src/share/classes/com/sun/tools/javac/comp/Check.java

Fri, 26 Jun 2009 18:51:39 -0700

author
jjg
date
Fri, 26 Jun 2009 18:51:39 -0700
changeset 308
03944ee4fac4
parent 299
22872b24d38c
child 359
8227961c64d3
permissions
-rw-r--r--

6843077: JSR 308: Annotations on types
Reviewed-by: jjg, mcimadamore, darcy
Contributed-by: mernst@cs.washington.edu, mali@csail.mit.edu, mpapi@csail.mit.edu

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Target target;
    64     private final Source source;
    65     private final Types types;
    66     private final JCDiagnostic.Factory diags;
    67     private final boolean skipAnnotations;
    68     private final TreeInfo treeinfo;
    70     // The set of lint options currently in effect. It is initialized
    71     // from the context, and then is set/reset as needed by Attr as it
    72     // visits all the various parts of the trees during attribution.
    73     private Lint lint;
    75     public static Check instance(Context context) {
    76         Check instance = context.get(checkKey);
    77         if (instance == null)
    78             instance = new Check(context);
    79         return instance;
    80     }
    82     protected Check(Context context) {
    83         context.put(checkKey, this);
    85         names = Names.instance(context);
    86         log = Log.instance(context);
    87         syms = Symtab.instance(context);
    88         infer = Infer.instance(context);
    89         this.types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         Options options = Options.instance(context);
    92         target = Target.instance(context);
    93         source = Source.instance(context);
    94         lint = Lint.instance(context);
    95         treeinfo = TreeInfo.instance(context);
    97         Source source = Source.instance(context);
    98         allowGenerics = source.allowGenerics();
    99         allowAnnotations = source.allowAnnotations();
   100         complexInference = options.get("-complexinference") != null;
   101         skipAnnotations = options.get("skipAnnotations") != null;
   103         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   104         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   105         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   107         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   108                 enforceMandatoryWarnings, "deprecated");
   109         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   110                 enforceMandatoryWarnings, "unchecked");
   111     }
   113     /** Switch: generics enabled?
   114      */
   115     boolean allowGenerics;
   117     /** Switch: annotations enabled?
   118      */
   119     boolean allowAnnotations;
   121     /** Switch: -complexinference option set?
   122      */
   123     boolean complexInference;
   125     /** A table mapping flat names of all compiled classes in this run to their
   126      *  symbols; maintained from outside.
   127      */
   128     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   130     /** A handler for messages about deprecated usage.
   131      */
   132     private MandatoryWarningHandler deprecationHandler;
   134     /** A handler for messages about unchecked or unsafe usage.
   135      */
   136     private MandatoryWarningHandler uncheckedHandler;
   139 /* *************************************************************************
   140  * Errors and Warnings
   141  **************************************************************************/
   143     Lint setLint(Lint newLint) {
   144         Lint prev = lint;
   145         lint = newLint;
   146         return prev;
   147     }
   149     /** Warn about deprecated symbol.
   150      *  @param pos        Position to be used for error reporting.
   151      *  @param sym        The deprecated symbol.
   152      */
   153     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   154         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   155             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   156     }
   158     /** Warn about unchecked operation.
   159      *  @param pos        Position to be used for error reporting.
   160      *  @param msg        A string describing the problem.
   161      */
   162     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   163         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   164             uncheckedHandler.report(pos, msg, args);
   165     }
   167     /**
   168      * Report any deferred diagnostics.
   169      */
   170     public void reportDeferredDiagnostics() {
   171         deprecationHandler.reportDeferredDiagnostic();
   172         uncheckedHandler.reportDeferredDiagnostic();
   173     }
   176     /** Report a failure to complete a class.
   177      *  @param pos        Position to be used for error reporting.
   178      *  @param ex         The failure to report.
   179      */
   180     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   181         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   182         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   183         else return syms.errType;
   184     }
   186     /** Report a type error.
   187      *  @param pos        Position to be used for error reporting.
   188      *  @param problem    A string describing the error.
   189      *  @param found      The type that was found.
   190      *  @param req        The type that was required.
   191      */
   192     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   193         log.error(pos, "prob.found.req",
   194                   problem, found, req);
   195         return types.createErrorType(found);
   196     }
   198     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   199         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   200         return types.createErrorType(found);
   201     }
   203     /** Report an error that wrong type tag was found.
   204      *  @param pos        Position to be used for error reporting.
   205      *  @param required   An internationalized string describing the type tag
   206      *                    required.
   207      *  @param found      The type that was found.
   208      */
   209     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   210         // this error used to be raised by the parser,
   211         // but has been delayed to this point:
   212         if (found instanceof Type && ((Type)found).tag == VOID) {
   213             log.error(pos, "illegal.start.of.type");
   214             return syms.errType;
   215         }
   216         log.error(pos, "type.found.req", found, required);
   217         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   218     }
   220     /** Report an error that symbol cannot be referenced before super
   221      *  has been called.
   222      *  @param pos        Position to be used for error reporting.
   223      *  @param sym        The referenced symbol.
   224      */
   225     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   226         log.error(pos, "cant.ref.before.ctor.called", sym);
   227     }
   229     /** Report duplicate declaration error.
   230      */
   231     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   232         if (!sym.type.isErroneous()) {
   233             log.error(pos, "already.defined", sym, sym.location());
   234         }
   235     }
   237     /** Report array/varargs duplicate declaration
   238      */
   239     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   240         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   241             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   242         }
   243     }
   245 /* ************************************************************************
   246  * duplicate declaration checking
   247  *************************************************************************/
   249     /** Check that variable does not hide variable with same name in
   250      *  immediately enclosing local scope.
   251      *  @param pos           Position for error reporting.
   252      *  @param v             The symbol.
   253      *  @param s             The scope.
   254      */
   255     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   256         if (s.next != null) {
   257             for (Scope.Entry e = s.next.lookup(v.name);
   258                  e.scope != null && e.sym.owner == v.owner;
   259                  e = e.next()) {
   260                 if (e.sym.kind == VAR &&
   261                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   262                     v.name != names.error) {
   263                     duplicateError(pos, e.sym);
   264                     return;
   265                 }
   266             }
   267         }
   268     }
   270     /** Check that a class or interface does not hide a class or
   271      *  interface with same name in immediately enclosing local scope.
   272      *  @param pos           Position for error reporting.
   273      *  @param c             The symbol.
   274      *  @param s             The scope.
   275      */
   276     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   277         if (s.next != null) {
   278             for (Scope.Entry e = s.next.lookup(c.name);
   279                  e.scope != null && e.sym.owner == c.owner;
   280                  e = e.next()) {
   281                 if (e.sym.kind == TYP &&
   282                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   283                     c.name != names.error) {
   284                     duplicateError(pos, e.sym);
   285                     return;
   286                 }
   287             }
   288         }
   289     }
   291     /** Check that class does not have the same name as one of
   292      *  its enclosing classes, or as a class defined in its enclosing scope.
   293      *  return true if class is unique in its enclosing scope.
   294      *  @param pos           Position for error reporting.
   295      *  @param name          The class name.
   296      *  @param s             The enclosing scope.
   297      */
   298     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   299         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   300             if (e.sym.kind == TYP && e.sym.name != names.error) {
   301                 duplicateError(pos, e.sym);
   302                 return false;
   303             }
   304         }
   305         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   306             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   307                 duplicateError(pos, sym);
   308                 return true;
   309             }
   310         }
   311         return true;
   312     }
   314 /* *************************************************************************
   315  * Class name generation
   316  **************************************************************************/
   318     /** Return name of local class.
   319      *  This is of the form    <enclClass> $ n <classname>
   320      *  where
   321      *    enclClass is the flat name of the enclosing class,
   322      *    classname is the simple name of the local class
   323      */
   324     Name localClassName(ClassSymbol c) {
   325         for (int i=1; ; i++) {
   326             Name flatname = names.
   327                 fromString("" + c.owner.enclClass().flatname +
   328                            target.syntheticNameChar() + i +
   329                            c.name);
   330             if (compiled.get(flatname) == null) return flatname;
   331         }
   332     }
   334 /* *************************************************************************
   335  * Type Checking
   336  **************************************************************************/
   338     /** Check that a given type is assignable to a given proto-type.
   339      *  If it is, return the type, otherwise return errType.
   340      *  @param pos        Position to be used for error reporting.
   341      *  @param found      The type that was found.
   342      *  @param req        The type that was required.
   343      */
   344     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   345         if (req.tag == ERROR)
   346             return req;
   347         if (found.tag == FORALL)
   348             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   349         if (req.tag == NONE)
   350             return found;
   351         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   352             return found;
   353         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   354             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   355         if (found.isSuperBound()) {
   356             log.error(pos, "assignment.from.super-bound", found);
   357             return types.createErrorType(found);
   358         }
   359         if (req.isExtendsBound()) {
   360             log.error(pos, "assignment.to.extends-bound", req);
   361             return types.createErrorType(found);
   362         }
   363         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   364     }
   366     /** Instantiate polymorphic type to some prototype, unless
   367      *  prototype is `anyPoly' in which case polymorphic type
   368      *  is returned unchanged.
   369      */
   370     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
   371         if (pt == Infer.anyPoly && complexInference) {
   372             return t;
   373         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   374             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   375             return instantiatePoly(pos, t, newpt, warn);
   376         } else if (pt.tag == ERROR) {
   377             return pt;
   378         } else {
   379             try {
   380                 return infer.instantiateExpr(t, pt, warn);
   381             } catch (Infer.NoInstanceException ex) {
   382                 if (ex.isAmbiguous) {
   383                     JCDiagnostic d = ex.getDiagnostic();
   384                     log.error(pos,
   385                               "undetermined.type" + (d!=null ? ".1" : ""),
   386                               t, d);
   387                     return types.createErrorType(pt);
   388                 } else {
   389                     JCDiagnostic d = ex.getDiagnostic();
   390                     return typeError(pos,
   391                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   392                                      t, pt);
   393                 }
   394             } catch (Infer.InvalidInstanceException ex) {
   395                 JCDiagnostic d = ex.getDiagnostic();
   396                 log.error(pos, "invalid.inferred.types", t.tvars, d);
   397                 return types.createErrorType(pt);
   398             }
   399         }
   400     }
   402     /** Check that a given type can be cast to a given target type.
   403      *  Return the result of the cast.
   404      *  @param pos        Position to be used for error reporting.
   405      *  @param found      The type that is being cast.
   406      *  @param req        The target type of the cast.
   407      */
   408     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   409         if (found.tag == FORALL) {
   410             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   411             return req;
   412         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   413             return req;
   414         } else {
   415             return typeError(pos,
   416                              diags.fragment("inconvertible.types"),
   417                              found, req);
   418         }
   419     }
   420 //where
   421         /** Is type a type variable, or a (possibly multi-dimensional) array of
   422          *  type variables?
   423          */
   424         boolean isTypeVar(Type t) {
   425             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   426         }
   428     /** Check that a type is within some bounds.
   429      *
   430      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   431      *  type argument.
   432      *  @param pos           Position to be used for error reporting.
   433      *  @param a             The type that should be bounded by bs.
   434      *  @param bs            The bound.
   435      */
   436     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   437          if (a.isUnbound()) {
   438              return;
   439          } else if (a.tag != WILDCARD) {
   440              a = types.upperBound(a);
   441              for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   442                  if (!types.isSubtype(a, l.head)) {
   443                      log.error(pos, "not.within.bounds", a);
   444                      return;
   445                  }
   446              }
   447          } else if (a.isExtendsBound()) {
   448              if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
   449                  log.error(pos, "not.within.bounds", a);
   450          } else if (a.isSuperBound()) {
   451              if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
   452                  log.error(pos, "not.within.bounds", a);
   453          }
   454      }
   456     /** Check that a type is within some bounds.
   457      *
   458      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   459      *  type argument.
   460      *  @param pos           Position to be used for error reporting.
   461      *  @param a             The type that should be bounded by bs.
   462      *  @param bs            The bound.
   463      */
   464     private void checkCapture(JCTypeApply tree) {
   465         List<JCExpression> args = tree.getTypeArguments();
   466         for (Type arg : types.capture(tree.type).getTypeArguments()) {
   467             if (arg.tag == TYPEVAR && arg.getUpperBound().isErroneous()) {
   468                 log.error(args.head.pos, "not.within.bounds", args.head.type);
   469                 break;
   470             }
   471             args = args.tail;
   472         }
   473      }
   475     /** Check that type is different from 'void'.
   476      *  @param pos           Position to be used for error reporting.
   477      *  @param t             The type to be checked.
   478      */
   479     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   480         if (t.tag == VOID) {
   481             log.error(pos, "void.not.allowed.here");
   482             return types.createErrorType(t);
   483         } else {
   484             return t;
   485         }
   486     }
   488     /** Check that type is a class or interface type.
   489      *  @param pos           Position to be used for error reporting.
   490      *  @param t             The type to be checked.
   491      */
   492     Type checkClassType(DiagnosticPosition pos, Type t) {
   493         if (t.tag != CLASS && t.tag != ERROR)
   494             return typeTagError(pos,
   495                                 diags.fragment("type.req.class"),
   496                                 (t.tag == TYPEVAR)
   497                                 ? diags.fragment("type.parameter", t)
   498                                 : t);
   499         else
   500             return t;
   501     }
   503     /** Check that type is a class or interface type.
   504      *  @param pos           Position to be used for error reporting.
   505      *  @param t             The type to be checked.
   506      *  @param noBounds    True if type bounds are illegal here.
   507      */
   508     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   509         t = checkClassType(pos, t);
   510         if (noBounds && t.isParameterized()) {
   511             List<Type> args = t.getTypeArguments();
   512             while (args.nonEmpty()) {
   513                 if (args.head.tag == WILDCARD)
   514                     return typeTagError(pos,
   515                                         log.getLocalizedString("type.req.exact"),
   516                                         args.head);
   517                 args = args.tail;
   518             }
   519         }
   520         return t;
   521     }
   523     /** Check that type is a reifiable class, interface or array type.
   524      *  @param pos           Position to be used for error reporting.
   525      *  @param t             The type to be checked.
   526      */
   527     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   528         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   529             return typeTagError(pos,
   530                                 diags.fragment("type.req.class.array"),
   531                                 t);
   532         } else if (!types.isReifiable(t)) {
   533             log.error(pos, "illegal.generic.type.for.instof");
   534             return types.createErrorType(t);
   535         } else {
   536             return t;
   537         }
   538     }
   540     /** Check that type is a reference type, i.e. a class, interface or array type
   541      *  or a type variable.
   542      *  @param pos           Position to be used for error reporting.
   543      *  @param t             The type to be checked.
   544      */
   545     Type checkRefType(DiagnosticPosition pos, Type t) {
   546         switch (t.tag) {
   547         case CLASS:
   548         case ARRAY:
   549         case TYPEVAR:
   550         case WILDCARD:
   551         case ERROR:
   552             return t;
   553         default:
   554             return typeTagError(pos,
   555                                 diags.fragment("type.req.ref"),
   556                                 t);
   557         }
   558     }
   560     /** Check that each type is a reference type, i.e. a class, interface or array type
   561      *  or a type variable.
   562      *  @param trees         Original trees, used for error reporting.
   563      *  @param types         The types to be checked.
   564      */
   565     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   566         List<JCExpression> tl = trees;
   567         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   568             l.head = checkRefType(tl.head.pos(), l.head);
   569             tl = tl.tail;
   570         }
   571         return types;
   572     }
   574     /** Check that type is a null or reference type.
   575      *  @param pos           Position to be used for error reporting.
   576      *  @param t             The type to be checked.
   577      */
   578     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   579         switch (t.tag) {
   580         case CLASS:
   581         case ARRAY:
   582         case TYPEVAR:
   583         case WILDCARD:
   584         case BOT:
   585         case ERROR:
   586             return t;
   587         default:
   588             return typeTagError(pos,
   589                                 diags.fragment("type.req.ref"),
   590                                 t);
   591         }
   592     }
   594     /** Check that flag set does not contain elements of two conflicting sets. s
   595      *  Return true if it doesn't.
   596      *  @param pos           Position to be used for error reporting.
   597      *  @param flags         The set of flags to be checked.
   598      *  @param set1          Conflicting flags set #1.
   599      *  @param set2          Conflicting flags set #2.
   600      */
   601     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   602         if ((flags & set1) != 0 && (flags & set2) != 0) {
   603             log.error(pos,
   604                       "illegal.combination.of.modifiers",
   605                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   606                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   607             return false;
   608         } else
   609             return true;
   610     }
   612     /** Check that given modifiers are legal for given symbol and
   613      *  return modifiers together with any implicit modififiers for that symbol.
   614      *  Warning: we can't use flags() here since this method
   615      *  is called during class enter, when flags() would cause a premature
   616      *  completion.
   617      *  @param pos           Position to be used for error reporting.
   618      *  @param flags         The set of modifiers given in a definition.
   619      *  @param sym           The defined symbol.
   620      */
   621     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   622         long mask;
   623         long implicit = 0;
   624         switch (sym.kind) {
   625         case VAR:
   626             if (sym.owner.kind != TYP)
   627                 mask = LocalVarFlags;
   628             else if ((sym.owner.flags_field & INTERFACE) != 0)
   629                 mask = implicit = InterfaceVarFlags;
   630             else
   631                 mask = VarFlags;
   632             break;
   633         case MTH:
   634             if (sym.name == names.init) {
   635                 if ((sym.owner.flags_field & ENUM) != 0) {
   636                     // enum constructors cannot be declared public or
   637                     // protected and must be implicitly or explicitly
   638                     // private
   639                     implicit = PRIVATE;
   640                     mask = PRIVATE;
   641                 } else
   642                     mask = ConstructorFlags;
   643             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   644                 mask = implicit = InterfaceMethodFlags;
   645             else {
   646                 mask = MethodFlags;
   647             }
   648             // Imply STRICTFP if owner has STRICTFP set.
   649             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   650               implicit |= sym.owner.flags_field & STRICTFP;
   651             break;
   652         case TYP:
   653             if (sym.isLocal()) {
   654                 mask = LocalClassFlags;
   655                 if (sym.name.isEmpty()) { // Anonymous class
   656                     // Anonymous classes in static methods are themselves static;
   657                     // that's why we admit STATIC here.
   658                     mask |= STATIC;
   659                     // JLS: Anonymous classes are final.
   660                     implicit |= FINAL;
   661                 }
   662                 if ((sym.owner.flags_field & STATIC) == 0 &&
   663                     (flags & ENUM) != 0)
   664                     log.error(pos, "enums.must.be.static");
   665             } else if (sym.owner.kind == TYP) {
   666                 mask = MemberClassFlags;
   667                 if (sym.owner.owner.kind == PCK ||
   668                     (sym.owner.flags_field & STATIC) != 0)
   669                     mask |= STATIC;
   670                 else if ((flags & ENUM) != 0)
   671                     log.error(pos, "enums.must.be.static");
   672                 // Nested interfaces and enums are always STATIC (Spec ???)
   673                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   674             } else {
   675                 mask = ClassFlags;
   676             }
   677             // Interfaces are always ABSTRACT
   678             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   680             if ((flags & ENUM) != 0) {
   681                 // enums can't be declared abstract or final
   682                 mask &= ~(ABSTRACT | FINAL);
   683                 implicit |= implicitEnumFinalFlag(tree);
   684             }
   685             // Imply STRICTFP if owner has STRICTFP set.
   686             implicit |= sym.owner.flags_field & STRICTFP;
   687             break;
   688         default:
   689             throw new AssertionError();
   690         }
   691         long illegal = flags & StandardFlags & ~mask;
   692         if (illegal != 0) {
   693             if ((illegal & INTERFACE) != 0) {
   694                 log.error(pos, "intf.not.allowed.here");
   695                 mask |= INTERFACE;
   696             }
   697             else {
   698                 log.error(pos,
   699                           "mod.not.allowed.here", asFlagSet(illegal));
   700             }
   701         }
   702         else if ((sym.kind == TYP ||
   703                   // ISSUE: Disallowing abstract&private is no longer appropriate
   704                   // in the presence of inner classes. Should it be deleted here?
   705                   checkDisjoint(pos, flags,
   706                                 ABSTRACT,
   707                                 PRIVATE | STATIC))
   708                  &&
   709                  checkDisjoint(pos, flags,
   710                                ABSTRACT | INTERFACE,
   711                                FINAL | NATIVE | SYNCHRONIZED)
   712                  &&
   713                  checkDisjoint(pos, flags,
   714                                PUBLIC,
   715                                PRIVATE | PROTECTED)
   716                  &&
   717                  checkDisjoint(pos, flags,
   718                                PRIVATE,
   719                                PUBLIC | PROTECTED)
   720                  &&
   721                  checkDisjoint(pos, flags,
   722                                FINAL,
   723                                VOLATILE)
   724                  &&
   725                  (sym.kind == TYP ||
   726                   checkDisjoint(pos, flags,
   727                                 ABSTRACT | NATIVE,
   728                                 STRICTFP))) {
   729             // skip
   730         }
   731         return flags & (mask | ~StandardFlags) | implicit;
   732     }
   735     /** Determine if this enum should be implicitly final.
   736      *
   737      *  If the enum has no specialized enum contants, it is final.
   738      *
   739      *  If the enum does have specialized enum contants, it is
   740      *  <i>not</i> final.
   741      */
   742     private long implicitEnumFinalFlag(JCTree tree) {
   743         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   744         class SpecialTreeVisitor extends JCTree.Visitor {
   745             boolean specialized;
   746             SpecialTreeVisitor() {
   747                 this.specialized = false;
   748             };
   750             public void visitTree(JCTree tree) { /* no-op */ }
   752             public void visitVarDef(JCVariableDecl tree) {
   753                 if ((tree.mods.flags & ENUM) != 0) {
   754                     if (tree.init instanceof JCNewClass &&
   755                         ((JCNewClass) tree.init).def != null) {
   756                         specialized = true;
   757                     }
   758                 }
   759             }
   760         }
   762         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   763         JCClassDecl cdef = (JCClassDecl) tree;
   764         for (JCTree defs: cdef.defs) {
   765             defs.accept(sts);
   766             if (sts.specialized) return 0;
   767         }
   768         return FINAL;
   769     }
   771 /* *************************************************************************
   772  * Type Validation
   773  **************************************************************************/
   775     /** Validate a type expression. That is,
   776      *  check that all type arguments of a parametric type are within
   777      *  their bounds. This must be done in a second phase after type attributon
   778      *  since a class might have a subclass as type parameter bound. E.g:
   779      *
   780      *  class B<A extends C> { ... }
   781      *  class C extends B<C> { ... }
   782      *
   783      *  and we can't make sure that the bound is already attributed because
   784      *  of possible cycles.
   785      */
   786     private Validator validator = new Validator();
   788     /** Visitor method: Validate a type expression, if it is not null, catching
   789      *  and reporting any completion failures.
   790      */
   791     void validate(JCTree tree, Env<AttrContext> env) {
   792         try {
   793             if (tree != null) {
   794                 validator.env = env;
   795                 tree.accept(validator);
   796                 checkRaw(tree, env);
   797             }
   798         } catch (CompletionFailure ex) {
   799             completionError(tree.pos(), ex);
   800         }
   801     }
   802     //where
   803     void checkRaw(JCTree tree, Env<AttrContext> env) {
   804         if (lint.isEnabled(Lint.LintCategory.RAW) &&
   805             tree.type.tag == CLASS &&
   806             !env.enclClass.name.isEmpty() &&  //anonymous or intersection
   807             tree.type.isRaw()) {
   808             log.warning(tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
   809         }
   810     }
   812     /** Visitor method: Validate a list of type expressions.
   813      */
   814     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
   815         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   816             validate(l.head, env);
   817     }
   819     /** A visitor class for type validation.
   820      */
   821     class Validator extends JCTree.Visitor {
   823         public void visitTypeArray(JCArrayTypeTree tree) {
   824             validate(tree.elemtype, env);
   825         }
   827         public void visitTypeApply(JCTypeApply tree) {
   828             if (tree.type.tag == CLASS) {
   829                 List<Type> formals = tree.type.tsym.type.allparams();
   830                 List<Type> actuals = tree.type.allparams();
   831                 List<JCExpression> args = tree.arguments;
   832                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
   833                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   835                 // For matching pairs of actual argument types `a' and
   836                 // formal type parameters with declared bound `b' ...
   837                 while (args.nonEmpty() && forms.nonEmpty()) {
   838                     validate(args.head, env);
   840                     // exact type arguments needs to know their
   841                     // bounds (for upper and lower bound
   842                     // calculations).  So we create new TypeVars with
   843                     // bounds substed with actuals.
   844                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   845                                                       formals,
   846                                                       actuals));
   848                     args = args.tail;
   849                     forms = forms.tail;
   850                 }
   852                 args = tree.arguments;
   853                 List<Type> tvars_cap = types.substBounds(formals,
   854                                           formals,
   855                                           types.capture(tree.type).allparams());
   856                 while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   857                     // Let the actual arguments know their bound
   858                     args.head.type.withTypeVar((TypeVar)tvars_cap.head);
   859                     args = args.tail;
   860                     tvars_cap = tvars_cap.tail;
   861                 }
   863                 args = tree.arguments;
   864                 List<TypeVar> tvars = tvars_buf.toList();
   866                 while (args.nonEmpty() && tvars.nonEmpty()) {
   867                     checkExtends(args.head.pos(),
   868                                  args.head.type,
   869                                  tvars.head);
   870                     args = args.tail;
   871                     tvars = tvars.tail;
   872                 }
   874                 checkCapture(tree);
   876                 // Check that this type is either fully parameterized, or
   877                 // not parameterized at all.
   878                 if (tree.type.getEnclosingType().isRaw())
   879                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   880                 if (tree.clazz.getTag() == JCTree.SELECT)
   881                     visitSelectInternal((JCFieldAccess)tree.clazz);
   882             }
   883         }
   885         public void visitTypeParameter(JCTypeParameter tree) {
   886             validate(tree.bounds, env);
   887             checkClassBounds(tree.pos(), tree.type);
   888         }
   890         @Override
   891         public void visitWildcard(JCWildcard tree) {
   892             if (tree.inner != null)
   893                 validate(tree.inner, env);
   894         }
   896         public void visitSelect(JCFieldAccess tree) {
   897             if (tree.type.tag == CLASS) {
   898                 visitSelectInternal(tree);
   900                 // Check that this type is either fully parameterized, or
   901                 // not parameterized at all.
   902                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   903                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   904             }
   905         }
   906         public void visitSelectInternal(JCFieldAccess tree) {
   907             if (tree.type.tsym.isStatic() &&
   908                 tree.selected.type.isParameterized()) {
   909                 // The enclosing type is not a class, so we are
   910                 // looking at a static member type.  However, the
   911                 // qualifying expression is parameterized.
   912                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   913             } else {
   914                 // otherwise validate the rest of the expression
   915                 tree.selected.accept(this);
   916             }
   917         }
   919         public void visitAnnotatedType(JCAnnotatedType tree) {
   920             tree.underlyingType.accept(this);
   921         }
   923         /** Default visitor method: do nothing.
   924          */
   925         public void visitTree(JCTree tree) {
   926         }
   928         Env<AttrContext> env;
   929     }
   931 /* *************************************************************************
   932  * Exception checking
   933  **************************************************************************/
   935     /* The following methods treat classes as sets that contain
   936      * the class itself and all their subclasses
   937      */
   939     /** Is given type a subtype of some of the types in given list?
   940      */
   941     boolean subset(Type t, List<Type> ts) {
   942         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   943             if (types.isSubtype(t, l.head)) return true;
   944         return false;
   945     }
   947     /** Is given type a subtype or supertype of
   948      *  some of the types in given list?
   949      */
   950     boolean intersects(Type t, List<Type> ts) {
   951         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   952             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
   953         return false;
   954     }
   956     /** Add type set to given type list, unless it is a subclass of some class
   957      *  in the list.
   958      */
   959     List<Type> incl(Type t, List<Type> ts) {
   960         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
   961     }
   963     /** Remove type set from type set list.
   964      */
   965     List<Type> excl(Type t, List<Type> ts) {
   966         if (ts.isEmpty()) {
   967             return ts;
   968         } else {
   969             List<Type> ts1 = excl(t, ts.tail);
   970             if (types.isSubtype(ts.head, t)) return ts1;
   971             else if (ts1 == ts.tail) return ts;
   972             else return ts1.prepend(ts.head);
   973         }
   974     }
   976     /** Form the union of two type set lists.
   977      */
   978     List<Type> union(List<Type> ts1, List<Type> ts2) {
   979         List<Type> ts = ts1;
   980         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   981             ts = incl(l.head, ts);
   982         return ts;
   983     }
   985     /** Form the difference of two type lists.
   986      */
   987     List<Type> diff(List<Type> ts1, List<Type> ts2) {
   988         List<Type> ts = ts1;
   989         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   990             ts = excl(l.head, ts);
   991         return ts;
   992     }
   994     /** Form the intersection of two type lists.
   995      */
   996     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
   997         List<Type> ts = List.nil();
   998         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
   999             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1000         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1001             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1002         return ts;
  1005     /** Is exc an exception symbol that need not be declared?
  1006      */
  1007     boolean isUnchecked(ClassSymbol exc) {
  1008         return
  1009             exc.kind == ERR ||
  1010             exc.isSubClass(syms.errorType.tsym, types) ||
  1011             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1014     /** Is exc an exception type that need not be declared?
  1015      */
  1016     boolean isUnchecked(Type exc) {
  1017         return
  1018             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
  1019             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
  1020             exc.tag == BOT;
  1023     /** Same, but handling completion failures.
  1024      */
  1025     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1026         try {
  1027             return isUnchecked(exc);
  1028         } catch (CompletionFailure ex) {
  1029             completionError(pos, ex);
  1030             return true;
  1034     /** Is exc handled by given exception list?
  1035      */
  1036     boolean isHandled(Type exc, List<Type> handled) {
  1037         return isUnchecked(exc) || subset(exc, handled);
  1040     /** Return all exceptions in thrown list that are not in handled list.
  1041      *  @param thrown     The list of thrown exceptions.
  1042      *  @param handled    The list of handled exceptions.
  1043      */
  1044     List<Type> unHandled(List<Type> thrown, List<Type> handled) {
  1045         List<Type> unhandled = List.nil();
  1046         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1047             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1048         return unhandled;
  1051 /* *************************************************************************
  1052  * Overriding/Implementation checking
  1053  **************************************************************************/
  1055     /** The level of access protection given by a flag set,
  1056      *  where PRIVATE is highest and PUBLIC is lowest.
  1057      */
  1058     static int protection(long flags) {
  1059         switch ((short)(flags & AccessFlags)) {
  1060         case PRIVATE: return 3;
  1061         case PROTECTED: return 1;
  1062         default:
  1063         case PUBLIC: return 0;
  1064         case 0: return 2;
  1068     /** A customized "cannot override" error message.
  1069      *  @param m      The overriding method.
  1070      *  @param other  The overridden method.
  1071      *  @return       An internationalized string.
  1072      */
  1073     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1074         String key;
  1075         if ((other.owner.flags() & INTERFACE) == 0)
  1076             key = "cant.override";
  1077         else if ((m.owner.flags() & INTERFACE) == 0)
  1078             key = "cant.implement";
  1079         else
  1080             key = "clashes.with";
  1081         return diags.fragment(key, m, m.location(), other, other.location());
  1084     /** A customized "override" warning message.
  1085      *  @param m      The overriding method.
  1086      *  @param other  The overridden method.
  1087      *  @return       An internationalized string.
  1088      */
  1089     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1090         String key;
  1091         if ((other.owner.flags() & INTERFACE) == 0)
  1092             key = "unchecked.override";
  1093         else if ((m.owner.flags() & INTERFACE) == 0)
  1094             key = "unchecked.implement";
  1095         else
  1096             key = "unchecked.clash.with";
  1097         return diags.fragment(key, m, m.location(), other, other.location());
  1100     /** A customized "override" warning message.
  1101      *  @param m      The overriding method.
  1102      *  @param other  The overridden method.
  1103      *  @return       An internationalized string.
  1104      */
  1105     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1106         String key;
  1107         if ((other.owner.flags() & INTERFACE) == 0)
  1108             key = "varargs.override";
  1109         else  if ((m.owner.flags() & INTERFACE) == 0)
  1110             key = "varargs.implement";
  1111         else
  1112             key = "varargs.clash.with";
  1113         return diags.fragment(key, m, m.location(), other, other.location());
  1116     /** Check that this method conforms with overridden method 'other'.
  1117      *  where `origin' is the class where checking started.
  1118      *  Complications:
  1119      *  (1) Do not check overriding of synthetic methods
  1120      *      (reason: they might be final).
  1121      *      todo: check whether this is still necessary.
  1122      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1123      *      than the method it implements. Augment the proxy methods with the
  1124      *      undeclared exceptions in this case.
  1125      *  (3) When generics are enabled, admit the case where an interface proxy
  1126      *      has a result type
  1127      *      extended by the result type of the method it implements.
  1128      *      Change the proxies result type to the smaller type in this case.
  1130      *  @param tree         The tree from which positions
  1131      *                      are extracted for errors.
  1132      *  @param m            The overriding method.
  1133      *  @param other        The overridden method.
  1134      *  @param origin       The class of which the overriding method
  1135      *                      is a member.
  1136      */
  1137     void checkOverride(JCTree tree,
  1138                        MethodSymbol m,
  1139                        MethodSymbol other,
  1140                        ClassSymbol origin) {
  1141         // Don't check overriding of synthetic methods or by bridge methods.
  1142         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1143             return;
  1146         // Error if static method overrides instance method (JLS 8.4.6.2).
  1147         if ((m.flags() & STATIC) != 0 &&
  1148                    (other.flags() & STATIC) == 0) {
  1149             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1150                       cannotOverride(m, other));
  1151             return;
  1154         // Error if instance method overrides static or final
  1155         // method (JLS 8.4.6.1).
  1156         if ((other.flags() & FINAL) != 0 ||
  1157                  (m.flags() & STATIC) == 0 &&
  1158                  (other.flags() & STATIC) != 0) {
  1159             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1160                       cannotOverride(m, other),
  1161                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1162             return;
  1165         if ((m.owner.flags() & ANNOTATION) != 0) {
  1166             // handled in validateAnnotationMethod
  1167             return;
  1170         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1171         if ((origin.flags() & INTERFACE) == 0 &&
  1172                  protection(m.flags()) > protection(other.flags())) {
  1173             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1174                       cannotOverride(m, other),
  1175                       other.flags() == 0 ?
  1176                           Flag.PACKAGE :
  1177                           asFlagSet(other.flags() & AccessFlags));
  1178             return;
  1181         Type mt = types.memberType(origin.type, m);
  1182         Type ot = types.memberType(origin.type, other);
  1183         // Error if overriding result type is different
  1184         // (or, in the case of generics mode, not a subtype) of
  1185         // overridden result type. We have to rename any type parameters
  1186         // before comparing types.
  1187         List<Type> mtvars = mt.getTypeArguments();
  1188         List<Type> otvars = ot.getTypeArguments();
  1189         Type mtres = mt.getReturnType();
  1190         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1192         overrideWarner.warned = false;
  1193         boolean resultTypesOK =
  1194             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1195         if (!resultTypesOK) {
  1196             if (!source.allowCovariantReturns() &&
  1197                 m.owner != origin &&
  1198                 m.owner.isSubClass(other.owner, types)) {
  1199                 // allow limited interoperability with covariant returns
  1200             } else {
  1201                 typeError(TreeInfo.diagnosticPositionFor(m, tree),
  1202                           diags.fragment("override.incompatible.ret",
  1203                                          cannotOverride(m, other)),
  1204                           mtres, otres);
  1205                 return;
  1207         } else if (overrideWarner.warned) {
  1208             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1209                           "prob.found.req",
  1210                           diags.fragment("override.unchecked.ret",
  1211                                               uncheckedOverrides(m, other)),
  1212                           mtres, otres);
  1215         // Error if overriding method throws an exception not reported
  1216         // by overridden method.
  1217         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1218         List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
  1219         if (unhandled.nonEmpty()) {
  1220             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1221                       "override.meth.doesnt.throw",
  1222                       cannotOverride(m, other),
  1223                       unhandled.head);
  1224             return;
  1227         // Optional warning if varargs don't agree
  1228         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1229             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1230             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1231                         ((m.flags() & Flags.VARARGS) != 0)
  1232                         ? "override.varargs.missing"
  1233                         : "override.varargs.extra",
  1234                         varargsOverrides(m, other));
  1237         // Warn if instance method overrides bridge method (compiler spec ??)
  1238         if ((other.flags() & BRIDGE) != 0) {
  1239             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1240                         uncheckedOverrides(m, other));
  1243         // Warn if a deprecated method overridden by a non-deprecated one.
  1244         if ((other.flags() & DEPRECATED) != 0
  1245             && (m.flags() & DEPRECATED) == 0
  1246             && m.outermostClass() != other.outermostClass()
  1247             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1248             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1251     // where
  1252         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1253             // If the method, m, is defined in an interface, then ignore the issue if the method
  1254             // is only inherited via a supertype and also implemented in the supertype,
  1255             // because in that case, we will rediscover the issue when examining the method
  1256             // in the supertype.
  1257             // If the method, m, is not defined in an interface, then the only time we need to
  1258             // address the issue is when the method is the supertype implemementation: any other
  1259             // case, we will have dealt with when examining the supertype classes
  1260             ClassSymbol mc = m.enclClass();
  1261             Type st = types.supertype(origin.type);
  1262             if (st.tag != CLASS)
  1263                 return true;
  1264             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1266             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1267                 List<Type> intfs = types.interfaces(origin.type);
  1268                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1270             else
  1271                 return (stimpl != m);
  1275     // used to check if there were any unchecked conversions
  1276     Warner overrideWarner = new Warner();
  1278     /** Check that a class does not inherit two concrete methods
  1279      *  with the same signature.
  1280      *  @param pos          Position to be used for error reporting.
  1281      *  @param site         The class type to be checked.
  1282      */
  1283     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1284         Type sup = types.supertype(site);
  1285         if (sup.tag != CLASS) return;
  1287         for (Type t1 = sup;
  1288              t1.tsym.type.isParameterized();
  1289              t1 = types.supertype(t1)) {
  1290             for (Scope.Entry e1 = t1.tsym.members().elems;
  1291                  e1 != null;
  1292                  e1 = e1.sibling) {
  1293                 Symbol s1 = e1.sym;
  1294                 if (s1.kind != MTH ||
  1295                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1296                     !s1.isInheritedIn(site.tsym, types) ||
  1297                     ((MethodSymbol)s1).implementation(site.tsym,
  1298                                                       types,
  1299                                                       true) != s1)
  1300                     continue;
  1301                 Type st1 = types.memberType(t1, s1);
  1302                 int s1ArgsLength = st1.getParameterTypes().length();
  1303                 if (st1 == s1.type) continue;
  1305                 for (Type t2 = sup;
  1306                      t2.tag == CLASS;
  1307                      t2 = types.supertype(t2)) {
  1308                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1309                          e2.scope != null;
  1310                          e2 = e2.next()) {
  1311                         Symbol s2 = e2.sym;
  1312                         if (s2 == s1 ||
  1313                             s2.kind != MTH ||
  1314                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1315                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1316                             !s2.isInheritedIn(site.tsym, types) ||
  1317                             ((MethodSymbol)s2).implementation(site.tsym,
  1318                                                               types,
  1319                                                               true) != s2)
  1320                             continue;
  1321                         Type st2 = types.memberType(t2, s2);
  1322                         if (types.overrideEquivalent(st1, st2))
  1323                             log.error(pos, "concrete.inheritance.conflict",
  1324                                       s1, t1, s2, t2, sup);
  1331     /** Check that classes (or interfaces) do not each define an abstract
  1332      *  method with same name and arguments but incompatible return types.
  1333      *  @param pos          Position to be used for error reporting.
  1334      *  @param t1           The first argument type.
  1335      *  @param t2           The second argument type.
  1336      */
  1337     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1338                                             Type t1,
  1339                                             Type t2) {
  1340         return checkCompatibleAbstracts(pos, t1, t2,
  1341                                         types.makeCompoundType(t1, t2));
  1344     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1345                                             Type t1,
  1346                                             Type t2,
  1347                                             Type site) {
  1348         Symbol sym = firstIncompatibility(t1, t2, site);
  1349         if (sym != null) {
  1350             log.error(pos, "types.incompatible.diff.ret",
  1351                       t1, t2, sym.name +
  1352                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1353             return false;
  1355         return true;
  1358     /** Return the first method which is defined with same args
  1359      *  but different return types in two given interfaces, or null if none
  1360      *  exists.
  1361      *  @param t1     The first type.
  1362      *  @param t2     The second type.
  1363      *  @param site   The most derived type.
  1364      *  @returns symbol from t2 that conflicts with one in t1.
  1365      */
  1366     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1367         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1368         closure(t1, interfaces1);
  1369         Map<TypeSymbol,Type> interfaces2;
  1370         if (t1 == t2)
  1371             interfaces2 = interfaces1;
  1372         else
  1373             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1375         for (Type t3 : interfaces1.values()) {
  1376             for (Type t4 : interfaces2.values()) {
  1377                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1378                 if (s != null) return s;
  1381         return null;
  1384     /** Compute all the supertypes of t, indexed by type symbol. */
  1385     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1386         if (t.tag != CLASS) return;
  1387         if (typeMap.put(t.tsym, t) == null) {
  1388             closure(types.supertype(t), typeMap);
  1389             for (Type i : types.interfaces(t))
  1390                 closure(i, typeMap);
  1394     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1395     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1396         if (t.tag != CLASS) return;
  1397         if (typesSkip.get(t.tsym) != null) return;
  1398         if (typeMap.put(t.tsym, t) == null) {
  1399             closure(types.supertype(t), typesSkip, typeMap);
  1400             for (Type i : types.interfaces(t))
  1401                 closure(i, typesSkip, typeMap);
  1405     /** Return the first method in t2 that conflicts with a method from t1. */
  1406     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1407         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1408             Symbol s1 = e1.sym;
  1409             Type st1 = null;
  1410             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1411             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1412             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1413             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1414                 Symbol s2 = e2.sym;
  1415                 if (s1 == s2) continue;
  1416                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1417                 if (st1 == null) st1 = types.memberType(t1, s1);
  1418                 Type st2 = types.memberType(t2, s2);
  1419                 if (types.overrideEquivalent(st1, st2)) {
  1420                     List<Type> tvars1 = st1.getTypeArguments();
  1421                     List<Type> tvars2 = st2.getTypeArguments();
  1422                     Type rt1 = st1.getReturnType();
  1423                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1424                     boolean compat =
  1425                         types.isSameType(rt1, rt2) ||
  1426                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1427                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1428                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1429                          checkCommonOverriderIn(s1,s2,site);
  1430                     if (!compat) return s2;
  1434         return null;
  1436     //WHERE
  1437     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1438         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1439         Type st1 = types.memberType(site, s1);
  1440         Type st2 = types.memberType(site, s2);
  1441         closure(site, supertypes);
  1442         for (Type t : supertypes.values()) {
  1443             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1444                 Symbol s3 = e.sym;
  1445                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1446                 Type st3 = types.memberType(site,s3);
  1447                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1448                     if (s3.owner == site.tsym) {
  1449                         return true;
  1451                     List<Type> tvars1 = st1.getTypeArguments();
  1452                     List<Type> tvars2 = st2.getTypeArguments();
  1453                     List<Type> tvars3 = st3.getTypeArguments();
  1454                     Type rt1 = st1.getReturnType();
  1455                     Type rt2 = st2.getReturnType();
  1456                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1457                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1458                     boolean compat =
  1459                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1460                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1461                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1462                     if (compat)
  1463                         return true;
  1467         return false;
  1470     /** Check that a given method conforms with any method it overrides.
  1471      *  @param tree         The tree from which positions are extracted
  1472      *                      for errors.
  1473      *  @param m            The overriding method.
  1474      */
  1475     void checkOverride(JCTree tree, MethodSymbol m) {
  1476         ClassSymbol origin = (ClassSymbol)m.owner;
  1477         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1478             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1479                 log.error(tree.pos(), "enum.no.finalize");
  1480                 return;
  1482         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1483              t = types.supertype(t)) {
  1484             TypeSymbol c = t.tsym;
  1485             Scope.Entry e = c.members().lookup(m.name);
  1486             while (e.scope != null) {
  1487                 if (m.overrides(e.sym, origin, types, false))
  1488                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1489                 else if (e.sym.kind == MTH &&
  1490                         e.sym.isInheritedIn(origin, types) &&
  1491                         (e.sym.flags() & SYNTHETIC) == 0 &&
  1492                         !m.isConstructor()) {
  1493                     Type er1 = m.erasure(types);
  1494                     Type er2 = e.sym.erasure(types);
  1495                     if (types.isSameTypes(er1.getParameterTypes(),
  1496                             er2.getParameterTypes())) {
  1497                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1498                                     "name.clash.same.erasure.no.override",
  1499                                     m, m.location(),
  1500                                     e.sym, e.sym.location());
  1503                 e = e.next();
  1508     /** Check that all abstract members of given class have definitions.
  1509      *  @param pos          Position to be used for error reporting.
  1510      *  @param c            The class.
  1511      */
  1512     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1513         try {
  1514             MethodSymbol undef = firstUndef(c, c);
  1515             if (undef != null) {
  1516                 if ((c.flags() & ENUM) != 0 &&
  1517                     types.supertype(c.type).tsym == syms.enumSym &&
  1518                     (c.flags() & FINAL) == 0) {
  1519                     // add the ABSTRACT flag to an enum
  1520                     c.flags_field |= ABSTRACT;
  1521                 } else {
  1522                     MethodSymbol undef1 =
  1523                         new MethodSymbol(undef.flags(), undef.name,
  1524                                          types.memberType(c.type, undef), undef.owner);
  1525                     log.error(pos, "does.not.override.abstract",
  1526                               c, undef1, undef1.location());
  1529         } catch (CompletionFailure ex) {
  1530             completionError(pos, ex);
  1533 //where
  1534         /** Return first abstract member of class `c' that is not defined
  1535          *  in `impl', null if there is none.
  1536          */
  1537         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1538             MethodSymbol undef = null;
  1539             // Do not bother to search in classes that are not abstract,
  1540             // since they cannot have abstract members.
  1541             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1542                 Scope s = c.members();
  1543                 for (Scope.Entry e = s.elems;
  1544                      undef == null && e != null;
  1545                      e = e.sibling) {
  1546                     if (e.sym.kind == MTH &&
  1547                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1548                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1549                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1550                         if (implmeth == null || implmeth == absmeth)
  1551                             undef = absmeth;
  1554                 if (undef == null) {
  1555                     Type st = types.supertype(c.type);
  1556                     if (st.tag == CLASS)
  1557                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1559                 for (List<Type> l = types.interfaces(c.type);
  1560                      undef == null && l.nonEmpty();
  1561                      l = l.tail) {
  1562                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1565             return undef;
  1568     /** Check for cyclic references. Issue an error if the
  1569      *  symbol of the type referred to has a LOCKED flag set.
  1571      *  @param pos      Position to be used for error reporting.
  1572      *  @param t        The type referred to.
  1573      */
  1574     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1575         checkNonCyclicInternal(pos, t);
  1579     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1580         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  1583     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  1584         final TypeVar tv;
  1585         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1586             return;
  1587         if (seen.contains(t)) {
  1588             tv = (TypeVar)t;
  1589             tv.bound = types.createErrorType(t);
  1590             log.error(pos, "cyclic.inheritance", t);
  1591         } else if (t.tag == TYPEVAR) {
  1592             tv = (TypeVar)t;
  1593             seen = seen.prepend(tv);
  1594             for (Type b : types.getBounds(tv))
  1595                 checkNonCyclic1(pos, b, seen);
  1599     /** Check for cyclic references. Issue an error if the
  1600      *  symbol of the type referred to has a LOCKED flag set.
  1602      *  @param pos      Position to be used for error reporting.
  1603      *  @param t        The type referred to.
  1604      *  @returns        True if the check completed on all attributed classes
  1605      */
  1606     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1607         boolean complete = true; // was the check complete?
  1608         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1609         Symbol c = t.tsym;
  1610         if ((c.flags_field & ACYCLIC) != 0) return true;
  1612         if ((c.flags_field & LOCKED) != 0) {
  1613             noteCyclic(pos, (ClassSymbol)c);
  1614         } else if (!c.type.isErroneous()) {
  1615             try {
  1616                 c.flags_field |= LOCKED;
  1617                 if (c.type.tag == CLASS) {
  1618                     ClassType clazz = (ClassType)c.type;
  1619                     if (clazz.interfaces_field != null)
  1620                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1621                             complete &= checkNonCyclicInternal(pos, l.head);
  1622                     if (clazz.supertype_field != null) {
  1623                         Type st = clazz.supertype_field;
  1624                         if (st != null && st.tag == CLASS)
  1625                             complete &= checkNonCyclicInternal(pos, st);
  1627                     if (c.owner.kind == TYP)
  1628                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1630             } finally {
  1631                 c.flags_field &= ~LOCKED;
  1634         if (complete)
  1635             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1636         if (complete) c.flags_field |= ACYCLIC;
  1637         return complete;
  1640     /** Note that we found an inheritance cycle. */
  1641     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1642         log.error(pos, "cyclic.inheritance", c);
  1643         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1644             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1645         Type st = types.supertype(c.type);
  1646         if (st.tag == CLASS)
  1647             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1648         c.type = types.createErrorType(c, c.type);
  1649         c.flags_field |= ACYCLIC;
  1652     /** Check that all methods which implement some
  1653      *  method conform to the method they implement.
  1654      *  @param tree         The class definition whose members are checked.
  1655      */
  1656     void checkImplementations(JCClassDecl tree) {
  1657         checkImplementations(tree, tree.sym);
  1659 //where
  1660         /** Check that all methods which implement some
  1661          *  method in `ic' conform to the method they implement.
  1662          */
  1663         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1664             ClassSymbol origin = tree.sym;
  1665             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1666                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1667                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1668                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1669                         if (e.sym.kind == MTH &&
  1670                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1671                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1672                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1673                             if (implmeth != null && implmeth != absmeth &&
  1674                                 (implmeth.owner.flags() & INTERFACE) ==
  1675                                 (origin.flags() & INTERFACE)) {
  1676                                 // don't check if implmeth is in a class, yet
  1677                                 // origin is an interface. This case arises only
  1678                                 // if implmeth is declared in Object. The reason is
  1679                                 // that interfaces really don't inherit from
  1680                                 // Object it's just that the compiler represents
  1681                                 // things that way.
  1682                                 checkOverride(tree, implmeth, absmeth, origin);
  1690     /** Check that all abstract methods implemented by a class are
  1691      *  mutually compatible.
  1692      *  @param pos          Position to be used for error reporting.
  1693      *  @param c            The class whose interfaces are checked.
  1694      */
  1695     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1696         List<Type> supertypes = types.interfaces(c);
  1697         Type supertype = types.supertype(c);
  1698         if (supertype.tag == CLASS &&
  1699             (supertype.tsym.flags() & ABSTRACT) != 0)
  1700             supertypes = supertypes.prepend(supertype);
  1701         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1702             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1703                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1704                 return;
  1705             for (List<Type> m = supertypes; m != l; m = m.tail)
  1706                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1707                     return;
  1709         checkCompatibleConcretes(pos, c);
  1712     /** Check that class c does not implement directly or indirectly
  1713      *  the same parameterized interface with two different argument lists.
  1714      *  @param pos          Position to be used for error reporting.
  1715      *  @param type         The type whose interfaces are checked.
  1716      */
  1717     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1718         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1720 //where
  1721         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1722          *  with their class symbol as key and their type as value. Make
  1723          *  sure no class is entered with two different types.
  1724          */
  1725         void checkClassBounds(DiagnosticPosition pos,
  1726                               Map<TypeSymbol,Type> seensofar,
  1727                               Type type) {
  1728             if (type.isErroneous()) return;
  1729             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1730                 Type it = l.head;
  1731                 Type oldit = seensofar.put(it.tsym, it);
  1732                 if (oldit != null) {
  1733                     List<Type> oldparams = oldit.allparams();
  1734                     List<Type> newparams = it.allparams();
  1735                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1736                         log.error(pos, "cant.inherit.diff.arg",
  1737                                   it.tsym, Type.toString(oldparams),
  1738                                   Type.toString(newparams));
  1740                 checkClassBounds(pos, seensofar, it);
  1742             Type st = types.supertype(type);
  1743             if (st != null) checkClassBounds(pos, seensofar, st);
  1746     /** Enter interface into into set.
  1747      *  If it existed already, issue a "repeated interface" error.
  1748      */
  1749     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1750         if (its.contains(it))
  1751             log.error(pos, "repeated.interface");
  1752         else {
  1753             its.add(it);
  1757 /* *************************************************************************
  1758  * Check annotations
  1759  **************************************************************************/
  1761     /** Annotation types are restricted to primitives, String, an
  1762      *  enum, an annotation, Class, Class<?>, Class<? extends
  1763      *  Anything>, arrays of the preceding.
  1764      */
  1765     void validateAnnotationType(JCTree restype) {
  1766         // restype may be null if an error occurred, so don't bother validating it
  1767         if (restype != null) {
  1768             validateAnnotationType(restype.pos(), restype.type);
  1772     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1773         if (type.isPrimitive()) return;
  1774         if (types.isSameType(type, syms.stringType)) return;
  1775         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1776         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1777         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1778         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1779             validateAnnotationType(pos, types.elemtype(type));
  1780             return;
  1782         log.error(pos, "invalid.annotation.member.type");
  1785     /**
  1786      * "It is also a compile-time error if any method declared in an
  1787      * annotation type has a signature that is override-equivalent to
  1788      * that of any public or protected method declared in class Object
  1789      * or in the interface annotation.Annotation."
  1791      * @jls3 9.6 Annotation Types
  1792      */
  1793     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1794         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1795             Scope s = sup.tsym.members();
  1796             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1797                 if (e.sym.kind == MTH &&
  1798                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1799                     types.overrideEquivalent(m.type, e.sym.type))
  1800                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1805     /** Check the annotations of a symbol.
  1806      */
  1807     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1808         if (skipAnnotations) return;
  1809         for (JCAnnotation a : annotations)
  1810             validateAnnotation(a, s);
  1813     /** Check the type annotations
  1814      */
  1815     public void validateTypeAnnotations(List<JCTypeAnnotation> annotations, boolean isTypeParameter) {
  1816         if (skipAnnotations) return;
  1817         for (JCTypeAnnotation a : annotations)
  1818             validateTypeAnnotation(a, isTypeParameter);
  1821     /** Check an annotation of a symbol.
  1822      */
  1823     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1824         validateAnnotation(a);
  1826         if (!annotationApplicable(a, s))
  1827             log.error(a.pos(), "annotation.type.not.applicable");
  1829         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1830             if (!isOverrider(s))
  1831                 log.error(a.pos(), "method.does.not.override.superclass");
  1835     public void validateTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1836         if (a.type == null)
  1837             throw new AssertionError("annotation tree hasn't been attributed yet: " + a);
  1838         validateAnnotation(a);
  1840         if (!isTypeAnnotation(a, isTypeParameter))
  1841             log.error(a.pos(), "annotation.type.not.applicable");
  1844     /** Is s a method symbol that overrides a method in a superclass? */
  1845     boolean isOverrider(Symbol s) {
  1846         if (s.kind != MTH || s.isStatic())
  1847             return false;
  1848         MethodSymbol m = (MethodSymbol)s;
  1849         TypeSymbol owner = (TypeSymbol)m.owner;
  1850         for (Type sup : types.closure(owner.type)) {
  1851             if (sup == owner.type)
  1852                 continue; // skip "this"
  1853             Scope scope = sup.tsym.members();
  1854             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1855                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1856                     return true;
  1859         return false;
  1862     /** Is the annotation applicable to type annotations */
  1863     boolean isTypeAnnotation(JCTypeAnnotation a, boolean isTypeParameter) {
  1864         Attribute.Compound atTarget =
  1865             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1866         if (atTarget == null) return true;
  1867         Attribute atValue = atTarget.member(names.value);
  1868         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1869         Attribute.Array arr = (Attribute.Array) atValue;
  1870         for (Attribute app : arr.values) {
  1871             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1872             Attribute.Enum e = (Attribute.Enum) app;
  1873             if (!isTypeParameter && e.value.name == names.TYPE_USE)
  1874                 return true;
  1875             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  1876                 return true;
  1878         return false;
  1881     /** Is the annotation applicable to the symbol? */
  1882     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1883         Attribute.Compound atTarget =
  1884             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1885         if (atTarget == null) return true;
  1886         Attribute atValue = atTarget.member(names.value);
  1887         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1888         Attribute.Array arr = (Attribute.Array) atValue;
  1889         for (Attribute app : arr.values) {
  1890             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1891             Attribute.Enum e = (Attribute.Enum) app;
  1892             if (e.value.name == names.TYPE)
  1893                 { if (s.kind == TYP) return true; }
  1894             else if (e.value.name == names.FIELD)
  1895                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1896             else if (e.value.name == names.METHOD)
  1897                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1898             else if (e.value.name == names.PARAMETER)
  1899                 { if (s.kind == VAR &&
  1900                       s.owner.kind == MTH &&
  1901                       (s.flags() & PARAMETER) != 0)
  1902                     return true;
  1904             else if (e.value.name == names.CONSTRUCTOR)
  1905                 { if (s.kind == MTH && s.isConstructor()) return true; }
  1906             else if (e.value.name == names.LOCAL_VARIABLE)
  1907                 { if (s.kind == VAR && s.owner.kind == MTH &&
  1908                       (s.flags() & PARAMETER) == 0)
  1909                     return true;
  1911             else if (e.value.name == names.ANNOTATION_TYPE)
  1912                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1913                     return true;
  1915             else if (e.value.name == names.PACKAGE)
  1916                 { if (s.kind == PCK) return true; }
  1917             else if (e.value.name == names.TYPE_USE)
  1918                 { if (s.kind == TYP ||
  1919                       s.kind == VAR ||
  1920                       (s.kind == MTH && !s.isConstructor() &&
  1921                        s.type.getReturnType().tag != VOID))
  1922                     return true;
  1924             else
  1925                 return true; // recovery
  1927         return false;
  1930     /** Check an annotation value.
  1931      */
  1932     public void validateAnnotation(JCAnnotation a) {
  1933         if (a.type.isErroneous()) return;
  1935         // collect an inventory of the members
  1936         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  1937         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  1938              e != null;
  1939              e = e.sibling)
  1940             if (e.sym.kind == MTH)
  1941                 members.add((MethodSymbol) e.sym);
  1943         // count them off as they're annotated
  1944         for (JCTree arg : a.args) {
  1945             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  1946             JCAssign assign = (JCAssign) arg;
  1947             Symbol m = TreeInfo.symbol(assign.lhs);
  1948             if (m == null || m.type.isErroneous()) continue;
  1949             if (!members.remove(m))
  1950                 log.error(arg.pos(), "duplicate.annotation.member.value",
  1951                           m.name, a.type);
  1952             if (assign.rhs.getTag() == ANNOTATION)
  1953                 validateAnnotation((JCAnnotation)assign.rhs);
  1956         // all the remaining ones better have default values
  1957         for (MethodSymbol m : members)
  1958             if (m.defaultValue == null && !m.type.isErroneous())
  1959                 log.error(a.pos(), "annotation.missing.default.value",
  1960                           a.type, m.name);
  1962         // special case: java.lang.annotation.Target must not have
  1963         // repeated values in its value member
  1964         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  1965             a.args.tail == null)
  1966             return;
  1968         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  1969         JCAssign assign = (JCAssign) a.args.head;
  1970         Symbol m = TreeInfo.symbol(assign.lhs);
  1971         if (m.name != names.value) return;
  1972         JCTree rhs = assign.rhs;
  1973         if (rhs.getTag() != JCTree.NEWARRAY) return;
  1974         JCNewArray na = (JCNewArray) rhs;
  1975         Set<Symbol> targets = new HashSet<Symbol>();
  1976         for (JCTree elem : na.elems) {
  1977             if (!targets.add(TreeInfo.symbol(elem))) {
  1978                 log.error(elem.pos(), "repeated.annotation.target");
  1983     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  1984         if (allowAnnotations &&
  1985             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  1986             (s.flags() & DEPRECATED) != 0 &&
  1987             !syms.deprecatedType.isErroneous() &&
  1988             s.attribute(syms.deprecatedType.tsym) == null) {
  1989             log.warning(pos, "missing.deprecated.annotation");
  1993 /* *************************************************************************
  1994  * Check for recursive annotation elements.
  1995  **************************************************************************/
  1997     /** Check for cycles in the graph of annotation elements.
  1998      */
  1999     void checkNonCyclicElements(JCClassDecl tree) {
  2000         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  2001         assert (tree.sym.flags_field & LOCKED) == 0;
  2002         try {
  2003             tree.sym.flags_field |= LOCKED;
  2004             for (JCTree def : tree.defs) {
  2005                 if (def.getTag() != JCTree.METHODDEF) continue;
  2006                 JCMethodDecl meth = (JCMethodDecl)def;
  2007                 checkAnnotationResType(meth.pos(), meth.restype.type);
  2009         } finally {
  2010             tree.sym.flags_field &= ~LOCKED;
  2011             tree.sym.flags_field |= ACYCLIC_ANN;
  2015     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  2016         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  2017             return;
  2018         if ((tsym.flags_field & LOCKED) != 0) {
  2019             log.error(pos, "cyclic.annotation.element");
  2020             return;
  2022         try {
  2023             tsym.flags_field |= LOCKED;
  2024             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  2025                 Symbol s = e.sym;
  2026                 if (s.kind != Kinds.MTH)
  2027                     continue;
  2028                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  2030         } finally {
  2031             tsym.flags_field &= ~LOCKED;
  2032             tsym.flags_field |= ACYCLIC_ANN;
  2036     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  2037         switch (type.tag) {
  2038         case TypeTags.CLASS:
  2039             if ((type.tsym.flags() & ANNOTATION) != 0)
  2040                 checkNonCyclicElementsInternal(pos, type.tsym);
  2041             break;
  2042         case TypeTags.ARRAY:
  2043             checkAnnotationResType(pos, types.elemtype(type));
  2044             break;
  2045         default:
  2046             break; // int etc
  2050 /* *************************************************************************
  2051  * Check for cycles in the constructor call graph.
  2052  **************************************************************************/
  2054     /** Check for cycles in the graph of constructors calling other
  2055      *  constructors.
  2056      */
  2057     void checkCyclicConstructors(JCClassDecl tree) {
  2058         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  2060         // enter each constructor this-call into the map
  2061         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  2062             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  2063             if (app == null) continue;
  2064             JCMethodDecl meth = (JCMethodDecl) l.head;
  2065             if (TreeInfo.name(app.meth) == names._this) {
  2066                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  2067             } else {
  2068                 meth.sym.flags_field |= ACYCLIC;
  2072         // Check for cycles in the map
  2073         Symbol[] ctors = new Symbol[0];
  2074         ctors = callMap.keySet().toArray(ctors);
  2075         for (Symbol caller : ctors) {
  2076             checkCyclicConstructor(tree, caller, callMap);
  2080     /** Look in the map to see if the given constructor is part of a
  2081      *  call cycle.
  2082      */
  2083     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  2084                                         Map<Symbol,Symbol> callMap) {
  2085         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  2086             if ((ctor.flags_field & LOCKED) != 0) {
  2087                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2088                           "recursive.ctor.invocation");
  2089             } else {
  2090                 ctor.flags_field |= LOCKED;
  2091                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2092                 ctor.flags_field &= ~LOCKED;
  2094             ctor.flags_field |= ACYCLIC;
  2098 /* *************************************************************************
  2099  * Miscellaneous
  2100  **************************************************************************/
  2102     /**
  2103      * Return the opcode of the operator but emit an error if it is an
  2104      * error.
  2105      * @param pos        position for error reporting.
  2106      * @param operator   an operator
  2107      * @param tag        a tree tag
  2108      * @param left       type of left hand side
  2109      * @param right      type of right hand side
  2110      */
  2111     int checkOperator(DiagnosticPosition pos,
  2112                        OperatorSymbol operator,
  2113                        int tag,
  2114                        Type left,
  2115                        Type right) {
  2116         if (operator.opcode == ByteCodes.error) {
  2117             log.error(pos,
  2118                       "operator.cant.be.applied",
  2119                       treeinfo.operatorName(tag),
  2120                       List.of(left, right));
  2122         return operator.opcode;
  2126     /**
  2127      *  Check for division by integer constant zero
  2128      *  @param pos           Position for error reporting.
  2129      *  @param operator      The operator for the expression
  2130      *  @param operand       The right hand operand for the expression
  2131      */
  2132     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2133         if (operand.constValue() != null
  2134             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2135             && operand.tag <= LONG
  2136             && ((Number) (operand.constValue())).longValue() == 0) {
  2137             int opc = ((OperatorSymbol)operator).opcode;
  2138             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2139                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2140                 log.warning(pos, "div.zero");
  2145     /**
  2146      * Check for empty statements after if
  2147      */
  2148     void checkEmptyIf(JCIf tree) {
  2149         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2150             log.warning(tree.thenpart.pos(), "empty.if");
  2153     /** Check that symbol is unique in given scope.
  2154      *  @param pos           Position for error reporting.
  2155      *  @param sym           The symbol.
  2156      *  @param s             The scope.
  2157      */
  2158     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2159         if (sym.type.isErroneous())
  2160             return true;
  2161         if (sym.owner.name == names.any) return false;
  2162         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2163             if (sym != e.sym &&
  2164                 sym.kind == e.sym.kind &&
  2165                 sym.name != names.error &&
  2166                 (sym.kind != MTH || types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  2167                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2168                     varargsDuplicateError(pos, sym, e.sym);
  2169                 else if (sym.kind == MTH && !types.overrideEquivalent(sym.type, e.sym.type))
  2170                     duplicateErasureError(pos, sym, e.sym);
  2171                 else
  2172                     duplicateError(pos, e.sym);
  2173                 return false;
  2176         return true;
  2178     //where
  2179     /** Report duplicate declaration error.
  2180      */
  2181     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  2182         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  2183             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  2187     /** Check that single-type import is not already imported or top-level defined,
  2188      *  but make an exception for two single-type imports which denote the same type.
  2189      *  @param pos           Position for error reporting.
  2190      *  @param sym           The symbol.
  2191      *  @param s             The scope
  2192      */
  2193     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2194         return checkUniqueImport(pos, sym, s, false);
  2197     /** Check that static single-type import is not already imported or top-level defined,
  2198      *  but make an exception for two single-type imports which denote the same type.
  2199      *  @param pos           Position for error reporting.
  2200      *  @param sym           The symbol.
  2201      *  @param s             The scope
  2202      *  @param staticImport  Whether or not this was a static import
  2203      */
  2204     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2205         return checkUniqueImport(pos, sym, s, true);
  2208     /** Check that single-type import is not already imported or top-level defined,
  2209      *  but make an exception for two single-type imports which denote the same type.
  2210      *  @param pos           Position for error reporting.
  2211      *  @param sym           The symbol.
  2212      *  @param s             The scope.
  2213      *  @param staticImport  Whether or not this was a static import
  2214      */
  2215     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2216         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2217             // is encountered class entered via a class declaration?
  2218             boolean isClassDecl = e.scope == s;
  2219             if ((isClassDecl || sym != e.sym) &&
  2220                 sym.kind == e.sym.kind &&
  2221                 sym.name != names.error) {
  2222                 if (!e.sym.type.isErroneous()) {
  2223                     String what = e.sym.toString();
  2224                     if (!isClassDecl) {
  2225                         if (staticImport)
  2226                             log.error(pos, "already.defined.static.single.import", what);
  2227                         else
  2228                             log.error(pos, "already.defined.single.import", what);
  2230                     else if (sym != e.sym)
  2231                         log.error(pos, "already.defined.this.unit", what);
  2233                 return false;
  2236         return true;
  2239     /** Check that a qualified name is in canonical form (for import decls).
  2240      */
  2241     public void checkCanonical(JCTree tree) {
  2242         if (!isCanonical(tree))
  2243             log.error(tree.pos(), "import.requires.canonical",
  2244                       TreeInfo.symbol(tree));
  2246         // where
  2247         private boolean isCanonical(JCTree tree) {
  2248             while (tree.getTag() == JCTree.SELECT) {
  2249                 JCFieldAccess s = (JCFieldAccess) tree;
  2250                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2251                     return false;
  2252                 tree = s.selected;
  2254             return true;
  2257     private class ConversionWarner extends Warner {
  2258         final String key;
  2259         final Type found;
  2260         final Type expected;
  2261         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2262             super(pos);
  2263             this.key = key;
  2264             this.found = found;
  2265             this.expected = expected;
  2268         public void warnUnchecked() {
  2269             boolean warned = this.warned;
  2270             super.warnUnchecked();
  2271             if (warned) return; // suppress redundant diagnostics
  2272             Object problem = diags.fragment(key);
  2273             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2277     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2278         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2281     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2282         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial