src/share/classes/com/sun/tools/javac/comp/Resolve.java

Thu, 04 Oct 2012 13:04:53 +0100

author
mcimadamore
date
Thu, 04 Oct 2012 13:04:53 +0100
changeset 1347
1408af4cd8b0
parent 1346
20e4a54b1629
child 1348
573ceb23beeb
permissions
-rw-r--r--

7177387: Add target-typing support in method context
Summary: Add support for deferred types and speculative attribution
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.jvm.*;
    41 import com.sun.tools.javac.tree.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.util.*;
    44 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    45 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    46 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    48 import java.util.Arrays;
    49 import java.util.Collection;
    50 import java.util.EnumMap;
    51 import java.util.EnumSet;
    52 import java.util.Iterator;
    53 import java.util.Map;
    55 import javax.lang.model.element.ElementVisitor;
    57 import static com.sun.tools.javac.code.Flags.*;
    58 import static com.sun.tools.javac.code.Flags.BLOCK;
    59 import static com.sun.tools.javac.code.Kinds.*;
    60 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    61 import static com.sun.tools.javac.code.TypeTags.*;
    62 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    63 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    65 /** Helper class for name resolution, used mostly by the attribution phase.
    66  *
    67  *  <p><b>This is NOT part of any supported API.
    68  *  If you write code that depends on this, you do so at your own risk.
    69  *  This code and its internal interfaces are subject to change or
    70  *  deletion without notice.</b>
    71  */
    72 public class Resolve {
    73     protected static final Context.Key<Resolve> resolveKey =
    74         new Context.Key<Resolve>();
    76     Names names;
    77     Log log;
    78     Symtab syms;
    79     Attr attr;
    80     DeferredAttr deferredAttr;
    81     Check chk;
    82     Infer infer;
    83     ClassReader reader;
    84     TreeInfo treeinfo;
    85     Types types;
    86     JCDiagnostic.Factory diags;
    87     public final boolean boxingEnabled; // = source.allowBoxing();
    88     public final boolean varargsEnabled; // = source.allowVarargs();
    89     public final boolean allowMethodHandles;
    90     private final boolean debugResolve;
    91     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    93     Scope polymorphicSignatureScope;
    95     protected Resolve(Context context) {
    96         context.put(resolveKey, this);
    97         syms = Symtab.instance(context);
    99         varNotFound = new
   100             SymbolNotFoundError(ABSENT_VAR);
   101         wrongMethod = new
   102             InapplicableSymbolError();
   103         wrongMethods = new
   104             InapplicableSymbolsError();
   105         methodNotFound = new
   106             SymbolNotFoundError(ABSENT_MTH);
   107         typeNotFound = new
   108             SymbolNotFoundError(ABSENT_TYP);
   110         names = Names.instance(context);
   111         log = Log.instance(context);
   112         attr = Attr.instance(context);
   113         deferredAttr = DeferredAttr.instance(context);
   114         chk = Check.instance(context);
   115         infer = Infer.instance(context);
   116         reader = ClassReader.instance(context);
   117         treeinfo = TreeInfo.instance(context);
   118         types = Types.instance(context);
   119         diags = JCDiagnostic.Factory.instance(context);
   120         Source source = Source.instance(context);
   121         boxingEnabled = source.allowBoxing();
   122         varargsEnabled = source.allowVarargs();
   123         Options options = Options.instance(context);
   124         debugResolve = options.isSet("debugresolve");
   125         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   126         Target target = Target.instance(context);
   127         allowMethodHandles = target.hasMethodHandles();
   128         polymorphicSignatureScope = new Scope(syms.noSymbol);
   130         inapplicableMethodException = new InapplicableMethodException(diags);
   131     }
   133     /** error symbols, which are returned when resolution fails
   134      */
   135     private final SymbolNotFoundError varNotFound;
   136     private final InapplicableSymbolError wrongMethod;
   137     private final InapplicableSymbolsError wrongMethods;
   138     private final SymbolNotFoundError methodNotFound;
   139     private final SymbolNotFoundError typeNotFound;
   141     public static Resolve instance(Context context) {
   142         Resolve instance = context.get(resolveKey);
   143         if (instance == null)
   144             instance = new Resolve(context);
   145         return instance;
   146     }
   148     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   149     enum VerboseResolutionMode {
   150         SUCCESS("success"),
   151         FAILURE("failure"),
   152         APPLICABLE("applicable"),
   153         INAPPLICABLE("inapplicable"),
   154         DEFERRED_INST("deferred-inference"),
   155         PREDEF("predef"),
   156         OBJECT_INIT("object-init"),
   157         INTERNAL("internal");
   159         String opt;
   161         private VerboseResolutionMode(String opt) {
   162             this.opt = opt;
   163         }
   165         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   166             String s = opts.get("verboseResolution");
   167             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   168             if (s == null) return res;
   169             if (s.contains("all")) {
   170                 res = EnumSet.allOf(VerboseResolutionMode.class);
   171             }
   172             Collection<String> args = Arrays.asList(s.split(","));
   173             for (VerboseResolutionMode mode : values()) {
   174                 if (args.contains(mode.opt)) {
   175                     res.add(mode);
   176                 } else if (args.contains("-" + mode.opt)) {
   177                     res.remove(mode);
   178                 }
   179             }
   180             return res;
   181         }
   182     }
   184     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   185             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   186         boolean success = bestSoFar.kind < ERRONEOUS;
   188         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   189             return;
   190         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   191             return;
   192         }
   194         if (bestSoFar.name == names.init &&
   195                 bestSoFar.owner == syms.objectType.tsym &&
   196                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   197             return; //skip diags for Object constructor resolution
   198         } else if (site == syms.predefClass.type &&
   199                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   200             return; //skip spurious diags for predef symbols (i.e. operators)
   201         } else if (currentResolutionContext.internalResolution &&
   202                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   203             return;
   204         }
   206         int pos = 0;
   207         int mostSpecificPos = -1;
   208         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   209         for (Candidate c : currentResolutionContext.candidates) {
   210             if (currentResolutionContext.step != c.step ||
   211                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   212                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   213                 continue;
   214             } else {
   215                 subDiags.append(c.isApplicable() ?
   216                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   217                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   218                 if (c.sym == bestSoFar)
   219                     mostSpecificPos = pos;
   220                 pos++;
   221             }
   222         }
   223         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   224         List<Type> argtypes2 = Type.map(argtypes,
   225                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   226         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   227                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   228                 methodArguments(argtypes2),
   229                 methodArguments(typeargtypes));
   230         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   231         log.report(d);
   232     }
   234     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   235         JCDiagnostic subDiag = null;
   236         if (sym.type.tag == FORALL) {
   237             subDiag = diags.fragment("partial.inst.sig", inst);
   238         }
   240         String key = subDiag == null ?
   241                 "applicable.method.found" :
   242                 "applicable.method.found.1";
   244         return diags.fragment(key, pos, sym, subDiag);
   245     }
   247     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   248         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   249     }
   250     // </editor-fold>
   252 /* ************************************************************************
   253  * Identifier resolution
   254  *************************************************************************/
   256     /** An environment is "static" if its static level is greater than
   257      *  the one of its outer environment
   258      */
   259     protected static boolean isStatic(Env<AttrContext> env) {
   260         return env.info.staticLevel > env.outer.info.staticLevel;
   261     }
   263     /** An environment is an "initializer" if it is a constructor or
   264      *  an instance initializer.
   265      */
   266     static boolean isInitializer(Env<AttrContext> env) {
   267         Symbol owner = env.info.scope.owner;
   268         return owner.isConstructor() ||
   269             owner.owner.kind == TYP &&
   270             (owner.kind == VAR ||
   271              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   272             (owner.flags() & STATIC) == 0;
   273     }
   275     /** Is class accessible in given evironment?
   276      *  @param env    The current environment.
   277      *  @param c      The class whose accessibility is checked.
   278      */
   279     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   280         return isAccessible(env, c, false);
   281     }
   283     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   284         boolean isAccessible = false;
   285         switch ((short)(c.flags() & AccessFlags)) {
   286             case PRIVATE:
   287                 isAccessible =
   288                     env.enclClass.sym.outermostClass() ==
   289                     c.owner.outermostClass();
   290                 break;
   291             case 0:
   292                 isAccessible =
   293                     env.toplevel.packge == c.owner // fast special case
   294                     ||
   295                     env.toplevel.packge == c.packge()
   296                     ||
   297                     // Hack: this case is added since synthesized default constructors
   298                     // of anonymous classes should be allowed to access
   299                     // classes which would be inaccessible otherwise.
   300                     env.enclMethod != null &&
   301                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   302                 break;
   303             default: // error recovery
   304             case PUBLIC:
   305                 isAccessible = true;
   306                 break;
   307             case PROTECTED:
   308                 isAccessible =
   309                     env.toplevel.packge == c.owner // fast special case
   310                     ||
   311                     env.toplevel.packge == c.packge()
   312                     ||
   313                     isInnerSubClass(env.enclClass.sym, c.owner);
   314                 break;
   315         }
   316         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   317             isAccessible :
   318             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   319     }
   320     //where
   321         /** Is given class a subclass of given base class, or an inner class
   322          *  of a subclass?
   323          *  Return null if no such class exists.
   324          *  @param c     The class which is the subclass or is contained in it.
   325          *  @param base  The base class
   326          */
   327         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   328             while (c != null && !c.isSubClass(base, types)) {
   329                 c = c.owner.enclClass();
   330             }
   331             return c != null;
   332         }
   334     boolean isAccessible(Env<AttrContext> env, Type t) {
   335         return isAccessible(env, t, false);
   336     }
   338     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   339         return (t.tag == ARRAY)
   340             ? isAccessible(env, types.elemtype(t))
   341             : isAccessible(env, t.tsym, checkInner);
   342     }
   344     /** Is symbol accessible as a member of given type in given evironment?
   345      *  @param env    The current environment.
   346      *  @param site   The type of which the tested symbol is regarded
   347      *                as a member.
   348      *  @param sym    The symbol.
   349      */
   350     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   351         return isAccessible(env, site, sym, false);
   352     }
   353     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   354         if (sym.name == names.init && sym.owner != site.tsym) return false;
   355         switch ((short)(sym.flags() & AccessFlags)) {
   356         case PRIVATE:
   357             return
   358                 (env.enclClass.sym == sym.owner // fast special case
   359                  ||
   360                  env.enclClass.sym.outermostClass() ==
   361                  sym.owner.outermostClass())
   362                 &&
   363                 sym.isInheritedIn(site.tsym, types);
   364         case 0:
   365             return
   366                 (env.toplevel.packge == sym.owner.owner // fast special case
   367                  ||
   368                  env.toplevel.packge == sym.packge())
   369                 &&
   370                 isAccessible(env, site, checkInner)
   371                 &&
   372                 sym.isInheritedIn(site.tsym, types)
   373                 &&
   374                 notOverriddenIn(site, sym);
   375         case PROTECTED:
   376             return
   377                 (env.toplevel.packge == sym.owner.owner // fast special case
   378                  ||
   379                  env.toplevel.packge == sym.packge()
   380                  ||
   381                  isProtectedAccessible(sym, env.enclClass.sym, site)
   382                  ||
   383                  // OK to select instance method or field from 'super' or type name
   384                  // (but type names should be disallowed elsewhere!)
   385                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   386                 &&
   387                 isAccessible(env, site, checkInner)
   388                 &&
   389                 notOverriddenIn(site, sym);
   390         default: // this case includes erroneous combinations as well
   391             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   392         }
   393     }
   394     //where
   395     /* `sym' is accessible only if not overridden by
   396      * another symbol which is a member of `site'
   397      * (because, if it is overridden, `sym' is not strictly
   398      * speaking a member of `site'). A polymorphic signature method
   399      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   400      */
   401     private boolean notOverriddenIn(Type site, Symbol sym) {
   402         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   403             return true;
   404         else {
   405             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   406             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   407                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   408         }
   409     }
   410     //where
   411         /** Is given protected symbol accessible if it is selected from given site
   412          *  and the selection takes place in given class?
   413          *  @param sym     The symbol with protected access
   414          *  @param c       The class where the access takes place
   415          *  @site          The type of the qualifier
   416          */
   417         private
   418         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   419             while (c != null &&
   420                    !(c.isSubClass(sym.owner, types) &&
   421                      (c.flags() & INTERFACE) == 0 &&
   422                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   423                      // only to instance fields and methods -- types are excluded
   424                      // regardless of whether they are declared 'static' or not.
   425                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   426                 c = c.owner.enclClass();
   427             return c != null;
   428         }
   430     /** Try to instantiate the type of a method so that it fits
   431      *  given type arguments and argument types. If succesful, return
   432      *  the method's instantiated type, else return null.
   433      *  The instantiation will take into account an additional leading
   434      *  formal parameter if the method is an instance method seen as a member
   435      *  of un underdetermined site In this case, we treat site as an additional
   436      *  parameter and the parameters of the class containing the method as
   437      *  additional type variables that get instantiated.
   438      *
   439      *  @param env         The current environment
   440      *  @param site        The type of which the method is a member.
   441      *  @param m           The method symbol.
   442      *  @param argtypes    The invocation's given value arguments.
   443      *  @param typeargtypes    The invocation's given type arguments.
   444      *  @param allowBoxing Allow boxing conversions of arguments.
   445      *  @param useVarargs Box trailing arguments into an array for varargs.
   446      */
   447     Type rawInstantiate(Env<AttrContext> env,
   448                         Type site,
   449                         Symbol m,
   450                         ResultInfo resultInfo,
   451                         List<Type> argtypes,
   452                         List<Type> typeargtypes,
   453                         boolean allowBoxing,
   454                         boolean useVarargs,
   455                         Warner warn)
   456         throws Infer.InferenceException {
   457         if (useVarargs && (m.flags() & VARARGS) == 0)
   458             throw inapplicableMethodException.setMessage();
   459         Type mt = types.memberType(site, m);
   461         // tvars is the list of formal type variables for which type arguments
   462         // need to inferred.
   463         List<Type> tvars = List.nil();
   464         if (typeargtypes == null) typeargtypes = List.nil();
   465         if (mt.tag != FORALL && typeargtypes.nonEmpty()) {
   466             // This is not a polymorphic method, but typeargs are supplied
   467             // which is fine, see JLS 15.12.2.1
   468         } else if (mt.tag == FORALL && typeargtypes.nonEmpty()) {
   469             ForAll pmt = (ForAll) mt;
   470             if (typeargtypes.length() != pmt.tvars.length())
   471                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   472             // Check type arguments are within bounds
   473             List<Type> formals = pmt.tvars;
   474             List<Type> actuals = typeargtypes;
   475             while (formals.nonEmpty() && actuals.nonEmpty()) {
   476                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   477                                                 pmt.tvars, typeargtypes);
   478                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   479                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   480                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   481                 formals = formals.tail;
   482                 actuals = actuals.tail;
   483             }
   484             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   485         } else if (mt.tag == FORALL) {
   486             ForAll pmt = (ForAll) mt;
   487             List<Type> tvars1 = types.newInstances(pmt.tvars);
   488             tvars = tvars.appendList(tvars1);
   489             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   490         }
   492         // find out whether we need to go the slow route via infer
   493         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   494         for (List<Type> l = argtypes;
   495              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   496              l = l.tail) {
   497             if (l.head.tag == FORALL) instNeeded = true;
   498         }
   500         if (instNeeded)
   501             return infer.instantiateMethod(env,
   502                                     tvars,
   503                                     (MethodType)mt,
   504                                     resultInfo,
   505                                     m,
   506                                     argtypes,
   507                                     allowBoxing,
   508                                     useVarargs,
   509                                     currentResolutionContext,
   510                                     warn);
   512         checkRawArgumentsAcceptable(env, m, argtypes, mt.getParameterTypes(),
   513                                 allowBoxing, useVarargs, warn);
   514         return mt;
   515     }
   517     Type checkMethod(Env<AttrContext> env,
   518                      Type site,
   519                      Symbol m,
   520                      ResultInfo resultInfo,
   521                      List<Type> argtypes,
   522                      List<Type> typeargtypes,
   523                      Warner warn) {
   524         MethodResolutionContext prevContext = currentResolutionContext;
   525         try {
   526             currentResolutionContext = new MethodResolutionContext();
   527             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   528             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   529             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   530                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   531         }
   532         finally {
   533             currentResolutionContext = prevContext;
   534         }
   535     }
   537     /** Same but returns null instead throwing a NoInstanceException
   538      */
   539     Type instantiate(Env<AttrContext> env,
   540                      Type site,
   541                      Symbol m,
   542                      ResultInfo resultInfo,
   543                      List<Type> argtypes,
   544                      List<Type> typeargtypes,
   545                      boolean allowBoxing,
   546                      boolean useVarargs,
   547                      Warner warn) {
   548         try {
   549             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   550                                   allowBoxing, useVarargs, warn);
   551         } catch (InapplicableMethodException ex) {
   552             return null;
   553         }
   554     }
   556     /** Check if a parameter list accepts a list of args.
   557      */
   558     boolean argumentsAcceptable(Env<AttrContext> env,
   559                                 Symbol msym,
   560                                 List<Type> argtypes,
   561                                 List<Type> formals,
   562                                 boolean allowBoxing,
   563                                 boolean useVarargs,
   564                                 Warner warn) {
   565         try {
   566             checkRawArgumentsAcceptable(env, msym, argtypes, formals, allowBoxing, useVarargs, warn);
   567             return true;
   568         } catch (InapplicableMethodException ex) {
   569             return false;
   570         }
   571     }
   572     /**
   573      * A check handler is used by the main method applicability routine in order
   574      * to handle specific method applicability failures. It is assumed that a class
   575      * implementing this interface should throw exceptions that are a subtype of
   576      * InapplicableMethodException (see below). Such exception will terminate the
   577      * method applicability check and propagate important info outwards (for the
   578      * purpose of generating better diagnostics).
   579      */
   580     interface MethodCheckHandler {
   581         /* The number of actuals and formals differ */
   582         InapplicableMethodException arityMismatch();
   583         /* An actual argument type does not conform to the corresponding formal type */
   584         InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details);
   585         /* The element type of a varargs is not accessible in the current context */
   586         InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected);
   587     }
   589     /**
   590      * Basic method check handler used within Resolve - all methods end up
   591      * throwing InapplicableMethodException; a diagnostic fragment that describes
   592      * the cause as to why the method is not applicable is set on the exception
   593      * before it is thrown.
   594      */
   595     MethodCheckHandler resolveHandler = new MethodCheckHandler() {
   596             public InapplicableMethodException arityMismatch() {
   597                 return inapplicableMethodException.setMessage("arg.length.mismatch");
   598             }
   599             public InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details) {
   600                 String key = varargs ?
   601                         "varargs.argument.mismatch" :
   602                         "no.conforming.assignment.exists";
   603                 return inapplicableMethodException.setMessage(key,
   604                         details);
   605             }
   606             public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
   607                 return inapplicableMethodException.setMessage("inaccessible.varargs.type",
   608                         expected, Kinds.kindName(location), location);
   609             }
   610     };
   612     void checkRawArgumentsAcceptable(Env<AttrContext> env,
   613                                 Symbol msym,
   614                                 List<Type> argtypes,
   615                                 List<Type> formals,
   616                                 boolean allowBoxing,
   617                                 boolean useVarargs,
   618                                 Warner warn) {
   619         checkRawArgumentsAcceptable(env, msym, currentResolutionContext.attrMode(), infer.emptyContext, argtypes, formals,
   620                 allowBoxing, useVarargs, warn, resolveHandler);
   621     }
   623     /**
   624      * Main method applicability routine. Given a list of actual types A,
   625      * a list of formal types F, determines whether the types in A are
   626      * compatible (by method invocation conversion) with the types in F.
   627      *
   628      * Since this routine is shared between overload resolution and method
   629      * type-inference, a (possibly empty) inference context is used to convert
   630      * formal types to the corresponding 'undet' form ahead of a compatibility
   631      * check so that constraints can be propagated and collected.
   632      *
   633      * Moreover, if one or more types in A is a deferred type, this routine uses
   634      * DeferredAttr in order to perform deferred attribution. If one or more actual
   635      * deferred types are stuck, they are placed in a queue and revisited later
   636      * after the remainder of the arguments have been seen. If this is not sufficient
   637      * to 'unstuck' the argument, a cyclic inference error is called out.
   638      *
   639      * A method check handler (see above) is used in order to report errors.
   640      */
   641     void checkRawArgumentsAcceptable(final Env<AttrContext> env,
   642                                 Symbol msym,
   643                                 DeferredAttr.AttrMode mode,
   644                                 final Infer.InferenceContext inferenceContext,
   645                                 List<Type> argtypes,
   646                                 List<Type> formals,
   647                                 boolean allowBoxing,
   648                                 boolean useVarargs,
   649                                 Warner warn,
   650                                 final MethodCheckHandler handler) {
   651         Type varargsFormal = useVarargs ? formals.last() : null;
   653         if (varargsFormal == null &&
   654                 argtypes.size() != formals.size()) {
   655             throw handler.arityMismatch(); // not enough args
   656         }
   658         DeferredAttr.DeferredAttrContext deferredAttrContext =
   659                 deferredAttr.new DeferredAttrContext(mode, msym, currentResolutionContext.step, inferenceContext);
   661         while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   662             ResultInfo mresult = methodCheckResult(formals.head, allowBoxing, false, inferenceContext, deferredAttrContext, handler, warn);
   663             mresult.check(null, argtypes.head);
   664             argtypes = argtypes.tail;
   665             formals = formals.tail;
   666         }
   668         if (formals.head != varargsFormal) {
   669             throw handler.arityMismatch(); // not enough args
   670         }
   672         if (useVarargs) {
   673             //note: if applicability check is triggered by most specific test,
   674             //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   675             final Type elt = types.elemtype(varargsFormal);
   676             ResultInfo mresult = methodCheckResult(elt, allowBoxing, true, inferenceContext, deferredAttrContext, handler, warn);
   677             while (argtypes.nonEmpty()) {
   678                 mresult.check(null, argtypes.head);
   679                 argtypes = argtypes.tail;
   680             }
   681             //check varargs element type accessibility
   682             varargsAccessible(env, elt, handler, inferenceContext);
   683         }
   685         deferredAttrContext.complete();
   686     }
   688     void varargsAccessible(final Env<AttrContext> env, final Type t, final Resolve.MethodCheckHandler handler, final InferenceContext inferenceContext) {
   689         if (inferenceContext.free(t)) {
   690             inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   691                 @Override
   692                 public void typesInferred(InferenceContext inferenceContext) {
   693                     varargsAccessible(env, inferenceContext.asInstType(t, types), handler, inferenceContext);
   694                 }
   695             });
   696         } else {
   697             if (!isAccessible(env, t)) {
   698                 Symbol location = env.enclClass.sym;
   699                 throw handler.inaccessibleVarargs(location, t);
   700             }
   701         }
   702     }
   704     /**
   705      * Check context to be used during method applicability checks. A method check
   706      * context might contain inference variables.
   707      */
   708     abstract class MethodCheckContext implements CheckContext {
   710         MethodCheckHandler handler;
   711         boolean useVarargs;
   712         Infer.InferenceContext inferenceContext;
   713         DeferredAttrContext deferredAttrContext;
   714         Warner rsWarner;
   716         public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs,
   717                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   718             this.handler = handler;
   719             this.useVarargs = useVarargs;
   720             this.inferenceContext = inferenceContext;
   721             this.deferredAttrContext = deferredAttrContext;
   722             this.rsWarner = rsWarner;
   723         }
   725         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   726             throw handler.argumentMismatch(useVarargs, details);
   727         }
   729         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   730             return rsWarner;
   731         }
   733         public InferenceContext inferenceContext() {
   734             return inferenceContext;
   735         }
   737         public DeferredAttrContext deferredAttrContext() {
   738             return deferredAttrContext;
   739         }
   740     }
   742     /**
   743      * Subclass of method check context class that implements strict method conversion.
   744      * Strict method conversion checks compatibility between types using subtyping tests.
   745      */
   746     class StrictMethodContext extends MethodCheckContext {
   748         public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs,
   749                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   750             super(handler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   751         }
   753         public boolean compatible(Type found, Type req, Warner warn) {
   754             return types.isSubtypeUnchecked(found, inferenceContext.asFree(req, types), warn);
   755         }
   756     }
   758     /**
   759      * Subclass of method check context class that implements loose method conversion.
   760      * Loose method conversion checks compatibility between types using method conversion tests.
   761      */
   762     class LooseMethodContext extends MethodCheckContext {
   764         public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs,
   765                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   766             super(handler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   767         }
   769         public boolean compatible(Type found, Type req, Warner warn) {
   770             return types.isConvertible(found, inferenceContext.asFree(req, types), warn);
   771         }
   772     }
   774     /**
   775      * Create a method check context to be used during method applicability check
   776      */
   777     ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
   778             Infer.InferenceContext inferenceContext, DeferredAttr.DeferredAttrContext deferredAttrContext,
   779             MethodCheckHandler methodHandler, Warner rsWarner) {
   780         MethodCheckContext checkContext = allowBoxing ?
   781                 new LooseMethodContext(methodHandler, useVarargs, inferenceContext, deferredAttrContext, rsWarner) :
   782                 new StrictMethodContext(methodHandler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   783         return new MethodResultInfo(to, checkContext, deferredAttrContext);
   784     }
   786     class MethodResultInfo extends ResultInfo {
   788         DeferredAttr.DeferredAttrContext deferredAttrContext;
   790         public MethodResultInfo(Type pt, MethodCheckContext checkContext, DeferredAttr.DeferredAttrContext deferredAttrContext) {
   791             attr.super(VAL, pt, checkContext);
   792             this.deferredAttrContext = deferredAttrContext;
   793         }
   795         @Override
   796         protected Type check(DiagnosticPosition pos, Type found) {
   797             if (found.tag == DEFERRED) {
   798                 DeferredType dt = (DeferredType)found;
   799                 return dt.check(this);
   800             } else {
   801                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   802             }
   803         }
   805         @Override
   806         protected MethodResultInfo dup(Type newPt) {
   807             return new MethodResultInfo(newPt, (MethodCheckContext)checkContext, deferredAttrContext);
   808         }
   809     }
   811     public static class InapplicableMethodException extends RuntimeException {
   812         private static final long serialVersionUID = 0;
   814         JCDiagnostic diagnostic;
   815         JCDiagnostic.Factory diags;
   817         InapplicableMethodException(JCDiagnostic.Factory diags) {
   818             this.diagnostic = null;
   819             this.diags = diags;
   820         }
   821         InapplicableMethodException setMessage() {
   822             return setMessage((JCDiagnostic)null);
   823         }
   824         InapplicableMethodException setMessage(String key) {
   825             return setMessage(key != null ? diags.fragment(key) : null);
   826         }
   827         InapplicableMethodException setMessage(String key, Object... args) {
   828             return setMessage(key != null ? diags.fragment(key, args) : null);
   829         }
   830         InapplicableMethodException setMessage(JCDiagnostic diag) {
   831             this.diagnostic = diag;
   832             return this;
   833         }
   835         public JCDiagnostic getDiagnostic() {
   836             return diagnostic;
   837         }
   838     }
   839     private final InapplicableMethodException inapplicableMethodException;
   841 /* ***************************************************************************
   842  *  Symbol lookup
   843  *  the following naming conventions for arguments are used
   844  *
   845  *       env      is the environment where the symbol was mentioned
   846  *       site     is the type of which the symbol is a member
   847  *       name     is the symbol's name
   848  *                if no arguments are given
   849  *       argtypes are the value arguments, if we search for a method
   850  *
   851  *  If no symbol was found, a ResolveError detailing the problem is returned.
   852  ****************************************************************************/
   854     /** Find field. Synthetic fields are always skipped.
   855      *  @param env     The current environment.
   856      *  @param site    The original type from where the selection takes place.
   857      *  @param name    The name of the field.
   858      *  @param c       The class to search for the field. This is always
   859      *                 a superclass or implemented interface of site's class.
   860      */
   861     Symbol findField(Env<AttrContext> env,
   862                      Type site,
   863                      Name name,
   864                      TypeSymbol c) {
   865         while (c.type.tag == TYPEVAR)
   866             c = c.type.getUpperBound().tsym;
   867         Symbol bestSoFar = varNotFound;
   868         Symbol sym;
   869         Scope.Entry e = c.members().lookup(name);
   870         while (e.scope != null) {
   871             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   872                 return isAccessible(env, site, e.sym)
   873                     ? e.sym : new AccessError(env, site, e.sym);
   874             }
   875             e = e.next();
   876         }
   877         Type st = types.supertype(c.type);
   878         if (st != null && (st.tag == CLASS || st.tag == TYPEVAR)) {
   879             sym = findField(env, site, name, st.tsym);
   880             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   881         }
   882         for (List<Type> l = types.interfaces(c.type);
   883              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   884              l = l.tail) {
   885             sym = findField(env, site, name, l.head.tsym);
   886             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   887                 sym.owner != bestSoFar.owner)
   888                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   889             else if (sym.kind < bestSoFar.kind)
   890                 bestSoFar = sym;
   891         }
   892         return bestSoFar;
   893     }
   895     /** Resolve a field identifier, throw a fatal error if not found.
   896      *  @param pos       The position to use for error reporting.
   897      *  @param env       The environment current at the method invocation.
   898      *  @param site      The type of the qualifying expression, in which
   899      *                   identifier is searched.
   900      *  @param name      The identifier's name.
   901      */
   902     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   903                                           Type site, Name name) {
   904         Symbol sym = findField(env, site, name, site.tsym);
   905         if (sym.kind == VAR) return (VarSymbol)sym;
   906         else throw new FatalError(
   907                  diags.fragment("fatal.err.cant.locate.field",
   908                                 name));
   909     }
   911     /** Find unqualified variable or field with given name.
   912      *  Synthetic fields always skipped.
   913      *  @param env     The current environment.
   914      *  @param name    The name of the variable or field.
   915      */
   916     Symbol findVar(Env<AttrContext> env, Name name) {
   917         Symbol bestSoFar = varNotFound;
   918         Symbol sym;
   919         Env<AttrContext> env1 = env;
   920         boolean staticOnly = false;
   921         while (env1.outer != null) {
   922             if (isStatic(env1)) staticOnly = true;
   923             Scope.Entry e = env1.info.scope.lookup(name);
   924             while (e.scope != null &&
   925                    (e.sym.kind != VAR ||
   926                     (e.sym.flags_field & SYNTHETIC) != 0))
   927                 e = e.next();
   928             sym = (e.scope != null)
   929                 ? e.sym
   930                 : findField(
   931                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   932             if (sym.exists()) {
   933                 if (staticOnly &&
   934                     sym.kind == VAR &&
   935                     sym.owner.kind == TYP &&
   936                     (sym.flags() & STATIC) == 0)
   937                     return new StaticError(sym);
   938                 else
   939                     return sym;
   940             } else if (sym.kind < bestSoFar.kind) {
   941                 bestSoFar = sym;
   942             }
   944             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   945             env1 = env1.outer;
   946         }
   948         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   949         if (sym.exists())
   950             return sym;
   951         if (bestSoFar.exists())
   952             return bestSoFar;
   954         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   955         for (; e.scope != null; e = e.next()) {
   956             sym = e.sym;
   957             Type origin = e.getOrigin().owner.type;
   958             if (sym.kind == VAR) {
   959                 if (e.sym.owner.type != origin)
   960                     sym = sym.clone(e.getOrigin().owner);
   961                 return isAccessible(env, origin, sym)
   962                     ? sym : new AccessError(env, origin, sym);
   963             }
   964         }
   966         Symbol origin = null;
   967         e = env.toplevel.starImportScope.lookup(name);
   968         for (; e.scope != null; e = e.next()) {
   969             sym = e.sym;
   970             if (sym.kind != VAR)
   971                 continue;
   972             // invariant: sym.kind == VAR
   973             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
   974                 return new AmbiguityError(bestSoFar, sym);
   975             else if (bestSoFar.kind >= VAR) {
   976                 origin = e.getOrigin().owner;
   977                 bestSoFar = isAccessible(env, origin.type, sym)
   978                     ? sym : new AccessError(env, origin.type, sym);
   979             }
   980         }
   981         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
   982             return bestSoFar.clone(origin);
   983         else
   984             return bestSoFar;
   985     }
   987     Warner noteWarner = new Warner();
   989     /** Select the best method for a call site among two choices.
   990      *  @param env              The current environment.
   991      *  @param site             The original type from where the
   992      *                          selection takes place.
   993      *  @param argtypes         The invocation's value arguments,
   994      *  @param typeargtypes     The invocation's type arguments,
   995      *  @param sym              Proposed new best match.
   996      *  @param bestSoFar        Previously found best match.
   997      *  @param allowBoxing Allow boxing conversions of arguments.
   998      *  @param useVarargs Box trailing arguments into an array for varargs.
   999      */
  1000     @SuppressWarnings("fallthrough")
  1001     Symbol selectBest(Env<AttrContext> env,
  1002                       Type site,
  1003                       List<Type> argtypes,
  1004                       List<Type> typeargtypes,
  1005                       Symbol sym,
  1006                       Symbol bestSoFar,
  1007                       boolean allowBoxing,
  1008                       boolean useVarargs,
  1009                       boolean operator) {
  1010         if (sym.kind == ERR) return bestSoFar;
  1011         if (!sym.isInheritedIn(site.tsym, types)) return bestSoFar;
  1012         Assert.check(sym.kind < AMBIGUOUS);
  1013         try {
  1014             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1015                                allowBoxing, useVarargs, Warner.noWarnings);
  1016             if (!operator)
  1017                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1018         } catch (InapplicableMethodException ex) {
  1019             if (!operator)
  1020                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1021             switch (bestSoFar.kind) {
  1022             case ABSENT_MTH:
  1023                 return wrongMethod;
  1024             case WRONG_MTH:
  1025                 if (operator) return bestSoFar;
  1026             case WRONG_MTHS:
  1027                 return wrongMethods;
  1028             default:
  1029                 return bestSoFar;
  1032         if (!isAccessible(env, site, sym)) {
  1033             return (bestSoFar.kind == ABSENT_MTH)
  1034                 ? new AccessError(env, site, sym)
  1035                 : bestSoFar;
  1037         return (bestSoFar.kind > AMBIGUOUS)
  1038             ? sym
  1039             : mostSpecific(sym, bestSoFar, env, site,
  1040                            allowBoxing && operator, useVarargs);
  1043     /* Return the most specific of the two methods for a call,
  1044      *  given that both are accessible and applicable.
  1045      *  @param m1               A new candidate for most specific.
  1046      *  @param m2               The previous most specific candidate.
  1047      *  @param env              The current environment.
  1048      *  @param site             The original type from where the selection
  1049      *                          takes place.
  1050      *  @param allowBoxing Allow boxing conversions of arguments.
  1051      *  @param useVarargs Box trailing arguments into an array for varargs.
