if (clazzOuter.hasTag(CLASS)) {
  3901                     Type site;
  3902                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3903                     if (clazz.hasTag(IDENT)) {
  3904                         site = env.enclClass.sym.type;
  3905                     } else if (clazz.hasTag(SELECT)) {
  3906                         site = ((JCFieldAccess) clazz).selected.type;
  3907                     } else throw new AssertionError(""+tree);
  3908                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3909                         if (site.hasTag(CLASS))
  3910                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3911                         if (site == null)
  3912                             site = types.erasure(clazzOuter);
  3913                         clazzOuter = site;
  3916                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3917             } else {
  3918                 if (formals.length() != 0) {
  3919                     log.error(tree.pos(), "wrong.number.type.args",
  3920                               Integer.toString(formals.length()));
  3921                 } else {
  3922                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3924                 owntype = types.createErrorType(tree.type);
  3927         result = check(tree, owntype, TYP, resultInfo);
  3930     public void visitTypeUnion(JCTypeUnion tree) {
  3931         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3932         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3933         for (JCExpression typeTree : tree.alternatives) {
  3934             Type ctype = attribType(typeTree, env);
  3935             ctype = chk.checkType(typeTree.pos(),
  3936                           chk.checkClassType(typeTree.pos(), ctype),
  3937                           syms.throwableType);
  3938             if (!ctype.isErroneous()) {
  3939                 //check that alternatives of a union type are pairwise
  3940                 //unrelated w.r.t. subtyping
  3941                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3942                     for (Type t : multicatchTypes) {
  3943                         boolean sub = types.isSubtype(ctype, t);
  3944                         boolean sup = types.isSubtype(t, ctype);
  3945                         if (sub || sup) {
  3946                             //assume 'a' <: 'b'
  3947                             Type a = sub ? ctype : t;
  3948                             Type b = sub ? t : ctype;
  3949                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3953                 multicatchTypes.append(ctype);
  3954                 if (all_multicatchTypes != null)
  3955                     all_multicatchTypes.append(ctype);
  3956             } else {
  3957                 if (all_multicatchTypes == null) {
  3958                     all_multicatchTypes = new ListBuffer<>();
  3959                     all_multicatchTypes.appendList(multicatchTypes);
  3961                 all_multicatchTypes.append(ctype);
  3964         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3965         if (t.hasTag(CLASS)) {
  3966             List<Type> alternatives =
  3967                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3968             t = new UnionClassType((ClassType) t, alternatives);
  3970         tree.type = result = t;
  3973     public void visitTypeIntersection(JCTypeIntersection tree) {
  3974         attribTypes(tree.bounds, env);
  3975         tree.type = result = checkIntersection(tree, tree.bounds);
  3978     public void visitTypeParameter(JCTypeParameter tree) {
  3979         TypeVar typeVar = (TypeVar) tree.type;
  3981         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3982             annotateType(tree, tree.annotations);
  3985         if (!typeVar.bound.isErroneous()) {
  3986             //fixup type-parameter bound computed in 'attribTypeVariables'
  3987             typeVar.bound = checkIntersection(tree, tree.bounds);
  3991     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3992         Set<Type> boundSet = new HashSet<Type>();
  3993         if (bounds.nonEmpty()) {
  3994             // accept class or interface or typevar as first bound.
  3995             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  3996             boundSet.add(types.erasure(bounds.head.type));
  3997             if (bounds.head.type.isErroneous()) {
  3998                 return bounds.head.type;
  4000             else if (bounds.head.type.hasTag(TYPEVAR)) {
  4001                 // if first bound was a typevar, do not accept further bounds.
  4002                 if (bounds.tail.nonEmpty()) {
  4003                     log.error(bounds.tail.head.pos(),
  4004                               "type.var.may.not.be.followed.by.other.bounds");
  4005                     return bounds.head.type;
  4007             } else {
  4008                 // if first bound was a class or interface, accept only interfaces
  4009                 // as further bounds.
  4010                 for (JCExpression bound : bounds.tail) {
  4011                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  4012                     if (bound.type.isErroneous()) {
  4013                         bounds = List.of(bound);
  4015                     else if (bound.type.hasTag(CLASS)) {
  4016                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  4022         if (bounds.length() == 0) {
  4023             return syms.objectType;
  4024         } else if (bounds.length() == 1) {
  4025             return bounds.head.type;
  4026         } else {
  4027             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  4028             // ... the variable's bound is a class type flagged COMPOUND
  4029             // (see comment for TypeVar.bound).
  4030             // In this case, generate a class tree that represents the
  4031             // bound class, ...
  4032             JCExpression extending;
  4033             List<JCExpression> implementing;
  4034             if (!bounds.head.type.isInterface()) {
  4035                 extending = bounds.head;
  4036                 implementing = bounds.tail;
  4037             } else {
  4038                 extending = null;
  4039                 implementing = bounds;
  4041             JCClassDecl cd = make.at(tree).ClassDef(
  4042                 make.Modifiers(PUBLIC | ABSTRACT),
  4043                 names.empty, List.<JCTypeParameter>nil(),
  4044                 extending, implementing, List.<JCTree>nil());
  4046             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4047             Assert.check((c.flags() & COMPOUND) != 0);
  4048             cd.sym = c;
  4049             c.sourcefile = env.toplevel.sourcefile;
  4051             // ... and attribute the bound class
  4052             c.flags_field |= UNATTRIBUTED;
  4053             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4054             enter.typeEnvs.put(c, cenv);
  4055             attribClass(c);
  4056             return owntype;
  4060     public void visitWildcard(JCWildcard tree) {
  4061         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4062         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4063             ? syms.objectType
  4064             : attribType(tree.inner, env);
  4065         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4066                                               tree.kind.kind,
  4067                                               syms.boundClass),
  4068                        TYP, resultInfo);
  4071     public void visitAnnotation(JCAnnotation tree) {
  4072         Assert.error("should be handled in Annotate");
  4075     public void visitAnnotatedType(JCAnnotatedType tree) {
  4076         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4077         this.attribAnnotationTypes(tree.annotations, env);
  4078         annotateType(tree, tree.annotations);
  4079         result = tree.type = underlyingType;
  4082     /**
  4083      * Apply the annotations to the particular type.
  4084      */
  4085     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
  4086         annotate.typeAnnotation(new Annotate.Worker() {
  4087             @Override
  4088             public String toString() {
  4089                 return "annotate " + annotations + " onto " + tree;
  4091             @Override
  4092             public void run() {
  4093                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4094                 if (annotations.size() == compounds.size()) {
  4095                     // All annotations were successfully converted into compounds
  4096                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
  4099         });
  4102     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4103         if (annotations.isEmpty()) {
  4104             return List.nil();
  4107         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4108         for (JCAnnotation anno : annotations) {
  4109             if (anno.attribute != null) {
  4110                 // TODO: this null-check is only needed for an obscure
  4111                 // ordering issue, where annotate.flush is called when
  4112                 // the attribute is not set yet. For an example failure
  4113                 // try the referenceinfos/NestedTypes.java test.
  4114                 // Any better solutions?
  4115                 buf.append((Attribute.TypeCompound) anno.attribute);
  4117             // Eventually we will want to throw an exception here, but
  4118             // we can't do that just yet, because it gets triggered
  4119             // when attempting to attach an annotation that isn't
  4120             // defined.
  4122         return buf.toList();
  4125     public void visitErroneous(JCErroneous tree) {
  4126         if (tree.errs != null)
  4127             for (JCTree err : tree.errs)
  4128                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4129         result = tree.type = syms.errType;
  4132     /** Default visitor method for all other trees.
  4133      */
  4134     public void visitTree(JCTree tree) {
  4135         throw new AssertionError();
  4138     /**
  4139      * Attribute an env for either a top level tree or class declaration.
  4140      */
  4141     public void attrib(Env<AttrContext> env) {
  4142         if (env.tree.hasTag(TOPLEVEL))
  4143             attribTopLevel(env);
  4144         else
  4145             attribClass(env.tree.pos(), env.enclClass.sym);
  4148     /**
  4149      * Attribute a top level tree. These trees are encountered when the
  4150      * package declaration has annotations.
  4151      */
  4152     public void attribTopLevel(Env<AttrContext> env) {
  4153         JCCompilationUnit toplevel = env.toplevel;
  4154         try {
  4155             annotate.flush();
  4156         } catch (CompletionFailure ex) {
  4157             chk.completionError(toplevel.pos(), ex);
  4161     /** Main method: attribute class definition associated with given class symbol.
  4162      *  reporting completion failures at the given position.
  4163      *  @param pos The source position at which completion errors are to be
  4164      *             reported.
  4165      *  @param c   The class symbol whose definition will be attributed.
  4166      */
  4167     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4168         try {
  4169             annotate.flush();
  4170             attribClass(c);
  4171         } catch (CompletionFailure ex) {
  4172             chk.completionError(pos, ex);
  4176     /** Attribute class definition associated with given class symbol.
  4177      *  @param c   The class symbol whose definition will be attributed.
  4178      */
  4179     void attribClass(ClassSymbol c) throws CompletionFailure {
  4180         if (c.type.hasTag(ERROR)) return;
  4182         // Check for cycles in the inheritance graph, which can arise from
  4183         // ill-formed class files.
  4184         chk.checkNonCyclic(null, c.type);
  4186         Type st = types.supertype(c.type);
  4187         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4188             // First, attribute superclass.
  4189             if (st.hasTag(CLASS))
  4190                 attribClass((ClassSymbol)st.tsym);
  4192             // Next attribute owner, if it is a class.
  4193             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4194                 attribClass((ClassSymbol)c.owner);
  4197         // The previous operations might have attributed the current class
  4198         // if there was a cycle. So we test first whether the class is still
  4199         // UNATTRIBUTED.
  4200         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4201             c.flags_field &= ~UNATTRIBUTED;
  4203             // Get environment current at the point of class definition.
  4204             Env<AttrContext> env = enter.typeEnvs.get(c);
  4206             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  4207             // because the annotations were not available at the time the env was created. Therefore,
  4208             // we look up the environment chain for the first enclosing environment for which the
  4209             // lint value is set. Typically, this is the parent env, but might be further if there
  4210             // are any envs created as a result of TypeParameter nodes.
  4211             Env<AttrContext> lintEnv = env;
  4212             while (lintEnv.info.lint == null)
  4213                 lintEnv = lintEnv.next;
  4215             // Having found the enclosing lint value, we can initialize the lint value for this class
  4216             env.info.lint = lintEnv.info.lint.augment(c);
  4218             Lint prevLint = chk.setLint(env.info.lint);
  4219             JavaFileObject prev = log.useSource(c.sourcefile);
  4220             ResultInfo prevReturnRes = env.info.returnResult;
  4222             try {
  4223                 deferredLintHandler.flush(env.tree);
  4224                 env.info.returnResult = null;
  4225                 // java.lang.Enum may not be subclassed by a non-enum
  4226                 if (st.tsym == syms.enumSym &&
  4227                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4228                     log.error(env.tree.pos(), "enum.no.subclassing");
  4230                 // Enums may not be extended by source-level classes
  4231                 if (st.tsym != null &&
  4232                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4233                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4234                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4237                 if (isSerializable(c.type)) {
  4238                     env.info.isSerializable = true;
  4241                 attribClassBody(env, c);
  4243                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4244                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4245                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
  4246             } finally {
  4247                 env.info.returnResult = prevReturnRes;
  4248                 log.useSource(prev);
  4249                 chk.setLint(prevLint);
  4255     public void visitImport(JCImport tree) {
  4256         // nothing to do
  4259     /** Finish the attribution of a class. */
  4260     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4261         JCClassDecl tree = (JCClassDecl)env.tree;
  4262         Assert.check(c == tree.sym);
  4264         // Validate type parameters, supertype and interfaces.
  4265         attribStats(tree.typarams, env);
  4266         if (!c.isAnonymous()) {
  4267             //already checked if anonymous
  4268             chk.validate(tree.typarams, env);
  4269             chk.validate(tree.extending, env);
  4270             chk.validate(tree.implementing, env);
  4273         // If this is a non-abstract class, check that it has no abstract
  4274         // methods or unimplemented methods of an implemented interface.
  4275         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4276             if (!relax)
  4277                 chk.checkAllDefined(tree.pos(), c);
  4280         if ((c.flags() & ANNOTATION) != 0) {
  4281             if (tree.implementing.nonEmpty())
  4282                 log.error(tree.implementing.head.pos(),
  4283                           "cant.extend.intf.annotation");
  4284             if (tree.typarams.nonEmpty())
  4285                 log.error(tree.typarams.head.pos(),
  4286                           "intf.annotation.cant.have.type.params");
  4288             // If this annotation has a @Repeatable, validate
  4289             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4290             if (repeatable != null) {
  4291                 // get diagnostic position for error reporting
  4292                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4293                 Assert.checkNonNull(cbPos);
  4295                 chk.validateRepeatable(c, repeatable, cbPos);
  4297         } else {
  4298             // Check that all extended classes and interfaces
  4299             // are compatible (i.e. no two define methods with same arguments
  4300             // yet different return types).  (JLS 8.4.6.3)
  4301             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4302             if (allowDefaultMethods) {
  4303                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4307         // Check that class does not import the same parameterized interface
  4308         // with two different argument lists.
  4309         chk.checkClassBounds(tree.pos(), c.type);
  4311         tree.type = c.type;
  4313         for (List<JCTypeParameter> l = tree.typarams;
  4314              l.nonEmpty(); l = l.tail) {
  4315              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4318         // Check that a generic class doesn't extend Throwable
  4319         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4320             log.error(tree.extending.pos(), "generic.throwable");
  4322         // Check that all methods which implement some
  4323         // method conform to the method they implement.
  4324         chk.checkImplementations(tree);
  4326         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4327         checkAutoCloseable(tree.pos(), env, c.type);
  4329         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4330             // Attribute declaration
  4331             attribStat(l.head, env);
  4332             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4333             // Make an exception for static constants.
  4334             if (c.owner.kind != PCK &&
  4335                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4336                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4337                 Symbol sym = null;
  4338                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4339                 if (sym == null ||
  4340                     sym.kind != VAR ||
  4341                     ((VarSymbol) sym).getConstValue() == null)
  4342                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4346         // Check for cycles among non-initial constructors.
  4347         chk.checkCyclicConstructors(tree);
  4349         // Check for cycles among annotation elements.
  4350         chk.checkNonCyclicElements(tree);
  4352         // Check for proper use of serialVersionUID
  4353         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4354             isSerializable(c.type) &&
  4355             (c.flags() & Flags.ENUM) == 0 &&
  4356             checkForSerial(c)) {
  4357             checkSerialVersionUID(tree, c);
  4359         if (allowTypeAnnos) {
  4360             // Correctly organize the postions of the type annotations
  4361             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4363             // Check type annotations applicability rules
  4364             validateTypeAnnotations(tree, false);
  4367         // where
  4368         boolean checkForSerial(ClassSymbol c) {
  4369             if ((c.flags() & ABSTRACT) == 0) {
  4370                 return true;
  4371             } else {
  4372                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4376         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4377             @Override
  4378             public boolean accepts(Symbol s) {
  4379                 return s.kind == Kinds.MTH &&
  4380                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4382         };
  4384         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4385         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4386             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4387                 if (types.isSameType(al.head.annotationType.type, t))
  4388                     return al.head.pos();
  4391             return null;
  4394         /** check if a type is a subtype of Serializable, if that is available. */
  4395         boolean isSerializable(Type t) {
  4396             try {
  4397                 syms.serializableType.complete();
  4399             catch (CompletionFailure e) {
  4400                 return false;
  4402             return types.isSubtype(t, syms.serializableType);
  4405         /** Check that an appropriate serialVersionUID member is defined. */
  4406         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4408             // check for presence of serialVersionUID
  4409             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4410             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4411             if (e.scope == null) {
  4412                 log.warning(LintCategory.SERIAL,
  4413                         tree.pos(), "missing.SVUID", c);
  4414                 return;
  4417             // check that it is static final
  4418             VarSymbol svuid = (VarSymbol)e.sym;
  4419             if ((svuid.flags() & (STATIC | FINAL)) !=
  4420                 (STATIC | FINAL))
  4421                 log.warning(LintCategory.SERIAL,
  4422                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4424             // check that it is long
  4425             else if (!svuid.type.hasTag(LONG))
  4426                 log.warning(LintCategory.SERIAL,
  4427                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4429             // check constant
  4430             else if (svuid.getConstValue() == null)
  4431                 log.warning(LintCategory.SERIAL,
  4432                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4435     private Type capture(Type type) {
  4436         return types.capture(type);
  4439     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
  4440         tree.accept(new TypeAnnotationsValidator(sigOnly));
  4442     //where
  4443     private final class TypeAnnotationsValidator extends TreeScanner {
  4445         private final boolean sigOnly;
  4446         public TypeAnnotationsValidator(boolean sigOnly) {
  4447             this.sigOnly = sigOnly;
  4450         public void visitAnnotation(JCAnnotation tree) {
  4451             chk.validateTypeAnnotation(tree, false);
  4452             super.visitAnnotation(tree);
  4454         public void visitAnnotatedType(JCAnnotatedType tree) {
  4455             if (!tree.underlyingType.type.isErroneous()) {
  4456                 super.visitAnnotatedType(tree);
  4459         public void visitTypeParameter(JCTypeParameter tree) {
  4460             chk.validateTypeAnnotations(tree.annotations, true);
  4461             scan(tree.bounds);
  4462             // Don't call super.
  4463             // This is needed because above we call validateTypeAnnotation with
  4464             // false, which would forbid annotations on type parameters.
  4465             // super.visitTypeParameter(tree);
  4467         public void visitMethodDef(JCMethodDecl tree) {
  4468             if (tree.recvparam != null &&
  4469                     !tree.recvparam.vartype.type.isErroneous()) {
  4470                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4471                         tree.recvparam.vartype.type.tsym);
  4473             if (tree.restype != null && tree.restype.type != null) {
  4474                 validateAnnotatedType(tree.restype, tree.restype.type);
  4476             if (sigOnly) {
  4477                 scan(tree.mods);
  4478                 scan(tree.restype);
  4479                 scan(tree.typarams);
  4480                 scan(tree.recvparam);
  4481                 scan(tree.params);
  4482                 scan(tree.thrown);
  4483             } else {
  4484                 scan(tree.defaultValue);
  4485                 scan(tree.body);
  4488         public void visitVarDef(final JCVariableDecl tree) {
  4489             if (tree.sym != null && tree.sym.type != null)
  4490                 validateAnnotatedType(tree.vartype, tree.sym.type);
  4491             scan(tree.mods);
  4492             scan(tree.vartype);
  4493             if (!sigOnly) {
  4494                 scan(tree.init);
  4497         public void visitTypeCast(JCTypeCast tree) {
  4498             if (tree.clazz != null && tree.clazz.type != null)
  4499                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4500             super.visitTypeCast(tree);
  4502         public void visitTypeTest(JCInstanceOf tree) {
  4503             if (tree.clazz != null && tree.clazz.type != null)
  4504                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4505             super.visitTypeTest(tree);
  4507         public void visitNewClass(JCNewClass tree) {
  4508             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  4509                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  4510                         tree.clazz.type.tsym);
  4512             if (tree.def != null) {
  4513                 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
  4515             if (tree.clazz.type != null) {
  4516                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4518             super.visitNewClass(tree);
  4520         public void visitNewArray(JCNewArray tree) {
  4521             if (tree.elemtype != null && tree.elemtype.type != null) {
  4522                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  4523                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  4524                             tree.elemtype.type.tsym);
  4526                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
  4528             super.visitNewArray(tree);
  4530         public void visitClassDef(JCClassDecl tree) {
  4531             if (sigOnly) {
  4532                 scan(tree.mods);
  4533                 scan(tree.typarams);
  4534                 scan(tree.extending);
  4535                 scan(tree.implementing);
  4537             for (JCTree member : tree.defs) {
  4538                 if (member.hasTag(Tag.CLASSDEF)) {
  4539                     continue;
  4541                 scan(member);
  4544         public void visitBlock(JCBlock tree) {
  4545             if (!sigOnly) {
  4546                 scan(tree.stats);
  4550         /* I would want to model this after
  4551          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4552          * and override visitSelect and visitTypeApply.
  4553          * However, we only set the annotated type in the top-level type
  4554          * of the symbol.
  4555          * Therefore, we need to override each individual location where a type
  4556          * can occur.
  4557          */
  4558         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4559             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
  4561             if (type.isPrimitiveOrVoid()) {
  4562                 return;
  4565             JCTree enclTr = errtree;
  4566             Type enclTy = type;
  4568             boolean repeat = true;
  4569             while (repeat) {
  4570                 if (enclTr.hasTag(TYPEAPPLY)) {
  4571                     List<Type> tyargs = enclTy.getTypeArguments();
  4572                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
  4573                     if (trargs.length() > 0) {
  4574                         // Nothing to do for diamonds
  4575                         if (tyargs.length() == trargs.length()) {
  4576                             for (int i = 0; i < tyargs.length(); ++i) {
  4577                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
  4580                         // If the lengths don't match, it's either a diamond
  4581                         // or some nested type that redundantly provides
  4582                         // type arguments in the tree.
  4585                     // Look at the clazz part of a generic type
  4586                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
  4589                 if (enclTr.hasTag(SELECT)) {
  4590                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
  4591                     if (enclTy != null &&
  4592                             !enclTy.hasTag(NONE)) {
  4593                         enclTy = enclTy.getEnclosingType();
  4595                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
  4596                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
  4597                     if (enclTy == null ||
  4598                             enclTy.hasTag(NONE)) {
  4599                         if (at.getAnnotations().size() == 1) {
  4600                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
  4601                         } else {
  4602                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
  4603                             for (JCAnnotation an : at.getAnnotations()) {
  4604                                 comps.add(an.attribute);
  4606                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
  4608                         repeat = false;
  4610                     enclTr = at.underlyingType;
  4611                     // enclTy doesn't need to be changed
  4612                 } else if (enclTr.hasTag(IDENT)) {
  4613                     repeat = false;
  4614                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
  4615                     JCWildcard wc = (JCWildcard) enclTr;
  4616                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
  4617                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
  4618                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
  4619                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
  4620                     } else {
  4621                         // Nothing to do for UNBOUND
  4623                     repeat = false;
  4624                 } else if (enclTr.hasTag(TYPEARRAY)) {
  4625                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
  4626                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
  4627                     repeat = false;
  4628                 } else if (enclTr.hasTag(TYPEUNION)) {
  4629                     JCTypeUnion ut = (JCTypeUnion) enclTr;
  4630                     for (JCTree t : ut.getTypeAlternatives()) {
  4631                         validateAnnotatedType(t, t.type);
  4633                     repeat = false;
  4634                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
  4635                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
  4636                     for (JCTree t : it.getBounds()) {
  4637                         validateAnnotatedType(t, t.type);
  4639                     repeat = false;
  4640                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
  4641                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
  4642                     repeat = false;
  4643                 } else {
  4644                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
  4645                             " within: "+ errtree + " with kind: " + errtree.getKind());
  4650         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  4651                 Symbol sym) {
  4652             // Ensure that no declaration annotations are present.
  4653             // Note that a tree type might be an AnnotatedType with
  4654             // empty annotations, if only declaration annotations were given.
  4655             // This method will raise an error for such a type.
  4656             for (JCAnnotation ai : annotations) {
  4657                 if (!ai.type.isErroneous() &&
  4658                         typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  4659                     log.error(ai.pos(), "annotation.type.not.applicable");
  4663     };
  4665     // <editor-fold desc="post-attribution visitor">
  4667     /**
  4668      * Handle missing types/symbols in an AST. This routine is useful when
  4669      * the compiler has encountered some errors (which might have ended up
  4670      * terminating attribution abruptly); if the compiler is used in fail-over
  4671      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4672      * prevents NPE to be progagated during subsequent compilation steps.
  4673      */
  4674     public void postAttr(JCTree tree) {
  4675         new PostAttrAnalyzer().scan(tree);
  4678     class PostAttrAnalyzer extends TreeScanner {
  4680         private void initTypeIfNeeded(JCTree that) {
  4681             if (that.type == null) {
  4682                 if (that.hasTag(METHODDEF)) {
  4683                     that.type = dummyMethodType((JCMethodDecl)that);
  4684                 } else {
  4685                     that.type = syms.unknownType;
  4690         /* Construct a dummy method type. If we have a method declaration,
  4691          * and the declared return type is void, then use that return type
  4692          * instead of UNKNOWN to avoid spurious error messages in lambda
  4693          * bodies (see:JDK-8041704).
  4694          */
  4695         private Type dummyMethodType(JCMethodDecl md) {
  4696             Type restype = syms.unknownType;
  4697             if (md != null && md.restype.hasTag(TYPEIDENT)) {
  4698                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
  4699                 if (prim.typetag == VOID)
  4700                     restype = syms.voidType;
  4702             return new MethodType(List.<Type>nil(), restype,
  4703                                   List.<Type>nil(), syms.methodClass);
  4705         private Type dummyMethodType() {
  4706             return dummyMethodType(null);
  4709         @Override
  4710         public void scan(JCTree tree) {
  4711             if (tree == null) return;
  4712             if (tree instanceof JCExpression) {
  4713                 initTypeIfNeeded(tree);
  4715             super.scan(tree);
  4718         @Override
  4719         public void visitIdent(JCIdent that) {
  4720             if (that.sym == null) {
  4721                 that.sym = syms.unknownSymbol;
  4725         @Override
  4726         public void visitSelect(JCFieldAccess that) {
  4727             if (that.sym == null) {
  4728                 that.sym = syms.unknownSymbol;
  4730             super.visitSelect(that);
  4733         @Override
  4734         public void visitClassDef(JCClassDecl that) {
  4735             initTypeIfNeeded(that);
  4736             if (that.sym == null) {
  4737                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4739             super.visitClassDef(that);
  4742         @Override
  4743         public void visitMethodDef(JCMethodDecl that) {
  4744             initTypeIfNeeded(that);
  4745             if (that.sym == null) {
  4746                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4748             super.visitMethodDef(that);
  4751         @Override
  4752         public void visitVarDef(JCVariableDecl that) {
  4753             initTypeIfNeeded(that);
  4754             if (that.sym == null) {
  4755                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4756                 that.sym.adr = 0;
  4758             super.visitVarDef(that);
  4761         @Override
  4762         public void visitNewClass(JCNewClass that) {
  4763             if (that.constructor == null) {
  4764                 that.constructor = new MethodSymbol(0, names.init,
  4765                         dummyMethodType(), syms.noSymbol);
  4767             if (that.constructorType == null) {
  4768                 that.constructorType = syms.unknownType;
  4770             super.visitNewClass(that);
  4773         @Override
  4774         public void visitAssignop(JCAssignOp that) {
  4775             if (that.operator == null) {
  4776                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4777                         -1, syms.noSymbol);
  4779             super.visitAssignop(that);
  4782         @Override
  4783         public void visitBinary(JCBinary that) {
  4784             if (that.operator == null) {
  4785                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4786                         -1, syms.noSymbol);
  4788             super.visitBinary(that);
  4791         @Override
  4792         public void visitUnary(JCUnary that) {
  4793             if (that.operator == null) {
  4794                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4795                         -1, syms.noSymbol);
  4797             super.visitUnary(that);
  4800         @Override
  4801         public void visitLambda(JCLambda that) {
  4802             super.visitLambda(that);
  4803             if (that.targets == null) {
  4804                 that.targets = List.nil();
  4808         @Override
  4809         public void visitReference(JCMemberReference that) {
  4810             super.visitReference(that);
  4811             if (that.sym == null) {
  4812                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
  4813                         syms.noSymbol);
  4815             if (that.targets == null) {
  4816                 that.targets = List.nil();
  4820     // </editor-fold>

mercurial