src/share/classes/com/sun/tools/javac/comp/Infer.java

Fri, 12 Apr 2013 12:05:04 +0200

author
jfranck
date
Fri, 12 Apr 2013 12:05:04 +0200
changeset 1689
137994c189e5
parent 1674
b71a61d39cf7
child 1800
c8acc254b6d7
permissions
-rw-r--r--

7015104: use new subtype of TypeSymbol for type parameters
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.tree.JCTree;
    29 import com.sun.tools.javac.tree.JCTree.JCTypeCast;
    30 import com.sun.tools.javac.tree.TreeInfo;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    33 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.code.*;
    35 import com.sun.tools.javac.code.Type.*;
    36 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    37 import com.sun.tools.javac.code.Symbol.*;
    38 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    39 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
    40 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
    41 import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
    42 import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
    44 import java.util.HashMap;
    45 import java.util.Map;
    46 import java.util.Set;
    48 import java.util.ArrayList;
    49 import java.util.Collections;
    50 import java.util.EnumSet;
    51 import java.util.HashSet;
    53 import static com.sun.tools.javac.code.TypeTag.*;
    55 /** Helper class for type parameter inference, used by the attribution phase.
    56  *
    57  *  <p><b>This is NOT part of any supported API.
    58  *  If you write code that depends on this, you do so at your own risk.
    59  *  This code and its internal interfaces are subject to change or
    60  *  deletion without notice.</b>
    61  */
    62 public class Infer {
    63     protected static final Context.Key<Infer> inferKey =
    64         new Context.Key<Infer>();
    66     Resolve rs;
    67     Check chk;
    68     Symtab syms;
    69     Types types;
    70     JCDiagnostic.Factory diags;
    71     Log log;
    73     /** should the graph solver be used? */
    74     boolean allowGraphInference;
    76     public static Infer instance(Context context) {
    77         Infer instance = context.get(inferKey);
    78         if (instance == null)
    79             instance = new Infer(context);
    80         return instance;
    81     }
    83     protected Infer(Context context) {
    84         context.put(inferKey, this);
    86         rs = Resolve.instance(context);
    87         chk = Check.instance(context);
    88         syms = Symtab.instance(context);
    89         types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         log = Log.instance(context);
    92         inferenceException = new InferenceException(diags);
    93         Options options = Options.instance(context);
    94         allowGraphInference = Source.instance(context).allowGraphInference()
    95                 && options.isUnset("useLegacyInference");
    96     }
    98     /** A value for prototypes that admit any type, including polymorphic ones. */
    99     public static final Type anyPoly = new Type(NONE, null);
   101    /**
   102     * This exception class is design to store a list of diagnostics corresponding
   103     * to inference errors that can arise during a method applicability check.
   104     */
   105     public static class InferenceException extends InapplicableMethodException {
   106         private static final long serialVersionUID = 0;
   108         List<JCDiagnostic> messages = List.nil();
   110         InferenceException(JCDiagnostic.Factory diags) {
   111             super(diags);
   112         }
   114         @Override
   115         InapplicableMethodException setMessage(JCDiagnostic diag) {
   116             messages = messages.append(diag);
   117             return this;
   118         }
   120         @Override
   121         public JCDiagnostic getDiagnostic() {
   122             return messages.head;
   123         }
   125         void clear() {
   126             messages = List.nil();
   127         }
   128     }
   130     protected final InferenceException inferenceException;
   132     // <editor-fold defaultstate="collapsed" desc="Inference routines">
   133     /**
   134      * Main inference entry point - instantiate a generic method type
   135      * using given argument types and (possibly) an expected target-type.
   136      */
   137     public Type instantiateMethod(Env<AttrContext> env,
   138                                   List<Type> tvars,
   139                                   MethodType mt,
   140                                   Attr.ResultInfo resultInfo,
   141                                   Symbol msym,
   142                                   List<Type> argtypes,
   143                                   boolean allowBoxing,
   144                                   boolean useVarargs,
   145                                   Resolve.MethodResolutionContext resolveContext,
   146                                   Warner warn) throws InferenceException {
   147         //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
   148         final InferenceContext inferenceContext = new InferenceContext(tvars);
   149         inferenceException.clear();
   150         try {
   151             DeferredAttr.DeferredAttrContext deferredAttrContext =
   152                     resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
   154             resolveContext.methodCheck.argumentsAcceptable(env, deferredAttrContext,
   155                     argtypes, mt.getParameterTypes(), warn);
   157             if (allowGraphInference &&
   158                     resultInfo != null &&
   159                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   160                 //inject return constraints earlier
   161                 checkWithinBounds(inferenceContext, warn); //propagation
   162                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   163                 //propagate outwards if needed
   164                 if (resultInfo.checkContext.inferenceContext().free(resultInfo.pt)) {
   165                     //propagate inference context outwards and exit
   166                     inferenceContext.dupTo(resultInfo.checkContext.inferenceContext());
   167                     deferredAttrContext.complete();
   168                     return mt;
   169                 }
   170             }
   172             deferredAttrContext.complete();
   174             // minimize as yet undetermined type variables
   175             if (allowGraphInference) {
   176                 inferenceContext.solve(warn);
   177             } else {
   178                 inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
   179             }
   181             mt = (MethodType)inferenceContext.asInstType(mt);
   183             if (!allowGraphInference &&
   184                     inferenceContext.restvars().nonEmpty() &&
   185                     resultInfo != null &&
   186                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   187                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   188                 inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
   189                 mt = (MethodType)inferenceContext.asInstType(mt);
   190             }
   192             if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
   193                 log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
   194             }
   196             // return instantiated version of method type
   197             return mt;
   198         } finally {
   199             if (resultInfo != null || !allowGraphInference) {
   200                 inferenceContext.notifyChange();
   201             } else {
   202                 inferenceContext.notifyChange(inferenceContext.boundedVars());
   203             }
   204         }
   205     }
   207     /**
   208      * Generate constraints from the generic method's return type. If the method
   209      * call occurs in a context where a type T is expected, use the expected
   210      * type to derive more constraints on the generic method inference variables.
   211      */
   212     void generateReturnConstraints(Attr.ResultInfo resultInfo,
   213             MethodType mt, InferenceContext inferenceContext) {
   214         Type qtype1 = inferenceContext.asFree(mt.getReturnType());
   215         Type to = returnConstraintTarget(qtype1, resultInfo.pt);
   216         Assert.check(allowGraphInference || !resultInfo.checkContext.inferenceContext().free(to),
   217                 "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
   218         //we need to skip capture?
   219         Warner retWarn = new Warner();
   220         if (!resultInfo.checkContext.compatible(qtype1, resultInfo.checkContext.inferenceContext().asFree(to), retWarn) ||
   221                 //unchecked conversion is not allowed
   222                 retWarn.hasLint(Lint.LintCategory.UNCHECKED)) {
   223             throw inferenceException
   224                     .setMessage("infer.no.conforming.instance.exists",
   225                     inferenceContext.restvars(), mt.getReturnType(), to);
   226         }
   227     }
   228     //where
   229         private Type returnConstraintTarget(Type from, Type to) {
   230             if (from.hasTag(VOID)) {
   231                 return syms.voidType;
   232             } else if (to.hasTag(NONE)) {
   233                 return from.isPrimitive() ? from : syms.objectType;
   234             } else if (from.hasTag(UNDETVAR) && to.isPrimitive()) {
   235                 if (!allowGraphInference) {
   236                     //if legacy, just return boxed type
   237                     return types.boxedClass(to).type;
   238                 }
   239                 //if graph inference we need to skip conflicting boxed bounds...
   240                 UndetVar uv = (UndetVar)from;
   241                 for (Type t : uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
   242                     Type boundAsPrimitive = types.unboxedType(t);
   243                     if (boundAsPrimitive == null) continue;
   244                     if (types.isConvertible(boundAsPrimitive, to)) {
   245                         //effectively skip return-type constraint generation (compatibility)
   246                         return syms.objectType;
   247                     }
   248                 }
   249                 return types.boxedClass(to).type;
   250             } else {
   251                 return to;
   252             }
   253         }
   255     /**
   256       * Infer cyclic inference variables as described in 15.12.2.8.
   257       */
   258     private void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
   259         ListBuffer<Type> todo = ListBuffer.lb();
   260         //step 1 - create fresh tvars
   261         for (Type t : vars) {
   262             UndetVar uv = (UndetVar)inferenceContext.asFree(t);
   263             List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
   264             if (Type.containsAny(upperBounds, vars)) {
   265                 TypeSymbol fresh_tvar = new TypeVariableSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
   266                 fresh_tvar.type = new TypeVar(fresh_tvar, types.makeCompoundType(uv.getBounds(InferenceBound.UPPER)), null);
   267                 todo.append(uv);
   268                 uv.inst = fresh_tvar.type;
   269             } else if (upperBounds.nonEmpty()) {
   270                 uv.inst = types.glb(upperBounds);
   271             } else {
   272                 uv.inst = syms.objectType;
   273             }
   274         }
   275         //step 2 - replace fresh tvars in their bounds
   276         List<Type> formals = vars;
   277         for (Type t : todo) {
   278             UndetVar uv = (UndetVar)t;
   279             TypeVar ct = (TypeVar)uv.inst;
   280             ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
   281             if (ct.bound.isErroneous()) {
   282                 //report inference error if glb fails
   283                 reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   284             }
   285             formals = formals.tail;
   286         }
   287     }
   289     /**
   290      * Compute a synthetic method type corresponding to the requested polymorphic
   291      * method signature. The target return type is computed from the immediately
   292      * enclosing scope surrounding the polymorphic-signature call.
   293      */
   294     Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
   295                                             MethodSymbol spMethod,  // sig. poly. method or null if none
   296                                             Resolve.MethodResolutionContext resolveContext,
   297                                             List<Type> argtypes) {
   298         final Type restype;
   300         //The return type for a polymorphic signature call is computed from
   301         //the enclosing tree E, as follows: if E is a cast, then use the
   302         //target type of the cast expression as a return type; if E is an
   303         //expression statement, the return type is 'void' - otherwise the
   304         //return type is simply 'Object'. A correctness check ensures that
   305         //env.next refers to the lexically enclosing environment in which
   306         //the polymorphic signature call environment is nested.
   308         switch (env.next.tree.getTag()) {
   309             case TYPECAST:
   310                 JCTypeCast castTree = (JCTypeCast)env.next.tree;
   311                 restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
   312                     castTree.clazz.type :
   313                     syms.objectType;
   314                 break;
   315             case EXEC:
   316                 JCTree.JCExpressionStatement execTree =
   317                         (JCTree.JCExpressionStatement)env.next.tree;
   318                 restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
   319                     syms.voidType :
   320                     syms.objectType;
   321                 break;
   322             default:
   323                 restype = syms.objectType;
   324         }
   326         List<Type> paramtypes = Type.map(argtypes, new ImplicitArgType(spMethod, resolveContext.step));
   327         List<Type> exType = spMethod != null ?
   328             spMethod.getThrownTypes() :
   329             List.of(syms.throwableType); // make it throw all exceptions
   331         MethodType mtype = new MethodType(paramtypes,
   332                                           restype,
   333                                           exType,
   334                                           syms.methodClass);
   335         return mtype;
   336     }
   337     //where
   338         class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
   340             public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
   341                 rs.deferredAttr.super(AttrMode.SPECULATIVE, msym, phase);
   342             }
   344             public Type apply(Type t) {
   345                 t = types.erasure(super.apply(t));
   346                 if (t.hasTag(BOT))
   347                     // nulls type as the marker type Null (which has no instances)
   348                     // infer as java.lang.Void for now
   349                     t = types.boxedClass(syms.voidType).type;
   350                 return t;
   351             }
   352         }
   354     /**
   355       * This method is used to infer a suitable target SAM in case the original
   356       * SAM type contains one or more wildcards. An inference process is applied
   357       * so that wildcard bounds, as well as explicit lambda/method ref parameters
   358       * (where applicable) are used to constraint the solution.
   359       */
   360     public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
   361             List<Type> paramTypes, Check.CheckContext checkContext) {
   362         if (types.capture(funcInterface) == funcInterface) {
   363             //if capture doesn't change the type then return the target unchanged
   364             //(this means the target contains no wildcards!)
   365             return funcInterface;
   366         } else {
   367             Type formalInterface = funcInterface.tsym.type;
   368             InferenceContext funcInterfaceContext =
   369                     new InferenceContext(funcInterface.tsym.type.getTypeArguments());
   371             Assert.check(paramTypes != null);
   372             //get constraints from explicit params (this is done by
   373             //checking that explicit param types are equal to the ones
   374             //in the functional interface descriptors)
   375             List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
   376             if (descParameterTypes.size() != paramTypes.size()) {
   377                 checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
   378                 return types.createErrorType(funcInterface);
   379             }
   380             for (Type p : descParameterTypes) {
   381                 if (!types.isSameType(funcInterfaceContext.asFree(p), paramTypes.head)) {
   382                     checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   383                     return types.createErrorType(funcInterface);
   384                 }
   385                 paramTypes = paramTypes.tail;
   386             }
   388             try {
   389                 funcInterfaceContext.solve(funcInterfaceContext.boundedVars(), types.noWarnings);
   390             } catch (InferenceException ex) {
   391                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   392             }
   394             List<Type> actualTypeargs = funcInterface.getTypeArguments();
   395             for (Type t : funcInterfaceContext.undetvars) {
   396                 UndetVar uv = (UndetVar)t;
   397                 if (uv.inst == null) {
   398                     uv.inst = actualTypeargs.head;
   399                 }
   400                 actualTypeargs = actualTypeargs.tail;
   401             }
   403             Type owntype = funcInterfaceContext.asInstType(formalInterface);
   404             if (!chk.checkValidGenericType(owntype)) {
   405                 //if the inferred functional interface type is not well-formed,
   406                 //or if it's not a subtype of the original target, issue an error
   407                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   408             }
   409             return owntype;
   410         }
   411     }
   412     // </editor-fold>
   414     // <editor-fold defaultstate="collapsed" desc="Bound checking">
   415     /**
   416      * Check bounds and perform incorporation
   417      */
   418     void checkWithinBounds(InferenceContext inferenceContext,
   419                              Warner warn) throws InferenceException {
   420         MultiUndetVarListener mlistener = new MultiUndetVarListener(inferenceContext.undetvars);
   421         try {
   422             while (true) {
   423                 mlistener.reset();
   424                 if (!allowGraphInference) {
   425                     //in legacy mode we lack of transitivity, so bound check
   426                     //cannot be run in parallel with other incoprporation rounds
   427                     for (Type t : inferenceContext.undetvars) {
   428                         UndetVar uv = (UndetVar)t;
   429                         IncorporationStep.CHECK_BOUNDS.apply(uv, inferenceContext, warn);
   430                     }
   431                 }
   432                 for (Type t : inferenceContext.undetvars) {
   433                     UndetVar uv = (UndetVar)t;
   434                     //bound incorporation
   435                     EnumSet<IncorporationStep> incorporationSteps = allowGraphInference ?
   436                             incorporationStepsGraph : incorporationStepsLegacy;
   437                     for (IncorporationStep is : incorporationSteps) {
   438                         is.apply(uv, inferenceContext, warn);
   439                     }
   440                 }
   441                 if (!mlistener.changed || !allowGraphInference) break;
   442             }
   443         }
   444         finally {
   445             mlistener.detach();
   446         }
   447     }
   448     //where
   449         /**
   450          * This listener keeps track of changes on a group of inference variable
   451          * bounds. Note: the listener must be detached (calling corresponding
   452          * method) to make sure that the underlying inference variable is
   453          * left in a clean state.
   454          */
   455         class MultiUndetVarListener implements UndetVar.UndetVarListener {
   457             int rounds;
   458             boolean changed;
   459             List<Type> undetvars;
   461             public MultiUndetVarListener(List<Type> undetvars) {
   462                 this.undetvars = undetvars;
   463                 for (Type t : undetvars) {
   464                     UndetVar uv = (UndetVar)t;
   465                     uv.listener = this;
   466                 }
   467             }
   469             public void varChanged(UndetVar uv, Set<InferenceBound> ibs) {
   470                 //avoid non-termination
   471                 if (rounds < MAX_INCORPORATION_STEPS) {
   472                     changed = true;
   473                 }
   474             }
   476             void reset() {
   477                 rounds++;
   478                 changed = false;
   479             }
   481             void detach() {
   482                 for (Type t : undetvars) {
   483                     UndetVar uv = (UndetVar)t;
   484                     uv.listener = null;
   485                 }
   486             }
   487         };
   489         /** max number of incorporation rounds */
   490         static final int MAX_INCORPORATION_STEPS = 100;
   492     /**
   493      * This enumeration defines an entry point for doing inference variable
   494      * bound incorporation - it can be used to inject custom incorporation
   495      * logic into the basic bound checking routine
   496      */
   497     enum IncorporationStep {
   498         /**
   499          * Performs basic bound checking - i.e. is the instantiated type for a given
   500          * inference variable compatible with its bounds?
   501          */
   502         CHECK_BOUNDS() {
   503             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   504                 Infer infer = inferenceContext.infer();
   505                 uv.substBounds(inferenceContext.inferenceVars(), inferenceContext.instTypes(), infer.types);
   506                 infer.checkCompatibleUpperBounds(uv, inferenceContext);
   507                 if (uv.inst != null) {
   508                     Type inst = uv.inst;
   509                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   510                         if (!infer.types.isSubtypeUnchecked(inst, inferenceContext.asFree(u), warn)) {
   511                             infer.reportBoundError(uv, BoundErrorKind.UPPER);
   512                         }
   513                     }
   514                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   515                         if (!infer.types.isSubtypeUnchecked(inferenceContext.asFree(l), inst, warn)) {
   516                             infer.reportBoundError(uv, BoundErrorKind.LOWER);
   517                         }
   518                     }
   519                     for (Type e : uv.getBounds(InferenceBound.EQ)) {
   520                         if (!infer.types.isSameType(inst, inferenceContext.asFree(e))) {
   521                             infer.reportBoundError(uv, BoundErrorKind.EQ);
   522                         }
   523                     }
   524                 }
   525             }
   526         },
   527         /**
   528          * Check consistency of equality constraints. This is a slightly more aggressive
   529          * inference routine that is designed as to maximize compatibility with JDK 7.
   530          * Note: this is not used in graph mode.
   531          */
   532         EQ_CHECK_LEGACY() {
   533             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   534                 Infer infer = inferenceContext.infer();
   535                 Type eq = null;
   536                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   537                     Assert.check(!inferenceContext.free(e));
   538                     if (eq != null && !infer.types.isSameType(e, eq)) {
   539                         infer.reportBoundError(uv, BoundErrorKind.EQ);
   540                     }
   541                     eq = e;
   542                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   543                         Assert.check(!inferenceContext.free(l));
   544                         if (!infer.types.isSubtypeUnchecked(l, e, warn)) {
   545                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   546                         }
   547                     }
   548                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   549                         if (inferenceContext.free(u)) continue;
   550                         if (!infer.types.isSubtypeUnchecked(e, u, warn)) {
   551                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   552                         }
   553                     }
   554                 }
   555             }
   556         },
   557         /**
   558          * Check consistency of equality constraints.
   559          */
   560         EQ_CHECK() {
   561             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   562                 Infer infer = inferenceContext.infer();
   563                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   564                     if (e.containsAny(inferenceContext.inferenceVars())) continue;
   565                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   566                         if (!infer.types.isSubtypeUnchecked(e, inferenceContext.asFree(u), warn)) {
   567                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   568                         }
   569                     }
   570                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   571                         if (!infer.types.isSubtypeUnchecked(inferenceContext.asFree(l), e, warn)) {
   572                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   573                         }
   574                     }
   575                 }
   576             }
   577         },
   578         /**
   579          * Given a bound set containing {@code alpha <: T} and {@code alpha :> S}
   580          * perform {@code S <: T} (which could lead to new bounds).
   581          */
   582         CROSS_UPPER_LOWER() {
   583             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   584                 Infer infer = inferenceContext.infer();
   585                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   586                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   587                         infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   588                     }
   589                 }
   590             }
   591         },
   592         /**
   593          * Given a bound set containing {@code alpha <: T} and {@code alpha == S}
   594          * perform {@code S <: T} (which could lead to new bounds).
   595          */
   596         CROSS_UPPER_EQ() {
   597             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   598                 Infer infer = inferenceContext.infer();
   599                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   600                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   601                         infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   602                     }
   603                 }
   604             }
   605         },
   606         /**
   607          * Given a bound set containing {@code alpha :> S} and {@code alpha == T}
   608          * perform {@code S <: T} (which could lead to new bounds).
   609          */
   610         CROSS_EQ_LOWER() {
   611             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   612                 Infer infer = inferenceContext.infer();
   613                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   614                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   615                         infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   616                     }
   617                 }
   618             }
   619         },
   620         /**
   621          * Given a bound set containing {@code alpha == S} and {@code alpha == T}
   622          * perform {@code S == T} (which could lead to new bounds).
   623          */
   624         CROSS_EQ_EQ() {
   625             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   626                 Infer infer = inferenceContext.infer();
   627                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   628                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   629                         if (b1 != b2) {
   630                             infer.types.isSameType(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   631                         }
   632                     }
   633                 }
   634             }
   635         },
   636         /**
   637          * Given a bound set containing {@code alpha <: beta} propagate lower bounds
   638          * from alpha to beta; also propagate upper bounds from beta to alpha.
   639          */
   640         PROP_UPPER() {
   641             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   642                 Infer infer = inferenceContext.infer();
   643                 for (Type b : uv.getBounds(InferenceBound.UPPER)) {
   644                     if (inferenceContext.inferenceVars().contains(b)) {
   645                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   646                         //alpha <: beta
   647                         //0. set beta :> alpha
   648                         uv2.addBound(InferenceBound.LOWER, uv.qtype, infer.types);
   649                         //1. copy alpha's lower to beta's
   650                         for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   651                             uv2.addBound(InferenceBound.LOWER, inferenceContext.asInstType(l), infer.types);
   652                         }
   653                         //2. copy beta's upper to alpha's
   654                         for (Type u : uv2.getBounds(InferenceBound.UPPER)) {
   655                             uv.addBound(InferenceBound.UPPER, inferenceContext.asInstType(u), infer.types);
   656                         }
   657                     }
   658                 }
   659             }
   660         },
   661         /**
   662          * Given a bound set containing {@code alpha :> beta} propagate lower bounds
   663          * from beta to alpha; also propagate upper bounds from alpha to beta.
   664          */
   665         PROP_LOWER() {
   666             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   667                 Infer infer = inferenceContext.infer();
   668                 for (Type b : uv.getBounds(InferenceBound.LOWER)) {
   669                     if (inferenceContext.inferenceVars().contains(b)) {
   670                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   671                         //alpha :> beta
   672                         //0. set beta <: alpha
   673                         uv2.addBound(InferenceBound.UPPER, uv.qtype, infer.types);
   674                         //1. copy alpha's upper to beta's
   675                         for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   676                             uv2.addBound(InferenceBound.UPPER, inferenceContext.asInstType(u), infer.types);
   677                         }
   678                         //2. copy beta's lower to alpha's
   679                         for (Type l : uv2.getBounds(InferenceBound.LOWER)) {
   680                             uv.addBound(InferenceBound.LOWER, inferenceContext.asInstType(l), infer.types);
   681                         }
   682                     }
   683                 }
   684             }
   685         },
   686         /**
   687          * Given a bound set containing {@code alpha == beta} propagate lower/upper
   688          * bounds from alpha to beta and back.
   689          */
   690         PROP_EQ() {
   691             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   692                 Infer infer = inferenceContext.infer();
   693                 for (Type b : uv.getBounds(InferenceBound.EQ)) {
   694                     if (inferenceContext.inferenceVars().contains(b)) {
   695                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   696                         //alpha == beta
   697                         //0. set beta == alpha
   698                         uv2.addBound(InferenceBound.EQ, uv.qtype, infer.types);
   699                         //1. copy all alpha's bounds to beta's
   700                         for (InferenceBound ib : InferenceBound.values()) {
   701                             for (Type b2 : uv.getBounds(ib)) {
   702                                 if (b2 != uv2) {
   703                                     uv2.addBound(ib, inferenceContext.asInstType(b2), infer.types);
   704                                 }
   705                             }
   706                         }
   707                         //2. copy all beta's bounds to alpha's
   708                         for (InferenceBound ib : InferenceBound.values()) {
   709                             for (Type b2 : uv2.getBounds(ib)) {
   710                                 if (b2 != uv) {
   711                                     uv.addBound(ib, inferenceContext.asInstType(b2), infer.types);
   712                                 }
   713                             }
   714                         }
   715                     }
   716                 }
   717             }
   718         };
   720         abstract void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn);
   721     }
   723     /** incorporation steps to be executed when running in legacy mode */
   724     EnumSet<IncorporationStep> incorporationStepsLegacy = EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY);
   726     /** incorporation steps to be executed when running in graph mode */
   727     EnumSet<IncorporationStep> incorporationStepsGraph =
   728             EnumSet.complementOf(EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY));
   730     /**
   731      * Make sure that the upper bounds we got so far lead to a solvable inference
   732      * variable by making sure that a glb exists.
   733      */
   734     void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
   735         List<Type> hibounds =
   736                 Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
   737         Type hb = null;
   738         if (hibounds.isEmpty())
   739             hb = syms.objectType;
   740         else if (hibounds.tail.isEmpty())
   741             hb = hibounds.head;
   742         else
   743             hb = types.glb(hibounds);
   744         if (hb == null || hb.isErroneous())
   745             reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   746     }
   747     //where
   748         protected static class BoundFilter implements Filter<Type> {
   750             InferenceContext inferenceContext;
   752             public BoundFilter(InferenceContext inferenceContext) {
   753                 this.inferenceContext = inferenceContext;
   754             }
   756             @Override
   757             public boolean accepts(Type t) {
   758                 return !t.isErroneous() && !inferenceContext.free(t) &&
   759                         !t.hasTag(BOT);
   760             }
   761         };
   763     /**
   764      * This enumeration defines all possible bound-checking related errors.
   765      */
   766     enum BoundErrorKind {
   767         /**
   768          * The (uninstantiated) inference variable has incompatible upper bounds.
   769          */
   770         BAD_UPPER() {
   771             @Override
   772             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   773                 return ex.setMessage("incompatible.upper.bounds", uv.qtype,
   774                         uv.getBounds(InferenceBound.UPPER));
   775             }
   776         },
   777         /**
   778          * An equality constraint is not compatible with an upper bound.
   779          */
   780         BAD_EQ_UPPER() {
   781             @Override
   782             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   783                 return ex.setMessage("incompatible.eq.upper.bounds", uv.qtype,
   784                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.UPPER));
   785             }
   786         },
   787         /**
   788          * An equality constraint is not compatible with a lower bound.
   789          */
   790         BAD_EQ_LOWER() {
   791             @Override
   792             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   793                 return ex.setMessage("incompatible.eq.lower.bounds", uv.qtype,
   794                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.LOWER));
   795             }
   796         },
   797         /**
   798          * Instantiated inference variable is not compatible with an upper bound.
   799          */
   800         UPPER() {
   801             @Override
   802             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   803                 return ex.setMessage("inferred.do.not.conform.to.upper.bounds", uv.inst,
   804                         uv.getBounds(InferenceBound.UPPER));
   805             }
   806         },
   807         /**
   808          * Instantiated inference variable is not compatible with a lower bound.
   809          */
   810         LOWER() {
   811             @Override
   812             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   813                 return ex.setMessage("inferred.do.not.conform.to.lower.bounds", uv.inst,
   814                         uv.getBounds(InferenceBound.LOWER));
   815             }
   816         },
   817         /**
   818          * Instantiated inference variable is not compatible with an equality constraint.
   819          */
   820         EQ() {
   821             @Override
   822             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   823                 return ex.setMessage("inferred.do.not.conform.to.eq.bounds", uv.inst,
   824                         uv.getBounds(InferenceBound.EQ));
   825             }
   826         };
   828         abstract InapplicableMethodException setMessage(InferenceException ex, UndetVar uv);
   829     }
   831     /**
   832      * Report a bound-checking error of given kind
   833      */
   834     void reportBoundError(UndetVar uv, BoundErrorKind bk) {
   835         throw bk.setMessage(inferenceException, uv);
   836     }
   837     // </editor-fold>
   839     // <editor-fold defaultstate="collapsed" desc="Inference engine">
   840     /**
   841      * Graph inference strategy - act as an input to the inference solver; a strategy is
   842      * composed of two ingredients: (i) find a node to solve in the inference graph,
   843      * and (ii) tell th engine when we are done fixing inference variables
   844      */
   845     interface GraphStrategy {
   846         /**
   847          * Pick the next node (leaf) to solve in the graph
   848          */
   849         Node pickNode(InferenceGraph g);
   850         /**
   851          * Is this the last step?
   852          */
   853         boolean done();
   854     }
   856     /**
   857      * Simple solver strategy class that locates all leaves inside a graph
   858      * and picks the first leaf as the next node to solve
   859      */
   860     abstract class LeafSolver implements GraphStrategy {
   861         public Node pickNode(InferenceGraph g) {
   862                         Assert.check(!g.nodes.isEmpty(), "No nodes to solve!");
   863             return g.nodes.get(0);
   864         }
   865     }
   867     /**
   868      * This solver uses an heuristic to pick the best leaf - the heuristic
   869      * tries to select the node that has maximal probability to contain one
   870      * or more inference variables in a given list
   871      */
   872     abstract class BestLeafSolver extends LeafSolver {
   874         List<Type> varsToSolve;
   876         BestLeafSolver(List<Type> varsToSolve) {
   877             this.varsToSolve = varsToSolve;
   878         }
   880         /**
   881          * Computes the cost associated with a given node; the cost is computed
   882          * as the total number of type-variables that should be eagerly instantiated
   883          * in order to get to some of the variables in {@code varsToSolve} from
   884          * a given node
   885          */
   886         void computeCostIfNeeded(Node n, Map<Node, Integer> costMap) {
   887             if (costMap.containsKey(n)) {
   888                 return;
   889             } else if (!Collections.disjoint(n.data, varsToSolve)) {
   890                 costMap.put(n, n.data.size());
   891             } else {
   892                 int subcost = Integer.MAX_VALUE;
   893                 costMap.put(n, subcost); //avoid loops
   894                 for (Node n2 : n.getDependencies()) {
   895                     computeCostIfNeeded(n2, costMap);
   896                     subcost = Math.min(costMap.get(n2), subcost);
   897                 }
   898                 //update cost map to reflect real cost
   899                 costMap.put(n, subcost == Integer.MAX_VALUE ?
   900                         Integer.MAX_VALUE :
   901                         n.data.size() + subcost);
   902             }
   903         }
   905         /**
   906          * Pick the leaf that minimize cost
   907          */
   908         @Override
   909         public Node pickNode(final InferenceGraph g) {
   910             final Map<Node, Integer> costMap = new HashMap<Node, Integer>();
   911             ArrayList<Node> leaves = new ArrayList<Node>();
   912             for (Node n : g.nodes) {
   913                 computeCostIfNeeded(n, costMap);
   914                 if (n.isLeaf(n)) {
   915                     leaves.add(n);
   916                 }
   917             }
   918             Assert.check(!leaves.isEmpty(), "No nodes to solve!");
   919             Collections.sort(leaves, new java.util.Comparator<Node>() {
   920                 public int compare(Node n1, Node n2) {
   921                     return costMap.get(n1) - costMap.get(n2);
   922                 }
   923             });
   924             return leaves.get(0);
   925         }
   926     }
   928     /**
   929      * The inference process can be thought of as a sequence of steps. Each step
   930      * instantiates an inference variable using a subset of the inference variable
   931      * bounds, if certain condition are met. Decisions such as the sequence in which
   932      * steps are applied, or which steps are to be applied are left to the inference engine.
   933      */
   934     enum InferenceStep {
   936         /**
   937          * Instantiate an inference variables using one of its (ground) equality
   938          * constraints
   939          */
   940         EQ(InferenceBound.EQ) {
   941             @Override
   942             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   943                 return filterBounds(uv, inferenceContext).head;
   944             }
   945         },
   946         /**
   947          * Instantiate an inference variables using its (ground) lower bounds. Such
   948          * bounds are merged together using lub().
   949          */
   950         LOWER(InferenceBound.LOWER) {
   951             @Override
   952             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   953                 Infer infer = inferenceContext.infer();
   954                 List<Type> lobounds = filterBounds(uv, inferenceContext);
   955                 Type owntype = infer.types.lub(lobounds);
   956                 if (owntype.hasTag(ERROR)) {
   957                     throw infer.inferenceException
   958                         .setMessage("no.unique.minimal.instance.exists",
   959                                     uv.qtype, lobounds);
   960                 } else {
   961                     return owntype;
   962                 }
   963             }
   964         },
   965         /**
   966          * Instantiate an inference variables using its (ground) upper bounds. Such
   967          * bounds are merged together using glb().
   968          */
   969         UPPER(InferenceBound.UPPER) {
   970             @Override
   971             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   972                 Infer infer = inferenceContext.infer();
   973                 List<Type> hibounds = filterBounds(uv, inferenceContext);
   974                 Type owntype = infer.types.glb(hibounds);
   975                 if (owntype.isErroneous()) {
   976                     throw infer.inferenceException
   977                         .setMessage("no.unique.maximal.instance.exists",
   978                                     uv.qtype, hibounds);
   979                 } else {
   980                     return owntype;
   981                 }
   982             }
   983         },
   984         /**
   985          * Like the former; the only difference is that this step can only be applied
   986          * if all upper bounds are ground.
   987          */
   988         UPPER_LEGACY(InferenceBound.UPPER) {
   989             @Override
   990             public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
   991                 return !inferenceContext.free(t.getBounds(ib));
   992             }
   994             @Override
   995             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   996                 return UPPER.solve(uv, inferenceContext);
   997             }
   998         };
  1000         final InferenceBound ib;
  1002         InferenceStep(InferenceBound ib) {
  1003             this.ib = ib;
  1006         /**
  1007          * Find an instantiated type for a given inference variable within
  1008          * a given inference context
  1009          */
  1010         abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
  1012         /**
  1013          * Can the inference variable be instantiated using this step?
  1014          */
  1015         public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1016             return filterBounds(t, inferenceContext).nonEmpty();
  1019         /**
  1020          * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
  1021          */
  1022         List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
  1023             return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
  1027     /**
  1028      * This enumeration defines the sequence of steps to be applied when the
  1029      * solver works in legacy mode. The steps in this enumeration reflect
  1030      * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1031      */
  1032     enum LegacyInferenceSteps {
  1034         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1035         EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
  1037         final EnumSet<InferenceStep> steps;
  1039         LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
  1040             this.steps = steps;
  1044     /**
  1045      * This enumeration defines the sequence of steps to be applied when the
  1046      * graph solver is used. This order is defined so as to maximize compatibility
  1047      * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1048      */
  1049     enum GraphInferenceSteps {
  1051         EQ(EnumSet.of(InferenceStep.EQ)),
  1052         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1053         EQ_LOWER_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER));
  1055         final EnumSet<InferenceStep> steps;
  1057         GraphInferenceSteps(EnumSet<InferenceStep> steps) {
  1058             this.steps = steps;
  1062     /**
  1063      * This is the graph inference solver - the solver organizes all inference variables in
  1064      * a given inference context by bound dependencies - in the general case, such dependencies
  1065      * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
  1066      * an acyclic graph, where all cyclic variables are bundled together. An inference
  1067      * step corresponds to solving a node in the acyclic graph - this is done by
  1068      * relying on a given strategy (see GraphStrategy).
  1069      */
  1070     class GraphSolver {
  1072         InferenceContext inferenceContext;
  1073         Warner warn;
  1075         GraphSolver(InferenceContext inferenceContext, Warner warn) {
  1076             this.inferenceContext = inferenceContext;
  1077             this.warn = warn;
  1080         /**
  1081          * Solve variables in a given inference context. The amount of variables
  1082          * to be solved, and the way in which the underlying acyclic graph is explored
  1083          * depends on the selected solver strategy.
  1084          */
  1085         void solve(GraphStrategy sstrategy) {
  1086             checkWithinBounds(inferenceContext, warn); //initial propagation of bounds
  1087             InferenceGraph inferenceGraph = new InferenceGraph();
  1088             while (!sstrategy.done()) {
  1089                 InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
  1090                 List<Type> varsToSolve = List.from(nodeToSolve.data);
  1091                 inferenceContext.save();
  1092                 try {
  1093                     //repeat until all variables are solved
  1094                     outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
  1095                         //for each inference phase
  1096                         for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
  1097                             if (inferenceContext.solveBasic(varsToSolve, step.steps)) {
  1098                                 checkWithinBounds(inferenceContext, warn);
  1099                                 continue outer;
  1102                         //no progress
  1103                         throw inferenceException;
  1106                 catch (InferenceException ex) {
  1107                     inferenceContext.rollback();
  1108                     instantiateAsUninferredVars(varsToSolve, inferenceContext);
  1109                     checkWithinBounds(inferenceContext, warn);
  1111                 inferenceGraph.deleteNode(nodeToSolve);
  1115         /**
  1116          * The dependencies between the inference variables that need to be solved
  1117          * form a (possibly cyclic) graph. This class reduces the original dependency graph
  1118          * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
  1119          */
  1120         class InferenceGraph {
  1122             /**
  1123              * This class represents a node in the graph. Each node corresponds
  1124              * to an inference variable and has edges (dependencies) on other
  1125              * nodes. The node defines an entry point that can be used to receive
  1126              * updates on the structure of the graph this node belongs to (used to
  1127              * keep dependencies in sync).
  1128              */
  1129             class Node extends GraphUtils.TarjanNode<ListBuffer<Type>> {
  1131                 Set<Node> deps;
  1133                 Node(Type ivar) {
  1134                     super(ListBuffer.of(ivar));
  1135                     this.deps = new HashSet<Node>();
  1138                 @Override
  1139                 public Iterable<? extends Node> getDependencies() {
  1140                     return deps;
  1143                 @Override
  1144                 public String printDependency(GraphUtils.Node<ListBuffer<Type>> to) {
  1145                     StringBuilder buf = new StringBuilder();
  1146                     String sep = "";
  1147                     for (Type from : data) {
  1148                         UndetVar uv = (UndetVar)inferenceContext.asFree(from);
  1149                         for (Type bound : uv.getBounds(InferenceBound.values())) {
  1150                             if (bound.containsAny(List.from(to.data))) {
  1151                                 buf.append(sep);
  1152                                 buf.append(bound);
  1153                                 sep = ",";
  1157                     return buf.toString();
  1160                 boolean isLeaf(Node n) {
  1161                     //no deps, or only one self dep
  1162                     return (n.deps.isEmpty() ||
  1163                             n.deps.size() == 1 && n.deps.contains(n));
  1166                 void mergeWith(List<? extends Node> nodes) {
  1167                     for (Node n : nodes) {
  1168                         Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
  1169                         data.appendList(n.data);
  1170                         deps.addAll(n.deps);
  1172                     //update deps
  1173                     Set<Node> deps2 = new HashSet<Node>();
  1174                     for (Node d : deps) {
  1175                         if (data.contains(d.data.first())) {
  1176                             deps2.add(this);
  1177                         } else {
  1178                             deps2.add(d);
  1181                     deps = deps2;
  1184                 void graphChanged(Node from, Node to) {
  1185                     if (deps.contains(from)) {
  1186                         deps.remove(from);
  1187                         if (to != null) {
  1188                             deps.add(to);
  1194             /** the nodes in the inference graph */
  1195             ArrayList<Node> nodes;
  1197             InferenceGraph() {
  1198                 initNodes();
  1201             /**
  1202              * Delete a node from the graph. This update the underlying structure
  1203              * of the graph (including dependencies) via listeners updates.
  1204              */
  1205             public void deleteNode(Node n) {
  1206                 Assert.check(nodes.contains(n));
  1207                 nodes.remove(n);
  1208                 notifyUpdate(n, null);
  1211             /**
  1212              * Notify all nodes of a change in the graph. If the target node is
  1213              * {@code null} the source node is assumed to be removed.
  1214              */
  1215             void notifyUpdate(Node from, Node to) {
  1216                 for (Node n : nodes) {
  1217                     n.graphChanged(from, to);
  1221             /**
  1222              * Create the graph nodes. First a simple node is created for every inference
  1223              * variables to be solved. Then Tarjan is used to found all connected components
  1224              * in the graph. For each component containing more than one node, a super node is
  1225                  * created, effectively replacing the original cyclic nodes.
  1226              */
  1227             void initNodes() {
  1228                 nodes = new ArrayList<Node>();
  1229                 for (Type t : inferenceContext.restvars()) {
  1230                     nodes.add(new Node(t));
  1232                 for (Node n_i : nodes) {
  1233                     Type i = n_i.data.first();
  1234                     for (Node n_j : nodes) {
  1235                         Type j = n_j.data.first();
  1236                         UndetVar uv_i = (UndetVar)inferenceContext.asFree(i);
  1237                         if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
  1238                             //update i's deps
  1239                             n_i.deps.add(n_j);
  1243                 ArrayList<Node> acyclicNodes = new ArrayList<Node>();
  1244                 for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
  1245                     if (conSubGraph.length() > 1) {
  1246                         Node root = conSubGraph.head;
  1247                         root.mergeWith(conSubGraph.tail);
  1248                         for (Node n : conSubGraph) {
  1249                             notifyUpdate(n, root);
  1252                     acyclicNodes.add(conSubGraph.head);
  1254                 nodes = acyclicNodes;
  1257             /**
  1258              * Debugging: dot representation of this graph
  1259              */
  1260             String toDot() {
  1261                 StringBuilder buf = new StringBuilder();
  1262                 for (Type t : inferenceContext.undetvars) {
  1263                     UndetVar uv = (UndetVar)t;
  1264                     buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
  1265                             uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
  1266                             uv.getBounds(InferenceBound.EQ)));
  1268                 return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
  1272     // </editor-fold>
  1274     // <editor-fold defaultstate="collapsed" desc="Inference context">
  1275     /**
  1276      * Functional interface for defining inference callbacks. Certain actions
  1277      * (i.e. subtyping checks) might need to be redone after all inference variables
  1278      * have been fixed.
  1279      */
  1280     interface FreeTypeListener {
  1281         void typesInferred(InferenceContext inferenceContext);
  1284     /**
  1285      * An inference context keeps track of the set of variables that are free
  1286      * in the current context. It provides utility methods for opening/closing
  1287      * types to their corresponding free/closed forms. It also provide hooks for
  1288      * attaching deferred post-inference action (see PendingCheck). Finally,
  1289      * it can be used as an entry point for performing upper/lower bound inference
  1290      * (see InferenceKind).
  1291      */
  1292      class InferenceContext {
  1294         /** list of inference vars as undet vars */
  1295         List<Type> undetvars;
  1297         /** list of inference vars in this context */
  1298         List<Type> inferencevars;
  1300         /** backed up inference variables */
  1301         List<Type> saved_undet;
  1303         java.util.Map<FreeTypeListener, List<Type>> freeTypeListeners =
  1304                 new java.util.HashMap<FreeTypeListener, List<Type>>();
  1306         List<FreeTypeListener> freetypeListeners = List.nil();
  1308         public InferenceContext(List<Type> inferencevars) {
  1309             this.undetvars = Type.map(inferencevars, fromTypeVarFun);
  1310             this.inferencevars = inferencevars;
  1312         //where
  1313             Mapping fromTypeVarFun = new Mapping("fromTypeVarFunWithBounds") {
  1314                 // mapping that turns inference variables into undet vars
  1315                 public Type apply(Type t) {
  1316                     if (t.hasTag(TYPEVAR)) return new UndetVar((TypeVar)t, types);
  1317                     else return t.map(this);
  1319             };
  1321         /**
  1322          * returns the list of free variables (as type-variables) in this
  1323          * inference context
  1324          */
  1325         List<Type> inferenceVars() {
  1326             return inferencevars;
  1329         /**
  1330          * returns the list of uninstantiated variables (as type-variables) in this
  1331          * inference context
  1332          */
  1333         List<Type> restvars() {
  1334             return filterVars(new Filter<UndetVar>() {
  1335                 public boolean accepts(UndetVar uv) {
  1336                     return uv.inst == null;
  1338             });
  1341         /**
  1342          * returns the list of instantiated variables (as type-variables) in this
  1343          * inference context
  1344          */
  1345         List<Type> instvars() {
  1346             return filterVars(new Filter<UndetVar>() {
  1347                 public boolean accepts(UndetVar uv) {
  1348                     return uv.inst != null;
  1350             });
  1353         /**
  1354          * Get list of bounded inference variables (where bound is other than
  1355          * declared bounds).
  1356          */
  1357         final List<Type> boundedVars() {
  1358             return filterVars(new Filter<UndetVar>() {
  1359                 public boolean accepts(UndetVar uv) {
  1360                     return uv.getBounds(InferenceBound.UPPER)
  1361                             .diff(uv.getDeclaredBounds())
  1362                             .appendList(uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)).nonEmpty();
  1364             });
  1367         private List<Type> filterVars(Filter<UndetVar> fu) {
  1368             ListBuffer<Type> res = ListBuffer.lb();
  1369             for (Type t : undetvars) {
  1370                 UndetVar uv = (UndetVar)t;
  1371                 if (fu.accepts(uv)) {
  1372                     res.append(uv.qtype);
  1375             return res.toList();
  1378         /**
  1379          * is this type free?
  1380          */
  1381         final boolean free(Type t) {
  1382             return t.containsAny(inferencevars);
  1385         final boolean free(List<Type> ts) {
  1386             for (Type t : ts) {
  1387                 if (free(t)) return true;
  1389             return false;
  1392         /**
  1393          * Returns a list of free variables in a given type
  1394          */
  1395         final List<Type> freeVarsIn(Type t) {
  1396             ListBuffer<Type> buf = ListBuffer.lb();
  1397             for (Type iv : inferenceVars()) {
  1398                 if (t.contains(iv)) {
  1399                     buf.add(iv);
  1402             return buf.toList();
  1405         final List<Type> freeVarsIn(List<Type> ts) {
  1406             ListBuffer<Type> buf = ListBuffer.lb();
  1407             for (Type t : ts) {
  1408                 buf.appendList(freeVarsIn(t));
  1410             ListBuffer<Type> buf2 = ListBuffer.lb();
  1411             for (Type t : buf) {
  1412                 if (!buf2.contains(t)) {
  1413                     buf2.add(t);
  1416             return buf2.toList();
  1419         /**
  1420          * Replace all free variables in a given type with corresponding
  1421          * undet vars (used ahead of subtyping/compatibility checks to allow propagation
  1422          * of inference constraints).
  1423          */
  1424         final Type asFree(Type t) {
  1425             return types.subst(t, inferencevars, undetvars);
  1428         final List<Type> asFree(List<Type> ts) {
  1429             ListBuffer<Type> buf = ListBuffer.lb();
  1430             for (Type t : ts) {
  1431                 buf.append(asFree(t));
  1433             return buf.toList();
  1436         List<Type> instTypes() {
  1437             ListBuffer<Type> buf = ListBuffer.lb();
  1438             for (Type t : undetvars) {
  1439                 UndetVar uv = (UndetVar)t;
  1440                 buf.append(uv.inst != null ? uv.inst : uv.qtype);
  1442             return buf.toList();
  1445         /**
  1446          * Replace all free variables in a given type with corresponding
  1447          * instantiated types - if one or more free variable has not been
  1448          * fully instantiated, it will still be available in the resulting type.
  1449          */
  1450         Type asInstType(Type t) {
  1451             return types.subst(t, inferencevars, instTypes());
  1454         List<Type> asInstTypes(List<Type> ts) {
  1455             ListBuffer<Type> buf = ListBuffer.lb();
  1456             for (Type t : ts) {
  1457                 buf.append(asInstType(t));
  1459             return buf.toList();
  1462         /**
  1463          * Add custom hook for performing post-inference action
  1464          */
  1465         void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
  1466             freeTypeListeners.put(ftl, freeVarsIn(types));
  1469         /**
  1470          * Mark the inference context as complete and trigger evaluation
  1471          * of all deferred checks.
  1472          */
  1473         void notifyChange() {
  1474             notifyChange(inferencevars.diff(restvars()));
  1477         void notifyChange(List<Type> inferredVars) {
  1478             InferenceException thrownEx = null;
  1479             for (Map.Entry<FreeTypeListener, List<Type>> entry :
  1480                     new HashMap<FreeTypeListener, List<Type>>(freeTypeListeners).entrySet()) {
  1481                 if (!Type.containsAny(entry.getValue(), inferencevars.diff(inferredVars))) {
  1482                     try {
  1483                         entry.getKey().typesInferred(this);
  1484                         freeTypeListeners.remove(entry.getKey());
  1485                     } catch (InferenceException ex) {
  1486                         if (thrownEx == null) {
  1487                             thrownEx = ex;
  1492             //inference exception multiplexing - present any inference exception
  1493             //thrown when processing listeners as a single one
  1494             if (thrownEx != null) {
  1495                 throw thrownEx;
  1499         /**
  1500          * Save the state of this inference context
  1501          */
  1502         void save() {
  1503             ListBuffer<Type> buf = ListBuffer.lb();
  1504             for (Type t : undetvars) {
  1505                 UndetVar uv = (UndetVar)t;
  1506                 UndetVar uv2 = new UndetVar((TypeVar)uv.qtype, types);
  1507                 for (InferenceBound ib : InferenceBound.values()) {
  1508                     for (Type b : uv.getBounds(ib)) {
  1509                         uv2.addBound(ib, b, types);
  1512                 uv2.inst = uv.inst;
  1513                 buf.add(uv2);
  1515             saved_undet = buf.toList();
  1518         /**
  1519          * Restore the state of this inference context to the previous known checkpoint
  1520          */
  1521         void rollback() {
  1522             Assert.check(saved_undet != null && saved_undet.length() == undetvars.length());
  1523             undetvars = saved_undet;
  1524             saved_undet = null;
  1527         /**
  1528          * Copy variable in this inference context to the given context
  1529          */
  1530         void dupTo(final InferenceContext that) {
  1531             that.inferencevars = that.inferencevars.appendList(inferencevars);
  1532             that.undetvars = that.undetvars.appendList(undetvars);
  1533             //set up listeners to notify original inference contexts as
  1534             //propagated vars are inferred in new context
  1535             for (Type t : inferencevars) {
  1536                 that.freeTypeListeners.put(new FreeTypeListener() {
  1537                     public void typesInferred(InferenceContext inferenceContext) {
  1538                         InferenceContext.this.notifyChange();
  1540                 }, List.of(t));
  1544         /**
  1545          * Solve with given graph strategy.
  1546          */
  1547         private void solve(GraphStrategy ss, Warner warn) {
  1548             GraphSolver s = new GraphSolver(this, warn);
  1549             s.solve(ss);
  1552         /**
  1553          * Solve all variables in this context.
  1554          */
  1555         public void solve(Warner warn) {
  1556             solve(new LeafSolver() {
  1557                 public boolean done() {
  1558                     return restvars().isEmpty();
  1560             }, warn);
  1563         /**
  1564          * Solve all variables in the given list.
  1565          */
  1566         public void solve(final List<Type> vars, Warner warn) {
  1567             solve(new BestLeafSolver(vars) {
  1568                 public boolean done() {
  1569                     return !free(asInstTypes(vars));
  1571             }, warn);
  1574         /**
  1575          * Solve at least one variable in given list.
  1576          */
  1577         public void solveAny(List<Type> varsToSolve, Warner warn) {
  1578             checkWithinBounds(this, warn); //propagate bounds
  1579             List<Type> boundedVars = boundedVars().intersect(restvars()).intersect(varsToSolve);
  1580             if (boundedVars.isEmpty()) {
  1581                 throw inferenceException.setMessage("cyclic.inference",
  1582                                 freeVarsIn(varsToSolve));
  1584             solve(new BestLeafSolver(boundedVars) {
  1585                 public boolean done() {
  1586                     return instvars().intersect(varsToSolve).nonEmpty();
  1588             }, warn);
  1591         /**
  1592          * Apply a set of inference steps
  1593          */
  1594         private boolean solveBasic(EnumSet<InferenceStep> steps) {
  1595             return solveBasic(inferencevars, steps);
  1598         private boolean solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps) {
  1599             boolean changed = false;
  1600             for (Type t : varsToSolve.intersect(restvars())) {
  1601                 UndetVar uv = (UndetVar)asFree(t);
  1602                 for (InferenceStep step : steps) {
  1603                     if (step.accepts(uv, this)) {
  1604                         uv.inst = step.solve(uv, this);
  1605                         changed = true;
  1606                         break;
  1610             return changed;
  1613         /**
  1614          * Instantiate inference variables in legacy mode (JLS 15.12.2.7, 15.12.2.8).
  1615          * During overload resolution, instantiation is done by doing a partial
  1616          * inference process using eq/lower bound instantiation. During check,
  1617          * we also instantiate any remaining vars by repeatedly using eq/upper
  1618          * instantiation, until all variables are solved.
  1619          */
  1620         public void solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps) {
  1621             while (true) {
  1622                 boolean stuck = !solveBasic(steps);
  1623                 if (restvars().isEmpty() || partial) {
  1624                     //all variables have been instantiated - exit
  1625                     break;
  1626                 } else if (stuck) {
  1627                     //some variables could not be instantiated because of cycles in
  1628                     //upper bounds - provide a (possibly recursive) default instantiation
  1629                     instantiateAsUninferredVars(restvars(), this);
  1630                     break;
  1631                 } else {
  1632                     //some variables have been instantiated - replace newly instantiated
  1633                     //variables in remaining upper bounds and continue
  1634                     for (Type t : undetvars) {
  1635                         UndetVar uv = (UndetVar)t;
  1636                         uv.substBounds(inferenceVars(), instTypes(), types);
  1640             checkWithinBounds(this, warn);
  1643         private Infer infer() {
  1644             //back-door to infer
  1645             return Infer.this;
  1649     final InferenceContext emptyContext = new InferenceContext(List.<Type>nil());
  1650     // </editor-fold>

mercurial