src/share/classes/com/sun/tools/javac/comp/Lower.java

Mon, 12 Jul 2010 16:37:46 -0700

author
jjg
date
Mon, 12 Jul 2010 16:37:46 -0700
changeset 598
064468702a8d
parent 595
d8a15fda7e3a
child 609
13354e1abba7
permissions
-rw-r--r--

6968497: localized text appears in raw diagnostic
Reviewed-by: darcy

     1 /*
     2  * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.jvm.*;
    32 import com.sun.tools.javac.tree.*;
    33 import com.sun.tools.javac.util.*;
    34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    35 import com.sun.tools.javac.util.List;
    37 import com.sun.tools.javac.code.Symbol.*;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Type.*;
    41 import com.sun.tools.javac.jvm.Target;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.Kinds.*;
    45 import static com.sun.tools.javac.code.TypeTags.*;
    46 import static com.sun.tools.javac.jvm.ByteCodes.*;
    48 /** This pass translates away some syntactic sugar: inner classes,
    49  *  class literals, assertions, foreach loops, etc.
    50  *
    51  *  <p><b>This is NOT part of any supported API.
    52  *  If you write code that depends on this, you do so at your own risk.
    53  *  This code and its internal interfaces are subject to change or
    54  *  deletion without notice.</b>
    55  */
    56 public class Lower extends TreeTranslator {
    57     protected static final Context.Key<Lower> lowerKey =
    58         new Context.Key<Lower>();
    60     public static Lower instance(Context context) {
    61         Lower instance = context.get(lowerKey);
    62         if (instance == null)
    63             instance = new Lower(context);
    64         return instance;
    65     }
    67     private Names names;
    68     private Log log;
    69     private Symtab syms;
    70     private Resolve rs;
    71     private Check chk;
    72     private Attr attr;
    73     private TreeMaker make;
    74     private DiagnosticPosition make_pos;
    75     private ClassWriter writer;
    76     private ClassReader reader;
    77     private ConstFold cfolder;
    78     private Target target;
    79     private Source source;
    80     private boolean allowEnums;
    81     private final Name dollarAssertionsDisabled;
    82     private final Name classDollar;
    83     private Types types;
    84     private boolean debugLower;
    86     protected Lower(Context context) {
    87         context.put(lowerKey, this);
    88         names = Names.instance(context);
    89         log = Log.instance(context);
    90         syms = Symtab.instance(context);
    91         rs = Resolve.instance(context);
    92         chk = Check.instance(context);
    93         attr = Attr.instance(context);
    94         make = TreeMaker.instance(context);
    95         writer = ClassWriter.instance(context);
    96         reader = ClassReader.instance(context);
    97         cfolder = ConstFold.instance(context);
    98         target = Target.instance(context);
    99         source = Source.instance(context);
   100         allowEnums = source.allowEnums();
   101         dollarAssertionsDisabled = names.
   102             fromString(target.syntheticNameChar() + "assertionsDisabled");
   103         classDollar = names.
   104             fromString("class" + target.syntheticNameChar());
   106         types = Types.instance(context);
   107         Options options = Options.instance(context);
   108         debugLower = options.get("debuglower") != null;
   109     }
   111     /** The currently enclosing class.
   112      */
   113     ClassSymbol currentClass;
   115     /** A queue of all translated classes.
   116      */
   117     ListBuffer<JCTree> translated;
   119     /** Environment for symbol lookup, set by translateTopLevelClass.
   120      */
   121     Env<AttrContext> attrEnv;
   123     /** A hash table mapping syntax trees to their ending source positions.
   124      */
   125     Map<JCTree, Integer> endPositions;
   127 /**************************************************************************
   128  * Global mappings
   129  *************************************************************************/
   131     /** A hash table mapping local classes to their definitions.
   132      */
   133     Map<ClassSymbol, JCClassDecl> classdefs;
   135     /** A hash table mapping virtual accessed symbols in outer subclasses
   136      *  to the actually referred symbol in superclasses.
   137      */
   138     Map<Symbol,Symbol> actualSymbols;
   140     /** The current method definition.
   141      */
   142     JCMethodDecl currentMethodDef;
   144     /** The current method symbol.
   145      */
   146     MethodSymbol currentMethodSym;
   148     /** The currently enclosing outermost class definition.
   149      */
   150     JCClassDecl outermostClassDef;
   152     /** The currently enclosing outermost member definition.
   153      */
   154     JCTree outermostMemberDef;
   156     /** A navigator class for assembling a mapping from local class symbols
   157      *  to class definition trees.
   158      *  There is only one case; all other cases simply traverse down the tree.
   159      */
   160     class ClassMap extends TreeScanner {
   162         /** All encountered class defs are entered into classdefs table.
   163          */
   164         public void visitClassDef(JCClassDecl tree) {
   165             classdefs.put(tree.sym, tree);
   166             super.visitClassDef(tree);
   167         }
   168     }
   169     ClassMap classMap = new ClassMap();
   171     /** Map a class symbol to its definition.
   172      *  @param c    The class symbol of which we want to determine the definition.
   173      */
   174     JCClassDecl classDef(ClassSymbol c) {
   175         // First lookup the class in the classdefs table.
   176         JCClassDecl def = classdefs.get(c);
   177         if (def == null && outermostMemberDef != null) {
   178             // If this fails, traverse outermost member definition, entering all
   179             // local classes into classdefs, and try again.
   180             classMap.scan(outermostMemberDef);
   181             def = classdefs.get(c);
   182         }
   183         if (def == null) {
   184             // If this fails, traverse outermost class definition, entering all
   185             // local classes into classdefs, and try again.
   186             classMap.scan(outermostClassDef);
   187             def = classdefs.get(c);
   188         }
   189         return def;
   190     }
   192     /** A hash table mapping class symbols to lists of free variables.
   193      *  accessed by them. Only free variables of the method immediately containing
   194      *  a class are associated with that class.
   195      */
   196     Map<ClassSymbol,List<VarSymbol>> freevarCache;
   198     /** A navigator class for collecting the free variables accessed
   199      *  from a local class.
   200      *  There is only one case; all other cases simply traverse down the tree.
   201      */
   202     class FreeVarCollector extends TreeScanner {
   204         /** The owner of the local class.
   205          */
   206         Symbol owner;
   208         /** The local class.
   209          */
   210         ClassSymbol clazz;
   212         /** The list of owner's variables accessed from within the local class,
   213          *  without any duplicates.
   214          */
   215         List<VarSymbol> fvs;
   217         FreeVarCollector(ClassSymbol clazz) {
   218             this.clazz = clazz;
   219             this.owner = clazz.owner;
   220             this.fvs = List.nil();
   221         }
   223         /** Add free variable to fvs list unless it is already there.
   224          */
   225         private void addFreeVar(VarSymbol v) {
   226             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
   227                 if (l.head == v) return;
   228             fvs = fvs.prepend(v);
   229         }
   231         /** Add all free variables of class c to fvs list
   232          *  unless they are already there.
   233          */
   234         private void addFreeVars(ClassSymbol c) {
   235             List<VarSymbol> fvs = freevarCache.get(c);
   236             if (fvs != null) {
   237                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
   238                     addFreeVar(l.head);
   239                 }
   240             }
   241         }
   243         /** If tree refers to a variable in owner of local class, add it to
   244          *  free variables list.
   245          */
   246         public void visitIdent(JCIdent tree) {
   247             result = tree;
   248             visitSymbol(tree.sym);
   249         }
   250         // where
   251         private void visitSymbol(Symbol _sym) {
   252             Symbol sym = _sym;
   253             if (sym.kind == VAR || sym.kind == MTH) {
   254                 while (sym != null && sym.owner != owner)
   255                     sym = proxies.lookup(proxyName(sym.name)).sym;
   256                 if (sym != null && sym.owner == owner) {
   257                     VarSymbol v = (VarSymbol)sym;
   258                     if (v.getConstValue() == null) {
   259                         addFreeVar(v);
   260                     }
   261                 } else {
   262                     if (outerThisStack.head != null &&
   263                         outerThisStack.head != _sym)
   264                         visitSymbol(outerThisStack.head);
   265                 }
   266             }
   267         }
   269         /** If tree refers to a class instance creation expression
   270          *  add all free variables of the freshly created class.
   271          */
   272         public void visitNewClass(JCNewClass tree) {
   273             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   274             addFreeVars(c);
   275             if (tree.encl == null &&
   276                 c.hasOuterInstance() &&
   277                 outerThisStack.head != null)
   278                 visitSymbol(outerThisStack.head);
   279             super.visitNewClass(tree);
   280         }
   282         /** If tree refers to a qualified this or super expression
   283          *  for anything but the current class, add the outer this
   284          *  stack as a free variable.
   285          */
   286         public void visitSelect(JCFieldAccess tree) {
   287             if ((tree.name == names._this || tree.name == names._super) &&
   288                 tree.selected.type.tsym != clazz &&
   289                 outerThisStack.head != null)
   290                 visitSymbol(outerThisStack.head);
   291             super.visitSelect(tree);
   292         }
   294         /** If tree refers to a superclass constructor call,
   295          *  add all free variables of the superclass.
   296          */
   297         public void visitApply(JCMethodInvocation tree) {
   298             if (TreeInfo.name(tree.meth) == names._super) {
   299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
   300                 Symbol constructor = TreeInfo.symbol(tree.meth);
   301                 ClassSymbol c = (ClassSymbol)constructor.owner;
   302                 if (c.hasOuterInstance() &&
   303                     tree.meth.getTag() != JCTree.SELECT &&
   304                     outerThisStack.head != null)
   305                     visitSymbol(outerThisStack.head);
   306             }
   307             super.visitApply(tree);
   308         }
   309     }
   311     /** Return the variables accessed from within a local class, which
   312      *  are declared in the local class' owner.
   313      *  (in reverse order of first access).
   314      */
   315     List<VarSymbol> freevars(ClassSymbol c)  {
   316         if ((c.owner.kind & (VAR | MTH)) != 0) {
   317             List<VarSymbol> fvs = freevarCache.get(c);
   318             if (fvs == null) {
   319                 FreeVarCollector collector = new FreeVarCollector(c);
   320                 collector.scan(classDef(c));
   321                 fvs = collector.fvs;
   322                 freevarCache.put(c, fvs);
   323             }
   324             return fvs;
   325         } else {
   326             return List.nil();
   327         }
   328     }
   330     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
   332     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
   333         EnumMapping map = enumSwitchMap.get(enumClass);
   334         if (map == null)
   335             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
   336         return map;
   337     }
   339     /** This map gives a translation table to be used for enum
   340      *  switches.
   341      *
   342      *  <p>For each enum that appears as the type of a switch
   343      *  expression, we maintain an EnumMapping to assist in the
   344      *  translation, as exemplified by the following example:
   345      *
   346      *  <p>we translate
   347      *  <pre>
   348      *          switch(colorExpression) {
   349      *          case red: stmt1;
   350      *          case green: stmt2;
   351      *          }
   352      *  </pre>
   353      *  into
   354      *  <pre>
   355      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
   356      *          case 1: stmt1;
   357      *          case 2: stmt2
   358      *          }
   359      *  </pre>
   360      *  with the auxiliary table initialized as follows:
   361      *  <pre>
   362      *          class Outer$0 {
   363      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
   364      *              static {
   365      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
   366      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
   367      *              }
   368      *          }
   369      *  </pre>
   370      *  class EnumMapping provides mapping data and support methods for this translation.
   371      */
   372     class EnumMapping {
   373         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
   374             this.forEnum = forEnum;
   375             this.values = new LinkedHashMap<VarSymbol,Integer>();
   376             this.pos = pos;
   377             Name varName = names
   378                 .fromString(target.syntheticNameChar() +
   379                             "SwitchMap" +
   380                             target.syntheticNameChar() +
   381                             writer.xClassName(forEnum.type).toString()
   382                             .replace('/', '.')
   383                             .replace('.', target.syntheticNameChar()));
   384             ClassSymbol outerCacheClass = outerCacheClass();
   385             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
   386                                         varName,
   387                                         new ArrayType(syms.intType, syms.arrayClass),
   388                                         outerCacheClass);
   389             enterSynthetic(pos, mapVar, outerCacheClass.members());
   390         }
   392         DiagnosticPosition pos = null;
   394         // the next value to use
   395         int next = 1; // 0 (unused map elements) go to the default label
   397         // the enum for which this is a map
   398         final TypeSymbol forEnum;
   400         // the field containing the map
   401         final VarSymbol mapVar;
   403         // the mapped values
   404         final Map<VarSymbol,Integer> values;
   406         JCLiteral forConstant(VarSymbol v) {
   407             Integer result = values.get(v);
   408             if (result == null)
   409                 values.put(v, result = next++);
   410             return make.Literal(result);
   411         }
   413         // generate the field initializer for the map
   414         void translate() {
   415             make.at(pos.getStartPosition());
   416             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
   418             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
   419             MethodSymbol valuesMethod = lookupMethod(pos,
   420                                                      names.values,
   421                                                      forEnum.type,
   422                                                      List.<Type>nil());
   423             JCExpression size = make // Color.values().length
   424                 .Select(make.App(make.QualIdent(valuesMethod)),
   425                         syms.lengthVar);
   426             JCExpression mapVarInit = make
   427                 .NewArray(make.Type(syms.intType), List.of(size), null)
   428                 .setType(new ArrayType(syms.intType, syms.arrayClass));
   430             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
   431             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
   432             Symbol ordinalMethod = lookupMethod(pos,
   433                                                 names.ordinal,
   434                                                 forEnum.type,
   435                                                 List.<Type>nil());
   436             List<JCCatch> catcher = List.<JCCatch>nil()
   437                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
   438                                                               syms.noSuchFieldErrorType,
   439                                                               syms.noSymbol),
   440                                                 null),
   441                                     make.Block(0, List.<JCStatement>nil())));
   442             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
   443                 VarSymbol enumerator = e.getKey();
   444                 Integer mappedValue = e.getValue();
   445                 JCExpression assign = make
   446                     .Assign(make.Indexed(mapVar,
   447                                          make.App(make.Select(make.QualIdent(enumerator),
   448                                                               ordinalMethod))),
   449                             make.Literal(mappedValue))
   450                     .setType(syms.intType);
   451                 JCStatement exec = make.Exec(assign);
   452                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
   453                 stmts.append(_try);
   454             }
   456             owner.defs = owner.defs
   457                 .prepend(make.Block(STATIC, stmts.toList()))
   458                 .prepend(make.VarDef(mapVar, mapVarInit));
   459         }
   460     }
   463 /**************************************************************************
   464  * Tree building blocks
   465  *************************************************************************/
   467     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
   468      *  pos as make_pos, for use in diagnostics.
   469      **/
   470     TreeMaker make_at(DiagnosticPosition pos) {
   471         make_pos = pos;
   472         return make.at(pos);
   473     }
   475     /** Make an attributed tree representing a literal. This will be an
   476      *  Ident node in the case of boolean literals, a Literal node in all
   477      *  other cases.
   478      *  @param type       The literal's type.
   479      *  @param value      The literal's value.
   480      */
   481     JCExpression makeLit(Type type, Object value) {
   482         return make.Literal(type.tag, value).setType(type.constType(value));
   483     }
   485     /** Make an attributed tree representing null.
   486      */
   487     JCExpression makeNull() {
   488         return makeLit(syms.botType, null);
   489     }
   491     /** Make an attributed class instance creation expression.
   492      *  @param ctype    The class type.
   493      *  @param args     The constructor arguments.
   494      */
   495     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
   496         JCNewClass tree = make.NewClass(null,
   497             null, make.QualIdent(ctype.tsym), args, null);
   498         tree.constructor = rs.resolveConstructor(
   499             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
   500         tree.type = ctype;
   501         return tree;
   502     }
   504     /** Make an attributed unary expression.
   505      *  @param optag    The operators tree tag.
   506      *  @param arg      The operator's argument.
   507      */
   508     JCUnary makeUnary(int optag, JCExpression arg) {
   509         JCUnary tree = make.Unary(optag, arg);
   510         tree.operator = rs.resolveUnaryOperator(
   511             make_pos, optag, attrEnv, arg.type);
   512         tree.type = tree.operator.type.getReturnType();
   513         return tree;
   514     }
   516     /** Make an attributed binary expression.
   517      *  @param optag    The operators tree tag.
   518      *  @param lhs      The operator's left argument.
   519      *  @param rhs      The operator's right argument.
   520      */
   521     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
   522         JCBinary tree = make.Binary(optag, lhs, rhs);
   523         tree.operator = rs.resolveBinaryOperator(
   524             make_pos, optag, attrEnv, lhs.type, rhs.type);
   525         tree.type = tree.operator.type.getReturnType();
   526         return tree;
   527     }
   529     /** Make an attributed assignop expression.
   530      *  @param optag    The operators tree tag.
   531      *  @param lhs      The operator's left argument.
   532      *  @param rhs      The operator's right argument.
   533      */
   534     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
   535         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
   536         tree.operator = rs.resolveBinaryOperator(
   537             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
   538         tree.type = lhs.type;
   539         return tree;
   540     }
   542     /** Convert tree into string object, unless it has already a
   543      *  reference type..
   544      */
   545     JCExpression makeString(JCExpression tree) {
   546         if (tree.type.tag >= CLASS) {
   547             return tree;
   548         } else {
   549             Symbol valueOfSym = lookupMethod(tree.pos(),
   550                                              names.valueOf,
   551                                              syms.stringType,
   552                                              List.of(tree.type));
   553             return make.App(make.QualIdent(valueOfSym), List.of(tree));
   554         }
   555     }
   557     /** Create an empty anonymous class definition and enter and complete
   558      *  its symbol. Return the class definition's symbol.
   559      *  and create
   560      *  @param flags    The class symbol's flags
   561      *  @param owner    The class symbol's owner
   562      */
   563     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
   564         // Create class symbol.
   565         ClassSymbol c = reader.defineClass(names.empty, owner);
   566         c.flatname = chk.localClassName(c);
   567         c.sourcefile = owner.sourcefile;
   568         c.completer = null;
   569         c.members_field = new Scope(c);
   570         c.flags_field = flags;
   571         ClassType ctype = (ClassType) c.type;
   572         ctype.supertype_field = syms.objectType;
   573         ctype.interfaces_field = List.nil();
   575         JCClassDecl odef = classDef(owner);
   577         // Enter class symbol in owner scope and compiled table.
   578         enterSynthetic(odef.pos(), c, owner.members());
   579         chk.compiled.put(c.flatname, c);
   581         // Create class definition tree.
   582         JCClassDecl cdef = make.ClassDef(
   583             make.Modifiers(flags), names.empty,
   584             List.<JCTypeParameter>nil(),
   585             null, List.<JCExpression>nil(), List.<JCTree>nil());
   586         cdef.sym = c;
   587         cdef.type = c.type;
   589         // Append class definition tree to owner's definitions.
   590         odef.defs = odef.defs.prepend(cdef);
   592         return c;
   593     }
   595 /**************************************************************************
   596  * Symbol manipulation utilities
   597  *************************************************************************/
   599     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
   600      *  @param pos           Position for error reporting.
   601      *  @param sym           The symbol.
   602      *  @param s             The scope.
   603      */
   604     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
   605         s.enter(sym);
   606     }
   608     /** Check whether synthetic symbols generated during lowering conflict
   609      *  with user-defined symbols.
   610      *
   611      *  @param translatedTrees lowered class trees
   612      */
   613     void checkConflicts(List<JCTree> translatedTrees) {
   614         for (JCTree t : translatedTrees) {
   615             t.accept(conflictsChecker);
   616         }
   617     }
   619     JCTree.Visitor conflictsChecker = new TreeScanner() {
   621         TypeSymbol currentClass;
   623         @Override
   624         public void visitMethodDef(JCMethodDecl that) {
   625             chk.checkConflicts(that.pos(), that.sym, currentClass);
   626             super.visitMethodDef(that);
   627         }
   629         @Override
   630         public void visitVarDef(JCVariableDecl that) {
   631             if (that.sym.owner.kind == TYP) {
   632                 chk.checkConflicts(that.pos(), that.sym, currentClass);
   633             }
   634             super.visitVarDef(that);
   635         }
   637         @Override
   638         public void visitClassDef(JCClassDecl that) {
   639             TypeSymbol prevCurrentClass = currentClass;
   640             currentClass = that.sym;
   641             try {
   642                 super.visitClassDef(that);
   643             }
   644             finally {
   645                 currentClass = prevCurrentClass;
   646             }
   647         }
   648     };
   650     /** Look up a synthetic name in a given scope.
   651      *  @param scope        The scope.
   652      *  @param name         The name.
   653      */
   654     private Symbol lookupSynthetic(Name name, Scope s) {
   655         Symbol sym = s.lookup(name).sym;
   656         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
   657     }
   659     /** Look up a method in a given scope.
   660      */
   661     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
   662         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
   663     }
   665     /** Look up a constructor.
   666      */
   667     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
   668         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
   669     }
   671     /** Look up a field.
   672      */
   673     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
   674         return rs.resolveInternalField(pos, attrEnv, qual, name);
   675     }
   677     /** Anon inner classes are used as access constructor tags.
   678      * accessConstructorTag will use an existing anon class if one is available,
   679      * and synthethise a class (with makeEmptyClass) if one is not available.
   680      * However, there is a small possibility that an existing class will not
   681      * be generated as expected if it is inside a conditional with a constant
   682      * expression. If that is found to be the case, create an empty class here.
   683      */
   684     private void checkAccessConstructorTags() {
   685         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
   686             ClassSymbol c = l.head;
   687             if (isTranslatedClassAvailable(c))
   688                 continue;
   689             // Create class definition tree.
   690             JCClassDecl cdef = make.ClassDef(
   691                 make.Modifiers(STATIC | SYNTHETIC), names.empty,
   692                 List.<JCTypeParameter>nil(),
   693                 null, List.<JCExpression>nil(), List.<JCTree>nil());
   694             cdef.sym = c;
   695             cdef.type = c.type;
   696             // add it to the list of classes to be generated
   697             translated.append(cdef);
   698         }
   699     }
   700     // where
   701     private boolean isTranslatedClassAvailable(ClassSymbol c) {
   702         for (JCTree tree: translated) {
   703             if (tree.getTag() == JCTree.CLASSDEF
   704                     && ((JCClassDecl) tree).sym == c) {
   705                 return true;
   706             }
   707         }
   708         return false;
   709     }
   711 /**************************************************************************
   712  * Access methods
   713  *************************************************************************/
   715     /** Access codes for dereferencing, assignment,
   716      *  and pre/post increment/decrement.
   717      *  Access codes for assignment operations are determined by method accessCode
   718      *  below.
   719      *
   720      *  All access codes for accesses to the current class are even.
   721      *  If a member of the superclass should be accessed instead (because
   722      *  access was via a qualified super), add one to the corresponding code
   723      *  for the current class, making the number odd.
   724      *  This numbering scheme is used by the backend to decide whether
   725      *  to issue an invokevirtual or invokespecial call.
   726      *
   727      *  @see Gen.visitSelect(Select tree)
   728      */
   729     private static final int
   730         DEREFcode = 0,
   731         ASSIGNcode = 2,
   732         PREINCcode = 4,
   733         PREDECcode = 6,
   734         POSTINCcode = 8,
   735         POSTDECcode = 10,
   736         FIRSTASGOPcode = 12;
   738     /** Number of access codes
   739      */
   740     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
   742     /** A mapping from symbols to their access numbers.
   743      */
   744     private Map<Symbol,Integer> accessNums;
   746     /** A mapping from symbols to an array of access symbols, indexed by
   747      *  access code.
   748      */
   749     private Map<Symbol,MethodSymbol[]> accessSyms;
   751     /** A mapping from (constructor) symbols to access constructor symbols.
   752      */
   753     private Map<Symbol,MethodSymbol> accessConstrs;
   755     /** A list of all class symbols used for access constructor tags.
   756      */
   757     private List<ClassSymbol> accessConstrTags;
   759     /** A queue for all accessed symbols.
   760      */
   761     private ListBuffer<Symbol> accessed;
   763     /** Map bytecode of binary operation to access code of corresponding
   764      *  assignment operation. This is always an even number.
   765      */
   766     private static int accessCode(int bytecode) {
   767         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
   768             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
   769         else if (bytecode == ByteCodes.string_add)
   770             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
   771         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
   772             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
   773         else
   774             return -1;
   775     }
   777     /** return access code for identifier,
   778      *  @param tree     The tree representing the identifier use.
   779      *  @param enclOp   The closest enclosing operation node of tree,
   780      *                  null if tree is not a subtree of an operation.
   781      */
   782     private static int accessCode(JCTree tree, JCTree enclOp) {
   783         if (enclOp == null)
   784             return DEREFcode;
   785         else if (enclOp.getTag() == JCTree.ASSIGN &&
   786                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
   787             return ASSIGNcode;
   788         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
   789                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
   790             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
   791         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
   792                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
   793             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
   794         else
   795             return DEREFcode;
   796     }
   798     /** Return binary operator that corresponds to given access code.
   799      */
   800     private OperatorSymbol binaryAccessOperator(int acode) {
   801         for (Scope.Entry e = syms.predefClass.members().elems;
   802              e != null;
   803              e = e.sibling) {
   804             if (e.sym instanceof OperatorSymbol) {
   805                 OperatorSymbol op = (OperatorSymbol)e.sym;
   806                 if (accessCode(op.opcode) == acode) return op;
   807             }
   808         }
   809         return null;
   810     }
   812     /** Return tree tag for assignment operation corresponding
   813      *  to given binary operator.
   814      */
   815     private static int treeTag(OperatorSymbol operator) {
   816         switch (operator.opcode) {
   817         case ByteCodes.ior: case ByteCodes.lor:
   818             return JCTree.BITOR_ASG;
   819         case ByteCodes.ixor: case ByteCodes.lxor:
   820             return JCTree.BITXOR_ASG;
   821         case ByteCodes.iand: case ByteCodes.land:
   822             return JCTree.BITAND_ASG;
   823         case ByteCodes.ishl: case ByteCodes.lshl:
   824         case ByteCodes.ishll: case ByteCodes.lshll:
   825             return JCTree.SL_ASG;
   826         case ByteCodes.ishr: case ByteCodes.lshr:
   827         case ByteCodes.ishrl: case ByteCodes.lshrl:
   828             return JCTree.SR_ASG;
   829         case ByteCodes.iushr: case ByteCodes.lushr:
   830         case ByteCodes.iushrl: case ByteCodes.lushrl:
   831             return JCTree.USR_ASG;
   832         case ByteCodes.iadd: case ByteCodes.ladd:
   833         case ByteCodes.fadd: case ByteCodes.dadd:
   834         case ByteCodes.string_add:
   835             return JCTree.PLUS_ASG;
   836         case ByteCodes.isub: case ByteCodes.lsub:
   837         case ByteCodes.fsub: case ByteCodes.dsub:
   838             return JCTree.MINUS_ASG;
   839         case ByteCodes.imul: case ByteCodes.lmul:
   840         case ByteCodes.fmul: case ByteCodes.dmul:
   841             return JCTree.MUL_ASG;
   842         case ByteCodes.idiv: case ByteCodes.ldiv:
   843         case ByteCodes.fdiv: case ByteCodes.ddiv:
   844             return JCTree.DIV_ASG;
   845         case ByteCodes.imod: case ByteCodes.lmod:
   846         case ByteCodes.fmod: case ByteCodes.dmod:
   847             return JCTree.MOD_ASG;
   848         default:
   849             throw new AssertionError();
   850         }
   851     }
   853     /** The name of the access method with number `anum' and access code `acode'.
   854      */
   855     Name accessName(int anum, int acode) {
   856         return names.fromString(
   857             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
   858     }
   860     /** Return access symbol for a private or protected symbol from an inner class.
   861      *  @param sym        The accessed private symbol.
   862      *  @param tree       The accessing tree.
   863      *  @param enclOp     The closest enclosing operation node of tree,
   864      *                    null if tree is not a subtree of an operation.
   865      *  @param protAccess Is access to a protected symbol in another
   866      *                    package?
   867      *  @param refSuper   Is access via a (qualified) C.super?
   868      */
   869     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
   870                               boolean protAccess, boolean refSuper) {
   871         ClassSymbol accOwner = refSuper && protAccess
   872             // For access via qualified super (T.super.x), place the
   873             // access symbol on T.
   874             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
   875             // Otherwise pretend that the owner of an accessed
   876             // protected symbol is the enclosing class of the current
   877             // class which is a subclass of the symbol's owner.
   878             : accessClass(sym, protAccess, tree);
   880         Symbol vsym = sym;
   881         if (sym.owner != accOwner) {
   882             vsym = sym.clone(accOwner);
   883             actualSymbols.put(vsym, sym);
   884         }
   886         Integer anum              // The access number of the access method.
   887             = accessNums.get(vsym);
   888         if (anum == null) {
   889             anum = accessed.length();
   890             accessNums.put(vsym, anum);
   891             accessSyms.put(vsym, new MethodSymbol[NCODES]);
   892             accessed.append(vsym);
   893             // System.out.println("accessing " + vsym + " in " + vsym.location());
   894         }
   896         int acode;                // The access code of the access method.
   897         List<Type> argtypes;      // The argument types of the access method.
   898         Type restype;             // The result type of the access method.
   899         List<Type> thrown;        // The thrown exceptions of the access method.
   900         switch (vsym.kind) {
   901         case VAR:
   902             acode = accessCode(tree, enclOp);
   903             if (acode >= FIRSTASGOPcode) {
   904                 OperatorSymbol operator = binaryAccessOperator(acode);
   905                 if (operator.opcode == string_add)
   906                     argtypes = List.of(syms.objectType);
   907                 else
   908                     argtypes = operator.type.getParameterTypes().tail;
   909             } else if (acode == ASSIGNcode)
   910                 argtypes = List.of(vsym.erasure(types));
   911             else
   912                 argtypes = List.nil();
   913             restype = vsym.erasure(types);
   914             thrown = List.nil();
   915             break;
   916         case MTH:
   917             acode = DEREFcode;
   918             argtypes = vsym.erasure(types).getParameterTypes();
   919             restype = vsym.erasure(types).getReturnType();
   920             thrown = vsym.type.getThrownTypes();
   921             break;
   922         default:
   923             throw new AssertionError();
   924         }
   926         // For references via qualified super, increment acode by one,
   927         // making it odd.
   928         if (protAccess && refSuper) acode++;
   930         // Instance access methods get instance as first parameter.
   931         // For protected symbols this needs to be the instance as a member
   932         // of the type containing the accessed symbol, not the class
   933         // containing the access method.
   934         if ((vsym.flags() & STATIC) == 0) {
   935             argtypes = argtypes.prepend(vsym.owner.erasure(types));
   936         }
   937         MethodSymbol[] accessors = accessSyms.get(vsym);
   938         MethodSymbol accessor = accessors[acode];
   939         if (accessor == null) {
   940             accessor = new MethodSymbol(
   941                 STATIC | SYNTHETIC,
   942                 accessName(anum.intValue(), acode),
   943                 new MethodType(argtypes, restype, thrown, syms.methodClass),
   944                 accOwner);
   945             enterSynthetic(tree.pos(), accessor, accOwner.members());
   946             accessors[acode] = accessor;
   947         }
   948         return accessor;
   949     }
   951     /** The qualifier to be used for accessing a symbol in an outer class.
   952      *  This is either C.sym or C.this.sym, depending on whether or not
   953      *  sym is static.
   954      *  @param sym   The accessed symbol.
   955      */
   956     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
   957         return (sym.flags() & STATIC) != 0
   958             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
   959             : makeOwnerThis(pos, sym, true);
   960     }
   962     /** Do we need an access method to reference private symbol?
   963      */
   964     boolean needsPrivateAccess(Symbol sym) {
   965         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
   966             return false;
   967         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
   968             // private constructor in local class: relax protection
   969             sym.flags_field &= ~PRIVATE;
   970             return false;
   971         } else {
   972             return true;
   973         }
   974     }
   976     /** Do we need an access method to reference symbol in other package?
   977      */
   978     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
   979         if ((sym.flags() & PROTECTED) == 0 ||
   980             sym.owner.owner == currentClass.owner || // fast special case
   981             sym.packge() == currentClass.packge())
   982             return false;
   983         if (!currentClass.isSubClass(sym.owner, types))
   984             return true;
   985         if ((sym.flags() & STATIC) != 0 ||
   986             tree.getTag() != JCTree.SELECT ||
   987             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
   988             return false;
   989         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
   990     }
   992     /** The class in which an access method for given symbol goes.
   993      *  @param sym        The access symbol
   994      *  @param protAccess Is access to a protected symbol in another
   995      *                    package?
   996      */
   997     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
   998         if (protAccess) {
   999             Symbol qualifier = null;
  1000             ClassSymbol c = currentClass;
  1001             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
  1002                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
  1003                 while (!qualifier.isSubClass(c, types)) {
  1004                     c = c.owner.enclClass();
  1006                 return c;
  1007             } else {
  1008                 while (!c.isSubClass(sym.owner, types)) {
  1009                     c = c.owner.enclClass();
  1012             return c;
  1013         } else {
  1014             // the symbol is private
  1015             return sym.owner.enclClass();
  1019     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1020      *  @param sym      The accessed symbol.
  1021      *  @param tree     The tree referring to the symbol.
  1022      *  @param enclOp   The closest enclosing operation node of tree,
  1023      *                  null if tree is not a subtree of an operation.
  1024      *  @param refSuper Is access via a (qualified) C.super?
  1025      */
  1026     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
  1027         // Access a free variable via its proxy, or its proxy's proxy
  1028         while (sym.kind == VAR && sym.owner.kind == MTH &&
  1029             sym.owner.enclClass() != currentClass) {
  1030             // A constant is replaced by its constant value.
  1031             Object cv = ((VarSymbol)sym).getConstValue();
  1032             if (cv != null) {
  1033                 make.at(tree.pos);
  1034                 return makeLit(sym.type, cv);
  1036             // Otherwise replace the variable by its proxy.
  1037             sym = proxies.lookup(proxyName(sym.name)).sym;
  1038             assert sym != null && (sym.flags_field & FINAL) != 0;
  1039             tree = make.at(tree.pos).Ident(sym);
  1041         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
  1042         switch (sym.kind) {
  1043         case TYP:
  1044             if (sym.owner.kind != PCK) {
  1045                 // Convert type idents to
  1046                 // <flat name> or <package name> . <flat name>
  1047                 Name flatname = Convert.shortName(sym.flatName());
  1048                 while (base != null &&
  1049                        TreeInfo.symbol(base) != null &&
  1050                        TreeInfo.symbol(base).kind != PCK) {
  1051                     base = (base.getTag() == JCTree.SELECT)
  1052                         ? ((JCFieldAccess) base).selected
  1053                         : null;
  1055                 if (tree.getTag() == JCTree.IDENT) {
  1056                     ((JCIdent) tree).name = flatname;
  1057                 } else if (base == null) {
  1058                     tree = make.at(tree.pos).Ident(sym);
  1059                     ((JCIdent) tree).name = flatname;
  1060                 } else {
  1061                     ((JCFieldAccess) tree).selected = base;
  1062                     ((JCFieldAccess) tree).name = flatname;
  1065             break;
  1066         case MTH: case VAR:
  1067             if (sym.owner.kind == TYP) {
  1069                 // Access methods are required for
  1070                 //  - private members,
  1071                 //  - protected members in a superclass of an
  1072                 //    enclosing class contained in another package.
  1073                 //  - all non-private members accessed via a qualified super.
  1074                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
  1075                     || needsProtectedAccess(sym, tree);
  1076                 boolean accReq = protAccess || needsPrivateAccess(sym);
  1078                 // A base has to be supplied for
  1079                 //  - simple identifiers accessing variables in outer classes.
  1080                 boolean baseReq =
  1081                     base == null &&
  1082                     sym.owner != syms.predefClass &&
  1083                     !sym.isMemberOf(currentClass, types);
  1085                 if (accReq || baseReq) {
  1086                     make.at(tree.pos);
  1088                     // Constants are replaced by their constant value.
  1089                     if (sym.kind == VAR) {
  1090                         Object cv = ((VarSymbol)sym).getConstValue();
  1091                         if (cv != null) return makeLit(sym.type, cv);
  1094                     // Private variables and methods are replaced by calls
  1095                     // to their access methods.
  1096                     if (accReq) {
  1097                         List<JCExpression> args = List.nil();
  1098                         if ((sym.flags() & STATIC) == 0) {
  1099                             // Instance access methods get instance
  1100                             // as first parameter.
  1101                             if (base == null)
  1102                                 base = makeOwnerThis(tree.pos(), sym, true);
  1103                             args = args.prepend(base);
  1104                             base = null;   // so we don't duplicate code
  1106                         Symbol access = accessSymbol(sym, tree,
  1107                                                      enclOp, protAccess,
  1108                                                      refSuper);
  1109                         JCExpression receiver = make.Select(
  1110                             base != null ? base : make.QualIdent(access.owner),
  1111                             access);
  1112                         return make.App(receiver, args);
  1114                     // Other accesses to members of outer classes get a
  1115                     // qualifier.
  1116                     } else if (baseReq) {
  1117                         return make.at(tree.pos).Select(
  1118                             accessBase(tree.pos(), sym), sym).setType(tree.type);
  1123         return tree;
  1126     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1127      *  @param tree     The identifier tree.
  1128      */
  1129     JCExpression access(JCExpression tree) {
  1130         Symbol sym = TreeInfo.symbol(tree);
  1131         return sym == null ? tree : access(sym, tree, null, false);
  1134     /** Return access constructor for a private constructor,
  1135      *  or the constructor itself, if no access constructor is needed.
  1136      *  @param pos       The position to report diagnostics, if any.
  1137      *  @param constr    The private constructor.
  1138      */
  1139     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
  1140         if (needsPrivateAccess(constr)) {
  1141             ClassSymbol accOwner = constr.owner.enclClass();
  1142             MethodSymbol aconstr = accessConstrs.get(constr);
  1143             if (aconstr == null) {
  1144                 List<Type> argtypes = constr.type.getParameterTypes();
  1145                 if ((accOwner.flags_field & ENUM) != 0)
  1146                     argtypes = argtypes
  1147                         .prepend(syms.intType)
  1148                         .prepend(syms.stringType);
  1149                 aconstr = new MethodSymbol(
  1150                     SYNTHETIC,
  1151                     names.init,
  1152                     new MethodType(
  1153                         argtypes.append(
  1154                             accessConstructorTag().erasure(types)),
  1155                         constr.type.getReturnType(),
  1156                         constr.type.getThrownTypes(),
  1157                         syms.methodClass),
  1158                     accOwner);
  1159                 enterSynthetic(pos, aconstr, accOwner.members());
  1160                 accessConstrs.put(constr, aconstr);
  1161                 accessed.append(constr);
  1163             return aconstr;
  1164         } else {
  1165             return constr;
  1169     /** Return an anonymous class nested in this toplevel class.
  1170      */
  1171     ClassSymbol accessConstructorTag() {
  1172         ClassSymbol topClass = currentClass.outermostClass();
  1173         Name flatname = names.fromString("" + topClass.getQualifiedName() +
  1174                                          target.syntheticNameChar() +
  1175                                          "1");
  1176         ClassSymbol ctag = chk.compiled.get(flatname);
  1177         if (ctag == null)
  1178             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
  1179         // keep a record of all tags, to verify that all are generated as required
  1180         accessConstrTags = accessConstrTags.prepend(ctag);
  1181         return ctag;
  1184     /** Add all required access methods for a private symbol to enclosing class.
  1185      *  @param sym       The symbol.
  1186      */
  1187     void makeAccessible(Symbol sym) {
  1188         JCClassDecl cdef = classDef(sym.owner.enclClass());
  1189         assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
  1190         if (sym.name == names.init) {
  1191             cdef.defs = cdef.defs.prepend(
  1192                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
  1193         } else {
  1194             MethodSymbol[] accessors = accessSyms.get(sym);
  1195             for (int i = 0; i < NCODES; i++) {
  1196                 if (accessors[i] != null)
  1197                     cdef.defs = cdef.defs.prepend(
  1198                         accessDef(cdef.pos, sym, accessors[i], i));
  1203     /** Construct definition of an access method.
  1204      *  @param pos        The source code position of the definition.
  1205      *  @param vsym       The private or protected symbol.
  1206      *  @param accessor   The access method for the symbol.
  1207      *  @param acode      The access code.
  1208      */
  1209     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
  1210 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
  1211         currentClass = vsym.owner.enclClass();
  1212         make.at(pos);
  1213         JCMethodDecl md = make.MethodDef(accessor, null);
  1215         // Find actual symbol
  1216         Symbol sym = actualSymbols.get(vsym);
  1217         if (sym == null) sym = vsym;
  1219         JCExpression ref;           // The tree referencing the private symbol.
  1220         List<JCExpression> args;    // Any additional arguments to be passed along.
  1221         if ((sym.flags() & STATIC) != 0) {
  1222             ref = make.Ident(sym);
  1223             args = make.Idents(md.params);
  1224         } else {
  1225             ref = make.Select(make.Ident(md.params.head), sym);
  1226             args = make.Idents(md.params.tail);
  1228         JCStatement stat;          // The statement accessing the private symbol.
  1229         if (sym.kind == VAR) {
  1230             // Normalize out all odd access codes by taking floor modulo 2:
  1231             int acode1 = acode - (acode & 1);
  1233             JCExpression expr;      // The access method's return value.
  1234             switch (acode1) {
  1235             case DEREFcode:
  1236                 expr = ref;
  1237                 break;
  1238             case ASSIGNcode:
  1239                 expr = make.Assign(ref, args.head);
  1240                 break;
  1241             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
  1242                 expr = makeUnary(
  1243                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
  1244                 break;
  1245             default:
  1246                 expr = make.Assignop(
  1247                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
  1248                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
  1250             stat = make.Return(expr.setType(sym.type));
  1251         } else {
  1252             stat = make.Call(make.App(ref, args));
  1254         md.body = make.Block(0, List.of(stat));
  1256         // Make sure all parameters, result types and thrown exceptions
  1257         // are accessible.
  1258         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
  1259             l.head.vartype = access(l.head.vartype);
  1260         md.restype = access(md.restype);
  1261         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
  1262             l.head = access(l.head);
  1264         return md;
  1267     /** Construct definition of an access constructor.
  1268      *  @param pos        The source code position of the definition.
  1269      *  @param constr     The private constructor.
  1270      *  @param accessor   The access method for the constructor.
  1271      */
  1272     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
  1273         make.at(pos);
  1274         JCMethodDecl md = make.MethodDef(accessor,
  1275                                       accessor.externalType(types),
  1276                                       null);
  1277         JCIdent callee = make.Ident(names._this);
  1278         callee.sym = constr;
  1279         callee.type = constr.type;
  1280         md.body =
  1281             make.Block(0, List.<JCStatement>of(
  1282                 make.Call(
  1283                     make.App(
  1284                         callee,
  1285                         make.Idents(md.params.reverse().tail.reverse())))));
  1286         return md;
  1289 /**************************************************************************
  1290  * Free variables proxies and this$n
  1291  *************************************************************************/
  1293     /** A scope containing all free variable proxies for currently translated
  1294      *  class, as well as its this$n symbol (if needed).
  1295      *  Proxy scopes are nested in the same way classes are.
  1296      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1297      *  in an additional innermost scope, where they represent the constructor
  1298      *  parameters.
  1299      */
  1300     Scope proxies;
  1302     /** A stack containing the this$n field of the currently translated
  1303      *  classes (if needed) in innermost first order.
  1304      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1305      *  in an additional innermost scope, where they represent the constructor
  1306      *  parameters.
  1307      */
  1308     List<VarSymbol> outerThisStack;
  1310     /** The name of a free variable proxy.
  1311      */
  1312     Name proxyName(Name name) {
  1313         return names.fromString("val" + target.syntheticNameChar() + name);
  1316     /** Proxy definitions for all free variables in given list, in reverse order.
  1317      *  @param pos        The source code position of the definition.
  1318      *  @param freevars   The free variables.
  1319      *  @param owner      The class in which the definitions go.
  1320      */
  1321     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
  1322         long flags = FINAL | SYNTHETIC;
  1323         if (owner.kind == TYP &&
  1324             target.usePrivateSyntheticFields())
  1325             flags |= PRIVATE;
  1326         List<JCVariableDecl> defs = List.nil();
  1327         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
  1328             VarSymbol v = l.head;
  1329             VarSymbol proxy = new VarSymbol(
  1330                 flags, proxyName(v.name), v.erasure(types), owner);
  1331             proxies.enter(proxy);
  1332             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
  1333             vd.vartype = access(vd.vartype);
  1334             defs = defs.prepend(vd);
  1336         return defs;
  1339     /** The name of a this$n field
  1340      *  @param type   The class referenced by the this$n field
  1341      */
  1342     Name outerThisName(Type type, Symbol owner) {
  1343         Type t = type.getEnclosingType();
  1344         int nestingLevel = 0;
  1345         while (t.tag == CLASS) {
  1346             t = t.getEnclosingType();
  1347             nestingLevel++;
  1349         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
  1350         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
  1351             result = names.fromString(result.toString() + target.syntheticNameChar());
  1352         return result;
  1355     /** Definition for this$n field.
  1356      *  @param pos        The source code position of the definition.
  1357      *  @param owner      The class in which the definition goes.
  1358      */
  1359     JCVariableDecl outerThisDef(int pos, Symbol owner) {
  1360         long flags = FINAL | SYNTHETIC;
  1361         if (owner.kind == TYP &&
  1362             target.usePrivateSyntheticFields())
  1363             flags |= PRIVATE;
  1364         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
  1365         VarSymbol outerThis = new VarSymbol(
  1366             flags, outerThisName(target, owner), target, owner);
  1367         outerThisStack = outerThisStack.prepend(outerThis);
  1368         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
  1369         vd.vartype = access(vd.vartype);
  1370         return vd;
  1373     /** Return a list of trees that load the free variables in given list,
  1374      *  in reverse order.
  1375      *  @param pos          The source code position to be used for the trees.
  1376      *  @param freevars     The list of free variables.
  1377      */
  1378     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
  1379         List<JCExpression> args = List.nil();
  1380         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
  1381             args = args.prepend(loadFreevar(pos, l.head));
  1382         return args;
  1384 //where
  1385         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
  1386             return access(v, make.at(pos).Ident(v), null, false);
  1389     /** Construct a tree simulating the expression <C.this>.
  1390      *  @param pos           The source code position to be used for the tree.
  1391      *  @param c             The qualifier class.
  1392      */
  1393     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
  1394         if (currentClass == c) {
  1395             // in this case, `this' works fine
  1396             return make.at(pos).This(c.erasure(types));
  1397         } else {
  1398             // need to go via this$n
  1399             return makeOuterThis(pos, c);
  1403     /** Construct a tree that represents the outer instance
  1404      *  <C.this>. Never pick the current `this'.
  1405      *  @param pos           The source code position to be used for the tree.
  1406      *  @param c             The qualifier class.
  1407      */
  1408     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
  1409         List<VarSymbol> ots = outerThisStack;
  1410         if (ots.isEmpty()) {
  1411             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1412             assert false;
  1413             return makeNull();
  1415         VarSymbol ot = ots.head;
  1416         JCExpression tree = access(make.at(pos).Ident(ot));
  1417         TypeSymbol otc = ot.type.tsym;
  1418         while (otc != c) {
  1419             do {
  1420                 ots = ots.tail;
  1421                 if (ots.isEmpty()) {
  1422                     log.error(pos,
  1423                               "no.encl.instance.of.type.in.scope",
  1424                               c);
  1425                     assert false; // should have been caught in Attr
  1426                     return tree;
  1428                 ot = ots.head;
  1429             } while (ot.owner != otc);
  1430             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
  1431                 chk.earlyRefError(pos, c);
  1432                 assert false; // should have been caught in Attr
  1433                 return makeNull();
  1435             tree = access(make.at(pos).Select(tree, ot));
  1436             otc = ot.type.tsym;
  1438         return tree;
  1441     /** Construct a tree that represents the closest outer instance
  1442      *  <C.this> such that the given symbol is a member of C.
  1443      *  @param pos           The source code position to be used for the tree.
  1444      *  @param sym           The accessed symbol.
  1445      *  @param preciseMatch  should we accept a type that is a subtype of
  1446      *                       sym's owner, even if it doesn't contain sym
  1447      *                       due to hiding, overriding, or non-inheritance
  1448      *                       due to protection?
  1449      */
  1450     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1451         Symbol c = sym.owner;
  1452         if (preciseMatch ? sym.isMemberOf(currentClass, types)
  1453                          : currentClass.isSubClass(sym.owner, types)) {
  1454             // in this case, `this' works fine
  1455             return make.at(pos).This(c.erasure(types));
  1456         } else {
  1457             // need to go via this$n
  1458             return makeOwnerThisN(pos, sym, preciseMatch);
  1462     /**
  1463      * Similar to makeOwnerThis but will never pick "this".
  1464      */
  1465     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1466         Symbol c = sym.owner;
  1467         List<VarSymbol> ots = outerThisStack;
  1468         if (ots.isEmpty()) {
  1469             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1470             assert false;
  1471             return makeNull();
  1473         VarSymbol ot = ots.head;
  1474         JCExpression tree = access(make.at(pos).Ident(ot));
  1475         TypeSymbol otc = ot.type.tsym;
  1476         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
  1477             do {
  1478                 ots = ots.tail;
  1479                 if (ots.isEmpty()) {
  1480                     log.error(pos,
  1481                         "no.encl.instance.of.type.in.scope",
  1482                         c);
  1483                     assert false;
  1484                     return tree;
  1486                 ot = ots.head;
  1487             } while (ot.owner != otc);
  1488             tree = access(make.at(pos).Select(tree, ot));
  1489             otc = ot.type.tsym;
  1491         return tree;
  1494     /** Return tree simulating the assignment <this.name = name>, where
  1495      *  name is the name of a free variable.
  1496      */
  1497     JCStatement initField(int pos, Name name) {
  1498         Scope.Entry e = proxies.lookup(name);
  1499         Symbol rhs = e.sym;
  1500         assert rhs.owner.kind == MTH;
  1501         Symbol lhs = e.next().sym;
  1502         assert rhs.owner.owner == lhs.owner;
  1503         make.at(pos);
  1504         return
  1505             make.Exec(
  1506                 make.Assign(
  1507                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1508                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1511     /** Return tree simulating the assignment <this.this$n = this$n>.
  1512      */
  1513     JCStatement initOuterThis(int pos) {
  1514         VarSymbol rhs = outerThisStack.head;
  1515         assert rhs.owner.kind == MTH;
  1516         VarSymbol lhs = outerThisStack.tail.head;
  1517         assert rhs.owner.owner == lhs.owner;
  1518         make.at(pos);
  1519         return
  1520             make.Exec(
  1521                 make.Assign(
  1522                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1523                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1526 /**************************************************************************
  1527  * Code for .class
  1528  *************************************************************************/
  1530     /** Return the symbol of a class to contain a cache of
  1531      *  compiler-generated statics such as class$ and the
  1532      *  $assertionsDisabled flag.  We create an anonymous nested class
  1533      *  (unless one already exists) and return its symbol.  However,
  1534      *  for backward compatibility in 1.4 and earlier we use the
  1535      *  top-level class itself.
  1536      */
  1537     private ClassSymbol outerCacheClass() {
  1538         ClassSymbol clazz = outermostClassDef.sym;
  1539         if ((clazz.flags() & INTERFACE) == 0 &&
  1540             !target.useInnerCacheClass()) return clazz;
  1541         Scope s = clazz.members();
  1542         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
  1543             if (e.sym.kind == TYP &&
  1544                 e.sym.name == names.empty &&
  1545                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
  1546         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
  1549     /** Return symbol for "class$" method. If there is no method definition
  1550      *  for class$, construct one as follows:
  1552      *    class class$(String x0) {
  1553      *      try {
  1554      *        return Class.forName(x0);
  1555      *      } catch (ClassNotFoundException x1) {
  1556      *        throw new NoClassDefFoundError(x1.getMessage());
  1557      *      }
  1558      *    }
  1559      */
  1560     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
  1561         ClassSymbol outerCacheClass = outerCacheClass();
  1562         MethodSymbol classDollarSym =
  1563             (MethodSymbol)lookupSynthetic(classDollar,
  1564                                           outerCacheClass.members());
  1565         if (classDollarSym == null) {
  1566             classDollarSym = new MethodSymbol(
  1567                 STATIC | SYNTHETIC,
  1568                 classDollar,
  1569                 new MethodType(
  1570                     List.of(syms.stringType),
  1571                     types.erasure(syms.classType),
  1572                     List.<Type>nil(),
  1573                     syms.methodClass),
  1574                 outerCacheClass);
  1575             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
  1577             JCMethodDecl md = make.MethodDef(classDollarSym, null);
  1578             try {
  1579                 md.body = classDollarSymBody(pos, md);
  1580             } catch (CompletionFailure ex) {
  1581                 md.body = make.Block(0, List.<JCStatement>nil());
  1582                 chk.completionError(pos, ex);
  1584             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1585             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
  1587         return classDollarSym;
  1590     /** Generate code for class$(String name). */
  1591     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
  1592         MethodSymbol classDollarSym = md.sym;
  1593         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
  1595         JCBlock returnResult;
  1597         // in 1.4.2 and above, we use
  1598         // Class.forName(String name, boolean init, ClassLoader loader);
  1599         // which requires we cache the current loader in cl$
  1600         if (target.classLiteralsNoInit()) {
  1601             // clsym = "private static ClassLoader cl$"
  1602             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
  1603                                             names.fromString("cl" + target.syntheticNameChar()),
  1604                                             syms.classLoaderType,
  1605                                             outerCacheClass);
  1606             enterSynthetic(pos, clsym, outerCacheClass.members());
  1608             // emit "private static ClassLoader cl$;"
  1609             JCVariableDecl cldef = make.VarDef(clsym, null);
  1610             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1611             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
  1613             // newcache := "new cache$1[0]"
  1614             JCNewArray newcache = make.
  1615                 NewArray(make.Type(outerCacheClass.type),
  1616                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
  1617                          null);
  1618             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
  1619                                           syms.arrayClass);
  1621             // forNameSym := java.lang.Class.forName(
  1622             //     String s,boolean init,ClassLoader loader)
  1623             Symbol forNameSym = lookupMethod(make_pos, names.forName,
  1624                                              types.erasure(syms.classType),
  1625                                              List.of(syms.stringType,
  1626                                                      syms.booleanType,
  1627                                                      syms.classLoaderType));
  1628             // clvalue := "(cl$ == null) ?
  1629             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
  1630             JCExpression clvalue =
  1631                 make.Conditional(
  1632                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
  1633                     make.Assign(
  1634                         make.Ident(clsym),
  1635                         makeCall(
  1636                             makeCall(makeCall(newcache,
  1637                                               names.getClass,
  1638                                               List.<JCExpression>nil()),
  1639                                      names.getComponentType,
  1640                                      List.<JCExpression>nil()),
  1641                             names.getClassLoader,
  1642                             List.<JCExpression>nil())).setType(syms.classLoaderType),
  1643                     make.Ident(clsym)).setType(syms.classLoaderType);
  1645             // returnResult := "{ return Class.forName(param1, false, cl$); }"
  1646             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
  1647                                               makeLit(syms.booleanType, 0),
  1648                                               clvalue);
  1649             returnResult = make.
  1650                 Block(0, List.<JCStatement>of(make.
  1651                               Call(make. // return
  1652                                    App(make.
  1653                                        Ident(forNameSym), args))));
  1654         } else {
  1655             // forNameSym := java.lang.Class.forName(String s)
  1656             Symbol forNameSym = lookupMethod(make_pos,
  1657                                              names.forName,
  1658                                              types.erasure(syms.classType),
  1659                                              List.of(syms.stringType));
  1660             // returnResult := "{ return Class.forName(param1); }"
  1661             returnResult = make.
  1662                 Block(0, List.of(make.
  1663                           Call(make. // return
  1664                               App(make.
  1665                                   QualIdent(forNameSym),
  1666                                   List.<JCExpression>of(make.
  1667                                                         Ident(md.params.
  1668                                                               head.sym))))));
  1671         // catchParam := ClassNotFoundException e1
  1672         VarSymbol catchParam =
  1673             new VarSymbol(0, make.paramName(1),
  1674                           syms.classNotFoundExceptionType,
  1675                           classDollarSym);
  1677         JCStatement rethrow;
  1678         if (target.hasInitCause()) {
  1679             // rethrow = "throw new NoClassDefFoundError().initCause(e);
  1680             JCTree throwExpr =
  1681                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
  1682                                       List.<JCExpression>nil()),
  1683                          names.initCause,
  1684                          List.<JCExpression>of(make.Ident(catchParam)));
  1685             rethrow = make.Throw(throwExpr);
  1686         } else {
  1687             // getMessageSym := ClassNotFoundException.getMessage()
  1688             Symbol getMessageSym = lookupMethod(make_pos,
  1689                                                 names.getMessage,
  1690                                                 syms.classNotFoundExceptionType,
  1691                                                 List.<Type>nil());
  1692             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
  1693             rethrow = make.
  1694                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
  1695                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
  1696                                                                      getMessageSym),
  1697                                                          List.<JCExpression>nil()))));
  1700         // rethrowStmt := "( $rethrow )"
  1701         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
  1703         // catchBlock := "catch ($catchParam) $rethrowStmt"
  1704         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
  1705                                       rethrowStmt);
  1707         // tryCatch := "try $returnResult $catchBlock"
  1708         JCStatement tryCatch = make.Try(returnResult,
  1709                                         List.of(catchBlock), null);
  1711         return make.Block(0, List.of(tryCatch));
  1713     // where
  1714         /** Create an attributed tree of the form left.name(). */
  1715         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
  1716             assert left.type != null;
  1717             Symbol funcsym = lookupMethod(make_pos, name, left.type,
  1718                                           TreeInfo.types(args));
  1719             return make.App(make.Select(left, funcsym), args);
  1722     /** The Name Of The variable to cache T.class values.
  1723      *  @param sig      The signature of type T.
  1724      */
  1725     private Name cacheName(String sig) {
  1726         StringBuffer buf = new StringBuffer();
  1727         if (sig.startsWith("[")) {
  1728             buf = buf.append("array");
  1729             while (sig.startsWith("[")) {
  1730                 buf = buf.append(target.syntheticNameChar());
  1731                 sig = sig.substring(1);
  1733             if (sig.startsWith("L")) {
  1734                 sig = sig.substring(0, sig.length() - 1);
  1736         } else {
  1737             buf = buf.append("class" + target.syntheticNameChar());
  1739         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
  1740         return names.fromString(buf.toString());
  1743     /** The variable symbol that caches T.class values.
  1744      *  If none exists yet, create a definition.
  1745      *  @param sig      The signature of type T.
  1746      *  @param pos      The position to report diagnostics, if any.
  1747      */
  1748     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
  1749         ClassSymbol outerCacheClass = outerCacheClass();
  1750         Name cname = cacheName(sig);
  1751         VarSymbol cacheSym =
  1752             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
  1753         if (cacheSym == null) {
  1754             cacheSym = new VarSymbol(
  1755                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
  1756             enterSynthetic(pos, cacheSym, outerCacheClass.members());
  1758             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
  1759             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1760             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
  1762         return cacheSym;
  1765     /** The tree simulating a T.class expression.
  1766      *  @param clazz      The tree identifying type T.
  1767      */
  1768     private JCExpression classOf(JCTree clazz) {
  1769         return classOfType(clazz.type, clazz.pos());
  1772     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
  1773         switch (type.tag) {
  1774         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
  1775         case DOUBLE: case BOOLEAN: case VOID:
  1776             // replace with <BoxedClass>.TYPE
  1777             ClassSymbol c = types.boxedClass(type);
  1778             Symbol typeSym =
  1779                 rs.access(
  1780                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
  1781                     pos, c.type, names.TYPE, true);
  1782             if (typeSym.kind == VAR)
  1783                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
  1784             return make.QualIdent(typeSym);
  1785         case CLASS: case ARRAY:
  1786             if (target.hasClassLiterals()) {
  1787                 VarSymbol sym = new VarSymbol(
  1788                         STATIC | PUBLIC | FINAL, names._class,
  1789                         syms.classType, type.tsym);
  1790                 return make_at(pos).Select(make.Type(type), sym);
  1792             // replace with <cache == null ? cache = class$(tsig) : cache>
  1793             // where
  1794             //  - <tsig>  is the type signature of T,
  1795             //  - <cache> is the cache variable for tsig.
  1796             String sig =
  1797                 writer.xClassName(type).toString().replace('/', '.');
  1798             Symbol cs = cacheSym(pos, sig);
  1799             return make_at(pos).Conditional(
  1800                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
  1801                 make.Assign(
  1802                     make.Ident(cs),
  1803                     make.App(
  1804                         make.Ident(classDollarSym(pos)),
  1805                         List.<JCExpression>of(make.Literal(CLASS, sig)
  1806                                               .setType(syms.stringType))))
  1807                 .setType(types.erasure(syms.classType)),
  1808                 make.Ident(cs)).setType(types.erasure(syms.classType));
  1809         default:
  1810             throw new AssertionError();
  1814 /**************************************************************************
  1815  * Code for enabling/disabling assertions.
  1816  *************************************************************************/
  1818     // This code is not particularly robust if the user has
  1819     // previously declared a member named '$assertionsDisabled'.
  1820     // The same faulty idiom also appears in the translation of
  1821     // class literals above.  We should report an error if a
  1822     // previous declaration is not synthetic.
  1824     private JCExpression assertFlagTest(DiagnosticPosition pos) {
  1825         // Outermost class may be either true class or an interface.
  1826         ClassSymbol outermostClass = outermostClassDef.sym;
  1828         // note that this is a class, as an interface can't contain a statement.
  1829         ClassSymbol container = currentClass;
  1831         VarSymbol assertDisabledSym =
  1832             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
  1833                                        container.members());
  1834         if (assertDisabledSym == null) {
  1835             assertDisabledSym =
  1836                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
  1837                               dollarAssertionsDisabled,
  1838                               syms.booleanType,
  1839                               container);
  1840             enterSynthetic(pos, assertDisabledSym, container.members());
  1841             Symbol desiredAssertionStatusSym = lookupMethod(pos,
  1842                                                             names.desiredAssertionStatus,
  1843                                                             types.erasure(syms.classType),
  1844                                                             List.<Type>nil());
  1845             JCClassDecl containerDef = classDef(container);
  1846             make_at(containerDef.pos());
  1847             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
  1848                     classOfType(types.erasure(outermostClass.type),
  1849                                 containerDef.pos()),
  1850                     desiredAssertionStatusSym)));
  1851             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
  1852                                                    notStatus);
  1853             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
  1855         make_at(pos);
  1856         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
  1860 /**************************************************************************
  1861  * Building blocks for let expressions
  1862  *************************************************************************/
  1864     interface TreeBuilder {
  1865         JCTree build(JCTree arg);
  1868     /** Construct an expression using the builder, with the given rval
  1869      *  expression as an argument to the builder.  However, the rval
  1870      *  expression must be computed only once, even if used multiple
  1871      *  times in the result of the builder.  We do that by
  1872      *  constructing a "let" expression that saves the rvalue into a
  1873      *  temporary variable and then uses the temporary variable in
  1874      *  place of the expression built by the builder.  The complete
  1875      *  resulting expression is of the form
  1876      *  <pre>
  1877      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
  1878      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
  1879      *  </pre>
  1880      *  where <code><b>TEMP</b></code> is a newly declared variable
  1881      *  in the let expression.
  1882      */
  1883     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
  1884         rval = TreeInfo.skipParens(rval);
  1885         switch (rval.getTag()) {
  1886         case JCTree.LITERAL:
  1887             return builder.build(rval);
  1888         case JCTree.IDENT:
  1889             JCIdent id = (JCIdent) rval;
  1890             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
  1891                 return builder.build(rval);
  1893         VarSymbol var =
  1894             new VarSymbol(FINAL|SYNTHETIC,
  1895                           names.fromString(
  1896                                           target.syntheticNameChar()
  1897                                           + "" + rval.hashCode()),
  1898                                       type,
  1899                                       currentMethodSym);
  1900         rval = convert(rval,type);
  1901         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
  1902         JCTree built = builder.build(make.Ident(var));
  1903         JCTree res = make.LetExpr(def, built);
  1904         res.type = built.type;
  1905         return res;
  1908     // same as above, with the type of the temporary variable computed
  1909     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
  1910         return abstractRval(rval, rval.type, builder);
  1913     // same as above, but for an expression that may be used as either
  1914     // an rvalue or an lvalue.  This requires special handling for
  1915     // Select expressions, where we place the left-hand-side of the
  1916     // select in a temporary, and for Indexed expressions, where we
  1917     // place both the indexed expression and the index value in temps.
  1918     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
  1919         lval = TreeInfo.skipParens(lval);
  1920         switch (lval.getTag()) {
  1921         case JCTree.IDENT:
  1922             return builder.build(lval);
  1923         case JCTree.SELECT: {
  1924             final JCFieldAccess s = (JCFieldAccess)lval;
  1925             JCTree selected = TreeInfo.skipParens(s.selected);
  1926             Symbol lid = TreeInfo.symbol(s.selected);
  1927             if (lid != null && lid.kind == TYP) return builder.build(lval);
  1928             return abstractRval(s.selected, new TreeBuilder() {
  1929                     public JCTree build(final JCTree selected) {
  1930                         return builder.build(make.Select((JCExpression)selected, s.sym));
  1932                 });
  1934         case JCTree.INDEXED: {
  1935             final JCArrayAccess i = (JCArrayAccess)lval;
  1936             return abstractRval(i.indexed, new TreeBuilder() {
  1937                     public JCTree build(final JCTree indexed) {
  1938                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
  1939                                 public JCTree build(final JCTree index) {
  1940                                     JCTree newLval = make.Indexed((JCExpression)indexed,
  1941                                                                 (JCExpression)index);
  1942                                     newLval.setType(i.type);
  1943                                     return builder.build(newLval);
  1945                             });
  1947                 });
  1949         case JCTree.TYPECAST: {
  1950             return abstractLval(((JCTypeCast)lval).expr, builder);
  1953         throw new AssertionError(lval);
  1956     // evaluate and discard the first expression, then evaluate the second.
  1957     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
  1958         return abstractRval(expr1, new TreeBuilder() {
  1959                 public JCTree build(final JCTree discarded) {
  1960                     return expr2;
  1962             });
  1965 /**************************************************************************
  1966  * Translation methods
  1967  *************************************************************************/
  1969     /** Visitor argument: enclosing operator node.
  1970      */
  1971     private JCExpression enclOp;
  1973     /** Visitor method: Translate a single node.
  1974      *  Attach the source position from the old tree to its replacement tree.
  1975      */
  1976     public <T extends JCTree> T translate(T tree) {
  1977         if (tree == null) {
  1978             return null;
  1979         } else {
  1980             make_at(tree.pos());
  1981             T result = super.translate(tree);
  1982             if (endPositions != null && result != tree) {
  1983                 Integer endPos = endPositions.remove(tree);
  1984                 if (endPos != null) endPositions.put(result, endPos);
  1986             return result;
  1990     /** Visitor method: Translate a single node, boxing or unboxing if needed.
  1991      */
  1992     public <T extends JCTree> T translate(T tree, Type type) {
  1993         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
  1996     /** Visitor method: Translate tree.
  1997      */
  1998     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
  1999         JCExpression prevEnclOp = this.enclOp;
  2000         this.enclOp = enclOp;
  2001         T res = translate(tree);
  2002         this.enclOp = prevEnclOp;
  2003         return res;
  2006     /** Visitor method: Translate list of trees.
  2007      */
  2008     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
  2009         JCExpression prevEnclOp = this.enclOp;
  2010         this.enclOp = enclOp;
  2011         List<T> res = translate(trees);
  2012         this.enclOp = prevEnclOp;
  2013         return res;
  2016     /** Visitor method: Translate list of trees.
  2017      */
  2018     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
  2019         if (trees == null) return null;
  2020         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
  2021             l.head = translate(l.head, type);
  2022         return trees;
  2025     public void visitTopLevel(JCCompilationUnit tree) {
  2026         if (tree.packageAnnotations.nonEmpty()) {
  2027             Name name = names.package_info;
  2028             long flags = Flags.ABSTRACT | Flags.INTERFACE;
  2029             if (target.isPackageInfoSynthetic())
  2030                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
  2031                 flags = flags | Flags.SYNTHETIC;
  2032             JCClassDecl packageAnnotationsClass
  2033                 = make.ClassDef(make.Modifiers(flags,
  2034                                                tree.packageAnnotations),
  2035                                 name, List.<JCTypeParameter>nil(),
  2036                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
  2037             ClassSymbol c = tree.packge.package_info;
  2038             c.flags_field |= flags;
  2039             c.attributes_field = tree.packge.attributes_field;
  2040             ClassType ctype = (ClassType) c.type;
  2041             ctype.supertype_field = syms.objectType;
  2042             ctype.interfaces_field = List.nil();
  2043             packageAnnotationsClass.sym = c;
  2045             translated.append(packageAnnotationsClass);
  2049     public void visitClassDef(JCClassDecl tree) {
  2050         ClassSymbol currentClassPrev = currentClass;
  2051         MethodSymbol currentMethodSymPrev = currentMethodSym;
  2052         currentClass = tree.sym;
  2053         currentMethodSym = null;
  2054         classdefs.put(currentClass, tree);
  2056         proxies = proxies.dup(currentClass);
  2057         List<VarSymbol> prevOuterThisStack = outerThisStack;
  2059         // If this is an enum definition
  2060         if ((tree.mods.flags & ENUM) != 0 &&
  2061             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
  2062             visitEnumDef(tree);
  2064         // If this is a nested class, define a this$n field for
  2065         // it and add to proxies.
  2066         JCVariableDecl otdef = null;
  2067         if (currentClass.hasOuterInstance())
  2068             otdef = outerThisDef(tree.pos, currentClass);
  2070         // If this is a local class, define proxies for all its free variables.
  2071         List<JCVariableDecl> fvdefs = freevarDefs(
  2072             tree.pos, freevars(currentClass), currentClass);
  2074         // Recursively translate superclass, interfaces.
  2075         tree.extending = translate(tree.extending);
  2076         tree.implementing = translate(tree.implementing);
  2078         // Recursively translate members, taking into account that new members
  2079         // might be created during the translation and prepended to the member
  2080         // list `tree.defs'.
  2081         List<JCTree> seen = List.nil();
  2082         while (tree.defs != seen) {
  2083             List<JCTree> unseen = tree.defs;
  2084             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
  2085                 JCTree outermostMemberDefPrev = outermostMemberDef;
  2086                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
  2087                 l.head = translate(l.head);
  2088                 outermostMemberDef = outermostMemberDefPrev;
  2090             seen = unseen;
  2093         // Convert a protected modifier to public, mask static modifier.
  2094         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
  2095         tree.mods.flags &= ClassFlags;
  2097         // Convert name to flat representation, replacing '.' by '$'.
  2098         tree.name = Convert.shortName(currentClass.flatName());
  2100         // Add this$n and free variables proxy definitions to class.
  2101         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
  2102             tree.defs = tree.defs.prepend(l.head);
  2103             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
  2105         if (currentClass.hasOuterInstance()) {
  2106             tree.defs = tree.defs.prepend(otdef);
  2107             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
  2110         proxies = proxies.leave();
  2111         outerThisStack = prevOuterThisStack;
  2113         // Append translated tree to `translated' queue.
  2114         translated.append(tree);
  2116         currentClass = currentClassPrev;
  2117         currentMethodSym = currentMethodSymPrev;
  2119         // Return empty block {} as a placeholder for an inner class.
  2120         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
  2123     /** Translate an enum class. */
  2124     private void visitEnumDef(JCClassDecl tree) {
  2125         make_at(tree.pos());
  2127         // add the supertype, if needed
  2128         if (tree.extending == null)
  2129             tree.extending = make.Type(types.supertype(tree.type));
  2131         // classOfType adds a cache field to tree.defs unless
  2132         // target.hasClassLiterals().
  2133         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
  2134             setType(types.erasure(syms.classType));
  2136         // process each enumeration constant, adding implicit constructor parameters
  2137         int nextOrdinal = 0;
  2138         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
  2139         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
  2140         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
  2141         for (List<JCTree> defs = tree.defs;
  2142              defs.nonEmpty();
  2143              defs=defs.tail) {
  2144             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
  2145                 JCVariableDecl var = (JCVariableDecl)defs.head;
  2146                 visitEnumConstantDef(var, nextOrdinal++);
  2147                 values.append(make.QualIdent(var.sym));
  2148                 enumDefs.append(var);
  2149             } else {
  2150                 otherDefs.append(defs.head);
  2154         // private static final T[] #VALUES = { a, b, c };
  2155         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
  2156         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
  2157             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
  2158         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
  2159         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
  2160                                             valuesName,
  2161                                             arrayType,
  2162                                             tree.type.tsym);
  2163         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2164                                           List.<JCExpression>nil(),
  2165                                           values.toList());
  2166         newArray.type = arrayType;
  2167         enumDefs.append(make.VarDef(valuesVar, newArray));
  2168         tree.sym.members().enter(valuesVar);
  2170         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
  2171                                         tree.type, List.<Type>nil());
  2172         List<JCStatement> valuesBody;
  2173         if (useClone()) {
  2174             // return (T[]) $VALUES.clone();
  2175             JCTypeCast valuesResult =
  2176                 make.TypeCast(valuesSym.type.getReturnType(),
  2177                               make.App(make.Select(make.Ident(valuesVar),
  2178                                                    syms.arrayCloneMethod)));
  2179             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
  2180         } else {
  2181             // template: T[] $result = new T[$values.length];
  2182             Name resultName = names.fromString(target.syntheticNameChar() + "result");
  2183             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
  2184                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
  2185             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
  2186                                                 resultName,
  2187                                                 arrayType,
  2188                                                 valuesSym);
  2189             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2190                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
  2191                                   null);
  2192             resultArray.type = arrayType;
  2193             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
  2195             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
  2196             if (systemArraycopyMethod == null) {
  2197                 systemArraycopyMethod =
  2198                     new MethodSymbol(PUBLIC | STATIC,
  2199                                      names.fromString("arraycopy"),
  2200                                      new MethodType(List.<Type>of(syms.objectType,
  2201                                                             syms.intType,
  2202                                                             syms.objectType,
  2203                                                             syms.intType,
  2204                                                             syms.intType),
  2205                                                     syms.voidType,
  2206                                                     List.<Type>nil(),
  2207                                                     syms.methodClass),
  2208                                      syms.systemType.tsym);
  2210             JCStatement copy =
  2211                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
  2212                                                systemArraycopyMethod),
  2213                           List.of(make.Ident(valuesVar), make.Literal(0),
  2214                                   make.Ident(resultVar), make.Literal(0),
  2215                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
  2217             // template: return $result;
  2218             JCStatement ret = make.Return(make.Ident(resultVar));
  2219             valuesBody = List.<JCStatement>of(decl, copy, ret);
  2222         JCMethodDecl valuesDef =
  2223              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
  2225         enumDefs.append(valuesDef);
  2227         if (debugLower)
  2228             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
  2230         /** The template for the following code is:
  2232          *     public static E valueOf(String name) {
  2233          *         return (E)Enum.valueOf(E.class, name);
  2234          *     }
  2236          *  where E is tree.sym
  2237          */
  2238         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
  2239                          names.valueOf,
  2240                          tree.sym.type,
  2241                          List.of(syms.stringType));
  2242         assert (valueOfSym.flags() & STATIC) != 0;
  2243         VarSymbol nameArgSym = valueOfSym.params.head;
  2244         JCIdent nameVal = make.Ident(nameArgSym);
  2245         JCStatement enum_ValueOf =
  2246             make.Return(make.TypeCast(tree.sym.type,
  2247                                       makeCall(make.Ident(syms.enumSym),
  2248                                                names.valueOf,
  2249                                                List.of(e_class, nameVal))));
  2250         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
  2251                                            make.Block(0, List.of(enum_ValueOf)));
  2252         nameVal.sym = valueOf.params.head.sym;
  2253         if (debugLower)
  2254             System.err.println(tree.sym + ".valueOf = " + valueOf);
  2255         enumDefs.append(valueOf);
  2257         enumDefs.appendList(otherDefs.toList());
  2258         tree.defs = enumDefs.toList();
  2260         // Add the necessary members for the EnumCompatibleMode
  2261         if (target.compilerBootstrap(tree.sym)) {
  2262             addEnumCompatibleMembers(tree);
  2265         // where
  2266         private MethodSymbol systemArraycopyMethod;
  2267         private boolean useClone() {
  2268             try {
  2269                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
  2270                 return (e.sym != null);
  2272             catch (CompletionFailure e) {
  2273                 return false;
  2277     /** Translate an enumeration constant and its initializer. */
  2278     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
  2279         JCNewClass varDef = (JCNewClass)var.init;
  2280         varDef.args = varDef.args.
  2281             prepend(makeLit(syms.intType, ordinal)).
  2282             prepend(makeLit(syms.stringType, var.name.toString()));
  2285     public void visitMethodDef(JCMethodDecl tree) {
  2286         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
  2287             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
  2288             // argument list for each constructor of an enum.
  2289             JCVariableDecl nameParam = make_at(tree.pos()).
  2290                 Param(names.fromString(target.syntheticNameChar() +
  2291                                        "enum" + target.syntheticNameChar() + "name"),
  2292                       syms.stringType, tree.sym);
  2293             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
  2295             JCVariableDecl ordParam = make.
  2296                 Param(names.fromString(target.syntheticNameChar() +
  2297                                        "enum" + target.syntheticNameChar() +
  2298                                        "ordinal"),
  2299                       syms.intType, tree.sym);
  2300             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
  2302             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
  2304             MethodSymbol m = tree.sym;
  2305             Type olderasure = m.erasure(types);
  2306             m.erasure_field = new MethodType(
  2307                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
  2308                 olderasure.getReturnType(),
  2309                 olderasure.getThrownTypes(),
  2310                 syms.methodClass);
  2312             if (target.compilerBootstrap(m.owner)) {
  2313                 // Initialize synthetic name field
  2314                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
  2315                                                     tree.sym.owner.members());
  2316                 JCIdent nameIdent = make.Ident(nameParam.sym);
  2317                 JCIdent id1 = make.Ident(nameVarSym);
  2318                 JCAssign newAssign = make.Assign(id1, nameIdent);
  2319                 newAssign.type = id1.type;
  2320                 JCExpressionStatement nameAssign = make.Exec(newAssign);
  2321                 nameAssign.type = id1.type;
  2322                 tree.body.stats = tree.body.stats.prepend(nameAssign);
  2324                 // Initialize synthetic ordinal field
  2325                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
  2326                                                        tree.sym.owner.members());
  2327                 JCIdent ordIdent = make.Ident(ordParam.sym);
  2328                 id1 = make.Ident(ordinalVarSym);
  2329                 newAssign = make.Assign(id1, ordIdent);
  2330                 newAssign.type = id1.type;
  2331                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
  2332                 ordinalAssign.type = id1.type;
  2333                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
  2337         JCMethodDecl prevMethodDef = currentMethodDef;
  2338         MethodSymbol prevMethodSym = currentMethodSym;
  2339         try {
  2340             currentMethodDef = tree;
  2341             currentMethodSym = tree.sym;
  2342             visitMethodDefInternal(tree);
  2343         } finally {
  2344             currentMethodDef = prevMethodDef;
  2345             currentMethodSym = prevMethodSym;
  2348     //where
  2349     private void visitMethodDefInternal(JCMethodDecl tree) {
  2350         if (tree.name == names.init &&
  2351             (currentClass.isInner() ||
  2352              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
  2353             // We are seeing a constructor of an inner class.
  2354             MethodSymbol m = tree.sym;
  2356             // Push a new proxy scope for constructor parameters.
  2357             // and create definitions for any this$n and proxy parameters.
  2358             proxies = proxies.dup(m);
  2359             List<VarSymbol> prevOuterThisStack = outerThisStack;
  2360             List<VarSymbol> fvs = freevars(currentClass);
  2361             JCVariableDecl otdef = null;
  2362             if (currentClass.hasOuterInstance())
  2363                 otdef = outerThisDef(tree.pos, m);
  2364             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
  2366             // Recursively translate result type, parameters and thrown list.
  2367             tree.restype = translate(tree.restype);
  2368             tree.params = translateVarDefs(tree.params);
  2369             tree.thrown = translate(tree.thrown);
  2371             // when compiling stubs, don't process body
  2372             if (tree.body == null) {
  2373                 result = tree;
  2374                 return;
  2377             // Add this$n (if needed) in front of and free variables behind
  2378             // constructor parameter list.
  2379             tree.params = tree.params.appendList(fvdefs);
  2380             if (currentClass.hasOuterInstance())
  2381                 tree.params = tree.params.prepend(otdef);
  2383             // If this is an initial constructor, i.e., it does not start with
  2384             // this(...), insert initializers for this$n and proxies
  2385             // before (pre-1.4, after) the call to superclass constructor.
  2386             JCStatement selfCall = translate(tree.body.stats.head);
  2388             List<JCStatement> added = List.nil();
  2389             if (fvs.nonEmpty()) {
  2390                 List<Type> addedargtypes = List.nil();
  2391                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
  2392                     if (TreeInfo.isInitialConstructor(tree))
  2393                         added = added.prepend(
  2394                             initField(tree.body.pos, proxyName(l.head.name)));
  2395                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
  2397                 Type olderasure = m.erasure(types);
  2398                 m.erasure_field = new MethodType(
  2399                     olderasure.getParameterTypes().appendList(addedargtypes),
  2400                     olderasure.getReturnType(),
  2401                     olderasure.getThrownTypes(),
  2402                     syms.methodClass);
  2404             if (currentClass.hasOuterInstance() &&
  2405                 TreeInfo.isInitialConstructor(tree))
  2407                 added = added.prepend(initOuterThis(tree.body.pos));
  2410             // pop local variables from proxy stack
  2411             proxies = proxies.leave();
  2413             // recursively translate following local statements and
  2414             // combine with this- or super-call
  2415             List<JCStatement> stats = translate(tree.body.stats.tail);
  2416             if (target.initializeFieldsBeforeSuper())
  2417                 tree.body.stats = stats.prepend(selfCall).prependList(added);
  2418             else
  2419                 tree.body.stats = stats.prependList(added).prepend(selfCall);
  2421             outerThisStack = prevOuterThisStack;
  2422         } else {
  2423             super.visitMethodDef(tree);
  2425         result = tree;
  2428     public void visitAnnotatedType(JCAnnotatedType tree) {
  2429         tree.underlyingType = translate(tree.underlyingType);
  2430         result = tree.underlyingType;
  2433     public void visitTypeCast(JCTypeCast tree) {
  2434         tree.clazz = translate(tree.clazz);
  2435         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
  2436             tree.expr = translate(tree.expr, tree.type);
  2437         else
  2438             tree.expr = translate(tree.expr);
  2439         result = tree;
  2442     public void visitNewClass(JCNewClass tree) {
  2443         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
  2445         // Box arguments, if necessary
  2446         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
  2447         List<Type> argTypes = tree.constructor.type.getParameterTypes();
  2448         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
  2449         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
  2450         tree.varargsElement = null;
  2452         // If created class is local, add free variables after
  2453         // explicit constructor arguments.
  2454         if ((c.owner.kind & (VAR | MTH)) != 0) {
  2455             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2458         // If an access constructor is used, append null as a last argument.
  2459         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
  2460         if (constructor != tree.constructor) {
  2461             tree.args = tree.args.append(makeNull());
  2462             tree.constructor = constructor;
  2465         // If created class has an outer instance, and new is qualified, pass
  2466         // qualifier as first argument. If new is not qualified, pass the
  2467         // correct outer instance as first argument.
  2468         if (c.hasOuterInstance()) {
  2469             JCExpression thisArg;
  2470             if (tree.encl != null) {
  2471                 thisArg = attr.makeNullCheck(translate(tree.encl));
  2472                 thisArg.type = tree.encl.type;
  2473             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
  2474                 // local class
  2475                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
  2476             } else {
  2477                 // nested class
  2478                 thisArg = makeOwnerThis(tree.pos(), c, false);
  2480             tree.args = tree.args.prepend(thisArg);
  2482         tree.encl = null;
  2484         // If we have an anonymous class, create its flat version, rather
  2485         // than the class or interface following new.
  2486         if (tree.def != null) {
  2487             translate(tree.def);
  2488             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
  2489             tree.def = null;
  2490         } else {
  2491             tree.clazz = access(c, tree.clazz, enclOp, false);
  2493         result = tree;
  2496     // Simplify conditionals with known constant controlling expressions.
  2497     // This allows us to avoid generating supporting declarations for
  2498     // the dead code, which will not be eliminated during code generation.
  2499     // Note that Flow.isFalse and Flow.isTrue only return true
  2500     // for constant expressions in the sense of JLS 15.27, which
  2501     // are guaranteed to have no side-effects.  More aggressive
  2502     // constant propagation would require that we take care to
  2503     // preserve possible side-effects in the condition expression.
  2505     /** Visitor method for conditional expressions.
  2506      */
  2507     public void visitConditional(JCConditional tree) {
  2508         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2509         if (cond.type.isTrue()) {
  2510             result = convert(translate(tree.truepart, tree.type), tree.type);
  2511         } else if (cond.type.isFalse()) {
  2512             result = convert(translate(tree.falsepart, tree.type), tree.type);
  2513         } else {
  2514             // Condition is not a compile-time constant.
  2515             tree.truepart = translate(tree.truepart, tree.type);
  2516             tree.falsepart = translate(tree.falsepart, tree.type);
  2517             result = tree;
  2520 //where
  2521         private JCTree convert(JCTree tree, Type pt) {
  2522             if (tree.type == pt) return tree;
  2523             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
  2524             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
  2525                                                            : pt;
  2526             return result;
  2529     /** Visitor method for if statements.
  2530      */
  2531     public void visitIf(JCIf tree) {
  2532         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2533         if (cond.type.isTrue()) {
  2534             result = translate(tree.thenpart);
  2535         } else if (cond.type.isFalse()) {
  2536             if (tree.elsepart != null) {
  2537                 result = translate(tree.elsepart);
  2538             } else {
  2539                 result = make.Skip();
  2541         } else {
  2542             // Condition is not a compile-time constant.
  2543             tree.thenpart = translate(tree.thenpart);
  2544             tree.elsepart = translate(tree.elsepart);
  2545             result = tree;
  2549     /** Visitor method for assert statements. Translate them away.
  2550      */
  2551     public void visitAssert(JCAssert tree) {
  2552         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
  2553         tree.cond = translate(tree.cond, syms.booleanType);
  2554         if (!tree.cond.type.isTrue()) {
  2555             JCExpression cond = assertFlagTest(tree.pos());
  2556             List<JCExpression> exnArgs = (tree.detail == null) ?
  2557                 List.<JCExpression>nil() : List.of(translate(tree.detail));
  2558             if (!tree.cond.type.isFalse()) {
  2559                 cond = makeBinary
  2560                     (JCTree.AND,
  2561                      cond,
  2562                      makeUnary(JCTree.NOT, tree.cond));
  2564             result =
  2565                 make.If(cond,
  2566                         make_at(detailPos).
  2567                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
  2568                         null);
  2569         } else {
  2570             result = make.Skip();
  2574     public void visitApply(JCMethodInvocation tree) {
  2575         Symbol meth = TreeInfo.symbol(tree.meth);
  2576         List<Type> argtypes = meth.type.getParameterTypes();
  2577         if (allowEnums &&
  2578             meth.name==names.init &&
  2579             meth.owner == syms.enumSym)
  2580             argtypes = argtypes.tail.tail;
  2581         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
  2582         tree.varargsElement = null;
  2583         Name methName = TreeInfo.name(tree.meth);
  2584         if (meth.name==names.init) {
  2585             // We are seeing a this(...) or super(...) constructor call.
  2586             // If an access constructor is used, append null as a last argument.
  2587             Symbol constructor = accessConstructor(tree.pos(), meth);
  2588             if (constructor != meth) {
  2589                 tree.args = tree.args.append(makeNull());
  2590                 TreeInfo.setSymbol(tree.meth, constructor);
  2593             // If we are calling a constructor of a local class, add
  2594             // free variables after explicit constructor arguments.
  2595             ClassSymbol c = (ClassSymbol)constructor.owner;
  2596             if ((c.owner.kind & (VAR | MTH)) != 0) {
  2597                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2600             // If we are calling a constructor of an enum class, pass
  2601             // along the name and ordinal arguments
  2602             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
  2603                 List<JCVariableDecl> params = currentMethodDef.params;
  2604                 if (currentMethodSym.owner.hasOuterInstance())
  2605                     params = params.tail; // drop this$n
  2606                 tree.args = tree.args
  2607                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
  2608                     .prepend(make.Ident(params.head.sym)); // name
  2611             // If we are calling a constructor of a class with an outer
  2612             // instance, and the call
  2613             // is qualified, pass qualifier as first argument in front of
  2614             // the explicit constructor arguments. If the call
  2615             // is not qualified, pass the correct outer instance as
  2616             // first argument.
  2617             if (c.hasOuterInstance()) {
  2618                 JCExpression thisArg;
  2619                 if (tree.meth.getTag() == JCTree.SELECT) {
  2620                     thisArg = attr.
  2621                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
  2622                     tree.meth = make.Ident(constructor);
  2623                     ((JCIdent) tree.meth).name = methName;
  2624                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
  2625                     // local class or this() call
  2626                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
  2627                 } else {
  2628                     // super() call of nested class
  2629                     thisArg = makeOwnerThis(tree.meth.pos(), c, false);
  2631                 tree.args = tree.args.prepend(thisArg);
  2633         } else {
  2634             // We are seeing a normal method invocation; translate this as usual.
  2635             tree.meth = translate(tree.meth);
  2637             // If the translated method itself is an Apply tree, we are
  2638             // seeing an access method invocation. In this case, append
  2639             // the method arguments to the arguments of the access method.
  2640             if (tree.meth.getTag() == JCTree.APPLY) {
  2641                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
  2642                 app.args = tree.args.prependList(app.args);
  2643                 result = app;
  2644                 return;
  2647         result = tree;
  2650     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
  2651         List<JCExpression> args = _args;
  2652         if (parameters.isEmpty()) return args;
  2653         boolean anyChanges = false;
  2654         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
  2655         while (parameters.tail.nonEmpty()) {
  2656             JCExpression arg = translate(args.head, parameters.head);
  2657             anyChanges |= (arg != args.head);
  2658             result.append(arg);
  2659             args = args.tail;
  2660             parameters = parameters.tail;
  2662         Type parameter = parameters.head;
  2663         if (varargsElement != null) {
  2664             anyChanges = true;
  2665             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
  2666             while (args.nonEmpty()) {
  2667                 JCExpression arg = translate(args.head, varargsElement);
  2668                 elems.append(arg);
  2669                 args = args.tail;
  2671             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
  2672                                                List.<JCExpression>nil(),
  2673                                                elems.toList());
  2674             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
  2675             result.append(boxedArgs);
  2676         } else {
  2677             if (args.length() != 1) throw new AssertionError(args);
  2678             JCExpression arg = translate(args.head, parameter);
  2679             anyChanges |= (arg != args.head);
  2680             result.append(arg);
  2681             if (!anyChanges) return _args;
  2683         return result.toList();
  2686     /** Expand a boxing or unboxing conversion if needed. */
  2687     @SuppressWarnings("unchecked") // XXX unchecked
  2688     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
  2689         boolean havePrimitive = tree.type.isPrimitive();
  2690         if (havePrimitive == type.isPrimitive())
  2691             return tree;
  2692         if (havePrimitive) {
  2693             Type unboxedTarget = types.unboxedType(type);
  2694             if (unboxedTarget.tag != NONE) {
  2695                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
  2696                     tree.type = unboxedTarget.constType(tree.type.constValue());
  2697                 return (T)boxPrimitive((JCExpression)tree, type);
  2698             } else {
  2699                 tree = (T)boxPrimitive((JCExpression)tree);
  2701         } else {
  2702             tree = (T)unbox((JCExpression)tree, type);
  2704         return tree;
  2707     /** Box up a single primitive expression. */
  2708     JCExpression boxPrimitive(JCExpression tree) {
  2709         return boxPrimitive(tree, types.boxedClass(tree.type).type);
  2712     /** Box up a single primitive expression. */
  2713     JCExpression boxPrimitive(JCExpression tree, Type box) {
  2714         make_at(tree.pos());
  2715         if (target.boxWithConstructors()) {
  2716             Symbol ctor = lookupConstructor(tree.pos(),
  2717                                             box,
  2718                                             List.<Type>nil()
  2719                                             .prepend(tree.type));
  2720             return make.Create(ctor, List.of(tree));
  2721         } else {
  2722             Symbol valueOfSym = lookupMethod(tree.pos(),
  2723                                              names.valueOf,
  2724                                              box,
  2725                                              List.<Type>nil()
  2726                                              .prepend(tree.type));
  2727             return make.App(make.QualIdent(valueOfSym), List.of(tree));
  2731     /** Unbox an object to a primitive value. */
  2732     JCExpression unbox(JCExpression tree, Type primitive) {
  2733         Type unboxedType = types.unboxedType(tree.type);
  2734         // note: the "primitive" parameter is not used.  There muse be
  2735         // a conversion from unboxedType to primitive.
  2736         make_at(tree.pos());
  2737         Symbol valueSym = lookupMethod(tree.pos(),
  2738                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
  2739                                        tree.type,
  2740                                        List.<Type>nil());
  2741         return make.App(make.Select(tree, valueSym));
  2744     /** Visitor method for parenthesized expressions.
  2745      *  If the subexpression has changed, omit the parens.
  2746      */
  2747     public void visitParens(JCParens tree) {
  2748         JCTree expr = translate(tree.expr);
  2749         result = ((expr == tree.expr) ? tree : expr);
  2752     public void visitIndexed(JCArrayAccess tree) {
  2753         tree.indexed = translate(tree.indexed);
  2754         tree.index = translate(tree.index, syms.intType);
  2755         result = tree;
  2758     public void visitAssign(JCAssign tree) {
  2759         tree.lhs = translate(tree.lhs, tree);
  2760         tree.rhs = translate(tree.rhs, tree.lhs.type);
  2762         // If translated left hand side is an Apply, we are
  2763         // seeing an access method invocation. In this case, append
  2764         // right hand side as last argument of the access method.
  2765         if (tree.lhs.getTag() == JCTree.APPLY) {
  2766             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  2767             app.args = List.of(tree.rhs).prependList(app.args);
  2768             result = app;
  2769         } else {
  2770             result = tree;
  2774     public void visitAssignop(final JCAssignOp tree) {
  2775         if (!tree.lhs.type.isPrimitive() &&
  2776             tree.operator.type.getReturnType().isPrimitive()) {
  2777             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
  2778             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
  2779             // (but without recomputing x)
  2780             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
  2781                     public JCTree build(final JCTree lhs) {
  2782                         int newTag = tree.getTag() - JCTree.ASGOffset;
  2783                         // Erasure (TransTypes) can change the type of
  2784                         // tree.lhs.  However, we can still get the
  2785                         // unerased type of tree.lhs as it is stored
  2786                         // in tree.type in Attr.
  2787                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
  2788                                                                       newTag,
  2789                                                                       attrEnv,
  2790                                                                       tree.type,
  2791                                                                       tree.rhs.type);
  2792                         JCExpression expr = (JCExpression)lhs;
  2793                         if (expr.type != tree.type)
  2794                             expr = make.TypeCast(tree.type, expr);
  2795                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
  2796                         opResult.operator = newOperator;
  2797                         opResult.type = newOperator.type.getReturnType();
  2798                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
  2799                                                           opResult);
  2800                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
  2802                 });
  2803             result = translate(newTree);
  2804             return;
  2806         tree.lhs = translate(tree.lhs, tree);
  2807         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
  2809         // If translated left hand side is an Apply, we are
  2810         // seeing an access method invocation. In this case, append
  2811         // right hand side as last argument of the access method.
  2812         if (tree.lhs.getTag() == JCTree.APPLY) {
  2813             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  2814             // if operation is a += on strings,
  2815             // make sure to convert argument to string
  2816             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
  2817               ? makeString(tree.rhs)
  2818               : tree.rhs;
  2819             app.args = List.of(rhs).prependList(app.args);
  2820             result = app;
  2821         } else {
  2822             result = tree;
  2826     /** Lower a tree of the form e++ or e-- where e is an object type */
  2827     JCTree lowerBoxedPostop(final JCUnary tree) {
  2828         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
  2829         // or
  2830         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
  2831         // where OP is += or -=
  2832         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
  2833         return abstractLval(tree.arg, new TreeBuilder() {
  2834                 public JCTree build(final JCTree tmp1) {
  2835                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
  2836                             public JCTree build(final JCTree tmp2) {
  2837                                 int opcode = (tree.getTag() == JCTree.POSTINC)
  2838                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
  2839                                 JCTree lhs = cast
  2840                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
  2841                                     : tmp1;
  2842                                 JCTree update = makeAssignop(opcode,
  2843                                                              lhs,
  2844                                                              make.Literal(1));
  2845                                 return makeComma(update, tmp2);
  2847                         });
  2849             });
  2852     public void visitUnary(JCUnary tree) {
  2853         boolean isUpdateOperator =
  2854             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
  2855         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
  2856             switch(tree.getTag()) {
  2857             case JCTree.PREINC:            // ++ e
  2858                     // translate to e += 1
  2859             case JCTree.PREDEC:            // -- e
  2860                     // translate to e -= 1
  2862                     int opcode = (tree.getTag() == JCTree.PREINC)
  2863                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
  2864                     JCAssignOp newTree = makeAssignop(opcode,
  2865                                                     tree.arg,
  2866                                                     make.Literal(1));
  2867                     result = translate(newTree, tree.type);
  2868                     return;
  2870             case JCTree.POSTINC:           // e ++
  2871             case JCTree.POSTDEC:           // e --
  2873                     result = translate(lowerBoxedPostop(tree), tree.type);
  2874                     return;
  2877             throw new AssertionError(tree);
  2880         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
  2882         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
  2883             tree.type = cfolder.fold1(bool_not, tree.arg.type);
  2886         // If translated left hand side is an Apply, we are
  2887         // seeing an access method invocation. In this case, return
  2888         // that access method invocation as result.
  2889         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
  2890             result = tree.arg;
  2891         } else {
  2892             result = tree;
  2896     public void visitBinary(JCBinary tree) {
  2897         List<Type> formals = tree.operator.type.getParameterTypes();
  2898         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
  2899         switch (tree.getTag()) {
  2900         case JCTree.OR:
  2901             if (lhs.type.isTrue()) {
  2902                 result = lhs;
  2903                 return;
  2905             if (lhs.type.isFalse()) {
  2906                 result = translate(tree.rhs, formals.tail.head);
  2907                 return;
  2909             break;
  2910         case JCTree.AND:
  2911             if (lhs.type.isFalse()) {
  2912                 result = lhs;
  2913                 return;
  2915             if (lhs.type.isTrue()) {
  2916                 result = translate(tree.rhs, formals.tail.head);
  2917                 return;
  2919             break;
  2921         tree.rhs = translate(tree.rhs, formals.tail.head);
  2922         result = tree;
  2925     public void visitIdent(JCIdent tree) {
  2926         result = access(tree.sym, tree, enclOp, false);
  2929     /** Translate away the foreach loop.  */
  2930     public void visitForeachLoop(JCEnhancedForLoop tree) {
  2931         if (types.elemtype(tree.expr.type) == null)
  2932             visitIterableForeachLoop(tree);
  2933         else
  2934             visitArrayForeachLoop(tree);
  2936         // where
  2937         /**
  2938          * A statement of the form
  2940          * <pre>
  2941          *     for ( T v : arrayexpr ) stmt;
  2942          * </pre>
  2944          * (where arrayexpr is of an array type) gets translated to
  2946          * <pre>
  2947          *     for ( { arraytype #arr = arrayexpr;
  2948          *             int #len = array.length;
  2949          *             int #i = 0; };
  2950          *           #i < #len; i$++ ) {
  2951          *         T v = arr$[#i];
  2952          *         stmt;
  2953          *     }
  2954          * </pre>
  2956          * where #arr, #len, and #i are freshly named synthetic local variables.
  2957          */
  2958         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
  2959             make_at(tree.expr.pos());
  2960             VarSymbol arraycache = new VarSymbol(0,
  2961                                                  names.fromString("arr" + target.syntheticNameChar()),
  2962                                                  tree.expr.type,
  2963                                                  currentMethodSym);
  2964             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
  2965             VarSymbol lencache = new VarSymbol(0,
  2966                                                names.fromString("len" + target.syntheticNameChar()),
  2967                                                syms.intType,
  2968                                                currentMethodSym);
  2969             JCStatement lencachedef = make.
  2970                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
  2971             VarSymbol index = new VarSymbol(0,
  2972                                             names.fromString("i" + target.syntheticNameChar()),
  2973                                             syms.intType,
  2974                                             currentMethodSym);
  2976             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
  2977             indexdef.init.type = indexdef.type = syms.intType.constType(0);
  2979             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
  2980             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
  2982             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
  2984             Type elemtype = types.elemtype(tree.expr.type);
  2985             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
  2986                                                     make.Ident(index)).setType(elemtype);
  2987             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
  2988                                                   tree.var.name,
  2989                                                   tree.var.vartype,
  2990                                                   loopvarinit).setType(tree.var.type);
  2991             loopvardef.sym = tree.var.sym;
  2992             JCBlock body = make.
  2993                 Block(0, List.of(loopvardef, tree.body));
  2995             result = translate(make.
  2996                                ForLoop(loopinit,
  2997                                        cond,
  2998                                        List.of(step),
  2999                                        body));
  3000             patchTargets(body, tree, result);
  3002         /** Patch up break and continue targets. */
  3003         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
  3004             class Patcher extends TreeScanner {
  3005                 public void visitBreak(JCBreak tree) {
  3006                     if (tree.target == src)
  3007                         tree.target = dest;
  3009                 public void visitContinue(JCContinue tree) {
  3010                     if (tree.target == src)
  3011                         tree.target = dest;
  3013                 public void visitClassDef(JCClassDecl tree) {}
  3015             new Patcher().scan(body);
  3017         /**
  3018          * A statement of the form
  3020          * <pre>
  3021          *     for ( T v : coll ) stmt ;
  3022          * </pre>
  3024          * (where coll implements Iterable<? extends T>) gets translated to
  3026          * <pre>
  3027          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
  3028          *         T v = (T) #i.next();
  3029          *         stmt;
  3030          *     }
  3031          * </pre>
  3033          * where #i is a freshly named synthetic local variable.
  3034          */
  3035         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
  3036             make_at(tree.expr.pos());
  3037             Type iteratorTarget = syms.objectType;
  3038             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
  3039                                               syms.iterableType.tsym);
  3040             if (iterableType.getTypeArguments().nonEmpty())
  3041                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
  3042             Type eType = tree.expr.type;
  3043             tree.expr.type = types.erasure(eType);
  3044             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
  3045                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
  3046             Symbol iterator = lookupMethod(tree.expr.pos(),
  3047                                            names.iterator,
  3048                                            types.erasure(syms.iterableType),
  3049                                            List.<Type>nil());
  3050             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
  3051                                             types.erasure(iterator.type.getReturnType()),
  3052                                             currentMethodSym);
  3053             JCStatement init = make.
  3054                 VarDef(itvar,
  3055                        make.App(make.Select(tree.expr, iterator)));
  3056             Symbol hasNext = lookupMethod(tree.expr.pos(),
  3057                                           names.hasNext,
  3058                                           itvar.type,
  3059                                           List.<Type>nil());
  3060             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
  3061             Symbol next = lookupMethod(tree.expr.pos(),
  3062                                        names.next,
  3063                                        itvar.type,
  3064                                        List.<Type>nil());
  3065             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
  3066             if (tree.var.type.isPrimitive())
  3067                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
  3068             else
  3069                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
  3070             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3071                                                   tree.var.name,
  3072                                                   tree.var.vartype,
  3073                                                   vardefinit).setType(tree.var.type);
  3074             indexDef.sym = tree.var.sym;
  3075             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
  3076             body.endpos = TreeInfo.endPos(tree.body);
  3077             result = translate(make.
  3078                 ForLoop(List.of(init),
  3079                         cond,
  3080                         List.<JCExpressionStatement>nil(),
  3081                         body));
  3082             patchTargets(body, tree, result);
  3085     public void visitVarDef(JCVariableDecl tree) {
  3086         MethodSymbol oldMethodSym = currentMethodSym;
  3087         tree.mods = translate(tree.mods);
  3088         tree.vartype = translate(tree.vartype);
  3089         if (currentMethodSym == null) {
  3090             // A class or instance field initializer.
  3091             currentMethodSym =
  3092                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
  3093                                  names.empty, null,
  3094                                  currentClass);
  3096         if (tree.init != null) tree.init = translate(tree.init, tree.type);
  3097         result = tree;
  3098         currentMethodSym = oldMethodSym;
  3101     public void visitBlock(JCBlock tree) {
  3102         MethodSymbol oldMethodSym = currentMethodSym;
  3103         if (currentMethodSym == null) {
  3104             // Block is a static or instance initializer.
  3105             currentMethodSym =
  3106                 new MethodSymbol(tree.flags | BLOCK,
  3107                                  names.empty, null,
  3108                                  currentClass);
  3110         super.visitBlock(tree);
  3111         currentMethodSym = oldMethodSym;
  3114     public void visitDoLoop(JCDoWhileLoop tree) {
  3115         tree.body = translate(tree.body);
  3116         tree.cond = translate(tree.cond, syms.booleanType);
  3117         result = tree;
  3120     public void visitWhileLoop(JCWhileLoop tree) {
  3121         tree.cond = translate(tree.cond, syms.booleanType);
  3122         tree.body = translate(tree.body);
  3123         result = tree;
  3126     public void visitForLoop(JCForLoop tree) {
  3127         tree.init = translate(tree.init);
  3128         if (tree.cond != null)
  3129             tree.cond = translate(tree.cond, syms.booleanType);
  3130         tree.step = translate(tree.step);
  3131         tree.body = translate(tree.body);
  3132         result = tree;
  3135     public void visitReturn(JCReturn tree) {
  3136         if (tree.expr != null)
  3137             tree.expr = translate(tree.expr,
  3138                                   types.erasure(currentMethodDef
  3139                                                 .restype.type));
  3140         result = tree;
  3143     public void visitSwitch(JCSwitch tree) {
  3144         Type selsuper = types.supertype(tree.selector.type);
  3145         boolean enumSwitch = selsuper != null &&
  3146             (tree.selector.type.tsym.flags() & ENUM) != 0;
  3147         boolean stringSwitch = selsuper != null &&
  3148             types.isSameType(tree.selector.type, syms.stringType);
  3149         Type target = enumSwitch ? tree.selector.type :
  3150             (stringSwitch? syms.stringType : syms.intType);
  3151         tree.selector = translate(tree.selector, target);
  3152         tree.cases = translateCases(tree.cases);
  3153         if (enumSwitch) {
  3154             result = visitEnumSwitch(tree);
  3155         } else if (stringSwitch) {
  3156             result = visitStringSwitch(tree);
  3157         } else {
  3158             result = tree;
  3162     public JCTree visitEnumSwitch(JCSwitch tree) {
  3163         TypeSymbol enumSym = tree.selector.type.tsym;
  3164         EnumMapping map = mapForEnum(tree.pos(), enumSym);
  3165         make_at(tree.pos());
  3166         Symbol ordinalMethod = lookupMethod(tree.pos(),
  3167                                             names.ordinal,
  3168                                             tree.selector.type,
  3169                                             List.<Type>nil());
  3170         JCArrayAccess selector = make.Indexed(map.mapVar,
  3171                                         make.App(make.Select(tree.selector,
  3172                                                              ordinalMethod)));
  3173         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
  3174         for (JCCase c : tree.cases) {
  3175             if (c.pat != null) {
  3176                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
  3177                 JCLiteral pat = map.forConstant(label);
  3178                 cases.append(make.Case(pat, c.stats));
  3179             } else {
  3180                 cases.append(c);
  3183         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
  3184         patchTargets(enumSwitch, tree, enumSwitch);
  3185         return enumSwitch;
  3188     public JCTree visitStringSwitch(JCSwitch tree) {
  3189         List<JCCase> caseList = tree.getCases();
  3190         int alternatives = caseList.size();
  3192         if (alternatives == 0) { // Strange but legal possibility
  3193             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
  3194         } else {
  3195             /*
  3196              * The general approach used is to translate a single
  3197              * string switch statement into a series of two chained
  3198              * switch statements: the first a synthesized statement
  3199              * switching on the argument string's hash value and
  3200              * computing a string's position in the list of original
  3201              * case labels, if any, followed by a second switch on the
  3202              * computed integer value.  The second switch has the same
  3203              * code structure as the original string switch statement
  3204              * except that the string case labels are replaced with
  3205              * positional integer constants starting at 0.
  3207              * The first switch statement can be thought of as an
  3208              * inlined map from strings to their position in the case
  3209              * label list.  An alternate implementation would use an
  3210              * actual Map for this purpose, as done for enum switches.
  3212              * With some additional effort, it would be possible to
  3213              * use a single switch statement on the hash code of the
  3214              * argument, but care would need to be taken to preserve
  3215              * the proper control flow in the presence of hash
  3216              * collisions and other complications, such as
  3217              * fallthroughs.  Switch statements with one or two
  3218              * alternatives could also be specially translated into
  3219              * if-then statements to omit the computation of the hash
  3220              * code.
  3222              * The generated code assumes that the hashing algorithm
  3223              * of String is the same in the compilation environment as
  3224              * in the environment the code will run in.  The string
  3225              * hashing algorithm in the SE JDK has been unchanged
  3226              * since at least JDK 1.2.  Since the algorithm has been
  3227              * specified since that release as well, it is very
  3228              * unlikely to be changed in the future.
  3230              * Different hashing algorithms, such as the length of the
  3231              * strings or a perfect hashing algorithm over the
  3232              * particular set of case labels, could potentially be
  3233              * used instead of String.hashCode.
  3234              */
  3236             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
  3238             // Map from String case labels to their original position in
  3239             // the list of case labels.
  3240             Map<String, Integer> caseLabelToPosition =
  3241                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
  3243             // Map of hash codes to the string case labels having that hashCode.
  3244             Map<Integer, Set<String>> hashToString =
  3245                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
  3247             int casePosition = 0;
  3248             for(JCCase oneCase : caseList) {
  3249                 JCExpression expression = oneCase.getExpression();
  3251                 if (expression != null) { // expression for a "default" case is null
  3252                     String labelExpr = (String) expression.type.constValue();
  3253                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
  3254                     assert mapping == null;
  3255                     int hashCode = labelExpr.hashCode();
  3257                     Set<String> stringSet = hashToString.get(hashCode);
  3258                     if (stringSet == null) {
  3259                         stringSet = new LinkedHashSet<String>(1, 1.0f);
  3260                         stringSet.add(labelExpr);
  3261                         hashToString.put(hashCode, stringSet);
  3262                     } else {
  3263                         boolean added = stringSet.add(labelExpr);
  3264                         assert added;
  3267                 casePosition++;
  3270             // Synthesize a switch statement that has the effect of
  3271             // mapping from a string to the integer position of that
  3272             // string in the list of case labels.  This is done by
  3273             // switching on the hashCode of the string followed by an
  3274             // if-then-else chain comparing the input for equality
  3275             // with all the case labels having that hash value.
  3277             /*
  3278              * s$ = top of stack;
  3279              * tmp$ = -1;
  3280              * switch($s.hashCode()) {
  3281              *     case caseLabel.hashCode:
  3282              *         if (s$.equals("caseLabel_1")
  3283              *           tmp$ = caseLabelToPosition("caseLabel_1");
  3284              *         else if (s$.equals("caseLabel_2"))
  3285              *           tmp$ = caseLabelToPosition("caseLabel_2");
  3286              *         ...
  3287              *         break;
  3288              * ...
  3289              * }
  3290              */
  3292             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
  3293                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
  3294                                                syms.stringType,
  3295                                                currentMethodSym);
  3296             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
  3298             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
  3299                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
  3300                                                  syms.intType,
  3301                                                  currentMethodSym);
  3302             JCVariableDecl dollar_tmp_def =
  3303                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
  3304             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
  3305             stmtList.append(dollar_tmp_def);
  3306             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
  3307             // hashCode will trigger nullcheck on original switch expression
  3308             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
  3309                                                        names.hashCode,
  3310                                                        List.<JCExpression>nil()).setType(syms.intType);
  3311             JCSwitch switch1 = make.Switch(hashCodeCall,
  3312                                         caseBuffer.toList());
  3313             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
  3314                 int hashCode = entry.getKey();
  3315                 Set<String> stringsWithHashCode = entry.getValue();
  3316                 assert stringsWithHashCode.size() >= 1;
  3318                 JCStatement elsepart = null;
  3319                 for(String caseLabel : stringsWithHashCode ) {
  3320                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
  3321                                                                    names.equals,
  3322                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
  3323                     elsepart = make.If(stringEqualsCall,
  3324                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
  3325                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
  3326                                                  setType(dollar_tmp.type)),
  3327                                        elsepart);
  3330                 ListBuffer<JCStatement> lb = ListBuffer.lb();
  3331                 JCBreak breakStmt = make.Break(null);
  3332                 breakStmt.target = switch1;
  3333                 lb.append(elsepart).append(breakStmt);
  3335                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
  3338             switch1.cases = caseBuffer.toList();
  3339             stmtList.append(switch1);
  3341             // Make isomorphic switch tree replacing string labels
  3342             // with corresponding integer ones from the label to
  3343             // position map.
  3345             ListBuffer<JCCase> lb = ListBuffer.lb();
  3346             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
  3347             for(JCCase oneCase : caseList ) {
  3348                 // Rewire up old unlabeled break statements to the
  3349                 // replacement switch being created.
  3350                 patchTargets(oneCase, tree, switch2);
  3352                 boolean isDefault = (oneCase.getExpression() == null);
  3353                 JCExpression caseExpr;
  3354                 if (isDefault)
  3355                     caseExpr = null;
  3356                 else {
  3357                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
  3358                                                                     getExpression().
  3359                                                                     type.constValue()));
  3362                 lb.append(make.Case(caseExpr,
  3363                                     oneCase.getStatements()));
  3366             switch2.cases = lb.toList();
  3367             stmtList.append(switch2);
  3369             return make.Block(0L, stmtList.toList());
  3373     public void visitNewArray(JCNewArray tree) {
  3374         tree.elemtype = translate(tree.elemtype);
  3375         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
  3376             if (t.head != null) t.head = translate(t.head, syms.intType);
  3377         tree.elems = translate(tree.elems, types.elemtype(tree.type));
  3378         result = tree;
  3381     public void visitSelect(JCFieldAccess tree) {
  3382         // need to special case-access of the form C.super.x
  3383         // these will always need an access method.
  3384         boolean qualifiedSuperAccess =
  3385             tree.selected.getTag() == JCTree.SELECT &&
  3386             TreeInfo.name(tree.selected) == names._super;
  3387         tree.selected = translate(tree.selected);
  3388         if (tree.name == names._class)
  3389             result = classOf(tree.selected);
  3390         else if (tree.name == names._this || tree.name == names._super)
  3391             result = makeThis(tree.pos(), tree.selected.type.tsym);
  3392         else
  3393             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
  3396     public void visitLetExpr(LetExpr tree) {
  3397         tree.defs = translateVarDefs(tree.defs);
  3398         tree.expr = translate(tree.expr, tree.type);
  3399         result = tree;
  3402     // There ought to be nothing to rewrite here;
  3403     // we don't generate code.
  3404     public void visitAnnotation(JCAnnotation tree) {
  3405         result = tree;
  3408 /**************************************************************************
  3409  * main method
  3410  *************************************************************************/
  3412     /** Translate a toplevel class and return a list consisting of
  3413      *  the translated class and translated versions of all inner classes.
  3414      *  @param env   The attribution environment current at the class definition.
  3415      *               We need this for resolving some additional symbols.
  3416      *  @param cdef  The tree representing the class definition.
  3417      */
  3418     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
  3419         ListBuffer<JCTree> translated = null;
  3420         try {
  3421             attrEnv = env;
  3422             this.make = make;
  3423             endPositions = env.toplevel.endPositions;
  3424             currentClass = null;
  3425             currentMethodDef = null;
  3426             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
  3427             outermostMemberDef = null;
  3428             this.translated = new ListBuffer<JCTree>();
  3429             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
  3430             actualSymbols = new HashMap<Symbol,Symbol>();
  3431             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
  3432             proxies = new Scope(syms.noSymbol);
  3433             outerThisStack = List.nil();
  3434             accessNums = new HashMap<Symbol,Integer>();
  3435             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
  3436             accessConstrs = new HashMap<Symbol,MethodSymbol>();
  3437             accessConstrTags = List.nil();
  3438             accessed = new ListBuffer<Symbol>();
  3439             translate(cdef, (JCExpression)null);
  3440             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
  3441                 makeAccessible(l.head);
  3442             for (EnumMapping map : enumSwitchMap.values())
  3443                 map.translate();
  3444             checkConflicts(this.translated.toList());
  3445             checkAccessConstructorTags();
  3446             translated = this.translated;
  3447         } finally {
  3448             // note that recursive invocations of this method fail hard
  3449             attrEnv = null;
  3450             this.make = null;
  3451             endPositions = null;
  3452             currentClass = null;
  3453             currentMethodDef = null;
  3454             outermostClassDef = null;
  3455             outermostMemberDef = null;
  3456             this.translated = null;
  3457             classdefs = null;
  3458             actualSymbols = null;
  3459             freevarCache = null;
  3460             proxies = null;
  3461             outerThisStack = null;
  3462             accessNums = null;
  3463             accessSyms = null;
  3464             accessConstrs = null;
  3465             accessConstrTags = null;
  3466             accessed = null;
  3467             enumSwitchMap.clear();
  3469         return translated.toList();
  3472     //////////////////////////////////////////////////////////////
  3473     // The following contributed by Borland for bootstrapping purposes
  3474     //////////////////////////////////////////////////////////////
  3475     private void addEnumCompatibleMembers(JCClassDecl cdef) {
  3476         make_at(null);
  3478         // Add the special enum fields
  3479         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
  3480         VarSymbol nameFieldSym = addEnumNameField(cdef);
  3482         // Add the accessor methods for name and ordinal
  3483         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
  3484         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
  3486         // Add the toString method
  3487         addEnumToString(cdef, nameFieldSym);
  3489         // Add the compareTo method
  3490         addEnumCompareTo(cdef, ordinalFieldSym);
  3493     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
  3494         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
  3495                                           names.fromString("$ordinal"),
  3496                                           syms.intType,
  3497                                           cdef.sym);
  3498         cdef.sym.members().enter(ordinal);
  3499         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
  3500         return ordinal;
  3503     private VarSymbol addEnumNameField(JCClassDecl cdef) {
  3504         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
  3505                                           names.fromString("$name"),
  3506                                           syms.stringType,
  3507                                           cdef.sym);
  3508         cdef.sym.members().enter(name);
  3509         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
  3510         return name;
  3513     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
  3514         // Add the accessor methods for ordinal
  3515         Symbol ordinalSym = lookupMethod(cdef.pos(),
  3516                                          names.ordinal,
  3517                                          cdef.type,
  3518                                          List.<Type>nil());
  3520         assert(ordinalSym != null);
  3521         assert(ordinalSym instanceof MethodSymbol);
  3523         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
  3524         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
  3525                                                     make.Block(0L, List.of(ret))));
  3527         return (MethodSymbol)ordinalSym;
  3530     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
  3531         // Add the accessor methods for name
  3532         Symbol nameSym = lookupMethod(cdef.pos(),
  3533                                    names._name,
  3534                                    cdef.type,
  3535                                    List.<Type>nil());
  3537         assert(nameSym != null);
  3538         assert(nameSym instanceof MethodSymbol);
  3540         JCStatement ret = make.Return(make.Ident(nameSymbol));
  3542         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
  3543                                                     make.Block(0L, List.of(ret))));
  3545         return (MethodSymbol)nameSym;
  3548     private MethodSymbol addEnumToString(JCClassDecl cdef,
  3549                                          VarSymbol nameSymbol) {
  3550         Symbol toStringSym = lookupMethod(cdef.pos(),
  3551                                           names.toString,
  3552                                           cdef.type,
  3553                                           List.<Type>nil());
  3555         JCTree toStringDecl = null;
  3556         if (toStringSym != null)
  3557             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
  3559         if (toStringDecl != null)
  3560             return (MethodSymbol)toStringSym;
  3562         JCStatement ret = make.Return(make.Ident(nameSymbol));
  3564         JCTree resTypeTree = make.Type(syms.stringType);
  3566         MethodType toStringType = new MethodType(List.<Type>nil(),
  3567                                                  syms.stringType,
  3568                                                  List.<Type>nil(),
  3569                                                  cdef.sym);
  3570         toStringSym = new MethodSymbol(PUBLIC,
  3571                                        names.toString,
  3572                                        toStringType,
  3573                                        cdef.type.tsym);
  3574         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
  3575                                       make.Block(0L, List.of(ret)));
  3577         cdef.defs = cdef.defs.prepend(toStringDecl);
  3578         cdef.sym.members().enter(toStringSym);
  3580         return (MethodSymbol)toStringSym;
  3583     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
  3584         Symbol compareToSym = lookupMethod(cdef.pos(),
  3585                                    names.compareTo,
  3586                                    cdef.type,
  3587                                    List.of(cdef.sym.type));
  3589         assert(compareToSym != null);
  3590         assert(compareToSym instanceof MethodSymbol);
  3592         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
  3594         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
  3596         JCModifiers mod1 = make.Modifiers(0L);
  3597         Name oName = names.fromString("o");
  3598         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
  3600         JCIdent paramId1 = make.Ident(names.java_lang_Object);
  3601         paramId1.type = cdef.type;
  3602         paramId1.sym = par1.sym;
  3604         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
  3606         JCIdent par1UsageId = make.Ident(par1.sym);
  3607         JCIdent castTargetIdent = make.Ident(cdef.sym);
  3608         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
  3609         cast.setType(castTargetIdent.type);
  3611         Name otherName = names.fromString("other");
  3613         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
  3614                                               otherName,
  3615                                               cdef.type,
  3616                                               compareToSym);
  3617         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
  3618         blockStatements.append(otherVar);
  3620         JCIdent id1 = make.Ident(ordinalSymbol);
  3622         JCIdent fLocUsageId = make.Ident(otherVarSym);
  3623         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
  3624         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
  3625         JCReturn ret = make.Return(bin);
  3626         blockStatements.append(ret);
  3627         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
  3628                                                    make.Block(0L,
  3629                                                               blockStatements.toList()));
  3630         compareToMethod.params = List.of(par1);
  3631         cdef.defs = cdef.defs.append(compareToMethod);
  3633         return (MethodSymbol)compareToSym;
  3635     //////////////////////////////////////////////////////////////
  3636     // The above contributed by Borland for bootstrapping purposes
  3637     //////////////////////////////////////////////////////////////

mercurial