  1052      */
  1053     Symbol mostSpecific(Symbol m1,
  1054                         Symbol m2,
  1055                         Env<AttrContext> env,
  1056                         final Type site,
  1057                         boolean allowBoxing,
  1058                         boolean useVarargs) {
  1059         switch (m2.kind) {
  1060         case MTH:
  1061             if (m1 == m2) return m1;
  1062             boolean m1SignatureMoreSpecific = signatureMoreSpecific(env, site, m1, m2, allowBoxing, useVarargs);
  1063             boolean m2SignatureMoreSpecific = signatureMoreSpecific(env, site, m2, m1, allowBoxing, useVarargs);
  1064             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1065                 Type mt1 = types.memberType(site, m1);
  1066                 Type mt2 = types.memberType(site, m2);
  1067                 if (!types.overrideEquivalent(mt1, mt2))
  1068                     return ambiguityError(m1, m2);
  1070                 // same signature; select (a) the non-bridge method, or
  1071                 // (b) the one that overrides the other, or (c) the concrete
  1072                 // one, or (d) merge both abstract signatures
  1073                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1074                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1076                 // if one overrides or hides the other, use it
  1077                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1078                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1079                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1080                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1081                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1082                     m1.overrides(m2, m1Owner, types, false))
  1083                     return m1;
  1084                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1085                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1086                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1087                     m2.overrides(m1, m2Owner, types, false))
  1088                     return m2;
  1089                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1090                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1091                 if (m1Abstract && !m2Abstract) return m2;
  1092                 if (m2Abstract && !m1Abstract) return m1;
  1093                 // both abstract or both concrete
  1094                 if (!m1Abstract && !m2Abstract)
  1095                     return ambiguityError(m1, m2);
  1096                 // check that both signatures have the same erasure
  1097                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1098                                        m2.erasure(types).getParameterTypes()))
  1099                     return ambiguityError(m1, m2);
  1100                 // both abstract, neither overridden; merge throws clause and result type
  1101                 Type mst = mostSpecificReturnType(mt1, mt2);
  1102                 if (mst == null) {
  1103                     // Theoretically, this can't happen, but it is possible
  1104                     // due to error recovery or mixing incompatible class files
  1105                     return ambiguityError(m1, m2);
  1107                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1108                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1109                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1110                 MethodSymbol result = new MethodSymbol(
  1111                         mostSpecific.flags(),
  1112                         mostSpecific.name,
  1113                         newSig,
  1114                         mostSpecific.owner) {
  1115                     @Override
  1116                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1117                         if (origin == site.tsym)
  1118                             return this;
  1119                         else
  1120                             return super.implementation(origin, types, checkResult);
  1122                     };
  1123                 return result;
  1125             if (m1SignatureMoreSpecific) return m1;
  1126             if (m2SignatureMoreSpecific) return m2;
  1127             return ambiguityError(m1, m2);
  1128         case AMBIGUOUS:
  1129             AmbiguityError e = (AmbiguityError)m2;
  1130             Symbol err1 = mostSpecific(m1, e.sym, env, site, allowBoxing, useVarargs);
  1131             Symbol err2 = mostSpecific(m1, e.sym2, env, site, allowBoxing, useVarargs);
  1132             if (err1 == err2) return err1;
  1133             if (err1 == e.sym && err2 == e.sym2) return m2;
  1134             if (err1 instanceof AmbiguityError &&
  1135                 err2 instanceof AmbiguityError &&
  1136                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1137                 return ambiguityError(m1, m2);
  1138             else
  1139                 return ambiguityError(err1, err2);
  1140         default:
  1141             throw new AssertionError();
  1144     //where
  1145     private boolean signatureMoreSpecific(Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1146         noteWarner.clear();
  1147         Type mtype1 = types.memberType(site, adjustVarargs(m1, m2, useVarargs));
  1148         Type mtype2 = instantiate(env, site, adjustVarargs(m2, m1, useVarargs), null,
  1149                 types.lowerBoundArgtypes(mtype1), null,
  1150                 allowBoxing, false, noteWarner);
  1151         return mtype2 != null &&
  1152                 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1154     //where
  1155     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1156         List<Type> fromArgs = from.type.getParameterTypes();
  1157         List<Type> toArgs = to.type.getParameterTypes();
  1158         if (useVarargs &&
  1159                 (from.flags() & VARARGS) != 0 &&
  1160                 (to.flags() & VARARGS) != 0) {
  1161             Type varargsTypeFrom = fromArgs.last();
  1162             Type varargsTypeTo = toArgs.last();
  1163             ListBuffer<Type> args = ListBuffer.lb();
  1164             if (toArgs.length() < fromArgs.length()) {
  1165                 //if we are checking a varargs method 'from' against another varargs
  1166                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1167                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1168                 //until 'to' signature has the same arity as 'from')
  1169                 while (fromArgs.head != varargsTypeFrom) {
  1170                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1171                     fromArgs = fromArgs.tail;
  1172                     toArgs = toArgs.head == varargsTypeTo ?
  1173                         toArgs :
  1174                         toArgs.tail;
  1176             } else {
  1177                 //formal argument list is same as original list where last
  1178                 //argument (array type) is removed
  1179                 args.appendList(toArgs.reverse().tail.reverse());
  1181             //append varargs element type as last synthetic formal
  1182             args.append(types.elemtype(varargsTypeTo));
  1183             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1184             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1185         } else {
  1186             return to;
  1189     //where
  1190     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1191         Type rt1 = mt1.getReturnType();
  1192         Type rt2 = mt2.getReturnType();
  1194         if (mt1.tag == FORALL && mt2.tag == FORALL) {
  1195             //if both are generic methods, adjust return type ahead of subtyping check
  1196             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1198         //first use subtyping, then return type substitutability
  1199         if (types.isSubtype(rt1, rt2)) {
  1200             return mt1;
  1201         } else if (types.isSubtype(rt2, rt1)) {
  1202             return mt2;
  1203         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1204             return mt1;
  1205         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1206             return mt2;
  1207         } else {
  1208             return null;
  1211     //where
  1212     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1213         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1214             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1215         } else {
  1216             return new AmbiguityError(m1, m2);
  1220     /** Find best qualified method matching given name, type and value
  1221      *  arguments.
  1222      *  @param env       The current environment.
  1223      *  @param site      The original type from where the selection
  1224      *                   takes place.
  1225      *  @param name      The method's name.
  1226      *  @param argtypes  The method's value arguments.
  1227      *  @param typeargtypes The method's type arguments
  1228      *  @param allowBoxing Allow boxing conversions of arguments.
  1229      *  @param useVarargs Box trailing arguments into an array for varargs.
  1230      */
  1231     Symbol findMethod(Env<AttrContext> env,
  1232                       Type site,
  1233                       Name name,
  1234                       List<Type> argtypes,
  1235                       List<Type> typeargtypes,
  1236                       boolean allowBoxing,
  1237                       boolean useVarargs,
  1238                       boolean operator) {
  1239         Symbol bestSoFar = methodNotFound;
  1240         bestSoFar = findMethod(env,
  1241                           site,
  1242                           name,
  1243                           argtypes,
  1244                           typeargtypes,
  1245                           site.tsym.type,
  1246                           bestSoFar,
  1247                           allowBoxing,
  1248                           useVarargs,
  1249                           operator);
  1250         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1251         return bestSoFar;
  1253     // where
  1254     private Symbol findMethod(Env<AttrContext> env,
  1255                               Type site,
  1256                               Name name,
  1257                               List<Type> argtypes,
  1258                               List<Type> typeargtypes,
  1259                               Type intype,
  1260                               Symbol bestSoFar,
  1261                               boolean allowBoxing,
  1262                               boolean useVarargs,
  1263                               boolean operator) {
  1264         boolean abstractOk = true;
  1265         List<Type> itypes = List.nil();
  1266         for (TypeSymbol s : superclasses(intype)) {
  1267             bestSoFar = lookupMethod(env, site, name, argtypes, typeargtypes,
  1268                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1269             //We should not look for abstract methods if receiver is a concrete class
  1270             //(as concrete classes are expected to implement all abstracts coming
  1271             //from superinterfaces)
  1272             abstractOk &= (s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0;
  1273             if (abstractOk) {
  1274                 for (Type itype : types.interfaces(s.type)) {
  1275                     itypes = types.union(types.closure(itype), itypes);
  1278             if (name == names.init) break;
  1281         Symbol concrete = bestSoFar.kind < ERR &&
  1282                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1283                 bestSoFar : methodNotFound;
  1285         if (name != names.init) {
  1286             //keep searching for abstract methods
  1287             for (Type itype : itypes) {
  1288                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1289                 bestSoFar = lookupMethod(env, site, name, argtypes, typeargtypes,
  1290                     itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1291                     if (concrete != bestSoFar &&
  1292                             concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1293                             types.isSubSignature(concrete.type, bestSoFar.type)) {
  1294                         //this is an hack - as javac does not do full membership checks
  1295                         //most specific ends up comparing abstract methods that might have
  1296                         //been implemented by some concrete method in a subclass and,
  1297                         //because of raw override, it is possible for an abstract method
  1298                         //to be more specific than the concrete method - so we need
  1299                         //to explicitly call that out (see CR 6178365)
  1300                         bestSoFar = concrete;
  1304         return bestSoFar;
  1307     /**
  1308      * Return an Iterable object to scan the superclasses of a given type.
  1309      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1310      * access more supertypes than strictly needed (as this could trigger completion
  1311      * errors if some of the not-needed supertypes are missing/ill-formed).
  1312      */
  1313     Iterable<TypeSymbol> superclasses(final Type intype) {
  1314         return new Iterable<TypeSymbol>() {
  1315             public Iterator<TypeSymbol> iterator() {
  1316                 return new Iterator<TypeSymbol>() {
  1318                     List<TypeSymbol> seen = List.nil();
  1319                     TypeSymbol currentSym = symbolFor(intype);
  1320                     TypeSymbol prevSym = null;
  1322                     public boolean hasNext() {
  1323                         if (currentSym == syms.noSymbol) {
  1324                             currentSym = symbolFor(types.supertype(prevSym.type));
  1326                         return currentSym != null;
  1329                     public TypeSymbol next() {
  1330                         prevSym = currentSym;
  1331                         currentSym = syms.noSymbol;
  1332                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1333                         return prevSym;
  1336                     public void remove() {
  1337                         throw new UnsupportedOperationException();
  1340                     TypeSymbol symbolFor(Type t) {
  1341                         if (t.tag != CLASS &&
  1342                                 t.tag != TYPEVAR) {
  1343                             return null;
  1345                         while (t.tag == TYPEVAR)
  1346                             t = t.getUpperBound();
  1347                         if (seen.contains(t.tsym)) {
  1348                             //degenerate case in which we have a circular
  1349                             //class hierarchy - because of ill-formed classfiles
  1350                             return null;
  1352                         seen = seen.prepend(t.tsym);
  1353                         return t.tsym;
  1355                 };
  1357         };
  1360     /**
  1361      * Lookup a method with given name and argument types in a given scope
  1362      */
  1363     Symbol lookupMethod(Env<AttrContext> env,
  1364             Type site,
  1365             Name name,
  1366             List<Type> argtypes,
  1367             List<Type> typeargtypes,
  1368             Scope sc,
  1369             Symbol bestSoFar,
  1370             boolean allowBoxing,
  1371             boolean useVarargs,
  1372             boolean operator,
  1373             boolean abstractok) {
  1374         for (Symbol s : sc.getElementsByName(name, lookupFilter)) {
  1375             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1376                     bestSoFar, allowBoxing, useVarargs, operator);
  1378         return bestSoFar;
  1380     //where
  1381         Filter<Symbol> lookupFilter = new Filter<Symbol>() {
  1382             public boolean accepts(Symbol s) {
  1383                 return s.kind == MTH &&
  1384                         (s.flags() & SYNTHETIC) == 0;
  1386         };
  1388     /** Find unqualified method matching given name, type and value arguments.
  1389      *  @param env       The current environment.
  1390      *  @param name      The method's name.
  1391      *  @param argtypes  The method's value arguments.
  1392      *  @param typeargtypes  The method's type arguments.
  1393      *  @param allowBoxing Allow boxing conversions of arguments.
  1394      *  @param useVarargs Box trailing arguments into an array for varargs.
  1395      */
  1396     Symbol findFun(Env<AttrContext> env, Name name,
  1397                    List<Type> argtypes, List<Type> typeargtypes,
  1398                    boolean allowBoxing, boolean useVarargs) {
  1399         Symbol bestSoFar = methodNotFound;
  1400         Symbol sym;
  1401         Env<AttrContext> env1 = env;
  1402         boolean staticOnly = false;
  1403         while (env1.outer != null) {
  1404             if (isStatic(env1)) staticOnly = true;
  1405             sym = findMethod(
  1406                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1407                 allowBoxing, useVarargs, false);
  1408             if (sym.exists()) {
  1409                 if (staticOnly &&
  1410                     sym.kind == MTH &&
  1411                     sym.owner.kind == TYP &&
  1412                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1413                 else return sym;
  1414             } else if (sym.kind < bestSoFar.kind) {
  1415                 bestSoFar = sym;
  1417             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1418             env1 = env1.outer;
  1421         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1422                          typeargtypes, allowBoxing, useVarargs, false);
  1423         if (sym.exists())
  1424             return sym;
  1426         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1427         for (; e.scope != null; e = e.next()) {
  1428             sym = e.sym;
  1429             Type origin = e.getOrigin().owner.type;
  1430             if (sym.kind == MTH) {
  1431                 if (e.sym.owner.type != origin)
  1432                     sym = sym.clone(e.getOrigin().owner);
  1433                 if (!isAccessible(env, origin, sym))
  1434                     sym = new AccessError(env, origin, sym);
  1435                 bestSoFar = selectBest(env, origin,
  1436                                        argtypes, typeargtypes,
  1437                                        sym, bestSoFar,
  1438                                        allowBoxing, useVarargs, false);
  1441         if (bestSoFar.exists())
  1442             return bestSoFar;
  1444         e = env.toplevel.starImportScope.lookup(name);
  1445         for (; e.scope != null; e = e.next()) {
  1446             sym = e.sym;
  1447             Type origin = e.getOrigin().owner.type;
  1448             if (sym.kind == MTH) {
  1449                 if (e.sym.owner.type != origin)
  1450                     sym = sym.clone(e.getOrigin().owner);
  1451                 if (!isAccessible(env, origin, sym))
  1452                     sym = new AccessError(env, origin, sym);
  1453                 bestSoFar = selectBest(env, origin,
  1454                                        argtypes, typeargtypes,
  1455                                        sym, bestSoFar,
  1456                                        allowBoxing, useVarargs, false);
  1459         return bestSoFar;
  1462     /** Load toplevel or member class with given fully qualified name and
  1463      *  verify that it is accessible.
  1464      *  @param env       The current environment.
  1465      *  @param name      The fully qualified name of the class to be loaded.
  1466      */
  1467     Symbol loadClass(Env<AttrContext> env, Name name) {
  1468         try {
  1469             ClassSymbol c = reader.loadClass(name);
  1470             return isAccessible(env, c) ? c : new AccessError(c);
  1471         } catch (ClassReader.BadClassFile err) {
  1472             throw err;
  1473         } catch (CompletionFailure ex) {
  1474             return typeNotFound;
  1478     /** Find qualified member type.
  1479      *  @param env       The current environment.
  1480      *  @param site      The original type from where the selection takes
  1481      *                   place.
  1482      *  @param name      The type's name.
  1483      *  @param c         The class to search for the member type. This is
  1484      *                   always a superclass or implemented interface of
  1485      *                   site's class.
  1486      */
  1487     Symbol findMemberType(Env<AttrContext> env,
  1488                           Type site,
  1489                           Name name,
  1490                           TypeSymbol c) {
  1491         Symbol bestSoFar = typeNotFound;
  1492         Symbol sym;
  1493         Scope.Entry e = c.members().lookup(name);
  1494         while (e.scope != null) {
  1495             if (e.sym.kind == TYP) {
  1496                 return isAccessible(env, site, e.sym)
  1497                     ? e.sym
  1498                     : new AccessError(env, site, e.sym);
  1500             e = e.next();
  1502         Type st = types.supertype(c.type);
  1503         if (st != null && st.tag == CLASS) {
  1504             sym = findMemberType(env, site, name, st.tsym);
  1505             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1507         for (List<Type> l = types.interfaces(c.type);
  1508              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1509              l = l.tail) {
  1510             sym = findMemberType(env, site, name, l.head.tsym);
  1511             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1512                 sym.owner != bestSoFar.owner)
  1513                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1514             else if (sym.kind < bestSoFar.kind)
  1515                 bestSoFar = sym;
  1517         return bestSoFar;
  1520     /** Find a global type in given scope and load corresponding class.
  1521      *  @param env       The current environment.
  1522      *  @param scope     The scope in which to look for the type.
  1523      *  @param name      The type's name.
  1524      */
  1525     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1526         Symbol bestSoFar = typeNotFound;
  1527         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1528             Symbol sym = loadClass(env, e.sym.flatName());
  1529             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1530                 bestSoFar != sym)
  1531                 return new AmbiguityError(bestSoFar, sym);
  1532             else if (sym.kind < bestSoFar.kind)
  1533                 bestSoFar = sym;
  1535         return bestSoFar;
  1538     /** Find an unqualified type symbol.
  1539      *  @param env       The current environment.
  1540      *  @param name      The type's name.
  1541      */
  1542     Symbol findType(Env<AttrContext> env, Name name) {
  1543         Symbol bestSoFar = typeNotFound;
  1544         Symbol sym;
  1545         boolean staticOnly = false;
  1546         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1547             if (isStatic(env1)) staticOnly = true;
  1548             for (Scope.Entry e = env1.info.scope.lookup(name);
  1549                  e.scope != null;
  1550                  e = e.next()) {
  1551                 if (e.sym.kind == TYP) {
  1552                     if (staticOnly &&
  1553                         e.sym.type.tag == TYPEVAR &&
  1554                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1555                     return e.sym;
  1559             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1560                                  env1.enclClass.sym);
  1561             if (staticOnly && sym.kind == TYP &&
  1562                 sym.type.tag == CLASS &&
  1563                 sym.type.getEnclosingType().tag == CLASS &&
  1564                 env1.enclClass.sym.type.isParameterized() &&
  1565                 sym.type.getEnclosingType().isParameterized())
  1566                 return new StaticError(sym);
  1567             else if (sym.exists()) return sym;
  1568             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1570             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1571             if ((encl.sym.flags() & STATIC) != 0)
  1572                 staticOnly = true;
  1575         if (!env.tree.hasTag(IMPORT)) {
  1576             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1577             if (sym.exists()) return sym;
  1578             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1580             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1581             if (sym.exists()) return sym;
  1582             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1584             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1585             if (sym.exists()) return sym;
  1586             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1589         return bestSoFar;
  1592     /** Find an unqualified identifier which matches a specified kind set.
  1593      *  @param env       The current environment.
  1594      *  @param name      The indentifier's name.
  1595      *  @param kind      Indicates the possible symbol kinds
  1596      *                   (a subset of VAL, TYP, PCK).
  1597      */
  1598     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1599         Symbol bestSoFar = typeNotFound;
  1600         Symbol sym;
  1602         if ((kind & VAR) != 0) {
  1603             sym = findVar(env, name);
  1604             if (sym.exists()) return sym;
  1605             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1608         if ((kind & TYP) != 0) {
  1609             sym = findType(env, name);
  1610             if (sym.exists()) return sym;
  1611             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1614         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1615         else return bestSoFar;
  1618     /** Find an identifier in a package which matches a specified kind set.
  1619      *  @param env       The current environment.
  1620      *  @param name      The identifier's name.
  1621      *  @param kind      Indicates the possible symbol kinds
  1622      *                   (a nonempty subset of TYP, PCK).
  1623      */
  1624     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1625                               Name name, int kind) {
  1626         Name fullname = TypeSymbol.formFullName(name, pck);
  1627         Symbol bestSoFar = typeNotFound;
  1628         PackageSymbol pack = null;
  1629         if ((kind & PCK) != 0) {
  1630             pack = reader.enterPackage(fullname);
  1631             if (pack.exists()) return pack;
  1633         if ((kind & TYP) != 0) {
  1634             Symbol sym = loadClass(env, fullname);
  1635             if (sym.exists()) {
  1636                 // don't allow programs to use flatnames
  1637                 if (name == sym.name) return sym;
  1639             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1641         return (pack != null) ? pack : bestSoFar;
  1644     /** Find an identifier among the members of a given type `site'.
  1645      *  @param env       The current environment.
  1646      *  @param site      The type containing the symbol to be found.
  1647      *  @param name      The identifier's name.
  1648      *  @param kind      Indicates the possible symbol kinds
  1649      *                   (a subset of VAL, TYP).
  1650      */
  1651     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1652                            Name name, int kind) {
  1653         Symbol bestSoFar = typeNotFound;
  1654         Symbol sym;
  1655         if ((kind & VAR) != 0) {
  1656             sym = findField(env, site, name, site.tsym);
  1657             if (sym.exists()) return sym;
  1658             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1661         if ((kind & TYP) != 0) {
  1662             sym = findMemberType(env, site, name, site.tsym);
  1663             if (sym.exists()) return sym;
  1664             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1666         return bestSoFar;
  1669 /* ***************************************************************************
  1670  *  Access checking
  1671  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1672  *  an error message in the process
  1673  ****************************************************************************/
  1675     /** If `sym' is a bad symbol: report error and return errSymbol
  1676      *  else pass through unchanged,
  1677      *  additional arguments duplicate what has been used in trying to find the
  1678      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  1679      *  expect misses to happen frequently.
  1681      *  @param sym       The symbol that was found, or a ResolveError.
  1682      *  @param pos       The position to use for error reporting.
  1683      *  @param location  The symbol the served as a context for this lookup
  1684      *  @param site      The original type from where the selection took place.
  1685      *  @param name      The symbol's name.
  1686      *  @param qualified Did we get here through a qualified expression resolution?
  1687      *  @param argtypes  The invocation's value arguments,
  1688      *                   if we looked for a method.
  1689      *  @param typeargtypes  The invocation's type arguments,
  1690      *                   if we looked for a method.
  1691      *  @param logResolveHelper helper class used to log resolve errors
  1692      */
  1693     Symbol accessInternal(Symbol sym,
  1694                   DiagnosticPosition pos,
  1695                   Symbol location,
  1696                   Type site,
  1697                   Name name,
  1698                   boolean qualified,
  1699                   List<Type> argtypes,
  1700                   List<Type> typeargtypes,
  1701                   LogResolveHelper logResolveHelper) {
  1702         if (sym.kind >= AMBIGUOUS) {
  1703             ResolveError errSym = (ResolveError)sym;
  1704             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1705             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  1706             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  1707                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1710         return sym;
  1713     /**
  1714      * Variant of the generalized access routine, to be used for generating method
  1715      * resolution diagnostics
  1716      */
  1717     Symbol accessMethod(Symbol sym,
  1718                   DiagnosticPosition pos,
  1719                   Symbol location,
  1720                   Type site,
  1721                   Name name,
  1722                   boolean qualified,
  1723                   List<Type> argtypes,
  1724                   List<Type> typeargtypes) {
  1725         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  1728     /** Same as original accessMethod(), but without location.
  1729      */
  1730     Symbol accessMethod(Symbol sym,
  1731                   DiagnosticPosition pos,
  1732                   Type site,
  1733                   Name name,
  1734                   boolean qualified,
  1735                   List<Type> argtypes,
  1736                   List<Type> typeargtypes) {
  1737         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1740     /**
  1741      * Variant of the generalized access routine, to be used for generating variable,
  1742      * type resolution diagnostics
  1743      */
  1744     Symbol accessBase(Symbol sym,
  1745                   DiagnosticPosition pos,
  1746                   Symbol location,
  1747                   Type site,
  1748                   Name name,
  1749                   boolean qualified) {
  1750         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  1753     /** Same as original accessBase(), but without location.
  1754      */
  1755     Symbol accessBase(Symbol sym,
  1756                   DiagnosticPosition pos,
  1757                   Type site,
  1758                   Name name,
  1759                   boolean qualified) {
  1760         return accessBase(sym, pos, site.tsym, site, name, qualified);
  1763     interface LogResolveHelper {
  1764         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  1765         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  1768     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  1769         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1770             return !site.isErroneous();
  1772         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1773             return argtypes;
  1775     };
  1777     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  1778         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1779             return !site.isErroneous() &&
  1780                         !Type.isErroneous(argtypes) &&
  1781                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  1783         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1784             if (syms.operatorNames.contains(name)) {
  1785                 return argtypes;
  1786             } else {
  1787                 Symbol msym = errSym.kind == WRONG_MTH ?
  1788                         ((InapplicableSymbolError)errSym).errCandidate().sym : accessedSym;
  1790                 List<Type> argtypes2 = Type.map(argtypes,
  1791                         deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, msym, currentResolutionContext.firstErroneousResolutionPhase()));
  1793                 if (msym != accessedSym) {
  1794                     //fixup deferred type caches - this 'hack' is required because the symbol
  1795                     //returned by InapplicableSymbolError.access() will hide the candidate
  1796                     //method symbol that can be used for lookups in the speculative cache,
  1797                     //causing problems in Attr.checkId()
  1798                     for (Type t : argtypes) {
  1799                         if (t.tag == DEFERRED) {
  1800                             DeferredType dt = (DeferredType)t;
  1801                             dt.speculativeCache.dupAllTo(msym, accessedSym);
  1805                 return argtypes2;
  1808     };
  1810     /** Check that sym is not an abstract method.
  1811      */
  1812     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1813         if ((sym.flags() & ABSTRACT) != 0)
  1814             log.error(pos, "abstract.cant.be.accessed.directly",
  1815                       kindName(sym), sym, sym.location());
  1818 /* ***************************************************************************
  1819  *  Debugging
  1820  ****************************************************************************/
  1822     /** print all scopes starting with scope s and proceeding outwards.
  1823      *  used for debugging.
  1824      */
  1825     public void printscopes(Scope s) {
  1826         while (s != null) {
  1827             if (s.owner != null)
  1828                 System.err.print(s.owner + ": ");
  1829             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1830                 if ((e.sym.flags() & ABSTRACT) != 0)
  1831                     System.err.print("abstract ");
  1832                 System.err.print(e.sym + " ");
  1834             System.err.println();
  1835             s = s.next;
  1839     void printscopes(Env<AttrContext> env) {
  1840         while (env.outer != null) {
  1841             System.err.println("------------------------------");
  1842             printscopes(env.info.scope);
  1843             env = env.outer;
  1847     public void printscopes(Type t) {
  1848         while (t.tag == CLASS) {
  1849             printscopes(t.tsym.members());
  1850             t = types.supertype(t);
  1854 /* ***************************************************************************
  1855  *  Name resolution
  1856  *  Naming conventions are as for symbol lookup
  1857  *  Unlike the find... methods these methods will report access errors
  1858  ****************************************************************************/
  1860     /** Resolve an unqualified (non-method) identifier.
  1861      *  @param pos       The position to use for error reporting.
  1862      *  @param env       The environment current at the identifier use.
  1863      *  @param name      The identifier's name.
  1864      *  @param kind      The set of admissible symbol kinds for the identifier.
  1865      */
  1866     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  1867                         Name name, int kind) {
  1868         return accessBase(
  1869             findIdent(env, name, kind),
  1870             pos, env.enclClass.sym.type, name, false);
  1873     /** Resolve an unqualified method identifier.
  1874      *  @param pos       The position to use for error reporting.
  1875      *  @param env       The environment current at the method invocation.
  1876      *  @param name      The identifier's name.
  1877      *  @param argtypes  The types of the invocation's value arguments.
  1878      *  @param typeargtypes  The types of the invocation's type arguments.
  1879      */
  1880     Symbol resolveMethod(DiagnosticPosition pos,
  1881                          Env<AttrContext> env,
  1882                          Name name,
  1883                          List<Type> argtypes,
  1884                          List<Type> typeargtypes) {
  1885         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1886         try {
  1887             currentResolutionContext = new MethodResolutionContext();
  1888             Symbol sym = methodNotFound;
  1889             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1890             while (steps.nonEmpty() &&
  1891                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1892                    sym.kind >= ERRONEOUS) {
  1893                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  1894                 sym = findFun(env, name, argtypes, typeargtypes,
  1895                         steps.head.isBoxingRequired,
  1896                         steps.head.isVarargsRequired);
  1897                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1898                 steps = steps.tail;
  1900             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  1901                 MethodResolutionPhase errPhase =
  1902                         currentResolutionContext.firstErroneousResolutionPhase();
  1903                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  1904                         pos, env.enclClass.sym.type, name, false, argtypes, typeargtypes);
  1905                 env.info.pendingResolutionPhase = errPhase;
  1907             return sym;
  1909         finally {
  1910             currentResolutionContext = prevResolutionContext;
  1914     /** Resolve a qualified method identifier
  1915      *  @param pos       The position to use for error reporting.
  1916      *  @param env       The environment current at the method invocation.
  1917      *  @param site      The type of the qualifying expression, in which
  1918      *                   identifier is searched.
  1919      *  @param name      The identifier's name.
  1920      *  @param argtypes  The types of the invocation's value arguments.
  1921      *  @param typeargtypes  The types of the invocation's type arguments.
  1922      */
  1923     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1924                                   Type site, Name name, List<Type> argtypes,
  1925                                   List<Type> typeargtypes) {
  1926         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  1928     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  1929                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1930                                   List<Type> typeargtypes) {
  1931         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  1933     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  1934                                   DiagnosticPosition pos, Env<AttrContext> env,
  1935                                   Symbol location, Type site, Name name, List<Type> argtypes,
  1936                                   List<Type> typeargtypes) {
  1937         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1938         try {
  1939             currentResolutionContext = resolveContext;
  1940             Symbol sym = methodNotFound;
  1941             List<MethodResolutionPhase> steps = methodResolutionSteps;
  1942             while (steps.nonEmpty() &&
  1943                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  1944                    sym.kind >= ERRONEOUS) {
  1945                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  1946                 sym = findMethod(env, site, name, argtypes, typeargtypes,
  1947                         steps.head.isBoxingRequired(),
  1948                         steps.head.isVarargsRequired(), false);
  1949                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  1950                 steps = steps.tail;
  1952             if (sym.kind >= AMBIGUOUS) {
  1953                 //if nothing is found return the 'first' error
  1954                 MethodResolutionPhase errPhase =
  1955                         currentResolutionContext.firstErroneousResolutionPhase();
  1956                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  1957                         pos, location, site, name, true, argtypes, typeargtypes);
  1958                 env.info.pendingResolutionPhase = errPhase;
  1959             } else if (allowMethodHandles) {
  1960                 MethodSymbol msym = (MethodSymbol)sym;
  1961                 if (msym.isSignaturePolymorphic(types)) {
  1962                     env.info.pendingResolutionPhase = BASIC;
  1963                     return findPolymorphicSignatureInstance(env, sym, argtypes);
  1966             return sym;
  1968         finally {
  1969             currentResolutionContext = prevResolutionContext;
  1973     /** Find or create an implicit method of exactly the given type (after erasure).
  1974      *  Searches in a side table, not the main scope of the site.
  1975      *  This emulates the lookup process required by JSR 292 in JVM.
  1976      *  @param env       Attribution environment
  1977      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  1978      *  @param argtypes  The required argument types
  1979      */
  1980     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  1981                                             Symbol spMethod,
  1982                                             List<Type> argtypes) {
  1983         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  1984                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  1985         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  1986             if (types.isSameType(mtype, sym.type)) {
  1987                return sym;
  1991         // create the desired method
  1992         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  1993         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner);
  1994         polymorphicSignatureScope.enter(msym);
  1995         return msym;
  1998     /** Resolve a qualified method identifier, throw a fatal error if not
  1999      *  found.
  2000      *  @param pos       The position to use for error reporting.
  2001      *  @param env       The environment current at the method invocation.
  2002      *  @param site      The type of the qualifying expression, in which
  2003      *                   identifier is searched.
  2004      *  @param name      The identifier's name.
  2005      *  @param argtypes  The types of the invocation's value arguments.
  2006      *  @param typeargtypes  The types of the invocation's type arguments.
  2007      */
  2008     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2009                                         Type site, Name name,
  2010                                         List<Type> argtypes,
  2011                                         List<Type> typeargtypes) {
  2012         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2013         resolveContext.internalResolution = true;
  2014         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2015                 site, name, argtypes, typeargtypes);
  2016         if (sym.kind == MTH) return (MethodSymbol)sym;
  2017         else throw new FatalError(
  2018                  diags.fragment("fatal.err.cant.locate.meth",
  2019                                 name));
  2022     /** Resolve constructor.
  2023      *  @param pos       The position to use for error reporting.
  2024      *  @param env       The environment current at the constructor invocation.
  2025      *  @param site      The type of class for which a constructor is searched.
  2026      *  @param argtypes  The types of the constructor invocation's value
  2027      *                   arguments.
  2028      *  @param typeargtypes  The types of the constructor invocation's type
  2029      *                   arguments.
  2030      */
  2031     Symbol resolveConstructor(DiagnosticPosition pos,
  2032                               Env<AttrContext> env,
  2033                               Type site,
  2034                               List<Type> argtypes,
  2035                               List<Type> typeargtypes) {
  2036         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2038     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2039                               DiagnosticPosition pos,
  2040                               Env<AttrContext> env,
  2041                               Type site,
  2042                               List<Type> argtypes,
  2043                               List<Type> typeargtypes) {
  2044         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2045         try {
  2046             currentResolutionContext = resolveContext;
  2047             Symbol sym = methodNotFound;
  2048             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2049             while (steps.nonEmpty() &&
  2050                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2051                    sym.kind >= ERRONEOUS) {
  2052                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2053                 sym = findConstructor(pos, env, site, argtypes, typeargtypes,
  2054                         steps.head.isBoxingRequired(),
  2055                         steps.head.isVarargsRequired());
  2056                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2057                 steps = steps.tail;
  2059             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  2060                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2061                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2062                         pos, site, names.init, true, argtypes, typeargtypes);
  2063                 env.info.pendingResolutionPhase = errPhase;
  2065             return sym;
  2067         finally {
  2068             currentResolutionContext = prevResolutionContext;
  2072     /** Resolve constructor using diamond inference.
  2073      *  @param pos       The position to use for error reporting.
  2074      *  @param env       The environment current at the constructor invocation.
  2075      *  @param site      The type of class for which a constructor is searched.
  2076      *                   The scope of this class has been touched in attribution.
  2077      *  @param argtypes  The types of the constructor invocation's value
  2078      *                   arguments.
  2079      *  @param typeargtypes  The types of the constructor invocation's type
  2080      *                   arguments.
  2081      */
  2082     Symbol resolveDiamond(DiagnosticPosition pos,
  2083                               Env<AttrContext> env,
  2084                               Type site,
  2085                               List<Type> argtypes,
  2086                               List<Type> typeargtypes) {
  2087         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2088         try {
  2089             currentResolutionContext = new MethodResolutionContext();
  2090             Symbol sym = methodNotFound;
  2091             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2092             while (steps.nonEmpty() &&
  2093                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2094                    sym.kind >= ERRONEOUS) {
  2095                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2096                 sym = findDiamond(env, site, argtypes, typeargtypes,
  2097                         steps.head.isBoxingRequired(),
  2098                         steps.head.isVarargsRequired());
  2099                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2100                 steps = steps.tail;
  2102             if (sym.kind >= AMBIGUOUS) {
  2103                 Symbol errSym =
  2104                         currentResolutionContext.resolutionCache.get(currentResolutionContext.firstErroneousResolutionPhase());
  2105                 final JCDiagnostic details = errSym.kind == WRONG_MTH ?
  2106                                 ((InapplicableSymbolError)errSym).errCandidate().details :
  2107                                 null;
  2108                 errSym = new InapplicableSymbolError(errSym.kind, "diamondError") {
  2109                     @Override
  2110                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2111                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2112                         String key = details == null ?
  2113                             "cant.apply.diamond" :
  2114                             "cant.apply.diamond.1";
  2115                         return diags.create(dkind, log.currentSource(), pos, key,
  2116                                 diags.fragment("diamond", site.tsym), details);
  2118                 };
  2119                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2120                 sym = accessMethod(errSym, pos, site, names.init, true, argtypes, typeargtypes);
  2121                 env.info.pendingResolutionPhase = errPhase;
  2123             return sym;
  2125         finally {
  2126             currentResolutionContext = prevResolutionContext;
  2130     /** This method scans all the constructor symbol in a given class scope -
  2131      *  assuming that the original scope contains a constructor of the kind:
  2132      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2133      *  a method check is executed against the modified constructor type:
  2134      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2135      *  inference. The inferred return type of the synthetic constructor IS
  2136      *  the inferred type for the diamond operator.
  2137      */
  2138     private Symbol findDiamond(Env<AttrContext> env,
  2139                               Type site,
  2140                               List<Type> argtypes,
  2141                               List<Type> typeargtypes,
  2142                               boolean allowBoxing,
  2143                               boolean useVarargs) {
  2144         Symbol bestSoFar = methodNotFound;
  2145         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2146              e.scope != null;
  2147              e = e.next()) {
  2148             final Symbol sym = e.sym;
  2149             //- System.out.println(" e " + e.sym);
  2150             if (sym.kind == MTH &&
  2151                 (sym.flags_field & SYNTHETIC) == 0) {
  2152                     List<Type> oldParams = e.sym.type.tag == FORALL ?
  2153                             ((ForAll)sym.type).tvars :
  2154                             List.<Type>nil();
  2155                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2156                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2157                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2158                         @Override
  2159                         public Symbol baseSymbol() {
  2160                             return sym;
  2162                     };
  2163                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2164                             newConstr,
  2165                             bestSoFar,
  2166                             allowBoxing,
  2167                             useVarargs,
  2168                             false);
  2171         return bestSoFar;
  2174     /** Resolve constructor.
  2175      *  @param pos       The position to use for error reporting.
  2176      *  @param env       The environment current at the constructor invocation.
  2177      *  @param site      The type of class for which a constructor is searched.
  2178      *  @param argtypes  The types of the constructor invocation's value
  2179      *                   arguments.
  2180      *  @param typeargtypes  The types of the constructor invocation's type
  2181      *                   arguments.
  2182      *  @param allowBoxing Allow boxing and varargs conversions.
  2183      *  @param useVarargs Box trailing arguments into an array for varargs.
  2184      */
  2185     Symbol resolveConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2186                               Type site, List<Type> argtypes,
  2187                               List<Type> typeargtypes,
  2188                               boolean allowBoxing,
  2189                               boolean useVarargs) {
  2190         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2191         try {
  2192             currentResolutionContext = new MethodResolutionContext();
  2193             return findConstructor(pos, env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
  2195         finally {
  2196             currentResolutionContext = prevResolutionContext;
  2200     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2201                               Type site, List<Type> argtypes,
  2202                               List<Type> typeargtypes,
  2203                               boolean allowBoxing,
  2204                               boolean useVarargs) {
  2205         Symbol sym = findMethod(env, site,
  2206                                     names.init, argtypes,
  2207                                     typeargtypes, allowBoxing,
  2208                                     useVarargs, false);
  2209         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2210         return sym;
  2213     /** Resolve a constructor, throw a fatal error if not found.
  2214      *  @param pos       The position to use for error reporting.
  2215      *  @param env       The environment current at the method invocation.
  2216      *  @param site      The type to be constructed.
  2217      *  @param argtypes  The types of the invocation's value arguments.
  2218      *  @param typeargtypes  The types of the invocation's type arguments.
  2219      */
  2220     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2221                                         Type site,
  2222                                         List<Type> argtypes,
  2223                                         List<Type> typeargtypes) {
  2224         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2225         resolveContext.internalResolution = true;
  2226         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2227         if (sym.kind == MTH) return (MethodSymbol)sym;
  2228         else throw new FatalError(
  2229                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2232     /** Resolve operator.
  2233      *  @param pos       The position to use for error reporting.
  2234      *  @param optag     The tag of the operation tree.
  2235      *  @param env       The environment current at the operation.
  2236      *  @param argtypes  The types of the operands.
  2237      */
  2238     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2239                            Env<AttrContext> env, List<Type> argtypes) {
  2240         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2241         try {
  2242             currentResolutionContext = new MethodResolutionContext();
  2243             Name name = treeinfo.operatorName(optag);
  2244             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2245                                     null, false, false, true);
  2246             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2247                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2248                                  null, true, false, true);
  2249             return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2250                           false, argtypes, null);
  2252         finally {
  2253             currentResolutionContext = prevResolutionContext;
  2257     /** Resolve operator.
  2258      *  @param pos       The position to use for error reporting.
  2259      *  @param optag     The tag of the operation tree.
  2260      *  @param env       The environment current at the operation.
  2261      *  @param arg       The type of the operand.
  2262      */
  2263     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2264         return resolveOperator(pos, optag, env, List.of(arg));
  2267     /** Resolve binary operator.
  2268      *  @param pos       The position to use for error reporting.
  2269      *  @param optag     The tag of the operation tree.
  2270      *  @param env       The environment current at the operation.
  2271      *  @param left      The types of the left operand.
  2272      *  @param right     The types of the right operand.
  2273      */
  2274     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2275                                  JCTree.Tag optag,
  2276                                  Env<AttrContext> env,
  2277                                  Type left,
  2278                                  Type right) {
  2279         return resolveOperator(pos, optag, env, List.of(left, right));
  2282     /**
  2283      * Resolve `c.name' where name == this or name == super.
  2284      * @param pos           The position to use for error reporting.
  2285      * @param env           The environment current at the expression.
  2286      * @param c             The qualifier.
  2287      * @param name          The identifier's name.
  2288      */
  2289     Symbol resolveSelf(DiagnosticPosition pos,
  2290                        Env<AttrContext> env,
  2291                        TypeSymbol c,
  2292                        Name name) {
  2293         Env<AttrContext> env1 = env;
  2294         boolean staticOnly = false;
  2295         while (env1.outer != null) {
  2296             if (isStatic(env1)) staticOnly = true;
  2297             if (env1.enclClass.sym == c) {
  2298                 Symbol sym = env1.info.scope.lookup(name).sym;
  2299                 if (sym != null) {
  2300                     if (staticOnly) sym = new StaticError(sym);
  2301                     return accessBase(sym, pos, env.enclClass.sym.type,
  2302                                   name, true);
  2305             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2306             env1 = env1.outer;
  2308         log.error(pos, "not.encl.class", c);
  2309         return syms.errSymbol;
  2312     /**
  2313      * Resolve `c.this' for an enclosing class c that contains the
  2314      * named member.
  2315      * @param pos           The position to use for error reporting.
  2316      * @param env           The environment current at the expression.
  2317      * @param member        The member that must be contained in the result.
  2318      */
  2319     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2320                                  Env<AttrContext> env,
  2321                                  Symbol member,
  2322                                  boolean isSuperCall) {
  2323         Name name = names._this;
  2324         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2325         boolean staticOnly = false;
  2326         if (env1 != null) {
  2327             while (env1 != null && env1.outer != null) {
  2328                 if (isStatic(env1)) staticOnly = true;
  2329                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2330                     Symbol sym = env1.info.scope.lookup(name).sym;
  2331                     if (sym != null) {
  2332                         if (staticOnly) sym = new StaticError(sym);
  2333                         return accessBase(sym, pos, env.enclClass.sym.type,
  2334                                       name, true);
  2337                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2338                     staticOnly = true;
  2339                 env1 = env1.outer;
  2342         log.error(pos, "encl.class.required", member);
  2343         return syms.errSymbol;
  2346     /**
  2347      * Resolve an appropriate implicit this instance for t's container.
  2348      * JLS 8.8.5.1 and 15.9.2
  2349      */
  2350     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2351         return resolveImplicitThis(pos, env, t, false);
  2354     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2355         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2356                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2357                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2358         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2359             log.error(pos, "cant.ref.before.ctor.called", "this");
  2360         return thisType;
  2363 /* ***************************************************************************
  2364  *  ResolveError classes, indicating error situations when accessing symbols
  2365  ****************************************************************************/
  2367     //used by TransTypes when checking target type of synthetic cast
  2368     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2369         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2370         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2372     //where
  2373     private void logResolveError(ResolveError error,
  2374             DiagnosticPosition pos,
  2375             Symbol location,
  2376             Type site,
  2377             Name name,
  2378             List<Type> argtypes,
  2379             List<Type> typeargtypes) {
  2380         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2381                 pos, location, site, name, argtypes, typeargtypes);
  2382         if (d != null) {
  2383             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2384             log.report(d);
  2388     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2390     public Object methodArguments(List<Type> argtypes) {
  2391         return argtypes == null || argtypes.isEmpty() ? noArgs : argtypes;
  2394     /**
  2395      * Root class for resolution errors. Subclass of ResolveError
  2396      * represent a different kinds of resolution error - as such they must
  2397      * specify how they map into concrete compiler diagnostics.
  2398      */
  2399     private abstract class ResolveError extends Symbol {
  2401         /** The name of the kind of error, for debugging only. */
  2402         final String debugName;
  2404         ResolveError(int kind, String debugName) {
  2405             super(kind, 0, null, null, null);
  2406             this.debugName = debugName;
  2409         @Override
  2410         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2411             throw new AssertionError();
  2414         @Override
  2415         public String toString() {
  2416             return debugName;
  2419         @Override
  2420         public boolean exists() {
  2421             return false;
  2424         /**
  2425          * Create an external representation for this erroneous symbol to be
  2426          * used during attribution - by default this returns the symbol of a
  2427          * brand new error type which stores the original type found
  2428          * during resolution.
  2430          * @param name     the name used during resolution
  2431          * @param location the location from which the symbol is accessed
  2432          */
  2433         protected Symbol access(Name name, TypeSymbol location) {
  2434             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2437         /**
  2438          * Create a diagnostic representing this resolution error.
  2440          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2441          * @param pos       The position to be used for error reporting.
  2442          * @param site      The original type from where the selection took place.
  2443          * @param name      The name of the symbol to be resolved.
  2444          * @param argtypes  The invocation's value arguments,
  2445          *                  if we looked for a method.
  2446          * @param typeargtypes  The invocation's type arguments,
  2447          *                      if we looked for a method.
  2448          */
  2449         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2450                 DiagnosticPosition pos,
  2451                 Symbol location,
  2452                 Type site,
  2453                 Name name,
  2454                 List<Type> argtypes,
  2455                 List<Type> typeargtypes);
  2458     /**
  2459      * This class is the root class of all resolution errors caused by
  2460      * an invalid symbol being found during resolution.
  2461      */
  2462     abstract class InvalidSymbolError extends ResolveError {
  2464         /** The invalid symbol found during resolution */
  2465         Symbol sym;
  2467         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2468             super(kind, debugName);
  2469             this.sym = sym;
  2472         @Override
  2473         public boolean exists() {
  2474             return true;
  2477         @Override
  2478         public String toString() {
  2479              return super.toString() + " wrongSym=" + sym;
  2482         @Override
  2483         public Symbol access(Name name, TypeSymbol location) {
  2484             if (sym.kind >= AMBIGUOUS)
  2485                 return ((ResolveError)sym).access(name, location);
  2486             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  2487                 return types.createErrorType(name, location, sym.type).tsym;
  2488             else
  2489                 return sym;
  2493     /**
  2494      * InvalidSymbolError error class indicating that a symbol matching a
  2495      * given name does not exists in a given site.
  2496      */
  2497     class SymbolNotFoundError extends ResolveError {
  2499         SymbolNotFoundError(int kind) {
  2500             super(kind, "symbol not found error");
  2503         @Override
  2504         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2505                 DiagnosticPosition pos,
  2506                 Symbol location,
  2507                 Type site,
  2508                 Name name,
  2509                 List<Type> argtypes,
  2510                 List<Type> typeargtypes) {
  2511             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  2512             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  2513             if (name == names.error)
  2514                 return null;
  2516             if (syms.operatorNames.contains(name)) {
  2517                 boolean isUnaryOp = argtypes.size() == 1;
  2518                 String key = argtypes.size() == 1 ?
  2519                     "operator.cant.be.applied" :
  2520                     "operator.cant.be.applied.1";
  2521                 Type first = argtypes.head;
  2522                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2523                 return diags.create(dkind, log.currentSource(), pos,
  2524                         key, name, first, second);
  2526             boolean hasLocation = false;
  2527             if (location == null) {
  2528                 location = site.tsym;
  2530             if (!location.name.isEmpty()) {
  2531                 if (location.kind == PCK && !site.tsym.exists()) {
  2532                     return diags.create(dkind, log.currentSource(), pos,
  2533                         "doesnt.exist", location);
  2535                 hasLocation = !location.name.equals(names._this) &&
  2536                         !location.name.equals(names._super);
  2538             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  2539             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  2540             Name idname = isConstructor ? site.tsym.name : name;
  2541             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  2542             if (hasLocation) {
  2543                 return diags.create(dkind, log.currentSource(), pos,
  2544                         errKey, kindname, idname, //symbol kindname, name
  2545                         typeargtypes, argtypes, //type parameters and arguments (if any)
  2546                         getLocationDiag(location, site)); //location kindname, type
  2548             else {
  2549                 return diags.create(dkind, log.currentSource(), pos,
  2550                         errKey, kindname, idname, //symbol kindname, name
  2551                         typeargtypes, argtypes); //type parameters and arguments (if any)
  2554         //where
  2555         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  2556             String key = "cant.resolve";
  2557             String suffix = hasLocation ? ".location" : "";
  2558             switch (kindname) {
  2559                 case METHOD:
  2560                 case CONSTRUCTOR: {
  2561                     suffix += ".args";
  2562                     suffix += hasTypeArgs ? ".params" : "";
  2565             return key + suffix;
  2567         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  2568             if (location.kind == VAR) {
  2569                 return diags.fragment("location.1",
  2570                     kindName(location),
  2571                     location,
  2572                     location.type);
  2573             } else {
  2574                 return diags.fragment("location",
  2575                     typeKindName(site),
  2576                     site,
  2577                     null);
  2582     /**
  2583      * InvalidSymbolError error class indicating that a given symbol
  2584      * (either a method, a constructor or an operand) is not applicable
  2585      * given an actual arguments/type argument list.
  2586      */
  2587     class InapplicableSymbolError extends ResolveError {
  2589         InapplicableSymbolError() {
  2590             super(WRONG_MTH, "inapplicable symbol error");
  2593         protected InapplicableSymbolError(int kind, String debugName) {
  2594             super(kind, debugName);
  2597         @Override
  2598         public String toString() {
  2599             return super.toString();
  2602         @Override
  2603         public boolean exists() {
  2604             return true;
  2607         @Override
  2608         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2609                 DiagnosticPosition pos,
  2610                 Symbol location,
  2611                 Type site,
  2612                 Name name,
  2613                 List<Type> argtypes,
  2614                 List<Type> typeargtypes) {
  2615             if (name == names.error)
  2616                 return null;
  2618             if (syms.operatorNames.contains(name)) {
  2619                 boolean isUnaryOp = argtypes.size() == 1;
  2620                 String key = argtypes.size() == 1 ?
  2621                     "operator.cant.be.applied" :
  2622                     "operator.cant.be.applied.1";
  2623                 Type first = argtypes.head;
  2624                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2625                 return diags.create(dkind, log.currentSource(), pos,
  2626                         key, name, first, second);
  2628             else {
  2629                 Candidate c = errCandidate();
  2630                 Symbol ws = c.sym.asMemberOf(site, types);
  2631                 return diags.create(dkind, log.currentSource(), pos,
  2632                           "cant.apply.symbol" + (c.details != null ? ".1" : ""),
  2633                           kindName(ws),
  2634                           ws.name == names.init ? ws.owner.name : ws.name,
  2635                           methodArguments(ws.type.getParameterTypes()),
  2636                           methodArguments(argtypes),
  2637                           kindName(ws.owner),
  2638                           ws.owner.type,
  2639                           c.details);
  2643         @Override
  2644         public Symbol access(Name name, TypeSymbol location) {
  2645             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2648         protected boolean shouldReport(Candidate c) {
  2649             return !c.isApplicable() &&
  2650                     (((c.sym.flags() & VARARGS) != 0 && c.step == VARARITY) ||
  2651                       (c.sym.flags() & VARARGS) == 0 && c.step == (boxingEnabled ? BOX : BASIC));
  2654         private Candidate errCandidate() {
  2655             for (Candidate c : currentResolutionContext.candidates) {
  2656                 if (shouldReport(c)) {
  2657                     return c;
  2660             Assert.error();
  2661             return null;
  2665     /**
  2666      * ResolveError error class indicating that a set of symbols
  2667      * (either methods, constructors or operands) is not applicable
  2668      * given an actual arguments/type argument list.
  2669      */
  2670     class InapplicableSymbolsError extends InapplicableSymbolError {
  2672         InapplicableSymbolsError() {
  2673             super(WRONG_MTHS, "inapplicable symbols");
  2676         @Override
  2677         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2678                 DiagnosticPosition pos,
  2679                 Symbol location,
  2680                 Type site,
  2681                 Name name,
  2682                 List<Type> argtypes,
  2683                 List<Type> typeargtypes) {
  2684             if (currentResolutionContext.candidates.nonEmpty()) {
  2685                 JCDiagnostic err = diags.create(dkind,
  2686                         log.currentSource(),
  2687                         pos,
  2688                         "cant.apply.symbols",
  2689                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  2690                         getName(),
  2691                         argtypes);
  2692                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  2693             } else {
  2694                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  2695                     location, site, name, argtypes, typeargtypes);
  2699         //where
  2700         List<JCDiagnostic> candidateDetails(Type site) {
  2701             List<JCDiagnostic> details = List.nil();
  2702             for (Candidate c : currentResolutionContext.candidates) {
  2703                 if (!shouldReport(c)) continue;
  2704                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  2705                         Kinds.kindName(c.sym),
  2706                         c.sym.location(site, types),
  2707                         c.sym.asMemberOf(site, types),
  2708                         c.details);
  2709                 details = details.prepend(detailDiag);
  2711             return details.reverse();
  2714         private Name getName() {
  2715             Symbol sym = currentResolutionContext.candidates.head.sym;
  2716             return sym.name == names.init ?
  2717                 sym.owner.name :
  2718                 sym.name;
  2722     /**
  2723      * An InvalidSymbolError error class indicating that a symbol is not
  2724      * accessible from a given site
  2725      */
  2726     class AccessError extends InvalidSymbolError {
  2728         private Env<AttrContext> env;
  2729         private Type site;
  2731         AccessError(Symbol sym) {
  2732             this(null, null, sym);
  2735         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  2736             super(HIDDEN, sym, "access error");
  2737             this.env = env;
  2738             this.site = site;
  2739             if (debugResolve)
  2740                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  2743         @Override
  2744         public boolean exists() {
  2745             return false;
  2748         @Override
  2749         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2750                 DiagnosticPosition pos,
  2751                 Symbol location,
  2752                 Type site,
  2753                 Name name,
  2754                 List<Type> argtypes,
  2755                 List<Type> typeargtypes) {
  2756             if (sym.owner.type.tag == ERROR)
  2757                 return null;
  2759             if (sym.name == names.init && sym.owner != site.tsym) {
  2760                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  2761                         pos, location, site, name, argtypes, typeargtypes);
  2763             else if ((sym.flags() & PUBLIC) != 0
  2764                 || (env != null && this.site != null
  2765                     && !isAccessible(env, this.site))) {
  2766                 return diags.create(dkind, log.currentSource(),
  2767                         pos, "not.def.access.class.intf.cant.access",
  2768                     sym, sym.location());
  2770             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  2771                 return diags.create(dkind, log.currentSource(),
  2772                         pos, "report.access", sym,
  2773                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  2774                         sym.location());
  2776             else {
  2777                 return diags.create(dkind, log.currentSource(),
  2778                         pos, "not.def.public.cant.access", sym, sym.location());
  2783     /**
  2784      * InvalidSymbolError error class indicating that an instance member
  2785      * has erroneously been accessed from a static context.
  2786      */
  2787     class StaticError extends InvalidSymbolError {
  2789         StaticError(Symbol sym) {
  2790             super(STATICERR, sym, "static error");
  2793         @Override
  2794         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2795                 DiagnosticPosition pos,
  2796                 Symbol location,
  2797                 Type site,
  2798                 Name name,
  2799                 List<Type> argtypes,
  2800                 List<Type> typeargtypes) {
  2801             Symbol errSym = ((sym.kind == TYP && sym.type.tag == CLASS)
  2802                 ? types.erasure(sym.type).tsym
  2803                 : sym);
  2804             return diags.create(dkind, log.currentSource(), pos,
  2805                     "non-static.cant.be.ref", kindName(sym), errSym);
  2809     /**
  2810      * InvalidSymbolError error class indicating that a pair of symbols
  2811      * (either methods, constructors or operands) are ambiguous
  2812      * given an actual arguments/type argument list.
  2813      */
  2814     class AmbiguityError extends InvalidSymbolError {
  2816         /** The other maximally specific symbol */
  2817         Symbol sym2;
  2819         AmbiguityError(Symbol sym1, Symbol sym2) {
  2820             super(AMBIGUOUS, sym1, "ambiguity error");
  2821             this.sym2 = sym2;
  2824         @Override
  2825         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2826                 DiagnosticPosition pos,
  2827                 Symbol location,
  2828                 Type site,
  2829                 Name name,
  2830                 List<Type> argtypes,
  2831                 List<Type> typeargtypes) {
  2832             AmbiguityError pair = this;
  2833             while (true) {
  2834                 if (pair.sym.kind == AMBIGUOUS)
  2835                     pair = (AmbiguityError)pair.sym;
  2836                 else if (pair.sym2.kind == AMBIGUOUS)
  2837                     pair = (AmbiguityError)pair.sym2;
  2838                 else break;
  2840             Name sname = pair.sym.name;
  2841             if (sname == names.init) sname = pair.sym.owner.name;
  2842             return diags.create(dkind, log.currentSource(),
  2843                       pos, "ref.ambiguous", sname,
  2844                       kindName(pair.sym),
  2845                       pair.sym,
  2846                       pair.sym.location(site, types),
  2847                       kindName(pair.sym2),
  2848                       pair.sym2,
  2849                       pair.sym2.location(site, types));
  2853     enum MethodResolutionPhase {
  2854         BASIC(false, false),
  2855         BOX(true, false),
  2856         VARARITY(true, true);
  2858         boolean isBoxingRequired;
  2859         boolean isVarargsRequired;
  2861         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  2862            this.isBoxingRequired = isBoxingRequired;
  2863            this.isVarargsRequired = isVarargsRequired;
  2866         public boolean isBoxingRequired() {
  2867             return isBoxingRequired;
  2870         public boolean isVarargsRequired() {
  2871             return isVarargsRequired;
  2874         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  2875             return (varargsEnabled || !isVarargsRequired) &&
  2876                    (boxingEnabled || !isBoxingRequired);
  2880     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  2882     /**
  2883      * A resolution context is used to keep track of intermediate results of
  2884      * overload resolution, such as list of method that are not applicable
  2885      * (used to generate more precise diagnostics) and so on. Resolution contexts
  2886      * can be nested - this means that when each overload resolution routine should
  2887      * work within the resolution context it created.
  2888      */
  2889     class MethodResolutionContext {
  2891         private List<Candidate> candidates = List.nil();
  2893         private Map<MethodResolutionPhase, Symbol> resolutionCache =
  2894             new EnumMap<MethodResolutionPhase, Symbol>(MethodResolutionPhase.class);
  2896         MethodResolutionPhase step = null;
  2898         private boolean internalResolution = false;
  2899         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  2901         private MethodResolutionPhase firstErroneousResolutionPhase() {
  2902             MethodResolutionPhase bestSoFar = BASIC;
  2903             Symbol sym = methodNotFound;
  2904             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2905             while (steps.nonEmpty() &&
  2906                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2907                    sym.kind >= WRONG_MTHS) {
  2908                 sym = resolutionCache.get(steps.head);
  2909                 bestSoFar = steps.head;
  2910                 steps = steps.tail;
  2912             return bestSoFar;
  2915         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  2916             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  2917             if (!candidates.contains(c))
  2918                 candidates = candidates.append(c);
  2921         void addApplicableCandidate(Symbol sym, Type mtype) {
  2922             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  2923             candidates = candidates.append(c);
  2926         /**
  2927          * This class represents an overload resolution candidate. There are two
  2928          * kinds of candidates: applicable methods and inapplicable methods;
  2929          * applicable methods have a pointer to the instantiated method type,
  2930          * while inapplicable candidates contain further details about the
  2931          * reason why the method has been considered inapplicable.
  2932          */
  2933         class Candidate {
  2935             final MethodResolutionPhase step;
  2936             final Symbol sym;
  2937             final JCDiagnostic details;
  2938             final Type mtype;
  2940             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  2941                 this.step = step;
  2942                 this.sym = sym;
  2943                 this.details = details;
  2944                 this.mtype = mtype;
  2947             @Override
  2948             public boolean equals(Object o) {
  2949                 if (o instanceof Candidate) {
  2950                     Symbol s1 = this.sym;
  2951                     Symbol s2 = ((Candidate)o).sym;
  2952                     if  ((s1 != s2 &&
  2953                         (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  2954                         (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  2955                         ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  2956                         return true;
  2958                 return false;
  2961             boolean isApplicable() {
  2962                 return mtype != null;
  2966         DeferredAttr.AttrMode attrMode() {
  2967             return attrMode;
  2970         boolean internal() {
  2971             return internalResolution;
  2975     MethodResolutionContext currentResolutionContext = null;

mercurial