src/share/classes/com/sun/tools/javac/comp/Check.java

Wed, 21 Apr 2010 12:24:56 +0100

author
mcimadamore
date
Wed, 21 Apr 2010 12:24:56 +0100
changeset 547
04cf82179fa7
parent 537
9d9d08922405
child 554
9d9f26857129
child 561
e9ef849ae0ed
permissions
-rw-r--r--

6730476: invalid "unchecked generic array" warning
Summary: Reifiable-ness of varargs element type should be checked after JLS3 15.12.2.8
Reviewed-by: jjg

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Types types;
    64     private final JCDiagnostic.Factory diags;
    65     private final boolean skipAnnotations;
    66     private boolean warnOnSyntheticConflicts;
    67     private final TreeInfo treeinfo;
    69     // The set of lint options currently in effect. It is initialized
    70     // from the context, and then is set/reset as needed by Attr as it
    71     // visits all the various parts of the trees during attribution.
    72     private Lint lint;
    74     public static Check instance(Context context) {
    75         Check instance = context.get(checkKey);
    76         if (instance == null)
    77             instance = new Check(context);
    78         return instance;
    79     }
    81     protected Check(Context context) {
    82         context.put(checkKey, this);
    84         names = Names.instance(context);
    85         log = Log.instance(context);
    86         syms = Symtab.instance(context);
    87         infer = Infer.instance(context);
    88         this.types = Types.instance(context);
    89         diags = JCDiagnostic.Factory.instance(context);
    90         Options options = Options.instance(context);
    91         lint = Lint.instance(context);
    92         treeinfo = TreeInfo.instance(context);
    94         Source source = Source.instance(context);
    95         allowGenerics = source.allowGenerics();
    96         allowAnnotations = source.allowAnnotations();
    97         allowCovariantReturns = source.allowCovariantReturns();
    98         complexInference = options.get("-complexinference") != null;
    99         skipAnnotations = options.get("skipAnnotations") != null;
   100         warnOnSyntheticConflicts = options.get("warnOnSyntheticConflicts") != null;
   102         Target target = Target.instance(context);
   103         syntheticNameChar = target.syntheticNameChar();
   105         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   106         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   107         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   108         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   110         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   111                 enforceMandatoryWarnings, "deprecated");
   112         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   113                 enforceMandatoryWarnings, "unchecked");
   114         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   115                 enforceMandatoryWarnings, "sunapi");
   116     }
   118     /** Switch: generics enabled?
   119      */
   120     boolean allowGenerics;
   122     /** Switch: annotations enabled?
   123      */
   124     boolean allowAnnotations;
   126     /** Switch: covariant returns enabled?
   127      */
   128     boolean allowCovariantReturns;
   130     /** Switch: -complexinference option set?
   131      */
   132     boolean complexInference;
   134     /** Character for synthetic names
   135      */
   136     char syntheticNameChar;
   138     /** A table mapping flat names of all compiled classes in this run to their
   139      *  symbols; maintained from outside.
   140      */
   141     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   143     /** A handler for messages about deprecated usage.
   144      */
   145     private MandatoryWarningHandler deprecationHandler;
   147     /** A handler for messages about unchecked or unsafe usage.
   148      */
   149     private MandatoryWarningHandler uncheckedHandler;
   151     /** A handler for messages about using Sun proprietary API.
   152      */
   153     private MandatoryWarningHandler sunApiHandler;
   155 /* *************************************************************************
   156  * Errors and Warnings
   157  **************************************************************************/
   159     Lint setLint(Lint newLint) {
   160         Lint prev = lint;
   161         lint = newLint;
   162         return prev;
   163     }
   165     /** Warn about deprecated symbol.
   166      *  @param pos        Position to be used for error reporting.
   167      *  @param sym        The deprecated symbol.
   168      */
   169     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   170         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   171             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   172     }
   174     /** Warn about unchecked operation.
   175      *  @param pos        Position to be used for error reporting.
   176      *  @param msg        A string describing the problem.
   177      */
   178     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   179         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   180             uncheckedHandler.report(pos, msg, args);
   181     }
   183     /** Warn about using Sun proprietary API.
   184      *  @param pos        Position to be used for error reporting.
   185      *  @param msg        A string describing the problem.
   186      */
   187     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   188         if (!lint.isSuppressed(LintCategory.SUNAPI))
   189             sunApiHandler.report(pos, msg, args);
   190     }
   192     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   193         if (lint.isEnabled(LintCategory.STATIC))
   194             log.warning(pos, msg, args);
   195     }
   197     /**
   198      * Report any deferred diagnostics.
   199      */
   200     public void reportDeferredDiagnostics() {
   201         deprecationHandler.reportDeferredDiagnostic();
   202         uncheckedHandler.reportDeferredDiagnostic();
   203         sunApiHandler.reportDeferredDiagnostic();
   204     }
   207     /** Report a failure to complete a class.
   208      *  @param pos        Position to be used for error reporting.
   209      *  @param ex         The failure to report.
   210      */
   211     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   212         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   213         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   214         else return syms.errType;
   215     }
   217     /** Report a type error.
   218      *  @param pos        Position to be used for error reporting.
   219      *  @param problem    A string describing the error.
   220      *  @param found      The type that was found.
   221      *  @param req        The type that was required.
   222      */
   223     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   224         log.error(pos, "prob.found.req",
   225                   problem, found, req);
   226         return types.createErrorType(found);
   227     }
   229     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   230         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   231         return types.createErrorType(found);
   232     }
   234     /** Report an error that wrong type tag was found.
   235      *  @param pos        Position to be used for error reporting.
   236      *  @param required   An internationalized string describing the type tag
   237      *                    required.
   238      *  @param found      The type that was found.
   239      */
   240     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   241         // this error used to be raised by the parser,
   242         // but has been delayed to this point:
   243         if (found instanceof Type && ((Type)found).tag == VOID) {
   244             log.error(pos, "illegal.start.of.type");
   245             return syms.errType;
   246         }
   247         log.error(pos, "type.found.req", found, required);
   248         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   249     }
   251     /** Report an error that symbol cannot be referenced before super
   252      *  has been called.
   253      *  @param pos        Position to be used for error reporting.
   254      *  @param sym        The referenced symbol.
   255      */
   256     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   257         log.error(pos, "cant.ref.before.ctor.called", sym);
   258     }
   260     /** Report duplicate declaration error.
   261      */
   262     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   263         if (!sym.type.isErroneous()) {
   264             log.error(pos, "already.defined", sym, sym.location());
   265         }
   266     }
   268     /** Report array/varargs duplicate declaration
   269      */
   270     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   271         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   272             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   273         }
   274     }
   276 /* ************************************************************************
   277  * duplicate declaration checking
   278  *************************************************************************/
   280     /** Check that variable does not hide variable with same name in
   281      *  immediately enclosing local scope.
   282      *  @param pos           Position for error reporting.
   283      *  @param v             The symbol.
   284      *  @param s             The scope.
   285      */
   286     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   287         if (s.next != null) {
   288             for (Scope.Entry e = s.next.lookup(v.name);
   289                  e.scope != null && e.sym.owner == v.owner;
   290                  e = e.next()) {
   291                 if (e.sym.kind == VAR &&
   292                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   293                     v.name != names.error) {
   294                     duplicateError(pos, e.sym);
   295                     return;
   296                 }
   297             }
   298         }
   299     }
   301     /** Check that a class or interface does not hide a class or
   302      *  interface with same name in immediately enclosing local scope.
   303      *  @param pos           Position for error reporting.
   304      *  @param c             The symbol.
   305      *  @param s             The scope.
   306      */
   307     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   308         if (s.next != null) {
   309             for (Scope.Entry e = s.next.lookup(c.name);
   310                  e.scope != null && e.sym.owner == c.owner;
   311                  e = e.next()) {
   312                 if (e.sym.kind == TYP &&
   313                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   314                     c.name != names.error) {
   315                     duplicateError(pos, e.sym);
   316                     return;
   317                 }
   318             }
   319         }
   320     }
   322     /** Check that class does not have the same name as one of
   323      *  its enclosing classes, or as a class defined in its enclosing scope.
   324      *  return true if class is unique in its enclosing scope.
   325      *  @param pos           Position for error reporting.
   326      *  @param name          The class name.
   327      *  @param s             The enclosing scope.
   328      */
   329     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   330         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   331             if (e.sym.kind == TYP && e.sym.name != names.error) {
   332                 duplicateError(pos, e.sym);
   333                 return false;
   334             }
   335         }
   336         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   337             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   338                 duplicateError(pos, sym);
   339                 return true;
   340             }
   341         }
   342         return true;
   343     }
   345 /* *************************************************************************
   346  * Class name generation
   347  **************************************************************************/
   349     /** Return name of local class.
   350      *  This is of the form    <enclClass> $ n <classname>
   351      *  where
   352      *    enclClass is the flat name of the enclosing class,
   353      *    classname is the simple name of the local class
   354      */
   355     Name localClassName(ClassSymbol c) {
   356         for (int i=1; ; i++) {
   357             Name flatname = names.
   358                 fromString("" + c.owner.enclClass().flatname +
   359                            syntheticNameChar + i +
   360                            c.name);
   361             if (compiled.get(flatname) == null) return flatname;
   362         }
   363     }
   365 /* *************************************************************************
   366  * Type Checking
   367  **************************************************************************/
   369     /** Check that a given type is assignable to a given proto-type.
