src/share/classes/com/sun/tools/javac/comp/Attr.java

Thu, 12 Nov 2015 22:10:46 +0000

author
mcimadamore
date
Thu, 12 Nov 2015 22:10:46 +0000
changeset 3002
0caab0d65a04
parent 3001
dcd12fa5b58a
child 3092
8c3890c90147
permissions
-rw-r--r--

8065986: Compiler fails to NullPointerException when calling super with Object<>()
Summary: Missing POLY kind selector on recursive constructor calls with poly arguments
Reviewed-by: vromero

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.source.tree.IdentifierTree;
    34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    35 import com.sun.source.tree.MemberSelectTree;
    36 import com.sun.source.tree.TreeVisitor;
    37 import com.sun.source.util.SimpleTreeVisitor;
    38 import com.sun.tools.javac.code.*;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Symbol.*;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.comp.Check.CheckContext;
    43 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    44 import com.sun.tools.javac.comp.Infer.InferenceContext;
    45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    46 import com.sun.tools.javac.jvm.*;
    47 import com.sun.tools.javac.tree.*;
    48 import com.sun.tools.javac.tree.JCTree.*;
    49 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    50 import com.sun.tools.javac.util.*;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.List;
    53 import static com.sun.tools.javac.code.Flags.*;
    54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    55 import static com.sun.tools.javac.code.Flags.BLOCK;
    56 import static com.sun.tools.javac.code.Kinds.*;
    57 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    58 import static com.sun.tools.javac.code.TypeTag.*;
    59 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    60 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    62 /** This is the main context-dependent analysis phase in GJC. It
    63  *  encompasses name resolution, type checking and constant folding as
    64  *  subtasks. Some subtasks involve auxiliary classes.
    65  *  @see Check
    66  *  @see Resolve
    67  *  @see ConstFold
    68  *  @see Infer
    69  *
    70  *  <p><b>This is NOT part of any supported API.
    71  *  If you write code that depends on this, you do so at your own risk.
    72  *  This code and its internal interfaces are subject to change or
    73  *  deletion without notice.</b>
    74  */
    75 public class Attr extends JCTree.Visitor {
    76     protected static final Context.Key<Attr> attrKey =
    77         new Context.Key<Attr>();
    79     final Names names;
    80     final Log log;
    81     final Symtab syms;
    82     final Resolve rs;
    83     final Infer infer;
    84     final DeferredAttr deferredAttr;
    85     final Check chk;
    86     final Flow flow;
    87     final MemberEnter memberEnter;
    88     final TreeMaker make;
    89     final ConstFold cfolder;
    90     final Enter enter;
    91     final Target target;
    92     final Types types;
    93     final JCDiagnostic.Factory diags;
    94     final Annotate annotate;
    95     final TypeAnnotations typeAnnotations;
    96     final DeferredLintHandler deferredLintHandler;
    97     final TypeEnvs typeEnvs;
    99     public static Attr instance(Context context) {
   100         Attr instance = context.get(attrKey);
   101         if (instance == null)
   102             instance = new Attr(context);
   103         return instance;
   104     }
   106     protected Attr(Context context) {
   107         context.put(attrKey, this);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         syms = Symtab.instance(context);
   112         rs = Resolve.instance(context);
   113         chk = Check.instance(context);
   114         flow = Flow.instance(context);
   115         memberEnter = MemberEnter.instance(context);
   116         make = TreeMaker.instance(context);
   117         enter = Enter.instance(context);
   118         infer = Infer.instance(context);
   119         deferredAttr = DeferredAttr.instance(context);
   120         cfolder = ConstFold.instance(context);
   121         target = Target.instance(context);
   122         types = Types.instance(context);
   123         diags = JCDiagnostic.Factory.instance(context);
   124         annotate = Annotate.instance(context);
   125         typeAnnotations = TypeAnnotations.instance(context);
   126         deferredLintHandler = DeferredLintHandler.instance(context);
   127         typeEnvs = TypeEnvs.instance(context);
   129         Options options = Options.instance(context);
   131         Source source = Source.instance(context);
   132         allowGenerics = source.allowGenerics();
   133         allowVarargs = source.allowVarargs();
   134         allowEnums = source.allowEnums();
   135         allowBoxing = source.allowBoxing();
   136         allowCovariantReturns = source.allowCovariantReturns();
   137         allowAnonOuterThis = source.allowAnonOuterThis();
   138         allowStringsInSwitch = source.allowStringsInSwitch();
   139         allowPoly = source.allowPoly();
   140         allowTypeAnnos = source.allowTypeAnnotations();
   141         allowLambda = source.allowLambda();
   142         allowDefaultMethods = source.allowDefaultMethods();
   143         allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
   144         sourceName = source.name;
   145         relax = (options.isSet("-retrofit") ||
   146                  options.isSet("-relax"));
   147         findDiamonds = options.get("findDiamond") != null &&
   148                  source.allowDiamond();
   149         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   150         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   152         statInfo = new ResultInfo(NIL, Type.noType);
   153         varInfo = new ResultInfo(VAR, Type.noType);
   154         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   155         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   156         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   157         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   158         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   160         noCheckTree = make.at(-1).Skip();
   161     }
   163     /** Switch: relax some constraints for retrofit mode.
   164      */
   165     boolean relax;
   167     /** Switch: support target-typing inference
   168      */
   169     boolean allowPoly;
   171     /** Switch: support type annotations.
   172      */
   173     boolean allowTypeAnnos;
   175     /** Switch: support generics?
   176      */
   177     boolean allowGenerics;
   179     /** Switch: allow variable-arity methods.
   180      */
   181     boolean allowVarargs;
   183     /** Switch: support enums?
   184      */
   185     boolean allowEnums;
   187     /** Switch: support boxing and unboxing?
   188      */
   189     boolean allowBoxing;
   191     /** Switch: support covariant result types?
   192      */
   193     boolean allowCovariantReturns;
   195     /** Switch: support lambda expressions ?
   196      */
   197     boolean allowLambda;
   199     /** Switch: support default methods ?
   200      */
   201     boolean allowDefaultMethods;
   203     /** Switch: static interface methods enabled?
   204      */
   205     boolean allowStaticInterfaceMethods;
   207     /** Switch: allow references to surrounding object from anonymous
   208      * objects during constructor call?
   209      */
   210     boolean allowAnonOuterThis;
   212     /** Switch: generates a warning if diamond can be safely applied
   213      *  to a given new expression
   214      */
   215     boolean findDiamonds;
   217     /**
   218      * Internally enables/disables diamond finder feature
   219      */
   220     static final boolean allowDiamondFinder = true;
   222     /**
   223      * Switch: warn about use of variable before declaration?
   224      * RFE: 6425594
   225      */
   226     boolean useBeforeDeclarationWarning;
   228     /**
   229      * Switch: generate warnings whenever an anonymous inner class that is convertible
   230      * to a lambda expression is found
   231      */
   232     boolean identifyLambdaCandidate;
   234     /**
   235      * Switch: allow strings in switch?
   236      */
   237     boolean allowStringsInSwitch;
   239     /**
   240      * Switch: name of source level; used for error reporting.
   241      */
   242     String sourceName;
   244     /** Check kind and type of given tree against protokind and prototype.
   245      *  If check succeeds, store type in tree and return it.
   246      *  If check fails, store errType in tree and return it.
   247      *  No checks are performed if the prototype is a method type.
   248      *  It is not necessary in this case since we know that kind and type
   249      *  are correct.
   250      *
   251      *  @param tree     The tree whose kind and type is checked
   252      *  @param ownkind  The computed kind of the tree
   253      *  @param resultInfo  The expected result of the tree
   254      */
   255     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   256         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   257         Type owntype;
   258         boolean shouldCheck = !found.hasTag(ERROR) &&
   259                 !resultInfo.pt.hasTag(METHOD) &&
   260                 !resultInfo.pt.hasTag(FORALL);
   261         if (shouldCheck && (ownkind & ~resultInfo.pkind) != 0) {
   262             log.error(tree.pos(), "unexpected.type",
   263                         kindNames(resultInfo.pkind),
   264                         kindName(ownkind));
   265             owntype = types.createErrorType(found);
   266         } else if (allowPoly && inferenceContext.free(found)) {
   267             //delay the check if there are inference variables in the found type
   268             //this means we are dealing with a partially inferred poly expression
   269             owntype = shouldCheck ? resultInfo.pt : found;
   270             inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   271                     @Override
   272                     public void typesInferred(InferenceContext inferenceContext) {
   273                         ResultInfo pendingResult =
   274                                 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   275                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   276                     }
   277             });
   278         } else {
   279             owntype = shouldCheck ?
   280             resultInfo.check(tree, found) :
   281             found;
   282         }
   283         if (tree != noCheckTree) {
   284             tree.type = owntype;
   285         }
   286         return owntype;
   287     }
   289     /** Is given blank final variable assignable, i.e. in a scope where it
   290      *  may be assigned to even though it is final?
   291      *  @param v      The blank final variable.
   292      *  @param env    The current environment.
   293      */
   294     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   295         Symbol owner = env.info.scope.owner;
   296            // owner refers to the innermost variable, method or
   297            // initializer block declaration at this point.
   298         return
   299             v.owner == owner
   300             ||
   301             ((owner.name == names.init ||    // i.e. we are in a constructor
   302               owner.kind == VAR ||           // i.e. we are in a variable initializer
   303               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   304              &&
   305              v.owner == owner.owner
   306              &&
   307              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   308     }
   310     /** Check that variable can be assigned to.
   311      *  @param pos    The current source code position.
   312      *  @param v      The assigned varaible
   313      *  @param base   If the variable is referred to in a Select, the part
   314      *                to the left of the `.', null otherwise.
   315      *  @param env    The current environment.
   316      */
   317     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   318         if ((v.flags() & FINAL) != 0 &&
   319             ((v.flags() & HASINIT) != 0
   320              ||
   321              !((base == null ||
   322                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   323                isAssignableAsBlankFinal(v, env)))) {
   324             if (v.isResourceVariable()) { //TWR resource
   325                 log.error(pos, "try.resource.may.not.be.assigned", v);
   326             } else {
   327                 log.error(pos, "cant.assign.val.to.final.var", v);
   328             }
   329         }
   330     }
   332     /** Does tree represent a static reference to an identifier?
   333      *  It is assumed that tree is either a SELECT or an IDENT.
   334      *  We have to weed out selects from non-type names here.
   335      *  @param tree    The candidate tree.
   336      */
   337     boolean isStaticReference(JCTree tree) {
   338         if (tree.hasTag(SELECT)) {
   339             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   340             if (lsym == null || lsym.kind != TYP) {
   341                 return false;
   342             }
   343         }
   344         return true;
   345     }
   347     /** Is this symbol a type?
   348      */
   349     static boolean isType(Symbol sym) {
   350         return sym != null && sym.kind == TYP;
   351     }
   353     /** The current `this' symbol.
   354      *  @param env    The current environment.
   355      */
   356     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   357         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   358     }
   360     /** Attribute a parsed identifier.
   361      * @param tree Parsed identifier name
   362      * @param topLevel The toplevel to use
   363      */
   364     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   365         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   366         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   367                                            syms.errSymbol.name,
   368                                            null, null, null, null);
   369         localEnv.enclClass.sym = syms.errSymbol;
   370         return tree.accept(identAttributer, localEnv);
   371     }
   372     // where
   373         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   374         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   375             @Override
   376             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   377                 Symbol site = visit(node.getExpression(), env);
   378                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   379                     return site;
   380                 Name name = (Name)node.getIdentifier();
   381                 if (site.kind == PCK) {
   382                     env.toplevel.packge = (PackageSymbol)site;
   383                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   384                 } else {
   385                     env.enclClass.sym = (ClassSymbol)site;
   386                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   387                 }
   388             }
   390             @Override
   391             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   392                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   393             }
   394         }
   396     public Type coerce(Type etype, Type ttype) {
   397         return cfolder.coerce(etype, ttype);
   398     }
   400     public Type attribType(JCTree node, TypeSymbol sym) {
   401         Env<AttrContext> env = typeEnvs.get(sym);
   402         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   403         return attribTree(node, localEnv, unknownTypeInfo);
   404     }
   406     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   407         // Attribute qualifying package or class.
   408         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   409         return attribTree(s.selected,
   410                        env,
   411                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   412                        Type.noType));
   413     }
   415     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   416         breakTree = tree;
   417         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   418         try {
   419             attribExpr(expr, env);
   420         } catch (BreakAttr b) {
   421             return b.env;
   422         } catch (AssertionError ae) {
   423             if (ae.getCause() instanceof BreakAttr) {
   424                 return ((BreakAttr)(ae.getCause())).env;
   425             } else {
   426                 throw ae;
   427             }
   428         } finally {
   429             breakTree = null;
   430             log.useSource(prev);
   431         }
   432         return env;
   433     }
   435     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   436         breakTree = tree;
   437         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   438         try {
   439             attribStat(stmt, env);
   440         } catch (BreakAttr b) {
   441             return b.env;
   442         } catch (AssertionError ae) {
   443             if (ae.getCause() instanceof BreakAttr) {
   444                 return ((BreakAttr)(ae.getCause())).env;
   445             } else {
   446                 throw ae;
   447             }
   448         } finally {
   449             breakTree = null;
   450             log.useSource(prev);
   451         }
   452         return env;
   453     }
   455     private JCTree breakTree = null;
   457     private static class BreakAttr extends RuntimeException {
   458         static final long serialVersionUID = -6924771130405446405L;
   459         private Env<AttrContext> env;
   460         private BreakAttr(Env<AttrContext> env) {
   461             this.env = env;
   462         }
   463     }
   465     class ResultInfo {
   466         final int pkind;
   467         final Type pt;
   468         final CheckContext checkContext;
   470         ResultInfo(int pkind, Type pt) {
   471             this(pkind, pt, chk.basicHandler);
   472         }
   474         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   475             this.pkind = pkind;
   476             this.pt = pt;
   477             this.checkContext = checkContext;
   478         }
   480         protected Type check(final DiagnosticPosition pos, final Type found) {
   481             return chk.checkType(pos, found, pt, checkContext);
   482         }
   484         protected ResultInfo dup(Type newPt) {
   485             return new ResultInfo(pkind, newPt, checkContext);
   486         }
   488         protected ResultInfo dup(CheckContext newContext) {
   489             return new ResultInfo(pkind, pt, newContext);
   490         }
   492         protected ResultInfo dup(Type newPt, CheckContext newContext) {
   493             return new ResultInfo(pkind, newPt, newContext);
   494         }
   496         @Override
   497         public String toString() {
   498             if (pt != null) {
   499                 return pt.toString();
   500             } else {
   501                 return "";
   502             }
   503         }
   504     }
   506     class RecoveryInfo extends ResultInfo {
   508         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   509             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   510                 @Override
   511                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   512                     return deferredAttrContext;
   513                 }
   514                 @Override
   515                 public boolean compatible(Type found, Type req, Warner warn) {
   516                     return true;
   517                 }
   518                 @Override
   519                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   520                     chk.basicHandler.report(pos, details);
   521                 }
   522             });
   523         }
   524     }
   526     final ResultInfo statInfo;
   527     final ResultInfo varInfo;
   528     final ResultInfo unknownAnyPolyInfo;
   529     final ResultInfo unknownExprInfo;
   530     final ResultInfo unknownTypeInfo;
   531     final ResultInfo unknownTypeExprInfo;
   532     final ResultInfo recoveryInfo;
   534     Type pt() {
   535         return resultInfo.pt;
   536     }
   538     int pkind() {
   539         return resultInfo.pkind;
   540     }
   542 /* ************************************************************************
   543  * Visitor methods
   544  *************************************************************************/
   546     /** Visitor argument: the current environment.
   547      */
   548     Env<AttrContext> env;
   550     /** Visitor argument: the currently expected attribution result.
   551      */
   552     ResultInfo resultInfo;
   554     /** Visitor result: the computed type.
   555      */
   556     Type result;
   558     /** Synthetic tree to be used during 'fake' checks.
   559      */
   560     JCTree noCheckTree;
   562     /** Visitor method: attribute a tree, catching any completion failure
   563      *  exceptions. Return the tree's type.
   564      *
   565      *  @param tree    The tree to be visited.
   566      *  @param env     The environment visitor argument.
   567      *  @param resultInfo   The result info visitor argument.
   568      */
   569     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   570         Env<AttrContext> prevEnv = this.env;
   571         ResultInfo prevResult = this.resultInfo;
   572         try {
   573             this.env = env;
   574             this.resultInfo = resultInfo;
   575             tree.accept(this);
   576             if (tree == breakTree &&
   577                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   578                 throw new BreakAttr(copyEnv(env));
   579             }
   580             return result;
   581         } catch (CompletionFailure ex) {
   582             tree.type = syms.errType;
   583             return chk.completionError(tree.pos(), ex);
   584         } finally {
   585             this.env = prevEnv;
   586             this.resultInfo = prevResult;
   587         }
   588     }
   590     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   591         Env<AttrContext> newEnv =
   592                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   593         if (newEnv.outer != null) {
   594             newEnv.outer = copyEnv(newEnv.outer);
   595         }
   596         return newEnv;
   597     }
   599     Scope copyScope(Scope sc) {
   600         Scope newScope = new Scope(sc.owner);
   601         List<Symbol> elemsList = List.nil();
   602         while (sc != null) {
   603             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   604                 elemsList = elemsList.prepend(e.sym);
   605             }
   606             sc = sc.next;
   607         }
   608         for (Symbol s : elemsList) {
   609             newScope.enter(s);
   610         }
   611         return newScope;
   612     }
   614     /** Derived visitor method: attribute an expression tree.
   615      */
   616     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   617         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   618     }
   620     /** Derived visitor method: attribute an expression tree with
   621      *  no constraints on the computed type.
   622      */
   623     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   624         return attribTree(tree, env, unknownExprInfo);
   625     }
   627     /** Derived visitor method: attribute a type tree.
   628      */
   629     public Type attribType(JCTree tree, Env<AttrContext> env) {
   630         Type result = attribType(tree, env, Type.noType);
   631         return result;
   632     }
   634     /** Derived visitor method: attribute a type tree.
   635      */
   636     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   637         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   638         return result;
   639     }
   641     /** Derived visitor method: attribute a statement or definition tree.
   642      */
   643     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   644         return attribTree(tree, env, statInfo);
   645     }
   647     /** Attribute a list of expressions, returning a list of types.
   648      */
   649     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   650         ListBuffer<Type> ts = new ListBuffer<Type>();
   651         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   652             ts.append(attribExpr(l.head, env, pt));
   653         return ts.toList();
   654     }
   656     /** Attribute a list of statements, returning nothing.
   657      */
   658     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   659         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   660             attribStat(l.head, env);
   661     }
   663     /** Attribute the arguments in a method call, returning the method kind.
   664      */
   665     int attribArgs(int initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   666         int kind = initialKind;
   667         for (JCExpression arg : trees) {
   668             Type argtype;
   669             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   670                 argtype = deferredAttr.new DeferredType(arg, env);
   671                 kind |= POLY;
   672             } else {
   673                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   674             }
   675             argtypes.append(argtype);
   676         }
   677         return kind;
   678     }
   680     /** Attribute a type argument list, returning a list of types.
   681      *  Caller is responsible for calling checkRefTypes.
   682      */
   683     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   684         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   685         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   686             argtypes.append(attribType(l.head, env));
   687         return argtypes.toList();
   688     }
   690     /** Attribute a type argument list, returning a list of types.
   691      *  Check that all the types are references.
   692      */
   693     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   694         List<Type> types = attribAnyTypes(trees, env);
   695         return chk.checkRefTypes(trees, types);
   696     }
   698     /**
   699      * Attribute type variables (of generic classes or methods).
   700      * Compound types are attributed later in attribBounds.
   701      * @param typarams the type variables to enter
   702      * @param env      the current environment
   703      */
   704     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   705         for (JCTypeParameter tvar : typarams) {
   706             TypeVar a = (TypeVar)tvar.type;
   707             a.tsym.flags_field |= UNATTRIBUTED;
   708             a.bound = Type.noType;
   709             if (!tvar.bounds.isEmpty()) {
   710                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   711                 for (JCExpression bound : tvar.bounds.tail)
   712                     bounds = bounds.prepend(attribType(bound, env));
   713                 types.setBounds(a, bounds.reverse());
   714             } else {
   715                 // if no bounds are given, assume a single bound of
   716                 // java.lang.Object.
   717                 types.setBounds(a, List.of(syms.objectType));
   718             }
   719             a.tsym.flags_field &= ~UNATTRIBUTED;
   720         }
   721         for (JCTypeParameter tvar : typarams) {
   722             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   723         }
   724     }
   726     /**
   727      * Attribute the type references in a list of annotations.
   728      */
   729     void attribAnnotationTypes(List<JCAnnotation> annotations,
   730                                Env<AttrContext> env) {
   731         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   732             JCAnnotation a = al.head;
   733             attribType(a.annotationType, env);
   734         }
   735     }
   737     /**
   738      * Attribute a "lazy constant value".
   739      *  @param env         The env for the const value
   740      *  @param initializer The initializer for the const value
   741      *  @param type        The expected type, or null
   742      *  @see VarSymbol#setLazyConstValue
   743      */
   744     public Object attribLazyConstantValue(Env<AttrContext> env,
   745                                       JCVariableDecl variable,
   746                                       Type type) {
   748         DiagnosticPosition prevLintPos
   749                 = deferredLintHandler.setPos(variable.pos());
   751         try {
   752             // Use null as symbol to not attach the type annotation to any symbol.
   753             // The initializer will later also be visited and then we'll attach
   754             // to the symbol.
   755             // This prevents having multiple type annotations, just because of
   756             // lazy constant value evaluation.
   757             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   758             annotate.flush();
   759             Type itype = attribExpr(variable.init, env, type);
   760             if (itype.constValue() != null) {
   761                 return coerce(itype, type).constValue();
   762             } else {
   763                 return null;
   764             }
   765         } finally {
   766             deferredLintHandler.setPos(prevLintPos);
   767         }
   768     }
   770     /** Attribute type reference in an `extends' or `implements' clause.
   771      *  Supertypes of anonymous inner classes are usually already attributed.
   772      *
   773      *  @param tree              The tree making up the type reference.
   774      *  @param env               The environment current at the reference.
   775      *  @param classExpected     true if only a class is expected here.
   776      *  @param interfaceExpected true if only an interface is expected here.
   777      */
   778     Type attribBase(JCTree tree,
   779                     Env<AttrContext> env,
   780                     boolean classExpected,
   781                     boolean interfaceExpected,
   782                     boolean checkExtensible) {
   783         Type t = tree.type != null ?
   784             tree.type :
   785             attribType(tree, env);
   786         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   787     }
   788     Type checkBase(Type t,
   789                    JCTree tree,
   790                    Env<AttrContext> env,
   791                    boolean classExpected,
   792                    boolean interfaceExpected,
   793                    boolean checkExtensible) {
   794         if (t.tsym.isAnonymous()) {
   795             log.error(tree.pos(), "cant.inherit.from.anon");
   796             return types.createErrorType(t);
   797         }
   798         if (t.isErroneous())
   799             return t;
   800         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
   801             // check that type variable is already visible
   802             if (t.getUpperBound() == null) {
   803                 log.error(tree.pos(), "illegal.forward.ref");
   804                 return types.createErrorType(t);
   805             }
   806         } else {
   807             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   808         }
   809         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   810             log.error(tree.pos(), "intf.expected.here");
   811             // return errType is necessary since otherwise there might
   812             // be undetected cycles which cause attribution to loop
   813             return types.createErrorType(t);
   814         } else if (checkExtensible &&
   815                    classExpected &&
   816                    (t.tsym.flags() & INTERFACE) != 0) {
   817             log.error(tree.pos(), "no.intf.expected.here");
   818             return types.createErrorType(t);
   819         }
   820         if (checkExtensible &&
   821             ((t.tsym.flags() & FINAL) != 0)) {
   822             log.error(tree.pos(),
   823                       "cant.inherit.from.final", t.tsym);
   824         }
   825         chk.checkNonCyclic(tree.pos(), t);
   826         return t;
   827     }
   829     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   830         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   831         id.type = env.info.scope.owner.type;
   832         id.sym = env.info.scope.owner;
   833         return id.type;
   834     }
   836     public void visitClassDef(JCClassDecl tree) {
   837         // Local and anonymous classes have not been entered yet, so we need to
   838         // do it now.
   839         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0) {
   840             enter.classEnter(tree, env);
   841         } else {
   842             // If this class declaration is part of a class level annotation,
   843             // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
   844             // order to simplify later steps and allow for sensible error
   845             // messages.
   846             if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
   847                 enter.classEnter(tree, env);
   848         }
   850         ClassSymbol c = tree.sym;
   851         if (c == null) {
   852             // exit in case something drastic went wrong during enter.
   853             result = null;
   854         } else {
   855             // make sure class has been completed:
   856             c.complete();
   858             // If this class appears as an anonymous class
   859             // in a superclass constructor call where
   860             // no explicit outer instance is given,
   861             // disable implicit outer instance from being passed.
   862             // (This would be an illegal access to "this before super").
   863             if (env.info.isSelfCall &&
   864                 env.tree.hasTag(NEWCLASS) &&
   865                 ((JCNewClass) env.tree).encl == null)
   866             {
   867                 c.flags_field |= NOOUTERTHIS;
   868             }
   869             attribClass(tree.pos(), c);
   870             result = tree.type = c.type;
   871         }
   872     }
   874     public void visitMethodDef(JCMethodDecl tree) {
   875         MethodSymbol m = tree.sym;
   876         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   878         Lint lint = env.info.lint.augment(m);
   879         Lint prevLint = chk.setLint(lint);
   880         MethodSymbol prevMethod = chk.setMethod(m);
   881         try {
   882             deferredLintHandler.flush(tree.pos());
   883             chk.checkDeprecatedAnnotation(tree.pos(), m);
   886             // Create a new environment with local scope
   887             // for attributing the method.
   888             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   889             localEnv.info.lint = lint;
   891             attribStats(tree.typarams, localEnv);
   893             // If we override any other methods, check that we do so properly.
   894             // JLS ???
   895             if (m.isStatic()) {
   896                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   897             } else {
   898                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   899             }
   900             chk.checkOverride(tree, m);
   902             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   903                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   904             }
   906             // Enter all type parameters into the local method scope.
   907             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   908                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   910             ClassSymbol owner = env.enclClass.sym;
   911             if ((owner.flags() & ANNOTATION) != 0 &&
   912                 tree.params.nonEmpty())
   913                 log.error(tree.params.head.pos(),
   914                           "intf.annotation.members.cant.have.params");
   916             // Attribute all value parameters.
   917             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   918                 attribStat(l.head, localEnv);
   919             }
   921             chk.checkVarargsMethodDecl(localEnv, tree);
   923             // Check that type parameters are well-formed.
   924             chk.validate(tree.typarams, localEnv);
   926             // Check that result type is well-formed.
   927             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
   928                 chk.validate(tree.restype, localEnv);
   930             // Check that receiver type is well-formed.
   931             if (tree.recvparam != null) {
   932                 // Use a new environment to check the receiver parameter.
   933                 // Otherwise I get "might not have been initialized" errors.
   934                 // Is there a better way?
   935                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   936                 attribType(tree.recvparam, newEnv);
   937                 chk.validate(tree.recvparam, newEnv);
   938             }
   940             // annotation method checks
   941             if ((owner.flags() & ANNOTATION) != 0) {
   942                 // annotation method cannot have throws clause
   943                 if (tree.thrown.nonEmpty()) {
   944                     log.error(tree.thrown.head.pos(),
   945                             "throws.not.allowed.in.intf.annotation");
   946                 }
   947                 // annotation method cannot declare type-parameters
   948                 if (tree.typarams.nonEmpty()) {
   949                     log.error(tree.typarams.head.pos(),
   950                             "intf.annotation.members.cant.have.type.params");
   951                 }
   952                 // validate annotation method's return type (could be an annotation type)
   953                 chk.validateAnnotationType(tree.restype);
   954                 // ensure that annotation method does not clash with members of Object/Annotation
   955                 chk.validateAnnotationMethod(tree.pos(), m);
   956             }
   958             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   959                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   961             if (tree.body == null) {
   962                 // Empty bodies are only allowed for
   963                 // abstract, native, or interface methods, or for methods
   964                 // in a retrofit signature class.
   965                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   966                     !relax)
   967                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   968                 if (tree.defaultValue != null) {
   969                     if ((owner.flags() & ANNOTATION) == 0)
   970                         log.error(tree.pos(),
   971                                   "default.allowed.in.intf.annotation.member");
   972                 }
   973             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   974                 if ((owner.flags() & INTERFACE) != 0) {
   975                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   976                 } else {
   977                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   978                 }
   979             } else if ((tree.mods.flags & NATIVE) != 0) {
   980                 log.error(tree.pos(), "native.meth.cant.have.body");
   981             } else {
   982                 // Add an implicit super() call unless an explicit call to
   983                 // super(...) or this(...) is given
   984                 // or we are compiling class java.lang.Object.
   985                 if (tree.name == names.init && owner.type != syms.objectType) {
   986                     JCBlock body = tree.body;
   987                     if (body.stats.isEmpty() ||
   988                         !TreeInfo.isSelfCall(body.stats.head)) {
   989                         body.stats = body.stats.
   990                             prepend(memberEnter.SuperCall(make.at(body.pos),
   991                                                           List.<Type>nil(),
   992                                                           List.<JCVariableDecl>nil(),
   993                                                           false));
   994                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   995                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   996                                TreeInfo.isSuperCall(body.stats.head)) {
   997                         // enum constructors are not allowed to call super
   998                         // directly, so make sure there aren't any super calls
   999                         // in enum constructors, except in the compiler
  1000                         // generated one.
  1001                         log.error(tree.body.stats.head.pos(),
  1002                                   "call.to.super.not.allowed.in.enum.ctor",
  1003                                   env.enclClass.sym);
  1007                 // Attribute all type annotations in the body
  1008                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1009                 annotate.flush();
  1011                 // Attribute method body.
  1012                 attribStat(tree.body, localEnv);
  1015             localEnv.info.scope.leave();
  1016             result = tree.type = m.type;
  1018         finally {
  1019             chk.setLint(prevLint);
  1020             chk.setMethod(prevMethod);
  1024     public void visitVarDef(JCVariableDecl tree) {
  1025         // Local variables have not been entered yet, so we need to do it now:
  1026         if (env.info.scope.owner.kind == MTH) {
  1027             if (tree.sym != null) {
  1028                 // parameters have already been entered
  1029                 env.info.scope.enter(tree.sym);
  1030             } else {
  1031                 try {
  1032                     annotate.enterStart();
  1033                     memberEnter.memberEnter(tree, env);
  1034                 } finally {
  1035                     annotate.enterDone();
  1038         } else {
  1039             if (tree.init != null) {
  1040                 // Field initializer expression need to be entered.
  1041                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1042                 annotate.flush();
  1046         VarSymbol v = tree.sym;
  1047         Lint lint = env.info.lint.augment(v);
  1048         Lint prevLint = chk.setLint(lint);
  1050         // Check that the variable's declared type is well-formed.
  1051         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1052                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1053                 (tree.sym.flags() & PARAMETER) != 0;
  1054         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1056         try {
  1057             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1058             deferredLintHandler.flush(tree.pos());
  1059             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1061             if (tree.init != null) {
  1062                 if ((v.flags_field & FINAL) == 0 ||
  1063                     !memberEnter.needsLazyConstValue(tree.init)) {
  1064                     // Not a compile-time constant
  1065                     // Attribute initializer in a new environment
  1066                     // with the declared variable as owner.
  1067                     // Check that initializer conforms to variable's declared type.
  1068                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1069                     initEnv.info.lint = lint;
  1070                     // In order to catch self-references, we set the variable's
  1071                     // declaration position to maximal possible value, effectively
  1072                     // marking the variable as undefined.
  1073                     initEnv.info.enclVar = v;
  1074                     attribExpr(tree.init, initEnv, v.type);
  1077             result = tree.type = v.type;
  1079         finally {
  1080             chk.setLint(prevLint);
  1084     public void visitSkip(JCSkip tree) {
  1085         result = null;
  1088     public void visitBlock(JCBlock tree) {
  1089         if (env.info.scope.owner.kind == TYP) {
  1090             // Block is a static or instance initializer;
  1091             // let the owner of the environment be a freshly
  1092             // created BLOCK-method.
  1093             Env<AttrContext> localEnv =
  1094                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1095             localEnv.info.scope.owner =
  1096                 new MethodSymbol(tree.flags | BLOCK |
  1097                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1098                     env.info.scope.owner);
  1099             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1101             // Attribute all type annotations in the block
  1102             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1103             annotate.flush();
  1106                 // Store init and clinit type annotations with the ClassSymbol
  1107                 // to allow output in Gen.normalizeDefs.
  1108                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1109                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1110                 if ((tree.flags & STATIC) != 0) {
  1111                     cs.appendClassInitTypeAttributes(tas);
  1112                 } else {
  1113                     cs.appendInitTypeAttributes(tas);
  1117             attribStats(tree.stats, localEnv);
  1118         } else {
  1119             // Create a new local environment with a local scope.
  1120             Env<AttrContext> localEnv =
  1121                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1122             try {
  1123                 attribStats(tree.stats, localEnv);
  1124             } finally {
  1125                 localEnv.info.scope.leave();
  1128         result = null;
  1131     public void visitDoLoop(JCDoWhileLoop tree) {
  1132         attribStat(tree.body, env.dup(tree));
  1133         attribExpr(tree.cond, env, syms.booleanType);
  1134         result = null;
  1137     public void visitWhileLoop(JCWhileLoop tree) {
  1138         attribExpr(tree.cond, env, syms.booleanType);
  1139         attribStat(tree.body, env.dup(tree));
  1140         result = null;
  1143     public void visitForLoop(JCForLoop tree) {
  1144         Env<AttrContext> loopEnv =
  1145             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1146         try {
  1147             attribStats(tree.init, loopEnv);
  1148             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1149             loopEnv.tree = tree; // before, we were not in loop!
  1150             attribStats(tree.step, loopEnv);
  1151             attribStat(tree.body, loopEnv);
  1152             result = null;
  1154         finally {
  1155             loopEnv.info.scope.leave();
  1159     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1160         Env<AttrContext> loopEnv =
  1161             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1162         try {
  1163             //the Formal Parameter of a for-each loop is not in the scope when
  1164             //attributing the for-each expression; we mimick this by attributing
  1165             //the for-each expression first (against original scope).
  1166             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
  1167             attribStat(tree.var, loopEnv);
  1168             chk.checkNonVoid(tree.pos(), exprType);
  1169             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1170             if (elemtype == null) {
  1171                 // or perhaps expr implements Iterable<T>?
  1172                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1173                 if (base == null) {
  1174                     log.error(tree.expr.pos(),
  1175                             "foreach.not.applicable.to.type",
  1176                             exprType,
  1177                             diags.fragment("type.req.array.or.iterable"));
  1178                     elemtype = types.createErrorType(exprType);
  1179                 } else {
  1180                     List<Type> iterableParams = base.allparams();
  1181                     elemtype = iterableParams.isEmpty()
  1182                         ? syms.objectType
  1183                         : types.wildUpperBound(iterableParams.head);
  1186             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1187             loopEnv.tree = tree; // before, we were not in loop!
  1188             attribStat(tree.body, loopEnv);
  1189             result = null;
  1191         finally {
  1192             loopEnv.info.scope.leave();
  1196     public void visitLabelled(JCLabeledStatement tree) {
  1197         // Check that label is not used in an enclosing statement
  1198         Env<AttrContext> env1 = env;
  1199         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1200             if (env1.tree.hasTag(LABELLED) &&
  1201                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1202                 log.error(tree.pos(), "label.already.in.use",
  1203                           tree.label);
  1204                 break;
  1206             env1 = env1.next;
  1209         attribStat(tree.body, env.dup(tree));
  1210         result = null;
  1213     public void visitSwitch(JCSwitch tree) {
  1214         Type seltype = attribExpr(tree.selector, env);
  1216         Env<AttrContext> switchEnv =
  1217             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1219         try {
  1221             boolean enumSwitch =
  1222                 allowEnums &&
  1223                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1224             boolean stringSwitch = false;
  1225             if (types.isSameType(seltype, syms.stringType)) {
  1226                 if (allowStringsInSwitch) {
  1227                     stringSwitch = true;
  1228                 } else {
  1229                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1232             if (!enumSwitch && !stringSwitch)
  1233                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1235             // Attribute all cases and
  1236             // check that there are no duplicate case labels or default clauses.
  1237             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1238             boolean hasDefault = false;      // Is there a default label?
  1239             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1240                 JCCase c = l.head;
  1241                 Env<AttrContext> caseEnv =
  1242                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1243                 try {
  1244                     if (c.pat != null) {
  1245                         if (enumSwitch) {
  1246                             Symbol sym = enumConstant(c.pat, seltype);
  1247                             if (sym == null) {
  1248                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1249                             } else if (!labels.add(sym)) {
  1250                                 log.error(c.pos(), "duplicate.case.label");
  1252                         } else {
  1253                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1254                             if (!pattype.hasTag(ERROR)) {
  1255                                 if (pattype.constValue() == null) {
  1256                                     log.error(c.pat.pos(),
  1257                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1258                                 } else if (labels.contains(pattype.constValue())) {
  1259                                     log.error(c.pos(), "duplicate.case.label");
  1260                                 } else {
  1261                                     labels.add(pattype.constValue());
  1265                     } else if (hasDefault) {
  1266                         log.error(c.pos(), "duplicate.default.label");
  1267                     } else {
  1268                         hasDefault = true;
  1270                     attribStats(c.stats, caseEnv);
  1271                 } finally {
  1272                     caseEnv.info.scope.leave();
  1273                     addVars(c.stats, switchEnv.info.scope);
  1277             result = null;
  1279         finally {
  1280             switchEnv.info.scope.leave();
  1283     // where
  1284         /** Add any variables defined in stats to the switch scope. */
  1285         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1286             for (;stats.nonEmpty(); stats = stats.tail) {
  1287                 JCTree stat = stats.head;
  1288                 if (stat.hasTag(VARDEF))
  1289                     switchScope.enter(((JCVariableDecl) stat).sym);
  1292     // where
  1293     /** Return the selected enumeration constant symbol, or null. */
  1294     private Symbol enumConstant(JCTree tree, Type enumType) {
  1295         if (!tree.hasTag(IDENT)) {
  1296             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1297             return syms.errSymbol;
  1299         JCIdent ident = (JCIdent)tree;
  1300         Name name = ident.name;
  1301         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1302              e.scope != null; e = e.next()) {
  1303             if (e.sym.kind == VAR) {
  1304                 Symbol s = ident.sym = e.sym;
  1305                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1306                 ident.type = s.type;
  1307                 return ((s.flags_field & Flags.ENUM) == 0)
  1308                     ? null : s;
  1311         return null;
  1314     public void visitSynchronized(JCSynchronized tree) {
  1315         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1316         attribStat(tree.body, env);
  1317         result = null;
  1320     public void visitTry(JCTry tree) {
  1321         // Create a new local environment with a local
  1322         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1323         try {
  1324             boolean isTryWithResource = tree.resources.nonEmpty();
  1325             // Create a nested environment for attributing the try block if needed
  1326             Env<AttrContext> tryEnv = isTryWithResource ?
  1327                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1328                 localEnv;
  1329             try {
  1330                 // Attribute resource declarations
  1331                 for (JCTree resource : tree.resources) {
  1332                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1333                         @Override
  1334                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1335                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1337                     };
  1338                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1339                     if (resource.hasTag(VARDEF)) {
  1340                         attribStat(resource, tryEnv);
  1341                         twrResult.check(resource, resource.type);
  1343                         //check that resource type cannot throw InterruptedException
  1344                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1346                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1347                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1348                     } else {
  1349                         attribTree(resource, tryEnv, twrResult);
  1352                 // Attribute body
  1353                 attribStat(tree.body, tryEnv);
  1354             } finally {
  1355                 if (isTryWithResource)
  1356                     tryEnv.info.scope.leave();
  1359             // Attribute catch clauses
  1360             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1361                 JCCatch c = l.head;
  1362                 Env<AttrContext> catchEnv =
  1363                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1364                 try {
  1365                     Type ctype = attribStat(c.param, catchEnv);
  1366                     if (TreeInfo.isMultiCatch(c)) {
  1367                         //multi-catch parameter is implicitly marked as final
  1368                         c.param.sym.flags_field |= FINAL | UNION;
  1370                     if (c.param.sym.kind == Kinds.VAR) {
  1371                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1373                     chk.checkType(c.param.vartype.pos(),
  1374                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1375                                   syms.throwableType);
  1376                     attribStat(c.body, catchEnv);
  1377                 } finally {
  1378                     catchEnv.info.scope.leave();
  1382             // Attribute finalizer
  1383             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1384             result = null;
  1386         finally {
  1387             localEnv.info.scope.leave();
  1391     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1392         if (!resource.isErroneous() &&
  1393             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1394             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1395             Symbol close = syms.noSymbol;
  1396             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1397             try {
  1398                 close = rs.resolveQualifiedMethod(pos,
  1399                         env,
  1400                         resource,
  1401                         names.close,
  1402                         List.<Type>nil(),
  1403                         List.<Type>nil());
  1405             finally {
  1406                 log.popDiagnosticHandler(discardHandler);
  1408             if (close.kind == MTH &&
  1409                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1410                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1411                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1412                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1417     public void visitConditional(JCConditional tree) {
  1418         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1420         tree.polyKind = (!allowPoly ||
  1421                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1422                 isBooleanOrNumeric(env, tree)) ?
  1423                 PolyKind.STANDALONE : PolyKind.POLY;
  1425         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1426             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1427             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1428             result = tree.type = types.createErrorType(resultInfo.pt);
  1429             return;
  1432         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1433                 unknownExprInfo :
  1434                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1435                     //this will use enclosing check context to check compatibility of
  1436                     //subexpression against target type; if we are in a method check context,
  1437                     //depending on whether boxing is allowed, we could have incompatibilities
  1438                     @Override
  1439                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1440                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1442                 });
  1444         Type truetype = attribTree(tree.truepart, env, condInfo);
  1445         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1447         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1448         if (condtype.constValue() != null &&
  1449                 truetype.constValue() != null &&
  1450                 falsetype.constValue() != null &&
  1451                 !owntype.hasTag(NONE)) {
  1452             //constant folding
  1453             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1455         result = check(tree, owntype, VAL, resultInfo);
  1457     //where
  1458         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1459             switch (tree.getTag()) {
  1460                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1461                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1462                               ((JCLiteral)tree).typetag == BOT;
  1463                 case LAMBDA: case REFERENCE: return false;
  1464                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1465                 case CONDEXPR:
  1466                     JCConditional condTree = (JCConditional)tree;
  1467                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1468                             isBooleanOrNumeric(env, condTree.falsepart);
  1469                 case APPLY:
  1470                     JCMethodInvocation speculativeMethodTree =
  1471                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1472                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1473                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1474                 case NEWCLASS:
  1475                     JCExpression className =
  1476                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1477                     JCExpression speculativeNewClassTree =
  1478                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1479                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1480                 default:
  1481                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1482                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1483                     return speculativeType.isPrimitive();
  1486         //where
  1487             TreeTranslator removeClassParams = new TreeTranslator() {
  1488                 @Override
  1489                 public void visitTypeApply(JCTypeApply tree) {
  1490                     result = translate(tree.clazz);
  1492             };
  1494         /** Compute the type of a conditional expression, after
  1495          *  checking that it exists.  See JLS 15.25. Does not take into
  1496          *  account the special case where condition and both arms
  1497          *  are constants.
  1499          *  @param pos      The source position to be used for error
  1500          *                  diagnostics.
  1501          *  @param thentype The type of the expression's then-part.
  1502          *  @param elsetype The type of the expression's else-part.
  1503          */
  1504         private Type condType(DiagnosticPosition pos,
  1505                                Type thentype, Type elsetype) {
  1506             // If same type, that is the result
  1507             if (types.isSameType(thentype, elsetype))
  1508                 return thentype.baseType();
  1510             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1511                 ? thentype : types.unboxedType(thentype);
  1512             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1513                 ? elsetype : types.unboxedType(elsetype);
  1515             // Otherwise, if both arms can be converted to a numeric
  1516             // type, return the least numeric type that fits both arms
  1517             // (i.e. return larger of the two, or return int if one
  1518             // arm is short, the other is char).
  1519             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1520                 // If one arm has an integer subrange type (i.e., byte,
  1521                 // short, or char), and the other is an integer constant
  1522                 // that fits into the subrange, return the subrange type.
  1523                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1524                     elseUnboxed.hasTag(INT) &&
  1525                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1526                     return thenUnboxed.baseType();
  1528                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1529                     thenUnboxed.hasTag(INT) &&
  1530                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1531                     return elseUnboxed.baseType();
  1534                 for (TypeTag tag : primitiveTags) {
  1535                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1536                     if (types.isSubtype(thenUnboxed, candidate) &&
  1537                         types.isSubtype(elseUnboxed, candidate)) {
  1538                         return candidate;
  1543             // Those were all the cases that could result in a primitive
  1544             if (allowBoxing) {
  1545                 if (thentype.isPrimitive())
  1546                     thentype = types.boxedClass(thentype).type;
  1547                 if (elsetype.isPrimitive())
  1548                     elsetype = types.boxedClass(elsetype).type;
  1551             if (types.isSubtype(thentype, elsetype))
  1552                 return elsetype.baseType();
  1553             if (types.isSubtype(elsetype, thentype))
  1554                 return thentype.baseType();
  1556             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1557                 log.error(pos, "neither.conditional.subtype",
  1558                           thentype, elsetype);
  1559                 return thentype.baseType();
  1562             // both are known to be reference types.  The result is
  1563             // lub(thentype,elsetype). This cannot fail, as it will
  1564             // always be possible to infer "Object" if nothing better.
  1565             return types.lub(thentype.baseType(), elsetype.baseType());
  1568     final static TypeTag[] primitiveTags = new TypeTag[]{
  1569         BYTE,
  1570         CHAR,
  1571         SHORT,
  1572         INT,
  1573         LONG,
  1574         FLOAT,
  1575         DOUBLE,
  1576         BOOLEAN,
  1577     };
  1579     public void visitIf(JCIf tree) {
  1580         attribExpr(tree.cond, env, syms.booleanType);
  1581         attribStat(tree.thenpart, env);
  1582         if (tree.elsepart != null)
  1583             attribStat(tree.elsepart, env);
  1584         chk.checkEmptyIf(tree);
  1585         result = null;
  1588     public void visitExec(JCExpressionStatement tree) {
  1589         //a fresh environment is required for 292 inference to work properly ---
  1590         //see Infer.instantiatePolymorphicSignatureInstance()
  1591         Env<AttrContext> localEnv = env.dup(tree);
  1592         attribExpr(tree.expr, localEnv);
  1593         result = null;
  1596     public void visitBreak(JCBreak tree) {
  1597         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1598         result = null;
  1601     public void visitContinue(JCContinue tree) {
  1602         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1603         result = null;
  1605     //where
  1606         /** Return the target of a break or continue statement, if it exists,
  1607          *  report an error if not.
  1608          *  Note: The target of a labelled break or continue is the
  1609          *  (non-labelled) statement tree referred to by the label,
  1610          *  not the tree representing the labelled statement itself.
  1612          *  @param pos     The position to be used for error diagnostics
  1613          *  @param tag     The tag of the jump statement. This is either
  1614          *                 Tree.BREAK or Tree.CONTINUE.
  1615          *  @param label   The label of the jump statement, or null if no
  1616          *                 label is given.
  1617          *  @param env     The environment current at the jump statement.
  1618          */
  1619         private JCTree findJumpTarget(DiagnosticPosition pos,
  1620                                     JCTree.Tag tag,
  1621                                     Name label,
  1622                                     Env<AttrContext> env) {
  1623             // Search environments outwards from the point of jump.
  1624             Env<AttrContext> env1 = env;
  1625             LOOP:
  1626             while (env1 != null) {
  1627                 switch (env1.tree.getTag()) {
  1628                     case LABELLED:
  1629                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1630                         if (label == labelled.label) {
  1631                             // If jump is a continue, check that target is a loop.
  1632                             if (tag == CONTINUE) {
  1633                                 if (!labelled.body.hasTag(DOLOOP) &&
  1634                                         !labelled.body.hasTag(WHILELOOP) &&
  1635                                         !labelled.body.hasTag(FORLOOP) &&
  1636                                         !labelled.body.hasTag(FOREACHLOOP))
  1637                                     log.error(pos, "not.loop.label", label);
  1638                                 // Found labelled statement target, now go inwards
  1639                                 // to next non-labelled tree.
  1640                                 return TreeInfo.referencedStatement(labelled);
  1641                             } else {
  1642                                 return labelled;
  1645                         break;
  1646                     case DOLOOP:
  1647                     case WHILELOOP:
  1648                     case FORLOOP:
  1649                     case FOREACHLOOP:
  1650                         if (label == null) return env1.tree;
  1651                         break;
  1652                     case SWITCH:
  1653                         if (label == null && tag == BREAK) return env1.tree;
  1654                         break;
  1655                     case LAMBDA:
  1656                     case METHODDEF:
  1657                     case CLASSDEF:
  1658                         break LOOP;
  1659                     default:
  1661                 env1 = env1.next;
  1663             if (label != null)
  1664                 log.error(pos, "undef.label", label);
  1665             else if (tag == CONTINUE)
  1666                 log.error(pos, "cont.outside.loop");
  1667             else
  1668                 log.error(pos, "break.outside.switch.loop");
  1669             return null;
  1672     public void visitReturn(JCReturn tree) {
  1673         // Check that there is an enclosing method which is
  1674         // nested within than the enclosing class.
  1675         if (env.info.returnResult == null) {
  1676             log.error(tree.pos(), "ret.outside.meth");
  1677         } else {
  1678             // Attribute return expression, if it exists, and check that
  1679             // it conforms to result type of enclosing method.
  1680             if (tree.expr != null) {
  1681                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1682                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1683                               diags.fragment("unexpected.ret.val"));
  1685                 attribTree(tree.expr, env, env.info.returnResult);
  1686             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1687                     !env.info.returnResult.pt.hasTag(NONE)) {
  1688                 env.info.returnResult.checkContext.report(tree.pos(),
  1689                               diags.fragment("missing.ret.val"));
  1692         result = null;
  1695     public void visitThrow(JCThrow tree) {
  1696         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1697         if (allowPoly) {
  1698             chk.checkType(tree, owntype, syms.throwableType);
  1700         result = null;
  1703     public void visitAssert(JCAssert tree) {
  1704         attribExpr(tree.cond, env, syms.booleanType);
  1705         if (tree.detail != null) {
  1706             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1708         result = null;
  1711      /** Visitor method for method invocations.
  1712      *  NOTE: The method part of an application will have in its type field
  1713      *        the return type of the method, not the method's type itself!
  1714      */
  1715     public void visitApply(JCMethodInvocation tree) {
  1716         // The local environment of a method application is
  1717         // a new environment nested in the current one.
  1718         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1720         // The types of the actual method arguments.
  1721         List<Type> argtypes;
  1723         // The types of the actual method type arguments.
  1724         List<Type> typeargtypes = null;
  1726         Name methName = TreeInfo.name(tree.meth);
  1728         boolean isConstructorCall =
  1729             methName == names._this || methName == names._super;
  1731         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1732         if (isConstructorCall) {
  1733             // We are seeing a ...this(...) or ...super(...) call.
  1734             // Check that this is the first statement in a constructor.
  1735             if (checkFirstConstructorStat(tree, env)) {
  1737                 // Record the fact
  1738                 // that this is a constructor call (using isSelfCall).
  1739                 localEnv.info.isSelfCall = true;
  1741                 // Attribute arguments, yielding list of argument types.
  1742                 int kind = attribArgs(MTH, tree.args, localEnv, argtypesBuf);
  1743                 argtypes = argtypesBuf.toList();
  1744                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1746                 // Variable `site' points to the class in which the called
  1747                 // constructor is defined.
  1748                 Type site = env.enclClass.sym.type;
  1749                 if (methName == names._super) {
  1750                     if (site == syms.objectType) {
  1751                         log.error(tree.meth.pos(), "no.superclass", site);
  1752                         site = types.createErrorType(syms.objectType);
  1753                     } else {
  1754                         site = types.supertype(site);
  1758                 if (site.hasTag(CLASS)) {
  1759                     Type encl = site.getEnclosingType();
  1760                     while (encl != null && encl.hasTag(TYPEVAR))
  1761                         encl = encl.getUpperBound();
  1762                     if (encl.hasTag(CLASS)) {
  1763                         // we are calling a nested class
  1765                         if (tree.meth.hasTag(SELECT)) {
  1766                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1768                             // We are seeing a prefixed call, of the form
  1769                             //     <expr>.super(...).
  1770                             // Check that the prefix expression conforms
  1771                             // to the outer instance type of the class.
  1772                             chk.checkRefType(qualifier.pos(),
  1773                                              attribExpr(qualifier, localEnv,
  1774                                                         encl));
  1775                         } else if (methName == names._super) {
  1776                             // qualifier omitted; check for existence
  1777                             // of an appropriate implicit qualifier.
  1778                             rs.resolveImplicitThis(tree.meth.pos(),
  1779                                                    localEnv, site, true);
  1781                     } else if (tree.meth.hasTag(SELECT)) {
  1782                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1783                                   site.tsym);
  1786                     // if we're calling a java.lang.Enum constructor,
  1787                     // prefix the implicit String and int parameters
  1788                     if (site.tsym == syms.enumSym && allowEnums)
  1789                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1791                     // Resolve the called constructor under the assumption
  1792                     // that we are referring to a superclass instance of the
  1793                     // current instance (JLS ???).
  1794                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1795                     localEnv.info.selectSuper = true;
  1796                     localEnv.info.pendingResolutionPhase = null;
  1797                     Symbol sym = rs.resolveConstructor(
  1798                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1799                     localEnv.info.selectSuper = selectSuperPrev;
  1801                     // Set method symbol to resolved constructor...
  1802                     TreeInfo.setSymbol(tree.meth, sym);
  1804                     // ...and check that it is legal in the current context.
  1805                     // (this will also set the tree's type)
  1806                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1807                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(kind, mpt));
  1809                 // Otherwise, `site' is an error type and we do nothing
  1811             result = tree.type = syms.voidType;
  1812         } else {
  1813             // Otherwise, we are seeing a regular method call.
  1814             // Attribute the arguments, yielding list of argument types, ...
  1815             int kind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
  1816             argtypes = argtypesBuf.toList();
  1817             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1819             // ... and attribute the method using as a prototype a methodtype
  1820             // whose formal argument types is exactly the list of actual
  1821             // arguments (this will also set the method symbol).
  1822             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1823             localEnv.info.pendingResolutionPhase = null;
  1824             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1826             // Compute the result type.
  1827             Type restype = mtype.getReturnType();
  1828             if (restype.hasTag(WILDCARD))
  1829                 throw new AssertionError(mtype);
  1831             Type qualifier = (tree.meth.hasTag(SELECT))
  1832                     ? ((JCFieldAccess) tree.meth).selected.type
  1833                     : env.enclClass.sym.type;
  1834             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1836             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1838             // Check that value of resulting type is admissible in the
  1839             // current context.  Also, capture the return type
  1840             result = check(tree, capture(restype), VAL, resultInfo);
  1842         chk.validate(tree.typeargs, localEnv);
  1844     //where
  1845         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1846             if (allowCovariantReturns &&
  1847                     methodName == names.clone &&
  1848                 types.isArray(qualifierType)) {
  1849                 // as a special case, array.clone() has a result that is
  1850                 // the same as static type of the array being cloned
  1851                 return qualifierType;
  1852             } else if (allowGenerics &&
  1853                     methodName == names.getClass &&
  1854                     argtypes.isEmpty()) {
  1855                 // as a special case, x.getClass() has type Class<? extends |X|>
  1856                 return new ClassType(restype.getEnclosingType(),
  1857                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1858                                                                BoundKind.EXTENDS,
  1859                                                                syms.boundClass)),
  1860                               restype.tsym);
  1861             } else {
  1862                 return restype;
  1866         /** Check that given application node appears as first statement
  1867          *  in a constructor call.
  1868          *  @param tree   The application node
  1869          *  @param env    The environment current at the application.
  1870          */
  1871         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1872             JCMethodDecl enclMethod = env.enclMethod;
  1873             if (enclMethod != null && enclMethod.name == names.init) {
  1874                 JCBlock body = enclMethod.body;
  1875                 if (body.stats.head.hasTag(EXEC) &&
  1876                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1877                     return true;
  1879             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1880                       TreeInfo.name(tree.meth));
  1881             return false;
  1884         /** Obtain a method type with given argument types.
  1885          */
  1886         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1887             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1888             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1891     public void visitNewClass(final JCNewClass tree) {
  1892         Type owntype = types.createErrorType(tree.type);
  1894         // The local environment of a class creation is
  1895         // a new environment nested in the current one.
  1896         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1898         // The anonymous inner class definition of the new expression,
  1899         // if one is defined by it.
  1900         JCClassDecl cdef = tree.def;
  1902         // If enclosing class is given, attribute it, and
  1903         // complete class name to be fully qualified
  1904         JCExpression clazz = tree.clazz; // Class field following new
  1905         JCExpression clazzid;            // Identifier in class field
  1906         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1907         annoclazzid = null;
  1909         if (clazz.hasTag(TYPEAPPLY)) {
  1910             clazzid = ((JCTypeApply) clazz).clazz;
  1911             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1912                 annoclazzid = (JCAnnotatedType) clazzid;
  1913                 clazzid = annoclazzid.underlyingType;
  1915         } else {
  1916             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1917                 annoclazzid = (JCAnnotatedType) clazz;
  1918                 clazzid = annoclazzid.underlyingType;
  1919             } else {
  1920                 clazzid = clazz;
  1924         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1926         if (tree.encl != null) {
  1927             // We are seeing a qualified new, of the form
  1928             //    <expr>.new C <...> (...) ...
  1929             // In this case, we let clazz stand for the name of the
  1930             // allocated class C prefixed with the type of the qualifier
  1931             // expression, so that we can
  1932             // resolve it with standard techniques later. I.e., if
  1933             // <expr> has type T, then <expr>.new C <...> (...)
  1934             // yields a clazz T.C.
  1935             Type encltype = chk.checkRefType(tree.encl.pos(),
  1936                                              attribExpr(tree.encl, env));
  1937             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1938             // from expr to the combined type, or not? Yes, do this.
  1939             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1940                                                  ((JCIdent) clazzid).name);
  1942             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1943             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1944             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1945                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1946                 List<JCAnnotation> annos = annoType.annotations;
  1948                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1949                     clazzid1 = make.at(tree.pos).
  1950                         TypeApply(clazzid1,
  1951                                   ((JCTypeApply) clazz).arguments);
  1954                 clazzid1 = make.at(tree.pos).
  1955                     AnnotatedType(annos, clazzid1);
  1956             } else if (clazz.hasTag(TYPEAPPLY)) {
  1957                 clazzid1 = make.at(tree.pos).
  1958                     TypeApply(clazzid1,
  1959                               ((JCTypeApply) clazz).arguments);
  1962             clazz = clazzid1;
  1965         // Attribute clazz expression and store
  1966         // symbol + type back into the attributed tree.
  1967         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1968             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1969             attribType(clazz, env);
  1971         clazztype = chk.checkDiamond(tree, clazztype);
  1972         chk.validate(clazz, localEnv);
  1973         if (tree.encl != null) {
  1974             // We have to work in this case to store
  1975             // symbol + type back into the attributed tree.
  1976             tree.clazz.type = clazztype;
  1977             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1978             clazzid.type = ((JCIdent) clazzid).sym.type;
  1979             if (annoclazzid != null) {
  1980                 annoclazzid.type = clazzid.type;
  1982             if (!clazztype.isErroneous()) {
  1983                 if (cdef != null && clazztype.tsym.isInterface()) {
  1984                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1985                 } else if (clazztype.tsym.isStatic()) {
  1986                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1989         } else if (!clazztype.tsym.isInterface() &&
  1990                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1991             // Check for the existence of an apropos outer instance
  1992             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1995         // Attribute constructor arguments.
  1996         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1997         int pkind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
  1998         List<Type> argtypes = argtypesBuf.toList();
  1999         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  2001         // If we have made no mistakes in the class type...
  2002         if (clazztype.hasTag(CLASS)) {
  2003             // Enums may not be instantiated except implicitly
  2004             if (allowEnums &&
  2005                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2006                 (!env.tree.hasTag(VARDEF) ||
  2007                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2008                  ((JCVariableDecl) env.tree).init != tree))
  2009                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2010             // Check that class is not abstract
  2011             if (cdef == null &&
  2012                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2013                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2014                           clazztype.tsym);
  2015             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2016                 // Check that no constructor arguments are given to
  2017                 // anonymous classes implementing an interface
  2018                 if (!argtypes.isEmpty())
  2019                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2021                 if (!typeargtypes.isEmpty())
  2022                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2024                 // Error recovery: pretend no arguments were supplied.
  2025                 argtypes = List.nil();
  2026                 typeargtypes = List.nil();
  2027             } else if (TreeInfo.isDiamond(tree)) {
  2028                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2029                             clazztype.tsym.type.getTypeArguments(),
  2030                             clazztype.tsym);
  2032                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2033                 diamondEnv.info.selectSuper = cdef != null;
  2034                 diamondEnv.info.pendingResolutionPhase = null;
  2036                 //if the type of the instance creation expression is a class type
  2037                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2038                 //of the resolved constructor will be a partially instantiated type
  2039                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2040                             diamondEnv,
  2041                             site,
  2042                             argtypes,
  2043                             typeargtypes);
  2044                 tree.constructor = constructor.baseSymbol();
  2046                 final TypeSymbol csym = clazztype.tsym;
  2047                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2048                     @Override
  2049                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2050                         enclosingContext.report(tree.clazz,
  2051                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2053                 });
  2054                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2055                 constructorType = checkId(noCheckTree, site,
  2056                         constructor,
  2057                         diamondEnv,
  2058                         diamondResult);
  2060                 tree.clazz.type = types.createErrorType(clazztype);
  2061                 if (!constructorType.isErroneous()) {
  2062                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2063                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2065                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2068             // Resolve the called constructor under the assumption
  2069             // that we are referring to a superclass instance of the
  2070             // current instance (JLS ???).
  2071             else {
  2072                 //the following code alters some of the fields in the current
  2073                 //AttrContext - hence, the current context must be dup'ed in
  2074                 //order to avoid downstream failures
  2075                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2076                 rsEnv.info.selectSuper = cdef != null;
  2077                 rsEnv.info.pendingResolutionPhase = null;
  2078                 tree.constructor = rs.resolveConstructor(
  2079                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2080                 if (cdef == null) { //do not check twice!
  2081                     tree.constructorType = checkId(noCheckTree,
  2082                             clazztype,
  2083                             tree.constructor,
  2084                             rsEnv,
  2085                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2086                     if (rsEnv.info.lastResolveVarargs())
  2087                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2089                 if (cdef == null &&
  2090                         !clazztype.isErroneous() &&
  2091                         clazztype.getTypeArguments().nonEmpty() &&
  2092                         findDiamonds) {
  2093                     findDiamond(localEnv, tree, clazztype);
  2097             if (cdef != null) {
  2098                 // We are seeing an anonymous class instance creation.
  2099                 // In this case, the class instance creation
  2100                 // expression
  2101                 //
  2102                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2103                 //
  2104                 // is represented internally as
  2105                 //
  2106                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2107                 //
  2108                 // This expression is then *transformed* as follows:
  2109                 //
  2110                 // (1) add a STATIC flag to the class definition
  2111                 //     if the current environment is static
  2112                 // (2) add an extends or implements clause
  2113                 // (3) add a constructor.
  2114                 //
  2115                 // For instance, if C is a class, and ET is the type of E,
  2116                 // the expression
  2117                 //
  2118                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2119                 //
  2120                 // is translated to (where X is a fresh name and typarams is the
  2121                 // parameter list of the super constructor):
  2122                 //
  2123                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2124                 //     X extends C<typargs2> {
  2125                 //       <typarams> X(ET e, args) {
  2126                 //         e.<typeargs1>super(args)
  2127                 //       }
  2128                 //       ...
  2129                 //     }
  2130                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2132                 if (clazztype.tsym.isInterface()) {
  2133                     cdef.implementing = List.of(clazz);
  2134                 } else {
  2135                     cdef.extending = clazz;
  2138                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2139                     isSerializable(clazztype)) {
  2140                     localEnv.info.isSerializable = true;
  2143                 attribStat(cdef, localEnv);
  2145                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2147                 // If an outer instance is given,
  2148                 // prefix it to the constructor arguments
  2149                 // and delete it from the new expression
  2150                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2151                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2152                     argtypes = argtypes.prepend(tree.encl.type);
  2153                     tree.encl = null;
  2156                 // Reassign clazztype and recompute constructor.
  2157                 clazztype = cdef.sym.type;
  2158                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2159                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2160                 Assert.check(sym.kind < AMBIGUOUS);
  2161                 tree.constructor = sym;
  2162                 tree.constructorType = checkId(noCheckTree,
  2163                     clazztype,
  2164                     tree.constructor,
  2165                     localEnv,
  2166                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2169             if (tree.constructor != null && tree.constructor.kind == MTH)
  2170                 owntype = clazztype;
  2172         result = check(tree, owntype, VAL, resultInfo);
  2173         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
  2174         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
  2175             //we need to wait for inference to finish and then replace inference vars in the constructor type
  2176             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
  2177                     new FreeTypeListener() {
  2178                         @Override
  2179                         public void typesInferred(InferenceContext instantiatedContext) {
  2180                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
  2182                     });
  2184         chk.validate(tree.typeargs, localEnv);
  2186     //where
  2187         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2188             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2189             List<JCExpression> prevTypeargs = ta.arguments;
  2190             try {
  2191                 //create a 'fake' diamond AST node by removing type-argument trees
  2192                 ta.arguments = List.nil();
  2193                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2194                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2195                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2196                 Type polyPt = allowPoly ?
  2197                         syms.objectType :
  2198                         clazztype;
  2199                 if (!inferred.isErroneous() &&
  2200                     (allowPoly && pt() == Infer.anyPoly ?
  2201                         types.isSameType(inferred, clazztype) :
  2202                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2203                     String key = types.isSameType(clazztype, inferred) ?
  2204                         "diamond.redundant.args" :
  2205                         "diamond.redundant.args.1";
  2206                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2208             } finally {
  2209                 ta.arguments = prevTypeargs;
  2213             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2214                 if (allowLambda &&
  2215                         identifyLambdaCandidate &&
  2216                         clazztype.hasTag(CLASS) &&
  2217                         !pt().hasTag(NONE) &&
  2218                         types.isFunctionalInterface(clazztype.tsym)) {
  2219                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2220                     int count = 0;
  2221                     boolean found = false;
  2222                     for (Symbol sym : csym.members().getElements()) {
  2223                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2224                                 sym.isConstructor()) continue;
  2225                         count++;
  2226                         if (sym.kind != MTH ||
  2227                                 !sym.name.equals(descriptor.name)) continue;
  2228                         Type mtype = types.memberType(clazztype, sym);
  2229                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2230                             found = true;
  2233                     if (found && count == 1) {
  2234                         log.note(tree.def, "potential.lambda.found");
  2239     /** Make an attributed null check tree.
  2240      */
  2241     public JCExpression makeNullCheck(JCExpression arg) {
  2242         // optimization: X.this is never null; skip null check
  2243         Name name = TreeInfo.name(arg);
  2244         if (name == names._this || name == names._super) return arg;
  2246         JCTree.Tag optag = NULLCHK;
  2247         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2248         tree.operator = syms.nullcheck;
  2249         tree.type = arg.type;
  2250         return tree;
  2253     public void visitNewArray(JCNewArray tree) {
  2254         Type owntype = types.createErrorType(tree.type);
  2255         Env<AttrContext> localEnv = env.dup(tree);
  2256         Type elemtype;
  2257         if (tree.elemtype != null) {
  2258             elemtype = attribType(tree.elemtype, localEnv);
  2259             chk.validate(tree.elemtype, localEnv);
  2260             owntype = elemtype;
  2261             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2262                 attribExpr(l.head, localEnv, syms.intType);
  2263                 owntype = new ArrayType(owntype, syms.arrayClass);
  2265         } else {
  2266             // we are seeing an untyped aggregate { ... }
  2267             // this is allowed only if the prototype is an array
  2268             if (pt().hasTag(ARRAY)) {
  2269                 elemtype = types.elemtype(pt());
  2270             } else {
  2271                 if (!pt().hasTag(ERROR)) {
  2272                     log.error(tree.pos(), "illegal.initializer.for.type",
  2273                               pt());
  2275                 elemtype = types.createErrorType(pt());
  2278         if (tree.elems != null) {
  2279             attribExprs(tree.elems, localEnv, elemtype);
  2280             owntype = new ArrayType(elemtype, syms.arrayClass);
  2282         if (!types.isReifiable(elemtype))
  2283             log.error(tree.pos(), "generic.array.creation");
  2284         result = check(tree, owntype, VAL, resultInfo);
  2287     /*
  2288      * A lambda expression can only be attributed when a target-type is available.
  2289      * In addition, if the target-type is that of a functional interface whose
  2290      * descriptor contains inference variables in argument position the lambda expression
  2291      * is 'stuck' (see DeferredAttr).
  2292      */
  2293     @Override
  2294     public void visitLambda(final JCLambda that) {
  2295         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2296             if (pt().hasTag(NONE)) {
  2297                 //lambda only allowed in assignment or method invocation/cast context
  2298                 log.error(that.pos(), "unexpected.lambda");
  2300             result = that.type = types.createErrorType(pt());
  2301             return;
  2303         //create an environment for attribution of the lambda expression
  2304         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2305         boolean needsRecovery =
  2306                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2307         try {
  2308             Type currentTarget = pt();
  2309             if (needsRecovery && isSerializable(currentTarget)) {
  2310                 localEnv.info.isSerializable = true;
  2312             List<Type> explicitParamTypes = null;
  2313             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2314                 //attribute lambda parameters
  2315                 attribStats(that.params, localEnv);
  2316                 explicitParamTypes = TreeInfo.types(that.params);
  2319             Type lambdaType;
  2320             if (pt() != Type.recoveryType) {
  2321                 /* We need to adjust the target. If the target is an
  2322                  * intersection type, for example: SAM & I1 & I2 ...
  2323                  * the target will be updated to SAM
  2324                  */
  2325                 currentTarget = targetChecker.visit(currentTarget, that);
  2326                 if (explicitParamTypes != null) {
  2327                     currentTarget = infer.instantiateFunctionalInterface(that,
  2328                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2330                 currentTarget = types.removeWildcards(currentTarget);
  2331                 lambdaType = types.findDescriptorType(currentTarget);
  2332             } else {
  2333                 currentTarget = Type.recoveryType;
  2334                 lambdaType = fallbackDescriptorType(that);
  2337             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2339             if (lambdaType.hasTag(FORALL)) {
  2340                 //lambda expression target desc cannot be a generic method
  2341                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2342                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2343                 result = that.type = types.createErrorType(pt());
  2344                 return;
  2347             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2348                 //add param type info in the AST
  2349                 List<Type> actuals = lambdaType.getParameterTypes();
  2350                 List<JCVariableDecl> params = that.params;
  2352                 boolean arityMismatch = false;
  2354                 while (params.nonEmpty()) {
  2355                     if (actuals.isEmpty()) {
  2356                         //not enough actuals to perform lambda parameter inference
  2357                         arityMismatch = true;
  2359                     //reset previously set info
  2360                     Type argType = arityMismatch ?
  2361                             syms.errType :
  2362                             actuals.head;
  2363                     params.head.vartype = make.at(params.head).Type(argType);
  2364                     params.head.sym = null;
  2365                     actuals = actuals.isEmpty() ?
  2366                             actuals :
  2367                             actuals.tail;
  2368                     params = params.tail;
  2371                 //attribute lambda parameters
  2372                 attribStats(that.params, localEnv);
  2374                 if (arityMismatch) {
  2375                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2376                         result = that.type = types.createErrorType(currentTarget);
  2377                         return;
  2381             //from this point on, no recovery is needed; if we are in assignment context
  2382             //we will be able to attribute the whole lambda body, regardless of errors;
  2383             //if we are in a 'check' method context, and the lambda is not compatible
  2384             //with the target-type, it will be recovered anyway in Attr.checkId
  2385             needsRecovery = false;
  2387             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2388                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2389                     new FunctionalReturnContext(resultInfo.checkContext);
  2391             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2392                 recoveryInfo :
  2393                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2394             localEnv.info.returnResult = bodyResultInfo;
  2396             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2397                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2398             } else {
  2399                 JCBlock body = (JCBlock)that.body;
  2400                 attribStats(body.stats, localEnv);
  2403             result = check(that, currentTarget, VAL, resultInfo);
  2405             boolean isSpeculativeRound =
  2406                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2408             preFlow(that);
  2409             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2411             that.type = currentTarget; //avoids recovery at this stage
  2412             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2414             if (!isSpeculativeRound) {
  2415                 //add thrown types as bounds to the thrown types free variables if needed:
  2416                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2417                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2418                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
  2420                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2423                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2425             result = check(that, currentTarget, VAL, resultInfo);
  2426         } catch (Types.FunctionDescriptorLookupError ex) {
  2427             JCDiagnostic cause = ex.getDiagnostic();
  2428             resultInfo.checkContext.report(that, cause);
  2429             result = that.type = types.createErrorType(pt());
  2430             return;
  2431         } finally {
  2432             localEnv.info.scope.leave();
  2433             if (needsRecovery) {
  2434                 attribTree(that, env, recoveryInfo);
  2438     //where
  2439         void preFlow(JCLambda tree) {
  2440             new PostAttrAnalyzer() {
  2441                 @Override
  2442                 public void scan(JCTree tree) {
  2443                     if (tree == null ||
  2444                             (tree.type != null &&
  2445                             tree.type == Type.stuckType)) {
  2446                         //don't touch stuck expressions!
  2447                         return;
  2449                     super.scan(tree);
  2451             }.scan(tree);
  2454         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2456             @Override
  2457             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2458                 return t.isIntersection() ?
  2459                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2462             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2463                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2464                 Type target = null;
  2465                 for (Type bound : ict.getExplicitComponents()) {
  2466                     TypeSymbol boundSym = bound.tsym;
  2467                     if (types.isFunctionalInterface(boundSym) &&
  2468                             types.findDescriptorSymbol(boundSym) == desc) {
  2469                         target = bound;
  2470                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2471                         //bound must be an interface
  2472                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2475                 return target != null ?
  2476                         target :
  2477                         ict.getExplicitComponents().head; //error recovery
  2480             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2481                 ListBuffer<Type> targs = new ListBuffer<>();
  2482                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2483                 for (Type i : ict.interfaces_field) {
  2484                     if (i.isParameterized()) {
  2485                         targs.appendList(i.tsym.type.allparams());
  2487                     supertypes.append(i.tsym.type);
  2489                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
  2490                 notionalIntf.allparams_field = targs.toList();
  2491                 notionalIntf.tsym.flags_field |= INTERFACE;
  2492                 return notionalIntf.tsym;
  2495             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2496                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2497                         diags.fragment(key, args)));
  2499         };
  2501         private Type fallbackDescriptorType(JCExpression tree) {
  2502             switch (tree.getTag()) {
  2503                 case LAMBDA:
  2504                     JCLambda lambda = (JCLambda)tree;
  2505                     List<Type> argtypes = List.nil();
  2506                     for (JCVariableDecl param : lambda.params) {
  2507                         argtypes = param.vartype != null ?
  2508                                 argtypes.append(param.vartype.type) :
  2509                                 argtypes.append(syms.errType);
  2511                     return new MethodType(argtypes, Type.recoveryType,
  2512                             List.of(syms.throwableType), syms.methodClass);
  2513                 case REFERENCE:
  2514                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2515                             List.of(syms.throwableType), syms.methodClass);
  2516                 default:
  2517                     Assert.error("Cannot get here!");
  2519             return null;
  2522         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2523                 final InferenceContext inferenceContext, final Type... ts) {
  2524             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2527         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2528                 final InferenceContext inferenceContext, final List<Type> ts) {
  2529             if (inferenceContext.free(ts)) {
  2530                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2531                     @Override
  2532                     public void typesInferred(InferenceContext inferenceContext) {
  2533                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2535                 });
  2536             } else {
  2537                 for (Type t : ts) {
  2538                     rs.checkAccessibleType(env, t);
  2543         /**
  2544          * Lambda/method reference have a special check context that ensures
  2545          * that i.e. a lambda return type is compatible with the expected
  2546          * type according to both the inherited context and the assignment
  2547          * context.
  2548          */
  2549         class FunctionalReturnContext extends Check.NestedCheckContext {
  2551             FunctionalReturnContext(CheckContext enclosingContext) {
  2552                 super(enclosingContext);
  2555             @Override
  2556             public boolean compatible(Type found, Type req, Warner warn) {
  2557                 //return type must be compatible in both current context and assignment context
  2558                 return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
  2561             @Override
  2562             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2563                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2567         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2569             JCExpression expr;
  2571             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2572                 super(enclosingContext);
  2573                 this.expr = expr;
  2576             @Override
  2577             public boolean compatible(Type found, Type req, Warner warn) {
  2578                 //a void return is compatible with an expression statement lambda
  2579                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2580                         super.compatible(found, req, warn);
  2584         /**
  2585         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2586         * are compatible with the expected functional interface descriptor. This means that:
  2587         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2588         * types must be compatible with the return type of the expected descriptor.
  2589         */
  2590         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2591             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2593             //return values have already been checked - but if lambda has no return
  2594             //values, we must ensure that void/value compatibility is correct;
  2595             //this amounts at checking that, if a lambda body can complete normally,
  2596             //the descriptor's return type must be void
  2597             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2598                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2599                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2600                         diags.fragment("missing.ret.val", returnType)));
  2603             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
  2604             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2605                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2609         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
  2610          * static field and that lambda has type annotations, these annotations will
  2611          * also be stored at these fake clinit methods.
  2613          * LambdaToMethod also use fake clinit methods so they can be reused.
  2614          * Also as LTM is a phase subsequent to attribution, the methods from
  2615          * clinits can be safely removed by LTM to save memory.
  2616          */
  2617         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
  2619         public MethodSymbol removeClinit(ClassSymbol sym) {
  2620             return clinits.remove(sym);
  2623         /* This method returns an environment to be used to attribute a lambda
  2624          * expression.
  2626          * The owner of this environment is a method symbol. If the current owner
  2627          * is not a method, for example if the lambda is used to initialize
  2628          * a field, then if the field is:
  2630          * - an instance field, we use the first constructor.
  2631          * - a static field, we create a fake clinit method.
  2632          */
  2633         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2634             Env<AttrContext> lambdaEnv;
  2635             Symbol owner = env.info.scope.owner;
  2636             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2637                 //field initializer
  2638                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2639                 ClassSymbol enclClass = owner.enclClass();
  2640                 /* if the field isn't static, then we can get the first constructor
  2641                  * and use it as the owner of the environment. This is what
  2642                  * LTM code is doing to look for type annotations so we are fine.
  2643                  */
  2644                 if ((owner.flags() & STATIC) == 0) {
  2645                     for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
  2646                         lambdaEnv.info.scope.owner = s;
  2647                         break;
  2649                 } else {
  2650                     /* if the field is static then we need to create a fake clinit
  2651                      * method, this method can later be reused by LTM.
  2652                      */
  2653                     MethodSymbol clinit = clinits.get(enclClass);
  2654                     if (clinit == null) {
  2655                         Type clinitType = new MethodType(List.<Type>nil(),
  2656                                 syms.voidType, List.<Type>nil(), syms.methodClass);
  2657                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
  2658                                 names.clinit, clinitType, enclClass);
  2659                         clinit.params = List.<VarSymbol>nil();
  2660                         clinits.put(enclClass, clinit);
  2662                     lambdaEnv.info.scope.owner = clinit;
  2664             } else {
  2665                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2667             return lambdaEnv;
  2670     @Override
  2671     public void visitReference(final JCMemberReference that) {
  2672         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2673             if (pt().hasTag(NONE)) {
  2674                 //method reference only allowed in assignment or method invocation/cast context
  2675                 log.error(that.pos(), "unexpected.mref");
  2677             result = that.type = types.createErrorType(pt());
  2678             return;
  2680         final Env<AttrContext> localEnv = env.dup(that);
  2681         try {
  2682             //attribute member reference qualifier - if this is a constructor
  2683             //reference, the expected kind must be a type
  2684             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2686             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2687                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2688                 if (!exprType.isErroneous() &&
  2689                     exprType.isRaw() &&
  2690                     that.typeargs != null) {
  2691                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2692                         diags.fragment("mref.infer.and.explicit.params"));
  2693                     exprType = types.createErrorType(exprType);
  2697             if (exprType.isErroneous()) {
  2698                 //if the qualifier expression contains problems,
  2699                 //give up attribution of method reference
  2700                 result = that.type = exprType;
  2701                 return;
  2704             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2705                 //if the qualifier is a type, validate it; raw warning check is
  2706                 //omitted as we don't know at this stage as to whether this is a
  2707                 //raw selector (because of inference)
  2708                 chk.validate(that.expr, env, false);
  2711             //attrib type-arguments
  2712             List<Type> typeargtypes = List.nil();
  2713             if (that.typeargs != null) {
  2714                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2717             Type desc;
  2718             Type currentTarget = pt();
  2719             boolean isTargetSerializable =
  2720                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2721                     isSerializable(currentTarget);
  2722             if (currentTarget != Type.recoveryType) {
  2723                 currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
  2724                 desc = types.findDescriptorType(currentTarget);
  2725             } else {
  2726                 currentTarget = Type.recoveryType;
  2727                 desc = fallbackDescriptorType(that);
  2730             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
  2731             List<Type> argtypes = desc.getParameterTypes();
  2732             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2734             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2735                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2738             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2739             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2740             try {
  2741                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
  2742                         that.name, argtypes, typeargtypes, referenceCheck,
  2743                         resultInfo.checkContext.inferenceContext(),
  2744                         resultInfo.checkContext.deferredAttrContext().mode);
  2745             } finally {
  2746                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2749             Symbol refSym = refResult.fst;
  2750             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2752             if (refSym.kind != MTH) {
  2753                 boolean targetError;
  2754                 switch (refSym.kind) {
  2755                     case ABSENT_MTH:
  2756                         targetError = false;
  2757                         break;
  2758                     case WRONG_MTH:
  2759                     case WRONG_MTHS:
  2760                     case AMBIGUOUS:
  2761                     case HIDDEN:
  2762                     case STATICERR:
  2763                     case MISSING_ENCL:
  2764                     case WRONG_STATICNESS:
  2765                         targetError = true;
  2766                         break;
  2767                     default:
  2768                         Assert.error("unexpected result kind " + refSym.kind);
  2769                         targetError = false;
  2772                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2773                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2775                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2776                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2778                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2779                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2781                 if (targetError && currentTarget == Type.recoveryType) {
  2782                     //a target error doesn't make sense during recovery stage
  2783                     //as we don't know what actual parameter types are
  2784                     result = that.type = currentTarget;
  2785                     return;
  2786                 } else {
  2787                     if (targetError) {
  2788                         resultInfo.checkContext.report(that, diag);
  2789                     } else {
  2790                         log.report(diag);
  2792                     result = that.type = types.createErrorType(currentTarget);
  2793                     return;
  2797             that.sym = refSym.baseSymbol();
  2798             that.kind = lookupHelper.referenceKind(that.sym);
  2799             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2801             if (desc.getReturnType() == Type.recoveryType) {
  2802                 // stop here
  2803                 result = that.type = currentTarget;
  2804                 return;
  2807             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2809                 if (that.getMode() == ReferenceMode.INVOKE &&
  2810                         TreeInfo.isStaticSelector(that.expr, names) &&
  2811                         that.kind.isUnbound() &&
  2812                         !desc.getParameterTypes().head.isParameterized()) {
  2813                     chk.checkRaw(that.expr, localEnv);
  2816                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2817                         exprType.getTypeArguments().nonEmpty()) {
  2818                     //static ref with class type-args
  2819                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2820                             diags.fragment("static.mref.with.targs"));
  2821                     result = that.type = types.createErrorType(currentTarget);
  2822                     return;
  2825                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2826                         !that.kind.isUnbound()) {
  2827                     //no static bound mrefs
  2828                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2829                             diags.fragment("static.bound.mref"));
  2830                     result = that.type = types.createErrorType(currentTarget);
  2831                     return;
  2834                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2835                     // Check that super-qualified symbols are not abstract (JLS)
  2836                     rs.checkNonAbstract(that.pos(), that.sym);
  2839                 if (isTargetSerializable) {
  2840                     chk.checkElemAccessFromSerializableLambda(that);
  2844             ResultInfo checkInfo =
  2845                     resultInfo.dup(newMethodTemplate(
  2846                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2847                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
  2848                         new FunctionalReturnContext(resultInfo.checkContext));
  2850             Type refType = checkId(noCheckTree, lookupHelper.site, refSym, localEnv, checkInfo);
  2852             if (that.kind.isUnbound() &&
  2853                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2854                 //re-generate inference constraints for unbound receiver
  2855                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
  2856                     //cannot happen as this has already been checked - we just need
  2857                     //to regenerate the inference constraints, as that has been lost
  2858                     //as a result of the call to inferenceContext.save()
  2859                     Assert.error("Can't get here");
  2863             if (!refType.isErroneous()) {
  2864                 refType = types.createMethodTypeWithReturn(refType,
  2865                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2868             //go ahead with standard method reference compatibility check - note that param check
  2869             //is a no-op (as this has been taken care during method applicability)
  2870             boolean isSpeculativeRound =
  2871                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2873             that.type = currentTarget; //avoids recovery at this stage
  2874             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2875             if (!isSpeculativeRound) {
  2876                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
  2878             result = check(that, currentTarget, VAL, resultInfo);
  2879         } catch (Types.FunctionDescriptorLookupError ex) {
  2880             JCDiagnostic cause = ex.getDiagnostic();
  2881             resultInfo.checkContext.report(that, cause);
  2882             result = that.type = types.createErrorType(pt());
  2883             return;
  2886     //where
  2887         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2888             //if this is a constructor reference, the expected kind must be a type
  2889             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2893     @SuppressWarnings("fallthrough")
  2894     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2895         Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
  2897         Type resType;
  2898         switch (tree.getMode()) {
  2899             case NEW:
  2900                 if (!tree.expr.type.isRaw()) {
  2901                     resType = tree.expr.type;
  2902                     break;
  2904             default:
  2905                 resType = refType.getReturnType();
  2908         Type incompatibleReturnType = resType;
  2910         if (returnType.hasTag(VOID)) {
  2911             incompatibleReturnType = null;
  2914         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2915             if (resType.isErroneous() ||
  2916                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2917                 incompatibleReturnType = null;
  2921         if (incompatibleReturnType != null) {
  2922             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2923                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2926         if (!speculativeAttr) {
  2927             List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
  2928             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2929                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2934     /**
  2935      * Set functional type info on the underlying AST. Note: as the target descriptor
  2936      * might contain inference variables, we might need to register an hook in the
  2937      * current inference context.
  2938      */
  2939     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2940             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2941         if (checkContext.inferenceContext().free(descriptorType)) {
  2942             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2943                 public void typesInferred(InferenceContext inferenceContext) {
  2944                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2945                             inferenceContext.asInstType(primaryTarget), checkContext);
  2947             });
  2948         } else {
  2949             ListBuffer<Type> targets = new ListBuffer<>();
  2950             if (pt.hasTag(CLASS)) {
  2951                 if (pt.isCompound()) {
  2952                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2953                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2954                         if (t != primaryTarget) {
  2955                             targets.append(types.removeWildcards(t));
  2958                 } else {
  2959                     targets.append(types.removeWildcards(primaryTarget));
  2962             fExpr.targets = targets.toList();
  2963             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2964                     pt != Type.recoveryType) {
  2965                 //check that functional interface class is well-formed
  2966                 try {
  2967                     /* Types.makeFunctionalInterfaceClass() may throw an exception
  2968                      * when it's executed post-inference. See the listener code
  2969                      * above.
  2970                      */
  2971                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2972                             names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2973                     if (csym != null) {
  2974                         chk.checkImplementations(env.tree, csym, csym);
  2976                 } catch (Types.FunctionDescriptorLookupError ex) {
  2977                     JCDiagnostic cause = ex.getDiagnostic();
  2978                     resultInfo.checkContext.report(env.tree, cause);
  2984     public void visitParens(JCParens tree) {
  2985         Type owntype = attribTree(tree.expr, env, resultInfo);
  2986         result = check(tree, owntype, pkind(), resultInfo);
  2987         Symbol sym = TreeInfo.symbol(tree);
  2988         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2989             log.error(tree.pos(), "illegal.start.of.type");
  2992     public void visitAssign(JCAssign tree) {
  2993         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2994         Type capturedType = capture(owntype);
  2995         attribExpr(tree.rhs, env, owntype);
  2996         result = check(tree, capturedType, VAL, resultInfo);
  2999     public void visitAssignop(JCAssignOp tree) {
  3000         // Attribute arguments.
  3001         Type owntype = attribTree(tree.lhs, env, varInfo);
  3002         Type operand = attribExpr(tree.rhs, env);
  3003         // Find operator.
  3004         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  3005             tree.pos(), tree.getTag().noAssignOp(), env,
  3006             owntype, operand);
  3008         if (operator.kind == MTH &&
  3009                 !owntype.isErroneous() &&
  3010                 !operand.isErroneous()) {
  3011             chk.checkOperator(tree.pos(),
  3012                               (OperatorSymbol)operator,
  3013                               tree.getTag().noAssignOp(),
  3014                               owntype,
  3015                               operand);
  3016             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  3017             chk.checkCastable(tree.rhs.pos(),
  3018                               operator.type.getReturnType(),
  3019                               owntype);
  3021         result = check(tree, owntype, VAL, resultInfo);
  3024     public void visitUnary(JCUnary tree) {
  3025         // Attribute arguments.
  3026         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  3027             ? attribTree(tree.arg, env, varInfo)
  3028             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  3030         // Find operator.
  3031         Symbol operator = tree.operator =
  3032             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  3034         Type owntype = types.createErrorType(tree.type);
  3035         if (operator.kind == MTH &&
  3036                 !argtype.isErroneous()) {
  3037             owntype = (tree.getTag().isIncOrDecUnaryOp())
  3038                 ? tree.arg.type
  3039                 : operator.type.getReturnType();
  3040             int opc = ((OperatorSymbol)operator).opcode;
  3042             // If the argument is constant, fold it.
  3043             if (argtype.constValue() != null) {
  3044                 Type ctype = cfolder.fold1(opc, argtype);
  3045                 if (ctype != null) {
  3046                     owntype = cfolder.coerce(ctype, owntype);
  3050         result = check(tree, owntype, VAL, resultInfo);
  3053     public void visitBinary(JCBinary tree) {
  3054         // Attribute arguments.
  3055         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3056         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3058         // Find operator.
  3059         Symbol operator = tree.operator =
  3060             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3062         Type owntype = types.createErrorType(tree.type);
  3063         if (operator.kind == MTH &&
  3064                 !left.isErroneous() &&
  3065                 !right.isErroneous()) {
  3066             owntype = operator.type.getReturnType();
  3067             // This will figure out when unboxing can happen and
  3068             // choose the right comparison operator.
  3069             int opc = chk.checkOperator(tree.lhs.pos(),
  3070                                         (OperatorSymbol)operator,
  3071                                         tree.getTag(),
  3072                                         left,
  3073                                         right);
  3075             // If both arguments are constants, fold them.
  3076             if (left.constValue() != null && right.constValue() != null) {
  3077                 Type ctype = cfolder.fold2(opc, left, right);
  3078                 if (ctype != null) {
  3079                     owntype = cfolder.coerce(ctype, owntype);
  3083             // Check that argument types of a reference ==, != are
  3084             // castable to each other, (JLS 15.21).  Note: unboxing
  3085             // comparisons will not have an acmp* opc at this point.
  3086             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3087                 if (!types.isEqualityComparable(left, right,
  3088                                                 new Warner(tree.pos()))) {
  3089                     log.error(tree.pos(), "incomparable.types", left, right);
  3093             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3095         result = check(tree, owntype, VAL, resultInfo);
  3098     public void visitTypeCast(final JCTypeCast tree) {
  3099         Type clazztype = attribType(tree.clazz, env);
  3100         chk.validate(tree.clazz, env, false);
  3101         //a fresh environment is required for 292 inference to work properly ---
  3102         //see Infer.instantiatePolymorphicSignatureInstance()
  3103         Env<AttrContext> localEnv = env.dup(tree);
  3104         //should we propagate the target type?
  3105         final ResultInfo castInfo;
  3106         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3107         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3108         if (isPoly) {
  3109             //expression is a poly - we need to propagate target type info
  3110             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3111                 @Override
  3112                 public boolean compatible(Type found, Type req, Warner warn) {
  3113                     return types.isCastable(found, req, warn);
  3115             });
  3116         } else {
  3117             //standalone cast - target-type info is not propagated
  3118             castInfo = unknownExprInfo;
  3120         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3121         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3122         if (exprtype.constValue() != null)
  3123             owntype = cfolder.coerce(exprtype, owntype);
  3124         result = check(tree, capture(owntype), VAL, resultInfo);
  3125         if (!isPoly)
  3126             chk.checkRedundantCast(localEnv, tree);
  3129     public void visitTypeTest(JCInstanceOf tree) {
  3130         Type exprtype = chk.checkNullOrRefType(
  3131             tree.expr.pos(), attribExpr(tree.expr, env));
  3132         Type clazztype = attribType(tree.clazz, env);
  3133         if (!clazztype.hasTag(TYPEVAR)) {
  3134             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3136         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3137             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3138             clazztype = types.createErrorType(clazztype);
  3140         chk.validate(tree.clazz, env, false);
  3141         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3142         result = check(tree, syms.booleanType, VAL, resultInfo);
  3145     public void visitIndexed(JCArrayAccess tree) {
  3146         Type owntype = types.createErrorType(tree.type);
  3147         Type atype = attribExpr(tree.indexed, env);
  3148         attribExpr(tree.index, env, syms.intType);
  3149         if (types.isArray(atype))
  3150             owntype = types.elemtype(atype);
  3151         else if (!atype.hasTag(ERROR))
  3152             log.error(tree.pos(), "array.req.but.found", atype);
  3153         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3154         result = check(tree, owntype, VAR, resultInfo);
  3157     public void visitIdent(JCIdent tree) {
  3158         Symbol sym;
  3160         // Find symbol
  3161         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3162             // If we are looking for a method, the prototype `pt' will be a
  3163             // method type with the type of the call's arguments as parameters.
  3164             env.info.pendingResolutionPhase = null;
  3165             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3166         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3167             sym = tree.sym;
  3168         } else {
  3169             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3171         tree.sym = sym;
  3173         // (1) Also find the environment current for the class where
  3174         //     sym is defined (`symEnv').
  3175         // Only for pre-tiger versions (1.4 and earlier):
  3176         // (2) Also determine whether we access symbol out of an anonymous
  3177         //     class in a this or super call.  This is illegal for instance
  3178         //     members since such classes don't carry a this$n link.
  3179         //     (`noOuterThisPath').
  3180         Env<AttrContext> symEnv = env;
  3181         boolean noOuterThisPath = false;
  3182         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3183             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3184             sym.owner.kind == TYP &&
  3185             tree.name != names._this && tree.name != names._super) {
  3187             // Find environment in which identifier is defined.
  3188             while (symEnv.outer != null &&
  3189                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3190                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3191                     noOuterThisPath = !allowAnonOuterThis;
  3192                 symEnv = symEnv.outer;
  3196         // If symbol is a variable, ...
  3197         if (sym.kind == VAR) {
  3198             VarSymbol v = (VarSymbol)sym;
  3200             // ..., evaluate its initializer, if it has one, and check for
  3201             // illegal forward reference.
  3202             checkInit(tree, env, v, false);
  3204             // If we are expecting a variable (as opposed to a value), check
  3205             // that the variable is assignable in the current environment.
  3206             if (pkind() == VAR)
  3207                 checkAssignable(tree.pos(), v, null, env);
  3210         // In a constructor body,
  3211         // if symbol is a field or instance method, check that it is
  3212         // not accessed before the supertype constructor is called.
  3213         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3214             (sym.kind & (VAR | MTH)) != 0 &&
  3215             sym.owner.kind == TYP &&
  3216             (sym.flags() & STATIC) == 0) {
  3217             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3219         Env<AttrContext> env1 = env;
  3220         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3221             // If the found symbol is inaccessible, then it is
  3222             // accessed through an enclosing instance.  Locate this
  3223             // enclosing instance:
  3224             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3225                 env1 = env1.outer;
  3228         if (env.info.isSerializable) {
  3229             chk.checkElemAccessFromSerializableLambda(tree);
  3232         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3235     public void visitSelect(JCFieldAccess tree) {
  3236         // Determine the expected kind of the qualifier expression.
  3237         int skind = 0;
  3238         if (tree.name == names._this || tree.name == names._super ||
  3239             tree.name == names._class)
  3241             skind = TYP;
  3242         } else {
  3243             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3244             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3245             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3248         // Attribute the qualifier expression, and determine its symbol (if any).
  3249         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3250         if ((pkind() & (PCK | TYP)) == 0)
  3251             site = capture(site); // Capture field access
  3253         // don't allow T.class T[].class, etc
  3254         if (skind == TYP) {
  3255             Type elt = site;
  3256             while (elt.hasTag(ARRAY))
  3257                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3258             if (elt.hasTag(TYPEVAR)) {
  3259                 log.error(tree.pos(), "type.var.cant.be.deref");
  3260                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
  3261                 tree.sym = tree.type.tsym;
  3262                 return ;
  3266         // If qualifier symbol is a type or `super', assert `selectSuper'
  3267         // for the selection. This is relevant for determining whether
  3268         // protected symbols are accessible.
  3269         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3270         boolean selectSuperPrev = env.info.selectSuper;
  3271         env.info.selectSuper =
  3272             sitesym != null &&
  3273             sitesym.name == names._super;
  3275         // Determine the symbol represented by the selection.
  3276         env.info.pendingResolutionPhase = null;
  3277         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3278         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
  3279             log.error(tree.selected.pos(), "not.encl.class", site.tsym);
  3280             sym = syms.errSymbol;
  3282         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3283             site = capture(site);
  3284             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3286         boolean varArgs = env.info.lastResolveVarargs();
  3287         tree.sym = sym;
  3289         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3290             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3291             site = capture(site);
  3294         // If that symbol is a variable, ...
  3295         if (sym.kind == VAR) {
  3296             VarSymbol v = (VarSymbol)sym;
  3298             // ..., evaluate its initializer, if it has one, and check for
  3299             // illegal forward reference.
  3300             checkInit(tree, env, v, true);
  3302             // If we are expecting a variable (as opposed to a value), check
  3303             // that the variable is assignable in the current environment.
  3304             if (pkind() == VAR)
  3305                 checkAssignable(tree.pos(), v, tree.selected, env);
  3308         if (sitesym != null &&
  3309                 sitesym.kind == VAR &&
  3310                 ((VarSymbol)sitesym).isResourceVariable() &&
  3311                 sym.kind == MTH &&
  3312                 sym.name.equals(names.close) &&
  3313                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3314                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3315             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3318         // Disallow selecting a type from an expression
  3319         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3320             tree.type = check(tree.selected, pt(),
  3321                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3324         if (isType(sitesym)) {
  3325             if (sym.name == names._this) {
  3326                 // If `C' is the currently compiled class, check that
  3327                 // C.this' does not appear in a call to a super(...)
  3328                 if (env.info.isSelfCall &&
  3329                     site.tsym == env.enclClass.sym) {
  3330                     chk.earlyRefError(tree.pos(), sym);
  3332             } else {
  3333                 // Check if type-qualified fields or methods are static (JLS)
  3334                 if ((sym.flags() & STATIC) == 0 &&
  3335                     !env.next.tree.hasTag(REFERENCE) &&
  3336                     sym.name != names._super &&
  3337                     (sym.kind == VAR || sym.kind == MTH)) {
  3338                     rs.accessBase(rs.new StaticError(sym),
  3339                               tree.pos(), site, sym.name, true);
  3342             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
  3343                     sym.isStatic() && sym.kind == MTH) {
  3344                 log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
  3346         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3347             // If the qualified item is not a type and the selected item is static, report
  3348             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3349             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3352         // If we are selecting an instance member via a `super', ...
  3353         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3355             // Check that super-qualified symbols are not abstract (JLS)
  3356             rs.checkNonAbstract(tree.pos(), sym);
  3358             if (site.isRaw()) {
  3359                 // Determine argument types for site.
  3360                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3361                 if (site1 != null) site = site1;
  3365         if (env.info.isSerializable) {
  3366             chk.checkElemAccessFromSerializableLambda(tree);
  3369         env.info.selectSuper = selectSuperPrev;
  3370         result = checkId(tree, site, sym, env, resultInfo);
  3372     //where
  3373         /** Determine symbol referenced by a Select expression,
  3375          *  @param tree   The select tree.
  3376          *  @param site   The type of the selected expression,
  3377          *  @param env    The current environment.
  3378          *  @param resultInfo The current result.
  3379          */
  3380         private Symbol selectSym(JCFieldAccess tree,
  3381                                  Symbol location,
  3382                                  Type site,
  3383                                  Env<AttrContext> env,
  3384                                  ResultInfo resultInfo) {
  3385             DiagnosticPosition pos = tree.pos();
  3386             Name name = tree.name;
  3387             switch (site.getTag()) {
  3388             case PACKAGE:
  3389                 return rs.accessBase(
  3390                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3391                     pos, location, site, name, true);
  3392             case ARRAY:
  3393             case CLASS:
  3394                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3395                     return rs.resolveQualifiedMethod(
  3396                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3397                 } else if (name == names._this || name == names._super) {
  3398                     return rs.resolveSelf(pos, env, site.tsym, name);
  3399                 } else if (name == names._class) {
  3400                     // In this case, we have already made sure in
  3401                     // visitSelect that qualifier expression is a type.
  3402                     Type t = syms.classType;
  3403                     List<Type> typeargs = allowGenerics
  3404                         ? List.of(types.erasure(site))
  3405                         : List.<Type>nil();
  3406                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3407                     return new VarSymbol(
  3408                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3409                 } else {
  3410                     // We are seeing a plain identifier as selector.
  3411                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3412                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3413                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3414                     return sym;
  3416             case WILDCARD:
  3417                 throw new AssertionError(tree);
  3418             case TYPEVAR:
  3419                 // Normally, site.getUpperBound() shouldn't be null.
  3420                 // It should only happen during memberEnter/attribBase
  3421                 // when determining the super type which *must* beac
  3422                 // done before attributing the type variables.  In
  3423                 // other words, we are seeing this illegal program:
  3424                 // class B<T> extends A<T.foo> {}
  3425                 Symbol sym = (site.getUpperBound() != null)
  3426                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3427                     : null;
  3428                 if (sym == null) {
  3429                     log.error(pos, "type.var.cant.be.deref");
  3430                     return syms.errSymbol;
  3431                 } else {
  3432                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3433                         rs.new AccessError(env, site, sym) :
  3434                                 sym;
  3435                     rs.accessBase(sym2, pos, location, site, name, true);
  3436                     return sym;
  3438             case ERROR:
  3439                 // preserve identifier names through errors
  3440                 return types.createErrorType(name, site.tsym, site).tsym;
  3441             default:
  3442                 // The qualifier expression is of a primitive type -- only
  3443                 // .class is allowed for these.
  3444                 if (name == names._class) {
  3445                     // In this case, we have already made sure in Select that
  3446                     // qualifier expression is a type.
  3447                     Type t = syms.classType;
  3448                     Type arg = types.boxedClass(site).type;
  3449                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3450                     return new VarSymbol(
  3451                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3452                 } else {
  3453                     log.error(pos, "cant.deref", site);
  3454                     return syms.errSymbol;
  3459         /** Determine type of identifier or select expression and check that
  3460          *  (1) the referenced symbol is not deprecated
  3461          *  (2) the symbol's type is safe (@see checkSafe)
  3462          *  (3) if symbol is a variable, check that its type and kind are
  3463          *      compatible with the prototype and protokind.
  3464          *  (4) if symbol is an instance field of a raw type,
  3465          *      which is being assigned to, issue an unchecked warning if its
  3466          *      type changes under erasure.
  3467          *  (5) if symbol is an instance method of a raw type, issue an
  3468          *      unchecked warning if its argument types change under erasure.
  3469          *  If checks succeed:
  3470          *    If symbol is a constant, return its constant type
  3471          *    else if symbol is a method, return its result type
  3472          *    otherwise return its type.
  3473          *  Otherwise return errType.
  3475          *  @param tree       The syntax tree representing the identifier
  3476          *  @param site       If this is a select, the type of the selected
  3477          *                    expression, otherwise the type of the current class.
  3478          *  @param sym        The symbol representing the identifier.
  3479          *  @param env        The current environment.
  3480          *  @param resultInfo    The expected result
  3481          */
  3482         Type checkId(JCTree tree,
  3483                      Type site,
  3484                      Symbol sym,
  3485                      Env<AttrContext> env,
  3486                      ResultInfo resultInfo) {
  3487             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3488                     checkMethodId(tree, site, sym, env, resultInfo) :
  3489                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3492         Type checkMethodId(JCTree tree,
  3493                      Type site,
  3494                      Symbol sym,
  3495                      Env<AttrContext> env,
  3496                      ResultInfo resultInfo) {
  3497             boolean isPolymorhicSignature =
  3498                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3499             return isPolymorhicSignature ?
  3500                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3501                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3504         Type checkSigPolyMethodId(JCTree tree,
  3505                      Type site,
  3506                      Symbol sym,
  3507                      Env<AttrContext> env,
  3508                      ResultInfo resultInfo) {
  3509             //recover original symbol for signature polymorphic methods
  3510             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3511             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3512             return sym.type;
  3515         Type checkMethodIdInternal(JCTree tree,
  3516                      Type site,
  3517                      Symbol sym,
  3518                      Env<AttrContext> env,
  3519                      ResultInfo resultInfo) {
  3520             if ((resultInfo.pkind & POLY) != 0) {
  3521                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3522                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3523                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3524                 return owntype;
  3525             } else {
  3526                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3530         Type checkIdInternal(JCTree tree,
  3531                      Type site,
  3532                      Symbol sym,
  3533                      Type pt,
  3534                      Env<AttrContext> env,
  3535                      ResultInfo resultInfo) {
  3536             if (pt.isErroneous()) {
  3537                 return types.createErrorType(site);
  3539             Type owntype; // The computed type of this identifier occurrence.
  3540             switch (sym.kind) {
  3541             case TYP:
  3542                 // For types, the computed type equals the symbol's type,
  3543                 // except for two situations:
  3544                 owntype = sym.type;
  3545                 if (owntype.hasTag(CLASS)) {
  3546                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3547                     Type ownOuter = owntype.getEnclosingType();
  3549                     // (a) If the symbol's type is parameterized, erase it
  3550                     // because no type parameters were given.
  3551                     // We recover generic outer type later in visitTypeApply.
  3552                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3553                         owntype = types.erasure(owntype);
  3556                     // (b) If the symbol's type is an inner class, then
  3557                     // we have to interpret its outer type as a superclass
  3558                     // of the site type. Example:
  3559                     //
  3560                     // class Tree<A> { class Visitor { ... } }
  3561                     // class PointTree extends Tree<Point> { ... }
  3562                     // ...PointTree.Visitor...
  3563                     //
  3564                     // Then the type of the last expression above is
  3565                     // Tree<Point>.Visitor.
  3566                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3567                         Type normOuter = site;
  3568                         if (normOuter.hasTag(CLASS)) {
  3569                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3571                         if (normOuter == null) // perhaps from an import
  3572                             normOuter = types.erasure(ownOuter);
  3573                         if (normOuter != ownOuter)
  3574                             owntype = new ClassType(
  3575                                 normOuter, List.<Type>nil(), owntype.tsym);
  3578                 break;
  3579             case VAR:
  3580                 VarSymbol v = (VarSymbol)sym;
  3581                 // Test (4): if symbol is an instance field of a raw type,
  3582                 // which is being assigned to, issue an unchecked warning if
  3583                 // its type changes under erasure.
  3584                 if (allowGenerics &&
  3585                     resultInfo.pkind == VAR &&
  3586                     v.owner.kind == TYP &&
  3587                     (v.flags() & STATIC) == 0 &&
  3588                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3589                     Type s = types.asOuterSuper(site, v.owner);
  3590                     if (s != null &&
  3591                         s.isRaw() &&
  3592                         !types.isSameType(v.type, v.erasure(types))) {
  3593                         chk.warnUnchecked(tree.pos(),
  3594                                           "unchecked.assign.to.var",
  3595                                           v, s);
  3598                 // The computed type of a variable is the type of the
  3599                 // variable symbol, taken as a member of the site type.
  3600                 owntype = (sym.owner.kind == TYP &&
  3601                            sym.name != names._this && sym.name != names._super)
  3602                     ? types.memberType(site, sym)
  3603                     : sym.type;
  3605                 // If the variable is a constant, record constant value in
  3606                 // computed type.
  3607                 if (v.getConstValue() != null && isStaticReference(tree))
  3608                     owntype = owntype.constType(v.getConstValue());
  3610                 if (resultInfo.pkind == VAL) {
  3611                     owntype = capture(owntype); // capture "names as expressions"
  3613                 break;
  3614             case MTH: {
  3615                 owntype = checkMethod(site, sym,
  3616                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3617                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3618                         resultInfo.pt.getTypeArguments());
  3619                 break;
  3621             case PCK: case ERR:
  3622                 owntype = sym.type;
  3623                 break;
  3624             default:
  3625                 throw new AssertionError("unexpected kind: " + sym.kind +
  3626                                          " in tree " + tree);
  3629             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3630             // (for constructors, the error was given when the constructor was
  3631             // resolved)
  3633             if (sym.name != names.init) {
  3634                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3635                 chk.checkSunAPI(tree.pos(), sym);
  3636                 chk.checkProfile(tree.pos(), sym);
  3639             // Test (3): if symbol is a variable, check that its type and
  3640             // kind are compatible with the prototype and protokind.
  3641             return check(tree, owntype, sym.kind, resultInfo);
  3644         /** Check that variable is initialized and evaluate the variable's
  3645          *  initializer, if not yet done. Also check that variable is not
  3646          *  referenced before it is defined.
  3647          *  @param tree    The tree making up the variable reference.
  3648          *  @param env     The current environment.
  3649          *  @param v       The variable's symbol.
  3650          */
  3651         private void checkInit(JCTree tree,
  3652                                Env<AttrContext> env,
  3653                                VarSymbol v,
  3654                                boolean onlyWarning) {
  3655 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3656 //                             tree.pos + " " + v.pos + " " +
  3657 //                             Resolve.isStatic(env));//DEBUG
  3659             // A forward reference is diagnosed if the declaration position
  3660             // of the variable is greater than the current tree position
  3661             // and the tree and variable definition occur in the same class
  3662             // definition.  Note that writes don't count as references.
  3663             // This check applies only to class and instance
  3664             // variables.  Local variables follow different scope rules,
  3665             // and are subject to definite assignment checking.
  3666             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3667                 v.owner.kind == TYP &&
  3668                 enclosingInitEnv(env) != null &&
  3669                 v.owner == env.info.scope.owner.enclClass() &&
  3670                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3671                 (!env.tree.hasTag(ASSIGN) ||
  3672                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3673                 String suffix = (env.info.enclVar == v) ?
  3674                                 "self.ref" : "forward.ref";
  3675                 if (!onlyWarning || isStaticEnumField(v)) {
  3676                     log.error(tree.pos(), "illegal." + suffix);
  3677                 } else if (useBeforeDeclarationWarning) {
  3678                     log.warning(tree.pos(), suffix, v);
  3682             v.getConstValue(); // ensure initializer is evaluated
  3684             checkEnumInitializer(tree, env, v);
  3687         /**
  3688          * Returns the enclosing init environment associated with this env (if any). An init env
  3689          * can be either a field declaration env or a static/instance initializer env.
  3690          */
  3691         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
  3692             while (true) {
  3693                 switch (env.tree.getTag()) {
  3694                     case VARDEF:
  3695                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
  3696                         if (vdecl.sym.owner.kind == TYP) {
  3697                             //field
  3698                             return env;
  3700                         break;
  3701                     case BLOCK:
  3702                         if (env.next.tree.hasTag(CLASSDEF)) {
  3703                             //instance/static initializer
  3704                             return env;
  3706                         break;
  3707                     case METHODDEF:
  3708                     case CLASSDEF:
  3709                     case TOPLEVEL:
  3710                         return null;
  3712                 Assert.checkNonNull(env.next);
  3713                 env = env.next;
  3717         /**
  3718          * Check for illegal references to static members of enum.  In
  3719          * an enum type, constructors and initializers may not
  3720          * reference its static members unless they are constant.
  3722          * @param tree    The tree making up the variable reference.
  3723          * @param env     The current environment.
  3724          * @param v       The variable's symbol.
  3725          * @jls  section 8.9 Enums
  3726          */
  3727         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3728             // JLS:
  3729             //
  3730             // "It is a compile-time error to reference a static field
  3731             // of an enum type that is not a compile-time constant
  3732             // (15.28) from constructors, instance initializer blocks,
  3733             // or instance variable initializer expressions of that
  3734             // type. It is a compile-time error for the constructors,
  3735             // instance initializer blocks, or instance variable
  3736             // initializer expressions of an enum constant e to refer
  3737             // to itself or to an enum constant of the same type that
  3738             // is declared to the right of e."
  3739             if (isStaticEnumField(v)) {
  3740                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3742                 if (enclClass == null || enclClass.owner == null)
  3743                     return;
  3745                 // See if the enclosing class is the enum (or a
  3746                 // subclass thereof) declaring v.  If not, this
  3747                 // reference is OK.
  3748                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3749                     return;
  3751                 // If the reference isn't from an initializer, then
  3752                 // the reference is OK.
  3753                 if (!Resolve.isInitializer(env))
  3754                     return;
  3756                 log.error(tree.pos(), "illegal.enum.static.ref");
  3760         /** Is the given symbol a static, non-constant field of an Enum?
  3761          *  Note: enum literals should not be regarded as such
  3762          */
  3763         private boolean isStaticEnumField(VarSymbol v) {
  3764             return Flags.isEnum(v.owner) &&
  3765                    Flags.isStatic(v) &&
  3766                    !Flags.isConstant(v) &&
  3767                    v.name != names._class;
  3770     Warner noteWarner = new Warner();
  3772     /**
  3773      * Check that method arguments conform to its instantiation.
  3774      **/
  3775     public Type checkMethod(Type site,
  3776                             final Symbol sym,
  3777                             ResultInfo resultInfo,
  3778                             Env<AttrContext> env,
  3779                             final List<JCExpression> argtrees,
  3780                             List<Type> argtypes,
  3781                             List<Type> typeargtypes) {
  3782         // Test (5): if symbol is an instance method of a raw type, issue
  3783         // an unchecked warning if its argument types change under erasure.
  3784         if (allowGenerics &&
  3785             (sym.flags() & STATIC) == 0 &&
  3786             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3787             Type s = types.asOuterSuper(site, sym.owner);
  3788             if (s != null && s.isRaw() &&
  3789                 !types.isSameTypes(sym.type.getParameterTypes(),
  3790                                    sym.erasure(types).getParameterTypes())) {
  3791                 chk.warnUnchecked(env.tree.pos(),
  3792                                   "unchecked.call.mbr.of.raw.type",
  3793                                   sym, s);
  3797         if (env.info.defaultSuperCallSite != null) {
  3798             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3799                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3800                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3801                 List<MethodSymbol> icand_sup =
  3802                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3803                 if (icand_sup.nonEmpty() &&
  3804                         icand_sup.head != sym &&
  3805                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3806                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3807                         diags.fragment("overridden.default", sym, sup));
  3808                     break;
  3811             env.info.defaultSuperCallSite = null;
  3814         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3815             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3816             if (app.meth.hasTag(SELECT) &&
  3817                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3818                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3822         // Compute the identifier's instantiated type.
  3823         // For methods, we need to compute the instance type by
  3824         // Resolve.instantiate from the symbol's type as well as
  3825         // any type arguments and value arguments.
  3826         noteWarner.clear();
  3827         try {
  3828             Type owntype = rs.checkMethod(
  3829                     env,
  3830                     site,
  3831                     sym,
  3832                     resultInfo,
  3833                     argtypes,
  3834                     typeargtypes,
  3835                     noteWarner);
  3837             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3838                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3840             argtypes = Type.map(argtypes, checkDeferredMap);
  3842             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3843                 chk.warnUnchecked(env.tree.pos(),
  3844                         "unchecked.meth.invocation.applied",
  3845                         kindName(sym),
  3846                         sym.name,
  3847                         rs.methodArguments(sym.type.getParameterTypes()),
  3848                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3849                         kindName(sym.location()),
  3850                         sym.location());
  3851                owntype = new MethodType(owntype.getParameterTypes(),
  3852                        types.erasure(owntype.getReturnType()),
  3853                        types.erasure(owntype.getThrownTypes()),
  3854                        syms.methodClass);
  3857             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3858                     resultInfo.checkContext.inferenceContext());
  3859         } catch (Infer.InferenceException ex) {
  3860             //invalid target type - propagate exception outwards or report error
  3861             //depending on the current check context
  3862             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3863             return types.createErrorType(site);
  3864         } catch (Resolve.InapplicableMethodException ex) {
  3865             final JCDiagnostic diag = ex.getDiagnostic();
  3866             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3867                 @Override
  3868                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3869                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3871             };
  3872             List<Type> argtypes2 = Type.map(argtypes,
  3873                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3874             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3875                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3876             log.report(errDiag);
  3877             return types.createErrorType(site);
  3881     public void visitLiteral(JCLiteral tree) {
  3882         result = check(
  3883             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3885     //where
  3886     /** Return the type of a literal with given type tag.
  3887      */
  3888     Type litType(TypeTag tag) {
  3889         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3892     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3893         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3896     public void visitTypeArray(JCArrayTypeTree tree) {
  3897         Type etype = attribType(tree.elemtype, env);
  3898         Type type = new ArrayType(etype, syms.arrayClass);
  3899         result = check(tree, type, TYP, resultInfo);
  3902     /** Visitor method for parameterized types.
  3903      *  Bound checking is left until later, since types are attributed
  3904      *  before supertype structure is completely known
  3905      */
  3906     public void visitTypeApply(JCTypeApply tree) {
  3907         Type owntype = types.createErrorType(tree.type);
  3909         // Attribute functor part of application and make sure it's a class.
  3910         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3912         // Attribute type parameters
  3913         List<Type> actuals = attribTypes(tree.arguments, env);
  3915         if (clazztype.hasTag(CLASS)) {
  3916             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3917             if (actuals.isEmpty()) //diamond
  3918                 actuals = formals;
  3920             if (actuals.length() == formals.length()) {
  3921                 List<Type> a = actuals;
  3922                 List<Type> f = formals;
  3923                 while (a.nonEmpty()) {
  3924                     a.head = a.head.withTypeVar(f.head);
  3925                     a = a.tail;
  3926                     f = f.tail;
  3928                 // Compute the proper generic outer
  3929                 Type clazzOuter = clazztype.getEnclosingType();
  3930                 if (clazzOuter.hasTag(CLASS)) {
  3931                     Type site;
  3932                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3933                     if (clazz.hasTag(IDENT)) {
  3934                         site = env.enclClass.sym.type;
  3935                     } else if (clazz.hasTag(SELECT)) {
  3936                         site = ((JCFieldAccess) clazz).selected.type;
  3937                     } else throw new AssertionError(""+tree);
  3938                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3939                         if (site.hasTag(CLASS))
  3940                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3941                         if (site == null)
  3942                             site = types.erasure(clazzOuter);
  3943                         clazzOuter = site;
  3946                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3947             } else {
  3948                 if (formals.length() != 0) {
  3949                     log.error(tree.pos(), "wrong.number.type.args",
  3950                               Integer.toString(formals.length()));
  3951                 } else {
  3952                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3954                 owntype = types.createErrorType(tree.type);
  3957         result = check(tree, owntype, TYP, resultInfo);
  3960     public void visitTypeUnion(JCTypeUnion tree) {
  3961         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3962         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3963         for (JCExpression typeTree : tree.alternatives) {
  3964             Type ctype = attribType(typeTree, env);
  3965             ctype = chk.checkType(typeTree.pos(),
  3966                           chk.checkClassType(typeTree.pos(), ctype),
  3967                           syms.throwableType);
  3968             if (!ctype.isErroneous()) {
  3969                 //check that alternatives of a union type are pairwise
  3970                 //unrelated w.r.t. subtyping
  3971                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3972                     for (Type t : multicatchTypes) {
  3973                         boolean sub = types.isSubtype(ctype, t);
  3974                         boolean sup = types.isSubtype(t, ctype);
  3975                         if (sub || sup) {
  3976                             //assume 'a' <: 'b'
  3977                             Type a = sub ? ctype : t;
  3978                             Type b = sub ? t : ctype;
  3979                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3983                 multicatchTypes.append(ctype);
  3984                 if (all_multicatchTypes != null)
  3985                     all_multicatchTypes.append(ctype);
  3986             } else {
  3987                 if (all_multicatchTypes == null) {
  3988                     all_multicatchTypes = new ListBuffer<>();
  3989                     all_multicatchTypes.appendList(multicatchTypes);
  3991                 all_multicatchTypes.append(ctype);
  3994         Type t = check(noCheckTree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3995         if (t.hasTag(CLASS)) {
  3996             List<Type> alternatives =
  3997                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3998             t = new UnionClassType((ClassType) t, alternatives);
  4000         tree.type = result = t;
  4003     public void visitTypeIntersection(JCTypeIntersection tree) {
  4004         attribTypes(tree.bounds, env);
  4005         tree.type = result = checkIntersection(tree, tree.bounds);
  4008     public void visitTypeParameter(JCTypeParameter tree) {
  4009         TypeVar typeVar = (TypeVar) tree.type;
  4011         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  4012             annotateType(tree, tree.annotations);
  4015         if (!typeVar.bound.isErroneous()) {
  4016             //fixup type-parameter bound computed in 'attribTypeVariables'
  4017             typeVar.bound = checkIntersection(tree, tree.bounds);
  4021     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  4022         Set<Type> boundSet = new HashSet<Type>();
  4023         if (bounds.nonEmpty()) {
  4024             // accept class or interface or typevar as first bound.
  4025             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
  4026             boundSet.add(types.erasure(bounds.head.type));
  4027             if (bounds.head.type.isErroneous()) {
  4028                 return bounds.head.type;
  4030             else if (bounds.head.type.hasTag(TYPEVAR)) {
  4031                 // if first bound was a typevar, do not accept further bounds.
  4032                 if (bounds.tail.nonEmpty()) {
  4033                     log.error(bounds.tail.head.pos(),
  4034                               "type.var.may.not.be.followed.by.other.bounds");
  4035                     return bounds.head.type;
  4037             } else {
  4038                 // if first bound was a class or interface, accept only interfaces
  4039                 // as further bounds.
  4040                 for (JCExpression bound : bounds.tail) {
  4041                     bound.type = checkBase(bound.type, bound, env, false, true, false);
  4042                     if (bound.type.isErroneous()) {
  4043                         bounds = List.of(bound);
  4045                     else if (bound.type.hasTag(CLASS)) {
  4046                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  4052         if (bounds.length() == 0) {
  4053             return syms.objectType;
  4054         } else if (bounds.length() == 1) {
  4055             return bounds.head.type;
  4056         } else {
  4057             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
  4058             // ... the variable's bound is a class type flagged COMPOUND
  4059             // (see comment for TypeVar.bound).
  4060             // In this case, generate a class tree that represents the
  4061             // bound class, ...
  4062             JCExpression extending;
  4063             List<JCExpression> implementing;
  4064             if (!bounds.head.type.isInterface()) {
  4065                 extending = bounds.head;
  4066                 implementing = bounds.tail;
  4067             } else {
  4068                 extending = null;
  4069                 implementing = bounds;
  4071             JCClassDecl cd = make.at(tree).ClassDef(
  4072                 make.Modifiers(PUBLIC | ABSTRACT),
  4073                 names.empty, List.<JCTypeParameter>nil(),
  4074                 extending, implementing, List.<JCTree>nil());
  4076             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4077             Assert.check((c.flags() & COMPOUND) != 0);
  4078             cd.sym = c;
  4079             c.sourcefile = env.toplevel.sourcefile;
  4081             // ... and attribute the bound class
  4082             c.flags_field |= UNATTRIBUTED;
  4083             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4084             typeEnvs.put(c, cenv);
  4085             attribClass(c);
  4086             return owntype;
  4090     public void visitWildcard(JCWildcard tree) {
  4091         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4092         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4093             ? syms.objectType
  4094             : attribType(tree.inner, env);
  4095         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4096                                               tree.kind.kind,
  4097                                               syms.boundClass),
  4098                        TYP, resultInfo);
  4101     public void visitAnnotation(JCAnnotation tree) {
  4102         Assert.error("should be handled in Annotate");
  4105     public void visitAnnotatedType(JCAnnotatedType tree) {
  4106         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4107         this.attribAnnotationTypes(tree.annotations, env);
  4108         annotateType(tree, tree.annotations);
  4109         result = tree.type = underlyingType;
  4112     /**
  4113      * Apply the annotations to the particular type.
  4114      */
  4115     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
  4116         annotate.typeAnnotation(new Annotate.Worker() {
  4117             @Override
  4118             public String toString() {
  4119                 return "annotate " + annotations + " onto " + tree;
  4121             @Override
  4122             public void run() {
  4123                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4124                 if (annotations.size() == compounds.size()) {
  4125                     // All annotations were successfully converted into compounds
  4126                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
  4129         });
  4132     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4133         if (annotations.isEmpty()) {
  4134             return List.nil();
  4137         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4138         for (JCAnnotation anno : annotations) {
  4139             if (anno.attribute != null) {
  4140                 // TODO: this null-check is only needed for an obscure
  4141                 // ordering issue, where annotate.flush is called when
  4142                 // the attribute is not set yet. For an example failure
  4143                 // try the referenceinfos/NestedTypes.java test.
  4144                 // Any better solutions?
  4145                 buf.append((Attribute.TypeCompound) anno.attribute);
  4147             // Eventually we will want to throw an exception here, but
  4148             // we can't do that just yet, because it gets triggered
  4149             // when attempting to attach an annotation that isn't
  4150             // defined.
  4152         return buf.toList();
  4155     public void visitErroneous(JCErroneous tree) {
  4156         if (tree.errs != null)
  4157             for (JCTree err : tree.errs)
  4158                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4159         result = tree.type = syms.errType;
  4162     /** Default visitor method for all other trees.
  4163      */
  4164     public void visitTree(JCTree tree) {
  4165         throw new AssertionError();
  4168     /**
  4169      * Attribute an env for either a top level tree or class declaration.
  4170      */
  4171     public void attrib(Env<AttrContext> env) {
  4172         if (env.tree.hasTag(TOPLEVEL))
  4173             attribTopLevel(env);
  4174         else
  4175             attribClass(env.tree.pos(), env.enclClass.sym);
  4178     /**
  4179      * Attribute a top level tree. These trees are encountered when the
  4180      * package declaration has annotations.
  4181      */
  4182     public void attribTopLevel(Env<AttrContext> env) {
  4183         JCCompilationUnit toplevel = env.toplevel;
  4184         try {
  4185             annotate.flush();
  4186         } catch (CompletionFailure ex) {
  4187             chk.completionError(toplevel.pos(), ex);
  4191     /** Main method: attribute class definition associated with given class symbol.
  4192      *  reporting completion failures at the given position.
  4193      *  @param pos The source position at which completion errors are to be
  4194      *             reported.
  4195      *  @param c   The class symbol whose definition will be attributed.
  4196      */
  4197     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4198         try {
  4199             annotate.flush();
  4200             attribClass(c);
  4201         } catch (CompletionFailure ex) {
  4202             chk.completionError(pos, ex);
  4206     /** Attribute class definition associated with given class symbol.
  4207      *  @param c   The class symbol whose definition will be attributed.
  4208      */
  4209     void attribClass(ClassSymbol c) throws CompletionFailure {
  4210         if (c.type.hasTag(ERROR)) return;
  4212         // Check for cycles in the inheritance graph, which can arise from
  4213         // ill-formed class files.
  4214         chk.checkNonCyclic(null, c.type);
  4216         Type st = types.supertype(c.type);
  4217         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4218             // First, attribute superclass.
  4219             if (st.hasTag(CLASS))
  4220                 attribClass((ClassSymbol)st.tsym);
  4222             // Next attribute owner, if it is a class.
  4223             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4224                 attribClass((ClassSymbol)c.owner);
  4227         // The previous operations might have attributed the current class
  4228         // if there was a cycle. So we test first whether the class is still
  4229         // UNATTRIBUTED.
  4230         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4231             c.flags_field &= ~UNATTRIBUTED;
  4233             // Get environment current at the point of class definition.
  4234             Env<AttrContext> env = typeEnvs.get(c);
  4236             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
  4237             // because the annotations were not available at the time the env was created. Therefore,
  4238             // we look up the environment chain for the first enclosing environment for which the
  4239             // lint value is set. Typically, this is the parent env, but might be further if there
  4240             // are any envs created as a result of TypeParameter nodes.
  4241             Env<AttrContext> lintEnv = env;
  4242             while (lintEnv.info.lint == null)
  4243                 lintEnv = lintEnv.next;
  4245             // Having found the enclosing lint value, we can initialize the lint value for this class
  4246             env.info.lint = lintEnv.info.lint.augment(c);
  4248             Lint prevLint = chk.setLint(env.info.lint);
  4249             JavaFileObject prev = log.useSource(c.sourcefile);
  4250             ResultInfo prevReturnRes = env.info.returnResult;
  4252             try {
  4253                 deferredLintHandler.flush(env.tree);
  4254                 env.info.returnResult = null;
  4255                 // java.lang.Enum may not be subclassed by a non-enum
  4256                 if (st.tsym == syms.enumSym &&
  4257                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4258                     log.error(env.tree.pos(), "enum.no.subclassing");
  4260                 // Enums may not be extended by source-level classes
  4261                 if (st.tsym != null &&
  4262                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4263                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4264                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4267                 if (isSerializable(c.type)) {
  4268                     env.info.isSerializable = true;
  4271                 attribClassBody(env, c);
  4273                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4274                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4275                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
  4276             } finally {
  4277                 env.info.returnResult = prevReturnRes;
  4278                 log.useSource(prev);
  4279                 chk.setLint(prevLint);
  4285     public void visitImport(JCImport tree) {
  4286         // nothing to do
  4289     /** Finish the attribution of a class. */
  4290     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4291         JCClassDecl tree = (JCClassDecl)env.tree;
  4292         Assert.check(c == tree.sym);
  4294         // Validate type parameters, supertype and interfaces.
  4295         attribStats(tree.typarams, env);
  4296         if (!c.isAnonymous()) {
  4297             //already checked if anonymous
  4298             chk.validate(tree.typarams, env);
  4299             chk.validate(tree.extending, env);
  4300             chk.validate(tree.implementing, env);
  4303         c.markAbstractIfNeeded(types);
  4305         // If this is a non-abstract class, check that it has no abstract
  4306         // methods or unimplemented methods of an implemented interface.
  4307         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4308             if (!relax)
  4309                 chk.checkAllDefined(tree.pos(), c);
  4312         if ((c.flags() & ANNOTATION) != 0) {
  4313             if (tree.implementing.nonEmpty())
  4314                 log.error(tree.implementing.head.pos(),
  4315                           "cant.extend.intf.annotation");
  4316             if (tree.typarams.nonEmpty())
  4317                 log.error(tree.typarams.head.pos(),
  4318                           "intf.annotation.cant.have.type.params");
  4320             // If this annotation has a @Repeatable, validate
  4321             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4322             if (repeatable != null) {
  4323                 // get diagnostic position for error reporting
  4324                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4325                 Assert.checkNonNull(cbPos);
  4327                 chk.validateRepeatable(c, repeatable, cbPos);
  4329         } else {
  4330             // Check that all extended classes and interfaces
  4331             // are compatible (i.e. no two define methods with same arguments
  4332             // yet different return types).  (JLS 8.4.6.3)
  4333             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4334             if (allowDefaultMethods) {
  4335                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4339         // Check that class does not import the same parameterized interface
  4340         // with two different argument lists.
  4341         chk.checkClassBounds(tree.pos(), c.type);
  4343         tree.type = c.type;
  4345         for (List<JCTypeParameter> l = tree.typarams;
  4346              l.nonEmpty(); l = l.tail) {
  4347              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4350         // Check that a generic class doesn't extend Throwable
  4351         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4352             log.error(tree.extending.pos(), "generic.throwable");
  4354         // Check that all methods which implement some
  4355         // method conform to the method they implement.
  4356         chk.checkImplementations(tree);
  4358         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4359         checkAutoCloseable(tree.pos(), env, c.type);
  4361         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4362             // Attribute declaration
  4363             attribStat(l.head, env);
  4364             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4365             // Make an exception for static constants.
  4366             if (c.owner.kind != PCK &&
  4367                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4368                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4369                 Symbol sym = null;
  4370                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4371                 if (sym == null ||
  4372                     sym.kind != VAR ||
  4373                     ((VarSymbol) sym).getConstValue() == null)
  4374                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4378         // Check for cycles among non-initial constructors.
  4379         chk.checkCyclicConstructors(tree);
  4381         // Check for cycles among annotation elements.
  4382         chk.checkNonCyclicElements(tree);
  4384         // Check for proper use of serialVersionUID
  4385         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4386             isSerializable(c.type) &&
  4387             (c.flags() & Flags.ENUM) == 0 &&
  4388             checkForSerial(c)) {
  4389             checkSerialVersionUID(tree, c);
  4391         if (allowTypeAnnos) {
  4392             // Correctly organize the postions of the type annotations
  4393             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4395             // Check type annotations applicability rules
  4396             validateTypeAnnotations(tree, false);
  4399         // where
  4400         boolean checkForSerial(ClassSymbol c) {
  4401             if ((c.flags() & ABSTRACT) == 0) {
  4402                 return true;
  4403             } else {
  4404                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4408         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4409             @Override
  4410             public boolean accepts(Symbol s) {
  4411                 return s.kind == Kinds.MTH &&
  4412                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4414         };
  4416         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4417         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4418             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4419                 if (types.isSameType(al.head.annotationType.type, t))
  4420                     return al.head.pos();
  4423             return null;
  4426         /** check if a type is a subtype of Serializable, if that is available. */
  4427         boolean isSerializable(Type t) {
  4428             try {
  4429                 syms.serializableType.complete();
  4431             catch (CompletionFailure e) {
  4432                 return false;
  4434             return types.isSubtype(t, syms.serializableType);
  4437         /** Check that an appropriate serialVersionUID member is defined. */
  4438         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4440             // check for presence of serialVersionUID
  4441             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4442             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4443             if (e.scope == null) {
  4444                 log.warning(LintCategory.SERIAL,
  4445                         tree.pos(), "missing.SVUID", c);
  4446                 return;
  4449             // check that it is static final
  4450             VarSymbol svuid = (VarSymbol)e.sym;
  4451             if ((svuid.flags() & (STATIC | FINAL)) !=
  4452                 (STATIC | FINAL))
  4453                 log.warning(LintCategory.SERIAL,
  4454                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4456             // check that it is long
  4457             else if (!svuid.type.hasTag(LONG))
  4458                 log.warning(LintCategory.SERIAL,
  4459                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4461             // check constant
  4462             else if (svuid.getConstValue() == null)
  4463                 log.warning(LintCategory.SERIAL,
  4464                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4467     private Type capture(Type type) {
  4468         return types.capture(type);
  4471     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
  4472         tree.accept(new TypeAnnotationsValidator(sigOnly));
  4474     //where
  4475     private final class TypeAnnotationsValidator extends TreeScanner {
  4477         private final boolean sigOnly;
  4478         public TypeAnnotationsValidator(boolean sigOnly) {
  4479             this.sigOnly = sigOnly;
  4482         public void visitAnnotation(JCAnnotation tree) {
  4483             chk.validateTypeAnnotation(tree, false);
  4484             super.visitAnnotation(tree);
  4486         public void visitAnnotatedType(JCAnnotatedType tree) {
  4487             if (!tree.underlyingType.type.isErroneous()) {
  4488                 super.visitAnnotatedType(tree);
  4491         public void visitTypeParameter(JCTypeParameter tree) {
  4492             chk.validateTypeAnnotations(tree.annotations, true);
  4493             scan(tree.bounds);
  4494             // Don't call super.
  4495             // This is needed because above we call validateTypeAnnotation with
  4496             // false, which would forbid annotations on type parameters.
  4497             // super.visitTypeParameter(tree);
  4499         public void visitMethodDef(JCMethodDecl tree) {
  4500             if (tree.recvparam != null &&
  4501                     !tree.recvparam.vartype.type.isErroneous()) {
  4502                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4503                         tree.recvparam.vartype.type.tsym);
  4505             if (tree.restype != null && tree.restype.type != null) {
  4506                 validateAnnotatedType(tree.restype, tree.restype.type);
  4508             if (sigOnly) {
  4509                 scan(tree.mods);
  4510                 scan(tree.restype);
  4511                 scan(tree.typarams);
  4512                 scan(tree.recvparam);
  4513                 scan(tree.params);
  4514                 scan(tree.thrown);
  4515             } else {
  4516                 scan(tree.defaultValue);
  4517                 scan(tree.body);
  4520         public void visitVarDef(final JCVariableDecl tree) {
  4521             if (tree.sym != null && tree.sym.type != null)
  4522                 validateAnnotatedType(tree.vartype, tree.sym.type);
  4523             scan(tree.mods);
  4524             scan(tree.vartype);
  4525             if (!sigOnly) {
  4526                 scan(tree.init);
  4529         public void visitTypeCast(JCTypeCast tree) {
  4530             if (tree.clazz != null && tree.clazz.type != null)
  4531                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4532             super.visitTypeCast(tree);
  4534         public void visitTypeTest(JCInstanceOf tree) {
  4535             if (tree.clazz != null && tree.clazz.type != null)
  4536                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4537             super.visitTypeTest(tree);
  4539         public void visitNewClass(JCNewClass tree) {
  4540             if (tree.clazz != null && tree.clazz.type != null) {
  4541                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  4542                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  4543                             tree.clazz.type.tsym);
  4545                 if (tree.def != null) {
  4546                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
  4549                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4551             super.visitNewClass(tree);
  4553         public void visitNewArray(JCNewArray tree) {
  4554             if (tree.elemtype != null && tree.elemtype.type != null) {
  4555                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  4556                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  4557                             tree.elemtype.type.tsym);
  4559                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
  4561             super.visitNewArray(tree);
  4563         public void visitClassDef(JCClassDecl tree) {
  4564             if (sigOnly) {
  4565                 scan(tree.mods);
  4566                 scan(tree.typarams);
  4567                 scan(tree.extending);
  4568                 scan(tree.implementing);
  4570             for (JCTree member : tree.defs) {
  4571                 if (member.hasTag(Tag.CLASSDEF)) {
  4572                     continue;
  4574                 scan(member);
  4577         public void visitBlock(JCBlock tree) {
  4578             if (!sigOnly) {
  4579                 scan(tree.stats);
  4583         /* I would want to model this after
  4584          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4585          * and override visitSelect and visitTypeApply.
  4586          * However, we only set the annotated type in the top-level type
  4587          * of the symbol.
  4588          * Therefore, we need to override each individual location where a type
  4589          * can occur.
  4590          */
  4591         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4592             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
  4594             if (type.isPrimitiveOrVoid()) {
  4595                 return;
  4598             JCTree enclTr = errtree;
  4599             Type enclTy = type;
  4601             boolean repeat = true;
  4602             while (repeat) {
  4603                 if (enclTr.hasTag(TYPEAPPLY)) {
  4604                     List<Type> tyargs = enclTy.getTypeArguments();
  4605                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
  4606                     if (trargs.length() > 0) {
  4607                         // Nothing to do for diamonds
  4608                         if (tyargs.length() == trargs.length()) {
  4609                             for (int i = 0; i < tyargs.length(); ++i) {
  4610                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
  4613                         // If the lengths don't match, it's either a diamond
  4614                         // or some nested type that redundantly provides
  4615                         // type arguments in the tree.
  4618                     // Look at the clazz part of a generic type
  4619                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
  4622                 if (enclTr.hasTag(SELECT)) {
  4623                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
  4624                     if (enclTy != null &&
  4625                             !enclTy.hasTag(NONE)) {
  4626                         enclTy = enclTy.getEnclosingType();
  4628                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
  4629                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
  4630                     if (enclTy == null ||
  4631                             enclTy.hasTag(NONE)) {
  4632                         if (at.getAnnotations().size() == 1) {
  4633                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
  4634                         } else {
  4635                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
  4636                             for (JCAnnotation an : at.getAnnotations()) {
  4637                                 comps.add(an.attribute);
  4639                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
  4641                         repeat = false;
  4643                     enclTr = at.underlyingType;
  4644                     // enclTy doesn't need to be changed
  4645                 } else if (enclTr.hasTag(IDENT)) {
  4646                     repeat = false;
  4647                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
  4648                     JCWildcard wc = (JCWildcard) enclTr;
  4649                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
  4650                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
  4651                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
  4652                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
  4653                     } else {
  4654                         // Nothing to do for UNBOUND
  4656                     repeat = false;
  4657                 } else if (enclTr.hasTag(TYPEARRAY)) {
  4658                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
  4659                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
  4660                     repeat = false;
  4661                 } else if (enclTr.hasTag(TYPEUNION)) {
  4662                     JCTypeUnion ut = (JCTypeUnion) enclTr;
  4663                     for (JCTree t : ut.getTypeAlternatives()) {
  4664                         validateAnnotatedType(t, t.type);
  4666                     repeat = false;
  4667                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
  4668                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
  4669                     for (JCTree t : it.getBounds()) {
  4670                         validateAnnotatedType(t, t.type);
  4672                     repeat = false;
  4673                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
  4674                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
  4675                     repeat = false;
  4676                 } else {
  4677                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
  4678                             " within: "+ errtree + " with kind: " + errtree.getKind());
  4683         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  4684                 Symbol sym) {
  4685             // Ensure that no declaration annotations are present.
  4686             // Note that a tree type might be an AnnotatedType with
  4687             // empty annotations, if only declaration annotations were given.
  4688             // This method will raise an error for such a type.
  4689             for (JCAnnotation ai : annotations) {
  4690                 if (!ai.type.isErroneous() &&
  4691                         typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  4692                     log.error(ai.pos(), "annotation.type.not.applicable");
  4696     };
  4698     // <editor-fold desc="post-attribution visitor">
  4700     /**
  4701      * Handle missing types/symbols in an AST. This routine is useful when
  4702      * the compiler has encountered some errors (which might have ended up
  4703      * terminating attribution abruptly); if the compiler is used in fail-over
  4704      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4705      * prevents NPE to be progagated during subsequent compilation steps.
  4706      */
  4707     public void postAttr(JCTree tree) {
  4708         new PostAttrAnalyzer().scan(tree);
  4711     class PostAttrAnalyzer extends TreeScanner {
  4713         private void initTypeIfNeeded(JCTree that) {
  4714             if (that.type == null) {
  4715                 if (that.hasTag(METHODDEF)) {
  4716                     that.type = dummyMethodType((JCMethodDecl)that);
  4717                 } else {
  4718                     that.type = syms.unknownType;
  4723         /* Construct a dummy method type. If we have a method declaration,
  4724          * and the declared return type is void, then use that return type
  4725          * instead of UNKNOWN to avoid spurious error messages in lambda
  4726          * bodies (see:JDK-8041704).
  4727          */
  4728         private Type dummyMethodType(JCMethodDecl md) {
  4729             Type restype = syms.unknownType;
  4730             if (md != null && md.restype.hasTag(TYPEIDENT)) {
  4731                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
  4732                 if (prim.typetag == VOID)
  4733                     restype = syms.voidType;
  4735             return new MethodType(List.<Type>nil(), restype,
  4736                                   List.<Type>nil(), syms.methodClass);
  4738         private Type dummyMethodType() {
  4739             return dummyMethodType(null);
  4742         @Override
  4743         public void scan(JCTree tree) {
  4744             if (tree == null) return;
  4745             if (tree instanceof JCExpression) {
  4746                 initTypeIfNeeded(tree);
  4748             super.scan(tree);
  4751         @Override
  4752         public void visitIdent(JCIdent that) {
  4753             if (that.sym == null) {
  4754                 that.sym = syms.unknownSymbol;
  4758         @Override
  4759         public void visitSelect(JCFieldAccess that) {
  4760             if (that.sym == null) {
  4761                 that.sym = syms.unknownSymbol;
  4763             super.visitSelect(that);
  4766         @Override
  4767         public void visitClassDef(JCClassDecl that) {
  4768             initTypeIfNeeded(that);
  4769             if (that.sym == null) {
  4770                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4772             super.visitClassDef(that);
  4775         @Override
  4776         public void visitMethodDef(JCMethodDecl that) {
  4777             initTypeIfNeeded(that);
  4778             if (that.sym == null) {
  4779                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4781             super.visitMethodDef(that);
  4784         @Override
  4785         public void visitVarDef(JCVariableDecl that) {
  4786             initTypeIfNeeded(that);
  4787             if (that.sym == null) {
  4788                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4789                 that.sym.adr = 0;
  4791             super.visitVarDef(that);
  4794         @Override
  4795         public void visitNewClass(JCNewClass that) {
  4796             if (that.constructor == null) {
  4797                 that.constructor = new MethodSymbol(0, names.init,
  4798                         dummyMethodType(), syms.noSymbol);
  4800             if (that.constructorType == null) {
  4801                 that.constructorType = syms.unknownType;
  4803             super.visitNewClass(that);
  4806         @Override
  4807         public void visitAssignop(JCAssignOp that) {
  4808             if (that.operator == null) {
  4809                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4810                         -1, syms.noSymbol);
  4812             super.visitAssignop(that);
  4815         @Override
  4816         public void visitBinary(JCBinary that) {
  4817             if (that.operator == null) {
  4818                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4819                         -1, syms.noSymbol);
  4821             super.visitBinary(that);
  4824         @Override
  4825         public void visitUnary(JCUnary that) {
  4826             if (that.operator == null) {
  4827                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
  4828                         -1, syms.noSymbol);
  4830             super.visitUnary(that);
  4833         @Override
  4834         public void visitLambda(JCLambda that) {
  4835             super.visitLambda(that);
  4836             if (that.targets == null) {
  4837                 that.targets = List.nil();
  4841         @Override
  4842         public void visitReference(JCMemberReference that) {
  4843             super.visitReference(that);
  4844             if (that.sym == null) {
  4845                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
  4846                         syms.noSymbol);
  4848             if (that.targets == null) {
  4849                 that.targets = List.nil();
  4853     // </editor-fold>

mercurial