src/share/classes/com/sun/tools/javac/comp/Infer.java

Thu, 28 Feb 2013 14:00:52 +0000

author
mcimadamore
date
Thu, 28 Feb 2013 14:00:52 +0000
changeset 1608
133a0a0c2cbc
parent 1562
2154ed9ff6c8
child 1628
5ddecb91d843
permissions
-rw-r--r--

8008723: Graph Inference: bad graph calculation leads to assertion error
Summary: Dependencies are not propagated correctly through merged nodes during inference graph initialization
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.tree.JCTree;
    29 import com.sun.tools.javac.tree.JCTree.JCTypeCast;
    30 import com.sun.tools.javac.tree.TreeInfo;
    31 import com.sun.tools.javac.util.*;
    32 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    33 import com.sun.tools.javac.util.List;
    34 import com.sun.tools.javac.code.*;
    35 import com.sun.tools.javac.code.Type.*;
    36 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    37 import com.sun.tools.javac.code.Symbol.*;
    38 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    39 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
    40 import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
    41 import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
    42 import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
    44 import java.util.HashMap;
    45 import java.util.Map;
    46 import java.util.Set;
    48 import java.util.ArrayList;
    49 import java.util.Collections;
    50 import java.util.EnumSet;
    51 import java.util.HashSet;
    53 import static com.sun.tools.javac.code.TypeTag.*;
    55 /** Helper class for type parameter inference, used by the attribution phase.
    56  *
    57  *  <p><b>This is NOT part of any supported API.
    58  *  If you write code that depends on this, you do so at your own risk.
    59  *  This code and its internal interfaces are subject to change or
    60  *  deletion without notice.</b>
    61  */
    62 public class Infer {
    63     protected static final Context.Key<Infer> inferKey =
    64         new Context.Key<Infer>();
    66     Resolve rs;
    67     Check chk;
    68     Symtab syms;
    69     Types types;
    70     JCDiagnostic.Factory diags;
    71     Log log;
    73     /** should the graph solver be used? */
    74     boolean allowGraphInference;
    76     public static Infer instance(Context context) {
    77         Infer instance = context.get(inferKey);
    78         if (instance == null)
    79             instance = new Infer(context);
    80         return instance;
    81     }
    83     protected Infer(Context context) {
    84         context.put(inferKey, this);
    86         rs = Resolve.instance(context);
    87         chk = Check.instance(context);
    88         syms = Symtab.instance(context);
    89         types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         log = Log.instance(context);
    92         inferenceException = new InferenceException(diags);
    93         Options options = Options.instance(context);
    94         allowGraphInference = Source.instance(context).allowGraphInference()
    95                 && options.isUnset("useLegacyInference");
    96     }
    98     /** A value for prototypes that admit any type, including polymorphic ones. */
    99     public static final Type anyPoly = new Type(NONE, null);
   101    /**
   102     * This exception class is design to store a list of diagnostics corresponding
   103     * to inference errors that can arise during a method applicability check.
   104     */
   105     public static class InferenceException extends InapplicableMethodException {
   106         private static final long serialVersionUID = 0;
   108         List<JCDiagnostic> messages = List.nil();
   110         InferenceException(JCDiagnostic.Factory diags) {
   111             super(diags);
   112         }
   114         @Override
   115         InapplicableMethodException setMessage(JCDiagnostic diag) {
   116             messages = messages.append(diag);
   117             return this;
   118         }
   120         @Override
   121         public JCDiagnostic getDiagnostic() {
   122             return messages.head;
   123         }
   125         void clear() {
   126             messages = List.nil();
   127         }
   128     }
   130     protected final InferenceException inferenceException;
   132     // <editor-fold defaultstate="collapsed" desc="Inference routines">
   133     /**
   134      * Main inference entry point - instantiate a generic method type
   135      * using given argument types and (possibly) an expected target-type.
   136      */
   137     public Type instantiateMethod(Env<AttrContext> env,
   138                                   List<Type> tvars,
   139                                   MethodType mt,
   140                                   Attr.ResultInfo resultInfo,
   141                                   Symbol msym,
   142                                   List<Type> argtypes,
   143                                   boolean allowBoxing,
   144                                   boolean useVarargs,
   145                                   Resolve.MethodResolutionContext resolveContext,
   146                                   Resolve.MethodCheck methodCheck,
   147                                   Warner warn) throws InferenceException {
   148         //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
   149         final InferenceContext inferenceContext = new InferenceContext(tvars);
   150         inferenceException.clear();
   151         try {
   152             DeferredAttr.DeferredAttrContext deferredAttrContext =
   153                     resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
   155             methodCheck.argumentsAcceptable(env, deferredAttrContext,
   156                     argtypes, mt.getParameterTypes(), warn);
   158             if (allowGraphInference &&
   159                     resultInfo != null &&
   160                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   161                 //inject return constraints earlier
   162                 checkWithinBounds(inferenceContext, warn); //propagation
   163                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   164                 //propagate outwards if needed
   165                 if (resultInfo.checkContext.inferenceContext().free(resultInfo.pt)) {
   166                     //propagate inference context outwards and exit
   167                     inferenceContext.dupTo(resultInfo.checkContext.inferenceContext());
   168                     deferredAttrContext.complete();
   169                     return mt;
   170                 }
   171             }
   173             deferredAttrContext.complete();
   175             // minimize as yet undetermined type variables
   176             if (allowGraphInference) {
   177                 inferenceContext.solve(warn);
   178             } else {
   179                 inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
   180             }
   182             mt = (MethodType)inferenceContext.asInstType(mt);
   184             if (!allowGraphInference &&
   185                     inferenceContext.restvars().nonEmpty() &&
   186                     resultInfo != null &&
   187                     !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
   188                 generateReturnConstraints(resultInfo, mt, inferenceContext);
   189                 inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
   190                 mt = (MethodType)inferenceContext.asInstType(mt);
   191             }
   193             if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
   194                 log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
   195             }
   197             // return instantiated version of method type
   198             return mt;
   199         } finally {
   200             if (resultInfo != null || !allowGraphInference) {
   201                 inferenceContext.notifyChange();
   202             } else {
   203                 inferenceContext.notifyChange(inferenceContext.boundedVars());
   204             }
   205         }
   206     }
   208     /**
   209      * Generate constraints from the generic method's return type. If the method
   210      * call occurs in a context where a type T is expected, use the expected
   211      * type to derive more constraints on the generic method inference variables.
   212      */
   213     void generateReturnConstraints(Attr.ResultInfo resultInfo,
   214             MethodType mt, InferenceContext inferenceContext) {
   215         Type qtype1 = inferenceContext.asFree(mt.getReturnType());
   216         Type to = returnConstraintTarget(qtype1, resultInfo.pt);
   217         Assert.check(allowGraphInference || !resultInfo.checkContext.inferenceContext().free(to),
   218                 "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
   219         //we need to skip capture?
   220         Warner retWarn = new Warner();
   221         if (!resultInfo.checkContext.compatible(qtype1, resultInfo.checkContext.inferenceContext().asFree(to), retWarn) ||
   222                 //unchecked conversion is not allowed
   223                 retWarn.hasLint(Lint.LintCategory.UNCHECKED)) {
   224             throw inferenceException
   225                     .setMessage("infer.no.conforming.instance.exists",
   226                     inferenceContext.restvars(), mt.getReturnType(), to);
   227         }
   228     }
   229     //where
   230         private Type returnConstraintTarget(Type from, Type to) {
   231             if (from.hasTag(VOID)) {
   232                 return syms.voidType;
   233             } else if (to.hasTag(NONE)) {
   234                 return from.isPrimitive() ? from : syms.objectType;
   235             } else if (from.hasTag(UNDETVAR) && to.isPrimitive()) {
   236                 if (!allowGraphInference) {
   237                     //if legacy, just return boxed type
   238                     return types.boxedClass(to).type;
   239                 }
   240                 //if graph inference we need to skip conflicting boxed bounds...
   241                 UndetVar uv = (UndetVar)from;
   242                 for (Type t : uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
   243                     Type boundAsPrimitive = types.unboxedType(t);
   244                     if (boundAsPrimitive == null) continue;
   245                     if (types.isConvertible(boundAsPrimitive, to)) {
   246                         //effectively skip return-type constraint generation (compatibility)
   247                         return syms.objectType;
   248                     }
   249                 }
   250                 return types.boxedClass(to).type;
   251             } else {
   252                 return to;
   253             }
   254         }
   256     /**
   257       * Infer cyclic inference variables as described in 15.12.2.8.
   258       */
   259     private void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
   260         ListBuffer<Type> todo = ListBuffer.lb();
   261         //step 1 - create fresh tvars
   262         for (Type t : vars) {
   263             UndetVar uv = (UndetVar)inferenceContext.asFree(t);
   264             List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
   265             if (Type.containsAny(upperBounds, vars)) {
   266                 TypeSymbol fresh_tvar = new TypeSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
   267                 fresh_tvar.type = new TypeVar(fresh_tvar, types.makeCompoundType(uv.getBounds(InferenceBound.UPPER)), null);
   268                 todo.append(uv);
   269                 uv.inst = fresh_tvar.type;
   270             } else if (upperBounds.nonEmpty()) {
   271                 uv.inst = types.glb(upperBounds);
   272             } else {
   273                 uv.inst = syms.objectType;
   274             }
   275         }
   276         //step 2 - replace fresh tvars in their bounds
   277         List<Type> formals = vars;
   278         for (Type t : todo) {
   279             UndetVar uv = (UndetVar)t;
   280             TypeVar ct = (TypeVar)uv.inst;
   281             ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
   282             if (ct.bound.isErroneous()) {
   283                 //report inference error if glb fails
   284                 reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   285             }
   286             formals = formals.tail;
   287         }
   288     }
   290     /**
   291      * Compute a synthetic method type corresponding to the requested polymorphic
   292      * method signature. The target return type is computed from the immediately
   293      * enclosing scope surrounding the polymorphic-signature call.
   294      */
   295     Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
   296                                             MethodSymbol spMethod,  // sig. poly. method or null if none
   297                                             Resolve.MethodResolutionContext resolveContext,
   298                                             List<Type> argtypes) {
   299         final Type restype;
   301         //The return type for a polymorphic signature call is computed from
   302         //the enclosing tree E, as follows: if E is a cast, then use the
   303         //target type of the cast expression as a return type; if E is an
   304         //expression statement, the return type is 'void' - otherwise the
   305         //return type is simply 'Object'. A correctness check ensures that
   306         //env.next refers to the lexically enclosing environment in which
   307         //the polymorphic signature call environment is nested.
   309         switch (env.next.tree.getTag()) {
   310             case TYPECAST:
   311                 JCTypeCast castTree = (JCTypeCast)env.next.tree;
   312                 restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
   313                     castTree.clazz.type :
   314                     syms.objectType;
   315                 break;
   316             case EXEC:
   317                 JCTree.JCExpressionStatement execTree =
   318                         (JCTree.JCExpressionStatement)env.next.tree;
   319                 restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
   320                     syms.voidType :
   321                     syms.objectType;
   322                 break;
   323             default:
   324                 restype = syms.objectType;
   325         }
   327         List<Type> paramtypes = Type.map(argtypes, new ImplicitArgType(spMethod, resolveContext.step));
   328         List<Type> exType = spMethod != null ?
   329             spMethod.getThrownTypes() :
   330             List.of(syms.throwableType); // make it throw all exceptions
   332         MethodType mtype = new MethodType(paramtypes,
   333                                           restype,
   334                                           exType,
   335                                           syms.methodClass);
   336         return mtype;
   337     }
   338     //where
   339         class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
   341             public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
   342                 rs.deferredAttr.super(AttrMode.SPECULATIVE, msym, phase);
   343             }
   345             public Type apply(Type t) {
   346                 t = types.erasure(super.apply(t));
   347                 if (t.hasTag(BOT))
   348                     // nulls type as the marker type Null (which has no instances)
   349                     // infer as java.lang.Void for now
   350                     t = types.boxedClass(syms.voidType).type;
   351                 return t;
   352             }
   353         }
   355     /**
   356       * This method is used to infer a suitable target SAM in case the original
   357       * SAM type contains one or more wildcards. An inference process is applied
   358       * so that wildcard bounds, as well as explicit lambda/method ref parameters
   359       * (where applicable) are used to constraint the solution.
   360       */
   361     public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
   362             List<Type> paramTypes, Check.CheckContext checkContext) {
   363         if (types.capture(funcInterface) == funcInterface) {
   364             //if capture doesn't change the type then return the target unchanged
   365             //(this means the target contains no wildcards!)
   366             return funcInterface;
   367         } else {
   368             Type formalInterface = funcInterface.tsym.type;
   369             InferenceContext funcInterfaceContext =
   370                     new InferenceContext(funcInterface.tsym.type.getTypeArguments());
   372             Assert.check(paramTypes != null);
   373             //get constraints from explicit params (this is done by
   374             //checking that explicit param types are equal to the ones
   375             //in the functional interface descriptors)
   376             List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
   377             if (descParameterTypes.size() != paramTypes.size()) {
   378                 checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
   379                 return types.createErrorType(funcInterface);
   380             }
   381             for (Type p : descParameterTypes) {
   382                 if (!types.isSameType(funcInterfaceContext.asFree(p), paramTypes.head)) {
   383                     checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   384                     return types.createErrorType(funcInterface);
   385                 }
   386                 paramTypes = paramTypes.tail;
   387             }
   389             try {
   390                 funcInterfaceContext.solve(funcInterfaceContext.boundedVars(), types.noWarnings);
   391             } catch (InferenceException ex) {
   392                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   393             }
   395             List<Type> actualTypeargs = funcInterface.getTypeArguments();
   396             for (Type t : funcInterfaceContext.undetvars) {
   397                 UndetVar uv = (UndetVar)t;
   398                 if (uv.inst == null) {
   399                     uv.inst = actualTypeargs.head;
   400                 }
   401                 actualTypeargs = actualTypeargs.tail;
   402             }
   404             Type owntype = funcInterfaceContext.asInstType(formalInterface);
   405             if (!chk.checkValidGenericType(owntype)) {
   406                 //if the inferred functional interface type is not well-formed,
   407                 //or if it's not a subtype of the original target, issue an error
   408                 checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
   409             }
   410             return owntype;
   411         }
   412     }
   413     // </editor-fold>
   415     // <editor-fold defaultstate="collapsed" desc="Bound checking">
   416     /**
   417      * Check bounds and perform incorporation
   418      */
   419     void checkWithinBounds(InferenceContext inferenceContext,
   420                              Warner warn) throws InferenceException {
   421         MultiUndetVarListener mlistener = new MultiUndetVarListener(inferenceContext.undetvars);
   422         try {
   423             while (true) {
   424                 mlistener.reset();
   425                 if (!allowGraphInference) {
   426                     //in legacy mode we lack of transitivity, so bound check
   427                     //cannot be run in parallel with other incoprporation rounds
   428                     for (Type t : inferenceContext.undetvars) {
   429                         UndetVar uv = (UndetVar)t;
   430                         IncorporationStep.CHECK_BOUNDS.apply(uv, inferenceContext, warn);
   431                     }
   432                 }
   433                 for (Type t : inferenceContext.undetvars) {
   434                     UndetVar uv = (UndetVar)t;
   435                     //bound incorporation
   436                     EnumSet<IncorporationStep> incorporationSteps = allowGraphInference ?
   437                             incorporationStepsGraph : incorporationStepsLegacy;
   438                     for (IncorporationStep is : incorporationSteps) {
   439                         is.apply(uv, inferenceContext, warn);
   440                     }
   441                 }
   442                 if (!mlistener.changed || !allowGraphInference) break;
   443             }
   444         }
   445         finally {
   446             mlistener.detach();
   447         }
   448     }
   449     //where
   450         /**
   451          * This listener keeps track of changes on a group of inference variable
   452          * bounds. Note: the listener must be detached (calling corresponding
   453          * method) to make sure that the underlying inference variable is
   454          * left in a clean state.
   455          */
   456         class MultiUndetVarListener implements UndetVar.UndetVarListener {
   458             int rounds;
   459             boolean changed;
   460             List<Type> undetvars;
   462             public MultiUndetVarListener(List<Type> undetvars) {
   463                 this.undetvars = undetvars;
   464                 for (Type t : undetvars) {
   465                     UndetVar uv = (UndetVar)t;
   466                     uv.listener = this;
   467                 }
   468             }
   470             public void varChanged(UndetVar uv, Set<InferenceBound> ibs) {
   471                 //avoid non-termination
   472                 if (rounds < MAX_INCORPORATION_STEPS) {
   473                     changed = true;
   474                 }
   475             }
   477             void reset() {
   478                 rounds++;
   479                 changed = false;
   480             }
   482             void detach() {
   483                 for (Type t : undetvars) {
   484                     UndetVar uv = (UndetVar)t;
   485                     uv.listener = null;
   486                 }
   487             }
   488         };
   490         /** max number of incorporation rounds */
   491         static final int MAX_INCORPORATION_STEPS = 100;
   493     /**
   494      * This enumeration defines an entry point for doing inference variable
   495      * bound incorporation - it can be used to inject custom incorporation
   496      * logic into the basic bound checking routine
   497      */
   498     enum IncorporationStep {
   499         /**
   500          * Performs basic bound checking - i.e. is the instantiated type for a given
   501          * inference variable compatible with its bounds?
   502          */
   503         CHECK_BOUNDS() {
   504             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   505                 Infer infer = inferenceContext.infer();
   506                 uv.substBounds(inferenceContext.inferenceVars(), inferenceContext.instTypes(), infer.types);
   507                 infer.checkCompatibleUpperBounds(uv, inferenceContext);
   508                 if (uv.inst != null) {
   509                     Type inst = uv.inst;
   510                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   511                         if (!infer.types.isSubtypeUnchecked(inst, inferenceContext.asFree(u), warn)) {
   512                             infer.reportBoundError(uv, BoundErrorKind.UPPER);
   513                         }
   514                     }
   515                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   516                         if (!infer.types.isSubtypeUnchecked(inferenceContext.asFree(l), inst, warn)) {
   517                             infer.reportBoundError(uv, BoundErrorKind.LOWER);
   518                         }
   519                     }
   520                     for (Type e : uv.getBounds(InferenceBound.EQ)) {
   521                         if (!infer.types.isSameType(inst, inferenceContext.asFree(e))) {
   522                             infer.reportBoundError(uv, BoundErrorKind.EQ);
   523                         }
   524                     }
   525                 }
   526             }
   527         },
   528         /**
   529          * Check consistency of equality constraints. This is a slightly more aggressive
   530          * inference routine that is designed as to maximize compatibility with JDK 7.
   531          * Note: this is not used in graph mode.
   532          */
   533         EQ_CHECK_LEGACY() {
   534             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   535                 Infer infer = inferenceContext.infer();
   536                 Type eq = null;
   537                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   538                     Assert.check(!inferenceContext.free(e));
   539                     if (eq != null && !infer.types.isSameType(e, eq)) {
   540                         infer.reportBoundError(uv, BoundErrorKind.EQ);
   541                     }
   542                     eq = e;
   543                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   544                         Assert.check(!inferenceContext.free(l));
   545                         if (!infer.types.isSubtypeUnchecked(l, e, warn)) {
   546                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   547                         }
   548                     }
   549                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   550                         if (inferenceContext.free(u)) continue;
   551                         if (!infer.types.isSubtypeUnchecked(e, u, warn)) {
   552                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   553                         }
   554                     }
   555                 }
   556             }
   557         },
   558         /**
   559          * Check consistency of equality constraints.
   560          */
   561         EQ_CHECK() {
   562             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   563                 Infer infer = inferenceContext.infer();
   564                 for (Type e : uv.getBounds(InferenceBound.EQ)) {
   565                     if (e.containsAny(inferenceContext.inferenceVars())) continue;
   566                     for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   567                         if (!infer.types.isSubtypeUnchecked(e, inferenceContext.asFree(u), warn)) {
   568                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
   569                         }
   570                     }
   571                     for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   572                         if (!infer.types.isSubtypeUnchecked(inferenceContext.asFree(l), e, warn)) {
   573                             infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
   574                         }
   575                     }
   576                 }
   577             }
   578         },
   579         /**
   580          * Given a bound set containing {@code alpha <: T} and {@code alpha :> S}
   581          * perform {@code S <: T} (which could lead to new bounds).
   582          */
   583         CROSS_UPPER_LOWER() {
   584             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   585                 Infer infer = inferenceContext.infer();
   586                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   587                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   588                         if (!inferenceContext.inferenceVars().contains(b1) &&
   589                                 !inferenceContext.inferenceVars().contains(b2) &&
   590                                 infer.types.asSuper(b2, b1.tsym) != null) {
   591                             infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   592                         }
   593                     }
   594                 }
   595             }
   596         },
   597         /**
   598          * Given a bound set containing {@code alpha <: T} and {@code alpha == S}
   599          * perform {@code S <: T} (which could lead to new bounds).
   600          */
   601         CROSS_UPPER_EQ() {
   602             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   603                 Infer infer = inferenceContext.infer();
   604                 for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
   605                     for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
   606                         if (!inferenceContext.inferenceVars().contains(b1) &&
   607                                 !inferenceContext.inferenceVars().contains(b2) &&
   608                                 infer.types.asSuper(b2, b1.tsym) != null) {
   609                             infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   610                         }
   611                     }
   612                 }
   613             }
   614         },
   615         /**
   616          * Given a bound set containing {@code alpha :> S} and {@code alpha == T}
   617          * perform {@code S <: T} (which could lead to new bounds).
   618          */
   619         CROSS_EQ_LOWER() {
   620             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   621                 Infer infer = inferenceContext.infer();
   622                 for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
   623                     for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
   624                         if (!inferenceContext.inferenceVars().contains(b1) &&
   625                                 !inferenceContext.inferenceVars().contains(b2) &&
   626                                 infer.types.asSuper(b2, b1.tsym) != null) {
   627                             infer.types.isSubtypeUnchecked(inferenceContext.asFree(b2), inferenceContext.asFree(b1));
   628                         }
   629                     }
   630                 }
   631             }
   632         },
   633         /**
   634          * Given a bound set containing {@code alpha <: beta} propagate lower bounds
   635          * from alpha to beta; also propagate upper bounds from beta to alpha.
   636          */
   637         PROP_UPPER() {
   638             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   639                 Infer infer = inferenceContext.infer();
   640                 for (Type b : uv.getBounds(InferenceBound.UPPER)) {
   641                     if (inferenceContext.inferenceVars().contains(b)) {
   642                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   643                         //alpha <: beta
   644                         //1. copy alpha's lower to beta's
   645                         for (Type l : uv.getBounds(InferenceBound.LOWER)) {
   646                             uv2.addBound(InferenceBound.LOWER, inferenceContext.asInstType(l), infer.types);
   647                         }
   648                         //2. copy beta's upper to alpha's
   649                         for (Type u : uv2.getBounds(InferenceBound.UPPER)) {
   650                             uv.addBound(InferenceBound.UPPER, inferenceContext.asInstType(u), infer.types);
   651                         }
   652                     }
   653                 }
   654             }
   655         },
   656         /**
   657          * Given a bound set containing {@code alpha :> beta} propagate lower bounds
   658          * from beta to alpha; also propagate upper bounds from alpha to beta.
   659          */
   660         PROP_LOWER() {
   661             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   662                 Infer infer = inferenceContext.infer();
   663                 for (Type b : uv.getBounds(InferenceBound.LOWER)) {
   664                     if (inferenceContext.inferenceVars().contains(b)) {
   665                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   666                         //alpha :> beta
   667                         //1. copy alpha's upper to beta's
   668                         for (Type u : uv.getBounds(InferenceBound.UPPER)) {
   669                             uv2.addBound(InferenceBound.UPPER, inferenceContext.asInstType(u), infer.types);
   670                         }
   671                         //2. copy beta's lower to alpha's
   672                         for (Type l : uv2.getBounds(InferenceBound.LOWER)) {
   673                             uv.addBound(InferenceBound.LOWER, inferenceContext.asInstType(l), infer.types);
   674                         }
   675                     }
   676                 }
   677             }
   678         },
   679         /**
   680          * Given a bound set containing {@code alpha == beta} propagate lower/upper
   681          * bounds from alpha to beta and back.
   682          */
   683         PROP_EQ() {
   684             public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
   685                 Infer infer = inferenceContext.infer();
   686                 for (Type b : uv.getBounds(InferenceBound.EQ)) {
   687                     if (inferenceContext.inferenceVars().contains(b)) {
   688                         UndetVar uv2 = (UndetVar)inferenceContext.asFree(b);
   689                         //alpha == beta
   690                         //1. copy all alpha's bounds to beta's
   691                         for (InferenceBound ib : InferenceBound.values()) {
   692                             for (Type b2 : uv.getBounds(ib)) {
   693                                 if (b2 != uv2) {
   694                                     uv2.addBound(ib, inferenceContext.asInstType(b2), infer.types);
   695                                 }
   696                             }
   697                         }
   698                         //2. copy all beta's bounds to alpha's
   699                         for (InferenceBound ib : InferenceBound.values()) {
   700                             for (Type b2 : uv2.getBounds(ib)) {
   701                                 if (b2 != uv) {
   702                                     uv.addBound(ib, inferenceContext.asInstType(b2), infer.types);
   703                                 }
   704                             }
   705                         }
   706                     }
   707                 }
   708             }
   709         };
   711         abstract void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn);
   712     }
   714     /** incorporation steps to be executed when running in legacy mode */
   715     EnumSet<IncorporationStep> incorporationStepsLegacy = EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY);
   717     /** incorporation steps to be executed when running in graph mode */
   718     EnumSet<IncorporationStep> incorporationStepsGraph =
   719             EnumSet.complementOf(EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY));
   721     /**
   722      * Make sure that the upper bounds we got so far lead to a solvable inference
   723      * variable by making sure that a glb exists.
   724      */
   725     void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
   726         List<Type> hibounds =
   727                 Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
   728         Type hb = null;
   729         if (hibounds.isEmpty())
   730             hb = syms.objectType;
   731         else if (hibounds.tail.isEmpty())
   732             hb = hibounds.head;
   733         else
   734             hb = types.glb(hibounds);
   735         if (hb == null || hb.isErroneous())
   736             reportBoundError(uv, BoundErrorKind.BAD_UPPER);
   737     }
   738     //where
   739         protected static class BoundFilter implements Filter<Type> {
   741             InferenceContext inferenceContext;
   743             public BoundFilter(InferenceContext inferenceContext) {
   744                 this.inferenceContext = inferenceContext;
   745             }
   747             @Override
   748             public boolean accepts(Type t) {
   749                 return !t.isErroneous() && !inferenceContext.free(t) &&
   750                         !t.hasTag(BOT);
   751             }
   752         };
   754     /**
   755      * This enumeration defines all possible bound-checking related errors.
   756      */
   757     enum BoundErrorKind {
   758         /**
   759          * The (uninstantiated) inference variable has incompatible upper bounds.
   760          */
   761         BAD_UPPER() {
   762             @Override
   763             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   764                 return ex.setMessage("incompatible.upper.bounds", uv.qtype,
   765                         uv.getBounds(InferenceBound.UPPER));
   766             }
   767         },
   768         /**
   769          * An equality constraint is not compatible with an upper bound.
   770          */
   771         BAD_EQ_UPPER() {
   772             @Override
   773             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   774                 return ex.setMessage("incompatible.eq.upper.bounds", uv.qtype,
   775                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.UPPER));
   776             }
   777         },
   778         /**
   779          * An equality constraint is not compatible with a lower bound.
   780          */
   781         BAD_EQ_LOWER() {
   782             @Override
   783             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   784                 return ex.setMessage("incompatible.eq.lower.bounds", uv.qtype,
   785                         uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.LOWER));
   786             }
   787         },
   788         /**
   789          * Instantiated inference variable is not compatible with an upper bound.
   790          */
   791         UPPER() {
   792             @Override
   793             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   794                 return ex.setMessage("inferred.do.not.conform.to.upper.bounds", uv.inst,
   795                         uv.getBounds(InferenceBound.UPPER));
   796             }
   797         },
   798         /**
   799          * Instantiated inference variable is not compatible with a lower bound.
   800          */
   801         LOWER() {
   802             @Override
   803             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   804                 return ex.setMessage("inferred.do.not.conform.to.lower.bounds", uv.inst,
   805                         uv.getBounds(InferenceBound.LOWER));
   806             }
   807         },
   808         /**
   809          * Instantiated inference variable is not compatible with an equality constraint.
   810          */
   811         EQ() {
   812             @Override
   813             InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
   814                 return ex.setMessage("inferred.do.not.conform.to.eq.bounds", uv.inst,
   815                         uv.getBounds(InferenceBound.EQ));
   816             }
   817         };
   819         abstract InapplicableMethodException setMessage(InferenceException ex, UndetVar uv);
   820     }
   822     /**
   823      * Report a bound-checking error of given kind
   824      */
   825     void reportBoundError(UndetVar uv, BoundErrorKind bk) {
   826         throw bk.setMessage(inferenceException, uv);
   827     }
   828     // </editor-fold>
   830     // <editor-fold defaultstate="collapsed" desc="Inference engine">
   831     /**
   832      * Graph inference strategy - act as an input to the inference solver; a strategy is
   833      * composed of two ingredients: (i) find a node to solve in the inference graph,
   834      * and (ii) tell th engine when we are done fixing inference variables
   835      */
   836     interface GraphStrategy {
   837         /**
   838          * Pick the next node (leaf) to solve in the graph
   839          */
   840         Node pickNode(InferenceGraph g);
   841         /**
   842          * Is this the last step?
   843          */
   844         boolean done();
   845     }
   847     /**
   848      * Simple solver strategy class that locates all leaves inside a graph
   849      * and picks the first leaf as the next node to solve
   850      */
   851     abstract class LeafSolver implements GraphStrategy {
   852         public Node pickNode(InferenceGraph g) {
   853                         Assert.check(!g.nodes.isEmpty(), "No nodes to solve!");
   854             return g.nodes.get(0);
   855         }
   856     }
   858     /**
   859      * This solver uses an heuristic to pick the best leaf - the heuristic
   860      * tries to select the node that has maximal probability to contain one
   861      * or more inference variables in a given list
   862      */
   863     abstract class BestLeafSolver extends LeafSolver {
   865         List<Type> varsToSolve;
   867         BestLeafSolver(List<Type> varsToSolve) {
   868             this.varsToSolve = varsToSolve;
   869         }
   871         /**
   872          * Computes the cost associated with a given node; the cost is computed
   873          * as the total number of type-variables that should be eagerly instantiated
   874          * in order to get to some of the variables in {@code varsToSolve} from
   875          * a given node
   876          */
   877         void computeCostIfNeeded(Node n, Map<Node, Integer> costMap) {
   878             if (costMap.containsKey(n)) {
   879                 return;
   880             } else if (!Collections.disjoint(n.data, varsToSolve)) {
   881                 costMap.put(n, n.data.size());
   882             } else {
   883                 int subcost = Integer.MAX_VALUE;
   884                 costMap.put(n, subcost); //avoid loops
   885                 for (Node n2 : n.getDependencies()) {
   886                     computeCostIfNeeded(n2, costMap);
   887                     subcost = Math.min(costMap.get(n2), subcost);
   888                 }
   889                 //update cost map to reflect real cost
   890                 costMap.put(n, subcost == Integer.MAX_VALUE ?
   891                         Integer.MAX_VALUE :
   892                         n.data.size() + subcost);
   893             }
   894         }
   896         /**
   897          * Pick the leaf that minimize cost
   898          */
   899         @Override
   900         public Node pickNode(final InferenceGraph g) {
   901             final Map<Node, Integer> costMap = new HashMap<Node, Integer>();
   902             ArrayList<Node> leaves = new ArrayList<Node>();
   903             for (Node n : g.nodes) {
   904                 computeCostIfNeeded(n, costMap);
   905                 if (n.isLeaf(n)) {
   906                     leaves.add(n);
   907                 }
   908             }
   909             Assert.check(!leaves.isEmpty(), "No nodes to solve!");
   910             Collections.sort(leaves, new java.util.Comparator<Node>() {
   911                 public int compare(Node n1, Node n2) {
   912                     return costMap.get(n1) - costMap.get(n2);
   913                 }
   914             });
   915             return leaves.get(0);
   916         }
   917     }
   919     /**
   920      * The inference process can be thought of as a sequence of steps. Each step
   921      * instantiates an inference variable using a subset of the inference variable
   922      * bounds, if certain condition are met. Decisions such as the sequence in which
   923      * steps are applied, or which steps are to be applied are left to the inference engine.
   924      */
   925     enum InferenceStep {
   927         /**
   928          * Instantiate an inference variables using one of its (ground) equality
   929          * constraints
   930          */
   931         EQ(InferenceBound.EQ) {
   932             @Override
   933             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   934                 return filterBounds(uv, inferenceContext).head;
   935             }
   936         },
   937         /**
   938          * Instantiate an inference variables using its (ground) lower bounds. Such
   939          * bounds are merged together using lub().
   940          */
   941         LOWER(InferenceBound.LOWER) {
   942             @Override
   943             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   944                 Infer infer = inferenceContext.infer();
   945                 List<Type> lobounds = filterBounds(uv, inferenceContext);
   946                 Type owntype = infer.types.lub(lobounds);
   947                 if (owntype.hasTag(ERROR)) {
   948                     throw infer.inferenceException
   949                         .setMessage("no.unique.minimal.instance.exists",
   950                                     uv.qtype, lobounds);
   951                 } else {
   952                     return owntype;
   953                 }
   954             }
   955         },
   956         /**
   957          * Instantiate an inference variables using its (ground) upper bounds. Such
   958          * bounds are merged together using glb().
   959          */
   960         UPPER(InferenceBound.UPPER) {
   961             @Override
   962             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   963                 Infer infer = inferenceContext.infer();
   964                 List<Type> hibounds = filterBounds(uv, inferenceContext);
   965                 Type owntype = infer.types.glb(hibounds);
   966                 if (owntype.isErroneous()) {
   967                     throw infer.inferenceException
   968                         .setMessage("no.unique.maximal.instance.exists",
   969                                     uv.qtype, hibounds);
   970                 } else {
   971                     return owntype;
   972                 }
   973             }
   974         },
   975         /**
   976          * Like the former; the only difference is that this step can only be applied
   977          * if all upper bounds are ground.
   978          */
   979         UPPER_LEGACY(InferenceBound.UPPER) {
   980             @Override
   981             public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
   982                 return !inferenceContext.free(t.getBounds(ib));
   983             }
   985             @Override
   986             Type solve(UndetVar uv, InferenceContext inferenceContext) {
   987                 return UPPER.solve(uv, inferenceContext);
   988             }
   989         };
   991         final InferenceBound ib;
   993         InferenceStep(InferenceBound ib) {
   994             this.ib = ib;
   995         }
   997         /**
   998          * Find an instantiated type for a given inference variable within
   999          * a given inference context
  1000          */
  1001         abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
  1003         /**
  1004          * Can the inference variable be instantiated using this step?
  1005          */
  1006         public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
  1007             return filterBounds(t, inferenceContext).nonEmpty();
  1010         /**
  1011          * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
  1012          */
  1013         List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
  1014             return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
  1018     /**
  1019      * This enumeration defines the sequence of steps to be applied when the
  1020      * solver works in legacy mode. The steps in this enumeration reflect
  1021      * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1022      */
  1023     enum LegacyInferenceSteps {
  1025         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1026         EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
  1028         final EnumSet<InferenceStep> steps;
  1030         LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
  1031             this.steps = steps;
  1035     /**
  1036      * This enumeration defines the sequence of steps to be applied when the
  1037      * graph solver is used. This order is defined so as to maximize compatibility
  1038      * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
  1039      */
  1040     enum GraphInferenceSteps {
  1042         EQ(EnumSet.of(InferenceStep.EQ)),
  1043         EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
  1044         EQ_LOWER_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER));
  1046         final EnumSet<InferenceStep> steps;
  1048         GraphInferenceSteps(EnumSet<InferenceStep> steps) {
  1049             this.steps = steps;
  1053     /**
  1054      * This is the graph inference solver - the solver organizes all inference variables in
  1055      * a given inference context by bound dependencies - in the general case, such dependencies
  1056      * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
  1057      * an acyclic graph, where all cyclic variables are bundled together. An inference
  1058      * step corresponds to solving a node in the acyclic graph - this is done by
  1059      * relying on a given strategy (see GraphStrategy).
  1060      */
  1061     class GraphSolver {
  1063         InferenceContext inferenceContext;
  1064         Warner warn;
  1066         GraphSolver(InferenceContext inferenceContext, Warner warn) {
  1067             this.inferenceContext = inferenceContext;
  1068             this.warn = warn;
  1071         /**
  1072          * Solve variables in a given inference context. The amount of variables
  1073          * to be solved, and the way in which the underlying acyclic graph is explored
  1074          * depends on the selected solver strategy.
  1075          */
  1076         void solve(GraphStrategy sstrategy) {
  1077             checkWithinBounds(inferenceContext, warn); //initial propagation of bounds
  1078             InferenceGraph inferenceGraph = new InferenceGraph();
  1079             while (!sstrategy.done()) {
  1080                 InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
  1081                 List<Type> varsToSolve = List.from(nodeToSolve.data);
  1082                 inferenceContext.save();
  1083                 try {
  1084                     //repeat until all variables are solved
  1085                     outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
  1086                         //for each inference phase
  1087                         for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
  1088                             if (inferenceContext.solveBasic(varsToSolve, step.steps)) {
  1089                                 checkWithinBounds(inferenceContext, warn);
  1090                                 continue outer;
  1093                         //no progress
  1094                         throw inferenceException;
  1097                 catch (InferenceException ex) {
  1098                     inferenceContext.rollback();
  1099                     instantiateAsUninferredVars(varsToSolve, inferenceContext);
  1100                     checkWithinBounds(inferenceContext, warn);
  1102                 inferenceGraph.deleteNode(nodeToSolve);
  1106         /**
  1107          * The dependencies between the inference variables that need to be solved
  1108          * form a (possibly cyclic) graph. This class reduces the original dependency graph
  1109          * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
  1110          */
  1111         class InferenceGraph {
  1113             /**
  1114              * This class represents a node in the graph. Each node corresponds
  1115              * to an inference variable and has edges (dependencies) on other
  1116              * nodes. The node defines an entry point that can be used to receive
  1117              * updates on the structure of the graph this node belongs to (used to
  1118              * keep dependencies in sync).
  1119              */
  1120             class Node extends GraphUtils.TarjanNode<ListBuffer<Type>> {
  1122                 Set<Node> deps;
  1124                 Node(Type ivar) {
  1125                     super(ListBuffer.of(ivar));
  1126                     this.deps = new HashSet<Node>();
  1129                 @Override
  1130                 public Iterable<? extends Node> getDependencies() {
  1131                     return deps;
  1134                 @Override
  1135                 public String printDependency(GraphUtils.Node<ListBuffer<Type>> to) {
  1136                     StringBuilder buf = new StringBuilder();
  1137                     String sep = "";
  1138                     for (Type from : data) {
  1139                         UndetVar uv = (UndetVar)inferenceContext.asFree(from);
  1140                         for (Type bound : uv.getBounds(InferenceBound.values())) {
  1141                             if (bound.containsAny(List.from(to.data))) {
  1142                                 buf.append(sep);
  1143                                 buf.append(bound);
  1144                                 sep = ",";
  1148                     return buf.toString();
  1151                 boolean isLeaf(Node n) {
  1152                     //no deps, or only one self dep
  1153                     return (n.deps.isEmpty() ||
  1154                             n.deps.size() == 1 && n.deps.contains(n));
  1157                 void mergeWith(List<? extends Node> nodes) {
  1158                     for (Node n : nodes) {
  1159                         Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
  1160                         data.appendList(n.data);
  1161                         deps.addAll(n.deps);
  1163                     //update deps
  1164                     Set<Node> deps2 = new HashSet<Node>();
  1165                     for (Node d : deps) {
  1166                         if (data.contains(d.data.first())) {
  1167                             deps2.add(this);
  1168                         } else {
  1169                             deps2.add(d);
  1172                     deps = deps2;
  1175                 void graphChanged(Node from, Node to) {
  1176                     if (deps.contains(from)) {
  1177                         deps.remove(from);
  1178                         if (to != null) {
  1179                             deps.add(to);
  1185             /** the nodes in the inference graph */
  1186             ArrayList<Node> nodes;
  1188             InferenceGraph() {
  1189                 initNodes();
  1192             /**
  1193              * Delete a node from the graph. This update the underlying structure
  1194              * of the graph (including dependencies) via listeners updates.
  1195              */
  1196             public void deleteNode(Node n) {
  1197                 Assert.check(nodes.contains(n));
  1198                 nodes.remove(n);
  1199                 notifyUpdate(n, null);
  1202             /**
  1203              * Notify all nodes of a change in the graph. If the target node is
  1204              * {@code null} the source node is assumed to be removed.
  1205              */
  1206             void notifyUpdate(Node from, Node to) {
  1207                 for (Node n : nodes) {
  1208                     n.graphChanged(from, to);
  1212             /**
  1213              * Create the graph nodes. First a simple node is created for every inference
  1214              * variables to be solved. Then Tarjan is used to found all connected components
  1215              * in the graph. For each component containing more than one node, a super node is
  1216                  * created, effectively replacing the original cyclic nodes.
  1217              */
  1218             void initNodes() {
  1219                 nodes = new ArrayList<Node>();
  1220                 for (Type t : inferenceContext.restvars()) {
  1221                     nodes.add(new Node(t));
  1223                 for (Node n_i : nodes) {
  1224                     Type i = n_i.data.first();
  1225                     for (Node n_j : nodes) {
  1226                         Type j = n_j.data.first();
  1227                         UndetVar uv_i = (UndetVar)inferenceContext.asFree(i);
  1228                         if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
  1229                             //update i's deps
  1230                             n_i.deps.add(n_j);
  1231                             //update j's deps - only if i's bounds contain _exactly_ j
  1232                             if (uv_i.getBounds(InferenceBound.values()).contains(j)) {
  1233                                 n_j.deps.add(n_i);
  1238                 ArrayList<Node> acyclicNodes = new ArrayList<Node>();
  1239                 for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
  1240                     if (conSubGraph.length() > 1) {
  1241                         Node root = conSubGraph.head;
  1242                         root.mergeWith(conSubGraph.tail);
  1243                         for (Node n : conSubGraph) {
  1244                             notifyUpdate(n, root);
  1247                     acyclicNodes.add(conSubGraph.head);
  1249                 nodes = acyclicNodes;
  1252             /**
  1253              * Debugging: dot representation of this graph
  1254              */
  1255             String toDot() {
  1256                 StringBuilder buf = new StringBuilder();
  1257                 for (Type t : inferenceContext.undetvars) {
  1258                     UndetVar uv = (UndetVar)t;
  1259                     buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
  1260                             uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
  1261                             uv.getBounds(InferenceBound.EQ)));
  1263                 return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
  1267     // </editor-fold>
  1269     // <editor-fold defaultstate="collapsed" desc="Inference context">
  1270     /**
  1271      * Functional interface for defining inference callbacks. Certain actions
  1272      * (i.e. subtyping checks) might need to be redone after all inference variables
  1273      * have been fixed.
  1274      */
  1275     interface FreeTypeListener {
  1276         void typesInferred(InferenceContext inferenceContext);
  1279     /**
  1280      * An inference context keeps track of the set of variables that are free
  1281      * in the current context. It provides utility methods for opening/closing
  1282      * types to their corresponding free/closed forms. It also provide hooks for
  1283      * attaching deferred post-inference action (see PendingCheck). Finally,
  1284      * it can be used as an entry point for performing upper/lower bound inference
  1285      * (see InferenceKind).
  1286      */
  1287      class InferenceContext {
  1289         /** list of inference vars as undet vars */
  1290         List<Type> undetvars;
  1292         /** list of inference vars in this context */
  1293         List<Type> inferencevars;
  1295         /** backed up inference variables */
  1296         List<Type> saved_undet;
  1298         java.util.Map<FreeTypeListener, List<Type>> freeTypeListeners =
  1299                 new java.util.HashMap<FreeTypeListener, List<Type>>();
  1301         List<FreeTypeListener> freetypeListeners = List.nil();
  1303         public InferenceContext(List<Type> inferencevars) {
  1304             this.undetvars = Type.map(inferencevars, fromTypeVarFun);
  1305             this.inferencevars = inferencevars;
  1307         //where
  1308             Mapping fromTypeVarFun = new Mapping("fromTypeVarFunWithBounds") {
  1309                 // mapping that turns inference variables into undet vars
  1310                 public Type apply(Type t) {
  1311                     if (t.hasTag(TYPEVAR)) return new UndetVar((TypeVar)t, types);
  1312                     else return t.map(this);
  1314             };
  1316         /**
  1317          * returns the list of free variables (as type-variables) in this
  1318          * inference context
  1319          */
  1320         List<Type> inferenceVars() {
  1321             return inferencevars;
  1324         /**
  1325          * returns the list of uninstantiated variables (as type-variables) in this
  1326          * inference context
  1327          */
  1328         List<Type> restvars() {
  1329             return filterVars(new Filter<UndetVar>() {
  1330                 public boolean accepts(UndetVar uv) {
  1331                     return uv.inst == null;
  1333             });
  1336         /**
  1337          * returns the list of instantiated variables (as type-variables) in this
  1338          * inference context
  1339          */
  1340         List<Type> instvars() {
  1341             return filterVars(new Filter<UndetVar>() {
  1342                 public boolean accepts(UndetVar uv) {
  1343                     return uv.inst != null;
  1345             });
  1348         /**
  1349          * Get list of bounded inference variables (where bound is other than
  1350          * declared bounds).
  1351          */
  1352         final List<Type> boundedVars() {
  1353             return filterVars(new Filter<UndetVar>() {
  1354                 public boolean accepts(UndetVar uv) {
  1355                     return uv.getBounds(InferenceBound.UPPER)
  1356                             .diff(uv.getDeclaredBounds())
  1357                             .appendList(uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)).nonEmpty();
  1359             });
  1362         private List<Type> filterVars(Filter<UndetVar> fu) {
  1363             ListBuffer<Type> res = ListBuffer.lb();
  1364             for (Type t : undetvars) {
  1365                 UndetVar uv = (UndetVar)t;
  1366                 if (fu.accepts(uv)) {
  1367                     res.append(uv.qtype);
  1370             return res.toList();
  1373         /**
  1374          * is this type free?
  1375          */
  1376         final boolean free(Type t) {
  1377             return t.containsAny(inferencevars);
  1380         final boolean free(List<Type> ts) {
  1381             for (Type t : ts) {
  1382                 if (free(t)) return true;
  1384             return false;
  1387         /**
  1388          * Returns a list of free variables in a given type
  1389          */
  1390         final List<Type> freeVarsIn(Type t) {
  1391             ListBuffer<Type> buf = ListBuffer.lb();
  1392             for (Type iv : inferenceVars()) {
  1393                 if (t.contains(iv)) {
  1394                     buf.add(iv);
  1397             return buf.toList();
  1400         final List<Type> freeVarsIn(List<Type> ts) {
  1401             ListBuffer<Type> buf = ListBuffer.lb();
  1402             for (Type t : ts) {
  1403                 buf.appendList(freeVarsIn(t));
  1405             ListBuffer<Type> buf2 = ListBuffer.lb();
  1406             for (Type t : buf) {
  1407                 if (!buf2.contains(t)) {
  1408                     buf2.add(t);
  1411             return buf2.toList();
  1414         /**
  1415          * Replace all free variables in a given type with corresponding
  1416          * undet vars (used ahead of subtyping/compatibility checks to allow propagation
  1417          * of inference constraints).
  1418          */
  1419         final Type asFree(Type t) {
  1420             return types.subst(t, inferencevars, undetvars);
  1423         final List<Type> asFree(List<Type> ts) {
  1424             ListBuffer<Type> buf = ListBuffer.lb();
  1425             for (Type t : ts) {
  1426                 buf.append(asFree(t));
  1428             return buf.toList();
  1431         List<Type> instTypes() {
  1432             ListBuffer<Type> buf = ListBuffer.lb();
  1433             for (Type t : undetvars) {
  1434                 UndetVar uv = (UndetVar)t;
  1435                 buf.append(uv.inst != null ? uv.inst : uv.qtype);
  1437             return buf.toList();
  1440         /**
  1441          * Replace all free variables in a given type with corresponding
  1442          * instantiated types - if one or more free variable has not been
  1443          * fully instantiated, it will still be available in the resulting type.
  1444          */
  1445         Type asInstType(Type t) {
  1446             return types.subst(t, inferencevars, instTypes());
  1449         List<Type> asInstTypes(List<Type> ts) {
  1450             ListBuffer<Type> buf = ListBuffer.lb();
  1451             for (Type t : ts) {
  1452                 buf.append(asInstType(t));
  1454             return buf.toList();
  1457         /**
  1458          * Add custom hook for performing post-inference action
  1459          */
  1460         void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
  1461             freeTypeListeners.put(ftl, freeVarsIn(types));
  1464         /**
  1465          * Mark the inference context as complete and trigger evaluation
  1466          * of all deferred checks.
  1467          */
  1468         void notifyChange() {
  1469             notifyChange(inferencevars.diff(restvars()));
  1472         void notifyChange(List<Type> inferredVars) {
  1473             InferenceException thrownEx = null;
  1474             for (Map.Entry<FreeTypeListener, List<Type>> entry :
  1475                     new HashMap<FreeTypeListener, List<Type>>(freeTypeListeners).entrySet()) {
  1476                 if (!Type.containsAny(entry.getValue(), inferencevars.diff(inferredVars))) {
  1477                     try {
  1478                         entry.getKey().typesInferred(this);
  1479                         freeTypeListeners.remove(entry.getKey());
  1480                     } catch (InferenceException ex) {
  1481                         if (thrownEx == null) {
  1482                             thrownEx = ex;
  1487             //inference exception multiplexing - present any inference exception
  1488             //thrown when processing listeners as a single one
  1489             if (thrownEx != null) {
  1490                 throw thrownEx;
  1494         /**
  1495          * Save the state of this inference context
  1496          */
  1497         void save() {
  1498             ListBuffer<Type> buf = ListBuffer.lb();
  1499             for (Type t : undetvars) {
  1500                 UndetVar uv = (UndetVar)t;
  1501                 UndetVar uv2 = new UndetVar((TypeVar)uv.qtype, types);
  1502                 for (InferenceBound ib : InferenceBound.values()) {
  1503                     for (Type b : uv.getBounds(ib)) {
  1504                         uv2.addBound(ib, b, types);
  1507                 uv2.inst = uv.inst;
  1508                 buf.add(uv2);
  1510             saved_undet = buf.toList();
  1513         /**
  1514          * Restore the state of this inference context to the previous known checkpoint
  1515          */
  1516         void rollback() {
  1517             Assert.check(saved_undet != null && saved_undet.length() == undetvars.length());
  1518             undetvars = saved_undet;
  1519             saved_undet = null;
  1522         /**
  1523          * Copy variable in this inference context to the given context
  1524          */
  1525         void dupTo(final InferenceContext that) {
  1526             that.inferencevars = that.inferencevars.appendList(inferencevars);
  1527             that.undetvars = that.undetvars.appendList(undetvars);
  1528             //set up listeners to notify original inference contexts as
  1529             //propagated vars are inferred in new context
  1530             for (Type t : inferencevars) {
  1531                 that.freeTypeListeners.put(new FreeTypeListener() {
  1532                     public void typesInferred(InferenceContext inferenceContext) {
  1533                         InferenceContext.this.notifyChange();
  1535                 }, List.of(t));
  1539         /**
  1540          * Solve with given graph strategy.
  1541          */
  1542         private void solve(GraphStrategy ss, Warner warn) {
  1543             GraphSolver s = new GraphSolver(this, warn);
  1544             s.solve(ss);
  1547         /**
  1548          * Solve all variables in this context.
  1549          */
  1550         public void solve(Warner warn) {
  1551             solve(new LeafSolver() {
  1552                 public boolean done() {
  1553                     return restvars().isEmpty();
  1555             }, warn);
  1558         /**
  1559          * Solve all variables in the given list.
  1560          */
  1561         public void solve(final List<Type> vars, Warner warn) {
  1562             solve(new BestLeafSolver(vars) {
  1563                 public boolean done() {
  1564                     return !free(asInstTypes(vars));
  1566             }, warn);
  1569         /**
  1570          * Solve at least one variable in given list.
  1571          */
  1572         public void solveAny(List<Type> varsToSolve, Warner warn) {
  1573             checkWithinBounds(this, warn); //propagate bounds
  1574             List<Type> boundedVars = boundedVars().intersect(restvars()).intersect(varsToSolve);
  1575             if (boundedVars.isEmpty()) {
  1576                 throw inferenceException.setMessage("cyclic.inference",
  1577                                 freeVarsIn(varsToSolve));
  1579             solve(new BestLeafSolver(boundedVars) {
  1580                 public boolean done() {
  1581                     return instvars().intersect(varsToSolve).nonEmpty();
  1583             }, warn);
  1586         /**
  1587          * Apply a set of inference steps
  1588          */
  1589         private boolean solveBasic(EnumSet<InferenceStep> steps) {
  1590             return solveBasic(inferencevars, steps);
  1593         private boolean solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps) {
  1594             boolean changed = false;
  1595             for (Type t : varsToSolve.intersect(restvars())) {
  1596                 UndetVar uv = (UndetVar)asFree(t);
  1597                 for (InferenceStep step : steps) {
  1598                     if (step.accepts(uv, this)) {
  1599                         uv.inst = step.solve(uv, this);
  1600                         changed = true;
  1601                         break;
  1605             return changed;
  1608         /**
  1609          * Instantiate inference variables in legacy mode (JLS 15.12.2.7, 15.12.2.8).
  1610          * During overload resolution, instantiation is done by doing a partial
  1611          * inference process using eq/lower bound instantiation. During check,
  1612          * we also instantiate any remaining vars by repeatedly using eq/upper
  1613          * instantiation, until all variables are solved.
  1614          */
  1615         public void solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps) {
  1616             while (true) {
  1617                 boolean stuck = !solveBasic(steps);
  1618                 if (restvars().isEmpty() || partial) {
  1619                     //all variables have been instantiated - exit
  1620                     break;
  1621                 } else if (stuck) {
  1622                     //some variables could not be instantiated because of cycles in
  1623                     //upper bounds - provide a (possibly recursive) default instantiation
  1624                     instantiateAsUninferredVars(restvars(), this);
  1625                     break;
  1626                 } else {
  1627                     //some variables have been instantiated - replace newly instantiated
  1628                     //variables in remaining upper bounds and continue
  1629                     for (Type t : undetvars) {
  1630                         UndetVar uv = (UndetVar)t;
  1631                         uv.substBounds(inferenceVars(), instTypes(), types);
  1635             checkWithinBounds(this, warn);
  1638         private Infer infer() {
  1639             //back-door to infer
  1640             return Infer.this;
  1644     final InferenceContext emptyContext = new InferenceContext(List.<Type>nil());
  1645     // </editor-fold>

mercurial