src/share/classes/com/sun/tools/javac/comp/Resolve.java

Thu, 07 Jan 2016 08:45:19 +0000

author
sadayapalam
date
Thu, 07 Jan 2016 08:45:19 +0000
changeset 3005
0353cf89ea96
parent 2814
380f6c17ea01
child 3075
745c9feb99f2
permissions
-rw-r--r--

8145466: javac: No line numbers in compilation error
Summary: Compiler should not use the syntax tree from enclosing contexts in diagnostics even when the enclosing contexts are consulted for method lookup.
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    29 import com.sun.tools.javac.api.Formattable.LocalizedString;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.code.Symbol.*;
    32 import com.sun.tools.javac.code.Type.*;
    33 import com.sun.tools.javac.comp.Attr.ResultInfo;
    34 import com.sun.tools.javac.comp.Check.CheckContext;
    35 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    37 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext;
    39 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    40 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    41 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
    42 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
    43 import com.sun.tools.javac.jvm.*;
    44 import com.sun.tools.javac.main.Option;
    45 import com.sun.tools.javac.tree.*;
    46 import com.sun.tools.javac.tree.JCTree.*;
    47 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    49 import com.sun.tools.javac.util.*;
    50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    54 import java.util.Arrays;
    55 import java.util.Collection;
    56 import java.util.EnumMap;
    57 import java.util.EnumSet;
    58 import java.util.Iterator;
    59 import java.util.LinkedHashMap;
    60 import java.util.LinkedHashSet;
    61 import java.util.Map;
    63 import javax.lang.model.element.ElementVisitor;
    65 import static com.sun.tools.javac.code.Flags.*;
    66 import static com.sun.tools.javac.code.Flags.BLOCK;
    67 import static com.sun.tools.javac.code.Kinds.*;
    68 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    69 import static com.sun.tools.javac.code.TypeTag.*;
    70 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    71 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    73 /** Helper class for name resolution, used mostly by the attribution phase.
    74  *
    75  *  <p><b>This is NOT part of any supported API.
    76  *  If you write code that depends on this, you do so at your own risk.
    77  *  This code and its internal interfaces are subject to change or
    78  *  deletion without notice.</b>
    79  */
    80 public class Resolve {
    81     protected static final Context.Key<Resolve> resolveKey =
    82         new Context.Key<Resolve>();
    84     Names names;
    85     Log log;
    86     Symtab syms;
    87     Attr attr;
    88     DeferredAttr deferredAttr;
    89     Check chk;
    90     Infer infer;
    91     ClassReader reader;
    92     TreeInfo treeinfo;
    93     Types types;
    94     JCDiagnostic.Factory diags;
    95     public final boolean boxingEnabled;
    96     public final boolean varargsEnabled;
    97     public final boolean allowMethodHandles;
    98     public final boolean allowFunctionalInterfaceMostSpecific;
    99     public final boolean checkVarargsAccessAfterResolution;
   100     private final boolean debugResolve;
   101     private final boolean compactMethodDiags;
   102     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
   104     Scope polymorphicSignatureScope;
   106     protected Resolve(Context context) {
   107         context.put(resolveKey, this);
   108         syms = Symtab.instance(context);
   110         varNotFound = new
   111             SymbolNotFoundError(ABSENT_VAR);
   112         methodNotFound = new
   113             SymbolNotFoundError(ABSENT_MTH);
   114         methodWithCorrectStaticnessNotFound = new
   115             SymbolNotFoundError(WRONG_STATICNESS,
   116                 "method found has incorrect staticness");
   117         typeNotFound = new
   118             SymbolNotFoundError(ABSENT_TYP);
   120         names = Names.instance(context);
   121         log = Log.instance(context);
   122         attr = Attr.instance(context);
   123         deferredAttr = DeferredAttr.instance(context);
   124         chk = Check.instance(context);
   125         infer = Infer.instance(context);
   126         reader = ClassReader.instance(context);
   127         treeinfo = TreeInfo.instance(context);
   128         types = Types.instance(context);
   129         diags = JCDiagnostic.Factory.instance(context);
   130         Source source = Source.instance(context);
   131         boxingEnabled = source.allowBoxing();
   132         varargsEnabled = source.allowVarargs();
   133         Options options = Options.instance(context);
   134         debugResolve = options.isSet("debugresolve");
   135         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
   136                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
   137         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   138         Target target = Target.instance(context);
   139         allowMethodHandles = target.hasMethodHandles();
   140         allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
   141         checkVarargsAccessAfterResolution =
   142                 source.allowPostApplicabilityVarargsAccessCheck();
   143         polymorphicSignatureScope = new Scope(syms.noSymbol);
   145         inapplicableMethodException = new InapplicableMethodException(diags);
   146     }
   148     /** error symbols, which are returned when resolution fails
   149      */
   150     private final SymbolNotFoundError varNotFound;
   151     private final SymbolNotFoundError methodNotFound;
   152     private final SymbolNotFoundError methodWithCorrectStaticnessNotFound;
   153     private final SymbolNotFoundError typeNotFound;
   155     public static Resolve instance(Context context) {
   156         Resolve instance = context.get(resolveKey);
   157         if (instance == null)
   158             instance = new Resolve(context);
   159         return instance;
   160     }
   162     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   163     enum VerboseResolutionMode {
   164         SUCCESS("success"),
   165         FAILURE("failure"),
   166         APPLICABLE("applicable"),
   167         INAPPLICABLE("inapplicable"),
   168         DEFERRED_INST("deferred-inference"),
   169         PREDEF("predef"),
   170         OBJECT_INIT("object-init"),
   171         INTERNAL("internal");
   173         final String opt;
   175         private VerboseResolutionMode(String opt) {
   176             this.opt = opt;
   177         }
   179         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   180             String s = opts.get("verboseResolution");
   181             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   182             if (s == null) return res;
   183             if (s.contains("all")) {
   184                 res = EnumSet.allOf(VerboseResolutionMode.class);
   185             }
   186             Collection<String> args = Arrays.asList(s.split(","));
   187             for (VerboseResolutionMode mode : values()) {
   188                 if (args.contains(mode.opt)) {
   189                     res.add(mode);
   190                 } else if (args.contains("-" + mode.opt)) {
   191                     res.remove(mode);
   192                 }
   193             }
   194             return res;
   195         }
   196     }
   198     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   199             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   200         boolean success = bestSoFar.kind < ERRONEOUS;
   202         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   203             return;
   204         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   205             return;
   206         }
   208         if (bestSoFar.name == names.init &&
   209                 bestSoFar.owner == syms.objectType.tsym &&
   210                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   211             return; //skip diags for Object constructor resolution
   212         } else if (site == syms.predefClass.type &&
   213                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   214             return; //skip spurious diags for predef symbols (i.e. operators)
   215         } else if (currentResolutionContext.internalResolution &&
   216                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   217             return;
   218         }
   220         int pos = 0;
   221         int mostSpecificPos = -1;
   222         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
   223         for (Candidate c : currentResolutionContext.candidates) {
   224             if (currentResolutionContext.step != c.step ||
   225                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   226                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   227                 continue;
   228             } else {
   229                 subDiags.append(c.isApplicable() ?
   230                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   231                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   232                 if (c.sym == bestSoFar)
   233                     mostSpecificPos = pos;
   234                 pos++;
   235             }
   236         }
   237         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   238         List<Type> argtypes2 = Type.map(argtypes,
   239                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   240         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   241                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   242                 methodArguments(argtypes2),
   243                 methodArguments(typeargtypes));
   244         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   245         log.report(d);
   246     }
   248     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   249         JCDiagnostic subDiag = null;
   250         if (sym.type.hasTag(FORALL)) {
   251             subDiag = diags.fragment("partial.inst.sig", inst);
   252         }
   254         String key = subDiag == null ?
   255                 "applicable.method.found" :
   256                 "applicable.method.found.1";
   258         return diags.fragment(key, pos, sym, subDiag);
   259     }
   261     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   262         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   263     }
   264     // </editor-fold>
   266 /* ************************************************************************
   267  * Identifier resolution
   268  *************************************************************************/
   270     /** An environment is "static" if its static level is greater than
   271      *  the one of its outer environment
   272      */
   273     protected static boolean isStatic(Env<AttrContext> env) {
   274         return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
   275     }
   277     /** An environment is an "initializer" if it is a constructor or
   278      *  an instance initializer.
   279      */
   280     static boolean isInitializer(Env<AttrContext> env) {
   281         Symbol owner = env.info.scope.owner;
   282         return owner.isConstructor() ||
   283             owner.owner.kind == TYP &&
   284             (owner.kind == VAR ||
   285              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   286             (owner.flags() & STATIC) == 0;
   287     }
   289     /** Is class accessible in given evironment?
   290      *  @param env    The current environment.
   291      *  @param c      The class whose accessibility is checked.
   292      */
   293     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   294         return isAccessible(env, c, false);
   295     }
   297     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   298         boolean isAccessible = false;
   299         switch ((short)(c.flags() & AccessFlags)) {
   300             case PRIVATE:
   301                 isAccessible =
   302                     env.enclClass.sym.outermostClass() ==
   303                     c.owner.outermostClass();
   304                 break;
   305             case 0:
   306                 isAccessible =
   307                     env.toplevel.packge == c.owner // fast special case
   308                     ||
   309                     env.toplevel.packge == c.packge()
   310                     ||
   311                     // Hack: this case is added since synthesized default constructors
   312                     // of anonymous classes should be allowed to access
   313                     // classes which would be inaccessible otherwise.
   314                     env.enclMethod != null &&
   315                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   316                 break;
   317             default: // error recovery
   318             case PUBLIC:
   319                 isAccessible = true;
   320                 break;
   321             case PROTECTED:
   322                 isAccessible =
   323                     env.toplevel.packge == c.owner // fast special case
   324                     ||
   325                     env.toplevel.packge == c.packge()
   326                     ||
   327                     isInnerSubClass(env.enclClass.sym, c.owner);
   328                 break;
   329         }
   330         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   331             isAccessible :
   332             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   333     }
   334     //where
   335         /** Is given class a subclass of given base class, or an inner class
   336          *  of a subclass?
   337          *  Return null if no such class exists.
   338          *  @param c     The class which is the subclass or is contained in it.
   339          *  @param base  The base class
   340          */
   341         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   342             while (c != null && !c.isSubClass(base, types)) {
   343                 c = c.owner.enclClass();
   344             }
   345             return c != null;
   346         }
   348     boolean isAccessible(Env<AttrContext> env, Type t) {
   349         return isAccessible(env, t, false);
   350     }
   352     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   353         return (t.hasTag(ARRAY))
   354             ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
   355             : isAccessible(env, t.tsym, checkInner);
   356     }
   358     /** Is symbol accessible as a member of given type in given environment?
   359      *  @param env    The current environment.
   360      *  @param site   The type of which the tested symbol is regarded
   361      *                as a member.
   362      *  @param sym    The symbol.
   363      */
   364     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   365         return isAccessible(env, site, sym, false);
   366     }
   367     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   368         if (sym.name == names.init && sym.owner != site.tsym) return false;
   369         switch ((short)(sym.flags() & AccessFlags)) {
   370         case PRIVATE:
   371             return
   372                 (env.enclClass.sym == sym.owner // fast special case
   373                  ||
   374                  env.enclClass.sym.outermostClass() ==
   375                  sym.owner.outermostClass())
   376                 &&
   377                 sym.isInheritedIn(site.tsym, types);
   378         case 0:
   379             return
   380                 (env.toplevel.packge == sym.owner.owner // fast special case
   381                  ||
   382                  env.toplevel.packge == sym.packge())
   383                 &&
   384                 isAccessible(env, site, checkInner)
   385                 &&
   386                 sym.isInheritedIn(site.tsym, types)
   387                 &&
   388                 notOverriddenIn(site, sym);
   389         case PROTECTED:
   390             return
   391                 (env.toplevel.packge == sym.owner.owner // fast special case
   392                  ||
   393                  env.toplevel.packge == sym.packge()
   394                  ||
   395                  isProtectedAccessible(sym, env.enclClass.sym, site)
   396                  ||
   397                  // OK to select instance method or field from 'super' or type name
   398                  // (but type names should be disallowed elsewhere!)
   399                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   400                 &&
   401                 isAccessible(env, site, checkInner)
   402                 &&
   403                 notOverriddenIn(site, sym);
   404         default: // this case includes erroneous combinations as well
   405             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   406         }
   407     }
   408     //where
   409     /* `sym' is accessible only if not overridden by
   410      * another symbol which is a member of `site'
   411      * (because, if it is overridden, `sym' is not strictly
   412      * speaking a member of `site'). A polymorphic signature method
   413      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   414      */
   415     private boolean notOverriddenIn(Type site, Symbol sym) {
   416         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   417             return true;
   418         else {
   419             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   420             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   421                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   422         }
   423     }
   424     //where
   425         /** Is given protected symbol accessible if it is selected from given site
   426          *  and the selection takes place in given class?
   427          *  @param sym     The symbol with protected access
   428          *  @param c       The class where the access takes place
   429          *  @site          The type of the qualifier
   430          */
   431         private
   432         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   433             Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
   434             while (c != null &&
   435                    !(c.isSubClass(sym.owner, types) &&
   436                      (c.flags() & INTERFACE) == 0 &&
   437                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   438                      // only to instance fields and methods -- types are excluded
   439                      // regardless of whether they are declared 'static' or not.
   440                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
   441                 c = c.owner.enclClass();
   442             return c != null;
   443         }
   445     /**
   446      * Performs a recursive scan of a type looking for accessibility problems
   447      * from current attribution environment
   448      */
   449     void checkAccessibleType(Env<AttrContext> env, Type t) {
   450         accessibilityChecker.visit(t, env);
   451     }
   453     /**
   454      * Accessibility type-visitor
   455      */
   456     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
   457             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
   459         void visit(List<Type> ts, Env<AttrContext> env) {
   460             for (Type t : ts) {
   461                 visit(t, env);
   462             }
   463         }
   465         public Void visitType(Type t, Env<AttrContext> env) {
   466             return null;
   467         }
   469         @Override
   470         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
   471             visit(t.elemtype, env);
   472             return null;
   473         }
   475         @Override
   476         public Void visitClassType(ClassType t, Env<AttrContext> env) {
   477             visit(t.getTypeArguments(), env);
   478             if (!isAccessible(env, t, true)) {
   479                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
   480             }
   481             return null;
   482         }
   484         @Override
   485         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
   486             visit(t.type, env);
   487             return null;
   488         }
   490         @Override
   491         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
   492             visit(t.getParameterTypes(), env);
   493             visit(t.getReturnType(), env);
   494             visit(t.getThrownTypes(), env);
   495             return null;
   496         }
   497     };
   499     /** Try to instantiate the type of a method so that it fits
   500      *  given type arguments and argument types. If successful, return
   501      *  the method's instantiated type, else return null.
   502      *  The instantiation will take into account an additional leading
   503      *  formal parameter if the method is an instance method seen as a member
   504      *  of an under determined site. In this case, we treat site as an additional
   505      *  parameter and the parameters of the class containing the method as
   506      *  additional type variables that get instantiated.
   507      *
   508      *  @param env         The current environment
   509      *  @param site        The type of which the method is a member.
   510      *  @param m           The method symbol.
   511      *  @param argtypes    The invocation's given value arguments.
   512      *  @param typeargtypes    The invocation's given type arguments.
   513      *  @param allowBoxing Allow boxing conversions of arguments.
   514      *  @param useVarargs Box trailing arguments into an array for varargs.
   515      */
   516     Type rawInstantiate(Env<AttrContext> env,
   517                         Type site,
   518                         Symbol m,
   519                         ResultInfo resultInfo,
   520                         List<Type> argtypes,
   521                         List<Type> typeargtypes,
   522                         boolean allowBoxing,
   523                         boolean useVarargs,
   524                         Warner warn) throws Infer.InferenceException {
   526         Type mt = types.memberType(site, m);
   527         // tvars is the list of formal type variables for which type arguments
   528         // need to inferred.
   529         List<Type> tvars = List.nil();
   530         if (typeargtypes == null) typeargtypes = List.nil();
   531         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   532             // This is not a polymorphic method, but typeargs are supplied
   533             // which is fine, see JLS 15.12.2.1
   534         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   535             ForAll pmt = (ForAll) mt;
   536             if (typeargtypes.length() != pmt.tvars.length())
   537                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   538             // Check type arguments are within bounds
   539             List<Type> formals = pmt.tvars;
   540             List<Type> actuals = typeargtypes;
   541             while (formals.nonEmpty() && actuals.nonEmpty()) {
   542                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   543                                                 pmt.tvars, typeargtypes);
   544                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   545                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   546                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   547                 formals = formals.tail;
   548                 actuals = actuals.tail;
   549             }
   550             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   551         } else if (mt.hasTag(FORALL)) {
   552             ForAll pmt = (ForAll) mt;
   553             List<Type> tvars1 = types.newInstances(pmt.tvars);
   554             tvars = tvars.appendList(tvars1);
   555             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   556         }
   558         // find out whether we need to go the slow route via infer
   559         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   560         for (List<Type> l = argtypes;
   561              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   562              l = l.tail) {
   563             if (l.head.hasTag(FORALL)) instNeeded = true;
   564         }
   566         if (instNeeded)
   567             return infer.instantiateMethod(env,
   568                                     tvars,
   569                                     (MethodType)mt,
   570                                     resultInfo,
   571                                     (MethodSymbol)m,
   572                                     argtypes,
   573                                     allowBoxing,
   574                                     useVarargs,
   575                                     currentResolutionContext,
   576                                     warn);
   578         DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
   579         currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
   580                                 argtypes, mt.getParameterTypes(), warn);
   581         dc.complete();
   582         return mt;
   583     }
   585     Type checkMethod(Env<AttrContext> env,
   586                      Type site,
   587                      Symbol m,
   588                      ResultInfo resultInfo,
   589                      List<Type> argtypes,
   590                      List<Type> typeargtypes,
   591                      Warner warn) {
   592         MethodResolutionContext prevContext = currentResolutionContext;
   593         try {
   594             currentResolutionContext = new MethodResolutionContext();
   595             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   596             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
   597                 //method/constructor references need special check class
   598                 //to handle inference variables in 'argtypes' (might happen
   599                 //during an unsticking round)
   600                 currentResolutionContext.methodCheck =
   601                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
   602             }
   603             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   604             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   605                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   606         }
   607         finally {
   608             currentResolutionContext = prevContext;
   609         }
   610     }
   612     /** Same but returns null instead throwing a NoInstanceException
   613      */
   614     Type instantiate(Env<AttrContext> env,
   615                      Type site,
   616                      Symbol m,
   617                      ResultInfo resultInfo,
   618                      List<Type> argtypes,
   619                      List<Type> typeargtypes,
   620                      boolean allowBoxing,
   621                      boolean useVarargs,
   622                      Warner warn) {
   623         try {
   624             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   625                                   allowBoxing, useVarargs, warn);
   626         } catch (InapplicableMethodException ex) {
   627             return null;
   628         }
   629     }
   631     /**
   632      * This interface defines an entry point that should be used to perform a
   633      * method check. A method check usually consist in determining as to whether
   634      * a set of types (actuals) is compatible with another set of types (formals).
   635      * Since the notion of compatibility can vary depending on the circumstances,
   636      * this interfaces allows to easily add new pluggable method check routines.
   637      */
   638     interface MethodCheck {
   639         /**
   640          * Main method check routine. A method check usually consist in determining
   641          * as to whether a set of types (actuals) is compatible with another set of
   642          * types (formals). If an incompatibility is found, an unchecked exception
   643          * is assumed to be thrown.
   644          */
   645         void argumentsAcceptable(Env<AttrContext> env,
   646                                 DeferredAttrContext deferredAttrContext,
   647                                 List<Type> argtypes,
   648                                 List<Type> formals,
   649                                 Warner warn);
   651         /**
   652          * Retrieve the method check object that will be used during a
   653          * most specific check.
   654          */
   655         MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
   656     }
   658     /**
   659      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
   660      */
   661     enum MethodCheckDiag {
   662         /**
   663          * Actuals and formals differs in length.
   664          */
   665         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
   666         /**
   667          * An actual is incompatible with a formal.
   668          */
   669         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
   670         /**
   671          * An actual is incompatible with the varargs element type.
   672          */
   673         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
   674         /**
   675          * The varargs element type is inaccessible.
   676          */
   677         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
   679         final String basicKey;
   680         final String inferKey;
   682         MethodCheckDiag(String basicKey, String inferKey) {
   683             this.basicKey = basicKey;
   684             this.inferKey = inferKey;
   685         }
   687         String regex() {
   688             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
   689         }
   690     }
   692     /**
   693      * Dummy method check object. All methods are deemed applicable, regardless
   694      * of their formal parameter types.
   695      */
   696     MethodCheck nilMethodCheck = new MethodCheck() {
   697         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
   698             //do nothing - method always applicable regardless of actuals
   699         }
   701         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   702             return this;
   703         }
   704     };
   706     /**
   707      * Base class for 'real' method checks. The class defines the logic for
   708      * iterating through formals and actuals and provides and entry point
   709      * that can be used by subclasses in order to define the actual check logic.
   710      */
   711     abstract class AbstractMethodCheck implements MethodCheck {
   712         @Override
   713         public void argumentsAcceptable(final Env<AttrContext> env,
   714                                     DeferredAttrContext deferredAttrContext,
   715                                     List<Type> argtypes,
   716                                     List<Type> formals,
   717                                     Warner warn) {
   718             //should we expand formals?
   719             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
   720             JCTree callTree = treeForDiagnostics(env);
   721             List<JCExpression> trees = TreeInfo.args(callTree);
   723             //inference context used during this method check
   724             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   726             Type varargsFormal = useVarargs ? formals.last() : null;
   728             if (varargsFormal == null &&
   729                     argtypes.size() != formals.size()) {
   730                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   731             }
   733             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   734                 DiagnosticPosition pos = trees != null ? trees.head : null;
   735                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
   736                 argtypes = argtypes.tail;
   737                 formals = formals.tail;
   738                 trees = trees != null ? trees.tail : trees;
   739             }
   741             if (formals.head != varargsFormal) {
   742                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
   743             }
   745             if (useVarargs) {
   746                 //note: if applicability check is triggered by most specific test,
   747                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   748                 final Type elt = types.elemtype(varargsFormal);
   749                 while (argtypes.nonEmpty()) {
   750                     DiagnosticPosition pos = trees != null ? trees.head : null;
   751                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
   752                     argtypes = argtypes.tail;
   753                     trees = trees != null ? trees.tail : trees;
   754                 }
   755             }
   756         }
   758             // where
   759             private JCTree treeForDiagnostics(Env<AttrContext> env) {
   760                 return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
   761             }
   763         /**
   764          * Does the actual argument conforms to the corresponding formal?
   765          */
   766         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
   768         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
   769             boolean inferDiag = inferenceContext != infer.emptyContext;
   770             InapplicableMethodException ex = inferDiag ?
   771                     infer.inferenceException : inapplicableMethodException;
   772             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
   773                 Object[] args2 = new Object[args.length + 1];
   774                 System.arraycopy(args, 0, args2, 1, args.length);
   775                 args2[0] = inferenceContext.inferenceVars();
   776                 args = args2;
   777             }
   778             String key = inferDiag ? diag.inferKey : diag.basicKey;
   779             throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
   780         }
   782         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   783             return nilMethodCheck;
   784         }
   786     }
   788     /**
   789      * Arity-based method check. A method is applicable if the number of actuals
   790      * supplied conforms to the method signature.
   791      */
   792     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
   793         @Override
   794         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   795             //do nothing - actual always compatible to formals
   796         }
   798         @Override
   799         public String toString() {
   800             return "arityMethodCheck";
   801         }
   802     };
   804     List<Type> dummyArgs(int length) {
   805         ListBuffer<Type> buf = new ListBuffer<>();
   806         for (int i = 0 ; i < length ; i++) {
   807             buf.append(Type.noType);
   808         }
   809         return buf.toList();
   810     }
   812     /**
   813      * Main method applicability routine. Given a list of actual types A,
   814      * a list of formal types F, determines whether the types in A are
   815      * compatible (by method invocation conversion) with the types in F.
   816      *
   817      * Since this routine is shared between overload resolution and method
   818      * type-inference, a (possibly empty) inference context is used to convert
   819      * formal types to the corresponding 'undet' form ahead of a compatibility
   820      * check so that constraints can be propagated and collected.
   821      *
   822      * Moreover, if one or more types in A is a deferred type, this routine uses
   823      * DeferredAttr in order to perform deferred attribution. If one or more actual
   824      * deferred types are stuck, they are placed in a queue and revisited later
   825      * after the remainder of the arguments have been seen. If this is not sufficient
   826      * to 'unstuck' the argument, a cyclic inference error is called out.
   827      *
   828      * A method check handler (see above) is used in order to report errors.
   829      */
   830     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
   832         @Override
   833         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   834             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   835             mresult.check(pos, actual);
   836         }
   838         @Override
   839         public void argumentsAcceptable(final Env<AttrContext> env,
   840                                     DeferredAttrContext deferredAttrContext,
   841                                     List<Type> argtypes,
   842                                     List<Type> formals,
   843                                     Warner warn) {
   844             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
   845             // should we check varargs element type accessibility?
   846             if (deferredAttrContext.phase.isVarargsRequired()) {
   847                 if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
   848                     varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
   849                 }
   850             }
   851         }
   853         /**
   854          * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
   855          * varargs element type of either the method invocation type signature (after inference completes)
   856          * or the method declaration signature (before inference completes).
   857          */
   858         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
   859             if (inferenceContext.free(t)) {
   860                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   861                     @Override
   862                     public void typesInferred(InferenceContext inferenceContext) {
   863                         varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
   864                     }
   865                 });
   866             } else {
   867                 if (!isAccessible(env, types.erasure(t))) {
   868                     Symbol location = env.enclClass.sym;
   869                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
   870                 }
   871             }
   872         }
   874         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   875                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   876             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   877                 MethodCheckDiag methodDiag = varargsCheck ?
   878                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   880                 @Override
   881                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   882                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   883                 }
   884             };
   885             return new MethodResultInfo(to, checkContext);
   886         }
   888         @Override
   889         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   890             return new MostSpecificCheck(strict, actuals);
   891         }
   893         @Override
   894         public String toString() {
   895             return "resolveMethodCheck";
   896         }
   897     };
   899     /**
   900      * This class handles method reference applicability checks; since during
   901      * these checks it's sometime possible to have inference variables on
   902      * the actual argument types list, the method applicability check must be
   903      * extended so that inference variables are 'opened' as needed.
   904      */
   905     class MethodReferenceCheck extends AbstractMethodCheck {
   907         InferenceContext pendingInferenceContext;
   909         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
   910             this.pendingInferenceContext = pendingInferenceContext;
   911         }
   913         @Override
   914         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
   915             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
   916             mresult.check(pos, actual);
   917         }
   919         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
   920                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   921             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
   922                 MethodCheckDiag methodDiag = varargsCheck ?
   923                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
   925                 @Override
   926                 public boolean compatible(Type found, Type req, Warner warn) {
   927                     found = pendingInferenceContext.asUndetVar(found);
   928                     if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
   929                         req = types.boxedClass(req).type;
   930                     }
   931                     return super.compatible(found, req, warn);
   932                 }
   934                 @Override
   935                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   936                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
   937                 }
   938             };
   939             return new MethodResultInfo(to, checkContext);
   940         }
   942         @Override
   943         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
   944             return new MostSpecificCheck(strict, actuals);
   945         }
   946     };
   948     /**
   949      * Check context to be used during method applicability checks. A method check
   950      * context might contain inference variables.
   951      */
   952     abstract class MethodCheckContext implements CheckContext {
   954         boolean strict;
   955         DeferredAttrContext deferredAttrContext;
   956         Warner rsWarner;
   958         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   959            this.strict = strict;
   960            this.deferredAttrContext = deferredAttrContext;
   961            this.rsWarner = rsWarner;
   962         }
   964         public boolean compatible(Type found, Type req, Warner warn) {
   965             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
   966             return strict ?
   967                     types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
   968                     types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
   969         }
   971         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   972             throw inapplicableMethodException.setMessage(details);
   973         }
   975         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   976             return rsWarner;
   977         }
   979         public InferenceContext inferenceContext() {
   980             return deferredAttrContext.inferenceContext;
   981         }
   983         public DeferredAttrContext deferredAttrContext() {
   984             return deferredAttrContext;
   985         }
   987         @Override
   988         public String toString() {
   989             return "MethodReferenceCheck";
   990         }
   992     }
   994     /**
   995      * ResultInfo class to be used during method applicability checks. Check
   996      * for deferred types goes through special path.
   997      */
   998     class MethodResultInfo extends ResultInfo {
  1000         public MethodResultInfo(Type pt, CheckContext checkContext) {
  1001             attr.super(VAL, pt, checkContext);
  1004         @Override
  1005         protected Type check(DiagnosticPosition pos, Type found) {
  1006             if (found.hasTag(DEFERRED)) {
  1007                 DeferredType dt = (DeferredType)found;
  1008                 return dt.check(this);
  1009             } else {
  1010                 Type uResult = U(found.baseType());
  1011                 Type capturedType = pos == null || pos.getTree() == null ?
  1012                         types.capture(uResult) :
  1013                         checkContext.inferenceContext()
  1014                             .cachedCapture(pos.getTree(), uResult, true);
  1015                 return super.check(pos, chk.checkNonVoid(pos, capturedType));
  1019         /**
  1020          * javac has a long-standing 'simplification' (see 6391995):
  1021          * given an actual argument type, the method check is performed
  1022          * on its upper bound. This leads to inconsistencies when an
  1023          * argument type is checked against itself. For example, given
  1024          * a type-variable T, it is not true that {@code U(T) <: T},
  1025          * so we need to guard against that.
  1026          */
  1027         private Type U(Type found) {
  1028             return found == pt ?
  1029                     found : types.cvarUpperBound(found);
  1032         @Override
  1033         protected MethodResultInfo dup(Type newPt) {
  1034             return new MethodResultInfo(newPt, checkContext);
  1037         @Override
  1038         protected ResultInfo dup(CheckContext newContext) {
  1039             return new MethodResultInfo(pt, newContext);
  1043     /**
  1044      * Most specific method applicability routine. Given a list of actual types A,
  1045      * a list of formal types F1, and a list of formal types F2, the routine determines
  1046      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
  1047      * argument types A.
  1048      */
  1049     class MostSpecificCheck implements MethodCheck {
  1051         boolean strict;
  1052         List<Type> actuals;
  1054         MostSpecificCheck(boolean strict, List<Type> actuals) {
  1055             this.strict = strict;
  1056             this.actuals = actuals;
  1059         @Override
  1060         public void argumentsAcceptable(final Env<AttrContext> env,
  1061                                     DeferredAttrContext deferredAttrContext,
  1062                                     List<Type> formals1,
  1063                                     List<Type> formals2,
  1064                                     Warner warn) {
  1065             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
  1066             while (formals2.nonEmpty()) {
  1067                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
  1068                 mresult.check(null, formals1.head);
  1069                 formals1 = formals1.tail;
  1070                 formals2 = formals2.tail;
  1071                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
  1075        /**
  1076         * Create a method check context to be used during the most specific applicability check
  1077         */
  1078         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
  1079                Warner rsWarner, Type actual) {
  1080            return attr.new ResultInfo(Kinds.VAL, to,
  1081                    new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
  1084         /**
  1085          * Subclass of method check context class that implements most specific
  1086          * method conversion. If the actual type under analysis is a deferred type
  1087          * a full blown structural analysis is carried out.
  1088          */
  1089         class MostSpecificCheckContext extends MethodCheckContext {
  1091             Type actual;
  1093             public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
  1094                 super(strict, deferredAttrContext, rsWarner);
  1095                 this.actual = actual;
  1098             public boolean compatible(Type found, Type req, Warner warn) {
  1099                 if (allowFunctionalInterfaceMostSpecific &&
  1100                         unrelatedFunctionalInterfaces(found, req) &&
  1101                         (actual != null && actual.getTag() == DEFERRED)) {
  1102                     DeferredType dt = (DeferredType) actual;
  1103                     DeferredType.SpeculativeCache.Entry e =
  1104                             dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
  1105                     if (e != null && e.speculativeTree != deferredAttr.stuckTree) {
  1106                         return functionalInterfaceMostSpecific(found, req, e.speculativeTree, warn);
  1109                 return super.compatible(found, req, warn);
  1112             /** Whether {@code t} and {@code s} are unrelated functional interface types. */
  1113             private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
  1114                 return types.isFunctionalInterface(t.tsym) &&
  1115                        types.isFunctionalInterface(s.tsym) &&
  1116                        types.asSuper(t, s.tsym) == null &&
  1117                        types.asSuper(s, t.tsym) == null;
  1120             /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
  1121             private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree, Warner warn) {
  1122                 FunctionalInterfaceMostSpecificChecker msc = new FunctionalInterfaceMostSpecificChecker(t, s, warn);
  1123                 msc.scan(tree);
  1124                 return msc.result;
  1127             /**
  1128              * Tests whether one functional interface type can be considered more specific
  1129              * than another unrelated functional interface type for the scanned expression.
  1130              */
  1131             class FunctionalInterfaceMostSpecificChecker extends DeferredAttr.PolyScanner {
  1133                 final Type t;
  1134                 final Type s;
  1135                 final Warner warn;
  1136                 boolean result;
  1138                 /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
  1139                 FunctionalInterfaceMostSpecificChecker(Type t, Type s, Warner warn) {
  1140                     this.t = t;
  1141                     this.s = s;
  1142                     this.warn = warn;
  1143                     result = true;
  1146                 @Override
  1147                 void skip(JCTree tree) {
  1148                     result &= false;
  1151                 @Override
  1152                 public void visitConditional(JCConditional tree) {
  1153                     scan(tree.truepart);
  1154                     scan(tree.falsepart);
  1157                 @Override
  1158                 public void visitReference(JCMemberReference tree) {
  1159                     Type desc_t = types.findDescriptorType(t);
  1160                     Type desc_s = types.findDescriptorType(s);
  1161                     // use inference variables here for more-specific inference (18.5.4)
  1162                     if (!types.isSameTypes(desc_t.getParameterTypes(),
  1163                             inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
  1164                         result &= false;
  1165                     } else {
  1166                         // compare return types
  1167                         Type ret_t = desc_t.getReturnType();
  1168                         Type ret_s = desc_s.getReturnType();
  1169                         if (ret_s.hasTag(VOID)) {
  1170                             result &= true;
  1171                         } else if (ret_t.hasTag(VOID)) {
  1172                             result &= false;
  1173                         } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
  1174                             boolean retValIsPrimitive =
  1175                                     tree.refPolyKind == PolyKind.STANDALONE &&
  1176                                     tree.sym.type.getReturnType().isPrimitive();
  1177                             result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
  1178                                       (retValIsPrimitive != ret_s.isPrimitive());
  1179                         } else {
  1180                             result &= MostSpecificCheckContext.super.compatible(ret_t, ret_s, warn);
  1185                 @Override
  1186                 public void visitLambda(JCLambda tree) {
  1187                     Type desc_t = types.findDescriptorType(t);
  1188                     Type desc_s = types.findDescriptorType(s);
  1189                     // use inference variables here for more-specific inference (18.5.4)
  1190                     if (!types.isSameTypes(desc_t.getParameterTypes(),
  1191                             inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
  1192                         result &= false;
  1193                     } else {
  1194                         // compare return types
  1195                         Type ret_t = desc_t.getReturnType();
  1196                         Type ret_s = desc_s.getReturnType();
  1197                         if (ret_s.hasTag(VOID)) {
  1198                             result &= true;
  1199                         } else if (ret_t.hasTag(VOID)) {
  1200                             result &= false;
  1201                         } else if (unrelatedFunctionalInterfaces(ret_t, ret_s)) {
  1202                             for (JCExpression expr : lambdaResults(tree)) {
  1203                                 result &= functionalInterfaceMostSpecific(ret_t, ret_s, expr, warn);
  1205                         } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
  1206                             for (JCExpression expr : lambdaResults(tree)) {
  1207                                 boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
  1208                                 result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
  1209                                           (retValIsPrimitive != ret_s.isPrimitive());
  1211                         } else {
  1212                             result &= MostSpecificCheckContext.super.compatible(ret_t, ret_s, warn);
  1216                 //where
  1218                 private List<JCExpression> lambdaResults(JCLambda lambda) {
  1219                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
  1220                         return List.of((JCExpression) lambda.body);
  1221                     } else {
  1222                         final ListBuffer<JCExpression> buffer = new ListBuffer<>();
  1223                         DeferredAttr.LambdaReturnScanner lambdaScanner =
  1224                                 new DeferredAttr.LambdaReturnScanner() {
  1225                                     @Override
  1226                                     public void visitReturn(JCReturn tree) {
  1227                                         if (tree.expr != null) {
  1228                                             buffer.append(tree.expr);
  1231                                 };
  1232                         lambdaScanner.scan(lambda.body);
  1233                         return buffer.toList();
  1240         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
  1241             Assert.error("Cannot get here!");
  1242             return null;
  1246     public static class InapplicableMethodException extends RuntimeException {
  1247         private static final long serialVersionUID = 0;
  1249         JCDiagnostic diagnostic;
  1250         JCDiagnostic.Factory diags;
  1252         InapplicableMethodException(JCDiagnostic.Factory diags) {
  1253             this.diagnostic = null;
  1254             this.diags = diags;
  1256         InapplicableMethodException setMessage() {
  1257             return setMessage((JCDiagnostic)null);
  1259         InapplicableMethodException setMessage(String key) {
  1260             return setMessage(key != null ? diags.fragment(key) : null);
  1262         InapplicableMethodException setMessage(String key, Object... args) {
  1263             return setMessage(key != null ? diags.fragment(key, args) : null);
  1265         InapplicableMethodException setMessage(JCDiagnostic diag) {
  1266             this.diagnostic = diag;
  1267             return this;
  1270         public JCDiagnostic getDiagnostic() {
  1271             return diagnostic;
  1274     private final InapplicableMethodException inapplicableMethodException;
  1276 /* ***************************************************************************
  1277  *  Symbol lookup
  1278  *  the following naming conventions for arguments are used
  1280  *       env      is the environment where the symbol was mentioned
  1281  *       site     is the type of which the symbol is a member
  1282  *       name     is the symbol's name
  1283  *                if no arguments are given
  1284  *       argtypes are the value arguments, if we search for a method
  1286  *  If no symbol was found, a ResolveError detailing the problem is returned.
  1287  ****************************************************************************/
  1289     /** Find field. Synthetic fields are always skipped.
  1290      *  @param env     The current environment.
  1291      *  @param site    The original type from where the selection takes place.
  1292      *  @param name    The name of the field.
  1293      *  @param c       The class to search for the field. This is always
  1294      *                 a superclass or implemented interface of site's class.
  1295      */
  1296     Symbol findField(Env<AttrContext> env,
  1297                      Type site,
  1298                      Name name,
  1299                      TypeSymbol c) {
  1300         while (c.type.hasTag(TYPEVAR))
  1301             c = c.type.getUpperBound().tsym;
  1302         Symbol bestSoFar = varNotFound;
  1303         Symbol sym;
  1304         Scope.Entry e = c.members().lookup(name);
  1305         while (e.scope != null) {
  1306             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
  1307                 return isAccessible(env, site, e.sym)
  1308                     ? e.sym : new AccessError(env, site, e.sym);
  1310             e = e.next();
  1312         Type st = types.supertype(c.type);
  1313         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
  1314             sym = findField(env, site, name, st.tsym);
  1315             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1317         for (List<Type> l = types.interfaces(c.type);
  1318              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1319              l = l.tail) {
  1320             sym = findField(env, site, name, l.head.tsym);
  1321             if (bestSoFar.exists() && sym.exists() &&
  1322                 sym.owner != bestSoFar.owner)
  1323                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1324             else if (sym.kind < bestSoFar.kind)
  1325                 bestSoFar = sym;
  1327         return bestSoFar;
  1330     /** Resolve a field identifier, throw a fatal error if not found.
  1331      *  @param pos       The position to use for error reporting.
  1332      *  @param env       The environment current at the method invocation.
  1333      *  @param site      The type of the qualifying expression, in which
  1334      *                   identifier is searched.
  1335      *  @param name      The identifier's name.
  1336      */
  1337     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
  1338                                           Type site, Name name) {
  1339         Symbol sym = findField(env, site, name, site.tsym);
  1340         if (sym.kind == VAR) return (VarSymbol)sym;
  1341         else throw new FatalError(
  1342                  diags.fragment("fatal.err.cant.locate.field",
  1343                                 name));
  1346     /** Find unqualified variable or field with given name.
  1347      *  Synthetic fields always skipped.
  1348      *  @param env     The current environment.
  1349      *  @param name    The name of the variable or field.
  1350      */
  1351     Symbol findVar(Env<AttrContext> env, Name name) {
  1352         Symbol bestSoFar = varNotFound;
  1353         Symbol sym;
  1354         Env<AttrContext> env1 = env;
  1355         boolean staticOnly = false;
  1356         while (env1.outer != null) {
  1357             if (isStatic(env1)) staticOnly = true;
  1358             Scope.Entry e = env1.info.scope.lookup(name);
  1359             while (e.scope != null &&
  1360                    (e.sym.kind != VAR ||
  1361                     (e.sym.flags_field & SYNTHETIC) != 0))
  1362                 e = e.next();
  1363             sym = (e.scope != null)
  1364                 ? e.sym
  1365                 : findField(
  1366                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
  1367             if (sym.exists()) {
  1368                 if (staticOnly &&
  1369                     sym.kind == VAR &&
  1370                     sym.owner.kind == TYP &&
  1371                     (sym.flags() & STATIC) == 0)
  1372                     return new StaticError(sym);
  1373                 else
  1374                     return sym;
  1375             } else if (sym.kind < bestSoFar.kind) {
  1376                 bestSoFar = sym;
  1379             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1380             env1 = env1.outer;
  1383         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
  1384         if (sym.exists())
  1385             return sym;
  1386         if (bestSoFar.exists())
  1387             return bestSoFar;
  1389         Symbol origin = null;
  1390         for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
  1391             Scope.Entry e = sc.lookup(name);
  1392             for (; e.scope != null; e = e.next()) {
  1393                 sym = e.sym;
  1394                 if (sym.kind != VAR)
  1395                     continue;
  1396                 // invariant: sym.kind == VAR
  1397                 if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
  1398                     return new AmbiguityError(bestSoFar, sym);
  1399                 else if (bestSoFar.kind >= VAR) {
  1400                     origin = e.getOrigin().owner;
  1401                     bestSoFar = isAccessible(env, origin.type, sym)
  1402                         ? sym : new AccessError(env, origin.type, sym);
  1405             if (bestSoFar.exists()) break;
  1407         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
  1408             return bestSoFar.clone(origin);
  1409         else
  1410             return bestSoFar;
  1413     Warner noteWarner = new Warner();
  1415     /** Select the best method for a call site among two choices.
  1416      *  @param env              The current environment.
  1417      *  @param site             The original type from where the
  1418      *                          selection takes place.
  1419      *  @param argtypes         The invocation's value arguments,
  1420      *  @param typeargtypes     The invocation's type arguments,
  1421      *  @param sym              Proposed new best match.
  1422      *  @param bestSoFar        Previously found best match.
  1423      *  @param allowBoxing Allow boxing conversions of arguments.
  1424      *  @param useVarargs Box trailing arguments into an array for varargs.
  1425      */
  1426     @SuppressWarnings("fallthrough")
  1427     Symbol selectBest(Env<AttrContext> env,
  1428                       Type site,
  1429                       List<Type> argtypes,
  1430                       List<Type> typeargtypes,
  1431                       Symbol sym,
  1432                       Symbol bestSoFar,
  1433                       boolean allowBoxing,
  1434                       boolean useVarargs,
  1435                       boolean operator) {
  1436         if (sym.kind == ERR ||
  1437                 !sym.isInheritedIn(site.tsym, types)) {
  1438             return bestSoFar;
  1439         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
  1440             return bestSoFar.kind >= ERRONEOUS ?
  1441                     new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
  1442                     bestSoFar;
  1444         Assert.check(sym.kind < AMBIGUOUS);
  1445         try {
  1446             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1447                                allowBoxing, useVarargs, types.noWarnings);
  1448             if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
  1449                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1450         } catch (InapplicableMethodException ex) {
  1451             if (!operator)
  1452                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1453             switch (bestSoFar.kind) {
  1454                 case ABSENT_MTH:
  1455                     return new InapplicableSymbolError(currentResolutionContext);
  1456                 case WRONG_MTH:
  1457                     if (operator) return bestSoFar;
  1458                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1459                 default:
  1460                     return bestSoFar;
  1463         if (!isAccessible(env, site, sym)) {
  1464             return (bestSoFar.kind == ABSENT_MTH)
  1465                 ? new AccessError(env, site, sym)
  1466                 : bestSoFar;
  1468         return (bestSoFar.kind > AMBIGUOUS)
  1469             ? sym
  1470             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1471                            allowBoxing && operator, useVarargs);
  1474     /* Return the most specific of the two methods for a call,
  1475      *  given that both are accessible and applicable.
  1476      *  @param m1               A new candidate for most specific.
  1477      *  @param m2               The previous most specific candidate.
  1478      *  @param env              The current environment.
  1479      *  @param site             The original type from where the selection
  1480      *                          takes place.
  1481      *  @param allowBoxing Allow boxing conversions of arguments.
  1482      *  @param useVarargs Box trailing arguments into an array for varargs.
  1483      */
  1484     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1485                         Symbol m2,
  1486                         Env<AttrContext> env,
  1487                         final Type site,
  1488                         boolean allowBoxing,
  1489                         boolean useVarargs) {
  1490         switch (m2.kind) {
  1491         case MTH:
  1492             if (m1 == m2) return m1;
  1493             boolean m1SignatureMoreSpecific =
  1494                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1495             boolean m2SignatureMoreSpecific =
  1496                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1497             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1498                 Type mt1 = types.memberType(site, m1);
  1499                 Type mt2 = types.memberType(site, m2);
  1500                 if (!types.overrideEquivalent(mt1, mt2))
  1501                     return ambiguityError(m1, m2);
  1503                 // same signature; select (a) the non-bridge method, or
  1504                 // (b) the one that overrides the other, or (c) the concrete
  1505                 // one, or (d) merge both abstract signatures
  1506                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1507                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1509                 // if one overrides or hides the other, use it
  1510                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1511                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1512                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1513                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1514                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1515                     m1.overrides(m2, m1Owner, types, false))
  1516                     return m1;
  1517                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1518                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1519                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1520                     m2.overrides(m1, m2Owner, types, false))
  1521                     return m2;
  1522                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1523                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1524                 if (m1Abstract && !m2Abstract) return m2;
  1525                 if (m2Abstract && !m1Abstract) return m1;
  1526                 // both abstract or both concrete
  1527                 return ambiguityError(m1, m2);
  1529             if (m1SignatureMoreSpecific) return m1;
  1530             if (m2SignatureMoreSpecific) return m2;
  1531             return ambiguityError(m1, m2);
  1532         case AMBIGUOUS:
  1533             //compare m1 to ambiguous methods in m2
  1534             AmbiguityError e = (AmbiguityError)m2.baseSymbol();
  1535             boolean m1MoreSpecificThanAnyAmbiguous = true;
  1536             boolean allAmbiguousMoreSpecificThanM1 = true;
  1537             for (Symbol s : e.ambiguousSyms) {
  1538                 Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs);
  1539                 m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
  1540                 allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
  1542             if (m1MoreSpecificThanAnyAmbiguous)
  1543                 return m1;
  1544             //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
  1545             //more specific than m1, add it as a new ambiguous method:
  1546             if (!allAmbiguousMoreSpecificThanM1)
  1547                 e.addAmbiguousSymbol(m1);
  1548             return e;
  1549         default:
  1550             throw new AssertionError();
  1553     //where
  1554     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1555         noteWarner.clear();
  1556         int maxLength = Math.max(
  1557                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
  1558                             m2.type.getParameterTypes().length());
  1559         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1560         try {
  1561             currentResolutionContext = new MethodResolutionContext();
  1562             currentResolutionContext.step = prevResolutionContext.step;
  1563             currentResolutionContext.methodCheck =
  1564                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
  1565             Type mst = instantiate(env, site, m2, null,
  1566                     adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
  1567                     allowBoxing, useVarargs, noteWarner);
  1568             return mst != null &&
  1569                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1570         } finally {
  1571             currentResolutionContext = prevResolutionContext;
  1575     List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
  1576         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
  1577             Type varargsElem = types.elemtype(args.last());
  1578             if (varargsElem == null) {
  1579                 Assert.error("Bad varargs = " + args.last() + " " + msym);
  1581             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
  1582             while (newArgs.length() < length) {
  1583                 newArgs = newArgs.append(newArgs.last());
  1585             return newArgs;
  1586         } else {
  1587             return args;
  1590     //where
  1591     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1592         Type rt1 = mt1.getReturnType();
  1593         Type rt2 = mt2.getReturnType();
  1595         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1596             //if both are generic methods, adjust return type ahead of subtyping check
  1597             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1599         //first use subtyping, then return type substitutability
  1600         if (types.isSubtype(rt1, rt2)) {
  1601             return mt1;
  1602         } else if (types.isSubtype(rt2, rt1)) {
  1603             return mt2;
  1604         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1605             return mt1;
  1606         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1607             return mt2;
  1608         } else {
  1609             return null;
  1612     //where
  1613     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1614         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1615             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1616         } else {
  1617             return new AmbiguityError(m1, m2);
  1621     Symbol findMethodInScope(Env<AttrContext> env,
  1622             Type site,
  1623             Name name,
  1624             List<Type> argtypes,
  1625             List<Type> typeargtypes,
  1626             Scope sc,
  1627             Symbol bestSoFar,
  1628             boolean allowBoxing,
  1629             boolean useVarargs,
  1630             boolean operator,
  1631             boolean abstractok) {
  1632         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1633             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1634                     bestSoFar, allowBoxing, useVarargs, operator);
  1636         return bestSoFar;
  1638     //where
  1639         class LookupFilter implements Filter<Symbol> {
  1641             boolean abstractOk;
  1643             LookupFilter(boolean abstractOk) {
  1644                 this.abstractOk = abstractOk;
  1647             public boolean accepts(Symbol s) {
  1648                 long flags = s.flags();
  1649                 return s.kind == MTH &&
  1650                         (flags & SYNTHETIC) == 0 &&
  1651                         (abstractOk ||
  1652                         (flags & DEFAULT) != 0 ||
  1653                         (flags & ABSTRACT) == 0);
  1655         };
  1657     /** Find best qualified method matching given name, type and value
  1658      *  arguments.
  1659      *  @param env       The current environment.
  1660      *  @param site      The original type from where the selection
  1661      *                   takes place.
  1662      *  @param name      The method's name.
  1663      *  @param argtypes  The method's value arguments.
  1664      *  @param typeargtypes The method's type arguments
  1665      *  @param allowBoxing Allow boxing conversions of arguments.
  1666      *  @param useVarargs Box trailing arguments into an array for varargs.
  1667      */
  1668     Symbol findMethod(Env<AttrContext> env,
  1669                       Type site,
  1670                       Name name,
  1671                       List<Type> argtypes,
  1672                       List<Type> typeargtypes,
  1673                       boolean allowBoxing,
  1674                       boolean useVarargs,
  1675                       boolean operator) {
  1676         Symbol bestSoFar = methodNotFound;
  1677         bestSoFar = findMethod(env,
  1678                           site,
  1679                           name,
  1680                           argtypes,
  1681                           typeargtypes,
  1682                           site.tsym.type,
  1683                           bestSoFar,
  1684                           allowBoxing,
  1685                           useVarargs,
  1686                           operator);
  1687         return bestSoFar;
  1689     // where
  1690     private Symbol findMethod(Env<AttrContext> env,
  1691                               Type site,
  1692                               Name name,
  1693                               List<Type> argtypes,
  1694                               List<Type> typeargtypes,
  1695                               Type intype,
  1696                               Symbol bestSoFar,
  1697                               boolean allowBoxing,
  1698                               boolean useVarargs,
  1699                               boolean operator) {
  1700         @SuppressWarnings({"unchecked","rawtypes"})
  1701         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1702         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1703         for (TypeSymbol s : superclasses(intype)) {
  1704             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1705                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1706             if (name == names.init) return bestSoFar;
  1707             iphase = (iphase == null) ? null : iphase.update(s, this);
  1708             if (iphase != null) {
  1709                 for (Type itype : types.interfaces(s.type)) {
  1710                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1715         Symbol concrete = bestSoFar.kind < ERR &&
  1716                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1717                 bestSoFar : methodNotFound;
  1719         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1720             //keep searching for abstract methods
  1721             for (Type itype : itypes[iphase2.ordinal()]) {
  1722                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1723                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1724                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1725                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
  1726                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1727                 if (concrete != bestSoFar &&
  1728                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1729                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1730                     //this is an hack - as javac does not do full membership checks
  1731                     //most specific ends up comparing abstract methods that might have
  1732                     //been implemented by some concrete method in a subclass and,
  1733                     //because of raw override, it is possible for an abstract method
  1734                     //to be more specific than the concrete method - so we need
  1735                     //to explicitly call that out (see CR 6178365)
  1736                     bestSoFar = concrete;
  1740         return bestSoFar;
  1743     enum InterfaceLookupPhase {
  1744         ABSTRACT_OK() {
  1745             @Override
  1746             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1747                 //We should not look for abstract methods if receiver is a concrete class
  1748                 //(as concrete classes are expected to implement all abstracts coming
  1749                 //from superinterfaces)
  1750                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1751                     return this;
  1752                 } else {
  1753                     return DEFAULT_OK;
  1756         },
  1757         DEFAULT_OK() {
  1758             @Override
  1759             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1760                 return this;
  1762         };
  1764         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1767     /**
  1768      * Return an Iterable object to scan the superclasses of a given type.
  1769      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1770      * access more supertypes than strictly needed (as this could trigger completion
  1771      * errors if some of the not-needed supertypes are missing/ill-formed).
  1772      */
  1773     Iterable<TypeSymbol> superclasses(final Type intype) {
  1774         return new Iterable<TypeSymbol>() {
  1775             public Iterator<TypeSymbol> iterator() {
  1776                 return new Iterator<TypeSymbol>() {
  1778                     List<TypeSymbol> seen = List.nil();
  1779                     TypeSymbol currentSym = symbolFor(intype);
  1780                     TypeSymbol prevSym = null;
  1782                     public boolean hasNext() {
  1783                         if (currentSym == syms.noSymbol) {
  1784                             currentSym = symbolFor(types.supertype(prevSym.type));
  1786                         return currentSym != null;
  1789                     public TypeSymbol next() {
  1790                         prevSym = currentSym;
  1791                         currentSym = syms.noSymbol;
  1792                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1793                         return prevSym;
  1796                     public void remove() {
  1797                         throw new UnsupportedOperationException();
  1800                     TypeSymbol symbolFor(Type t) {
  1801                         if (!t.hasTag(CLASS) &&
  1802                                 !t.hasTag(TYPEVAR)) {
  1803                             return null;
  1805                         while (t.hasTag(TYPEVAR))
  1806                             t = t.getUpperBound();
  1807                         if (seen.contains(t.tsym)) {
  1808                             //degenerate case in which we have a circular
  1809                             //class hierarchy - because of ill-formed classfiles
  1810                             return null;
  1812                         seen = seen.prepend(t.tsym);
  1813                         return t.tsym;
  1815                 };
  1817         };
  1820     /** Find unqualified method matching given name, type and value arguments.
  1821      *  @param env       The current environment.
  1822      *  @param name      The method's name.
  1823      *  @param argtypes  The method's value arguments.
  1824      *  @param typeargtypes  The method's type arguments.
  1825      *  @param allowBoxing Allow boxing conversions of arguments.
  1826      *  @param useVarargs Box trailing arguments into an array for varargs.
  1827      */
  1828     Symbol findFun(Env<AttrContext> env, Name name,
  1829                    List<Type> argtypes, List<Type> typeargtypes,
  1830                    boolean allowBoxing, boolean useVarargs) {
  1831         Symbol bestSoFar = methodNotFound;
  1832         Symbol sym;
  1833         Env<AttrContext> env1 = env;
  1834         boolean staticOnly = false;
  1835         while (env1.outer != null) {
  1836             if (isStatic(env1)) staticOnly = true;
  1837             Assert.check(env1.info.preferredTreeForDiagnostics == null);
  1838             env1.info.preferredTreeForDiagnostics = env.tree;
  1839             try {
  1840                 sym = findMethod(
  1841                     env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1842                     allowBoxing, useVarargs, false);
  1843                 if (sym.exists()) {
  1844                     if (staticOnly &&
  1845                         sym.kind == MTH &&
  1846                         sym.owner.kind == TYP &&
  1847                         (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1848                     else return sym;
  1849                 } else if (sym.kind < bestSoFar.kind) {
  1850                     bestSoFar = sym;
  1852             } finally {
  1853                 env1.info.preferredTreeForDiagnostics = null;
  1855             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1856             env1 = env1.outer;
  1859         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1860                          typeargtypes, allowBoxing, useVarargs, false);
  1861         if (sym.exists())
  1862             return sym;
  1864         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1865         for (; e.scope != null; e = e.next()) {
  1866             sym = e.sym;
  1867             Type origin = e.getOrigin().owner.type;
  1868             if (sym.kind == MTH) {
  1869                 if (e.sym.owner.type != origin)
  1870                     sym = sym.clone(e.getOrigin().owner);
  1871                 if (!isAccessible(env, origin, sym))
  1872                     sym = new AccessError(env, origin, sym);
  1873                 bestSoFar = selectBest(env, origin,
  1874                                        argtypes, typeargtypes,
  1875                                        sym, bestSoFar,
  1876                                        allowBoxing, useVarargs, false);
  1879         if (bestSoFar.exists())
  1880             return bestSoFar;
  1882         e = env.toplevel.starImportScope.lookup(name);
  1883         for (; e.scope != null; e = e.next()) {
  1884             sym = e.sym;
  1885             Type origin = e.getOrigin().owner.type;
  1886             if (sym.kind == MTH) {
  1887                 if (e.sym.owner.type != origin)
  1888                     sym = sym.clone(e.getOrigin().owner);
  1889                 if (!isAccessible(env, origin, sym))
  1890                     sym = new AccessError(env, origin, sym);
  1891                 bestSoFar = selectBest(env, origin,
  1892                                        argtypes, typeargtypes,
  1893                                        sym, bestSoFar,
  1894                                        allowBoxing, useVarargs, false);
  1897         return bestSoFar;
  1900     /** Load toplevel or member class with given fully qualified name and
  1901      *  verify that it is accessible.
  1902      *  @param env       The current environment.
  1903      *  @param name      The fully qualified name of the class to be loaded.
  1904      */
  1905     Symbol loadClass(Env<AttrContext> env, Name name) {
  1906         try {
  1907             ClassSymbol c = reader.loadClass(name);
  1908             return isAccessible(env, c) ? c : new AccessError(c);
  1909         } catch (ClassReader.BadClassFile err) {
  1910             throw err;
  1911         } catch (CompletionFailure ex) {
  1912             return typeNotFound;
  1917     /**
  1918      * Find a type declared in a scope (not inherited).  Return null
  1919      * if none is found.
  1920      *  @param env       The current environment.
  1921      *  @param site      The original type from where the selection takes
  1922      *                   place.
  1923      *  @param name      The type's name.
  1924      *  @param c         The class to search for the member type. This is
  1925      *                   always a superclass or implemented interface of
  1926      *                   site's class.
  1927      */
  1928     Symbol findImmediateMemberType(Env<AttrContext> env,
  1929                                    Type site,
  1930                                    Name name,
  1931                                    TypeSymbol c) {
  1932         Scope.Entry e = c.members().lookup(name);
  1933         while (e.scope != null) {
  1934             if (e.sym.kind == TYP) {
  1935                 return isAccessible(env, site, e.sym)
  1936                     ? e.sym
  1937                     : new AccessError(env, site, e.sym);
  1939             e = e.next();
  1941         return typeNotFound;
  1944     /** Find a member type inherited from a superclass or interface.
  1945      *  @param env       The current environment.
  1946      *  @param site      The original type from where the selection takes
  1947      *                   place.
  1948      *  @param name      The type's name.
  1949      *  @param c         The class to search for the member type. This is
  1950      *                   always a superclass or implemented interface of
  1951      *                   site's class.
  1952      */
  1953     Symbol findInheritedMemberType(Env<AttrContext> env,
  1954                                    Type site,
  1955                                    Name name,
  1956                                    TypeSymbol c) {
  1957         Symbol bestSoFar = typeNotFound;
  1958         Symbol sym;
  1959         Type st = types.supertype(c.type);
  1960         if (st != null && st.hasTag(CLASS)) {
  1961             sym = findMemberType(env, site, name, st.tsym);
  1962             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1964         for (List<Type> l = types.interfaces(c.type);
  1965              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1966              l = l.tail) {
  1967             sym = findMemberType(env, site, name, l.head.tsym);
  1968             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1969                 sym.owner != bestSoFar.owner)
  1970                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1971             else if (sym.kind < bestSoFar.kind)
  1972                 bestSoFar = sym;
  1974         return bestSoFar;
  1977     /** Find qualified member type.
  1978      *  @param env       The current environment.
  1979      *  @param site      The original type from where the selection takes
  1980      *                   place.
  1981      *  @param name      The type's name.
  1982      *  @param c         The class to search for the member type. This is
  1983      *                   always a superclass or implemented interface of
  1984      *                   site's class.
  1985      */
  1986     Symbol findMemberType(Env<AttrContext> env,
  1987                           Type site,
  1988                           Name name,
  1989                           TypeSymbol c) {
  1990         Symbol sym = findImmediateMemberType(env, site, name, c);
  1992         if (sym != typeNotFound)
  1993             return sym;
  1995         return findInheritedMemberType(env, site, name, c);
  1999     /** Find a global type in given scope and load corresponding class.
  2000      *  @param env       The current environment.
  2001      *  @param scope     The scope in which to look for the type.
  2002      *  @param name      The type's name.
  2003      */
  2004     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  2005         Symbol bestSoFar = typeNotFound;
  2006         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  2007             Symbol sym = loadClass(env, e.sym.flatName());
  2008             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  2009                 bestSoFar != sym)
  2010                 return new AmbiguityError(bestSoFar, sym);
  2011             else if (sym.kind < bestSoFar.kind)
  2012                 bestSoFar = sym;
  2014         return bestSoFar;
  2017     Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
  2018         for (Scope.Entry e = env.info.scope.lookup(name);
  2019              e.scope != null;
  2020              e = e.next()) {
  2021             if (e.sym.kind == TYP) {
  2022                 if (staticOnly &&
  2023                     e.sym.type.hasTag(TYPEVAR) &&
  2024                     e.sym.owner.kind == TYP)
  2025                     return new StaticError(e.sym);
  2026                 return e.sym;
  2029         return typeNotFound;
  2032     /** Find an unqualified type symbol.
  2033      *  @param env       The current environment.
  2034      *  @param name      The type's name.
  2035      */
  2036     Symbol findType(Env<AttrContext> env, Name name) {
  2037         Symbol bestSoFar = typeNotFound;
  2038         Symbol sym;
  2039         boolean staticOnly = false;
  2040         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  2041             if (isStatic(env1)) staticOnly = true;
  2042             // First, look for a type variable and the first member type
  2043             final Symbol tyvar = findTypeVar(env1, name, staticOnly);
  2044             sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
  2045                                           name, env1.enclClass.sym);
  2047             // Return the type variable if we have it, and have no
  2048             // immediate member, OR the type variable is for a method.
  2049             if (tyvar != typeNotFound) {
  2050                 if (sym == typeNotFound ||
  2051                     (tyvar.kind == TYP && tyvar.exists() &&
  2052                      tyvar.owner.kind == MTH))
  2053                     return tyvar;
  2056             // If the environment is a class def, finish up,
  2057             // otherwise, do the entire findMemberType
  2058             if (sym == typeNotFound)
  2059                 sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
  2060                                               name, env1.enclClass.sym);
  2062             if (staticOnly && sym.kind == TYP &&
  2063                 sym.type.hasTag(CLASS) &&
  2064                 sym.type.getEnclosingType().hasTag(CLASS) &&
  2065                 env1.enclClass.sym.type.isParameterized() &&
  2066                 sym.type.getEnclosingType().isParameterized())
  2067                 return new StaticError(sym);
  2068             else if (sym.exists()) return sym;
  2069             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2071             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  2072             if ((encl.sym.flags() & STATIC) != 0)
  2073                 staticOnly = true;
  2076         if (!env.tree.hasTag(IMPORT)) {
  2077             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  2078             if (sym.exists()) return sym;
  2079             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2081             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  2082             if (sym.exists()) return sym;
  2083             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2085             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  2086             if (sym.exists()) return sym;
  2087             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2090         return bestSoFar;
  2093     /** Find an unqualified identifier which matches a specified kind set.
  2094      *  @param env       The current environment.
  2095      *  @param name      The identifier's name.
  2096      *  @param kind      Indicates the possible symbol kinds
  2097      *                   (a subset of VAL, TYP, PCK).
  2098      */
  2099     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  2100         Symbol bestSoFar = typeNotFound;
  2101         Symbol sym;
  2103         if ((kind & VAR) != 0) {
  2104             sym = findVar(env, name);
  2105             if (sym.exists()) return sym;
  2106             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2109         if ((kind & TYP) != 0) {
  2110             sym = findType(env, name);
  2111             if (sym.kind==TYP) {
  2112                  reportDependence(env.enclClass.sym, sym);
  2114             if (sym.exists()) return sym;
  2115             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2118         if ((kind & PCK) != 0) return reader.enterPackage(name);
  2119         else return bestSoFar;
  2122     /** Report dependencies.
  2123      * @param from The enclosing class sym
  2124      * @param to   The found identifier that the class depends on.
  2125      */
  2126     public void reportDependence(Symbol from, Symbol to) {
  2127         // Override if you want to collect the reported dependencies.
  2130     /** Find an identifier in a package which matches a specified kind set.
  2131      *  @param env       The current environment.
  2132      *  @param name      The identifier's name.
  2133      *  @param kind      Indicates the possible symbol kinds
  2134      *                   (a nonempty subset of TYP, PCK).
  2135      */
  2136     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  2137                               Name name, int kind) {
  2138         Name fullname = TypeSymbol.formFullName(name, pck);
  2139         Symbol bestSoFar = typeNotFound;
  2140         PackageSymbol pack = null;
  2141         if ((kind & PCK) != 0) {
  2142             pack = reader.enterPackage(fullname);
  2143             if (pack.exists()) return pack;
  2145         if ((kind & TYP) != 0) {
  2146             Symbol sym = loadClass(env, fullname);
  2147             if (sym.exists()) {
  2148                 // don't allow programs to use flatnames
  2149                 if (name == sym.name) return sym;
  2151             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2153         return (pack != null) ? pack : bestSoFar;
  2156     /** Find an identifier among the members of a given type `site'.
  2157      *  @param env       The current environment.
  2158      *  @param site      The type containing the symbol to be found.
  2159      *  @param name      The identifier's name.
  2160      *  @param kind      Indicates the possible symbol kinds
  2161      *                   (a subset of VAL, TYP).
  2162      */
  2163     Symbol findIdentInType(Env<AttrContext> env, Type site,
  2164                            Name name, int kind) {
  2165         Symbol bestSoFar = typeNotFound;
  2166         Symbol sym;
  2167         if ((kind & VAR) != 0) {
  2168             sym = findField(env, site, name, site.tsym);
  2169             if (sym.exists()) return sym;
  2170             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2173         if ((kind & TYP) != 0) {
  2174             sym = findMemberType(env, site, name, site.tsym);
  2175             if (sym.exists()) return sym;
  2176             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  2178         return bestSoFar;
  2181 /* ***************************************************************************
  2182  *  Access checking
  2183  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  2184  *  an error message in the process
  2185  ****************************************************************************/
  2187     /** If `sym' is a bad symbol: report error and return errSymbol
  2188      *  else pass through unchanged,
  2189      *  additional arguments duplicate what has been used in trying to find the
  2190      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  2191      *  expect misses to happen frequently.
  2193      *  @param sym       The symbol that was found, or a ResolveError.
  2194      *  @param pos       The position to use for error reporting.
  2195      *  @param location  The symbol the served as a context for this lookup
  2196      *  @param site      The original type from where the selection took place.
  2197      *  @param name      The symbol's name.
  2198      *  @param qualified Did we get here through a qualified expression resolution?
  2199      *  @param argtypes  The invocation's value arguments,
  2200      *                   if we looked for a method.
  2201      *  @param typeargtypes  The invocation's type arguments,
  2202      *                   if we looked for a method.
  2203      *  @param logResolveHelper helper class used to log resolve errors
  2204      */
  2205     Symbol accessInternal(Symbol sym,
  2206                   DiagnosticPosition pos,
  2207                   Symbol location,
  2208                   Type site,
  2209                   Name name,
  2210                   boolean qualified,
  2211                   List<Type> argtypes,
  2212                   List<Type> typeargtypes,
  2213                   LogResolveHelper logResolveHelper) {
  2214         if (sym.kind >= AMBIGUOUS) {
  2215             ResolveError errSym = (ResolveError)sym.baseSymbol();
  2216             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  2217             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  2218             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  2219                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  2222         return sym;
  2225     /**
  2226      * Variant of the generalized access routine, to be used for generating method
  2227      * resolution diagnostics
  2228      */
  2229     Symbol accessMethod(Symbol sym,
  2230                   DiagnosticPosition pos,
  2231                   Symbol location,
  2232                   Type site,
  2233                   Name name,
  2234                   boolean qualified,
  2235                   List<Type> argtypes,
  2236                   List<Type> typeargtypes) {
  2237         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  2240     /** Same as original accessMethod(), but without location.
  2241      */
  2242     Symbol accessMethod(Symbol sym,
  2243                   DiagnosticPosition pos,
  2244                   Type site,
  2245                   Name name,
  2246                   boolean qualified,
  2247                   List<Type> argtypes,
  2248                   List<Type> typeargtypes) {
  2249         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  2252     /**
  2253      * Variant of the generalized access routine, to be used for generating variable,
  2254      * type resolution diagnostics
  2255      */
  2256     Symbol accessBase(Symbol sym,
  2257                   DiagnosticPosition pos,
  2258                   Symbol location,
  2259                   Type site,
  2260                   Name name,
  2261                   boolean qualified) {
  2262         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  2265     /** Same as original accessBase(), but without location.
  2266      */
  2267     Symbol accessBase(Symbol sym,
  2268                   DiagnosticPosition pos,
  2269                   Type site,
  2270                   Name name,
  2271                   boolean qualified) {
  2272         return accessBase(sym, pos, site.tsym, site, name, qualified);
  2275     interface LogResolveHelper {
  2276         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  2277         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  2280     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  2281         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2282             return !site.isErroneous();
  2284         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2285             return argtypes;
  2287     };
  2289     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  2290         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2291             return !site.isErroneous() &&
  2292                         !Type.isErroneous(argtypes) &&
  2293                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  2295         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  2296             return (syms.operatorNames.contains(name)) ?
  2297                     argtypes :
  2298                     Type.map(argtypes, new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
  2300     };
  2302     class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
  2304         public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
  2305             deferredAttr.super(mode, msym, step);
  2308         @Override
  2309         protected Type typeOf(DeferredType dt) {
  2310             Type res = super.typeOf(dt);
  2311             if (!res.isErroneous()) {
  2312                 switch (TreeInfo.skipParens(dt.tree).getTag()) {
  2313                     case LAMBDA:
  2314                     case REFERENCE:
  2315                         return dt;
  2316                     case CONDEXPR:
  2317                         return res == Type.recoveryType ?
  2318                                 dt : res;
  2321             return res;
  2325     /** Check that sym is not an abstract method.
  2326      */
  2327     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  2328         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  2329             log.error(pos, "abstract.cant.be.accessed.directly",
  2330                       kindName(sym), sym, sym.location());
  2333 /* ***************************************************************************
  2334  *  Debugging
  2335  ****************************************************************************/
  2337     /** print all scopes starting with scope s and proceeding outwards.
  2338      *  used for debugging.
  2339      */
  2340     public void printscopes(Scope s) {
  2341         while (s != null) {
  2342             if (s.owner != null)
  2343                 System.err.print(s.owner + ": ");
  2344             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  2345                 if ((e.sym.flags() & ABSTRACT) != 0)
  2346                     System.err.print("abstract ");
  2347                 System.err.print(e.sym + " ");
  2349             System.err.println();
  2350             s = s.next;
  2354     void printscopes(Env<AttrContext> env) {
  2355         while (env.outer != null) {
  2356             System.err.println("------------------------------");
  2357             printscopes(env.info.scope);
  2358             env = env.outer;
  2362     public void printscopes(Type t) {
  2363         while (t.hasTag(CLASS)) {
  2364             printscopes(t.tsym.members());
  2365             t = types.supertype(t);
  2369 /* ***************************************************************************
  2370  *  Name resolution
  2371  *  Naming conventions are as for symbol lookup
  2372  *  Unlike the find... methods these methods will report access errors
  2373  ****************************************************************************/
  2375     /** Resolve an unqualified (non-method) identifier.
  2376      *  @param pos       The position to use for error reporting.
  2377      *  @param env       The environment current at the identifier use.
  2378      *  @param name      The identifier's name.
  2379      *  @param kind      The set of admissible symbol kinds for the identifier.
  2380      */
  2381     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2382                         Name name, int kind) {
  2383         return accessBase(
  2384             findIdent(env, name, kind),
  2385             pos, env.enclClass.sym.type, name, false);
  2388     /** Resolve an unqualified method identifier.
  2389      *  @param pos       The position to use for error reporting.
  2390      *  @param env       The environment current at the method invocation.
  2391      *  @param name      The identifier's name.
  2392      *  @param argtypes  The types of the invocation's value arguments.
  2393      *  @param typeargtypes  The types of the invocation's type arguments.
  2394      */
  2395     Symbol resolveMethod(DiagnosticPosition pos,
  2396                          Env<AttrContext> env,
  2397                          Name name,
  2398                          List<Type> argtypes,
  2399                          List<Type> typeargtypes) {
  2400         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
  2401                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
  2402                     @Override
  2403                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2404                         return findFun(env, name, argtypes, typeargtypes,
  2405                                 phase.isBoxingRequired(),
  2406                                 phase.isVarargsRequired());
  2407                     }});
  2410     /** Resolve a qualified method identifier
  2411      *  @param pos       The position to use for error reporting.
  2412      *  @param env       The environment current at the method invocation.
  2413      *  @param site      The type of the qualifying expression, in which
  2414      *                   identifier is searched.
  2415      *  @param name      The identifier's name.
  2416      *  @param argtypes  The types of the invocation's value arguments.
  2417      *  @param typeargtypes  The types of the invocation's type arguments.
  2418      */
  2419     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2420                                   Type site, Name name, List<Type> argtypes,
  2421                                   List<Type> typeargtypes) {
  2422         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2424     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2425                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2426                                   List<Type> typeargtypes) {
  2427         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2429     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2430                                   DiagnosticPosition pos, Env<AttrContext> env,
  2431                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2432                                   List<Type> typeargtypes) {
  2433         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
  2434             @Override
  2435             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2436                 return findMethod(env, site, name, argtypes, typeargtypes,
  2437                         phase.isBoxingRequired(),
  2438                         phase.isVarargsRequired(), false);
  2440             @Override
  2441             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2442                 if (sym.kind >= AMBIGUOUS) {
  2443                     sym = super.access(env, pos, location, sym);
  2444                 } else if (allowMethodHandles) {
  2445                     MethodSymbol msym = (MethodSymbol)sym;
  2446                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
  2447                         return findPolymorphicSignatureInstance(env, sym, argtypes);
  2450                 return sym;
  2452         });
  2455     /** Find or create an implicit method of exactly the given type (after erasure).
  2456      *  Searches in a side table, not the main scope of the site.
  2457      *  This emulates the lookup process required by JSR 292 in JVM.
  2458      *  @param env       Attribution environment
  2459      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2460      *  @param argtypes  The required argument types
  2461      */
  2462     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2463                                             final Symbol spMethod,
  2464                                             List<Type> argtypes) {
  2465         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2466                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2467         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2468             if (types.isSameType(mtype, sym.type)) {
  2469                return sym;
  2473         // create the desired method
  2474         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2475         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
  2476             @Override
  2477             public Symbol baseSymbol() {
  2478                 return spMethod;
  2480         };
  2481         polymorphicSignatureScope.enter(msym);
  2482         return msym;
  2485     /** Resolve a qualified method identifier, throw a fatal error if not
  2486      *  found.
  2487      *  @param pos       The position to use for error reporting.
  2488      *  @param env       The environment current at the method invocation.
  2489      *  @param site      The type of the qualifying expression, in which
  2490      *                   identifier is searched.
  2491      *  @param name      The identifier's name.
  2492      *  @param argtypes  The types of the invocation's value arguments.
  2493      *  @param typeargtypes  The types of the invocation's type arguments.
  2494      */
  2495     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2496                                         Type site, Name name,
  2497                                         List<Type> argtypes,
  2498                                         List<Type> typeargtypes) {
  2499         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2500         resolveContext.internalResolution = true;
  2501         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2502                 site, name, argtypes, typeargtypes);
  2503         if (sym.kind == MTH) return (MethodSymbol)sym;
  2504         else throw new FatalError(
  2505                  diags.fragment("fatal.err.cant.locate.meth",
  2506                                 name));
  2509     /** Resolve constructor.
  2510      *  @param pos       The position to use for error reporting.
  2511      *  @param env       The environment current at the constructor invocation.
  2512      *  @param site      The type of class for which a constructor is searched.
  2513      *  @param argtypes  The types of the constructor invocation's value
  2514      *                   arguments.
  2515      *  @param typeargtypes  The types of the constructor invocation's type
  2516      *                   arguments.
  2517      */
  2518     Symbol resolveConstructor(DiagnosticPosition pos,
  2519                               Env<AttrContext> env,
  2520                               Type site,
  2521                               List<Type> argtypes,
  2522                               List<Type> typeargtypes) {
  2523         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2526     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2527                               final DiagnosticPosition pos,
  2528                               Env<AttrContext> env,
  2529                               Type site,
  2530                               List<Type> argtypes,
  2531                               List<Type> typeargtypes) {
  2532         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2533             @Override
  2534             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2535                 return findConstructor(pos, env, site, argtypes, typeargtypes,
  2536                         phase.isBoxingRequired(),
  2537                         phase.isVarargsRequired());
  2539         });
  2542     /** Resolve a constructor, throw a fatal error if not found.
  2543      *  @param pos       The position to use for error reporting.
  2544      *  @param env       The environment current at the method invocation.
  2545      *  @param site      The type to be constructed.
  2546      *  @param argtypes  The types of the invocation's value arguments.
  2547      *  @param typeargtypes  The types of the invocation's type arguments.
  2548      */
  2549     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2550                                         Type site,
  2551                                         List<Type> argtypes,
  2552                                         List<Type> typeargtypes) {
  2553         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2554         resolveContext.internalResolution = true;
  2555         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2556         if (sym.kind == MTH) return (MethodSymbol)sym;
  2557         else throw new FatalError(
  2558                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2561     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2562                               Type site, List<Type> argtypes,
  2563                               List<Type> typeargtypes,
  2564                               boolean allowBoxing,
  2565                               boolean useVarargs) {
  2566         Symbol sym = findMethod(env, site,
  2567                                     names.init, argtypes,
  2568                                     typeargtypes, allowBoxing,
  2569                                     useVarargs, false);
  2570         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2571         return sym;
  2574     /** Resolve constructor using diamond inference.
  2575      *  @param pos       The position to use for error reporting.
  2576      *  @param env       The environment current at the constructor invocation.
  2577      *  @param site      The type of class for which a constructor is searched.
  2578      *                   The scope of this class has been touched in attribution.
  2579      *  @param argtypes  The types of the constructor invocation's value
  2580      *                   arguments.
  2581      *  @param typeargtypes  The types of the constructor invocation's type
  2582      *                   arguments.
  2583      */
  2584     Symbol resolveDiamond(DiagnosticPosition pos,
  2585                               Env<AttrContext> env,
  2586                               Type site,
  2587                               List<Type> argtypes,
  2588                               List<Type> typeargtypes) {
  2589         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
  2590                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
  2591                     @Override
  2592                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2593                         return findDiamond(env, site, argtypes, typeargtypes,
  2594                                 phase.isBoxingRequired(),
  2595                                 phase.isVarargsRequired());
  2597                     @Override
  2598                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2599                         if (sym.kind >= AMBIGUOUS) {
  2600                             if (sym.kind != WRONG_MTH && sym.kind != WRONG_MTHS) {
  2601                                 sym = super.access(env, pos, location, sym);
  2602                             } else {
  2603                                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
  2604                                                 ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
  2605                                                 null;
  2606                                 sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
  2607                                     @Override
  2608                                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2609                                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2610                                         String key = details == null ?
  2611                                             "cant.apply.diamond" :
  2612                                             "cant.apply.diamond.1";
  2613                                         return diags.create(dkind, log.currentSource(), pos, key,
  2614                                                 diags.fragment("diamond", site.tsym), details);
  2616                                 };
  2617                                 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
  2618                                 env.info.pendingResolutionPhase = currentResolutionContext.step;
  2621                         return sym;
  2622                     }});
  2625     /** This method scans all the constructor symbol in a given class scope -
  2626      *  assuming that the original scope contains a constructor of the kind:
  2627      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2628      *  a method check is executed against the modified constructor type:
  2629      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2630      *  inference. The inferred return type of the synthetic constructor IS
  2631      *  the inferred type for the diamond operator.
  2632      */
  2633     private Symbol findDiamond(Env<AttrContext> env,
  2634                               Type site,
  2635                               List<Type> argtypes,
  2636                               List<Type> typeargtypes,
  2637                               boolean allowBoxing,
  2638                               boolean useVarargs) {
  2639         Symbol bestSoFar = methodNotFound;
  2640         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2641              e.scope != null;
  2642              e = e.next()) {
  2643             final Symbol sym = e.sym;
  2644             //- System.out.println(" e " + e.sym);
  2645             if (sym.kind == MTH &&
  2646                 (sym.flags_field & SYNTHETIC) == 0) {
  2647                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2648                             ((ForAll)sym.type).tvars :
  2649                             List.<Type>nil();
  2650                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2651                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2652                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2653                         @Override
  2654                         public Symbol baseSymbol() {
  2655                             return sym;
  2657                     };
  2658                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2659                             newConstr,
  2660                             bestSoFar,
  2661                             allowBoxing,
  2662                             useVarargs,
  2663                             false);
  2666         return bestSoFar;
  2671     /** Resolve operator.
  2672      *  @param pos       The position to use for error reporting.
  2673      *  @param optag     The tag of the operation tree.
  2674      *  @param env       The environment current at the operation.
  2675      *  @param argtypes  The types of the operands.
  2676      */
  2677     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2678                            Env<AttrContext> env, List<Type> argtypes) {
  2679         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2680         try {
  2681             currentResolutionContext = new MethodResolutionContext();
  2682             Name name = treeinfo.operatorName(optag);
  2683             return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
  2684                     new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
  2685                 @Override
  2686                 Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2687                     return findMethod(env, site, name, argtypes, typeargtypes,
  2688                             phase.isBoxingRequired(),
  2689                             phase.isVarargsRequired(), true);
  2691                 @Override
  2692                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  2693                     return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2694                           false, argtypes, null);
  2696             });
  2697         } finally {
  2698             currentResolutionContext = prevResolutionContext;
  2702     /** Resolve operator.
  2703      *  @param pos       The position to use for error reporting.
  2704      *  @param optag     The tag of the operation tree.
  2705      *  @param env       The environment current at the operation.
  2706      *  @param arg       The type of the operand.
  2707      */
  2708     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2709         return resolveOperator(pos, optag, env, List.of(arg));
  2712     /** Resolve binary operator.
  2713      *  @param pos       The position to use for error reporting.
  2714      *  @param optag     The tag of the operation tree.
  2715      *  @param env       The environment current at the operation.
  2716      *  @param left      The types of the left operand.
  2717      *  @param right     The types of the right operand.
  2718      */
  2719     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2720                                  JCTree.Tag optag,
  2721                                  Env<AttrContext> env,
  2722                                  Type left,
  2723                                  Type right) {
  2724         return resolveOperator(pos, optag, env, List.of(left, right));
  2727     Symbol getMemberReference(DiagnosticPosition pos,
  2728             Env<AttrContext> env,
  2729             JCMemberReference referenceTree,
  2730             Type site,
  2731             Name name) {
  2733         site = types.capture(site);
  2735         ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
  2736                 referenceTree, site, name, List.<Type>nil(), null, VARARITY);
  2738         Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
  2739         Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
  2740                 nilMethodCheck, lookupHelper);
  2742         env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
  2744         return sym;
  2747     ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
  2748                                   Type site,
  2749                                   Name name,
  2750                                   List<Type> argtypes,
  2751                                   List<Type> typeargtypes,
  2752                                   MethodResolutionPhase maxPhase) {
  2753         ReferenceLookupHelper result;
  2754         if (!name.equals(names.init)) {
  2755             //method reference
  2756             result =
  2757                     new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  2758         } else {
  2759             if (site.hasTag(ARRAY)) {
  2760                 //array constructor reference
  2761                 result =
  2762                         new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2763             } else {
  2764                 //class constructor reference
  2765                 result =
  2766                         new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
  2769         return result;
  2772     Symbol resolveMemberReferenceByArity(Env<AttrContext> env,
  2773                                   JCMemberReference referenceTree,
  2774                                   Type site,
  2775                                   Name name,
  2776                                   List<Type> argtypes,
  2777                                   InferenceContext inferenceContext) {
  2779         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
  2780         site = types.capture(site);
  2782         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
  2783                 referenceTree, site, name, argtypes, null, VARARITY);
  2784         //step 1 - bound lookup
  2785         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2786         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym,
  2787                 arityMethodCheck, boundLookupHelper);
  2788         if (isStaticSelector &&
  2789             !name.equals(names.init) &&
  2790             !boundSym.isStatic() &&
  2791             boundSym.kind < ERRONEOUS) {
  2792             boundSym = methodNotFound;
  2795         //step 2 - unbound lookup
  2796         Symbol unboundSym = methodNotFound;
  2797         ReferenceLookupHelper unboundLookupHelper = null;
  2798         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2799         if (isStaticSelector) {
  2800             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2801             unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym,
  2802                     arityMethodCheck, unboundLookupHelper);
  2803             if (unboundSym.isStatic() &&
  2804                 unboundSym.kind < ERRONEOUS) {
  2805                 unboundSym = methodNotFound;
  2809         //merge results
  2810         Symbol bestSym = choose(boundSym, unboundSym);
  2811         env.info.pendingResolutionPhase = bestSym == unboundSym ?
  2812                 unboundEnv.info.pendingResolutionPhase :
  2813                 boundEnv.info.pendingResolutionPhase;
  2815         return bestSym;
  2818     /**
  2819      * Resolution of member references is typically done as a single
  2820      * overload resolution step, where the argument types A are inferred from
  2821      * the target functional descriptor.
  2823      * If the member reference is a method reference with a type qualifier,
  2824      * a two-step lookup process is performed. The first step uses the
  2825      * expected argument list A, while the second step discards the first
  2826      * type from A (which is treated as a receiver type).
  2828      * There are two cases in which inference is performed: (i) if the member
  2829      * reference is a constructor reference and the qualifier type is raw - in
  2830      * which case diamond inference is used to infer a parameterization for the
  2831      * type qualifier; (ii) if the member reference is an unbound reference
  2832      * where the type qualifier is raw - in that case, during the unbound lookup
  2833      * the receiver argument type is used to infer an instantiation for the raw
  2834      * qualifier type.
  2836      * When a multi-step resolution process is exploited, it is an error
  2837      * if two candidates are found (ambiguity).
  2839      * This routine returns a pair (T,S), where S is the member reference symbol,
  2840      * and T is the type of the class in which S is defined. This is necessary as
  2841      * the type T might be dynamically inferred (i.e. if constructor reference
  2842      * has a raw qualifier).
  2843      */
  2844     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
  2845                                   JCMemberReference referenceTree,
  2846                                   Type site,
  2847                                   Name name,
  2848                                   List<Type> argtypes,
  2849                                   List<Type> typeargtypes,
  2850                                   MethodCheck methodCheck,
  2851                                   InferenceContext inferenceContext,
  2852                                   AttrMode mode) {
  2854         site = types.capture(site);
  2855         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
  2856                 referenceTree, site, name, argtypes, typeargtypes, VARARITY);
  2858         //step 1 - bound lookup
  2859         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2860         Symbol origBoundSym;
  2861         boolean staticErrorForBound = false;
  2862         MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
  2863         boundSearchResolveContext.methodCheck = methodCheck;
  2864         Symbol boundSym = origBoundSym = lookupMethod(boundEnv, env.tree.pos(),
  2865                 site.tsym, boundSearchResolveContext, boundLookupHelper);
  2866         SearchResultKind boundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
  2867         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
  2868         boolean shouldCheckForStaticness = isStaticSelector &&
  2869                 referenceTree.getMode() == ReferenceMode.INVOKE;
  2870         if (boundSym.kind != WRONG_MTHS && boundSym.kind != WRONG_MTH) {
  2871             if (shouldCheckForStaticness) {
  2872                 if (!boundSym.isStatic()) {
  2873                     staticErrorForBound = true;
  2874                     if (hasAnotherApplicableMethod(
  2875                             boundSearchResolveContext, boundSym, true)) {
  2876                         boundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
  2877                     } else {
  2878                         boundSearchResultKind = SearchResultKind.BAD_MATCH;
  2879                         if (boundSym.kind < ERRONEOUS) {
  2880                             boundSym = methodWithCorrectStaticnessNotFound;
  2883                 } else if (boundSym.kind < ERRONEOUS) {
  2884                     boundSearchResultKind = SearchResultKind.GOOD_MATCH;
  2889         //step 2 - unbound lookup
  2890         Symbol origUnboundSym = null;
  2891         Symbol unboundSym = methodNotFound;
  2892         ReferenceLookupHelper unboundLookupHelper = null;
  2893         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2894         SearchResultKind unboundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
  2895         boolean staticErrorForUnbound = false;
  2896         if (isStaticSelector) {
  2897             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
  2898             MethodResolutionContext unboundSearchResolveContext =
  2899                     new MethodResolutionContext();
  2900             unboundSearchResolveContext.methodCheck = methodCheck;
  2901             unboundSym = origUnboundSym = lookupMethod(unboundEnv, env.tree.pos(),
  2902                     site.tsym, unboundSearchResolveContext, unboundLookupHelper);
  2904             if (unboundSym.kind != WRONG_MTH && unboundSym.kind != WRONG_MTHS) {
  2905                 if (shouldCheckForStaticness) {
  2906                     if (unboundSym.isStatic()) {
  2907                         staticErrorForUnbound = true;
  2908                         if (hasAnotherApplicableMethod(
  2909                                 unboundSearchResolveContext, unboundSym, false)) {
  2910                             unboundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
  2911                         } else {
  2912                             unboundSearchResultKind = SearchResultKind.BAD_MATCH;
  2913                             if (unboundSym.kind < ERRONEOUS) {
  2914                                 unboundSym = methodWithCorrectStaticnessNotFound;
  2917                     } else if (unboundSym.kind < ERRONEOUS) {
  2918                         unboundSearchResultKind = SearchResultKind.GOOD_MATCH;
  2924         //merge results
  2925         Pair<Symbol, ReferenceLookupHelper> res;
  2926         Symbol bestSym = choose(boundSym, unboundSym);
  2927         if (bestSym.kind < ERRONEOUS && (staticErrorForBound || staticErrorForUnbound)) {
  2928             if (staticErrorForBound) {
  2929                 boundSym = methodWithCorrectStaticnessNotFound;
  2931             if (staticErrorForUnbound) {
  2932                 unboundSym = methodWithCorrectStaticnessNotFound;
  2934             bestSym = choose(boundSym, unboundSym);
  2936         if (bestSym == methodWithCorrectStaticnessNotFound && mode == AttrMode.CHECK) {
  2937             Symbol symToPrint = origBoundSym;
  2938             String errorFragmentToPrint = "non-static.cant.be.ref";
  2939             if (staticErrorForBound && staticErrorForUnbound) {
  2940                 if (unboundSearchResultKind == SearchResultKind.BAD_MATCH_MORE_SPECIFIC) {
  2941                     symToPrint = origUnboundSym;
  2942                     errorFragmentToPrint = "static.method.in.unbound.lookup";
  2944             } else {
  2945                 if (!staticErrorForBound) {
  2946                     symToPrint = origUnboundSym;
  2947                     errorFragmentToPrint = "static.method.in.unbound.lookup";
  2950             log.error(referenceTree.expr.pos(), "invalid.mref",
  2951                 Kinds.kindName(referenceTree.getMode()),
  2952                 diags.fragment(errorFragmentToPrint,
  2953                 Kinds.kindName(symToPrint), symToPrint));
  2955         res = new Pair<>(bestSym,
  2956                 bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
  2957         env.info.pendingResolutionPhase = bestSym == unboundSym ?
  2958                 unboundEnv.info.pendingResolutionPhase :
  2959                 boundEnv.info.pendingResolutionPhase;
  2961         return res;
  2964     enum SearchResultKind {
  2965         GOOD_MATCH,                 //type I
  2966         BAD_MATCH_MORE_SPECIFIC,    //type II
  2967         BAD_MATCH,                  //type III
  2968         NOT_APPLICABLE_MATCH        //type IV
  2971     boolean hasAnotherApplicableMethod(MethodResolutionContext resolutionContext,
  2972             Symbol bestSoFar, boolean staticMth) {
  2973         for (Candidate c : resolutionContext.candidates) {
  2974             if (resolutionContext.step != c.step ||
  2975                 !c.isApplicable() ||
  2976                 c.sym == bestSoFar) {
  2977                 continue;
  2978             } else {
  2979                 if (c.sym.isStatic() == staticMth) {
  2980                     return true;
  2984         return false;
  2987     //where
  2988         private Symbol choose(Symbol boundSym, Symbol unboundSym) {
  2989             if (lookupSuccess(boundSym) && lookupSuccess(unboundSym)) {
  2990                 return ambiguityError(boundSym, unboundSym);
  2991             } else if (lookupSuccess(boundSym) ||
  2992                     (canIgnore(unboundSym) && !canIgnore(boundSym))) {
  2993                 return boundSym;
  2994             } else if (lookupSuccess(unboundSym) ||
  2995                     (canIgnore(boundSym) && !canIgnore(unboundSym))) {
  2996                 return unboundSym;
  2997             } else {
  2998                 return boundSym;
  3002         private boolean lookupSuccess(Symbol s) {
  3003             return s.kind == MTH || s.kind == AMBIGUOUS;
  3006         private boolean canIgnore(Symbol s) {
  3007             switch (s.kind) {
  3008                 case ABSENT_MTH:
  3009                     return true;
  3010                 case WRONG_MTH:
  3011                     InapplicableSymbolError errSym =
  3012                             (InapplicableSymbolError)s.baseSymbol();
  3013                     return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
  3014                             .matches(errSym.errCandidate().snd);
  3015                 case WRONG_MTHS:
  3016                     InapplicableSymbolsError errSyms =
  3017                             (InapplicableSymbolsError)s.baseSymbol();
  3018                     return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
  3019                 case WRONG_STATICNESS:
  3020                     return false;
  3021                 default:
  3022                     return false;
  3026     /**
  3027      * Helper for defining custom method-like lookup logic; a lookup helper
  3028      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  3029      * lookup result (this step might result in compiler diagnostics to be generated)
  3030      */
  3031     abstract class LookupHelper {
  3033         /** name of the symbol to lookup */
  3034         Name name;
  3036         /** location in which the lookup takes place */
  3037         Type site;
  3039         /** actual types used during the lookup */
  3040         List<Type> argtypes;
  3042         /** type arguments used during the lookup */
  3043         List<Type> typeargtypes;
  3045         /** Max overload resolution phase handled by this helper */
  3046         MethodResolutionPhase maxPhase;
  3048         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3049             this.name = name;
  3050             this.site = site;
  3051             this.argtypes = argtypes;
  3052             this.typeargtypes = typeargtypes;
  3053             this.maxPhase = maxPhase;
  3056         /**
  3057          * Should lookup stop at given phase with given result
  3058          */
  3059         final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
  3060             return phase.ordinal() > maxPhase.ordinal() ||
  3061                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
  3064         /**
  3065          * Search for a symbol under a given overload resolution phase - this method
  3066          * is usually called several times, once per each overload resolution phase
  3067          */
  3068         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  3070         /**
  3071          * Dump overload resolution info
  3072          */
  3073         void debug(DiagnosticPosition pos, Symbol sym) {
  3074             //do nothing
  3077         /**
  3078          * Validate the result of the lookup
  3079          */
  3080         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
  3083     abstract class BasicLookupHelper extends LookupHelper {
  3085         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  3086             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
  3089         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3090             super(name, site, argtypes, typeargtypes, maxPhase);
  3093         @Override
  3094         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3095             Symbol sym = doLookup(env, phase);
  3096             if (sym.kind == AMBIGUOUS) {
  3097                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
  3098                 sym = a_err.mergeAbstracts(site);
  3100             return sym;
  3103         abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
  3105         @Override
  3106         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  3107             if (sym.kind >= AMBIGUOUS) {
  3108                 //if nothing is found return the 'first' error
  3109                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
  3111             return sym;
  3114         @Override
  3115         void debug(DiagnosticPosition pos, Symbol sym) {
  3116             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
  3120     /**
  3121      * Helper class for member reference lookup. A reference lookup helper
  3122      * defines the basic logic for member reference lookup; a method gives
  3123      * access to an 'unbound' helper used to perform an unbound member
  3124      * reference lookup.
  3125      */
  3126     abstract class ReferenceLookupHelper extends LookupHelper {
  3128         /** The member reference tree */
  3129         JCMemberReference referenceTree;
  3131         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3132                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3133             super(name, site, argtypes, typeargtypes, maxPhase);
  3134             this.referenceTree = referenceTree;
  3137         /**
  3138          * Returns an unbound version of this lookup helper. By default, this
  3139          * method returns an dummy lookup helper.
  3140          */
  3141         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3142             //dummy loopkup helper that always return 'methodNotFound'
  3143             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
  3144                 @Override
  3145                 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3146                     return this;
  3148                 @Override
  3149                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3150                     return methodNotFound;
  3152                 @Override
  3153                 ReferenceKind referenceKind(Symbol sym) {
  3154                     Assert.error();
  3155                     return null;
  3157             };
  3160         /**
  3161          * Get the kind of the member reference
  3162          */
  3163         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  3165         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
  3166             if (sym.kind == AMBIGUOUS) {
  3167                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
  3168                 sym = a_err.mergeAbstracts(site);
  3170             //skip error reporting
  3171             return sym;
  3175     /**
  3176      * Helper class for method reference lookup. The lookup logic is based
  3177      * upon Resolve.findMethod; in certain cases, this helper class has a
  3178      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  3179      * In such cases, non-static lookup results are thrown away.
  3180      */
  3181     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  3183         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3184                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3185             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
  3188         @Override
  3189         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3190             return findMethod(env, site, name, argtypes, typeargtypes,
  3191                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  3194         @Override
  3195         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3196             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  3197                     argtypes.nonEmpty() &&
  3198                     (argtypes.head.hasTag(NONE) ||
  3199                     types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
  3200                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  3201                         site, argtypes, typeargtypes, maxPhase);
  3202             } else {
  3203                 return super.unboundLookup(inferenceContext);
  3207         @Override
  3208         ReferenceKind referenceKind(Symbol sym) {
  3209             if (sym.isStatic()) {
  3210                 return ReferenceKind.STATIC;
  3211             } else {
  3212                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  3213                 return selName != null && selName == names._super ?
  3214                         ReferenceKind.SUPER :
  3215                         ReferenceKind.BOUND;
  3220     /**
  3221      * Helper class for unbound method reference lookup. Essentially the same
  3222      * as the basic method reference lookup helper; main difference is that static
  3223      * lookup results are thrown away. If qualifier type is raw, an attempt to
  3224      * infer a parameterized type is made using the first actual argument (that
  3225      * would otherwise be ignored during the lookup).
  3226      */
  3227     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  3229         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  3230                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3231             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
  3232             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
  3233                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
  3234                 this.site = types.capture(asSuperSite);
  3238         @Override
  3239         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
  3240             return this;
  3243         @Override
  3244         ReferenceKind referenceKind(Symbol sym) {
  3245             return ReferenceKind.UNBOUND;
  3249     /**
  3250      * Helper class for array constructor lookup; an array constructor lookup
  3251      * is simulated by looking up a method that returns the array type specified
  3252      * as qualifier, and that accepts a single int parameter (size of the array).
  3253      */
  3254     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  3256         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  3257                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3258             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  3261         @Override
  3262         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3263             Scope sc = new Scope(syms.arrayClass);
  3264             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
  3265             arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
  3266             sc.enter(arrayConstr);
  3267             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
  3270         @Override
  3271         ReferenceKind referenceKind(Symbol sym) {
  3272             return ReferenceKind.ARRAY_CTOR;
  3276     /**
  3277      * Helper class for constructor reference lookup. The lookup logic is based
  3278      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  3279      * whether the constructor reference needs diamond inference (this is the case
  3280      * if the qualifier type is raw). A special erroneous symbol is returned
  3281      * if the lookup returns the constructor of an inner class and there's no
  3282      * enclosing instance in scope.
  3283      */
  3284     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  3286         boolean needsInference;
  3288         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  3289                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
  3290             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
  3291             if (site.isRaw()) {
  3292                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  3293                 needsInference = true;
  3297         @Override
  3298         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  3299             Symbol sym = needsInference ?
  3300                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  3301                 findMethod(env, site, name, argtypes, typeargtypes,
  3302                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  3303             return sym.kind != MTH ||
  3304                           site.getEnclosingType().hasTag(NONE) ||
  3305                           hasEnclosingInstance(env, site) ?
  3306                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  3307                     @Override
  3308                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  3309                        return diags.create(dkind, log.currentSource(), pos,
  3310                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  3312                 };
  3315         @Override
  3316         ReferenceKind referenceKind(Symbol sym) {
  3317             return site.getEnclosingType().hasTag(NONE) ?
  3318                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  3322     /**
  3323      * Main overload resolution routine. On each overload resolution step, a
  3324      * lookup helper class is used to perform the method/constructor lookup;
  3325      * at the end of the lookup, the helper is used to validate the results
  3326      * (this last step might trigger overload resolution diagnostics).
  3327      */
  3328     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
  3329         MethodResolutionContext resolveContext = new MethodResolutionContext();
  3330         resolveContext.methodCheck = methodCheck;
  3331         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
  3334     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
  3335             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
  3336         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  3337         try {
  3338             Symbol bestSoFar = methodNotFound;
  3339             currentResolutionContext = resolveContext;
  3340             for (MethodResolutionPhase phase : methodResolutionSteps) {
  3341                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
  3342                         lookupHelper.shouldStop(bestSoFar, phase)) break;
  3343                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
  3344                 Symbol prevBest = bestSoFar;
  3345                 currentResolutionContext.step = phase;
  3346                 Symbol sym = lookupHelper.lookup(env, phase);
  3347                 lookupHelper.debug(pos, sym);
  3348                 bestSoFar = phase.mergeResults(bestSoFar, sym);
  3349                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
  3351             return lookupHelper.access(env, pos, location, bestSoFar);
  3352         } finally {
  3353             currentResolutionContext = prevResolutionContext;
  3357     /**
  3358      * Resolve `c.name' where name == this or name == super.
  3359      * @param pos           The position to use for error reporting.
  3360      * @param env           The environment current at the expression.
  3361      * @param c             The qualifier.
  3362      * @param name          The identifier's name.
  3363      */
  3364     Symbol resolveSelf(DiagnosticPosition pos,
  3365                        Env<AttrContext> env,
  3366                        TypeSymbol c,
  3367                        Name name) {
  3368         Env<AttrContext> env1 = env;
  3369         boolean staticOnly = false;
  3370         while (env1.outer != null) {
  3371             if (isStatic(env1)) staticOnly = true;
  3372             if (env1.enclClass.sym == c) {
  3373                 Symbol sym = env1.info.scope.lookup(name).sym;
  3374                 if (sym != null) {
  3375                     if (staticOnly) sym = new StaticError(sym);
  3376                     return accessBase(sym, pos, env.enclClass.sym.type,
  3377                                   name, true);
  3380             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  3381             env1 = env1.outer;
  3383         if (c.isInterface() &&
  3384             name == names._super && !isStatic(env) &&
  3385             types.isDirectSuperInterface(c, env.enclClass.sym)) {
  3386             //this might be a default super call if one of the superinterfaces is 'c'
  3387             for (Type t : pruneInterfaces(env.enclClass.type)) {
  3388                 if (t.tsym == c) {
  3389                     env.info.defaultSuperCallSite = t;
  3390                     return new VarSymbol(0, names._super,
  3391                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  3394             //find a direct superinterface that is a subtype of 'c'
  3395             for (Type i : types.interfaces(env.enclClass.type)) {
  3396                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  3397                     log.error(pos, "illegal.default.super.call", c,
  3398                             diags.fragment("redundant.supertype", c, i));
  3399                     return syms.errSymbol;
  3402             Assert.error();
  3404         log.error(pos, "not.encl.class", c);
  3405         return syms.errSymbol;
  3407     //where
  3408     private List<Type> pruneInterfaces(Type t) {
  3409         ListBuffer<Type> result = new ListBuffer<>();
  3410         for (Type t1 : types.interfaces(t)) {
  3411             boolean shouldAdd = true;
  3412             for (Type t2 : types.interfaces(t)) {
  3413                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  3414                     shouldAdd = false;
  3417             if (shouldAdd) {
  3418                 result.append(t1);
  3421         return result.toList();
  3425     /**
  3426      * Resolve `c.this' for an enclosing class c that contains the
  3427      * named member.
  3428      * @param pos           The position to use for error reporting.
  3429      * @param env           The environment current at the expression.
  3430      * @param member        The member that must be contained in the result.
  3431      */
  3432     Symbol resolveSelfContaining(DiagnosticPosition pos,
  3433                                  Env<AttrContext> env,
  3434                                  Symbol member,
  3435                                  boolean isSuperCall) {
  3436         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  3437         if (sym == null) {
  3438             log.error(pos, "encl.class.required", member);
  3439             return syms.errSymbol;
  3440         } else {
  3441             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  3445     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  3446         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  3447         return encl != null && encl.kind < ERRONEOUS;
  3450     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  3451                                  Symbol member,
  3452                                  boolean isSuperCall) {
  3453         Name name = names._this;
  3454         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  3455         boolean staticOnly = false;
  3456         if (env1 != null) {
  3457             while (env1 != null && env1.outer != null) {
  3458                 if (isStatic(env1)) staticOnly = true;
  3459                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  3460                     Symbol sym = env1.info.scope.lookup(name).sym;
  3461                     if (sym != null) {
  3462                         if (staticOnly) sym = new StaticError(sym);
  3463                         return sym;
  3466                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  3467                     staticOnly = true;
  3468                 env1 = env1.outer;
  3471         return null;
  3474     /**
  3475      * Resolve an appropriate implicit this instance for t's container.
  3476      * JLS 8.8.5.1 and 15.9.2
  3477      */
  3478     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  3479         return resolveImplicitThis(pos, env, t, false);
  3482     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  3483         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  3484                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  3485                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  3486         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  3487             log.error(pos, "cant.ref.before.ctor.called", "this");
  3488         return thisType;
  3491 /* ***************************************************************************
  3492  *  ResolveError classes, indicating error situations when accessing symbols
  3493  ****************************************************************************/
  3495     //used by TransTypes when checking target type of synthetic cast
  3496     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  3497         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  3498         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  3500     //where
  3501     private void logResolveError(ResolveError error,
  3502             DiagnosticPosition pos,
  3503             Symbol location,
  3504             Type site,
  3505             Name name,
  3506             List<Type> argtypes,
  3507             List<Type> typeargtypes) {
  3508         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3509                 pos, location, site, name, argtypes, typeargtypes);
  3510         if (d != null) {
  3511             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  3512             log.report(d);
  3516     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  3518     public Object methodArguments(List<Type> argtypes) {
  3519         if (argtypes == null || argtypes.isEmpty()) {
  3520             return noArgs;
  3521         } else {
  3522             ListBuffer<Object> diagArgs = new ListBuffer<>();
  3523             for (Type t : argtypes) {
  3524                 if (t.hasTag(DEFERRED)) {
  3525                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  3526                 } else {
  3527                     diagArgs.append(t);
  3530             return diagArgs;
  3534     /**
  3535      * Root class for resolution errors. Subclass of ResolveError
  3536      * represent a different kinds of resolution error - as such they must
  3537      * specify how they map into concrete compiler diagnostics.
  3538      */
  3539     abstract class ResolveError extends Symbol {
  3541         /** The name of the kind of error, for debugging only. */
  3542         final String debugName;
  3544         ResolveError(int kind, String debugName) {
  3545             super(kind, 0, null, null, null);
  3546             this.debugName = debugName;
  3549         @Override
  3550         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  3551             throw new AssertionError();
  3554         @Override
  3555         public String toString() {
  3556             return debugName;
  3559         @Override
  3560         public boolean exists() {
  3561             return false;
  3564         @Override
  3565         public boolean isStatic() {
  3566             return false;
  3569         /**
  3570          * Create an external representation for this erroneous symbol to be
  3571          * used during attribution - by default this returns the symbol of a
  3572          * brand new error type which stores the original type found
  3573          * during resolution.
  3575          * @param name     the name used during resolution
  3576          * @param location the location from which the symbol is accessed
  3577          */
  3578         protected Symbol access(Name name, TypeSymbol location) {
  3579             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3582         /**
  3583          * Create a diagnostic representing this resolution error.
  3585          * @param dkind     The kind of the diagnostic to be created (e.g error).
  3586          * @param pos       The position to be used for error reporting.
  3587          * @param site      The original type from where the selection took place.
  3588          * @param name      The name of the symbol to be resolved.
  3589          * @param argtypes  The invocation's value arguments,
  3590          *                  if we looked for a method.
  3591          * @param typeargtypes  The invocation's type arguments,
  3592          *                      if we looked for a method.
  3593          */
  3594         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3595                 DiagnosticPosition pos,
  3596                 Symbol location,
  3597                 Type site,
  3598                 Name name,
  3599                 List<Type> argtypes,
  3600                 List<Type> typeargtypes);
  3603     /**
  3604      * This class is the root class of all resolution errors caused by
  3605      * an invalid symbol being found during resolution.
  3606      */
  3607     abstract class InvalidSymbolError extends ResolveError {
  3609         /** The invalid symbol found during resolution */
  3610         Symbol sym;
  3612         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  3613             super(kind, debugName);
  3614             this.sym = sym;
  3617         @Override
  3618         public boolean exists() {
  3619             return true;
  3622         @Override
  3623         public String toString() {
  3624              return super.toString() + " wrongSym=" + sym;
  3627         @Override
  3628         public Symbol access(Name name, TypeSymbol location) {
  3629             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3630                 return types.createErrorType(name, location, sym.type).tsym;
  3631             else
  3632                 return sym;
  3636     /**
  3637      * InvalidSymbolError error class indicating that a symbol matching a
  3638      * given name does not exists in a given site.
  3639      */
  3640     class SymbolNotFoundError extends ResolveError {
  3642         SymbolNotFoundError(int kind) {
  3643             this(kind, "symbol not found error");
  3646         SymbolNotFoundError(int kind, String debugName) {
  3647             super(kind, debugName);
  3650         @Override
  3651         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3652                 DiagnosticPosition pos,
  3653                 Symbol location,
  3654                 Type site,
  3655                 Name name,
  3656                 List<Type> argtypes,
  3657                 List<Type> typeargtypes) {
  3658             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3659             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3660             if (name == names.error)
  3661                 return null;
  3663             if (syms.operatorNames.contains(name)) {
  3664                 boolean isUnaryOp = argtypes.size() == 1;
  3665                 String key = argtypes.size() == 1 ?
  3666                     "operator.cant.be.applied" :
  3667                     "operator.cant.be.applied.1";
  3668                 Type first = argtypes.head;
  3669                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3670                 return diags.create(dkind, log.currentSource(), pos,
  3671                         key, name, first, second);
  3673             boolean hasLocation = false;
  3674             if (location == null) {
  3675                 location = site.tsym;
  3677             if (!location.name.isEmpty()) {
  3678                 if (location.kind == PCK && !site.tsym.exists()) {
  3679                     return diags.create(dkind, log.currentSource(), pos,
  3680                         "doesnt.exist", location);
  3682                 hasLocation = !location.name.equals(names._this) &&
  3683                         !location.name.equals(names._super);
  3685             boolean isConstructor = (kind == ABSENT_MTH || kind == WRONG_STATICNESS) &&
  3686                     name == names.init;
  3687             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3688             Name idname = isConstructor ? site.tsym.name : name;
  3689             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3690             if (hasLocation) {
  3691                 return diags.create(dkind, log.currentSource(), pos,
  3692                         errKey, kindname, idname, //symbol kindname, name
  3693                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
  3694                         getLocationDiag(location, site)); //location kindname, type
  3696             else {
  3697                 return diags.create(dkind, log.currentSource(), pos,
  3698                         errKey, kindname, idname, //symbol kindname, name
  3699                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
  3702         //where
  3703         private Object args(List<Type> args) {
  3704             return args.isEmpty() ? args : methodArguments(args);
  3707         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3708             String key = "cant.resolve";
  3709             String suffix = hasLocation ? ".location" : "";
  3710             switch (kindname) {
  3711                 case METHOD:
  3712                 case CONSTRUCTOR: {
  3713                     suffix += ".args";
  3714                     suffix += hasTypeArgs ? ".params" : "";
  3717             return key + suffix;
  3719         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3720             if (location.kind == VAR) {
  3721                 return diags.fragment("location.1",
  3722                     kindName(location),
  3723                     location,
  3724                     location.type);
  3725             } else {
  3726                 return diags.fragment("location",
  3727                     typeKindName(site),
  3728                     site,
  3729                     null);
  3734     /**
  3735      * InvalidSymbolError error class indicating that a given symbol
  3736      * (either a method, a constructor or an operand) is not applicable
  3737      * given an actual arguments/type argument list.
  3738      */
  3739     class InapplicableSymbolError extends ResolveError {
  3741         protected MethodResolutionContext resolveContext;
  3743         InapplicableSymbolError(MethodResolutionContext context) {
  3744             this(WRONG_MTH, "inapplicable symbol error", context);
  3747         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3748             super(kind, debugName);
  3749             this.resolveContext = context;
  3752         @Override
  3753         public String toString() {
  3754             return super.toString();
  3757         @Override
  3758         public boolean exists() {
  3759             return true;
  3762         @Override
  3763         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3764                 DiagnosticPosition pos,
  3765                 Symbol location,
  3766                 Type site,
  3767                 Name name,
  3768                 List<Type> argtypes,
  3769                 List<Type> typeargtypes) {
  3770             if (name == names.error)
  3771                 return null;
  3773             if (syms.operatorNames.contains(name)) {
  3774                 boolean isUnaryOp = argtypes.size() == 1;
  3775                 String key = argtypes.size() == 1 ?
  3776                     "operator.cant.be.applied" :
  3777                     "operator.cant.be.applied.1";
  3778                 Type first = argtypes.head;
  3779                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3780                 return diags.create(dkind, log.currentSource(), pos,
  3781                         key, name, first, second);
  3783             else {
  3784                 Pair<Symbol, JCDiagnostic> c = errCandidate();
  3785                 if (compactMethodDiags) {
  3786                     for (Map.Entry<Template, DiagnosticRewriter> _entry :
  3787                             MethodResolutionDiagHelper.rewriters.entrySet()) {
  3788                         if (_entry.getKey().matches(c.snd)) {
  3789                             JCDiagnostic simpleDiag =
  3790                                     _entry.getValue().rewriteDiagnostic(diags, pos,
  3791                                         log.currentSource(), dkind, c.snd);
  3792                             simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
  3793                             return simpleDiag;
  3797                 Symbol ws = c.fst.asMemberOf(site, types);
  3798                 return diags.create(dkind, log.currentSource(), pos,
  3799                           "cant.apply.symbol",
  3800                           kindName(ws),
  3801                           ws.name == names.init ? ws.owner.name : ws.name,
  3802                           methodArguments(ws.type.getParameterTypes()),
  3803                           methodArguments(argtypes),
  3804                           kindName(ws.owner),
  3805                           ws.owner.type,
  3806                           c.snd);
  3810         @Override
  3811         public Symbol access(Name name, TypeSymbol location) {
  3812             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3815         protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3816             Candidate bestSoFar = null;
  3817             for (Candidate c : resolveContext.candidates) {
  3818                 if (c.isApplicable()) continue;
  3819                 bestSoFar = c;
  3821             Assert.checkNonNull(bestSoFar);
  3822             return new Pair<Symbol, JCDiagnostic>(bestSoFar.sym, bestSoFar.details);
  3826     /**
  3827      * ResolveError error class indicating that a set of symbols
  3828      * (either methods, constructors or operands) is not applicable
  3829      * given an actual arguments/type argument list.
  3830      */
  3831     class InapplicableSymbolsError extends InapplicableSymbolError {
  3833         InapplicableSymbolsError(MethodResolutionContext context) {
  3834             super(WRONG_MTHS, "inapplicable symbols", context);
  3837         @Override
  3838         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3839                 DiagnosticPosition pos,
  3840                 Symbol location,
  3841                 Type site,
  3842                 Name name,
  3843                 List<Type> argtypes,
  3844                 List<Type> typeargtypes) {
  3845             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
  3846             Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
  3847                     filterCandidates(candidatesMap) :
  3848                     mapCandidates();
  3849             if (filteredCandidates.isEmpty()) {
  3850                 filteredCandidates = candidatesMap;
  3852             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
  3853             if (filteredCandidates.size() > 1) {
  3854                 JCDiagnostic err = diags.create(dkind,
  3855                         null,
  3856                         truncatedDiag ?
  3857                             EnumSet.of(DiagnosticFlag.COMPRESSED) :
  3858                             EnumSet.noneOf(DiagnosticFlag.class),
  3859                         log.currentSource(),
  3860                         pos,
  3861                         "cant.apply.symbols",
  3862                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3863                         name == names.init ? site.tsym.name : name,
  3864                         methodArguments(argtypes));
  3865                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
  3866             } else if (filteredCandidates.size() == 1) {
  3867                 Map.Entry<Symbol, JCDiagnostic> _e =
  3868                                 filteredCandidates.entrySet().iterator().next();
  3869                 final Pair<Symbol, JCDiagnostic> p = new Pair<Symbol, JCDiagnostic>(_e.getKey(), _e.getValue());
  3870                 JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
  3871                     @Override
  3872                     protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3873                         return p;
  3875                 }.getDiagnostic(dkind, pos,
  3876                     location, site, name, argtypes, typeargtypes);
  3877                 if (truncatedDiag) {
  3878                     d.setFlag(DiagnosticFlag.COMPRESSED);
  3880                 return d;
  3881             } else {
  3882                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3883                     location, site, name, argtypes, typeargtypes);
  3886         //where
  3887             private Map<Symbol, JCDiagnostic> mapCandidates() {
  3888                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3889                 for (Candidate c : resolveContext.candidates) {
  3890                     if (c.isApplicable()) continue;
  3891                     candidates.put(c.sym, c.details);
  3893                 return candidates;
  3896             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
  3897                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
  3898                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3899                     JCDiagnostic d = _entry.getValue();
  3900                     if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
  3901                         candidates.put(_entry.getKey(), d);
  3904                 return candidates;
  3907             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
  3908                 List<JCDiagnostic> details = List.nil();
  3909                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
  3910                     Symbol sym = _entry.getKey();
  3911                     JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3912                             Kinds.kindName(sym),
  3913                             sym.location(site, types),
  3914                             sym.asMemberOf(site, types),
  3915                             _entry.getValue());
  3916                     details = details.prepend(detailDiag);
  3918                 //typically members are visited in reverse order (see Scope)
  3919                 //so we need to reverse the candidate list so that candidates
  3920                 //conform to source order
  3921                 return details;
  3925     /**
  3926      * An InvalidSymbolError error class indicating that a symbol is not
  3927      * accessible from a given site
  3928      */
  3929     class AccessError extends InvalidSymbolError {
  3931         private Env<AttrContext> env;
  3932         private Type site;
  3934         AccessError(Symbol sym) {
  3935             this(null, null, sym);
  3938         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3939             super(HIDDEN, sym, "access error");
  3940             this.env = env;
  3941             this.site = site;
  3942             if (debugResolve)
  3943                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3946         @Override
  3947         public boolean exists() {
  3948             return false;
  3951         @Override
  3952         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3953                 DiagnosticPosition pos,
  3954                 Symbol location,
  3955                 Type site,
  3956                 Name name,
  3957                 List<Type> argtypes,
  3958                 List<Type> typeargtypes) {
  3959             if (sym.owner.type.hasTag(ERROR))
  3960                 return null;
  3962             if (sym.name == names.init && sym.owner != site.tsym) {
  3963                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3964                         pos, location, site, name, argtypes, typeargtypes);
  3966             else if ((sym.flags() & PUBLIC) != 0
  3967                 || (env != null && this.site != null
  3968                     && !isAccessible(env, this.site))) {
  3969                 return diags.create(dkind, log.currentSource(),
  3970                         pos, "not.def.access.class.intf.cant.access",
  3971                     sym, sym.location());
  3973             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3974                 return diags.create(dkind, log.currentSource(),
  3975                         pos, "report.access", sym,
  3976                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3977                         sym.location());
  3979             else {
  3980                 return diags.create(dkind, log.currentSource(),
  3981                         pos, "not.def.public.cant.access", sym, sym.location());
  3986     /**
  3987      * InvalidSymbolError error class indicating that an instance member
  3988      * has erroneously been accessed from a static context.
  3989      */
  3990     class StaticError extends InvalidSymbolError {
  3992         StaticError(Symbol sym) {
  3993             super(STATICERR, sym, "static error");
  3996         @Override
  3997         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3998                 DiagnosticPosition pos,
  3999                 Symbol location,
  4000                 Type site,
  4001                 Name name,
  4002                 List<Type> argtypes,
  4003                 List<Type> typeargtypes) {
  4004             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  4005                 ? types.erasure(sym.type).tsym
  4006                 : sym);
  4007             return diags.create(dkind, log.currentSource(), pos,
  4008                     "non-static.cant.be.ref", kindName(sym), errSym);
  4012     /**
  4013      * InvalidSymbolError error class indicating that a pair of symbols
  4014      * (either methods, constructors or operands) are ambiguous
  4015      * given an actual arguments/type argument list.
  4016      */
  4017     class AmbiguityError extends ResolveError {
  4019         /** The other maximally specific symbol */
  4020         List<Symbol> ambiguousSyms = List.nil();
  4022         @Override
  4023         public boolean exists() {
  4024             return true;
  4027         AmbiguityError(Symbol sym1, Symbol sym2) {
  4028             super(AMBIGUOUS, "ambiguity error");
  4029             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
  4032         private List<Symbol> flatten(Symbol sym) {
  4033             if (sym.kind == AMBIGUOUS) {
  4034                 return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
  4035             } else {
  4036                 return List.of(sym);
  4040         AmbiguityError addAmbiguousSymbol(Symbol s) {
  4041             ambiguousSyms = ambiguousSyms.prepend(s);
  4042             return this;
  4045         @Override
  4046         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  4047                 DiagnosticPosition pos,
  4048                 Symbol location,
  4049                 Type site,
  4050                 Name name,
  4051                 List<Type> argtypes,
  4052                 List<Type> typeargtypes) {
  4053             List<Symbol> diagSyms = ambiguousSyms.reverse();
  4054             Symbol s1 = diagSyms.head;
  4055             Symbol s2 = diagSyms.tail.head;
  4056             Name sname = s1.name;
  4057             if (sname == names.init) sname = s1.owner.name;
  4058             return diags.create(dkind, log.currentSource(),
  4059                       pos, "ref.ambiguous", sname,
  4060                       kindName(s1),
  4061                       s1,
  4062                       s1.location(site, types),
  4063                       kindName(s2),
  4064                       s2,
  4065                       s2.location(site, types));
  4068         /**
  4069          * If multiple applicable methods are found during overload and none of them
  4070          * is more specific than the others, attempt to merge their signatures.
  4071          */
  4072         Symbol mergeAbstracts(Type site) {
  4073             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
  4074             for (Symbol s : ambiguousInOrder) {
  4075                 Type mt = types.memberType(site, s);
  4076                 boolean found = true;
  4077                 List<Type> allThrown = mt.getThrownTypes();
  4078                 for (Symbol s2 : ambiguousInOrder) {
  4079                     Type mt2 = types.memberType(site, s2);
  4080                     if ((s2.flags() & ABSTRACT) == 0 ||
  4081                         !types.overrideEquivalent(mt, mt2) ||
  4082                         !types.isSameTypes(s.erasure(types).getParameterTypes(),
  4083                                        s2.erasure(types).getParameterTypes())) {
  4084                         //ambiguity cannot be resolved
  4085                         return this;
  4087                     Type mst = mostSpecificReturnType(mt, mt2);
  4088                     if (mst == null || mst != mt) {
  4089                         found = false;
  4090                         break;
  4092                     allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
  4094                 if (found) {
  4095                     //all ambiguous methods were abstract and one method had
  4096                     //most specific return type then others
  4097                     return (allThrown == mt.getThrownTypes()) ?
  4098                             s : new MethodSymbol(
  4099                                 s.flags(),
  4100                                 s.name,
  4101                                 types.createMethodTypeWithThrown(s.type, allThrown),
  4102                                 s.owner);
  4105             return this;
  4108         @Override
  4109         protected Symbol access(Name name, TypeSymbol location) {
  4110             Symbol firstAmbiguity = ambiguousSyms.last();
  4111             return firstAmbiguity.kind == TYP ?
  4112                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
  4113                     firstAmbiguity;
  4117     class BadVarargsMethod extends ResolveError {
  4119         ResolveError delegatedError;
  4121         BadVarargsMethod(ResolveError delegatedError) {
  4122             super(delegatedError.kind, "badVarargs");
  4123             this.delegatedError = delegatedError;
  4126         @Override
  4127         public Symbol baseSymbol() {
  4128             return delegatedError.baseSymbol();
  4131         @Override
  4132         protected Symbol access(Name name, TypeSymbol location) {
  4133             return delegatedError.access(name, location);
  4136         @Override
  4137         public boolean exists() {
  4138             return true;
  4141         @Override
  4142         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  4143             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
  4147     /**
  4148      * Helper class for method resolution diagnostic simplification.
  4149      * Certain resolution diagnostic are rewritten as simpler diagnostic
  4150      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
  4151      * is stripped away, as it doesn't carry additional info. The logic
  4152      * for matching a given diagnostic is given in terms of a template
  4153      * hierarchy: a diagnostic template can be specified programmatically,
  4154      * so that only certain diagnostics are matched. Each templete is then
  4155      * associated with a rewriter object that carries out the task of rewtiting
  4156      * the diagnostic to a simpler one.
  4157      */
  4158     static class MethodResolutionDiagHelper {
  4160         /**
  4161          * A diagnostic rewriter transforms a method resolution diagnostic
  4162          * into a simpler one
  4163          */
  4164         interface DiagnosticRewriter {
  4165             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  4166                     DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  4167                     DiagnosticType preferredKind, JCDiagnostic d);
  4170         /**
  4171          * A diagnostic template is made up of two ingredients: (i) a regular
  4172          * expression for matching a diagnostic key and (ii) a list of sub-templates
  4173          * for matching diagnostic arguments.
  4174          */
  4175         static class Template {
  4177             /** regex used to match diag key */
  4178             String regex;
  4180             /** templates used to match diagnostic args */
  4181             Template[] subTemplates;
  4183             Template(String key, Template... subTemplates) {
  4184                 this.regex = key;
  4185                 this.subTemplates = subTemplates;
  4188             /**
  4189              * Returns true if the regex matches the diagnostic key and if
  4190              * all diagnostic arguments are matches by corresponding sub-templates.
  4191              */
  4192             boolean matches(Object o) {
  4193                 JCDiagnostic d = (JCDiagnostic)o;
  4194                 Object[] args = d.getArgs();
  4195                 if (!d.getCode().matches(regex) ||
  4196                         subTemplates.length != d.getArgs().length) {
  4197                     return false;
  4199                 for (int i = 0; i < args.length ; i++) {
  4200                     if (!subTemplates[i].matches(args[i])) {
  4201                         return false;
  4204                 return true;
  4208         /** a dummy template that match any diagnostic argument */
  4209         static final Template skip = new Template("") {
  4210             @Override
  4211             boolean matches(Object d) {
  4212                 return true;
  4214         };
  4216         /** rewriter map used for method resolution simplification */
  4217         static final Map<Template, DiagnosticRewriter> rewriters =
  4218                 new LinkedHashMap<Template, DiagnosticRewriter>();
  4220         static {
  4221             String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
  4222             rewriters.put(new Template(argMismatchRegex, skip),
  4223                     new DiagnosticRewriter() {
  4224                 @Override
  4225                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
  4226                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
  4227                         DiagnosticType preferredKind, JCDiagnostic d) {
  4228                     JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
  4229                     DiagnosticPosition pos = d.getDiagnosticPosition();
  4230                     if (pos == null) {
  4231                         pos = preferedPos;
  4233                     return diags.create(preferredKind, preferredSource, pos,
  4234                             "prob.found.req", cause);
  4236             });
  4240     enum MethodResolutionPhase {
  4241         BASIC(false, false),
  4242         BOX(true, false),
  4243         VARARITY(true, true) {
  4244             @Override
  4245             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
  4246                 //Check invariants (see {@code LookupHelper.shouldStop})
  4247                 Assert.check(bestSoFar.kind >= ERRONEOUS && bestSoFar.kind != AMBIGUOUS);
  4248                 if (sym.kind < ERRONEOUS) {
  4249                     //varargs resolution successful
  4250                     return sym;
  4251                 } else {
  4252                     //pick best error
  4253                     switch (bestSoFar.kind) {
  4254                         case WRONG_MTH:
  4255                         case WRONG_MTHS:
  4256                             //Override previous errors if they were caused by argument mismatch.
  4257                             //This generally means preferring current symbols - but we need to pay
  4258                             //attention to the fact that the varargs lookup returns 'less' candidates
  4259                             //than the previous rounds, and adjust that accordingly.
  4260                             switch (sym.kind) {
  4261                                 case WRONG_MTH:
  4262                                     //if the previous round matched more than one method, return that
  4263                                     //result instead
  4264                                     return bestSoFar.kind == WRONG_MTHS ?
  4265                                             bestSoFar : sym;
  4266                                 case ABSENT_MTH:
  4267                                     //do not override erroneous symbol if the arity lookup did not
  4268                                     //match any method
  4269                                     return bestSoFar;
  4270                                 case WRONG_MTHS:
  4271                                 default:
  4272                                     //safe to override
  4273                                     return sym;
  4275                         default:
  4276                             //otherwise, return first error
  4277                             return bestSoFar;
  4281         };
  4283         final boolean isBoxingRequired;
  4284         final boolean isVarargsRequired;
  4286         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  4287            this.isBoxingRequired = isBoxingRequired;
  4288            this.isVarargsRequired = isVarargsRequired;
  4291         public boolean isBoxingRequired() {
  4292             return isBoxingRequired;
  4295         public boolean isVarargsRequired() {
  4296             return isVarargsRequired;
  4299         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  4300             return (varargsEnabled || !isVarargsRequired) &&
  4301                    (boxingEnabled || !isBoxingRequired);
  4304         public Symbol mergeResults(Symbol prev, Symbol sym) {
  4305             return sym;
  4309     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  4311     /**
  4312      * A resolution context is used to keep track of intermediate results of
  4313      * overload resolution, such as list of method that are not applicable
  4314      * (used to generate more precise diagnostics) and so on. Resolution contexts
  4315      * can be nested - this means that when each overload resolution routine should
  4316      * work within the resolution context it created.
  4317      */
  4318     class MethodResolutionContext {
  4320         private List<Candidate> candidates = List.nil();
  4322         MethodResolutionPhase step = null;
  4324         MethodCheck methodCheck = resolveMethodCheck;
  4326         private boolean internalResolution = false;
  4327         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  4329         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  4330             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  4331             candidates = candidates.append(c);
  4334         void addApplicableCandidate(Symbol sym, Type mtype) {
  4335             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  4336             candidates = candidates.append(c);
  4339         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
  4340             DeferredAttrContext parent = (pendingResult == null)
  4341                 ? deferredAttr.emptyDeferredAttrContext
  4342                 : pendingResult.checkContext.deferredAttrContext();
  4343             return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
  4344                     inferenceContext, parent, warn);
  4347         /**
  4348          * This class represents an overload resolution candidate. There are two
  4349          * kinds of candidates: applicable methods and inapplicable methods;
  4350          * applicable methods have a pointer to the instantiated method type,
  4351          * while inapplicable candidates contain further details about the
  4352          * reason why the method has been considered inapplicable.
  4353          */
  4354         @SuppressWarnings("overrides")
  4355         class Candidate {
  4357             final MethodResolutionPhase step;
  4358             final Symbol sym;
  4359             final JCDiagnostic details;
  4360             final Type mtype;
  4362             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  4363                 this.step = step;
  4364                 this.sym = sym;
  4365                 this.details = details;
  4366                 this.mtype = mtype;
  4369             @Override
  4370             public boolean equals(Object o) {
  4371                 if (o instanceof Candidate) {
  4372                     Symbol s1 = this.sym;
  4373                     Symbol s2 = ((Candidate)o).sym;
  4374                     if  ((s1 != s2 &&
  4375                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  4376                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  4377                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  4378                         return true;
  4380                 return false;
  4383             boolean isApplicable() {
  4384                 return mtype != null;
  4388         DeferredAttr.AttrMode attrMode() {
  4389             return attrMode;
  4392         boolean internal() {
  4393             return internalResolution;
  4397     MethodResolutionContext currentResolutionContext = null;

mercurial