   370      *  If it is, return the type, otherwise return errType.
   371      *  @param pos        Position to be used for error reporting.
   372      *  @param found      The type that was found.
   373      *  @param req        The type that was required.
   374      */
   375     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   376         if (req.tag == ERROR)
   377             return req;
   378         if (found.tag == FORALL)
   379             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   380         if (req.tag == NONE)
   381             return found;
   382         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   383             return found;
   384         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   385             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   386         if (found.isSuperBound()) {
   387             log.error(pos, "assignment.from.super-bound", found);
   388             return types.createErrorType(found);
   389         }
   390         if (req.isExtendsBound()) {
   391             log.error(pos, "assignment.to.extends-bound", req);
   392             return types.createErrorType(found);
   393         }
   394         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   395     }
   397     /** Instantiate polymorphic type to some prototype, unless
   398      *  prototype is `anyPoly' in which case polymorphic type
   399      *  is returned unchanged.
   400      */
   401     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) throws Infer.NoInstanceException {
   402         if (pt == Infer.anyPoly && complexInference) {
   403             return t;
   404         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   405             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   406             return instantiatePoly(pos, t, newpt, warn);
   407         } else if (pt.tag == ERROR) {
   408             return pt;
   409         } else {
   410             try {
   411                 return infer.instantiateExpr(t, pt, warn);
   412             } catch (Infer.NoInstanceException ex) {
   413                 if (ex.isAmbiguous) {
   414                     JCDiagnostic d = ex.getDiagnostic();
   415                     log.error(pos,
   416                               "undetermined.type" + (d!=null ? ".1" : ""),
   417                               t, d);
   418                     return types.createErrorType(pt);
   419                 } else {
   420                     JCDiagnostic d = ex.getDiagnostic();
   421                     return typeError(pos,
   422                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   423                                      t, pt);
   424                 }
   425             } catch (Infer.InvalidInstanceException ex) {
   426                 JCDiagnostic d = ex.getDiagnostic();
   427                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   428                 return types.createErrorType(pt);
   429             }
   430         }
   431     }
   433     /** Check that a given type can be cast to a given target type.
   434      *  Return the result of the cast.
   435      *  @param pos        Position to be used for error reporting.
   436      *  @param found      The type that is being cast.
   437      *  @param req        The target type of the cast.
   438      */
   439     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   440         if (found.tag == FORALL) {
   441             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   442             return req;
   443         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   444             return req;
   445         } else {
   446             return typeError(pos,
   447                              diags.fragment("inconvertible.types"),
   448                              found, req);
   449         }
   450     }
   451 //where
   452         /** Is type a type variable, or a (possibly multi-dimensional) array of
   453          *  type variables?
   454          */
   455         boolean isTypeVar(Type t) {
   456             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   457         }
   459     /** Check that a type is within some bounds.
   460      *
   461      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   462      *  type argument.
   463      *  @param pos           Position to be used for error reporting.
   464      *  @param a             The type that should be bounded by bs.
   465      *  @param bs            The bound.
   466      */
   467     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   468          if (a.isUnbound()) {
   469              return;
   470          } else if (a.tag != WILDCARD) {
   471              a = types.upperBound(a);
   472              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   473                  if (!types.isSubtype(a, l.head)) {
   474                      log.error(pos, "not.within.bounds", a);
   475                      return;
   476                  }
   477              }
   478          } else if (a.isExtendsBound()) {
   479              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   480                  log.error(pos, "not.within.bounds", a);
   481          } else if (a.isSuperBound()) {
   482              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   483                  log.error(pos, "not.within.bounds", a);
   484          }
   485      }
   487     /** Check that a type is within some bounds.
   488      *
   489      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   490      *  type argument.
   491      *  @param pos           Position to be used for error reporting.
   492      *  @param a             The type that should be bounded by bs.
   493      *  @param bs            The bound.
   494      */
   495     private void checkCapture(JCTypeApply tree) {
   496         List<JCExpression> args = tree.getTypeArguments();
   497         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   498             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   499                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   500                 break;
   501             }
   502             args = args.tail;
   503         }
   504      }
   506     /** Check that type is different from 'void'.
   507      *  @param pos           Position to be used for error reporting.
   508      *  @param t             The type to be checked.
   509      */
   510     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   511         if (t.tag == VOID) {
   512             log.error(pos, "void.not.allowed.here");
   513             return types.createErrorType(t);
   514         } else {
   515             return t;
   516         }
   517     }
   519     /** Check that type is a class or interface type.
   520      *  @param pos           Position to be used for error reporting.
   521      *  @param t             The type to be checked.
   522      */
   523     Type checkClassType(DiagnosticPosition pos, Type t) {
   524         if (t.tag != CLASS && t.tag != ERROR)
   525             return typeTagError(pos,
   526                                 diags.fragment("type.req.class"),
   527                                 (t.tag == TYPEVAR)
   528                                 ? diags.fragment("type.parameter", t)
   529                                 : t);
   530         else
   531             return t;
   532     }
   534     /** Check that type is a class or interface type.
   535      *  @param pos           Position to be used for error reporting.
   536      *  @param t             The type to be checked.
   537      *  @param noBounds    True if type bounds are illegal here.
   538      */
   539     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   540         t = checkClassType(pos, t);
   541         if (noBounds && t.isParameterized()) {
   542             List<Type> args = t.getTypeArguments();
   543             while (args.nonEmpty()) {
   544                 if (args.head.tag == WILDCARD)
   545                     return typeTagError(pos,
   546                                         Log.getLocalizedString("type.req.exact"),
   547                                         args.head);
   548                 args = args.tail;
   549             }
   550         }
   551         return t;
   552     }
   554     /** Check that type is a reifiable class, interface or array type.
   555      *  @param pos           Position to be used for error reporting.
   556      *  @param t             The type to be checked.
   557      */
   558     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   559         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   560             return typeTagError(pos,
   561                                 diags.fragment("type.req.class.array"),
   562                                 t);
   563         } else if (!types.isReifiable(t)) {
   564             log.error(pos, "illegal.generic.type.for.instof");
   565             return types.createErrorType(t);
   566         } else {
   567             return t;
   568         }
   569     }
   571     /** Check that type is a reference type, i.e. a class, interface or array type
   572      *  or a type variable.
   573      *  @param pos           Position to be used for error reporting.
   574      *  @param t             The type to be checked.
   575      */
   576     Type checkRefType(DiagnosticPosition pos, Type t) {
   577         switch (t.tag) {
   578         case CLASS:
   579         case ARRAY:
   580         case TYPEVAR:
   581         case WILDCARD:
   582         case ERROR:
   583             return t;
   584         default:
   585             return typeTagError(pos,
   586                                 diags.fragment("type.req.ref"),
   587                                 t);
   588         }
   589     }
   591     /** Check that each type is a reference type, i.e. a class, interface or array type
   592      *  or a type variable.
   593      *  @param trees         Original trees, used for error reporting.
   594      *  @param types         The types to be checked.
   595      */
   596     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   597         List<JCExpression> tl = trees;
   598         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   599             l.head = checkRefType(tl.head.pos(), l.head);
   600             tl = tl.tail;
   601         }
   602         return types;
   603     }
   605     /** Check that type is a null or reference type.
   606      *  @param pos           Position to be used for error reporting.
   607      *  @param t             The type to be checked.
   608      */
   609     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   610         switch (t.tag) {
   611         case CLASS:
   612         case ARRAY:
   613         case TYPEVAR:
   614         case WILDCARD:
   615         case BOT:
   616         case ERROR:
   617             return t;
   618         default:
   619             return typeTagError(pos,
   620                                 diags.fragment("type.req.ref"),
   621                                 t);
   622         }
   623     }
   625     /** Check that flag set does not contain elements of two conflicting sets. s
   626      *  Return true if it doesn't.
   627      *  @param pos           Position to be used for error reporting.
   628      *  @param flags         The set of flags to be checked.
   629      *  @param set1          Conflicting flags set #1.
   630      *  @param set2          Conflicting flags set #2.
   631      */
   632     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   633         if ((flags & set1) != 0 && (flags & set2) != 0) {
   634             log.error(pos,
   635                       "illegal.combination.of.modifiers",
   636                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   637                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   638             return false;
   639         } else
   640             return true;
   641     }
   643     /** Check that the type inferred using the diamond operator does not contain
   644      *  non-denotable types such as captured types or intersection types.
   645      *  @param t the type inferred using the diamond operator
   646      */
   647     List<Type> checkDiamond(ClassType t) {
   648         DiamondTypeChecker dtc = new DiamondTypeChecker();
   649         ListBuffer<Type> buf = ListBuffer.lb();
   650         for (Type arg : t.getTypeArguments()) {
   651             if (!dtc.visit(arg, null)) {
   652                 buf.append(arg);
   653             }
   654         }
   655         return buf.toList();
   656     }
   658     static class DiamondTypeChecker extends Types.SimpleVisitor<Boolean, Void> {
   659         public Boolean visitType(Type t, Void s) {
   660             return true;
   661         }
   662         @Override
   663         public Boolean visitClassType(ClassType t, Void s) {
   664             if (t.isCompound()) {
   665                 return false;
   666             }
   667             for (Type targ : t.getTypeArguments()) {
   668                 if (!visit(targ, s)) {
   669                     return false;
   670                 }
   671             }
   672             return true;
   673         }
   674         @Override
   675         public Boolean visitCapturedType(CapturedType t, Void s) {
   676             return false;
   677         }
   678     }
   680     /**
   681      * Check that vararg method call is sound
   682      * @param pos Position to be used for error reporting.
   683      * @param argtypes Actual arguments supplied to vararg method.
   684      */
   685     void checkVararg(DiagnosticPosition pos, List<Type> argtypes) {
   686         Type argtype = argtypes.last();
   687         if (!types.isReifiable(argtype))
   688             warnUnchecked(pos,
   689                               "unchecked.generic.array.creation",
   690                               argtype);
   691     }
   693     /** Check that given modifiers are legal for given symbol and
   694      *  return modifiers together with any implicit modififiers for that symbol.
   695      *  Warning: we can't use flags() here since this method
   696      *  is called during class enter, when flags() would cause a premature
   697      *  completion.
   698      *  @param pos           Position to be used for error reporting.
   699      *  @param flags         The set of modifiers given in a definition.
   700      *  @param sym           The defined symbol.
   701      */
   702     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   703         long mask;
   704         long implicit = 0;
   705         switch (sym.kind) {
   706         case VAR:
   707             if (sym.owner.kind != TYP)
   708                 mask = LocalVarFlags;
   709             else if ((sym.owner.flags_field & INTERFACE) != 0)
   710                 mask = implicit = InterfaceVarFlags;
   711             else
   712                 mask = VarFlags;
   713             break;
   714         case MTH:
   715             if (sym.name == names.init) {
   716                 if ((sym.owner.flags_field & ENUM) != 0) {
   717                     // enum constructors cannot be declared public or
   718                     // protected and must be implicitly or explicitly
   719                     // private
   720                     implicit = PRIVATE;
   721                     mask = PRIVATE;
   722                 } else
   723                     mask = ConstructorFlags;
   724             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   725                 mask = implicit = InterfaceMethodFlags;
   726             else {
   727                 mask = MethodFlags;
   728             }
   729             // Imply STRICTFP if owner has STRICTFP set.
   730             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   731               implicit |= sym.owner.flags_field & STRICTFP;
   732             break;
   733         case TYP:
   734             if (sym.isLocal()) {
   735                 mask = LocalClassFlags;
   736                 if (sym.name.isEmpty()) { // Anonymous class
   737                     // Anonymous classes in static methods are themselves static;
   738                     // that's why we admit STATIC here.
   739                     mask |= STATIC;
   740                     // JLS: Anonymous classes are final.
   741                     implicit |= FINAL;
   742                 }
   743                 if ((sym.owner.flags_field & STATIC) == 0 &&
   744                     (flags & ENUM) != 0)
   745                     log.error(pos, "enums.must.be.static");
   746             } else if (sym.owner.kind == TYP) {
   747                 mask = MemberClassFlags;
   748                 if (sym.owner.owner.kind == PCK ||
   749                     (sym.owner.flags_field & STATIC) != 0)
   750                     mask |= STATIC;
   751                 else if ((flags & ENUM) != 0)
   752                     log.error(pos, "enums.must.be.static");
   753                 // Nested interfaces and enums are always STATIC (Spec ???)
   754                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   755             } else {
   756                 mask = ClassFlags;
   757             }
   758             // Interfaces are always ABSTRACT
   759             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   761             if ((flags & ENUM) != 0) {
   762                 // enums can't be declared abstract or final
   763                 mask &= ~(ABSTRACT | FINAL);
   764                 implicit |= implicitEnumFinalFlag(tree);
   765             }
   766             // Imply STRICTFP if owner has STRICTFP set.
   767             implicit |= sym.owner.flags_field & STRICTFP;
   768             break;
   769         default:
   770             throw new AssertionError();
   771         }
   772         long illegal = flags & StandardFlags & ~mask;
   773         if (illegal != 0) {
   774             if ((illegal & INTERFACE) != 0) {
   775                 log.error(pos, "intf.not.allowed.here");
   776                 mask |= INTERFACE;
   777             }
   778             else {
   779                 log.error(pos,
   780                           "mod.not.allowed.here", asFlagSet(illegal));
   781             }
   782         }
   783         else if ((sym.kind == TYP ||
   784                   // ISSUE: Disallowing abstract&private is no longer appropriate
   785                   // in the presence of inner classes. Should it be deleted here?
   786                   checkDisjoint(pos, flags,
   787                                 ABSTRACT,
   788                                 PRIVATE | STATIC))
   789                  &&
   790                  checkDisjoint(pos, flags,
   791                                ABSTRACT | INTERFACE,
   792                                FINAL | NATIVE | SYNCHRONIZED)
   793                  &&
   794                  checkDisjoint(pos, flags,
   795                                PUBLIC,
   796                                PRIVATE | PROTECTED)
   797                  &&
   798                  checkDisjoint(pos, flags,
   799                                PRIVATE,
   800                                PUBLIC | PROTECTED)
   801                  &&
   802                  checkDisjoint(pos, flags,
   803                                FINAL,
   804                                VOLATILE)
   805                  &&
   806                  (sym.kind == TYP ||
   807                   checkDisjoint(pos, flags,
   808                                 ABSTRACT | NATIVE,
   809                                 STRICTFP))) {
   810             // skip
   811         }
   812         return flags & (mask | ~StandardFlags) | implicit;
   813     }
   816     /** Determine if this enum should be implicitly final.
   817      *
   818      *  If the enum has no specialized enum contants, it is final.
   819      *
   820      *  If the enum does have specialized enum contants, it is
   821      *  <i>not</i> final.
   822      */
   823     private long implicitEnumFinalFlag(JCTree tree) {
   824         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   825         class SpecialTreeVisitor extends JCTree.Visitor {
   826             boolean specialized;
   827             SpecialTreeVisitor() {
   828                 this.specialized = false;
   829             };
   831             @Override
   832             public void visitTree(JCTree tree) { /* no-op */ }
   834             @Override
   835             public void visitVarDef(JCVariableDecl tree) {
   836                 if ((tree.mods.flags & ENUM) != 0) {
   837                     if (tree.init instanceof JCNewClass &&
   838                         ((JCNewClass) tree.init).def != null) {
   839                         specialized = true;
   840                     }
   841                 }
   842             }
   843         }
   845         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   846         JCClassDecl cdef = (JCClassDecl) tree;
   847         for (JCTree defs: cdef.defs) {
   848             defs.accept(sts);
   849             if (sts.specialized) return 0;
   850         }
   851         return FINAL;
   852     }
   854 /* *************************************************************************
   855  * Type Validation
   856  **************************************************************************/
   858     /** Validate a type expression. That is,
   859      *  check that all type arguments of a parametric type are within
   860      *  their bounds. This must be done in a second phase after type attributon
   861      *  since a class might have a subclass as type parameter bound. E.g:
   862      *
   863      *  class B<A extends C> { ... }
   864      *  class C extends B<C> { ... }
   865      *
   866      *  and we can't make sure that the bound is already attributed because
   867      *  of possible cycles.
   868      */
   869     private Validator validator = new Validator();
   871     /** Visitor method: Validate a type expression, if it is not null, catching
   872      *  and reporting any completion failures.
   873      */
   874     void validate(JCTree tree, Env<AttrContext> env) {
   875         try {
   876             if (tree != null) {
   877                 validator.env = env;
   878                 tree.accept(validator);
   879                 checkRaw(tree, env);
   880             }
   881         } catch (CompletionFailure ex) {
   882             completionError(tree.pos(), ex);
   883         }
   884     }
   885     //where
   886     void checkRaw(JCTree tree, Env<AttrContext> env) {
   887         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   888             tree.type.tag == CLASS &&
   889             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   890             tree.type.isRaw()) {
   891             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   892         }
   893     }
   895     /** Visitor method: Validate a list of type expressions.
   896      */
   897     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   898         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   899             validate(l.head, env);
   900     }
   902     /** A visitor class for type validation.
   903      */
   904     class Validator extends JCTree.Visitor {
   906         @Override
   907         public void visitTypeArray(JCArrayTypeTree tree) {
   908             validate(tree.elemtype, env);
   909         }
   911         @Override
   912         public void visitTypeApply(JCTypeApply tree) {
   913             if (tree.type.tag == CLASS) {
   914                 List<Type> formals = tree.type.tsym.type.allparams();
   915                 List<Type> actuals = tree.type.allparams();
   916                 List<JCExpression> args = tree.arguments;
   917                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   918                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   920                 // For matching pairs of actual argument types `a' and
   921                 // formal type parameters with declared bound `b' ...
   922                 while (args.nonEmpty() && forms.nonEmpty()) {
   923                     validate(args.head, env);
   925                     // exact type arguments needs to know their
   926                     // bounds (for upper and lower bound
   927                     // calculations).  So we create new TypeVars with
   928                     // bounds substed with actuals.
   929                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   930                                                       formals,
   931                                                       actuals));
   933                     args = args.tail;
   934                     forms = forms.tail;
   935                 }
   937                 args = tree.arguments;
   938                 List<Type> tvars_cap = types.substBounds(formals,
   939                                           formals,
   940                                           types.capture(tree.type).allparams());
   941                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   942                     // Let the actual arguments know their bound
   943                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   944                     args = args.tail;
   945                     tvars_cap = tvars_cap.tail;
   946                 }
   948                 args = tree.arguments;
   949                 List<TypeVar> tvars = tvars_buf.toList();
   951                 while (args.nonEmpty() && tvars.nonEmpty()) {
   952                     checkExtends(args.head.pos(),
   953                                  args.head.type,
   954                                  tvars.head);
   955                     args = args.tail;
   956                     tvars = tvars.tail;
   957                 }
   959                 checkCapture(tree);
   961                 // Check that this type is either fully parameterized, or
   962                 // not parameterized at all.
   963                 if (tree.type.getEnclosingType().isRaw())
   964                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   965                 if (tree.clazz.getTag() == JCTree.SELECT)
   966                     visitSelectInternal((JCFieldAccess)tree.clazz);
   967             }
   968         }
   970         @Override
   971         public void visitTypeParameter(JCTypeParameter tree) {
   972             validate(tree.bounds, env);
   973             checkClassBounds(tree.pos(), tree.type);
   974         }
   976         @Override
   977         public void visitWildcard(JCWildcard tree) {
   978             if (tree.inner != null)
   979                 validate(tree.inner, env);
   980         }
   982         @Override
   983         public void visitSelect(JCFieldAccess tree) {
   984             if (tree.type.tag == CLASS) {
   985                 visitSelectInternal(tree);
   987                 // Check that this type is either fully parameterized, or
   988                 // not parameterized at all.
   989                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   990                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   991             }
   992         }
   993         public void visitSelectInternal(JCFieldAccess tree) {
   994             if (tree.type.tsym.isStatic() &&
   995                 tree.selected.type.isParameterized()) {
   996                 // The enclosing type is not a class, so we are
   997                 // looking at a static member type.  However, the
   998                 // qualifying expression is parameterized.
   999                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1000             } else {
  1001                 // otherwise validate the rest of the expression
  1002                 tree.selected.accept(this);
  1006         @Override
  1007         public void visitAnnotatedType(JCAnnotatedType tree) {
  1008             tree.underlyingType.accept(this);
  1011         /** Default visitor method: do nothing.
  1012          */
  1013         @Override
  1014         public void visitTree(JCTree tree) {
  1017         Env<AttrContext> env;
  1020 /* *************************************************************************
  1021  * Exception checking
  1022  **************************************************************************/
  1024     /* The following methods treat classes as sets that contain
  1025      * the class itself and all their subclasses
  1026      */
  1028     /** Is given type a subtype of some of the types in given list?
  1029      */
  1030     boolean subset(Type t, List<Type> ts) {
  1031         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1032             if (types.isSubtype(t, l.head)) return true;
  1033         return false;
  1036     /** Is given type a subtype or supertype of
  1037      *  some of the types in given list?
  1038      */
  1039     boolean intersects(Type t, List<Type> ts) {
  1040         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1041             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1042         return false;
  1045     /** Add type set to given type list, unless it is a subclass of some class
  1046      *  in the list.
  1047      */
  1048     List<Type> incl(Type t, List<Type> ts) {
  1049         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1052     /** Remove type set from type set list.
  1053      */
  1054     List<Type> excl(Type t, List<Type> ts) {
  1055         if (ts.isEmpty()) {
  1056             return ts;
  1057         } else {
  1058             List<Type> ts1 = excl(t, ts.tail);
  1059             if (types.isSubtype(ts.head, t)) return ts1;
  1060             else if (ts1 == ts.tail) return ts;
  1061             else return ts1.prepend(ts.head);
  1065     /** Form the union of two type set lists.
  1066      */
  1067     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1068         List<Type> ts = ts1;
  1069         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1070             ts = incl(l.head, ts);
  1071         return ts;
  1074     /** Form the difference of two type lists.
  1075      */
  1076     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1077         List<Type> ts = ts1;
  1078         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1079             ts = excl(l.head, ts);
  1080         return ts;
  1083     /** Form the intersection of two type lists.
  1084      */
  1085     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1086         List<Type> ts = List.nil();
  1087         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1088             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1089         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1090             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1091         return ts;
  1094     /** Is exc an exception symbol that need not be declared?
  1095      */
  1096     boolean isUnchecked(ClassSymbol exc) {
  1097         return
  1098             exc.kind == ERR ||
  1099             exc.isSubClass(syms.errorType.tsym, types) ||
  1100             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1103     /** Is exc an exception type that need not be declared?
  1104      */
  1105     boolean isUnchecked(Type exc) {
  1106         return
  1107             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1108             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1109             exc.tag == BOT;
  1112     /** Same, but handling completion failures.
  1113      */
  1114     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1115         try {
  1116             return isUnchecked(exc);
  1117         } catch (CompletionFailure ex) {
  1118             completionError(pos, ex);
  1119             return true;
  1123     /** Is exc handled by given exception list?
  1124      */
  1125     boolean isHandled(Type exc, List<Type> handled) {
  1126         return isUnchecked(exc) || subset(exc, handled);
  1129     /** Return all exceptions in thrown list that are not in handled list.
  1130      *  @param thrown     The list of thrown exceptions.
  1131      *  @param handled    The list of handled exceptions.
  1132      */
  1133     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1134         List<Type> unhandled = List.nil();
  1135         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1136             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1137         return unhandled;
  1140 /* *************************************************************************
  1141  * Overriding/Implementation checking
  1142  **************************************************************************/
  1144     /** The level of access protection given by a flag set,
  1145      *  where PRIVATE is highest and PUBLIC is lowest.
  1146      */
  1147     static int protection(long flags) {
  1148         switch ((short)(flags & AccessFlags)) {
  1149         case PRIVATE: return 3;
  1150         case PROTECTED: return 1;
  1151         default:
  1152         case PUBLIC: return 0;
  1153         case 0: return 2;
  1157     /** A customized "cannot override" error message.
  1158      *  @param m      The overriding method.
  1159      *  @param other  The overridden method.
  1160      *  @return       An internationalized string.
  1161      */
  1162     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1163         String key;
  1164         if ((other.owner.flags() & INTERFACE) == 0)
  1165             key = "cant.override";
  1166         else if ((m.owner.flags() & INTERFACE) == 0)
  1167             key = "cant.implement";
  1168         else
  1169             key = "clashes.with";
  1170         return diags.fragment(key, m, m.location(), other, other.location());
  1173     /** A customized "override" warning message.
  1174      *  @param m      The overriding method.
  1175      *  @param other  The overridden method.
  1176      *  @return       An internationalized string.
  1177      */
  1178     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1179         String key;
  1180         if ((other.owner.flags() & INTERFACE) == 0)
  1181             key = "unchecked.override";
  1182         else if ((m.owner.flags() & INTERFACE) == 0)
  1183             key = "unchecked.implement";
  1184         else
  1185             key = "unchecked.clash.with";
  1186         return diags.fragment(key, m, m.location(), other, other.location());
  1189     /** A customized "override" warning message.
  1190      *  @param m      The overriding method.
  1191      *  @param other  The overridden method.
  1192      *  @return       An internationalized string.
  1193      */
  1194     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1195         String key;
  1196         if ((other.owner.flags() & INTERFACE) == 0)
  1197             key = "varargs.override";
  1198         else  if ((m.owner.flags() & INTERFACE) == 0)
  1199             key = "varargs.implement";
  1200         else
  1201             key = "varargs.clash.with";
  1202         return diags.fragment(key, m, m.location(), other, other.location());
  1205     /** Check that this method conforms with overridden method 'other'.
  1206      *  where `origin' is the class where checking started.
  1207      *  Complications:
  1208      *  (1) Do not check overriding of synthetic methods
  1209      *      (reason: they might be final).
  1210      *      todo: check whether this is still necessary.
  1211      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1212      *      than the method it implements. Augment the proxy methods with the
  1213      *      undeclared exceptions in this case.
  1214      *  (3) When generics are enabled, admit the case where an interface proxy
  1215      *      has a result type
  1216      *      extended by the result type of the method it implements.
  1217      *      Change the proxies result type to the smaller type in this case.
  1219      *  @param tree         The tree from which positions
  1220      *                      are extracted for errors.
  1221      *  @param m            The overriding method.
  1222      *  @param other        The overridden method.
  1223      *  @param origin       The class of which the overriding method
  1224      *                      is a member.
  1225      */
  1226     void checkOverride(JCTree tree,
  1227                        MethodSymbol m,
  1228                        MethodSymbol other,
  1229                        ClassSymbol origin) {
  1230         // Don't check overriding of synthetic methods or by bridge methods.
  1231         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1232             return;
  1235         // Error if static method overrides instance method (JLS 8.4.6.2).
  1236         if ((m.flags() & STATIC) != 0 &&
  1237                    (other.flags() & STATIC) == 0) {
  1238             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1239                       cannotOverride(m, other));
  1240             return;
  1243         // Error if instance method overrides static or final
  1244         // method (JLS 8.4.6.1).
  1245         if ((other.flags() & FINAL) != 0 ||
  1246                  (m.flags() & STATIC) == 0 &&
  1247                  (other.flags() & STATIC) != 0) {
  1248             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1249                       cannotOverride(m, other),
  1250                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1251             return;
  1254         if ((m.owner.flags() & ANNOTATION) != 0) {
  1255             // handled in validateAnnotationMethod
  1256             return;
  1259         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1260         if ((origin.flags() & INTERFACE) == 0 &&
  1261                  protection(m.flags()) > protection(other.flags())) {
  1262             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1263                       cannotOverride(m, other),
  1264                       other.flags() == 0 ?
  1265                           Flag.PACKAGE :
  1266                           asFlagSet(other.flags() & AccessFlags));
  1267             return;
  1270         Type mt = types.memberType(origin.type, m);
  1271         Type ot = types.memberType(origin.type, other);
  1272         // Error if overriding result type is different
  1273         // (or, in the case of generics mode, not a subtype) of
  1274         // overridden result type. We have to rename any type parameters
  1275         // before comparing types.
  1276         List<Type> mtvars = mt.getTypeArguments();
  1277         List<Type> otvars = ot.getTypeArguments();
  1278         Type mtres = mt.getReturnType();
  1279         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1281         overrideWarner.warned = false;
  1282         boolean resultTypesOK =
  1283             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1284         if (!resultTypesOK) {
  1285             if (!allowCovariantReturns &&
  1286                 m.owner != origin &&
  1287                 m.owner.isSubClass(other.owner, types)) {
  1288                 // allow limited interoperability with covariant returns
  1289             } else {
  1290                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1291                           "override.incompatible.ret",
  1292                           cannotOverride(m, other),
  1293                           mtres, otres);
  1294                 return;
  1296         } else if (overrideWarner.warned) {
  1297             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1298                     "override.unchecked.ret",
  1299                     uncheckedOverrides(m, other),
  1300                     mtres, otres);
  1303         // Error if overriding method throws an exception not reported
  1304         // by overridden method.
  1305         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1306         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1307         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1308         if (unhandledErased.nonEmpty()) {
  1309             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1310                       "override.meth.doesnt.throw",
  1311                       cannotOverride(m, other),
  1312                       unhandledUnerased.head);
  1313             return;
  1315         else if (unhandledUnerased.nonEmpty()) {
  1316             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1317                           "override.unchecked.thrown",
  1318                          cannotOverride(m, other),
  1319                          unhandledUnerased.head);
  1320             return;
  1323         // Optional warning if varargs don't agree
  1324         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1325             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1326             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1327                         ((m.flags() & Flags.VARARGS) != 0)
  1328                         ? "override.varargs.missing"
  1329                         : "override.varargs.extra",
  1330                         varargsOverrides(m, other));
  1333         // Warn if instance method overrides bridge method (compiler spec ??)
  1334         if ((other.flags() & BRIDGE) != 0) {
  1335             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1336                         uncheckedOverrides(m, other));
  1339         // Warn if a deprecated method overridden by a non-deprecated one.
  1340         if ((other.flags() & DEPRECATED) != 0
  1341             && (m.flags() & DEPRECATED) == 0
  1342             && m.outermostClass() != other.outermostClass()
  1343             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1344             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1347     // where
  1348         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1349             // If the method, m, is defined in an interface, then ignore the issue if the method
  1350             // is only inherited via a supertype and also implemented in the supertype,
  1351             // because in that case, we will rediscover the issue when examining the method
  1352             // in the supertype.
  1353             // If the method, m, is not defined in an interface, then the only time we need to
  1354             // address the issue is when the method is the supertype implemementation: any other
  1355             // case, we will have dealt with when examining the supertype classes
  1356             ClassSymbol mc = m.enclClass();
  1357             Type st = types.supertype(origin.type);
  1358             if (st.tag != CLASS)
  1359                 return true;
  1360             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1362             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1363                 List<Type> intfs = types.interfaces(origin.type);
  1364                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1366             else
  1367                 return (stimpl != m);
  1371     // used to check if there were any unchecked conversions
  1372     Warner overrideWarner = new Warner();
  1374     /** Check that a class does not inherit two concrete methods
  1375      *  with the same signature.
  1376      *  @param pos          Position to be used for error reporting.
  1377      *  @param site         The class type to be checked.
  1378      */
  1379     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1380         Type sup = types.supertype(site);
  1381         if (sup.tag != CLASS) return;
  1383         for (Type t1 = sup;
  1384              t1.tsym.type.isParameterized();
  1385              t1 = types.supertype(t1)) {
  1386             for (Scope.Entry e1 = t1.tsym.members().elems;
  1387                  e1 != null;
  1388                  e1 = e1.sibling) {
  1389                 Symbol s1 = e1.sym;
  1390                 if (s1.kind != MTH ||
  1391                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1392                     !s1.isInheritedIn(site.tsym, types) ||
  1393                     ((MethodSymbol)s1).implementation(site.tsym,
  1394                                                       types,
  1395                                                       true) != s1)
  1396                     continue;
  1397                 Type st1 = types.memberType(t1, s1);
  1398                 int s1ArgsLength = st1.getParameterTypes().length();
  1399                 if (st1 == s1.type) continue;
  1401                 for (Type t2 = sup;
  1402                      t2.tag == CLASS;
  1403                      t2 = types.supertype(t2)) {
  1404                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1405                          e2.scope != null;
  1406                          e2 = e2.next()) {
  1407                         Symbol s2 = e2.sym;
  1408                         if (s2 == s1 ||
  1409                             s2.kind != MTH ||
  1410                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1411                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1412                             !s2.isInheritedIn(site.tsym, types) ||
  1413                             ((MethodSymbol)s2).implementation(site.tsym,
  1414                                                               types,
  1415                                                               true) != s2)
  1416                             continue;
  1417                         Type st2 = types.memberType(t2, s2);
  1418                         if (types.overrideEquivalent(st1, st2))
  1419                             log.error(pos, "concrete.inheritance.conflict",
  1420                                       s1, t1, s2, t2, sup);
  1427     /** Check that classes (or interfaces) do not each define an abstract
  1428      *  method with same name and arguments but incompatible return types.
  1429      *  @param pos          Position to be used for error reporting.
  1430      *  @param t1           The first argument type.
  1431      *  @param t2           The second argument type.
  1432      */
  1433     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1434                                             Type t1,
  1435                                             Type t2) {
  1436         return checkCompatibleAbstracts(pos, t1, t2,
  1437                                         types.makeCompoundType(t1, t2));
  1440     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1441                                             Type t1,
  1442                                             Type t2,
  1443                                             Type site) {
  1444         Symbol sym = firstIncompatibility(t1, t2, site);
  1445         if (sym != null) {
  1446             log.error(pos, "types.incompatible.diff.ret",
  1447                       t1, t2, sym.name +
  1448                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1449             return false;
  1451         return true;
  1454     /** Return the first method which is defined with same args
  1455      *  but different return types in two given interfaces, or null if none
  1456      *  exists.
  1457      *  @param t1     The first type.
  1458      *  @param t2     The second type.
  1459      *  @param site   The most derived type.
  1460      *  @returns symbol from t2 that conflicts with one in t1.
  1461      */
  1462     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1463         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1464         closure(t1, interfaces1);
  1465         Map<TypeSymbol,Type> interfaces2;
  1466         if (t1 == t2)
  1467             interfaces2 = interfaces1;
  1468         else
  1469             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1471         for (Type t3 : interfaces1.values()) {
  1472             for (Type t4 : interfaces2.values()) {
  1473                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1474                 if (s != null) return s;
  1477         return null;
  1480     /** Compute all the supertypes of t, indexed by type symbol. */
  1481     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1482         if (t.tag != CLASS) return;
  1483         if (typeMap.put(t.tsym, t) == null) {
  1484             closure(types.supertype(t), typeMap);
  1485             for (Type i : types.interfaces(t))
  1486                 closure(i, typeMap);
  1490     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1491     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1492         if (t.tag != CLASS) return;
  1493         if (typesSkip.get(t.tsym) != null) return;
  1494         if (typeMap.put(t.tsym, t) == null) {
  1495             closure(types.supertype(t), typesSkip, typeMap);
  1496             for (Type i : types.interfaces(t))
  1497                 closure(i, typesSkip, typeMap);
  1501     /** Return the first method in t2 that conflicts with a method from t1. */
  1502     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1503         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1504             Symbol s1 = e1.sym;
  1505             Type st1 = null;
  1506             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1507             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1508             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1509             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1510                 Symbol s2 = e2.sym;
  1511                 if (s1 == s2) continue;
  1512                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1513                 if (st1 == null) st1 = types.memberType(t1, s1);
  1514                 Type st2 = types.memberType(t2, s2);
  1515                 if (types.overrideEquivalent(st1, st2)) {
  1516                     List<Type> tvars1 = st1.getTypeArguments();
  1517                     List<Type> tvars2 = st2.getTypeArguments();
  1518                     Type rt1 = st1.getReturnType();
  1519                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1520                     boolean compat =
  1521                         types.isSameType(rt1, rt2) ||
  1522                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1523                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1524                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1525                          checkCommonOverriderIn(s1,s2,site);
  1526                     if (!compat) return s2;
  1530         return null;
  1532     //WHERE
  1533     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1534         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1535         Type st1 = types.memberType(site, s1);
  1536         Type st2 = types.memberType(site, s2);
  1537         closure(site, supertypes);
  1538         for (Type t : supertypes.values()) {
  1539             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1540                 Symbol s3 = e.sym;
  1541                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1542                 Type st3 = types.memberType(site,s3);
  1543                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1544                     if (s3.owner == site.tsym) {
  1545                         return true;
  1547                     List<Type> tvars1 = st1.getTypeArguments();
  1548                     List<Type> tvars2 = st2.getTypeArguments();
  1549                     List<Type> tvars3 = st3.getTypeArguments();
  1550                     Type rt1 = st1.getReturnType();
  1551                     Type rt2 = st2.getReturnType();
  1552                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1553                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1554                     boolean compat =
  1555                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1556                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1557                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1558                     if (compat)
  1559                         return true;
  1563         return false;
  1566     /** Check that a given method conforms with any method it overrides.
  1567      *  @param tree         The tree from which positions are extracted
  1568      *                      for errors.
  1569      *  @param m            The overriding method.
  1570      */
  1571     void checkOverride(JCTree tree, MethodSymbol m) {
  1572         ClassSymbol origin = (ClassSymbol)m.owner;
  1573         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1574             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1575                 log.error(tree.pos(), "enum.no.finalize");
  1576                 return;
  1578         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1579              t = types.supertype(t)) {
  1580             TypeSymbol c = t.tsym;
  1581             Scope.Entry e = c.members().lookup(m.name);
  1582             while (e.scope != null) {
  1583                 if (m.overrides(e.sym, origin, types, false))
  1584                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1585                 else if (e.sym.kind == MTH &&
  1586                         e.sym.isInheritedIn(origin, types) &&
  1587                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1588                         !m.isConstructor()) {
  1589                     Type er1 = m.erasure(types);
  1590                     Type er2 = e.sym.erasure(types);
  1591                     if (types.isSameTypes(er1.getParameterTypes(),
  1592                             er2.getParameterTypes())) {
  1593                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1594                                     "name.clash.same.erasure.no.override",
  1595                                     m, m.location(),
  1596                                     e.sym, e.sym.location());
  1599                 e = e.next();
  1604     /** Check that all abstract members of given class have definitions.
  1605      *  @param pos          Position to be used for error reporting.
  1606      *  @param c            The class.
  1607      */
  1608     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1609         try {
  1610             MethodSymbol undef = firstUndef(c, c);
  1611             if (undef != null) {
  1612                 if ((c.flags() & ENUM) != 0 &&
  1613                     types.supertype(c.type).tsym == syms.enumSym &&
  1614                     (c.flags() & FINAL) == 0) {
  1615                     // add the ABSTRACT flag to an enum
  1616                     c.flags_field |= ABSTRACT;
  1617                 } else {
  1618                     MethodSymbol undef1 =
  1619                         new MethodSymbol(undef.flags(), undef.name,
  1620                                          types.memberType(c.type, undef), undef.owner);
  1621                     log.error(pos, "does.not.override.abstract",
  1622                               c, undef1, undef1.location());
  1625         } catch (CompletionFailure ex) {
  1626             completionError(pos, ex);
  1629 //where
  1630         /** Return first abstract member of class `c' that is not defined
  1631          *  in `impl', null if there is none.
  1632          */
  1633         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1634             MethodSymbol undef = null;
  1635             // Do not bother to search in classes that are not abstract,
  1636             // since they cannot have abstract members.
  1637             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1638                 Scope s = c.members();
  1639                 for (Scope.Entry e = s.elems;
  1640                      undef == null && e != null;
  1641                      e = e.sibling) {
  1642                     if (e.sym.kind == MTH &&
  1643                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1644                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1645                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1646                         if (implmeth == null || implmeth == absmeth)
  1647                             undef = absmeth;
  1650                 if (undef == null) {
  1651                     Type st = types.supertype(c.type);
  1652                     if (st.tag == CLASS)
  1653                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1655                 for (List<Type> l = types.interfaces(c.type);
  1656                      undef == null && l.nonEmpty();
  1657                      l = l.tail) {
  1658                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1661             return undef;
  1664     /** Check for cyclic references. Issue an error if the
  1665      *  symbol of the type referred to has a LOCKED flag set.
  1667      *  @param pos      Position to be used for error reporting.
  1668      *  @param t        The type referred to.
  1669      */
  1670     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1671         checkNonCyclicInternal(pos, t);
  1675     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1676         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1679     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1680         final TypeVar tv;
  1681         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1682             return;
  1683         if (seen.contains(t)) {
  1684             tv = (TypeVar)t;
  1685             tv.bound = types.createErrorType(t);
  1686             log.error(pos, "cyclic.inheritance", t);
  1687         } else if (t.tag == TYPEVAR) {
  1688             tv = (TypeVar)t;
  1689             seen = seen.prepend(tv);
  1690             for (Type b : types.getBounds(tv))
  1691                 checkNonCyclic1(pos, b, seen);
  1695     /** Check for cyclic references. Issue an error if the
  1696      *  symbol of the type referred to has a LOCKED flag set.
  1698      *  @param pos      Position to be used for error reporting.
  1699      *  @param t        The type referred to.
  1700      *  @returns        True if the check completed on all attributed classes
  1701      */
  1702     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1703         boolean complete = true; // was the check complete?
  1704         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1705         Symbol c = t.tsym;
  1706         if ((c.flags_field & ACYCLIC) != 0) return true;
  1708         if ((c.flags_field & LOCKED) != 0) {
  1709             noteCyclic(pos, (ClassSymbol)c);
  1710         } else if (!c.type.isErroneous()) {
  1711             try {
  1712                 c.flags_field |= LOCKED;
  1713                 if (c.type.tag == CLASS) {
  1714                     ClassType clazz = (ClassType)c.type;
  1715                     if (clazz.interfaces_field != null)
  1716                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1717                             complete &= checkNonCyclicInternal(pos, l.head);
  1718                     if (clazz.supertype_field != null) {
  1719                         Type st = clazz.supertype_field;
  1720                         if (st != null && st.tag == CLASS)
  1721                             complete &= checkNonCyclicInternal(pos, st);
  1723                     if (c.owner.kind == TYP)
  1724                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1726             } finally {
  1727                 c.flags_field &= ~LOCKED;
  1730         if (complete)
  1731             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1732         if (complete) c.flags_field |= ACYCLIC;
  1733         return complete;
  1736     /** Note that we found an inheritance cycle. */
  1737     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1738         log.error(pos, "cyclic.inheritance", c);
  1739         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1740             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1741         Type st = types.supertype(c.type);
  1742         if (st.tag == CLASS)
  1743             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1744         c.type = types.createErrorType(c, c.type);
  1745         c.flags_field |= ACYCLIC;
  1748     /** Check that all methods which implement some
  1749      *  method conform to the method they implement.
  1750      *  @param tree         The class definition whose members are checked.
  1751      */
  1752     void checkImplementations(JCClassDecl tree) {
  1753         checkImplementations(tree, tree.sym);
  1755 //where
  1756         /** Check that all methods which implement some
  1757          *  method in `ic' conform to the method they implement.
  1758          */
  1759         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1760             ClassSymbol origin = tree.sym;
  1761             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1762                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1763                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1764                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1765                         if (e.sym.kind == MTH &&
  1766                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1767                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1768                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1769                             if (implmeth != null && implmeth != absmeth &&
  1770                                 (implmeth.owner.flags() & INTERFACE) ==
  1771                                 (origin.flags() & INTERFACE)) {
  1772                                 // don't check if implmeth is in a class, yet
  1773                                 // origin is an interface. This case arises only
  1774                                 // if implmeth is declared in Object. The reason is
  1775                                 // that interfaces really don't inherit from
  1776                                 // Object it's just that the compiler represents
  1777                                 // things that way.
  1778                                 checkOverride(tree, implmeth, absmeth, origin);
  1786     /** Check that all abstract methods implemented by a class are
  1787      *  mutually compatible.
  1788      *  @param pos          Position to be used for error reporting.
  1789      *  @param c            The class whose interfaces are checked.
  1790      */
  1791     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1792         List<Type> supertypes = types.interfaces(c);
  1793         Type supertype = types.supertype(c);
  1794         if (supertype.tag == CLASS &&
  1795             (supertype.tsym.flags() & ABSTRACT) != 0)
  1796             supertypes = supertypes.prepend(supertype);
  1797         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1798             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1799                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1800                 return;
  1801             for (List<Type> m = supertypes; m != l; m = m.tail)
  1802                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1803                     return;
  1805         checkCompatibleConcretes(pos, c);
  1808     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  1809         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  1810             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  1811                 // VM allows methods and variables with differing types
  1812                 if (sym.kind == e.sym.kind &&
  1813                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  1814                     sym != e.sym &&
  1815                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  1816                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  1817                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  1818                     return;
  1824     /** Report a conflict between a user symbol and a synthetic symbol.
  1825      */
  1826     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  1827         if (!sym.type.isErroneous()) {
  1828             if (warnOnSyntheticConflicts) {
  1829                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  1831             else {
  1832                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  1837     /** Check that class c does not implement directly or indirectly
  1838      *  the same parameterized interface with two different argument lists.
  1839      *  @param pos          Position to be used for error reporting.
  1840      *  @param type         The type whose interfaces are checked.
  1841      */
  1842     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1843         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1845 //where
  1846         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1847          *  with their class symbol as key and their type as value. Make
  1848          *  sure no class is entered with two different types.
  1849          */
  1850         void checkClassBounds(DiagnosticPosition pos,
  1851                               Map<TypeSymbol,Type> seensofar,
  1852                               Type type) {
  1853             if (type.isErroneous()) return;
  1854             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1855                 Type it = l.head;
  1856                 Type oldit = seensofar.put(it.tsym, it);
  1857                 if (oldit != null) {
  1858                     List<Type> oldparams = oldit.allparams();
  1859                     List<Type> newparams = it.allparams();
  1860                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1861                         log.error(pos, "cant.inherit.diff.arg",
  1862                                   it.tsym, Type.toString(oldparams),
  1863                                   Type.toString(newparams));
  1865                 checkClassBounds(pos, seensofar, it);
  1867             Type st = types.supertype(type);
  1868             if (st != null) checkClassBounds(pos, seensofar, st);
  1871     /** Enter interface into into set.
  1872      *  If it existed already, issue a "repeated interface" error.
  1873      */
  1874     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1875         if (its.contains(it))
  1876             log.error(pos, "repeated.interface");
  1877         else {
  1878             its.add(it);
  1882 /* *************************************************************************
  1883  * Check annotations
  1884  **************************************************************************/
  1886     /** Annotation types are restricted to primitives, String, an
  1887      *  enum, an annotation, Class, Class<?>, Class<? extends
  1888      *  Anything>, arrays of the preceding.
  1889      */
  1890     void validateAnnotationType(JCTree restype) {
  1891         // restype may be null if an error occurred, so don't bother validating it
  1892         if (restype != null) {
  1893             validateAnnotationType(restype.pos(), restype.type);
  1897     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1898         if (type.isPrimitive()) return;
  1899         if (types.isSameType(type, syms.stringType)) return;
  1900         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1901         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1902         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1903         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1904             validateAnnotationType(pos, types.elemtype(type));
  1905             return;
  1907         log.error(pos, "invalid.annotation.member.type");
  1910     /**
  1911      * "It is also a compile-time error if any method declared in an
  1912      * annotation type has a signature that is override-equivalent to
  1913      * that of any public or protected method declared in class Object
  1914      * or in the interface annotation.Annotation."
  1916      * @jls3 9.6 Annotation Types
  1917      */
  1918     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1919         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1920             Scope s = sup.tsym.members();
  1921             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1922                 if (e.sym.kind == MTH &&
  1923                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1924                     types.overrideEquivalent(m.type, e.sym.type))
  1925                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1930     /** Check the annotations of a symbol.
  1931      */
  1932     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1933         if (skipAnnotations) return;
  1934         for (JCAnnotation a : annotations)
  1935             validateAnnotation(a, s);
  1938     /** Check the type annotations
  1939      */
  1940     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  1941         if (skipAnnotations) return;
  1942         for (JCTypeAnnotation a : annotations)
  1943             validateTypeAnnotation(a, isTypeParameter);
  1946     /** Check an annotation of a symbol.
  1947      */
  1948     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1949         validateAnnotation(a);
  1951         if (!annotationApplicable(a, s))
  1952             log.error(a.pos(), "annotation.type.not.applicable");
  1954         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1955             if (!isOverrider(s))
  1956                 log.error(a.pos(), "method.does.not.override.superclass");
  1960     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1961         if (a.type == null)
  1962             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  1963         validateAnnotation(a);
  1965         if (!isTypeAnnotation(a, isTypeParameter))
  1966             log.error(a.pos(), "annotation.type.not.applicable");
  1969     /** Is s a method symbol that overrides a method in a superclass? */
  1970     boolean isOverrider(Symbol s) {
  1971         if (s.kind != MTH || s.isStatic())
  1972             return false;
  1973         MethodSymbol m = (MethodSymbol)s;
  1974         TypeSymbol owner = (TypeSymbol)m.owner;
  1975         for (Type sup : types.closure(owner.type)) {
  1976             if (sup == owner.type)
  1977                 continue; // skip "this"
  1978             Scope scope = sup.tsym.members();
  1979             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1980                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1981                     return true;
  1984         return false;
  1987     /** Is the annotation applicable to type annotations */
  1988     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1989         Attribute.Compound atTarget =
  1990             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1991         if (atTarget == null) return true;
  1992         Attribute atValue = atTarget.member(names.value);
  1993         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1994         Attribute.Array arr = (Attribute.Array) atValue;
  1995         for (Attribute app : arr.values) {
  1996             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1997             Attribute.Enum e = (Attribute.Enum) app;
  1998             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  1999                 return true;
  2000             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2001                 return true;
  2003         return false;
  2006     /** Is the annotation applicable to the symbol? */
  2007     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2008         Attribute.Compound atTarget =
  2009             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2010         if (atTarget == null) return true;
  2011         Attribute atValue = atTarget.member(names.value);
  2012         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  2013         Attribute.Array arr = (Attribute.Array) atValue;
  2014         for (Attribute app : arr.values) {
  2015             if (!(app instanceof Attribute.Enum)) return true; // recovery
  2016             Attribute.Enum e = (Attribute.Enum) app;
  2017             if (e.value.name == names.TYPE)
  2018                 { if (s.kind == TYP) return true; }
  2019             else if (e.value.name == names.FIELD)
  2020                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  2021             else if (e.value.name == names.METHOD)
  2022                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  2023             else if (e.value.name == names.PARAMETER)
  2024                 { if (s.kind == VAR &&
  2025                       s.owner.kind == MTH &&
  2026                       (s.flags() & PARAMETER) != 0)
  2027                     return true;
  2029             else if (e.value.name == names.CONSTRUCTOR)
  2030                 { if (s.kind == MTH && s.isConstructor()) return true; }
  2031             else if (e.value.name == names.LOCAL_VARIABLE)
  2032                 { if (s.kind == VAR && s.owner.kind == MTH &&
  2033                       (s.flags() & PARAMETER) == 0)
  2034                     return true;
  2036             else if (e.value.name == names.ANNOTATION_TYPE)
  2037                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  2038                     return true;
  2040             else if (e.value.name == names.PACKAGE)
  2041                 { if (s.kind == PCK) return true; }
  2042             else if (e.value.name == names.TYPE_USE)
  2043                 { if (s.kind == TYP ||
  2044                       s.kind == VAR ||
  2045                       (s.kind == MTH && !s.isConstructor() &&
  2046                        s.type.getReturnType().tag != VOID))
  2047                     return true;
  2049             else
  2050                 return true; // recovery
  2052         return false;
  2055     /** Check an annotation value.
  2056      */
  2057     public void validateAnnotation(JCAnnotation a) {
  2058         if (a.type.isErroneous()) return;
  2060         // collect an inventory of the members
  2061         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  2062         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  2063              e != null;
  2064              e = e.sibling)
  2065             if (e.sym.kind == MTH)
  2066                 members.add((MethodSymbol) e.sym);
  2068         // count them off as they're annotated
  2069         for (JCTree arg : a.args) {
  2070             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  2071             JCAssign assign = (JCAssign) arg;
  2072             Symbol m = TreeInfo.symbol(assign.lhs);
  2073             if (m == null || m.type.isErroneous()) continue;
  2074             if (!members.remove(m))
  2075                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  2076                           m.name, a.type);
  2077             if (assign.rhs.getTag() == ANNOTATION)
  2078                 validateAnnotation((JCAnnotation)assign.rhs);
  2081         // all the remaining ones better have default values
  2082         for (MethodSymbol m : members)
  2083             if (m.defaultValue == null && !m.type.isErroneous())
  2084                 log.error(a.pos(), "annotation.missing.default.value",
  2085                           a.type, m.name);
  2087         // special case: java.lang.annotation.Target must not have
  2088         // repeated values in its value member
  2089         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  2090             a.args.tail == null)
  2091             return;
  2093         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  2094         JCAssign assign = (JCAssign) a.args.head;
  2095         Symbol m = TreeInfo.symbol(assign.lhs);
  2096         if (m.name != names.value) return;
  2097         JCTree rhs = assign.rhs;
  2098         if (rhs.getTag() != JCTree.NEWARRAY) return;
  2099         JCNewArray na = (JCNewArray) rhs;
  2100         Set<Symbol> targets = new HashSet<Symbol>();
  2101         for (JCTree elem : na.elems) {
  2102             if (!targets.add(TreeInfo.symbol(elem))) {
  2103                 log.error(elem.pos(), "repeated.annotation.target");
  2108     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  2109         if (allowAnnotations &&
  2110             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  2111             (s.flags() & DEPRECATED) != 0 &&
  2112             !syms.deprecatedType.isErroneous() &&
  2113             s.attribute(syms.deprecatedType.tsym) == null) {
  2114             log.warning(pos, "missing.deprecated.annotation");
  2118 /* *************************************************************************
  2119  * Check for recursive annotation elements.
  2120  **************************************************************************/
  2122     /** Check for cycles in the graph of annotation elements.
  2123      */
  2124     void checkNonCyclicElements(JCClassDecl tree) {
  2125         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2126         assert (tree.sym.flags_field & LOCKED) == 0;
  2127         try {
  2128             tree.sym.flags_field |= LOCKED;
  2129             for (JCTree def : tree.defs) {
  2130                 if (def.getTag() != JCTree.METHODDEF) continue;
  2131                 JCMethodDecl meth = (JCMethodDecl)def;
  2132                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2134         } finally {
  2135             tree.sym.flags_field &= ~LOCKED;
  2136             tree.sym.flags_field |= ACYCLIC_ANN;
  2140     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2141         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2142             return;
  2143         if ((tsym.flags_field & LOCKED) != 0) {
  2144             log.error(pos, "cyclic.annotation.element");
  2145             return;
  2147         try {
  2148             tsym.flags_field |= LOCKED;
  2149             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2150                 Symbol s = e.sym;
  2151                 if (s.kind != Kinds.MTH)
  2152                     continue;
  2153                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2155         } finally {
  2156             tsym.flags_field &= ~LOCKED;
  2157             tsym.flags_field |= ACYCLIC_ANN;
  2161     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2162         switch (type.tag) {
  2163         case TypeTags.CLASS:
  2164             if ((type.tsym.flags() & ANNOTATION) != 0)
  2165                 checkNonCyclicElementsInternal(pos, type.tsym);
  2166             break;
  2167         case TypeTags.ARRAY:
  2168             checkAnnotationResType(pos, types.elemtype(type));
  2169             break;
  2170         default:
  2171             break; // int etc
  2175 /* *************************************************************************
  2176  * Check for cycles in the constructor call graph.
  2177  **************************************************************************/
  2179     /** Check for cycles in the graph of constructors calling other
  2180      *  constructors.
  2181      */
  2182     void checkCyclicConstructors(JCClassDecl tree) {
  2183         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2185         // enter each constructor this-call into the map
  2186         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2187             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2188             if (app == null) continue;
  2189             JCMethodDecl meth = (JCMethodDecl) l.head;
  2190             if (TreeInfo.name(app.meth) == names._this) {
  2191                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2192             } else {
  2193                 meth.sym.flags_field |= ACYCLIC;
  2197         // Check for cycles in the map
  2198         Symbol[] ctors = new Symbol[0];
  2199         ctors = callMap.keySet().toArray(ctors);
  2200         for (Symbol caller : ctors) {
  2201             checkCyclicConstructor(tree, caller, callMap);
  2205     /** Look in the map to see if the given constructor is part of a
  2206      *  call cycle.
  2207      */
  2208     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2209                                         Map<Symbol,Symbol> callMap) {
  2210         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2211             if ((ctor.flags_field & LOCKED) != 0) {
  2212                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2213                           "recursive.ctor.invocation");
  2214             } else {
  2215                 ctor.flags_field |= LOCKED;
  2216                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2217                 ctor.flags_field &= ~LOCKED;
  2219             ctor.flags_field |= ACYCLIC;
  2223 /* *************************************************************************
  2224  * Miscellaneous
  2225  **************************************************************************/
  2227     /**
  2228      * Return the opcode of the operator but emit an error if it is an
  2229      * error.
  2230      * @param pos        position for error reporting.
  2231      * @param operator   an operator
  2232      * @param tag        a tree tag
  2233      * @param left       type of left hand side
  2234      * @param right      type of right hand side
  2235      */
  2236     int checkOperator(DiagnosticPosition pos,
  2237                        OperatorSymbol operator,
  2238                        int tag,
  2239                        Type left,
  2240                        Type right) {
  2241         if (operator.opcode == ByteCodes.error) {
  2242             log.error(pos,
  2243                       "operator.cant.be.applied",
  2244                       treeinfo.operatorName(tag),
  2245                       List.of(left, right));
  2247         return operator.opcode;
  2251     /**
  2252      *  Check for division by integer constant zero
  2253      *  @param pos           Position for error reporting.
  2254      *  @param operator      The operator for the expression
  2255      *  @param operand       The right hand operand for the expression
  2256      */
  2257     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2258         if (operand.constValue() != null
  2259             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2260             && operand.tag <= LONG
  2261             && ((Number) (operand.constValue())).longValue() == 0) {
  2262             int opc = ((OperatorSymbol)operator).opcode;
  2263             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2264                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2265                 log.warning(pos, "div.zero");
  2270     /**
  2271      * Check for empty statements after if
  2272      */
  2273     void checkEmptyIf(JCIf tree) {
  2274         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2275             log.warning(tree.thenpart.pos(), "empty.if");
  2278     /** Check that symbol is unique in given scope.
  2279      *  @param pos           Position for error reporting.
  2280      *  @param sym           The symbol.
  2281      *  @param s             The scope.
  2282      */
  2283     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2284         if (sym.type.isErroneous())
  2285             return true;
  2286         if (sym.owner.name == names.any) return false;
  2287         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2288             if (sym != e.sym &&
  2289                 sym.kind == e.sym.kind &&
  2290                 sym.name != names.error &&
  2291                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2292                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2293                     varargsDuplicateError(pos, sym, e.sym);
  2294                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2295                     duplicateErasureError(pos, sym, e.sym);
  2296                 else
  2297                     duplicateError(pos, e.sym);
  2298                 return false;
  2301         return true;
  2303     //where
  2304     /** Report duplicate declaration error.
  2305      */
  2306     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2307         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2308             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2312     /** Check that single-type import is not already imported or top-level defined,
  2313      *  but make an exception for two single-type imports which denote the same type.
  2314      *  @param pos           Position for error reporting.
  2315      *  @param sym           The symbol.
  2316      *  @param s             The scope
  2317      */
  2318     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2319         return checkUniqueImport(pos, sym, s, false);
  2322     /** Check that static single-type import is not already imported or top-level defined,
  2323      *  but make an exception for two single-type imports which denote the same type.
  2324      *  @param pos           Position for error reporting.
  2325      *  @param sym           The symbol.
  2326      *  @param s             The scope
  2327      *  @param staticImport  Whether or not this was a static import
  2328      */
  2329     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2330         return checkUniqueImport(pos, sym, s, true);
  2333     /** Check that single-type import is not already imported or top-level defined,
  2334      *  but make an exception for two single-type imports which denote the same type.
  2335      *  @param pos           Position for error reporting.
  2336      *  @param sym           The symbol.
  2337      *  @param s             The scope.
  2338      *  @param staticImport  Whether or not this was a static import
  2339      */
  2340     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2341         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2342             // is encountered class entered via a class declaration?
  2343             boolean isClassDecl = e.scope == s;
  2344             if ((isClassDecl || sym != e.sym) &&
  2345                 sym.kind == e.sym.kind &&
  2346                 sym.name != names.error) {
  2347                 if (!e.sym.type.isErroneous()) {
  2348                     String what = e.sym.toString();
  2349                     if (!isClassDecl) {
  2350                         if (staticImport)
  2351                             log.error(pos, "already.defined.static.single.import", what);
  2352                         else
  2353                             log.error(pos, "already.defined.single.import", what);
  2355                     else if (sym != e.sym)
  2356                         log.error(pos, "already.defined.this.unit", what);
  2358                 return false;
  2361         return true;
  2364     /** Check that a qualified name is in canonical form (for import decls).
  2365      */
  2366     public void checkCanonical(JCTree tree) {
  2367         if (!isCanonical(tree))
  2368             log.error(tree.pos(), "import.requires.canonical",
  2369                       TreeInfo.symbol(tree));
  2371         // where
  2372         private boolean isCanonical(JCTree tree) {
  2373             while (tree.getTag() == JCTree.SELECT) {
  2374                 JCFieldAccess s = (JCFieldAccess) tree;
  2375                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2376                     return false;
  2377                 tree = s.selected;
  2379             return true;
  2382     private class ConversionWarner extends Warner {
  2383         final String key;
  2384         final Type found;
  2385         final Type expected;
  2386         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2387             super(pos);
  2388             this.key = key;
  2389             this.found = found;
  2390             this.expected = expected;
  2393         @Override
  2394         public void warnUnchecked() {
  2395             boolean warned = this.warned;
  2396             super.warnUnchecked();
  2397             if (warned) return; // suppress redundant diagnostics
  2398             Object problem = diags.fragment(key);
  2399             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2403     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2404         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2407     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2408         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial