src/share/classes/com/sun/tools/javac/comp/Check.java

Sat, 18 Sep 2010 14:24:09 -0700

author
mcimadamore
date
Sat, 18 Sep 2010 14:24:09 -0700
changeset 690
0c1ef2af7a8e
parent 639
a75770c0d7f6
child 700
7b413ac1a720
permissions
-rw-r--r--

6863465: javac doesn't detect circular subclass dependencies via qualified names
Summary: class inheritance circularity check should look at trees, not just symbols
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.source.tree.AssignmentTree;
    29 import java.util.*;
    30 import java.util.Set;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.jvm.*;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    45 import static com.sun.tools.javac.code.Flags.*;
    46 import static com.sun.tools.javac.code.Kinds.*;
    47 import static com.sun.tools.javac.code.TypeTags.*;
    49 /** Type checking helper class for the attribution phase.
    50  *
    51  *  <p><b>This is NOT part of any supported API.
    52  *  If you write code that depends on this, you do so at your own risk.
    53  *  This code and its internal interfaces are subject to change or
    54  *  deletion without notice.</b>
    55  */
    56 public class Check {
    57     protected static final Context.Key<Check> checkKey =
    58         new Context.Key<Check>();
    60     private final Names names;
    61     private final Log log;
    62     private final Symtab syms;
    63     private final Enter enter;
    64     private final Infer infer;
    65     private final Types types;
    66     private final JCDiagnostic.Factory diags;
    67     private final boolean skipAnnotations;
    68     private boolean warnOnSyntheticConflicts;
    69     private boolean suppressAbortOnBadClassFile;
    70     private final TreeInfo treeinfo;
    72     // The set of lint options currently in effect. It is initialized
    73     // from the context, and then is set/reset as needed by Attr as it
    74     // visits all the various parts of the trees during attribution.
    75     private Lint lint;
    77     public static Check instance(Context context) {
    78         Check instance = context.get(checkKey);
    79         if (instance == null)
    80             instance = new Check(context);
    81         return instance;
    82     }
    84     protected Check(Context context) {
    85         context.put(checkKey, this);
    87         names = Names.instance(context);
    88         log = Log.instance(context);
    89         syms = Symtab.instance(context);
    90         enter = Enter.instance(context);
    91         infer = Infer.instance(context);
    92         this.types = Types.instance(context);
    93         diags = JCDiagnostic.Factory.instance(context);
    94         Options options = Options.instance(context);
    95         lint = Lint.instance(context);
    96         treeinfo = TreeInfo.instance(context);
    98         Source source = Source.instance(context);
    99         allowGenerics = source.allowGenerics();
   100         allowAnnotations = source.allowAnnotations();
   101         allowCovariantReturns = source.allowCovariantReturns();
   102         complexInference = options.get("-complexinference") != null;
   103         skipAnnotations = options.get("skipAnnotations") != null;
   104         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   105         suppressAbortOnBadClassFile = options.get("suppressAbortOnBadClassFile") != null;
   107         Target target = Target.instance(context);
   108         syntheticNameChar = target.syntheticNameChar();
   110         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   111         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   112         boolean verboseVarargs = lint.isEnabled(LintCategory.VARARGS);
   113         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   114         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   116         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   117                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   118         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   119                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   120         unsafeVarargsHandler = new MandatoryWarningHandler(log, verboseVarargs,
   121                 enforceMandatoryWarnings, "varargs", LintCategory.VARARGS);
   122         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   123                 enforceMandatoryWarnings, "sunapi", null);
   124     }
   126     /** Switch: generics enabled?
   127      */
   128     boolean allowGenerics;
   130     /** Switch: annotations enabled?
   131      */
   132     boolean allowAnnotations;
   134     /** Switch: covariant returns enabled?
   135      */
   136     boolean allowCovariantReturns;
   138     /** Switch: -complexinference option set?
   139      */
   140     boolean complexInference;
   142     /** Character for synthetic names
   143      */
   144     char syntheticNameChar;
   146     /** A table mapping flat names of all compiled classes in this run to their
   147      *  symbols; maintained from outside.
   148      */
   149     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   151     /** A handler for messages about deprecated usage.
   152      */
   153     private MandatoryWarningHandler deprecationHandler;
   155     /** A handler for messages about unchecked or unsafe usage.
   156      */
   157     private MandatoryWarningHandler uncheckedHandler;
   159     /** A handler for messages about unchecked or unsafe vararg method decl.
   160      */
   161     private MandatoryWarningHandler unsafeVarargsHandler;
   163     /** A handler for messages about using proprietary API.
   164      */
   165     private MandatoryWarningHandler sunApiHandler;
   167 /* *************************************************************************
   168  * Errors and Warnings
   169  **************************************************************************/
   171     Lint setLint(Lint newLint) {
   172         Lint prev = lint;
   173         lint = newLint;
   174         return prev;
   175     }
   177     /** Warn about deprecated symbol.
   178      *  @param pos        Position to be used for error reporting.
   179      *  @param sym        The deprecated symbol.
   180      */
   181     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   182         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   183             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   184     }
   186     /** Warn about unchecked operation.
   187      *  @param pos        Position to be used for error reporting.
   188      *  @param msg        A string describing the problem.
   189      */
   190     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   191         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   192             uncheckedHandler.report(pos, msg, args);
   193     }
   195     /** Warn about unsafe vararg method decl.
   196      *  @param pos        Position to be used for error reporting.
   197      *  @param sym        The deprecated symbol.
   198      */
   199     void warnUnsafeVararg(DiagnosticPosition pos, Type elemType) {
   200         if (!lint.isSuppressed(LintCategory.VARARGS))
   201             unsafeVarargsHandler.report(pos, "varargs.non.reifiable.type", elemType);
   202     }
   204     /** Warn about using proprietary API.
   205      *  @param pos        Position to be used for error reporting.
   206      *  @param msg        A string describing the problem.
   207      */
   208     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   209         if (!lint.isSuppressed(LintCategory.SUNAPI))
   210             sunApiHandler.report(pos, msg, args);
   211     }
   213     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   214         if (lint.isEnabled(LintCategory.STATIC))
   215             log.warning(LintCategory.STATIC, pos, msg, args);
   216     }
   218     /**
   219      * Report any deferred diagnostics.
   220      */
   221     public void reportDeferredDiagnostics() {
   222         deprecationHandler.reportDeferredDiagnostic();
   223         uncheckedHandler.reportDeferredDiagnostic();
   224         unsafeVarargsHandler.reportDeferredDiagnostic();
   225         sunApiHandler.reportDeferredDiagnostic();
   226     }
   229     /** Report a failure to complete a class.
   230      *  @param pos        Position to be used for error reporting.
   231      *  @param ex         The failure to report.
   232      */
   233     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   234         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   235         if (ex instanceof ClassReader.BadClassFile
   236                 && !suppressAbortOnBadClassFile) throw new Abort();
   237         else return syms.errType;
   238     }
   240     /** Report a type error.
   241      *  @param pos        Position to be used for error reporting.
   242      *  @param problem    A string describing the error.
   243      *  @param found      The type that was found.
   244      *  @param req        The type that was required.
   245      */
   246     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   247         log.error(pos, "prob.found.req",
   248                   problem, found, req);
   249         return types.createErrorType(found);
   250     }
   252     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   253         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   254         return types.createErrorType(found);
   255     }
   257     /** Report an error that wrong type tag was found.
   258      *  @param pos        Position to be used for error reporting.
   259      *  @param required   An internationalized string describing the type tag
   260      *                    required.
   261      *  @param found      The type that was found.
   262      */
   263     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   264         // this error used to be raised by the parser,
   265         // but has been delayed to this point:
   266         if (found instanceof Type && ((Type)found).tag == VOID) {
   267             log.error(pos, "illegal.start.of.type");
   268             return syms.errType;
   269         }
   270         log.error(pos, "type.found.req", found, required);
   271         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   272     }
   274     /** Report an error that symbol cannot be referenced before super
   275      *  has been called.
   276      *  @param pos        Position to be used for error reporting.
   277      *  @param sym        The referenced symbol.
   278      */
   279     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   280         log.error(pos, "cant.ref.before.ctor.called", sym);
   281     }
   283     /** Report duplicate declaration error.
   284      */
   285     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   286         if (!sym.type.isErroneous()) {
   287             log.error(pos, "already.defined", sym, sym.location());
   288         }
   289     }
   291     /** Report array/varargs duplicate declaration
   292      */
   293     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   294         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   295             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   296         }
   297     }
   299 /* ************************************************************************
   300  * duplicate declaration checking
   301  *************************************************************************/
   303     /** Check that variable does not hide variable with same name in
   304      *  immediately enclosing local scope.
   305      *  @param pos           Position for error reporting.
   306      *  @param v             The symbol.
   307      *  @param s             The scope.
   308      */
   309     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   310         if (s.next != null) {
   311             for (Scope.Entry e = s.next.lookup(v.name);
   312                  e.scope != null && e.sym.owner == v.owner;
   313                  e = e.next()) {
   314                 if (e.sym.kind == VAR &&
   315                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   316                     v.name != names.error) {
   317                     duplicateError(pos, e.sym);
   318                     return;
   319                 }
   320             }
   321         }
   322     }
   324     /** Check that a class or interface does not hide a class or
   325      *  interface with same name in immediately enclosing local scope.
   326      *  @param pos           Position for error reporting.
   327      *  @param c             The symbol.
   328      *  @param s             The scope.
   329      */
   330     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   331         if (s.next != null) {
   332             for (Scope.Entry e = s.next.lookup(c.name);
   333                  e.scope != null && e.sym.owner == c.owner;
   334                  e = e.next()) {
   335                 if (e.sym.kind == TYP && e.sym.type.tag != TYPEVAR &&
   336                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   337                     c.name != names.error) {
   338                     duplicateError(pos, e.sym);
   339                     return;
   340                 }
   341             }
   342         }
   343     }
   345     /** Check that class does not have the same name as one of
   346      *  its enclosing classes, or as a class defined in its enclosing scope.
   347      *  return true if class is unique in its enclosing scope.
   348      *  @param pos           Position for error reporting.
   349      *  @param name          The class name.
   350      *  @param s             The enclosing scope.
   351      */
   352     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   353         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   354             if (e.sym.kind == TYP && e.sym.name != names.error) {
   355                 duplicateError(pos, e.sym);
   356                 return false;
   357             }
   358         }
   359         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   360             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   361                 duplicateError(pos, sym);
   362                 return true;
   363             }
   364         }
   365         return true;
   366     }
   368 /* *************************************************************************
   369  * Class name generation
   370  **************************************************************************/
   372     /** Return name of local class.
   373      *  This is of the form    <enclClass> $ n <classname>
   374      *  where
   375      *    enclClass is the flat name of the enclosing class,
   376      *    classname is the simple name of the local class
   377      */
   378     Name localClassName(ClassSymbol c) {
   379         for (int i=1; ; i++) {
   380             Name flatname = names.
   381                 fromString("" + c.owner.enclClass().flatname +
   382                            syntheticNameChar + i +
   383                            c.name);
   384             if (compiled.get(flatname) == null) return flatname;
   385         }
   386     }
   388 /* *************************************************************************
   389  * Type Checking
   390  **************************************************************************/
   392     /** Check that a given type is assignable to a given proto-type.
   393      *  If it is, return the type, otherwise return errType.
   394      *  @param pos        Position to be used for error reporting.
   395      *  @param found      The type that was found.
   396      *  @param req        The type that was required.
   397      */
   398     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   399         return checkType(pos, found, req, "incompatible.types");
   400     }
   402     Type checkType(DiagnosticPosition pos, Type found, Type req, String errKey) {
   403         if (req.tag == ERROR)
   404             return req;
   405         if (found.tag == FORALL)
   406             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   407         if (req.tag == NONE)
   408             return found;
   409         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   410             return found;
   411         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   412             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   413         if (found.isSuperBound()) {
   414             log.error(pos, "assignment.from.super-bound", found);
   415             return types.createErrorType(found);
   416         }
   417         if (req.isExtendsBound()) {
   418             log.error(pos, "assignment.to.extends-bound", req);
   419             return types.createErrorType(found);
   420         }
   421         return typeError(pos, diags.fragment(errKey), found, req);
   422     }
   424     /** Instantiate polymorphic type to some prototype, unless
   425      *  prototype is `anyPoly' in which case polymorphic type
   426      *  is returned unchanged.
   427      */
   428     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   429         if (pt == Infer.anyPoly && complexInference) {
   430             return t;
   431         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   432             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   433             return instantiatePoly(pos, t, newpt, warn);
   434         } else if (pt.tag == ERROR) {
   435             return pt;
   436         } else {
   437             try {
   438                 return infer.instantiateExpr(t, pt, warn);
   439             } catch (Infer.NoInstanceException ex) {
   440                 if (ex.isAmbiguous) {
   441                     JCDiagnostic d = ex.getDiagnostic();
   442                     log.error(pos,
   443                               "undetermined.type" + (d!=null ? ".1" : ""),
   444                               t, d);
   445                     return types.createErrorType(pt);
   446                 } else {
   447                     JCDiagnostic d = ex.getDiagnostic();
   448                     return typeError(pos,
   449                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   450                                      t, pt);
   451                 }
   452             } catch (Infer.InvalidInstanceException ex) {
   453                 JCDiagnostic d = ex.getDiagnostic();
   454                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   455                 return types.createErrorType(pt);
   456             }
   457         }
   458     }
   460     /** Check that a given type can be cast to a given target type.
   461      *  Return the result of the cast.
   462      *  @param pos        Position to be used for error reporting.
   463      *  @param found      The type that is being cast.
   464      *  @param req        The target type of the cast.
   465      */
   466     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   467         if (found.tag == FORALL) {
   468             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   469             return req;
   470         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   471             return req;
   472         } else {
   473             return typeError(pos,
   474                              diags.fragment("inconvertible.types"),
   475                              found, req);
   476         }
   477     }
   478 //where
   479         /** Is type a type variable, or a (possibly multi-dimensional) array of
   480          *  type variables?
   481          */
   482         boolean isTypeVar(Type t) {
   483             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   484         }
   486     /** Check that a type is within some bounds.
   487      *
   488      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   489      *  type argument.
   490      *  @param pos           Position to be used for error reporting.
   491      *  @param a             The type that should be bounded by bs.
   492      *  @param bs            The bound.
   493      */
   494     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   495          if (a.isUnbound()) {
   496              return;
   497          } else if (a.tag != WILDCARD) {
   498              a = types.upperBound(a);
   499              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   500                  if (!types.isSubtype(a, l.head)) {
   501                      log.error(pos, "not.within.bounds", a);
   502                      return;
   503                  }
   504              }
   505          } else if (a.isExtendsBound()) {
   506              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   507                  log.error(pos, "not.within.bounds", a);
   508          } else if (a.isSuperBound()) {
   509              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   510                  log.error(pos, "not.within.bounds", a);
   511          }
   512      }
   514     /** Check that a type is within some bounds.
   515      *
   516      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   517      *  type argument.
   518      *  @param pos           Position to be used for error reporting.
   519      *  @param a             The type that should be bounded by bs.
   520      *  @param bs            The bound.
   521      */
   522     private void checkCapture(JCTypeApply tree) {
   523         List<JCExpression> args = tree.getTypeArguments();
   524         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   525             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   526                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   527                 break;
   528             }
   529             args = args.tail;
   530         }
   531      }
   533     /** Check that type is different from 'void'.
   534      *  @param pos           Position to be used for error reporting.
   535      *  @param t             The type to be checked.
   536      */
   537     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   538         if (t.tag == VOID) {
   539             log.error(pos, "void.not.allowed.here");
   540             return types.createErrorType(t);
   541         } else {
   542             return t;
   543         }
   544     }
   546     /** Check that type is a class or interface type.
   547      *  @param pos           Position to be used for error reporting.
   548      *  @param t             The type to be checked.
   549      */
   550     Type checkClassType(DiagnosticPosition pos, Type t) {
   551         if (t.tag != CLASS && t.tag != ERROR)
   552             return typeTagError(pos,
   553                                 diags.fragment("type.req.class"),
   554                                 (t.tag == TYPEVAR)
   555                                 ? diags.fragment("type.parameter", t)
   556                                 : t);
   557         else
   558             return t;
   559     }
   561     /** Check that type is a class or interface type.
   562      *  @param pos           Position to be used for error reporting.
   563      *  @param t             The type to be checked.
   564      *  @param noBounds    True if type bounds are illegal here.
   565      */
   566     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   567         t = checkClassType(pos, t);
   568         if (noBounds && t.isParameterized()) {
   569             List<Type> args = t.getTypeArguments();
   570             while (args.nonEmpty()) {
   571                 if (args.head.tag == WILDCARD)
   572                     return typeTagError(pos,
   573                                         diags.fragment("type.req.exact"),
   574                                         args.head);
   575                 args = args.tail;
   576             }
   577         }
   578         return t;
   579     }
   581     /** Check that type is a reifiable class, interface or array type.
   582      *  @param pos           Position to be used for error reporting.
   583      *  @param t             The type to be checked.
   584      */
   585     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   586         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   587             return typeTagError(pos,
   588                                 diags.fragment("type.req.class.array"),
   589                                 t);
   590         } else if (!types.isReifiable(t)) {
   591             log.error(pos, "illegal.generic.type.for.instof");
   592             return types.createErrorType(t);
   593         } else {
   594             return t;
   595         }
   596     }
   598     /** Check that type is a reference type, i.e. a class, interface or array type
   599      *  or a type variable.
   600      *  @param pos           Position to be used for error reporting.
   601      *  @param t             The type to be checked.
   602      */
   603     Type checkRefType(DiagnosticPosition pos, Type t) {
   604         switch (t.tag) {
   605         case CLASS:
   606         case ARRAY:
   607         case TYPEVAR:
   608         case WILDCARD:
   609         case ERROR:
   610             return t;
   611         default:
   612             return typeTagError(pos,
   613                                 diags.fragment("type.req.ref"),
   614                                 t);
   615         }
   616     }
   618     /** Check that each type is a reference type, i.e. a class, interface or array type
   619      *  or a type variable.
   620      *  @param trees         Original trees, used for error reporting.
   621      *  @param types         The types to be checked.
   622      */
   623     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   624         List<JCExpression> tl = trees;
   625         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   626             l.head = checkRefType(tl.head.pos(), l.head);
   627             tl = tl.tail;
   628         }
   629         return types;
   630     }
   632     /** Check that type is a null or reference type.
   633      *  @param pos           Position to be used for error reporting.
   634      *  @param t             The type to be checked.
   635      */
   636     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   637         switch (t.tag) {
   638         case CLASS:
   639         case ARRAY:
   640         case TYPEVAR:
   641         case WILDCARD:
   642         case BOT:
   643         case ERROR:
   644             return t;
   645         default:
   646             return typeTagError(pos,
   647                                 diags.fragment("type.req.ref"),
   648                                 t);
   649         }
   650     }
   652     /** Check that flag set does not contain elements of two conflicting sets. s
   653      *  Return true if it doesn't.
   654      *  @param pos           Position to be used for error reporting.
   655      *  @param flags         The set of flags to be checked.
   656      *  @param set1          Conflicting flags set #1.
   657      *  @param set2          Conflicting flags set #2.
   658      */
   659     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   660         if ((flags & set1) != 0 && (flags & set2) != 0) {
   661             log.error(pos,
   662                       "illegal.combination.of.modifiers",
   663                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   664                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   665             return false;
   666         } else
   667             return true;
   668     }
   670     /** Check that the type inferred using the diamond operator does not contain
   671      *  non-denotable types such as captured types or intersection types.
   672      *  @param t the type inferred using the diamond operator
   673      */
   674     List<Type> checkDiamond(ClassType t) {
   675         DiamondTypeChecker dtc = new DiamondTypeChecker();
   676         ListBuffer<Type> buf = ListBuffer.lb();
   677         for (Type arg : t.getTypeArguments()) {
   678             if (!dtc.visit(arg, null)) {
   679                 buf.append(arg);
   680             }
   681         }
   682         return buf.toList();
   683     }
   685     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   686         public Boolean visitType(Type t, Void s) {
   687             return true;
   688         }
   689         @Override
   690         public Boolean visitClassType(ClassType t, Void s) {
   691             if (t.isCompound()) {
   692                 return false;
   693             }
   694             for (Type targ : t.getTypeArguments()) {
   695                 if (!visit(targ, s)) {
   696                     return false;
   697                 }
   698             }
   699             return true;
   700         }
   701         @Override
   702         public Boolean visitCapturedType(CapturedType t, Void s) {
   703             return false;
   704         }
   705     }
   707     void checkVarargMethodDecl(JCMethodDecl tree) {
   708         MethodSymbol m = tree.sym;
   709         //check the element type of the vararg
   710         if (m.isVarArgs()) {
   711             Type varargElemType = types.elemtype(tree.params.last().type);
   712             if (!types.isReifiable(varargElemType)) {
   713                 warnUnsafeVararg(tree.params.head.pos(), varargElemType);
   714             }
   715         }
   716     }
   718     /**
   719      * Check that vararg method call is sound
   720      * @param pos Position to be used for error reporting.
   721      * @param argtypes Actual arguments supplied to vararg method.
   722      */
   723     void checkVararg(DiagnosticPosition pos, List<Type> argtypes, Symbol msym, Env<AttrContext> env) {
   724         Env<AttrContext> calleeLintEnv = env;
   725         while (calleeLintEnv.info.lint == null)
   726             calleeLintEnv = calleeLintEnv.next;
   727         Lint calleeLint = calleeLintEnv.info.lint.augment(msym.attributes_field, msym.flags());
   728         Type argtype = argtypes.last();
   729         if (!types.isReifiable(argtype) && !calleeLint.isSuppressed(Lint.LintCategory.VARARGS)) {
   730             warnUnchecked(pos,
   731                               "unchecked.generic.array.creation",
   732                               argtype);
   733         }
   734     }
   736     /** Check that given modifiers are legal for given symbol and
   737      *  return modifiers together with any implicit modififiers for that symbol.
   738      *  Warning: we can't use flags() here since this method
   739      *  is called during class enter, when flags() would cause a premature
   740      *  completion.
   741      *  @param pos           Position to be used for error reporting.
   742      *  @param flags         The set of modifiers given in a definition.
   743      *  @param sym           The defined symbol.
   744      */
   745     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   746         long mask;
   747         long implicit = 0;
   748         switch (sym.kind) {
   749         case VAR:
   750             if (sym.owner.kind != TYP)
   751                 mask = LocalVarFlags;
   752             else if ((sym.owner.flags_field & INTERFACE) != 0)
   753                 mask = implicit = InterfaceVarFlags;
   754             else
   755                 mask = VarFlags;
   756             break;
   757         case MTH:
   758             if (sym.name == names.init) {
   759                 if ((sym.owner.flags_field & ENUM) != 0) {
   760                     // enum constructors cannot be declared public or
   761                     // protected and must be implicitly or explicitly
   762                     // private
   763                     implicit = PRIVATE;
   764                     mask = PRIVATE;
   765                 } else
   766                     mask = ConstructorFlags;
   767             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   768                 mask = implicit = InterfaceMethodFlags;
   769             else {
   770                 mask = MethodFlags;
   771             }
   772             // Imply STRICTFP if owner has STRICTFP set.
   773             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   774               implicit |= sym.owner.flags_field & STRICTFP;
   775             break;
   776         case TYP:
   777             if (sym.isLocal()) {
   778                 mask = LocalClassFlags;
   779                 if (sym.name.isEmpty()) { // Anonymous class
   780                     // Anonymous classes in static methods are themselves static;
   781                     // that's why we admit STATIC here.
   782                     mask |= STATIC;
   783                     // JLS: Anonymous classes are final.
   784                     implicit |= FINAL;
   785                 }
   786                 if ((sym.owner.flags_field & STATIC) == 0 &&
   787                     (flags & ENUM) != 0)
   788                     log.error(pos, "enums.must.be.static");
   789             } else if (sym.owner.kind == TYP) {
   790                 mask = MemberClassFlags;
   791                 if (sym.owner.owner.kind == PCK ||
   792                     (sym.owner.flags_field & STATIC) != 0)
   793                     mask |= STATIC;
   794                 else if ((flags & ENUM) != 0)
   795                     log.error(pos, "enums.must.be.static");
   796                 // Nested interfaces and enums are always STATIC (Spec ???)
   797                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   798             } else {
   799                 mask = ClassFlags;
   800             }
   801             // Interfaces are always ABSTRACT
   802             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   804             if ((flags & ENUM) != 0) {
   805                 // enums can't be declared abstract or final
   806                 mask &= ~(ABSTRACT | FINAL);
   807                 implicit |= implicitEnumFinalFlag(tree);
   808             }
   809             // Imply STRICTFP if owner has STRICTFP set.
   810             implicit |= sym.owner.flags_field & STRICTFP;
   811             break;
   812         default:
   813             throw new AssertionError();
   814         }
   815         long illegal = flags & StandardFlags & ~mask;
   816         if (illegal != 0) {
   817             if ((illegal & INTERFACE) != 0) {
   818                 log.error(pos, "intf.not.allowed.here");
   819                 mask |= INTERFACE;
   820             }
   821             else {
   822                 log.error(pos,
   823                           "mod.not.allowed.here", asFlagSet(illegal));
   824             }
   825         }
   826         else if ((sym.kind == TYP ||
   827                   // ISSUE: Disallowing abstract&private is no longer appropriate
   828                   // in the presence of inner classes. Should it be deleted here?
   829                   checkDisjoint(pos, flags,
   830                                 ABSTRACT,
   831                                 PRIVATE | STATIC))
   832                  &&
   833                  checkDisjoint(pos, flags,
   834                                ABSTRACT | INTERFACE,
   835                                FINAL | NATIVE | SYNCHRONIZED)
   836                  &&
   837                  checkDisjoint(pos, flags,
   838                                PUBLIC,
   839                                PRIVATE | PROTECTED)
   840                  &&
   841                  checkDisjoint(pos, flags,
   842                                PRIVATE,
   843                                PUBLIC | PROTECTED)
   844                  &&
   845                  checkDisjoint(pos, flags,
   846                                FINAL,
   847                                VOLATILE)
   848                  &&
   849                  (sym.kind == TYP ||
   850                   checkDisjoint(pos, flags,
   851                                 ABSTRACT | NATIVE,
   852                                 STRICTFP))) {
   853             // skip
   854         }
   855         return flags & (mask | ~StandardFlags) | implicit;
   856     }
   859     /** Determine if this enum should be implicitly final.
   860      *
   861      *  If the enum has no specialized enum contants, it is final.
   862      *
   863      *  If the enum does have specialized enum contants, it is
   864      *  <i>not</i> final.
   865      */
   866     private long implicitEnumFinalFlag(JCTree tree) {
   867         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   868         class SpecialTreeVisitor extends JCTree.Visitor {
   869             boolean specialized;
   870             SpecialTreeVisitor() {
   871                 this.specialized = false;
   872             };
   874             @Override
   875             public void visitTree(JCTree tree) { /* no-op */ }
   877             @Override
   878             public void visitVarDef(JCVariableDecl tree) {
   879                 if ((tree.mods.flags & ENUM) != 0) {
   880                     if (tree.init instanceof JCNewClass &&
   881                         ((JCNewClass) tree.init).def != null) {
   882                         specialized = true;
   883                     }
   884                 }
   885             }
   886         }
   888         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   889         JCClassDecl cdef = (JCClassDecl) tree;
   890         for (JCTree defs: cdef.defs) {
   891             defs.accept(sts);
   892             if (sts.specialized) return 0;
   893         }
   894         return FINAL;
   895     }
   897 /* *************************************************************************
   898  * Type Validation
   899  **************************************************************************/
   901     /** Validate a type expression. That is,
   902      *  check that all type arguments of a parametric type are within
   903      *  their bounds. This must be done in a second phase after type attributon
   904      *  since a class might have a subclass as type parameter bound. E.g:
   905      *
   906      *  class B<A extends C> { ... }
   907      *  class C extends B<C> { ... }
   908      *
   909      *  and we can't make sure that the bound is already attributed because
   910      *  of possible cycles.
   911      *
   912      * Visitor method: Validate a type expression, if it is not null, catching
   913      *  and reporting any completion failures.
   914      */
   915     void validate(JCTree tree, Env<AttrContext> env) {
   916         validate(tree, env, true);
   917     }
   918     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
   919         new Validator(env).validateTree(tree, checkRaw, true);
   920     }
   922     /** Visitor method: Validate a list of type expressions.
   923      */
   924     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   925         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   926             validate(l.head, env);
   927     }
   929     /** A visitor class for type validation.
   930      */
   931     class Validator extends JCTree.Visitor {
   933         boolean isOuter;
   934         Env<AttrContext> env;
   936         Validator(Env<AttrContext> env) {
   937             this.env = env;
   938         }
   940         @Override
   941         public void visitTypeArray(JCArrayTypeTree tree) {
   942             tree.elemtype.accept(this);
   943         }
   945         @Override
   946         public void visitTypeApply(JCTypeApply tree) {
   947             if (tree.type.tag == CLASS) {
   948                 List<Type> formals = tree.type.tsym.type.allparams();
   949                 List<Type> actuals = tree.type.allparams();
   950                 List<JCExpression> args = tree.arguments;
   951                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   952                 ListBuffer<Type> tvars_buf = new ListBuffer<Type>();
   954                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
   956                 // For matching pairs of actual argument types `a' and
   957                 // formal type parameters with declared bound `b' ...
   958                 while (args.nonEmpty() && forms.nonEmpty()) {
   959                     validateTree(args.head,
   960                             !(isOuter && is_java_lang_Class),
   961                             false);
   963                     // exact type arguments needs to know their
   964                     // bounds (for upper and lower bound
   965                     // calculations).  So we create new TypeVars with
   966                     // bounds substed with actuals.
   967                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   968                                                       formals,
   969                                                       actuals));
   971                     args = args.tail;
   972                     forms = forms.tail;
   973                 }
   975                 args = tree.arguments;
   976                 List<Type> tvars_cap = types.substBounds(formals,
   977                                           formals,
   978                                           types.capture(tree.type).allparams());
   979                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   980                     // Let the actual arguments know their bound
   981                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   982                     args = args.tail;
   983                     tvars_cap = tvars_cap.tail;
   984                 }
   986                 args = tree.arguments;
   987                 List<Type> tvars = tvars_buf.toList();
   989                 while (args.nonEmpty() && tvars.nonEmpty()) {
   990                     Type actual = types.subst(args.head.type,
   991                         tree.type.tsym.type.getTypeArguments(),
   992                         tvars_buf.toList());
   993                     checkExtends(args.head.pos(),
   994                                  actual,
   995                                  (TypeVar)tvars.head);
   996                     args = args.tail;
   997                     tvars = tvars.tail;
   998                 }
  1000                 checkCapture(tree);
  1002                 // Check that this type is either fully parameterized, or
  1003                 // not parameterized at all.
  1004                 if (tree.type.getEnclosingType().isRaw())
  1005                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1006                 if (tree.clazz.getTag() == JCTree.SELECT)
  1007                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1011         @Override
  1012         public void visitTypeParameter(JCTypeParameter tree) {
  1013             validateTrees(tree.bounds, true, isOuter);
  1014             checkClassBounds(tree.pos(), tree.type);
  1017         @Override
  1018         public void visitWildcard(JCWildcard tree) {
  1019             if (tree.inner != null)
  1020                 validateTree(tree.inner, true, isOuter);
  1023         @Override
  1024         public void visitSelect(JCFieldAccess tree) {
  1025             if (tree.type.tag == CLASS) {
  1026                 visitSelectInternal(tree);
  1028                 // Check that this type is either fully parameterized, or
  1029                 // not parameterized at all.
  1030                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1031                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1034         public void visitSelectInternal(JCFieldAccess tree) {
  1035             if (tree.type.tsym.isStatic() &&
  1036                 tree.selected.type.isParameterized()) {
  1037                 // The enclosing type is not a class, so we are
  1038                 // looking at a static member type.  However, the
  1039                 // qualifying expression is parameterized.
  1040                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1041             } else {
  1042                 // otherwise validate the rest of the expression
  1043                 tree.selected.accept(this);
  1047         @Override
  1048         public void visitAnnotatedType(JCAnnotatedType tree) {
  1049             tree.underlyingType.accept(this);
  1052         /** Default visitor method: do nothing.
  1053          */
  1054         @Override
  1055         public void visitTree(JCTree tree) {
  1058         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1059             try {
  1060                 if (tree != null) {
  1061                     this.isOuter = isOuter;
  1062                     tree.accept(this);
  1063                     if (checkRaw)
  1064                         checkRaw(tree, env);
  1066             } catch (CompletionFailure ex) {
  1067                 completionError(tree.pos(), ex);
  1071         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1072             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1073                 validateTree(l.head, checkRaw, isOuter);
  1076         void checkRaw(JCTree tree, Env<AttrContext> env) {
  1077             if (lint.isEnabled(Lint.LintCategory.RAW) &&
  1078                 tree.type.tag == CLASS &&
  1079                 !TreeInfo.isDiamond(tree) &&
  1080                 !env.enclClass.name.isEmpty() &&  //anonymous or intersection
  1081                 tree.type.isRaw()) {
  1082                 log.warning(Lint.LintCategory.RAW,
  1083                         tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1088 /* *************************************************************************
  1089  * Exception checking
  1090  **************************************************************************/
  1092     /* The following methods treat classes as sets that contain
  1093      * the class itself and all their subclasses
  1094      */
  1096     /** Is given type a subtype of some of the types in given list?
  1097      */
  1098     boolean subset(Type t, List<Type> ts) {
  1099         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1100             if (types.isSubtype(t, l.head)) return true;
  1101         return false;
  1104     /** Is given type a subtype or supertype of
  1105      *  some of the types in given list?
  1106      */
  1107     boolean intersects(Type t, List<Type> ts) {
  1108         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1109             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1110         return false;
  1113     /** Add type set to given type list, unless it is a subclass of some class
  1114      *  in the list.
  1115      */
  1116     List<Type> incl(Type t, List<Type> ts) {
  1117         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1120     /** Remove type set from type set list.
  1121      */
  1122     List<Type> excl(Type t, List<Type> ts) {
  1123         if (ts.isEmpty()) {
  1124             return ts;
  1125         } else {
  1126             List<Type> ts1 = excl(t, ts.tail);
  1127             if (types.isSubtype(ts.head, t)) return ts1;
  1128             else if (ts1 == ts.tail) return ts;
  1129             else return ts1.prepend(ts.head);
  1133     /** Form the union of two type set lists.
  1134      */
  1135     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1136         List<Type> ts = ts1;
  1137         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1138             ts = incl(l.head, ts);
  1139         return ts;
  1142     /** Form the difference of two type lists.
  1143      */
  1144     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1145         List<Type> ts = ts1;
  1146         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1147             ts = excl(l.head, ts);
  1148         return ts;
  1151     /** Form the intersection of two type lists.
  1152      */
  1153     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1154         List<Type> ts = List.nil();
  1155         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1156             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1157         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1158             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1159         return ts;
  1162     /** Is exc an exception symbol that need not be declared?
  1163      */
  1164     boolean isUnchecked(ClassSymbol exc) {
  1165         return
  1166             exc.kind == ERR ||
  1167             exc.isSubClass(syms.errorType.tsym, types) ||
  1168             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1171     /** Is exc an exception type that need not be declared?
  1172      */
  1173     boolean isUnchecked(Type exc) {
  1174         return
  1175             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1176             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1177             exc.tag == BOT;
  1180     /** Same, but handling completion failures.
  1181      */
  1182     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1183         try {
  1184             return isUnchecked(exc);
  1185         } catch (CompletionFailure ex) {
  1186             completionError(pos, ex);
  1187             return true;
  1191     /** Is exc handled by given exception list?
  1192      */
  1193     boolean isHandled(Type exc, List<Type> handled) {
  1194         return isUnchecked(exc) || subset(exc, handled);
  1197     /** Return all exceptions in thrown list that are not in handled list.
  1198      *  @param thrown     The list of thrown exceptions.
  1199      *  @param handled    The list of handled exceptions.
  1200      */
  1201     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1202         List<Type> unhandled = List.nil();
  1203         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1204             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1205         return unhandled;
  1208 /* *************************************************************************
  1209  * Overriding/Implementation checking
  1210  **************************************************************************/
  1212     /** The level of access protection given by a flag set,
  1213      *  where PRIVATE is highest and PUBLIC is lowest.
  1214      */
  1215     static int protection(long flags) {
  1216         switch ((short)(flags & AccessFlags)) {
  1217         case PRIVATE: return 3;
  1218         case PROTECTED: return 1;
  1219         default:
  1220         case PUBLIC: return 0;
  1221         case 0: return 2;
  1225     /** A customized "cannot override" error message.
  1226      *  @param m      The overriding method.
  1227      *  @param other  The overridden method.
  1228      *  @return       An internationalized string.
  1229      */
  1230     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1231         String key;
  1232         if ((other.owner.flags() & INTERFACE) == 0)
  1233             key = "cant.override";
  1234         else if ((m.owner.flags() & INTERFACE) == 0)
  1235             key = "cant.implement";
  1236         else
  1237             key = "clashes.with";
  1238         return diags.fragment(key, m, m.location(), other, other.location());
  1241     /** A customized "override" warning message.
  1242      *  @param m      The overriding method.
  1243      *  @param other  The overridden method.
  1244      *  @return       An internationalized string.
  1245      */
  1246     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1247         String key;
  1248         if ((other.owner.flags() & INTERFACE) == 0)
  1249             key = "unchecked.override";
  1250         else if ((m.owner.flags() & INTERFACE) == 0)
  1251             key = "unchecked.implement";
  1252         else
  1253             key = "unchecked.clash.with";
  1254         return diags.fragment(key, m, m.location(), other, other.location());
  1257     /** A customized "override" warning message.
  1258      *  @param m      The overriding method.
  1259      *  @param other  The overridden method.
  1260      *  @return       An internationalized string.
  1261      */
  1262     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1263         String key;
  1264         if ((other.owner.flags() & INTERFACE) == 0)
  1265             key = "varargs.override";
  1266         else  if ((m.owner.flags() & INTERFACE) == 0)
  1267             key = "varargs.implement";
  1268         else
  1269             key = "varargs.clash.with";
  1270         return diags.fragment(key, m, m.location(), other, other.location());
  1273     /** Check that this method conforms with overridden method 'other'.
  1274      *  where `origin' is the class where checking started.
  1275      *  Complications:
  1276      *  (1) Do not check overriding of synthetic methods
  1277      *      (reason: they might be final).
  1278      *      todo: check whether this is still necessary.
  1279      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1280      *      than the method it implements. Augment the proxy methods with the
  1281      *      undeclared exceptions in this case.
  1282      *  (3) When generics are enabled, admit the case where an interface proxy
  1283      *      has a result type
  1284      *      extended by the result type of the method it implements.
  1285      *      Change the proxies result type to the smaller type in this case.
  1287      *  @param tree         The tree from which positions
  1288      *                      are extracted for errors.
  1289      *  @param m            The overriding method.
  1290      *  @param other        The overridden method.
  1291      *  @param origin       The class of which the overriding method
  1292      *                      is a member.
  1293      */
  1294     void checkOverride(JCTree tree,
  1295                        MethodSymbol m,
  1296                        MethodSymbol other,
  1297                        ClassSymbol origin) {
  1298         // Don't check overriding of synthetic methods or by bridge methods.
  1299         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1300             return;
  1303         // Error if static method overrides instance method (JLS 8.4.6.2).
  1304         if ((m.flags() & STATIC) != 0 &&
  1305                    (other.flags() & STATIC) == 0) {
  1306             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1307                       cannotOverride(m, other));
  1308             return;
  1311         // Error if instance method overrides static or final
  1312         // method (JLS 8.4.6.1).
  1313         if ((other.flags() & FINAL) != 0 ||
  1314                  (m.flags() & STATIC) == 0 &&
  1315                  (other.flags() & STATIC) != 0) {
  1316             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1317                       cannotOverride(m, other),
  1318                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1319             return;
  1322         if ((m.owner.flags() & ANNOTATION) != 0) {
  1323             // handled in validateAnnotationMethod
  1324             return;
  1327         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1328         if ((origin.flags() & INTERFACE) == 0 &&
  1329                  protection(m.flags()) > protection(other.flags())) {
  1330             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1331                       cannotOverride(m, other),
  1332                       other.flags() == 0 ?
  1333                           Flag.PACKAGE :
  1334                           asFlagSet(other.flags() & AccessFlags));
  1335             return;
  1338         Type mt = types.memberType(origin.type, m);
  1339         Type ot = types.memberType(origin.type, other);
  1340         // Error if overriding result type is different
  1341         // (or, in the case of generics mode, not a subtype) of
  1342         // overridden result type. We have to rename any type parameters
  1343         // before comparing types.
  1344         List<Type> mtvars = mt.getTypeArguments();
  1345         List<Type> otvars = ot.getTypeArguments();
  1346         Type mtres = mt.getReturnType();
  1347         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1349         overrideWarner.warned = false;
  1350         boolean resultTypesOK =
  1351             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1352         if (!resultTypesOK) {
  1353             if (!allowCovariantReturns &&
  1354                 m.owner != origin &&
  1355                 m.owner.isSubClass(other.owner, types)) {
  1356                 // allow limited interoperability with covariant returns
  1357             } else {
  1358                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1359                           "override.incompatible.ret",
  1360                           cannotOverride(m, other),
  1361                           mtres, otres);
  1362                 return;
  1364         } else if (overrideWarner.warned) {
  1365             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1366                     "override.unchecked.ret",
  1367                     uncheckedOverrides(m, other),
  1368                     mtres, otres);
  1371         // Error if overriding method throws an exception not reported
  1372         // by overridden method.
  1373         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1374         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1375         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1376         if (unhandledErased.nonEmpty()) {
  1377             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1378                       "override.meth.doesnt.throw",
  1379                       cannotOverride(m, other),
  1380                       unhandledUnerased.head);
  1381             return;
  1383         else if (unhandledUnerased.nonEmpty()) {
  1384             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1385                           "override.unchecked.thrown",
  1386                          cannotOverride(m, other),
  1387                          unhandledUnerased.head);
  1388             return;
  1391         // Optional warning if varargs don't agree
  1392         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1393             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1394             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1395                         ((m.flags() & Flags.VARARGS) != 0)
  1396                         ? "override.varargs.missing"
  1397                         : "override.varargs.extra",
  1398                         varargsOverrides(m, other));
  1401         // Warn if instance method overrides bridge method (compiler spec ??)
  1402         if ((other.flags() & BRIDGE) != 0) {
  1403             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1404                         uncheckedOverrides(m, other));
  1407         // Warn if a deprecated method overridden by a non-deprecated one.
  1408         if ((other.flags() & DEPRECATED) != 0
  1409             && (m.flags() & DEPRECATED) == 0
  1410             && m.outermostClass() != other.outermostClass()
  1411             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1412             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1415     // where
  1416         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1417             // If the method, m, is defined in an interface, then ignore the issue if the method
  1418             // is only inherited via a supertype and also implemented in the supertype,
  1419             // because in that case, we will rediscover the issue when examining the method
  1420             // in the supertype.
  1421             // If the method, m, is not defined in an interface, then the only time we need to
  1422             // address the issue is when the method is the supertype implemementation: any other
  1423             // case, we will have dealt with when examining the supertype classes
  1424             ClassSymbol mc = m.enclClass();
  1425             Type st = types.supertype(origin.type);
  1426             if (st.tag != CLASS)
  1427                 return true;
  1428             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1430             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1431                 List<Type> intfs = types.interfaces(origin.type);
  1432                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1434             else
  1435                 return (stimpl != m);
  1439     // used to check if there were any unchecked conversions
  1440     Warner overrideWarner = new Warner();
  1442     /** Check that a class does not inherit two concrete methods
  1443      *  with the same signature.
  1444      *  @param pos          Position to be used for error reporting.
  1445      *  @param site         The class type to be checked.
  1446      */
  1447     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1448         Type sup = types.supertype(site);
  1449         if (sup.tag != CLASS) return;
  1451         for (Type t1 = sup;
  1452              t1.tsym.type.isParameterized();
  1453              t1 = types.supertype(t1)) {
  1454             for (Scope.Entry e1 = t1.tsym.members().elems;
  1455                  e1 != null;
  1456                  e1 = e1.sibling) {
  1457                 Symbol s1 = e1.sym;
  1458                 if (s1.kind != MTH ||
  1459                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1460                     !s1.isInheritedIn(site.tsym, types) ||
  1461                     ((MethodSymbol)s1).implementation(site.tsym,
  1462                                                       types,
  1463                                                       true) != s1)
  1464                     continue;
  1465                 Type st1 = types.memberType(t1, s1);
  1466                 int s1ArgsLength = st1.getParameterTypes().length();
  1467                 if (st1 == s1.type) continue;
  1469                 for (Type t2 = sup;
  1470                      t2.tag == CLASS;
  1471                      t2 = types.supertype(t2)) {
  1472                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1473                          e2.scope != null;
  1474                          e2 = e2.next()) {
  1475                         Symbol s2 = e2.sym;
  1476                         if (s2 == s1 ||
  1477                             s2.kind != MTH ||
  1478                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1479                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1480                             !s2.isInheritedIn(site.tsym, types) ||
  1481                             ((MethodSymbol)s2).implementation(site.tsym,
  1482                                                               types,
  1483                                                               true) != s2)
  1484                             continue;
  1485                         Type st2 = types.memberType(t2, s2);
  1486                         if (types.overrideEquivalent(st1, st2))
  1487                             log.error(pos, "concrete.inheritance.conflict",
  1488                                       s1, t1, s2, t2, sup);
  1495     /** Check that classes (or interfaces) do not each define an abstract
  1496      *  method with same name and arguments but incompatible return types.
  1497      *  @param pos          Position to be used for error reporting.
  1498      *  @param t1           The first argument type.
  1499      *  @param t2           The second argument type.
  1500      */
  1501     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1502                                             Type t1,
  1503                                             Type t2) {
  1504         return checkCompatibleAbstracts(pos, t1, t2,
  1505                                         types.makeCompoundType(t1, t2));
  1508     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1509                                             Type t1,
  1510                                             Type t2,
  1511                                             Type site) {
  1512         Symbol sym = firstIncompatibility(t1, t2, site);
  1513         if (sym != null) {
  1514             log.error(pos, "types.incompatible.diff.ret",
  1515                       t1, t2, sym.name +
  1516                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1517             return false;
  1519         return true;
  1522     /** Return the first method which is defined with same args
  1523      *  but different return types in two given interfaces, or null if none
  1524      *  exists.
  1525      *  @param t1     The first type.
  1526      *  @param t2     The second type.
  1527      *  @param site   The most derived type.
  1528      *  @returns symbol from t2 that conflicts with one in t1.
  1529      */
  1530     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1531         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1532         closure(t1, interfaces1);
  1533         Map<TypeSymbol,Type> interfaces2;
  1534         if (t1 == t2)
  1535             interfaces2 = interfaces1;
  1536         else
  1537             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1539         for (Type t3 : interfaces1.values()) {
  1540             for (Type t4 : interfaces2.values()) {
  1541                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1542                 if (s != null) return s;
  1545         return null;
  1548     /** Compute all the supertypes of t, indexed by type symbol. */
  1549     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1550         if (t.tag != CLASS) return;
  1551         if (typeMap.put(t.tsym, t) == null) {
  1552             closure(types.supertype(t), typeMap);
  1553             for (Type i : types.interfaces(t))
  1554                 closure(i, typeMap);
  1558     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1559     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1560         if (t.tag != CLASS) return;
  1561         if (typesSkip.get(t.tsym) != null) return;
  1562         if (typeMap.put(t.tsym, t) == null) {
  1563             closure(types.supertype(t), typesSkip, typeMap);
  1564             for (Type i : types.interfaces(t))
  1565                 closure(i, typesSkip, typeMap);
  1569     /** Return the first method in t2 that conflicts with a method from t1. */
  1570     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1571         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1572             Symbol s1 = e1.sym;
  1573             Type st1 = null;
  1574             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1575             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1576             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1577             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1578                 Symbol s2 = e2.sym;
  1579                 if (s1 == s2) continue;
  1580                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1581                 if (st1 == null) st1 = types.memberType(t1, s1);
  1582                 Type st2 = types.memberType(t2, s2);
  1583                 if (types.overrideEquivalent(st1, st2)) {
  1584                     List<Type> tvars1 = st1.getTypeArguments();
  1585                     List<Type> tvars2 = st2.getTypeArguments();
  1586                     Type rt1 = st1.getReturnType();
  1587                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1588                     boolean compat =
  1589                         types.isSameType(rt1, rt2) ||
  1590                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1591                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1592                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1593                          checkCommonOverriderIn(s1,s2,site);
  1594                     if (!compat) return s2;
  1598         return null;
  1600     //WHERE
  1601     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1602         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1603         Type st1 = types.memberType(site, s1);
  1604         Type st2 = types.memberType(site, s2);
  1605         closure(site, supertypes);
  1606         for (Type t : supertypes.values()) {
  1607             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1608                 Symbol s3 = e.sym;
  1609                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1610                 Type st3 = types.memberType(site,s3);
  1611                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1612                     if (s3.owner == site.tsym) {
  1613                         return true;
  1615                     List<Type> tvars1 = st1.getTypeArguments();
  1616                     List<Type> tvars2 = st2.getTypeArguments();
  1617                     List<Type> tvars3 = st3.getTypeArguments();
  1618                     Type rt1 = st1.getReturnType();
  1619                     Type rt2 = st2.getReturnType();
  1620                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1621                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1622                     boolean compat =
  1623                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1624                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1625                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1626                     if (compat)
  1627                         return true;
  1631         return false;
  1634     /** Check that a given method conforms with any method it overrides.
  1635      *  @param tree         The tree from which positions are extracted
  1636      *                      for errors.
  1637      *  @param m            The overriding method.
  1638      */
  1639     void checkOverride(JCTree tree, MethodSymbol m) {
  1640         ClassSymbol origin = (ClassSymbol)m.owner;
  1641         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1642             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1643                 log.error(tree.pos(), "enum.no.finalize");
  1644                 return;
  1646         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1647              t = types.supertype(t)) {
  1648             TypeSymbol c = t.tsym;
  1649             Scope.Entry e = c.members().lookup(m.name);
  1650             while (e.scope != null) {
  1651                 if (m.overrides(e.sym, origin, types, false))
  1652                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1653                 else if (e.sym.kind == MTH &&
  1654                         e.sym.isInheritedIn(origin, types) &&
  1655                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1656                         !m.isConstructor()) {
  1657                     Type er1 = m.erasure(types);
  1658                     Type er2 = e.sym.erasure(types);
  1659                     if (types.isSameTypes(er1.getParameterTypes(),
  1660                             er2.getParameterTypes())) {
  1661                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1662                                     "name.clash.same.erasure.no.override",
  1663                                     m, m.location(),
  1664                                     e.sym, e.sym.location());
  1667                 e = e.next();
  1672     /** Check that all abstract members of given class have definitions.
  1673      *  @param pos          Position to be used for error reporting.
  1674      *  @param c            The class.
  1675      */
  1676     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1677         try {
  1678             MethodSymbol undef = firstUndef(c, c);
  1679             if (undef != null) {
  1680                 if ((c.flags() & ENUM) != 0 &&
  1681                     types.supertype(c.type).tsym == syms.enumSym &&
  1682                     (c.flags() & FINAL) == 0) {
  1683                     // add the ABSTRACT flag to an enum
  1684                     c.flags_field |= ABSTRACT;
  1685                 } else {
  1686                     MethodSymbol undef1 =
  1687                         new MethodSymbol(undef.flags(), undef.name,
  1688                                          types.memberType(c.type, undef), undef.owner);
  1689                     log.error(pos, "does.not.override.abstract",
  1690                               c, undef1, undef1.location());
  1693         } catch (CompletionFailure ex) {
  1694             completionError(pos, ex);
  1697 //where
  1698         /** Return first abstract member of class `c' that is not defined
  1699          *  in `impl', null if there is none.
  1700          */
  1701         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1702             MethodSymbol undef = null;
  1703             // Do not bother to search in classes that are not abstract,
  1704             // since they cannot have abstract members.
  1705             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1706                 Scope s = c.members();
  1707                 for (Scope.Entry e = s.elems;
  1708                      undef == null && e != null;
  1709                      e = e.sibling) {
  1710                     if (e.sym.kind == MTH &&
  1711                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1712                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1713                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1714                         if (implmeth == null || implmeth == absmeth)
  1715                             undef = absmeth;
  1718                 if (undef == null) {
  1719                     Type st = types.supertype(c.type);
  1720                     if (st.tag == CLASS)
  1721                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1723                 for (List<Type> l = types.interfaces(c.type);
  1724                      undef == null && l.nonEmpty();
  1725                      l = l.tail) {
  1726                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1729             return undef;
  1732     void checkNonCyclicDecl(JCClassDecl tree) {
  1733         CycleChecker cc = new CycleChecker();
  1734         cc.scan(tree);
  1735         if (!cc.errorFound && !cc.partialCheck) {
  1736             tree.sym.flags_field |= ACYCLIC;
  1740     class CycleChecker extends TreeScanner {
  1742         List<Symbol> seenClasses = List.nil();
  1743         boolean errorFound = false;
  1744         boolean partialCheck = false;
  1746         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  1747             if (sym != null && sym.kind == TYP) {
  1748                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  1749                 if (classEnv != null) {
  1750                     DiagnosticSource prevSource = log.currentSource();
  1751                     try {
  1752                         log.useSource(classEnv.toplevel.sourcefile);
  1753                         scan(classEnv.tree);
  1755                     finally {
  1756                         log.useSource(prevSource.getFile());
  1758                 } else if (sym.kind == TYP) {
  1759                     checkClass(pos, sym, List.<JCTree>nil());
  1761             } else {
  1762                 //not completed yet
  1763                 partialCheck = true;
  1767         @Override
  1768         public void visitSelect(JCFieldAccess tree) {
  1769             super.visitSelect(tree);
  1770             checkSymbol(tree.pos(), tree.sym);
  1773         @Override
  1774         public void visitIdent(JCIdent tree) {
  1775             checkSymbol(tree.pos(), tree.sym);
  1778         @Override
  1779         public void visitTypeApply(JCTypeApply tree) {
  1780             scan(tree.clazz);
  1783         @Override
  1784         public void visitTypeArray(JCArrayTypeTree tree) {
  1785             scan(tree.elemtype);
  1788         @Override
  1789         public void visitClassDef(JCClassDecl tree) {
  1790             List<JCTree> supertypes = List.nil();
  1791             if (tree.getExtendsClause() != null) {
  1792                 supertypes = supertypes.prepend(tree.getExtendsClause());
  1794             if (tree.getImplementsClause() != null) {
  1795                 for (JCTree intf : tree.getImplementsClause()) {
  1796                     supertypes = supertypes.prepend(intf);
  1799             checkClass(tree.pos(), tree.sym, supertypes);
  1802         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  1803             if ((c.flags_field & ACYCLIC) != 0)
  1804                 return;
  1805             if (seenClasses.contains(c)) {
  1806                 errorFound = true;
  1807                 noteCyclic(pos, (ClassSymbol)c);
  1808             } else if (!c.type.isErroneous()) {
  1809                 try {
  1810                     seenClasses = seenClasses.prepend(c);
  1811                     if (c.type.tag == CLASS) {
  1812                         if (supertypes.nonEmpty()) {
  1813                             scan(supertypes);
  1815                         else {
  1816                             ClassType ct = (ClassType)c.type;
  1817                             if (ct.supertype_field == null ||
  1818                                     ct.interfaces_field == null) {
  1819                                 //not completed yet
  1820                                 partialCheck = true;
  1821                                 return;
  1823                             checkSymbol(pos, ct.supertype_field.tsym);
  1824                             for (Type intf : ct.interfaces_field) {
  1825                                 checkSymbol(pos, intf.tsym);
  1828                         if (c.owner.kind == TYP) {
  1829                             checkSymbol(pos, c.owner);
  1832                 } finally {
  1833                     seenClasses = seenClasses.tail;
  1839     /** Check for cyclic references. Issue an error if the
  1840      *  symbol of the type referred to has a LOCKED flag set.
  1842      *  @param pos      Position to be used for error reporting.
  1843      *  @param t        The type referred to.
  1844      */
  1845     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1846         checkNonCyclicInternal(pos, t);
  1850     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1851         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1854     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1855         final TypeVar tv;
  1856         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1857             return;
  1858         if (seen.contains(t)) {
  1859             tv = (TypeVar)t;
  1860             tv.bound = types.createErrorType(t);
  1861             log.error(pos, "cyclic.inheritance", t);
  1862         } else if (t.tag == TYPEVAR) {
  1863             tv = (TypeVar)t;
  1864             seen = seen.prepend(tv);
  1865             for (Type b : types.getBounds(tv))
  1866                 checkNonCyclic1(pos, b, seen);
  1870     /** Check for cyclic references. Issue an error if the
  1871      *  symbol of the type referred to has a LOCKED flag set.
  1873      *  @param pos      Position to be used for error reporting.
  1874      *  @param t        The type referred to.
  1875      *  @returns        True if the check completed on all attributed classes
  1876      */
  1877     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1878         boolean complete = true; // was the check complete?
  1879         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1880         Symbol c = t.tsym;
  1881         if ((c.flags_field & ACYCLIC) != 0) return true;
  1883         if ((c.flags_field & LOCKED) != 0) {
  1884             noteCyclic(pos, (ClassSymbol)c);
  1885         } else if (!c.type.isErroneous()) {
  1886             try {
  1887                 c.flags_field |= LOCKED;
  1888                 if (c.type.tag == CLASS) {
  1889                     ClassType clazz = (ClassType)c.type;
  1890                     if (clazz.interfaces_field != null)
  1891                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1892                             complete &= checkNonCyclicInternal(pos, l.head);
  1893                     if (clazz.supertype_field != null) {
  1894                         Type st = clazz.supertype_field;
  1895                         if (st != null && st.tag == CLASS)
  1896                             complete &= checkNonCyclicInternal(pos, st);
  1898                     if (c.owner.kind == TYP)
  1899                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1901             } finally {
  1902                 c.flags_field &= ~LOCKED;
  1905         if (complete)
  1906             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1907         if (complete) c.flags_field |= ACYCLIC;
  1908         return complete;
  1911     /** Note that we found an inheritance cycle. */
  1912     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1913         log.error(pos, "cyclic.inheritance", c);
  1914         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1915             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1916         Type st = types.supertype(c.type);
  1917         if (st.tag == CLASS)
  1918             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1919         c.type = types.createErrorType(c, c.type);
  1920         c.flags_field |= ACYCLIC;
  1923     /** Check that all methods which implement some
  1924      *  method conform to the method they implement.
  1925      *  @param tree         The class definition whose members are checked.
  1926      */
  1927     void checkImplementations(JCClassDecl tree) {
  1928         checkImplementations(tree, tree.sym);
  1930 //where
  1931         /** Check that all methods which implement some
  1932          *  method in `ic' conform to the method they implement.
  1933          */
  1934         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1935             ClassSymbol origin = tree.sym;
  1936             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1937                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1938                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1939                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1940                         if (e.sym.kind == MTH &&
  1941                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1942                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1943                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1944                             if (implmeth != null && implmeth != absmeth &&
  1945                                 (implmeth.owner.flags() & INTERFACE) ==
  1946                                 (origin.flags() & INTERFACE)) {
  1947                                 // don't check if implmeth is in a class, yet
  1948                                 // origin is an interface. This case arises only
  1949                                 // if implmeth is declared in Object. The reason is
  1950                                 // that interfaces really don't inherit from
  1951                                 // Object it's just that the compiler represents
  1952                                 // things that way.
  1953                                 checkOverride(tree, implmeth, absmeth, origin);
  1961     /** Check that all abstract methods implemented by a class are
  1962      *  mutually compatible.
  1963      *  @param pos          Position to be used for error reporting.
  1964      *  @param c            The class whose interfaces are checked.
  1965      */
  1966     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1967         List<Type> supertypes = types.interfaces(c);
  1968         Type supertype = types.supertype(c);
  1969         if (supertype.tag == CLASS &&
  1970             (supertype.tsym.flags() & ABSTRACT) != 0)
  1971             supertypes = supertypes.prepend(supertype);
  1972         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1973             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1974                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1975                 return;
  1976             for (List<Type> m = supertypes; m != l; m = m.tail)
  1977                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1978                     return;
  1980         checkCompatibleConcretes(pos, c);
  1983     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1984         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1985             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1986                 // VM allows methods and variables with differing types
  1987                 if (sym.kind == e.sym.kind &&
  1988                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1989                     sym != e.sym &&
  1990                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1991                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  1992                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1993                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1994                     return;
  2000     /** Report a conflict between a user symbol and a synthetic symbol.
  2001      */
  2002     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2003         if (!sym.type.isErroneous()) {
  2004             if (warnOnSyntheticConflicts) {
  2005                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2007             else {
  2008                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2013     /** Check that class c does not implement directly or indirectly
  2014      *  the same parameterized interface with two different argument lists.
  2015      *  @param pos          Position to be used for error reporting.
  2016      *  @param type         The type whose interfaces are checked.
  2017      */
  2018     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2019         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2021 //where
  2022         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2023          *  with their class symbol as key and their type as value. Make
  2024          *  sure no class is entered with two different types.
  2025          */
  2026         void checkClassBounds(DiagnosticPosition pos,
  2027                               Map<TypeSymbol,Type> seensofar,
  2028                               Type type) {
  2029             if (type.isErroneous()) return;
  2030             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2031                 Type it = l.head;
  2032                 Type oldit = seensofar.put(it.tsym, it);
  2033                 if (oldit != null) {
  2034                     List<Type> oldparams = oldit.allparams();
  2035                     List<Type> newparams = it.allparams();
  2036                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2037                         log.error(pos, "cant.inherit.diff.arg",
  2038                                   it.tsym, Type.toString(oldparams),
  2039                                   Type.toString(newparams));
  2041                 checkClassBounds(pos, seensofar, it);
  2043             Type st = types.supertype(type);
  2044             if (st != null) checkClassBounds(pos, seensofar, st);
  2047     /** Enter interface into into set.
  2048      *  If it existed already, issue a "repeated interface" error.
  2049      */
  2050     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2051         if (its.contains(it))
  2052             log.error(pos, "repeated.interface");
  2053         else {
  2054             its.add(it);
  2058 /* *************************************************************************
  2059  * Check annotations
  2060  **************************************************************************/
  2062     /**
  2063      * Recursively validate annotations values
  2064      */
  2065     void validateAnnotationTree(JCTree tree) {
  2066         class AnnotationValidator extends TreeScanner {
  2067             @Override
  2068             public void visitAnnotation(JCAnnotation tree) {
  2069                 super.visitAnnotation(tree);
  2070                 validateAnnotation(tree);
  2073         tree.accept(new AnnotationValidator());
  2076     /** Annotation types are restricted to primitives, String, an
  2077      *  enum, an annotation, Class, Class<?>, Class<? extends
  2078      *  Anything>, arrays of the preceding.
  2079      */
  2080     void validateAnnotationType(JCTree restype) {
  2081         // restype may be null if an error occurred, so don't bother validating it
  2082         if (restype != null) {
  2083             validateAnnotationType(restype.pos(), restype.type);
  2087     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2088         if (type.isPrimitive()) return;
  2089         if (types.isSameType(type, syms.stringType)) return;
  2090         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2091         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2092         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  2093         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2094             validateAnnotationType(pos, types.elemtype(type));
  2095             return;
  2097         log.error(pos, "invalid.annotation.member.type");
  2100     /**
  2101      * "It is also a compile-time error if any method declared in an
  2102      * annotation type has a signature that is override-equivalent to
  2103      * that of any public or protected method declared in class Object
  2104      * or in the interface annotation.Annotation."
  2106      * @jls3 9.6 Annotation Types
  2107      */
  2108     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2109         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  2110             Scope s = sup.tsym.members();
  2111             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2112                 if (e.sym.kind == MTH &&
  2113                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2114                     types.overrideEquivalent(m.type, e.sym.type))
  2115                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2120     /** Check the annotations of a symbol.
  2121      */
  2122     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2123         if (skipAnnotations) return;
  2124         for (JCAnnotation a : annotations)
  2125             validateAnnotation(a, s);
  2128     /** Check the type annotations
  2129      */
  2130     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  2131         if (skipAnnotations) return;
  2132         for (JCTypeAnnotation a : annotations)
  2133             validateTypeAnnotation(a, isTypeParameter);
  2136     /** Check an annotation of a symbol.
  2137      */
  2138     public void validateAnnotation(JCAnnotation a, Symbol s) {
  2139         validateAnnotationTree(a);
  2141         if (!annotationApplicable(a, s))
  2142             log.error(a.pos(), "annotation.type.not.applicable");
  2144         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  2145             if (!isOverrider(s))
  2146                 log.error(a.pos(), "method.does.not.override.superclass");
  2150     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2151         if (a.type == null)
  2152             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  2153         validateAnnotationTree(a);
  2155         if (!isTypeAnnotation(a, isTypeParameter))
  2156             log.error(a.pos(), "annotation.type.not.applicable");
  2159     /** Is s a method symbol that overrides a method in a superclass? */
  2160     boolean isOverrider(Symbol s) {
  2161         if (s.kind != MTH || s.isStatic())
  2162             return false;
  2163         MethodSymbol m = (MethodSymbol)s;
  2164         TypeSymbol owner = (TypeSymbol)m.owner;
  2165         for (Type sup : types.closure(owner.type)) {
  2166             if (sup == owner.type)
  2167                 continue; // skip "this"
  2168             Scope scope = sup.tsym.members();
  2169             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2170                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2171                     return true;
  2174         return false;
  2177     /** Is the annotation applicable to type annotations */
  2178     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  2179         Attribute.Compound atTarget =
  2180             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2181         if (atTarget == null) return true;
  2182         Attribute atValue = atTarget.member(names.value);
  2183         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2184         Attribute.Array arr = (Attribute.Array) atValue;
  2185         for (Attribute app : arr.values) {
  2186             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2187             Attribute.Enum e = (Attribute.Enum) app;
  2188             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  2189                 return true;
  2190             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2191                 return true;
  2193         return false;
  2196     /** Is the annotation applicable to the symbol? */
  2197     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2198         Attribute.Compound atTarget =
  2199             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2200         if (atTarget == null) return true;
  2201         Attribute atValue = atTarget.member(names.value);
  2202         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2203         Attribute.Array arr = (Attribute.Array) atValue;
  2204         for (Attribute app : arr.values) {
  2205             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2206             Attribute.Enum e = (Attribute.Enum) app;
  2207             if (e.value.name == names.TYPE)
  2208                 { if (s.kind == TYP) return true; }
  2209             else if (e.value.name == names.FIELD)
  2210                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2211             else if (e.value.name == names.METHOD)
  2212                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2213             else if (e.value.name == names.PARAMETER)
  2214                 { if (s.kind == VAR &&
  2215                       s.owner.kind == MTH &&
  2216                       (s.flags() & PARAMETER) != 0)
  2217                     return true;
  2219             else if (e.value.name == names.CONSTRUCTOR)
  2220                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2221             else if (e.value.name == names.LOCAL_VARIABLE)
  2222                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2223                       (s.flags() & PARAMETER) == 0)
  2224                     return true;
  2226             else if (e.value.name == names.ANNOTATION_TYPE)
  2227                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2228                     return true;
  2230             else if (e.value.name == names.PACKAGE)
  2231                 { if (s.kind == PCK) return true; }
  2232             else if (e.value.name == names.TYPE_USE)
  2233                 { if (s.kind == TYP ||
  2234                       s.kind == VAR ||
  2235                       (s.kind == MTH && !s.isConstructor() &&
  2236                        s.type.getReturnType().tag != VOID))
  2237                     return true;
  2239             else
  2240                 return true; // recovery
  2242         return false;
  2245     /** Check an annotation value.
  2246      */
  2247     public void validateAnnotation(JCAnnotation a) {
  2248         if (a.type.isErroneous()) return;
  2250         // collect an inventory of the members (sorted alphabetically)
  2251         Set<MethodSymbol> members = new TreeSet<MethodSymbol>(new Comparator<Symbol>() {
  2252             public int compare(Symbol t, Symbol t1) {
  2253                 return t.name.compareTo(t1.name);
  2255         });
  2256         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2257              e != null;
  2258              e = e.sibling)
  2259             if (e.sym.kind == MTH)
  2260                 members.add((MethodSymbol) e.sym);
  2262         // count them off as they're annotated
  2263         for (JCTree arg : a.args) {
  2264             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2265             JCAssign assign = (JCAssign) arg;
  2266             Symbol m = TreeInfo.symbol(assign.lhs);
  2267             if (m == null || m.type.isErroneous()) continue;
  2268             if (!members.remove(m))
  2269                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2270                           m.name, a.type);
  2273         // all the remaining ones better have default values
  2274         ListBuffer<Name> missingDefaults = ListBuffer.lb();
  2275         for (MethodSymbol m : members) {
  2276             if (m.defaultValue == null && !m.type.isErroneous()) {
  2277                 missingDefaults.append(m.name);
  2280         if (missingDefaults.nonEmpty()) {
  2281             String key = (missingDefaults.size() > 1)
  2282                     ? "annotation.missing.default.value.1"
  2283                     : "annotation.missing.default.value";
  2284             log.error(a.pos(), key, a.type, missingDefaults);
  2287         // special case: java.lang.annotation.Target must not have
  2288         // repeated values in its value member
  2289         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2290             a.args.tail == null)
  2291             return;
  2293         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2294         JCAssign assign = (JCAssign) a.args.head;
  2295         Symbol m = TreeInfo.symbol(assign.lhs);
  2296         if (m.name != names.value) return;
  2297         JCTree rhs = assign.rhs;
  2298         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2299         JCNewArray na = (JCNewArray) rhs;
  2300         Set<Symbol> targets = new HashSet<Symbol>();
  2301         for (JCTree elem : na.elems) {
  2302             if (!targets.add(TreeInfo.symbol(elem))) {
  2303                 log.error(elem.pos(), "repeated.annotation.target");
  2308     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2309         if (allowAnnotations &&
  2310             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2311             (s.flags() & DEPRECATED) != 0 &&
  2312             !syms.deprecatedType.isErroneous() &&
  2313             s.attribute(syms.deprecatedType.tsym) == null) {
  2314             log.warning(Lint.LintCategory.DEP_ANN,
  2315                     pos, "missing.deprecated.annotation");
  2319 /* *************************************************************************
  2320  * Check for recursive annotation elements.
  2321  **************************************************************************/
  2323     /** Check for cycles in the graph of annotation elements.
  2324      */
  2325     void checkNonCyclicElements(JCClassDecl tree) {
  2326         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2327         assert (tree.sym.flags_field & LOCKED) == 0;
  2328         try {
  2329             tree.sym.flags_field |= LOCKED;
  2330             for (JCTree def : tree.defs) {
  2331                 if (def.getTag() != JCTree.METHODDEF) continue;
  2332                 JCMethodDecl meth = (JCMethodDecl)def;
  2333                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2335         } finally {
  2336             tree.sym.flags_field &= ~LOCKED;
  2337             tree.sym.flags_field |= ACYCLIC_ANN;
  2341     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2342         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2343             return;
  2344         if ((tsym.flags_field & LOCKED) != 0) {
  2345             log.error(pos, "cyclic.annotation.element");
  2346             return;
  2348         try {
  2349             tsym.flags_field |= LOCKED;
  2350             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2351                 Symbol s = e.sym;
  2352                 if (s.kind != Kinds.MTH)
  2353                     continue;
  2354                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2356         } finally {
  2357             tsym.flags_field &= ~LOCKED;
  2358             tsym.flags_field |= ACYCLIC_ANN;
  2362     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2363         switch (type.tag) {
  2364         case TypeTags.CLASS:
  2365             if ((type.tsym.flags() & ANNOTATION) != 0)
  2366                 checkNonCyclicElementsInternal(pos, type.tsym);
  2367             break;
  2368         case TypeTags.ARRAY:
  2369             checkAnnotationResType(pos, types.elemtype(type));
  2370             break;
  2371         default:
  2372             break; // int etc
  2376 /* *************************************************************************
  2377  * Check for cycles in the constructor call graph.
  2378  **************************************************************************/
  2380     /** Check for cycles in the graph of constructors calling other
  2381      *  constructors.
  2382      */
  2383     void checkCyclicConstructors(JCClassDecl tree) {
  2384         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2386         // enter each constructor this-call into the map
  2387         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2388             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2389             if (app == null) continue;
  2390             JCMethodDecl meth = (JCMethodDecl) l.head;
  2391             if (TreeInfo.name(app.meth) == names._this) {
  2392                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2393             } else {
  2394                 meth.sym.flags_field |= ACYCLIC;
  2398         // Check for cycles in the map
  2399         Symbol[] ctors = new Symbol[0];
  2400         ctors = callMap.keySet().toArray(ctors);
  2401         for (Symbol caller : ctors) {
  2402             checkCyclicConstructor(tree, caller, callMap);
  2406     /** Look in the map to see if the given constructor is part of a
  2407      *  call cycle.
  2408      */
  2409     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2410                                         Map<Symbol,Symbol> callMap) {
  2411         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2412             if ((ctor.flags_field & LOCKED) != 0) {
  2413                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2414                           "recursive.ctor.invocation");
  2415             } else {
  2416                 ctor.flags_field |= LOCKED;
  2417                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2418                 ctor.flags_field &= ~LOCKED;
  2420             ctor.flags_field |= ACYCLIC;
  2424 /* *************************************************************************
  2425  * Miscellaneous
  2426  **************************************************************************/
  2428     /**
  2429      * Return the opcode of the operator but emit an error if it is an
  2430      * error.
  2431      * @param pos        position for error reporting.
  2432      * @param operator   an operator
  2433      * @param tag        a tree tag
  2434      * @param left       type of left hand side
  2435      * @param right      type of right hand side
  2436      */
  2437     int checkOperator(DiagnosticPosition pos,
  2438                        OperatorSymbol operator,
  2439                        int tag,
  2440                        Type left,
  2441                        Type right) {
  2442         if (operator.opcode == ByteCodes.error) {
  2443             log.error(pos,
  2444                       "operator.cant.be.applied",
  2445                       treeinfo.operatorName(tag),
  2446                       List.of(left, right));
  2448         return operator.opcode;
  2452     /**
  2453      *  Check for division by integer constant zero
  2454      *  @param pos           Position for error reporting.
  2455      *  @param operator      The operator for the expression
  2456      *  @param operand       The right hand operand for the expression
  2457      */
  2458     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2459         if (operand.constValue() != null
  2460             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2461             && operand.tag <= LONG
  2462             && ((Number) (operand.constValue())).longValue() == 0) {
  2463             int opc = ((OperatorSymbol)operator).opcode;
  2464             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2465                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2466                 log.warning(Lint.LintCategory.DIVZERO, pos, "div.zero");
  2471     /**
  2472      * Check for empty statements after if
  2473      */
  2474     void checkEmptyIf(JCIf tree) {
  2475         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2476             log.warning(Lint.LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  2479     /** Check that symbol is unique in given scope.
  2480      *  @param pos           Position for error reporting.
  2481      *  @param sym           The symbol.
  2482      *  @param s             The scope.
  2483      */
  2484     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2485         if (sym.type.isErroneous())
  2486             return true;
  2487         if (sym.owner.name == names.any) return false;
  2488         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2489             if (sym != e.sym &&
  2490                 sym.kind == e.sym.kind &&
  2491                 sym.name != names.error &&
  2492                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2493                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2494                     varargsDuplicateError(pos, sym, e.sym);
  2495                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2496                     duplicateErasureError(pos, sym, e.sym);
  2497                 else
  2498                     duplicateError(pos, e.sym);
  2499                 return false;
  2502         return true;
  2504     //where
  2505     /** Report duplicate declaration error.
  2506      */
  2507     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2508         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2509             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2513     /** Check that single-type import is not already imported or top-level defined,
  2514      *  but make an exception for two single-type imports which denote the same type.
  2515      *  @param pos           Position for error reporting.
  2516      *  @param sym           The symbol.
  2517      *  @param s             The scope
  2518      */
  2519     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2520         return checkUniqueImport(pos, sym, s, false);
  2523     /** Check that static single-type import is not already imported or top-level defined,
  2524      *  but make an exception for two single-type imports which denote the same type.
  2525      *  @param pos           Position for error reporting.
  2526      *  @param sym           The symbol.
  2527      *  @param s             The scope
  2528      *  @param staticImport  Whether or not this was a static import
  2529      */
  2530     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2531         return checkUniqueImport(pos, sym, s, true);
  2534     /** Check that single-type import is not already imported or top-level defined,
  2535      *  but make an exception for two single-type imports which denote the same type.
  2536      *  @param pos           Position for error reporting.
  2537      *  @param sym           The symbol.
  2538      *  @param s             The scope.
  2539      *  @param staticImport  Whether or not this was a static import
  2540      */
  2541     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2542         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2543             // is encountered class entered via a class declaration?
  2544             boolean isClassDecl = e.scope == s;
  2545             if ((isClassDecl || sym != e.sym) &&
  2546                 sym.kind == e.sym.kind &&
  2547                 sym.name != names.error) {
  2548                 if (!e.sym.type.isErroneous()) {
  2549                     String what = e.sym.toString();
  2550                     if (!isClassDecl) {
  2551                         if (staticImport)
  2552                             log.error(pos, "already.defined.static.single.import", what);
  2553                         else
  2554                             log.error(pos, "already.defined.single.import", what);
  2556                     else if (sym != e.sym)
  2557                         log.error(pos, "already.defined.this.unit", what);
  2559                 return false;
  2562         return true;
  2565     /** Check that a qualified name is in canonical form (for import decls).
  2566      */
  2567     public void checkCanonical(JCTree tree) {
  2568         if (!isCanonical(tree))
  2569             log.error(tree.pos(), "import.requires.canonical",
  2570                       TreeInfo.symbol(tree));
  2572         // where
  2573         private boolean isCanonical(JCTree tree) {
  2574             while (tree.getTag() == JCTree.SELECT) {
  2575                 JCFieldAccess s = (JCFieldAccess) tree;
  2576                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2577                     return false;
  2578                 tree = s.selected;
  2580             return true;
  2583     private class ConversionWarner extends Warner {
  2584         final String key;
  2585         final Type found;
  2586         final Type expected;
  2587         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2588             super(pos);
  2589             this.key = key;
  2590             this.found = found;
  2591             this.expected = expected;
  2594         @Override
  2595         public void warnUnchecked() {
  2596             boolean warned = this.warned;
  2597             super.warnUnchecked();
  2598             if (warned) return; // suppress redundant diagnostics
  2599             Object problem = diags.fragment(key);
  2600             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2604     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2605         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2608     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2609         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial