src/share/classes/com/sun/tools/javac/comp/Lower.java

Wed, 02 Mar 2011 10:56:39 +0000

author
mcimadamore
date
Wed, 02 Mar 2011 10:56:39 +0000
changeset 901
02b699d97a55
parent 884
75e25df50873
child 1063
64b9b7ae3366
permissions
-rw-r--r--

6541876: "Enclosing Instance" error new in 1.6
Summary: unqualified 'this' should not be selected in a qualified super() call in a default constructor
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.jvm.*;
    32 import com.sun.tools.javac.main.RecognizedOptions.PkgInfo;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.code.Symbol.*;
    39 import com.sun.tools.javac.tree.JCTree.*;
    40 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.jvm.Target;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    47 import static com.sun.tools.javac.jvm.ByteCodes.*;
    49 /** This pass translates away some syntactic sugar: inner classes,
    50  *  class literals, assertions, foreach loops, etc.
    51  *
    52  *  <p><b>This is NOT part of any supported API.
    53  *  If you write code that depends on this, you do so at your own risk.
    54  *  This code and its internal interfaces are subject to change or
    55  *  deletion without notice.</b>
    56  */
    57 public class Lower extends TreeTranslator {
    58     protected static final Context.Key<Lower> lowerKey =
    59         new Context.Key<Lower>();
    61     public static Lower instance(Context context) {
    62         Lower instance = context.get(lowerKey);
    63         if (instance == null)
    64             instance = new Lower(context);
    65         return instance;
    66     }
    68     private Names names;
    69     private Log log;
    70     private Symtab syms;
    71     private Resolve rs;
    72     private Check chk;
    73     private Attr attr;
    74     private TreeMaker make;
    75     private DiagnosticPosition make_pos;
    76     private ClassWriter writer;
    77     private ClassReader reader;
    78     private ConstFold cfolder;
    79     private Target target;
    80     private Source source;
    81     private boolean allowEnums;
    82     private final Name dollarAssertionsDisabled;
    83     private final Name classDollar;
    84     private Types types;
    85     private boolean debugLower;
    86     private PkgInfo pkginfoOpt;
    88     protected Lower(Context context) {
    89         context.put(lowerKey, this);
    90         names = Names.instance(context);
    91         log = Log.instance(context);
    92         syms = Symtab.instance(context);
    93         rs = Resolve.instance(context);
    94         chk = Check.instance(context);
    95         attr = Attr.instance(context);
    96         make = TreeMaker.instance(context);
    97         writer = ClassWriter.instance(context);
    98         reader = ClassReader.instance(context);
    99         cfolder = ConstFold.instance(context);
   100         target = Target.instance(context);
   101         source = Source.instance(context);
   102         allowEnums = source.allowEnums();
   103         dollarAssertionsDisabled = names.
   104             fromString(target.syntheticNameChar() + "assertionsDisabled");
   105         classDollar = names.
   106             fromString("class" + target.syntheticNameChar());
   108         types = Types.instance(context);
   109         Options options = Options.instance(context);
   110         debugLower = options.isSet("debuglower");
   111         pkginfoOpt = PkgInfo.get(options);
   112     }
   114     /** The currently enclosing class.
   115      */
   116     ClassSymbol currentClass;
   118     /** A queue of all translated classes.
   119      */
   120     ListBuffer<JCTree> translated;
   122     /** Environment for symbol lookup, set by translateTopLevelClass.
   123      */
   124     Env<AttrContext> attrEnv;
   126     /** A hash table mapping syntax trees to their ending source positions.
   127      */
   128     Map<JCTree, Integer> endPositions;
   130 /**************************************************************************
   131  * Global mappings
   132  *************************************************************************/
   134     /** A hash table mapping local classes to their definitions.
   135      */
   136     Map<ClassSymbol, JCClassDecl> classdefs;
   138     /** A hash table mapping virtual accessed symbols in outer subclasses
   139      *  to the actually referred symbol in superclasses.
   140      */
   141     Map<Symbol,Symbol> actualSymbols;
   143     /** The current method definition.
   144      */
   145     JCMethodDecl currentMethodDef;
   147     /** The current method symbol.
   148      */
   149     MethodSymbol currentMethodSym;
   151     /** The currently enclosing outermost class definition.
   152      */
   153     JCClassDecl outermostClassDef;
   155     /** The currently enclosing outermost member definition.
   156      */
   157     JCTree outermostMemberDef;
   159     /** A navigator class for assembling a mapping from local class symbols
   160      *  to class definition trees.
   161      *  There is only one case; all other cases simply traverse down the tree.
   162      */
   163     class ClassMap extends TreeScanner {
   165         /** All encountered class defs are entered into classdefs table.
   166          */
   167         public void visitClassDef(JCClassDecl tree) {
   168             classdefs.put(tree.sym, tree);
   169             super.visitClassDef(tree);
   170         }
   171     }
   172     ClassMap classMap = new ClassMap();
   174     /** Map a class symbol to its definition.
   175      *  @param c    The class symbol of which we want to determine the definition.
   176      */
   177     JCClassDecl classDef(ClassSymbol c) {
   178         // First lookup the class in the classdefs table.
   179         JCClassDecl def = classdefs.get(c);
   180         if (def == null && outermostMemberDef != null) {
   181             // If this fails, traverse outermost member definition, entering all
   182             // local classes into classdefs, and try again.
   183             classMap.scan(outermostMemberDef);
   184             def = classdefs.get(c);
   185         }
   186         if (def == null) {
   187             // If this fails, traverse outermost class definition, entering all
   188             // local classes into classdefs, and try again.
   189             classMap.scan(outermostClassDef);
   190             def = classdefs.get(c);
   191         }
   192         return def;
   193     }
   195     /** A hash table mapping class symbols to lists of free variables.
   196      *  accessed by them. Only free variables of the method immediately containing
   197      *  a class are associated with that class.
   198      */
   199     Map<ClassSymbol,List<VarSymbol>> freevarCache;
   201     /** A navigator class for collecting the free variables accessed
   202      *  from a local class.
   203      *  There is only one case; all other cases simply traverse down the tree.
   204      */
   205     class FreeVarCollector extends TreeScanner {
   207         /** The owner of the local class.
   208          */
   209         Symbol owner;
   211         /** The local class.
   212          */
   213         ClassSymbol clazz;
   215         /** The list of owner's variables accessed from within the local class,
   216          *  without any duplicates.
   217          */
   218         List<VarSymbol> fvs;
   220         FreeVarCollector(ClassSymbol clazz) {
   221             this.clazz = clazz;
   222             this.owner = clazz.owner;
   223             this.fvs = List.nil();
   224         }
   226         /** Add free variable to fvs list unless it is already there.
   227          */
   228         private void addFreeVar(VarSymbol v) {
   229             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
   230                 if (l.head == v) return;
   231             fvs = fvs.prepend(v);
   232         }
   234         /** Add all free variables of class c to fvs list
   235          *  unless they are already there.
   236          */
   237         private void addFreeVars(ClassSymbol c) {
   238             List<VarSymbol> fvs = freevarCache.get(c);
   239             if (fvs != null) {
   240                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
   241                     addFreeVar(l.head);
   242                 }
   243             }
   244         }
   246         /** If tree refers to a variable in owner of local class, add it to
   247          *  free variables list.
   248          */
   249         public void visitIdent(JCIdent tree) {
   250             result = tree;
   251             visitSymbol(tree.sym);
   252         }
   253         // where
   254         private void visitSymbol(Symbol _sym) {
   255             Symbol sym = _sym;
   256             if (sym.kind == VAR || sym.kind == MTH) {
   257                 while (sym != null && sym.owner != owner)
   258                     sym = proxies.lookup(proxyName(sym.name)).sym;
   259                 if (sym != null && sym.owner == owner) {
   260                     VarSymbol v = (VarSymbol)sym;
   261                     if (v.getConstValue() == null) {
   262                         addFreeVar(v);
   263                     }
   264                 } else {
   265                     if (outerThisStack.head != null &&
   266                         outerThisStack.head != _sym)
   267                         visitSymbol(outerThisStack.head);
   268                 }
   269             }
   270         }
   272         /** If tree refers to a class instance creation expression
   273          *  add all free variables of the freshly created class.
   274          */
   275         public void visitNewClass(JCNewClass tree) {
   276             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   277             addFreeVars(c);
   278             if (tree.encl == null &&
   279                 c.hasOuterInstance() &&
   280                 outerThisStack.head != null)
   281                 visitSymbol(outerThisStack.head);
   282             super.visitNewClass(tree);
   283         }
   285         /** If tree refers to a qualified this or super expression
   286          *  for anything but the current class, add the outer this
   287          *  stack as a free variable.
   288          */
   289         public void visitSelect(JCFieldAccess tree) {
   290             if ((tree.name == names._this || tree.name == names._super) &&
   291                 tree.selected.type.tsym != clazz &&
   292                 outerThisStack.head != null)
   293                 visitSymbol(outerThisStack.head);
   294             super.visitSelect(tree);
   295         }
   297         /** If tree refers to a superclass constructor call,
   298          *  add all free variables of the superclass.
   299          */
   300         public void visitApply(JCMethodInvocation tree) {
   301             if (TreeInfo.name(tree.meth) == names._super) {
   302                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
   303                 Symbol constructor = TreeInfo.symbol(tree.meth);
   304                 ClassSymbol c = (ClassSymbol)constructor.owner;
   305                 if (c.hasOuterInstance() &&
   306                     tree.meth.getTag() != JCTree.SELECT &&
   307                     outerThisStack.head != null)
   308                     visitSymbol(outerThisStack.head);
   309             }
   310             super.visitApply(tree);
   311         }
   312     }
   314     /** Return the variables accessed from within a local class, which
   315      *  are declared in the local class' owner.
   316      *  (in reverse order of first access).
   317      */
   318     List<VarSymbol> freevars(ClassSymbol c)  {
   319         if ((c.owner.kind & (VAR | MTH)) != 0) {
   320             List<VarSymbol> fvs = freevarCache.get(c);
   321             if (fvs == null) {
   322                 FreeVarCollector collector = new FreeVarCollector(c);
   323                 collector.scan(classDef(c));
   324                 fvs = collector.fvs;
   325                 freevarCache.put(c, fvs);
   326             }
   327             return fvs;
   328         } else {
   329             return List.nil();
   330         }
   331     }
   333     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
   335     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
   336         EnumMapping map = enumSwitchMap.get(enumClass);
   337         if (map == null)
   338             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
   339         return map;
   340     }
   342     /** This map gives a translation table to be used for enum
   343      *  switches.
   344      *
   345      *  <p>For each enum that appears as the type of a switch
   346      *  expression, we maintain an EnumMapping to assist in the
   347      *  translation, as exemplified by the following example:
   348      *
   349      *  <p>we translate
   350      *  <pre>
   351      *          switch(colorExpression) {
   352      *          case red: stmt1;
   353      *          case green: stmt2;
   354      *          }
   355      *  </pre>
   356      *  into
   357      *  <pre>
   358      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
   359      *          case 1: stmt1;
   360      *          case 2: stmt2
   361      *          }
   362      *  </pre>
   363      *  with the auxiliary table initialized as follows:
   364      *  <pre>
   365      *          class Outer$0 {
   366      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
   367      *              static {
   368      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
   369      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
   370      *              }
   371      *          }
   372      *  </pre>
   373      *  class EnumMapping provides mapping data and support methods for this translation.
   374      */
   375     class EnumMapping {
   376         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
   377             this.forEnum = forEnum;
   378             this.values = new LinkedHashMap<VarSymbol,Integer>();
   379             this.pos = pos;
   380             Name varName = names
   381                 .fromString(target.syntheticNameChar() +
   382                             "SwitchMap" +
   383                             target.syntheticNameChar() +
   384                             writer.xClassName(forEnum.type).toString()
   385                             .replace('/', '.')
   386                             .replace('.', target.syntheticNameChar()));
   387             ClassSymbol outerCacheClass = outerCacheClass();
   388             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
   389                                         varName,
   390                                         new ArrayType(syms.intType, syms.arrayClass),
   391                                         outerCacheClass);
   392             enterSynthetic(pos, mapVar, outerCacheClass.members());
   393         }
   395         DiagnosticPosition pos = null;
   397         // the next value to use
   398         int next = 1; // 0 (unused map elements) go to the default label
   400         // the enum for which this is a map
   401         final TypeSymbol forEnum;
   403         // the field containing the map
   404         final VarSymbol mapVar;
   406         // the mapped values
   407         final Map<VarSymbol,Integer> values;
   409         JCLiteral forConstant(VarSymbol v) {
   410             Integer result = values.get(v);
   411             if (result == null)
   412                 values.put(v, result = next++);
   413             return make.Literal(result);
   414         }
   416         // generate the field initializer for the map
   417         void translate() {
   418             make.at(pos.getStartPosition());
   419             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
   421             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
   422             MethodSymbol valuesMethod = lookupMethod(pos,
   423                                                      names.values,
   424                                                      forEnum.type,
   425                                                      List.<Type>nil());
   426             JCExpression size = make // Color.values().length
   427                 .Select(make.App(make.QualIdent(valuesMethod)),
   428                         syms.lengthVar);
   429             JCExpression mapVarInit = make
   430                 .NewArray(make.Type(syms.intType), List.of(size), null)
   431                 .setType(new ArrayType(syms.intType, syms.arrayClass));
   433             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
   434             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
   435             Symbol ordinalMethod = lookupMethod(pos,
   436                                                 names.ordinal,
   437                                                 forEnum.type,
   438                                                 List.<Type>nil());
   439             List<JCCatch> catcher = List.<JCCatch>nil()
   440                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
   441                                                               syms.noSuchFieldErrorType,
   442                                                               syms.noSymbol),
   443                                                 null),
   444                                     make.Block(0, List.<JCStatement>nil())));
   445             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
   446                 VarSymbol enumerator = e.getKey();
   447                 Integer mappedValue = e.getValue();
   448                 JCExpression assign = make
   449                     .Assign(make.Indexed(mapVar,
   450                                          make.App(make.Select(make.QualIdent(enumerator),
   451                                                               ordinalMethod))),
   452                             make.Literal(mappedValue))
   453                     .setType(syms.intType);
   454                 JCStatement exec = make.Exec(assign);
   455                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
   456                 stmts.append(_try);
   457             }
   459             owner.defs = owner.defs
   460                 .prepend(make.Block(STATIC, stmts.toList()))
   461                 .prepend(make.VarDef(mapVar, mapVarInit));
   462         }
   463     }
   466 /**************************************************************************
   467  * Tree building blocks
   468  *************************************************************************/
   470     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
   471      *  pos as make_pos, for use in diagnostics.
   472      **/
   473     TreeMaker make_at(DiagnosticPosition pos) {
   474         make_pos = pos;
   475         return make.at(pos);
   476     }
   478     /** Make an attributed tree representing a literal. This will be an
   479      *  Ident node in the case of boolean literals, a Literal node in all
   480      *  other cases.
   481      *  @param type       The literal's type.
   482      *  @param value      The literal's value.
   483      */
   484     JCExpression makeLit(Type type, Object value) {
   485         return make.Literal(type.tag, value).setType(type.constType(value));
   486     }
   488     /** Make an attributed tree representing null.
   489      */
   490     JCExpression makeNull() {
   491         return makeLit(syms.botType, null);
   492     }
   494     /** Make an attributed class instance creation expression.
   495      *  @param ctype    The class type.
   496      *  @param args     The constructor arguments.
   497      */
   498     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
   499         JCNewClass tree = make.NewClass(null,
   500             null, make.QualIdent(ctype.tsym), args, null);
   501         tree.constructor = rs.resolveConstructor(
   502             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
   503         tree.type = ctype;
   504         return tree;
   505     }
   507     /** Make an attributed unary expression.
   508      *  @param optag    The operators tree tag.
   509      *  @param arg      The operator's argument.
   510      */
   511     JCUnary makeUnary(int optag, JCExpression arg) {
   512         JCUnary tree = make.Unary(optag, arg);
   513         tree.operator = rs.resolveUnaryOperator(
   514             make_pos, optag, attrEnv, arg.type);
   515         tree.type = tree.operator.type.getReturnType();
   516         return tree;
   517     }
   519     /** Make an attributed binary expression.
   520      *  @param optag    The operators tree tag.
   521      *  @param lhs      The operator's left argument.
   522      *  @param rhs      The operator's right argument.
   523      */
   524     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
   525         JCBinary tree = make.Binary(optag, lhs, rhs);
   526         tree.operator = rs.resolveBinaryOperator(
   527             make_pos, optag, attrEnv, lhs.type, rhs.type);
   528         tree.type = tree.operator.type.getReturnType();
   529         return tree;
   530     }
   532     /** Make an attributed assignop expression.
   533      *  @param optag    The operators tree tag.
   534      *  @param lhs      The operator's left argument.
   535      *  @param rhs      The operator's right argument.
   536      */
   537     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
   538         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
   539         tree.operator = rs.resolveBinaryOperator(
   540             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
   541         tree.type = lhs.type;
   542         return tree;
   543     }
   545     /** Convert tree into string object, unless it has already a
   546      *  reference type..
   547      */
   548     JCExpression makeString(JCExpression tree) {
   549         if (tree.type.tag >= CLASS) {
   550             return tree;
   551         } else {
   552             Symbol valueOfSym = lookupMethod(tree.pos(),
   553                                              names.valueOf,
   554                                              syms.stringType,
   555                                              List.of(tree.type));
   556             return make.App(make.QualIdent(valueOfSym), List.of(tree));
   557         }
   558     }
   560     /** Create an empty anonymous class definition and enter and complete
   561      *  its symbol. Return the class definition's symbol.
   562      *  and create
   563      *  @param flags    The class symbol's flags
   564      *  @param owner    The class symbol's owner
   565      */
   566     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
   567         // Create class symbol.
   568         ClassSymbol c = reader.defineClass(names.empty, owner);
   569         c.flatname = chk.localClassName(c);
   570         c.sourcefile = owner.sourcefile;
   571         c.completer = null;
   572         c.members_field = new Scope(c);
   573         c.flags_field = flags;
   574         ClassType ctype = (ClassType) c.type;
   575         ctype.supertype_field = syms.objectType;
   576         ctype.interfaces_field = List.nil();
   578         JCClassDecl odef = classDef(owner);
   580         // Enter class symbol in owner scope and compiled table.
   581         enterSynthetic(odef.pos(), c, owner.members());
   582         chk.compiled.put(c.flatname, c);
   584         // Create class definition tree.
   585         JCClassDecl cdef = make.ClassDef(
   586             make.Modifiers(flags), names.empty,
   587             List.<JCTypeParameter>nil(),
   588             null, List.<JCExpression>nil(), List.<JCTree>nil());
   589         cdef.sym = c;
   590         cdef.type = c.type;
   592         // Append class definition tree to owner's definitions.
   593         odef.defs = odef.defs.prepend(cdef);
   595         return c;
   596     }
   598 /**************************************************************************
   599  * Symbol manipulation utilities
   600  *************************************************************************/
   602     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
   603      *  @param pos           Position for error reporting.
   604      *  @param sym           The symbol.
   605      *  @param s             The scope.
   606      */
   607     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
   608         s.enter(sym);
   609     }
   611     /** Create a fresh synthetic name within a given scope - the unique name is
   612      *  obtained by appending '$' chars at the end of the name until no match
   613      *  is found.
   614      *
   615      * @param name base name
   616      * @param s scope in which the name has to be unique
   617      * @return fresh synthetic name
   618      */
   619     private Name makeSyntheticName(Name name, Scope s) {
   620         do {
   621             name = name.append(
   622                     target.syntheticNameChar(),
   623                     names.empty);
   624         } while (lookupSynthetic(name, s) != null);
   625         return name;
   626     }
   628     /** Check whether synthetic symbols generated during lowering conflict
   629      *  with user-defined symbols.
   630      *
   631      *  @param translatedTrees lowered class trees
   632      */
   633     void checkConflicts(List<JCTree> translatedTrees) {
   634         for (JCTree t : translatedTrees) {
   635             t.accept(conflictsChecker);
   636         }
   637     }
   639     JCTree.Visitor conflictsChecker = new TreeScanner() {
   641         TypeSymbol currentClass;
   643         @Override
   644         public void visitMethodDef(JCMethodDecl that) {
   645             chk.checkConflicts(that.pos(), that.sym, currentClass);
   646             super.visitMethodDef(that);
   647         }
   649         @Override
   650         public void visitVarDef(JCVariableDecl that) {
   651             if (that.sym.owner.kind == TYP) {
   652                 chk.checkConflicts(that.pos(), that.sym, currentClass);
   653             }
   654             super.visitVarDef(that);
   655         }
   657         @Override
   658         public void visitClassDef(JCClassDecl that) {
   659             TypeSymbol prevCurrentClass = currentClass;
   660             currentClass = that.sym;
   661             try {
   662                 super.visitClassDef(that);
   663             }
   664             finally {
   665                 currentClass = prevCurrentClass;
   666             }
   667         }
   668     };
   670     /** Look up a synthetic name in a given scope.
   671      *  @param scope        The scope.
   672      *  @param name         The name.
   673      */
   674     private Symbol lookupSynthetic(Name name, Scope s) {
   675         Symbol sym = s.lookup(name).sym;
   676         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
   677     }
   679     /** Look up a method in a given scope.
   680      */
   681     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
   682         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
   683     }
   685     /** Look up a constructor.
   686      */
   687     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
   688         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
   689     }
   691     /** Look up a field.
   692      */
   693     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
   694         return rs.resolveInternalField(pos, attrEnv, qual, name);
   695     }
   697     /** Anon inner classes are used as access constructor tags.
   698      * accessConstructorTag will use an existing anon class if one is available,
   699      * and synthethise a class (with makeEmptyClass) if one is not available.
   700      * However, there is a small possibility that an existing class will not
   701      * be generated as expected if it is inside a conditional with a constant
   702      * expression. If that is found to be the case, create an empty class here.
   703      */
   704     private void checkAccessConstructorTags() {
   705         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
   706             ClassSymbol c = l.head;
   707             if (isTranslatedClassAvailable(c))
   708                 continue;
   709             // Create class definition tree.
   710             JCClassDecl cdef = make.ClassDef(
   711                 make.Modifiers(STATIC | SYNTHETIC), names.empty,
   712                 List.<JCTypeParameter>nil(),
   713                 null, List.<JCExpression>nil(), List.<JCTree>nil());
   714             cdef.sym = c;
   715             cdef.type = c.type;
   716             // add it to the list of classes to be generated
   717             translated.append(cdef);
   718         }
   719     }
   720     // where
   721     private boolean isTranslatedClassAvailable(ClassSymbol c) {
   722         for (JCTree tree: translated) {
   723             if (tree.getTag() == JCTree.CLASSDEF
   724                     && ((JCClassDecl) tree).sym == c) {
   725                 return true;
   726             }
   727         }
   728         return false;
   729     }
   731 /**************************************************************************
   732  * Access methods
   733  *************************************************************************/
   735     /** Access codes for dereferencing, assignment,
   736      *  and pre/post increment/decrement.
   737      *  Access codes for assignment operations are determined by method accessCode
   738      *  below.
   739      *
   740      *  All access codes for accesses to the current class are even.
   741      *  If a member of the superclass should be accessed instead (because
   742      *  access was via a qualified super), add one to the corresponding code
   743      *  for the current class, making the number odd.
   744      *  This numbering scheme is used by the backend to decide whether
   745      *  to issue an invokevirtual or invokespecial call.
   746      *
   747      *  @see Gen.visitSelect(Select tree)
   748      */
   749     private static final int
   750         DEREFcode = 0,
   751         ASSIGNcode = 2,
   752         PREINCcode = 4,
   753         PREDECcode = 6,
   754         POSTINCcode = 8,
   755         POSTDECcode = 10,
   756         FIRSTASGOPcode = 12;
   758     /** Number of access codes
   759      */
   760     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
   762     /** A mapping from symbols to their access numbers.
   763      */
   764     private Map<Symbol,Integer> accessNums;
   766     /** A mapping from symbols to an array of access symbols, indexed by
   767      *  access code.
   768      */
   769     private Map<Symbol,MethodSymbol[]> accessSyms;
   771     /** A mapping from (constructor) symbols to access constructor symbols.
   772      */
   773     private Map<Symbol,MethodSymbol> accessConstrs;
   775     /** A list of all class symbols used for access constructor tags.
   776      */
   777     private List<ClassSymbol> accessConstrTags;
   779     /** A queue for all accessed symbols.
   780      */
   781     private ListBuffer<Symbol> accessed;
   783     /** Map bytecode of binary operation to access code of corresponding
   784      *  assignment operation. This is always an even number.
   785      */
   786     private static int accessCode(int bytecode) {
   787         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
   788             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
   789         else if (bytecode == ByteCodes.string_add)
   790             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
   791         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
   792             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
   793         else
   794             return -1;
   795     }
   797     /** return access code for identifier,
   798      *  @param tree     The tree representing the identifier use.
   799      *  @param enclOp   The closest enclosing operation node of tree,
   800      *                  null if tree is not a subtree of an operation.
   801      */
   802     private static int accessCode(JCTree tree, JCTree enclOp) {
   803         if (enclOp == null)
   804             return DEREFcode;
   805         else if (enclOp.getTag() == JCTree.ASSIGN &&
   806                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
   807             return ASSIGNcode;
   808         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
   809                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
   810             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
   811         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
   812                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
   813             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
   814         else
   815             return DEREFcode;
   816     }
   818     /** Return binary operator that corresponds to given access code.
   819      */
   820     private OperatorSymbol binaryAccessOperator(int acode) {
   821         for (Scope.Entry e = syms.predefClass.members().elems;
   822              e != null;
   823              e = e.sibling) {
   824             if (e.sym instanceof OperatorSymbol) {
   825                 OperatorSymbol op = (OperatorSymbol)e.sym;
   826                 if (accessCode(op.opcode) == acode) return op;
   827             }
   828         }
   829         return null;
   830     }
   832     /** Return tree tag for assignment operation corresponding
   833      *  to given binary operator.
   834      */
   835     private static int treeTag(OperatorSymbol operator) {
   836         switch (operator.opcode) {
   837         case ByteCodes.ior: case ByteCodes.lor:
   838             return JCTree.BITOR_ASG;
   839         case ByteCodes.ixor: case ByteCodes.lxor:
   840             return JCTree.BITXOR_ASG;
   841         case ByteCodes.iand: case ByteCodes.land:
   842             return JCTree.BITAND_ASG;
   843         case ByteCodes.ishl: case ByteCodes.lshl:
   844         case ByteCodes.ishll: case ByteCodes.lshll:
   845             return JCTree.SL_ASG;
   846         case ByteCodes.ishr: case ByteCodes.lshr:
   847         case ByteCodes.ishrl: case ByteCodes.lshrl:
   848             return JCTree.SR_ASG;
   849         case ByteCodes.iushr: case ByteCodes.lushr:
   850         case ByteCodes.iushrl: case ByteCodes.lushrl:
   851             return JCTree.USR_ASG;
   852         case ByteCodes.iadd: case ByteCodes.ladd:
   853         case ByteCodes.fadd: case ByteCodes.dadd:
   854         case ByteCodes.string_add:
   855             return JCTree.PLUS_ASG;
   856         case ByteCodes.isub: case ByteCodes.lsub:
   857         case ByteCodes.fsub: case ByteCodes.dsub:
   858             return JCTree.MINUS_ASG;
   859         case ByteCodes.imul: case ByteCodes.lmul:
   860         case ByteCodes.fmul: case ByteCodes.dmul:
   861             return JCTree.MUL_ASG;
   862         case ByteCodes.idiv: case ByteCodes.ldiv:
   863         case ByteCodes.fdiv: case ByteCodes.ddiv:
   864             return JCTree.DIV_ASG;
   865         case ByteCodes.imod: case ByteCodes.lmod:
   866         case ByteCodes.fmod: case ByteCodes.dmod:
   867             return JCTree.MOD_ASG;
   868         default:
   869             throw new AssertionError();
   870         }
   871     }
   873     /** The name of the access method with number `anum' and access code `acode'.
   874      */
   875     Name accessName(int anum, int acode) {
   876         return names.fromString(
   877             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
   878     }
   880     /** Return access symbol for a private or protected symbol from an inner class.
   881      *  @param sym        The accessed private symbol.
   882      *  @param tree       The accessing tree.
   883      *  @param enclOp     The closest enclosing operation node of tree,
   884      *                    null if tree is not a subtree of an operation.
   885      *  @param protAccess Is access to a protected symbol in another
   886      *                    package?
   887      *  @param refSuper   Is access via a (qualified) C.super?
   888      */
   889     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
   890                               boolean protAccess, boolean refSuper) {
   891         ClassSymbol accOwner = refSuper && protAccess
   892             // For access via qualified super (T.super.x), place the
   893             // access symbol on T.
   894             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
   895             // Otherwise pretend that the owner of an accessed
   896             // protected symbol is the enclosing class of the current
   897             // class which is a subclass of the symbol's owner.
   898             : accessClass(sym, protAccess, tree);
   900         Symbol vsym = sym;
   901         if (sym.owner != accOwner) {
   902             vsym = sym.clone(accOwner);
   903             actualSymbols.put(vsym, sym);
   904         }
   906         Integer anum              // The access number of the access method.
   907             = accessNums.get(vsym);
   908         if (anum == null) {
   909             anum = accessed.length();
   910             accessNums.put(vsym, anum);
   911             accessSyms.put(vsym, new MethodSymbol[NCODES]);
   912             accessed.append(vsym);
   913             // System.out.println("accessing " + vsym + " in " + vsym.location());
   914         }
   916         int acode;                // The access code of the access method.
   917         List<Type> argtypes;      // The argument types of the access method.
   918         Type restype;             // The result type of the access method.
   919         List<Type> thrown;        // The thrown exceptions of the access method.
   920         switch (vsym.kind) {
   921         case VAR:
   922             acode = accessCode(tree, enclOp);
   923             if (acode >= FIRSTASGOPcode) {
   924                 OperatorSymbol operator = binaryAccessOperator(acode);
   925                 if (operator.opcode == string_add)
   926                     argtypes = List.of(syms.objectType);
   927                 else
   928                     argtypes = operator.type.getParameterTypes().tail;
   929             } else if (acode == ASSIGNcode)
   930                 argtypes = List.of(vsym.erasure(types));
   931             else
   932                 argtypes = List.nil();
   933             restype = vsym.erasure(types);
   934             thrown = List.nil();
   935             break;
   936         case MTH:
   937             acode = DEREFcode;
   938             argtypes = vsym.erasure(types).getParameterTypes();
   939             restype = vsym.erasure(types).getReturnType();
   940             thrown = vsym.type.getThrownTypes();
   941             break;
   942         default:
   943             throw new AssertionError();
   944         }
   946         // For references via qualified super, increment acode by one,
   947         // making it odd.
   948         if (protAccess && refSuper) acode++;
   950         // Instance access methods get instance as first parameter.
   951         // For protected symbols this needs to be the instance as a member
   952         // of the type containing the accessed symbol, not the class
   953         // containing the access method.
   954         if ((vsym.flags() & STATIC) == 0) {
   955             argtypes = argtypes.prepend(vsym.owner.erasure(types));
   956         }
   957         MethodSymbol[] accessors = accessSyms.get(vsym);
   958         MethodSymbol accessor = accessors[acode];
   959         if (accessor == null) {
   960             accessor = new MethodSymbol(
   961                 STATIC | SYNTHETIC,
   962                 accessName(anum.intValue(), acode),
   963                 new MethodType(argtypes, restype, thrown, syms.methodClass),
   964                 accOwner);
   965             enterSynthetic(tree.pos(), accessor, accOwner.members());
   966             accessors[acode] = accessor;
   967         }
   968         return accessor;
   969     }
   971     /** The qualifier to be used for accessing a symbol in an outer class.
   972      *  This is either C.sym or C.this.sym, depending on whether or not
   973      *  sym is static.
   974      *  @param sym   The accessed symbol.
   975      */
   976     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
   977         return (sym.flags() & STATIC) != 0
   978             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
   979             : makeOwnerThis(pos, sym, true);
   980     }
   982     /** Do we need an access method to reference private symbol?
   983      */
   984     boolean needsPrivateAccess(Symbol sym) {
   985         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
   986             return false;
   987         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
   988             // private constructor in local class: relax protection
   989             sym.flags_field &= ~PRIVATE;
   990             return false;
   991         } else {
   992             return true;
   993         }
   994     }
   996     /** Do we need an access method to reference symbol in other package?
   997      */
   998     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
   999         if ((sym.flags() & PROTECTED) == 0 ||
  1000             sym.owner.owner == currentClass.owner || // fast special case
  1001             sym.packge() == currentClass.packge())
  1002             return false;
  1003         if (!currentClass.isSubClass(sym.owner, types))
  1004             return true;
  1005         if ((sym.flags() & STATIC) != 0 ||
  1006             tree.getTag() != JCTree.SELECT ||
  1007             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
  1008             return false;
  1009         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
  1012     /** The class in which an access method for given symbol goes.
  1013      *  @param sym        The access symbol
  1014      *  @param protAccess Is access to a protected symbol in another
  1015      *                    package?
  1016      */
  1017     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
  1018         if (protAccess) {
  1019             Symbol qualifier = null;
  1020             ClassSymbol c = currentClass;
  1021             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
  1022                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
  1023                 while (!qualifier.isSubClass(c, types)) {
  1024                     c = c.owner.enclClass();
  1026                 return c;
  1027             } else {
  1028                 while (!c.isSubClass(sym.owner, types)) {
  1029                     c = c.owner.enclClass();
  1032             return c;
  1033         } else {
  1034             // the symbol is private
  1035             return sym.owner.enclClass();
  1039     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1040      *  @param sym      The accessed symbol.
  1041      *  @param tree     The tree referring to the symbol.
  1042      *  @param enclOp   The closest enclosing operation node of tree,
  1043      *                  null if tree is not a subtree of an operation.
  1044      *  @param refSuper Is access via a (qualified) C.super?
  1045      */
  1046     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
  1047         // Access a free variable via its proxy, or its proxy's proxy
  1048         while (sym.kind == VAR && sym.owner.kind == MTH &&
  1049             sym.owner.enclClass() != currentClass) {
  1050             // A constant is replaced by its constant value.
  1051             Object cv = ((VarSymbol)sym).getConstValue();
  1052             if (cv != null) {
  1053                 make.at(tree.pos);
  1054                 return makeLit(sym.type, cv);
  1056             // Otherwise replace the variable by its proxy.
  1057             sym = proxies.lookup(proxyName(sym.name)).sym;
  1058             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
  1059             tree = make.at(tree.pos).Ident(sym);
  1061         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
  1062         switch (sym.kind) {
  1063         case TYP:
  1064             if (sym.owner.kind != PCK) {
  1065                 // Convert type idents to
  1066                 // <flat name> or <package name> . <flat name>
  1067                 Name flatname = Convert.shortName(sym.flatName());
  1068                 while (base != null &&
  1069                        TreeInfo.symbol(base) != null &&
  1070                        TreeInfo.symbol(base).kind != PCK) {
  1071                     base = (base.getTag() == JCTree.SELECT)
  1072                         ? ((JCFieldAccess) base).selected
  1073                         : null;
  1075                 if (tree.getTag() == JCTree.IDENT) {
  1076                     ((JCIdent) tree).name = flatname;
  1077                 } else if (base == null) {
  1078                     tree = make.at(tree.pos).Ident(sym);
  1079                     ((JCIdent) tree).name = flatname;
  1080                 } else {
  1081                     ((JCFieldAccess) tree).selected = base;
  1082                     ((JCFieldAccess) tree).name = flatname;
  1085             break;
  1086         case MTH: case VAR:
  1087             if (sym.owner.kind == TYP) {
  1089                 // Access methods are required for
  1090                 //  - private members,
  1091                 //  - protected members in a superclass of an
  1092                 //    enclosing class contained in another package.
  1093                 //  - all non-private members accessed via a qualified super.
  1094                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
  1095                     || needsProtectedAccess(sym, tree);
  1096                 boolean accReq = protAccess || needsPrivateAccess(sym);
  1098                 // A base has to be supplied for
  1099                 //  - simple identifiers accessing variables in outer classes.
  1100                 boolean baseReq =
  1101                     base == null &&
  1102                     sym.owner != syms.predefClass &&
  1103                     !sym.isMemberOf(currentClass, types);
  1105                 if (accReq || baseReq) {
  1106                     make.at(tree.pos);
  1108                     // Constants are replaced by their constant value.
  1109                     if (sym.kind == VAR) {
  1110                         Object cv = ((VarSymbol)sym).getConstValue();
  1111                         if (cv != null) return makeLit(sym.type, cv);
  1114                     // Private variables and methods are replaced by calls
  1115                     // to their access methods.
  1116                     if (accReq) {
  1117                         List<JCExpression> args = List.nil();
  1118                         if ((sym.flags() & STATIC) == 0) {
  1119                             // Instance access methods get instance
  1120                             // as first parameter.
  1121                             if (base == null)
  1122                                 base = makeOwnerThis(tree.pos(), sym, true);
  1123                             args = args.prepend(base);
  1124                             base = null;   // so we don't duplicate code
  1126                         Symbol access = accessSymbol(sym, tree,
  1127                                                      enclOp, protAccess,
  1128                                                      refSuper);
  1129                         JCExpression receiver = make.Select(
  1130                             base != null ? base : make.QualIdent(access.owner),
  1131                             access);
  1132                         return make.App(receiver, args);
  1134                     // Other accesses to members of outer classes get a
  1135                     // qualifier.
  1136                     } else if (baseReq) {
  1137                         return make.at(tree.pos).Select(
  1138                             accessBase(tree.pos(), sym), sym).setType(tree.type);
  1143         return tree;
  1146     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1147      *  @param tree     The identifier tree.
  1148      */
  1149     JCExpression access(JCExpression tree) {
  1150         Symbol sym = TreeInfo.symbol(tree);
  1151         return sym == null ? tree : access(sym, tree, null, false);
  1154     /** Return access constructor for a private constructor,
  1155      *  or the constructor itself, if no access constructor is needed.
  1156      *  @param pos       The position to report diagnostics, if any.
  1157      *  @param constr    The private constructor.
  1158      */
  1159     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
  1160         if (needsPrivateAccess(constr)) {
  1161             ClassSymbol accOwner = constr.owner.enclClass();
  1162             MethodSymbol aconstr = accessConstrs.get(constr);
  1163             if (aconstr == null) {
  1164                 List<Type> argtypes = constr.type.getParameterTypes();
  1165                 if ((accOwner.flags_field & ENUM) != 0)
  1166                     argtypes = argtypes
  1167                         .prepend(syms.intType)
  1168                         .prepend(syms.stringType);
  1169                 aconstr = new MethodSymbol(
  1170                     SYNTHETIC,
  1171                     names.init,
  1172                     new MethodType(
  1173                         argtypes.append(
  1174                             accessConstructorTag().erasure(types)),
  1175                         constr.type.getReturnType(),
  1176                         constr.type.getThrownTypes(),
  1177                         syms.methodClass),
  1178                     accOwner);
  1179                 enterSynthetic(pos, aconstr, accOwner.members());
  1180                 accessConstrs.put(constr, aconstr);
  1181                 accessed.append(constr);
  1183             return aconstr;
  1184         } else {
  1185             return constr;
  1189     /** Return an anonymous class nested in this toplevel class.
  1190      */
  1191     ClassSymbol accessConstructorTag() {
  1192         ClassSymbol topClass = currentClass.outermostClass();
  1193         Name flatname = names.fromString("" + topClass.getQualifiedName() +
  1194                                          target.syntheticNameChar() +
  1195                                          "1");
  1196         ClassSymbol ctag = chk.compiled.get(flatname);
  1197         if (ctag == null)
  1198             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
  1199         // keep a record of all tags, to verify that all are generated as required
  1200         accessConstrTags = accessConstrTags.prepend(ctag);
  1201         return ctag;
  1204     /** Add all required access methods for a private symbol to enclosing class.
  1205      *  @param sym       The symbol.
  1206      */
  1207     void makeAccessible(Symbol sym) {
  1208         JCClassDecl cdef = classDef(sym.owner.enclClass());
  1209         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
  1210         if (sym.name == names.init) {
  1211             cdef.defs = cdef.defs.prepend(
  1212                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
  1213         } else {
  1214             MethodSymbol[] accessors = accessSyms.get(sym);
  1215             for (int i = 0; i < NCODES; i++) {
  1216                 if (accessors[i] != null)
  1217                     cdef.defs = cdef.defs.prepend(
  1218                         accessDef(cdef.pos, sym, accessors[i], i));
  1223     /** Construct definition of an access method.
  1224      *  @param pos        The source code position of the definition.
  1225      *  @param vsym       The private or protected symbol.
  1226      *  @param accessor   The access method for the symbol.
  1227      *  @param acode      The access code.
  1228      */
  1229     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
  1230 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
  1231         currentClass = vsym.owner.enclClass();
  1232         make.at(pos);
  1233         JCMethodDecl md = make.MethodDef(accessor, null);
  1235         // Find actual symbol
  1236         Symbol sym = actualSymbols.get(vsym);
  1237         if (sym == null) sym = vsym;
  1239         JCExpression ref;           // The tree referencing the private symbol.
  1240         List<JCExpression> args;    // Any additional arguments to be passed along.
  1241         if ((sym.flags() & STATIC) != 0) {
  1242             ref = make.Ident(sym);
  1243             args = make.Idents(md.params);
  1244         } else {
  1245             ref = make.Select(make.Ident(md.params.head), sym);
  1246             args = make.Idents(md.params.tail);
  1248         JCStatement stat;          // The statement accessing the private symbol.
  1249         if (sym.kind == VAR) {
  1250             // Normalize out all odd access codes by taking floor modulo 2:
  1251             int acode1 = acode - (acode & 1);
  1253             JCExpression expr;      // The access method's return value.
  1254             switch (acode1) {
  1255             case DEREFcode:
  1256                 expr = ref;
  1257                 break;
  1258             case ASSIGNcode:
  1259                 expr = make.Assign(ref, args.head);
  1260                 break;
  1261             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
  1262                 expr = makeUnary(
  1263                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
  1264                 break;
  1265             default:
  1266                 expr = make.Assignop(
  1267                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
  1268                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
  1270             stat = make.Return(expr.setType(sym.type));
  1271         } else {
  1272             stat = make.Call(make.App(ref, args));
  1274         md.body = make.Block(0, List.of(stat));
  1276         // Make sure all parameters, result types and thrown exceptions
  1277         // are accessible.
  1278         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
  1279             l.head.vartype = access(l.head.vartype);
  1280         md.restype = access(md.restype);
  1281         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
  1282             l.head = access(l.head);
  1284         return md;
  1287     /** Construct definition of an access constructor.
  1288      *  @param pos        The source code position of the definition.
  1289      *  @param constr     The private constructor.
  1290      *  @param accessor   The access method for the constructor.
  1291      */
  1292     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
  1293         make.at(pos);
  1294         JCMethodDecl md = make.MethodDef(accessor,
  1295                                       accessor.externalType(types),
  1296                                       null);
  1297         JCIdent callee = make.Ident(names._this);
  1298         callee.sym = constr;
  1299         callee.type = constr.type;
  1300         md.body =
  1301             make.Block(0, List.<JCStatement>of(
  1302                 make.Call(
  1303                     make.App(
  1304                         callee,
  1305                         make.Idents(md.params.reverse().tail.reverse())))));
  1306         return md;
  1309 /**************************************************************************
  1310  * Free variables proxies and this$n
  1311  *************************************************************************/
  1313     /** A scope containing all free variable proxies for currently translated
  1314      *  class, as well as its this$n symbol (if needed).
  1315      *  Proxy scopes are nested in the same way classes are.
  1316      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1317      *  in an additional innermost scope, where they represent the constructor
  1318      *  parameters.
  1319      */
  1320     Scope proxies;
  1322     /** A scope containing all unnamed resource variables/saved
  1323      *  exception variables for translated TWR blocks
  1324      */
  1325     Scope twrVars;
  1327     /** A stack containing the this$n field of the currently translated
  1328      *  classes (if needed) in innermost first order.
  1329      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1330      *  in an additional innermost scope, where they represent the constructor
  1331      *  parameters.
  1332      */
  1333     List<VarSymbol> outerThisStack;
  1335     /** The name of a free variable proxy.
  1336      */
  1337     Name proxyName(Name name) {
  1338         return names.fromString("val" + target.syntheticNameChar() + name);
  1341     /** Proxy definitions for all free variables in given list, in reverse order.
  1342      *  @param pos        The source code position of the definition.
  1343      *  @param freevars   The free variables.
  1344      *  @param owner      The class in which the definitions go.
  1345      */
  1346     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
  1347         long flags = FINAL | SYNTHETIC;
  1348         if (owner.kind == TYP &&
  1349             target.usePrivateSyntheticFields())
  1350             flags |= PRIVATE;
  1351         List<JCVariableDecl> defs = List.nil();
  1352         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
  1353             VarSymbol v = l.head;
  1354             VarSymbol proxy = new VarSymbol(
  1355                 flags, proxyName(v.name), v.erasure(types), owner);
  1356             proxies.enter(proxy);
  1357             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
  1358             vd.vartype = access(vd.vartype);
  1359             defs = defs.prepend(vd);
  1361         return defs;
  1364     /** The name of a this$n field
  1365      *  @param type   The class referenced by the this$n field
  1366      */
  1367     Name outerThisName(Type type, Symbol owner) {
  1368         Type t = type.getEnclosingType();
  1369         int nestingLevel = 0;
  1370         while (t.tag == CLASS) {
  1371             t = t.getEnclosingType();
  1372             nestingLevel++;
  1374         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
  1375         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
  1376             result = names.fromString(result.toString() + target.syntheticNameChar());
  1377         return result;
  1380     /** Definition for this$n field.
  1381      *  @param pos        The source code position of the definition.
  1382      *  @param owner      The class in which the definition goes.
  1383      */
  1384     JCVariableDecl outerThisDef(int pos, Symbol owner) {
  1385         long flags = FINAL | SYNTHETIC;
  1386         if (owner.kind == TYP &&
  1387             target.usePrivateSyntheticFields())
  1388             flags |= PRIVATE;
  1389         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
  1390         VarSymbol outerThis = new VarSymbol(
  1391             flags, outerThisName(target, owner), target, owner);
  1392         outerThisStack = outerThisStack.prepend(outerThis);
  1393         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
  1394         vd.vartype = access(vd.vartype);
  1395         return vd;
  1398     /** Return a list of trees that load the free variables in given list,
  1399      *  in reverse order.
  1400      *  @param pos          The source code position to be used for the trees.
  1401      *  @param freevars     The list of free variables.
  1402      */
  1403     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
  1404         List<JCExpression> args = List.nil();
  1405         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
  1406             args = args.prepend(loadFreevar(pos, l.head));
  1407         return args;
  1409 //where
  1410         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
  1411             return access(v, make.at(pos).Ident(v), null, false);
  1414     /** Construct a tree simulating the expression <C.this>.
  1415      *  @param pos           The source code position to be used for the tree.
  1416      *  @param c             The qualifier class.
  1417      */
  1418     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
  1419         if (currentClass == c) {
  1420             // in this case, `this' works fine
  1421             return make.at(pos).This(c.erasure(types));
  1422         } else {
  1423             // need to go via this$n
  1424             return makeOuterThis(pos, c);
  1428     /**
  1429      * Optionally replace a try statement with the desugaring of a
  1430      * try-with-resources statement.  The canonical desugaring of
  1432      * try ResourceSpecification
  1433      *   Block
  1435      * is
  1437      * {
  1438      *   final VariableModifiers_minus_final R #resource = Expression;
  1439      *   Throwable #primaryException = null;
  1441      *   try ResourceSpecificationtail
  1442      *     Block
  1443      *   catch (Throwable #t) {
  1444      *     #primaryException = t;
  1445      *     throw #t;
  1446      *   } finally {
  1447      *     if (#resource != null) {
  1448      *       if (#primaryException != null) {
  1449      *         try {
  1450      *           #resource.close();
  1451      *         } catch(Throwable #suppressedException) {
  1452      *           #primaryException.addSuppressed(#suppressedException);
  1453      *         }
  1454      *       } else {
  1455      *         #resource.close();
  1456      *       }
  1457      *     }
  1458      *   }
  1460      * @param tree  The try statement to inspect.
  1461      * @return A a desugared try-with-resources tree, or the original
  1462      * try block if there are no resources to manage.
  1463      */
  1464     JCTree makeTwrTry(JCTry tree) {
  1465         make_at(tree.pos());
  1466         twrVars = twrVars.dup();
  1467         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
  1468         if (tree.catchers.isEmpty() && tree.finalizer == null)
  1469             result = translate(twrBlock);
  1470         else
  1471             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
  1472         twrVars = twrVars.leave();
  1473         return result;
  1476     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
  1477         if (resources.isEmpty())
  1478             return block;
  1480         // Add resource declaration or expression to block statements
  1481         ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
  1482         JCTree resource = resources.head;
  1483         JCExpression expr = null;
  1484         if (resource instanceof JCVariableDecl) {
  1485             JCVariableDecl var = (JCVariableDecl) resource;
  1486             expr = make.Ident(var.sym).setType(resource.type);
  1487             stats.add(var);
  1488         } else {
  1489             Assert.check(resource instanceof JCExpression);
  1490             VarSymbol syntheticTwrVar =
  1491             new VarSymbol(SYNTHETIC | FINAL,
  1492                           makeSyntheticName(names.fromString("twrVar" +
  1493                                            depth), twrVars),
  1494                           (resource.type.tag == TypeTags.BOT) ?
  1495                           syms.autoCloseableType : resource.type,
  1496                           currentMethodSym);
  1497             twrVars.enter(syntheticTwrVar);
  1498             JCVariableDecl syntheticTwrVarDecl =
  1499                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
  1500             expr = (JCExpression)make.Ident(syntheticTwrVar);
  1501             stats.add(syntheticTwrVarDecl);
  1504         // Add primaryException declaration
  1505         VarSymbol primaryException =
  1506             new VarSymbol(SYNTHETIC,
  1507                           makeSyntheticName(names.fromString("primaryException" +
  1508                           depth), twrVars),
  1509                           syms.throwableType,
  1510                           currentMethodSym);
  1511         twrVars.enter(primaryException);
  1512         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
  1513         stats.add(primaryExceptionTreeDecl);
  1515         // Create catch clause that saves exception and then rethrows it
  1516         VarSymbol param =
  1517             new VarSymbol(FINAL|SYNTHETIC,
  1518                           names.fromString("t" +
  1519                                            target.syntheticNameChar()),
  1520                           syms.throwableType,
  1521                           currentMethodSym);
  1522         JCVariableDecl paramTree = make.VarDef(param, null);
  1523         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
  1524         JCStatement rethrowStat = make.Throw(make.Ident(param));
  1525         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
  1526         JCCatch catchClause = make.Catch(paramTree, catchBlock);
  1528         int oldPos = make.pos;
  1529         make.at(TreeInfo.endPos(block));
  1530         JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
  1531         make.at(oldPos);
  1532         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
  1533                                   List.<JCCatch>of(catchClause),
  1534                                   finallyClause);
  1535         stats.add(outerTry);
  1536         return make.Block(0L, stats.toList());
  1539     private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
  1540         // primaryException.addSuppressed(catchException);
  1541         VarSymbol catchException =
  1542             new VarSymbol(0, make.paramName(2),
  1543                           syms.throwableType,
  1544                           currentMethodSym);
  1545         JCStatement addSuppressionStatement =
  1546             make.Exec(makeCall(make.Ident(primaryException),
  1547                                names.addSuppressed,
  1548                                List.<JCExpression>of(make.Ident(catchException))));
  1550         // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
  1551         JCBlock tryBlock =
  1552             make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
  1553         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
  1554         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
  1555         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
  1556         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
  1558         // if (primaryException != null) {try...} else resourceClose;
  1559         JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
  1560                                         tryTree,
  1561                                         makeResourceCloseInvocation(resource));
  1563         // if (#resource != null) { if (primaryException ...  }
  1564         return make.Block(0L,
  1565                           List.<JCStatement>of(make.If(makeNonNullCheck(resource),
  1566                                                        closeIfStatement,
  1567                                                        null)));
  1570     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
  1571         // create resource.close() method invocation
  1572         JCExpression resourceClose = makeCall(resource,
  1573                                               names.close,
  1574                                               List.<JCExpression>nil());
  1575         return make.Exec(resourceClose);
  1578     private JCExpression makeNonNullCheck(JCExpression expression) {
  1579         return makeBinary(JCTree.NE, expression, makeNull());
  1582     /** Construct a tree that represents the outer instance
  1583      *  <C.this>. Never pick the current `this'.
  1584      *  @param pos           The source code position to be used for the tree.
  1585      *  @param c             The qualifier class.
  1586      */
  1587     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
  1588         List<VarSymbol> ots = outerThisStack;
  1589         if (ots.isEmpty()) {
  1590             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1591             Assert.error();
  1592             return makeNull();
  1594         VarSymbol ot = ots.head;
  1595         JCExpression tree = access(make.at(pos).Ident(ot));
  1596         TypeSymbol otc = ot.type.tsym;
  1597         while (otc != c) {
  1598             do {
  1599                 ots = ots.tail;
  1600                 if (ots.isEmpty()) {
  1601                     log.error(pos,
  1602                               "no.encl.instance.of.type.in.scope",
  1603                               c);
  1604                     Assert.error(); // should have been caught in Attr
  1605                     return tree;
  1607                 ot = ots.head;
  1608             } while (ot.owner != otc);
  1609             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
  1610                 chk.earlyRefError(pos, c);
  1611                 Assert.error(); // should have been caught in Attr
  1612                 return makeNull();
  1614             tree = access(make.at(pos).Select(tree, ot));
  1615             otc = ot.type.tsym;
  1617         return tree;
  1620     /** Construct a tree that represents the closest outer instance
  1621      *  <C.this> such that the given symbol is a member of C.
  1622      *  @param pos           The source code position to be used for the tree.
  1623      *  @param sym           The accessed symbol.
  1624      *  @param preciseMatch  should we accept a type that is a subtype of
  1625      *                       sym's owner, even if it doesn't contain sym
  1626      *                       due to hiding, overriding, or non-inheritance
  1627      *                       due to protection?
  1628      */
  1629     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1630         Symbol c = sym.owner;
  1631         if (preciseMatch ? sym.isMemberOf(currentClass, types)
  1632                          : currentClass.isSubClass(sym.owner, types)) {
  1633             // in this case, `this' works fine
  1634             return make.at(pos).This(c.erasure(types));
  1635         } else {
  1636             // need to go via this$n
  1637             return makeOwnerThisN(pos, sym, preciseMatch);
  1641     /**
  1642      * Similar to makeOwnerThis but will never pick "this".
  1643      */
  1644     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1645         Symbol c = sym.owner;
  1646         List<VarSymbol> ots = outerThisStack;
  1647         if (ots.isEmpty()) {
  1648             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1649             Assert.error();
  1650             return makeNull();
  1652         VarSymbol ot = ots.head;
  1653         JCExpression tree = access(make.at(pos).Ident(ot));
  1654         TypeSymbol otc = ot.type.tsym;
  1655         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
  1656             do {
  1657                 ots = ots.tail;
  1658                 if (ots.isEmpty()) {
  1659                     log.error(pos,
  1660                         "no.encl.instance.of.type.in.scope",
  1661                         c);
  1662                     Assert.error();
  1663                     return tree;
  1665                 ot = ots.head;
  1666             } while (ot.owner != otc);
  1667             tree = access(make.at(pos).Select(tree, ot));
  1668             otc = ot.type.tsym;
  1670         return tree;
  1673     /** Return tree simulating the assignment <this.name = name>, where
  1674      *  name is the name of a free variable.
  1675      */
  1676     JCStatement initField(int pos, Name name) {
  1677         Scope.Entry e = proxies.lookup(name);
  1678         Symbol rhs = e.sym;
  1679         Assert.check(rhs.owner.kind == MTH);
  1680         Symbol lhs = e.next().sym;
  1681         Assert.check(rhs.owner.owner == lhs.owner);
  1682         make.at(pos);
  1683         return
  1684             make.Exec(
  1685                 make.Assign(
  1686                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1687                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1690     /** Return tree simulating the assignment <this.this$n = this$n>.
  1691      */
  1692     JCStatement initOuterThis(int pos) {
  1693         VarSymbol rhs = outerThisStack.head;
  1694         Assert.check(rhs.owner.kind == MTH);
  1695         VarSymbol lhs = outerThisStack.tail.head;
  1696         Assert.check(rhs.owner.owner == lhs.owner);
  1697         make.at(pos);
  1698         return
  1699             make.Exec(
  1700                 make.Assign(
  1701                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1702                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1705 /**************************************************************************
  1706  * Code for .class
  1707  *************************************************************************/
  1709     /** Return the symbol of a class to contain a cache of
  1710      *  compiler-generated statics such as class$ and the
  1711      *  $assertionsDisabled flag.  We create an anonymous nested class
  1712      *  (unless one already exists) and return its symbol.  However,
  1713      *  for backward compatibility in 1.4 and earlier we use the
  1714      *  top-level class itself.
  1715      */
  1716     private ClassSymbol outerCacheClass() {
  1717         ClassSymbol clazz = outermostClassDef.sym;
  1718         if ((clazz.flags() & INTERFACE) == 0 &&
  1719             !target.useInnerCacheClass()) return clazz;
  1720         Scope s = clazz.members();
  1721         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
  1722             if (e.sym.kind == TYP &&
  1723                 e.sym.name == names.empty &&
  1724                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
  1725         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
  1728     /** Return symbol for "class$" method. If there is no method definition
  1729      *  for class$, construct one as follows:
  1731      *    class class$(String x0) {
  1732      *      try {
  1733      *        return Class.forName(x0);
  1734      *      } catch (ClassNotFoundException x1) {
  1735      *        throw new NoClassDefFoundError(x1.getMessage());
  1736      *      }
  1737      *    }
  1738      */
  1739     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
  1740         ClassSymbol outerCacheClass = outerCacheClass();
  1741         MethodSymbol classDollarSym =
  1742             (MethodSymbol)lookupSynthetic(classDollar,
  1743                                           outerCacheClass.members());
  1744         if (classDollarSym == null) {
  1745             classDollarSym = new MethodSymbol(
  1746                 STATIC | SYNTHETIC,
  1747                 classDollar,
  1748                 new MethodType(
  1749                     List.of(syms.stringType),
  1750                     types.erasure(syms.classType),
  1751                     List.<Type>nil(),
  1752                     syms.methodClass),
  1753                 outerCacheClass);
  1754             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
  1756             JCMethodDecl md = make.MethodDef(classDollarSym, null);
  1757             try {
  1758                 md.body = classDollarSymBody(pos, md);
  1759             } catch (CompletionFailure ex) {
  1760                 md.body = make.Block(0, List.<JCStatement>nil());
  1761                 chk.completionError(pos, ex);
  1763             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1764             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
  1766         return classDollarSym;
  1769     /** Generate code for class$(String name). */
  1770     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
  1771         MethodSymbol classDollarSym = md.sym;
  1772         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
  1774         JCBlock returnResult;
  1776         // in 1.4.2 and above, we use
  1777         // Class.forName(String name, boolean init, ClassLoader loader);
  1778         // which requires we cache the current loader in cl$
  1779         if (target.classLiteralsNoInit()) {
  1780             // clsym = "private static ClassLoader cl$"
  1781             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
  1782                                             names.fromString("cl" + target.syntheticNameChar()),
  1783                                             syms.classLoaderType,
  1784                                             outerCacheClass);
  1785             enterSynthetic(pos, clsym, outerCacheClass.members());
  1787             // emit "private static ClassLoader cl$;"
  1788             JCVariableDecl cldef = make.VarDef(clsym, null);
  1789             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1790             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
  1792             // newcache := "new cache$1[0]"
  1793             JCNewArray newcache = make.
  1794                 NewArray(make.Type(outerCacheClass.type),
  1795                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
  1796                          null);
  1797             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
  1798                                           syms.arrayClass);
  1800             // forNameSym := java.lang.Class.forName(
  1801             //     String s,boolean init,ClassLoader loader)
  1802             Symbol forNameSym = lookupMethod(make_pos, names.forName,
  1803                                              types.erasure(syms.classType),
  1804                                              List.of(syms.stringType,
  1805                                                      syms.booleanType,
  1806                                                      syms.classLoaderType));
  1807             // clvalue := "(cl$ == null) ?
  1808             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
  1809             JCExpression clvalue =
  1810                 make.Conditional(
  1811                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
  1812                     make.Assign(
  1813                         make.Ident(clsym),
  1814                         makeCall(
  1815                             makeCall(makeCall(newcache,
  1816                                               names.getClass,
  1817                                               List.<JCExpression>nil()),
  1818                                      names.getComponentType,
  1819                                      List.<JCExpression>nil()),
  1820                             names.getClassLoader,
  1821                             List.<JCExpression>nil())).setType(syms.classLoaderType),
  1822                     make.Ident(clsym)).setType(syms.classLoaderType);
  1824             // returnResult := "{ return Class.forName(param1, false, cl$); }"
  1825             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
  1826                                               makeLit(syms.booleanType, 0),
  1827                                               clvalue);
  1828             returnResult = make.
  1829                 Block(0, List.<JCStatement>of(make.
  1830                               Call(make. // return
  1831                                    App(make.
  1832                                        Ident(forNameSym), args))));
  1833         } else {
  1834             // forNameSym := java.lang.Class.forName(String s)
  1835             Symbol forNameSym = lookupMethod(make_pos,
  1836                                              names.forName,
  1837                                              types.erasure(syms.classType),
  1838                                              List.of(syms.stringType));
  1839             // returnResult := "{ return Class.forName(param1); }"
  1840             returnResult = make.
  1841                 Block(0, List.of(make.
  1842                           Call(make. // return
  1843                               App(make.
  1844                                   QualIdent(forNameSym),
  1845                                   List.<JCExpression>of(make.
  1846                                                         Ident(md.params.
  1847                                                               head.sym))))));
  1850         // catchParam := ClassNotFoundException e1
  1851         VarSymbol catchParam =
  1852             new VarSymbol(0, make.paramName(1),
  1853                           syms.classNotFoundExceptionType,
  1854                           classDollarSym);
  1856         JCStatement rethrow;
  1857         if (target.hasInitCause()) {
  1858             // rethrow = "throw new NoClassDefFoundError().initCause(e);
  1859             JCTree throwExpr =
  1860                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
  1861                                       List.<JCExpression>nil()),
  1862                          names.initCause,
  1863                          List.<JCExpression>of(make.Ident(catchParam)));
  1864             rethrow = make.Throw(throwExpr);
  1865         } else {
  1866             // getMessageSym := ClassNotFoundException.getMessage()
  1867             Symbol getMessageSym = lookupMethod(make_pos,
  1868                                                 names.getMessage,
  1869                                                 syms.classNotFoundExceptionType,
  1870                                                 List.<Type>nil());
  1871             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
  1872             rethrow = make.
  1873                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
  1874                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
  1875                                                                      getMessageSym),
  1876                                                          List.<JCExpression>nil()))));
  1879         // rethrowStmt := "( $rethrow )"
  1880         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
  1882         // catchBlock := "catch ($catchParam) $rethrowStmt"
  1883         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
  1884                                       rethrowStmt);
  1886         // tryCatch := "try $returnResult $catchBlock"
  1887         JCStatement tryCatch = make.Try(returnResult,
  1888                                         List.of(catchBlock), null);
  1890         return make.Block(0, List.of(tryCatch));
  1892     // where
  1893         /** Create an attributed tree of the form left.name(). */
  1894         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
  1895             Assert.checkNonNull(left.type);
  1896             Symbol funcsym = lookupMethod(make_pos, name, left.type,
  1897                                           TreeInfo.types(args));
  1898             return make.App(make.Select(left, funcsym), args);
  1901     /** The Name Of The variable to cache T.class values.
  1902      *  @param sig      The signature of type T.
  1903      */
  1904     private Name cacheName(String sig) {
  1905         StringBuffer buf = new StringBuffer();
  1906         if (sig.startsWith("[")) {
  1907             buf = buf.append("array");
  1908             while (sig.startsWith("[")) {
  1909                 buf = buf.append(target.syntheticNameChar());
  1910                 sig = sig.substring(1);
  1912             if (sig.startsWith("L")) {
  1913                 sig = sig.substring(0, sig.length() - 1);
  1915         } else {
  1916             buf = buf.append("class" + target.syntheticNameChar());
  1918         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
  1919         return names.fromString(buf.toString());
  1922     /** The variable symbol that caches T.class values.
  1923      *  If none exists yet, create a definition.
  1924      *  @param sig      The signature of type T.
  1925      *  @param pos      The position to report diagnostics, if any.
  1926      */
  1927     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
  1928         ClassSymbol outerCacheClass = outerCacheClass();
  1929         Name cname = cacheName(sig);
  1930         VarSymbol cacheSym =
  1931             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
  1932         if (cacheSym == null) {
  1933             cacheSym = new VarSymbol(
  1934                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
  1935             enterSynthetic(pos, cacheSym, outerCacheClass.members());
  1937             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
  1938             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1939             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
  1941         return cacheSym;
  1944     /** The tree simulating a T.class expression.
  1945      *  @param clazz      The tree identifying type T.
  1946      */
  1947     private JCExpression classOf(JCTree clazz) {
  1948         return classOfType(clazz.type, clazz.pos());
  1951     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
  1952         switch (type.tag) {
  1953         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
  1954         case DOUBLE: case BOOLEAN: case VOID:
  1955             // replace with <BoxedClass>.TYPE
  1956             ClassSymbol c = types.boxedClass(type);
  1957             Symbol typeSym =
  1958                 rs.access(
  1959                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
  1960                     pos, c.type, names.TYPE, true);
  1961             if (typeSym.kind == VAR)
  1962                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
  1963             return make.QualIdent(typeSym);
  1964         case CLASS: case ARRAY:
  1965             if (target.hasClassLiterals()) {
  1966                 VarSymbol sym = new VarSymbol(
  1967                         STATIC | PUBLIC | FINAL, names._class,
  1968                         syms.classType, type.tsym);
  1969                 return make_at(pos).Select(make.Type(type), sym);
  1971             // replace with <cache == null ? cache = class$(tsig) : cache>
  1972             // where
  1973             //  - <tsig>  is the type signature of T,
  1974             //  - <cache> is the cache variable for tsig.
  1975             String sig =
  1976                 writer.xClassName(type).toString().replace('/', '.');
  1977             Symbol cs = cacheSym(pos, sig);
  1978             return make_at(pos).Conditional(
  1979                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
  1980                 make.Assign(
  1981                     make.Ident(cs),
  1982                     make.App(
  1983                         make.Ident(classDollarSym(pos)),
  1984                         List.<JCExpression>of(make.Literal(CLASS, sig)
  1985                                               .setType(syms.stringType))))
  1986                 .setType(types.erasure(syms.classType)),
  1987                 make.Ident(cs)).setType(types.erasure(syms.classType));
  1988         default:
  1989             throw new AssertionError();
  1993 /**************************************************************************
  1994  * Code for enabling/disabling assertions.
  1995  *************************************************************************/
  1997     // This code is not particularly robust if the user has
  1998     // previously declared a member named '$assertionsDisabled'.
  1999     // The same faulty idiom also appears in the translation of
  2000     // class literals above.  We should report an error if a
  2001     // previous declaration is not synthetic.
  2003     private JCExpression assertFlagTest(DiagnosticPosition pos) {
  2004         // Outermost class may be either true class or an interface.
  2005         ClassSymbol outermostClass = outermostClassDef.sym;
  2007         // note that this is a class, as an interface can't contain a statement.
  2008         ClassSymbol container = currentClass;
  2010         VarSymbol assertDisabledSym =
  2011             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
  2012                                        container.members());
  2013         if (assertDisabledSym == null) {
  2014             assertDisabledSym =
  2015                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
  2016                               dollarAssertionsDisabled,
  2017                               syms.booleanType,
  2018                               container);
  2019             enterSynthetic(pos, assertDisabledSym, container.members());
  2020             Symbol desiredAssertionStatusSym = lookupMethod(pos,
  2021                                                             names.desiredAssertionStatus,
  2022                                                             types.erasure(syms.classType),
  2023                                                             List.<Type>nil());
  2024             JCClassDecl containerDef = classDef(container);
  2025             make_at(containerDef.pos());
  2026             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
  2027                     classOfType(types.erasure(outermostClass.type),
  2028                                 containerDef.pos()),
  2029                     desiredAssertionStatusSym)));
  2030             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
  2031                                                    notStatus);
  2032             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
  2034         make_at(pos);
  2035         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
  2039 /**************************************************************************
  2040  * Building blocks for let expressions
  2041  *************************************************************************/
  2043     interface TreeBuilder {
  2044         JCTree build(JCTree arg);
  2047     /** Construct an expression using the builder, with the given rval
  2048      *  expression as an argument to the builder.  However, the rval
  2049      *  expression must be computed only once, even if used multiple
  2050      *  times in the result of the builder.  We do that by
  2051      *  constructing a "let" expression that saves the rvalue into a
  2052      *  temporary variable and then uses the temporary variable in
  2053      *  place of the expression built by the builder.  The complete
  2054      *  resulting expression is of the form
  2055      *  <pre>
  2056      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
  2057      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
  2058      *  </pre>
  2059      *  where <code><b>TEMP</b></code> is a newly declared variable
  2060      *  in the let expression.
  2061      */
  2062     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
  2063         rval = TreeInfo.skipParens(rval);
  2064         switch (rval.getTag()) {
  2065         case JCTree.LITERAL:
  2066             return builder.build(rval);
  2067         case JCTree.IDENT:
  2068             JCIdent id = (JCIdent) rval;
  2069             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
  2070                 return builder.build(rval);
  2072         VarSymbol var =
  2073             new VarSymbol(FINAL|SYNTHETIC,
  2074                           names.fromString(
  2075                                           target.syntheticNameChar()
  2076                                           + "" + rval.hashCode()),
  2077                                       type,
  2078                                       currentMethodSym);
  2079         rval = convert(rval,type);
  2080         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
  2081         JCTree built = builder.build(make.Ident(var));
  2082         JCTree res = make.LetExpr(def, built);
  2083         res.type = built.type;
  2084         return res;
  2087     // same as above, with the type of the temporary variable computed
  2088     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
  2089         return abstractRval(rval, rval.type, builder);
  2092     // same as above, but for an expression that may be used as either
  2093     // an rvalue or an lvalue.  This requires special handling for
  2094     // Select expressions, where we place the left-hand-side of the
  2095     // select in a temporary, and for Indexed expressions, where we
  2096     // place both the indexed expression and the index value in temps.
  2097     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
  2098         lval = TreeInfo.skipParens(lval);
  2099         switch (lval.getTag()) {
  2100         case JCTree.IDENT:
  2101             return builder.build(lval);
  2102         case JCTree.SELECT: {
  2103             final JCFieldAccess s = (JCFieldAccess)lval;
  2104             JCTree selected = TreeInfo.skipParens(s.selected);
  2105             Symbol lid = TreeInfo.symbol(s.selected);
  2106             if (lid != null && lid.kind == TYP) return builder.build(lval);
  2107             return abstractRval(s.selected, new TreeBuilder() {
  2108                     public JCTree build(final JCTree selected) {
  2109                         return builder.build(make.Select((JCExpression)selected, s.sym));
  2111                 });
  2113         case JCTree.INDEXED: {
  2114             final JCArrayAccess i = (JCArrayAccess)lval;
  2115             return abstractRval(i.indexed, new TreeBuilder() {
  2116                     public JCTree build(final JCTree indexed) {
  2117                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
  2118                                 public JCTree build(final JCTree index) {
  2119                                     JCTree newLval = make.Indexed((JCExpression)indexed,
  2120                                                                 (JCExpression)index);
  2121                                     newLval.setType(i.type);
  2122                                     return builder.build(newLval);
  2124                             });
  2126                 });
  2128         case JCTree.TYPECAST: {
  2129             return abstractLval(((JCTypeCast)lval).expr, builder);
  2132         throw new AssertionError(lval);
  2135     // evaluate and discard the first expression, then evaluate the second.
  2136     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
  2137         return abstractRval(expr1, new TreeBuilder() {
  2138                 public JCTree build(final JCTree discarded) {
  2139                     return expr2;
  2141             });
  2144 /**************************************************************************
  2145  * Translation methods
  2146  *************************************************************************/
  2148     /** Visitor argument: enclosing operator node.
  2149      */
  2150     private JCExpression enclOp;
  2152     /** Visitor method: Translate a single node.
  2153      *  Attach the source position from the old tree to its replacement tree.
  2154      */
  2155     public <T extends JCTree> T translate(T tree) {
  2156         if (tree == null) {
  2157             return null;
  2158         } else {
  2159             make_at(tree.pos());
  2160             T result = super.translate(tree);
  2161             if (endPositions != null && result != tree) {
  2162                 Integer endPos = endPositions.remove(tree);
  2163                 if (endPos != null) endPositions.put(result, endPos);
  2165             return result;
  2169     /** Visitor method: Translate a single node, boxing or unboxing if needed.
  2170      */
  2171     public <T extends JCTree> T translate(T tree, Type type) {
  2172         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
  2175     /** Visitor method: Translate tree.
  2176      */
  2177     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
  2178         JCExpression prevEnclOp = this.enclOp;
  2179         this.enclOp = enclOp;
  2180         T res = translate(tree);
  2181         this.enclOp = prevEnclOp;
  2182         return res;
  2185     /** Visitor method: Translate list of trees.
  2186      */
  2187     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
  2188         JCExpression prevEnclOp = this.enclOp;
  2189         this.enclOp = enclOp;
  2190         List<T> res = translate(trees);
  2191         this.enclOp = prevEnclOp;
  2192         return res;
  2195     /** Visitor method: Translate list of trees.
  2196      */
  2197     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
  2198         if (trees == null) return null;
  2199         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
  2200             l.head = translate(l.head, type);
  2201         return trees;
  2204     public void visitTopLevel(JCCompilationUnit tree) {
  2205         if (needPackageInfoClass(tree)) {
  2206             Name name = names.package_info;
  2207             long flags = Flags.ABSTRACT | Flags.INTERFACE;
  2208             if (target.isPackageInfoSynthetic())
  2209                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
  2210                 flags = flags | Flags.SYNTHETIC;
  2211             JCClassDecl packageAnnotationsClass
  2212                 = make.ClassDef(make.Modifiers(flags,
  2213                                                tree.packageAnnotations),
  2214                                 name, List.<JCTypeParameter>nil(),
  2215                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
  2216             ClassSymbol c = tree.packge.package_info;
  2217             c.flags_field |= flags;
  2218             c.attributes_field = tree.packge.attributes_field;
  2219             ClassType ctype = (ClassType) c.type;
  2220             ctype.supertype_field = syms.objectType;
  2221             ctype.interfaces_field = List.nil();
  2222             packageAnnotationsClass.sym = c;
  2224             translated.append(packageAnnotationsClass);
  2227     // where
  2228     private boolean needPackageInfoClass(JCCompilationUnit tree) {
  2229         switch (pkginfoOpt) {
  2230             case ALWAYS:
  2231                 return true;
  2232             case LEGACY:
  2233                 return tree.packageAnnotations.nonEmpty();
  2234             case NONEMPTY:
  2235                 for (Attribute.Compound a: tree.packge.attributes_field) {
  2236                     Attribute.RetentionPolicy p = types.getRetention(a);
  2237                     if (p != Attribute.RetentionPolicy.SOURCE)
  2238                         return true;
  2240                 return false;
  2242         throw new AssertionError();
  2245     public void visitClassDef(JCClassDecl tree) {
  2246         ClassSymbol currentClassPrev = currentClass;
  2247         MethodSymbol currentMethodSymPrev = currentMethodSym;
  2248         currentClass = tree.sym;
  2249         currentMethodSym = null;
  2250         classdefs.put(currentClass, tree);
  2252         proxies = proxies.dup(currentClass);
  2253         List<VarSymbol> prevOuterThisStack = outerThisStack;
  2255         // If this is an enum definition
  2256         if ((tree.mods.flags & ENUM) != 0 &&
  2257             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
  2258             visitEnumDef(tree);
  2260         // If this is a nested class, define a this$n field for
  2261         // it and add to proxies.
  2262         JCVariableDecl otdef = null;
  2263         if (currentClass.hasOuterInstance())
  2264             otdef = outerThisDef(tree.pos, currentClass);
  2266         // If this is a local class, define proxies for all its free variables.
  2267         List<JCVariableDecl> fvdefs = freevarDefs(
  2268             tree.pos, freevars(currentClass), currentClass);
  2270         // Recursively translate superclass, interfaces.
  2271         tree.extending = translate(tree.extending);
  2272         tree.implementing = translate(tree.implementing);
  2274         // Recursively translate members, taking into account that new members
  2275         // might be created during the translation and prepended to the member
  2276         // list `tree.defs'.
  2277         List<JCTree> seen = List.nil();
  2278         while (tree.defs != seen) {
  2279             List<JCTree> unseen = tree.defs;
  2280             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
  2281                 JCTree outermostMemberDefPrev = outermostMemberDef;
  2282                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
  2283                 l.head = translate(l.head);
  2284                 outermostMemberDef = outermostMemberDefPrev;
  2286             seen = unseen;
  2289         // Convert a protected modifier to public, mask static modifier.
  2290         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
  2291         tree.mods.flags &= ClassFlags;
  2293         // Convert name to flat representation, replacing '.' by '$'.
  2294         tree.name = Convert.shortName(currentClass.flatName());
  2296         // Add this$n and free variables proxy definitions to class.
  2297         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
  2298             tree.defs = tree.defs.prepend(l.head);
  2299             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
  2301         if (currentClass.hasOuterInstance()) {
  2302             tree.defs = tree.defs.prepend(otdef);
  2303             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
  2306         proxies = proxies.leave();
  2307         outerThisStack = prevOuterThisStack;
  2309         // Append translated tree to `translated' queue.
  2310         translated.append(tree);
  2312         currentClass = currentClassPrev;
  2313         currentMethodSym = currentMethodSymPrev;
  2315         // Return empty block {} as a placeholder for an inner class.
  2316         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
  2319     /** Translate an enum class. */
  2320     private void visitEnumDef(JCClassDecl tree) {
  2321         make_at(tree.pos());
  2323         // add the supertype, if needed
  2324         if (tree.extending == null)
  2325             tree.extending = make.Type(types.supertype(tree.type));
  2327         // classOfType adds a cache field to tree.defs unless
  2328         // target.hasClassLiterals().
  2329         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
  2330             setType(types.erasure(syms.classType));
  2332         // process each enumeration constant, adding implicit constructor parameters
  2333         int nextOrdinal = 0;
  2334         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
  2335         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
  2336         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
  2337         for (List<JCTree> defs = tree.defs;
  2338              defs.nonEmpty();
  2339              defs=defs.tail) {
  2340             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
  2341                 JCVariableDecl var = (JCVariableDecl)defs.head;
  2342                 visitEnumConstantDef(var, nextOrdinal++);
  2343                 values.append(make.QualIdent(var.sym));
  2344                 enumDefs.append(var);
  2345             } else {
  2346                 otherDefs.append(defs.head);
  2350         // private static final T[] #VALUES = { a, b, c };
  2351         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
  2352         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
  2353             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
  2354         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
  2355         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
  2356                                             valuesName,
  2357                                             arrayType,
  2358                                             tree.type.tsym);
  2359         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2360                                           List.<JCExpression>nil(),
  2361                                           values.toList());
  2362         newArray.type = arrayType;
  2363         enumDefs.append(make.VarDef(valuesVar, newArray));
  2364         tree.sym.members().enter(valuesVar);
  2366         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
  2367                                         tree.type, List.<Type>nil());
  2368         List<JCStatement> valuesBody;
  2369         if (useClone()) {
  2370             // return (T[]) $VALUES.clone();
  2371             JCTypeCast valuesResult =
  2372                 make.TypeCast(valuesSym.type.getReturnType(),
  2373                               make.App(make.Select(make.Ident(valuesVar),
  2374                                                    syms.arrayCloneMethod)));
  2375             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
  2376         } else {
  2377             // template: T[] $result = new T[$values.length];
  2378             Name resultName = names.fromString(target.syntheticNameChar() + "result");
  2379             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
  2380                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
  2381             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
  2382                                                 resultName,
  2383                                                 arrayType,
  2384                                                 valuesSym);
  2385             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2386                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
  2387                                   null);
  2388             resultArray.type = arrayType;
  2389             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
  2391             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
  2392             if (systemArraycopyMethod == null) {
  2393                 systemArraycopyMethod =
  2394                     new MethodSymbol(PUBLIC | STATIC,
  2395                                      names.fromString("arraycopy"),
  2396                                      new MethodType(List.<Type>of(syms.objectType,
  2397                                                             syms.intType,
  2398                                                             syms.objectType,
  2399                                                             syms.intType,
  2400                                                             syms.intType),
  2401                                                     syms.voidType,
  2402                                                     List.<Type>nil(),
  2403                                                     syms.methodClass),
  2404                                      syms.systemType.tsym);
  2406             JCStatement copy =
  2407                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
  2408                                                systemArraycopyMethod),
  2409                           List.of(make.Ident(valuesVar), make.Literal(0),
  2410                                   make.Ident(resultVar), make.Literal(0),
  2411                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
  2413             // template: return $result;
  2414             JCStatement ret = make.Return(make.Ident(resultVar));
  2415             valuesBody = List.<JCStatement>of(decl, copy, ret);
  2418         JCMethodDecl valuesDef =
  2419              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
  2421         enumDefs.append(valuesDef);
  2423         if (debugLower)
  2424             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
  2426         /** The template for the following code is:
  2428          *     public static E valueOf(String name) {
  2429          *         return (E)Enum.valueOf(E.class, name);
  2430          *     }
  2432          *  where E is tree.sym
  2433          */
  2434         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
  2435                          names.valueOf,
  2436                          tree.sym.type,
  2437                          List.of(syms.stringType));
  2438         Assert.check((valueOfSym.flags() & STATIC) != 0);
  2439         VarSymbol nameArgSym = valueOfSym.params.head;
  2440         JCIdent nameVal = make.Ident(nameArgSym);
  2441         JCStatement enum_ValueOf =
  2442             make.Return(make.TypeCast(tree.sym.type,
  2443                                       makeCall(make.Ident(syms.enumSym),
  2444                                                names.valueOf,
  2445                                                List.of(e_class, nameVal))));
  2446         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
  2447                                            make.Block(0, List.of(enum_ValueOf)));
  2448         nameVal.sym = valueOf.params.head.sym;
  2449         if (debugLower)
  2450             System.err.println(tree.sym + ".valueOf = " + valueOf);
  2451         enumDefs.append(valueOf);
  2453         enumDefs.appendList(otherDefs.toList());
  2454         tree.defs = enumDefs.toList();
  2456         // Add the necessary members for the EnumCompatibleMode
  2457         if (target.compilerBootstrap(tree.sym)) {
  2458             addEnumCompatibleMembers(tree);
  2461         // where
  2462         private MethodSymbol systemArraycopyMethod;
  2463         private boolean useClone() {
  2464             try {
  2465                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
  2466                 return (e.sym != null);
  2468             catch (CompletionFailure e) {
  2469                 return false;
  2473     /** Translate an enumeration constant and its initializer. */
  2474     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
  2475         JCNewClass varDef = (JCNewClass)var.init;
  2476         varDef.args = varDef.args.
  2477             prepend(makeLit(syms.intType, ordinal)).
  2478             prepend(makeLit(syms.stringType, var.name.toString()));
  2481     public void visitMethodDef(JCMethodDecl tree) {
  2482         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
  2483             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
  2484             // argument list for each constructor of an enum.
  2485             JCVariableDecl nameParam = make_at(tree.pos()).
  2486                 Param(names.fromString(target.syntheticNameChar() +
  2487                                        "enum" + target.syntheticNameChar() + "name"),
  2488                       syms.stringType, tree.sym);
  2489             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
  2491             JCVariableDecl ordParam = make.
  2492                 Param(names.fromString(target.syntheticNameChar() +
  2493                                        "enum" + target.syntheticNameChar() +
  2494                                        "ordinal"),
  2495                       syms.intType, tree.sym);
  2496             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
  2498             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
  2500             MethodSymbol m = tree.sym;
  2501             Type olderasure = m.erasure(types);
  2502             m.erasure_field = new MethodType(
  2503                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
  2504                 olderasure.getReturnType(),
  2505                 olderasure.getThrownTypes(),
  2506                 syms.methodClass);
  2508             if (target.compilerBootstrap(m.owner)) {
  2509                 // Initialize synthetic name field
  2510                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
  2511                                                     tree.sym.owner.members());
  2512                 JCIdent nameIdent = make.Ident(nameParam.sym);
  2513                 JCIdent id1 = make.Ident(nameVarSym);
  2514                 JCAssign newAssign = make.Assign(id1, nameIdent);
  2515                 newAssign.type = id1.type;
  2516                 JCExpressionStatement nameAssign = make.Exec(newAssign);
  2517                 nameAssign.type = id1.type;
  2518                 tree.body.stats = tree.body.stats.prepend(nameAssign);
  2520                 // Initialize synthetic ordinal field
  2521                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
  2522                                                        tree.sym.owner.members());
  2523                 JCIdent ordIdent = make.Ident(ordParam.sym);
  2524                 id1 = make.Ident(ordinalVarSym);
  2525                 newAssign = make.Assign(id1, ordIdent);
  2526                 newAssign.type = id1.type;
  2527                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
  2528                 ordinalAssign.type = id1.type;
  2529                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
  2533         JCMethodDecl prevMethodDef = currentMethodDef;
  2534         MethodSymbol prevMethodSym = currentMethodSym;
  2535         try {
  2536             currentMethodDef = tree;
  2537             currentMethodSym = tree.sym;
  2538             visitMethodDefInternal(tree);
  2539         } finally {
  2540             currentMethodDef = prevMethodDef;
  2541             currentMethodSym = prevMethodSym;
  2544     //where
  2545     private void visitMethodDefInternal(JCMethodDecl tree) {
  2546         if (tree.name == names.init &&
  2547             (currentClass.isInner() ||
  2548              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
  2549             // We are seeing a constructor of an inner class.
  2550             MethodSymbol m = tree.sym;
  2552             // Push a new proxy scope for constructor parameters.
  2553             // and create definitions for any this$n and proxy parameters.
  2554             proxies = proxies.dup(m);
  2555             List<VarSymbol> prevOuterThisStack = outerThisStack;
  2556             List<VarSymbol> fvs = freevars(currentClass);
  2557             JCVariableDecl otdef = null;
  2558             if (currentClass.hasOuterInstance())
  2559                 otdef = outerThisDef(tree.pos, m);
  2560             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
  2562             // Recursively translate result type, parameters and thrown list.
  2563             tree.restype = translate(tree.restype);
  2564             tree.params = translateVarDefs(tree.params);
  2565             tree.thrown = translate(tree.thrown);
  2567             // when compiling stubs, don't process body
  2568             if (tree.body == null) {
  2569                 result = tree;
  2570                 return;
  2573             // Add this$n (if needed) in front of and free variables behind
  2574             // constructor parameter list.
  2575             tree.params = tree.params.appendList(fvdefs);
  2576             if (currentClass.hasOuterInstance())
  2577                 tree.params = tree.params.prepend(otdef);
  2579             // If this is an initial constructor, i.e., it does not start with
  2580             // this(...), insert initializers for this$n and proxies
  2581             // before (pre-1.4, after) the call to superclass constructor.
  2582             JCStatement selfCall = translate(tree.body.stats.head);
  2584             List<JCStatement> added = List.nil();
  2585             if (fvs.nonEmpty()) {
  2586                 List<Type> addedargtypes = List.nil();
  2587                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
  2588                     if (TreeInfo.isInitialConstructor(tree))
  2589                         added = added.prepend(
  2590                             initField(tree.body.pos, proxyName(l.head.name)));
  2591                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
  2593                 Type olderasure = m.erasure(types);
  2594                 m.erasure_field = new MethodType(
  2595                     olderasure.getParameterTypes().appendList(addedargtypes),
  2596                     olderasure.getReturnType(),
  2597                     olderasure.getThrownTypes(),
  2598                     syms.methodClass);
  2600             if (currentClass.hasOuterInstance() &&
  2601                 TreeInfo.isInitialConstructor(tree))
  2603                 added = added.prepend(initOuterThis(tree.body.pos));
  2606             // pop local variables from proxy stack
  2607             proxies = proxies.leave();
  2609             // recursively translate following local statements and
  2610             // combine with this- or super-call
  2611             List<JCStatement> stats = translate(tree.body.stats.tail);
  2612             if (target.initializeFieldsBeforeSuper())
  2613                 tree.body.stats = stats.prepend(selfCall).prependList(added);
  2614             else
  2615                 tree.body.stats = stats.prependList(added).prepend(selfCall);
  2617             outerThisStack = prevOuterThisStack;
  2618         } else {
  2619             super.visitMethodDef(tree);
  2621         result = tree;
  2624     public void visitTypeCast(JCTypeCast tree) {
  2625         tree.clazz = translate(tree.clazz);
  2626         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
  2627             tree.expr = translate(tree.expr, tree.type);
  2628         else
  2629             tree.expr = translate(tree.expr);
  2630         result = tree;
  2633     public void visitNewClass(JCNewClass tree) {
  2634         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
  2636         // Box arguments, if necessary
  2637         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
  2638         List<Type> argTypes = tree.constructor.type.getParameterTypes();
  2639         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
  2640         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
  2641         tree.varargsElement = null;
  2643         // If created class is local, add free variables after
  2644         // explicit constructor arguments.
  2645         if ((c.owner.kind & (VAR | MTH)) != 0) {
  2646             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2649         // If an access constructor is used, append null as a last argument.
  2650         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
  2651         if (constructor != tree.constructor) {
  2652             tree.args = tree.args.append(makeNull());
  2653             tree.constructor = constructor;
  2656         // If created class has an outer instance, and new is qualified, pass
  2657         // qualifier as first argument. If new is not qualified, pass the
  2658         // correct outer instance as first argument.
  2659         if (c.hasOuterInstance()) {
  2660             JCExpression thisArg;
  2661             if (tree.encl != null) {
  2662                 thisArg = attr.makeNullCheck(translate(tree.encl));
  2663                 thisArg.type = tree.encl.type;
  2664             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
  2665                 // local class
  2666                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
  2667             } else {
  2668                 // nested class
  2669                 thisArg = makeOwnerThis(tree.pos(), c, false);
  2671             tree.args = tree.args.prepend(thisArg);
  2673         tree.encl = null;
  2675         // If we have an anonymous class, create its flat version, rather
  2676         // than the class or interface following new.
  2677         if (tree.def != null) {
  2678             translate(tree.def);
  2679             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
  2680             tree.def = null;
  2681         } else {
  2682             tree.clazz = access(c, tree.clazz, enclOp, false);
  2684         result = tree;
  2687     // Simplify conditionals with known constant controlling expressions.
  2688     // This allows us to avoid generating supporting declarations for
  2689     // the dead code, which will not be eliminated during code generation.
  2690     // Note that Flow.isFalse and Flow.isTrue only return true
  2691     // for constant expressions in the sense of JLS 15.27, which
  2692     // are guaranteed to have no side-effects.  More aggressive
  2693     // constant propagation would require that we take care to
  2694     // preserve possible side-effects in the condition expression.
  2696     /** Visitor method for conditional expressions.
  2697      */
  2698     public void visitConditional(JCConditional tree) {
  2699         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2700         if (cond.type.isTrue()) {
  2701             result = convert(translate(tree.truepart, tree.type), tree.type);
  2702         } else if (cond.type.isFalse()) {
  2703             result = convert(translate(tree.falsepart, tree.type), tree.type);
  2704         } else {
  2705             // Condition is not a compile-time constant.
  2706             tree.truepart = translate(tree.truepart, tree.type);
  2707             tree.falsepart = translate(tree.falsepart, tree.type);
  2708             result = tree;
  2711 //where
  2712         private JCTree convert(JCTree tree, Type pt) {
  2713             if (tree.type == pt || tree.type.tag == TypeTags.BOT)
  2714                 return tree;
  2715             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
  2716             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
  2717                                                            : pt;
  2718             return result;
  2721     /** Visitor method for if statements.
  2722      */
  2723     public void visitIf(JCIf tree) {
  2724         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2725         if (cond.type.isTrue()) {
  2726             result = translate(tree.thenpart);
  2727         } else if (cond.type.isFalse()) {
  2728             if (tree.elsepart != null) {
  2729                 result = translate(tree.elsepart);
  2730             } else {
  2731                 result = make.Skip();
  2733         } else {
  2734             // Condition is not a compile-time constant.
  2735             tree.thenpart = translate(tree.thenpart);
  2736             tree.elsepart = translate(tree.elsepart);
  2737             result = tree;
  2741     /** Visitor method for assert statements. Translate them away.
  2742      */
  2743     public void visitAssert(JCAssert tree) {
  2744         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
  2745         tree.cond = translate(tree.cond, syms.booleanType);
  2746         if (!tree.cond.type.isTrue()) {
  2747             JCExpression cond = assertFlagTest(tree.pos());
  2748             List<JCExpression> exnArgs = (tree.detail == null) ?
  2749                 List.<JCExpression>nil() : List.of(translate(tree.detail));
  2750             if (!tree.cond.type.isFalse()) {
  2751                 cond = makeBinary
  2752                     (JCTree.AND,
  2753                      cond,
  2754                      makeUnary(JCTree.NOT, tree.cond));
  2756             result =
  2757                 make.If(cond,
  2758                         make_at(detailPos).
  2759                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
  2760                         null);
  2761         } else {
  2762             result = make.Skip();
  2766     public void visitApply(JCMethodInvocation tree) {
  2767         Symbol meth = TreeInfo.symbol(tree.meth);
  2768         List<Type> argtypes = meth.type.getParameterTypes();
  2769         if (allowEnums &&
  2770             meth.name==names.init &&
  2771             meth.owner == syms.enumSym)
  2772             argtypes = argtypes.tail.tail;
  2773         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
  2774         tree.varargsElement = null;
  2775         Name methName = TreeInfo.name(tree.meth);
  2776         if (meth.name==names.init) {
  2777             // We are seeing a this(...) or super(...) constructor call.
  2778             // If an access constructor is used, append null as a last argument.
  2779             Symbol constructor = accessConstructor(tree.pos(), meth);
  2780             if (constructor != meth) {
  2781                 tree.args = tree.args.append(makeNull());
  2782                 TreeInfo.setSymbol(tree.meth, constructor);
  2785             // If we are calling a constructor of a local class, add
  2786             // free variables after explicit constructor arguments.
  2787             ClassSymbol c = (ClassSymbol)constructor.owner;
  2788             if ((c.owner.kind & (VAR | MTH)) != 0) {
  2789                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2792             // If we are calling a constructor of an enum class, pass
  2793             // along the name and ordinal arguments
  2794             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
  2795                 List<JCVariableDecl> params = currentMethodDef.params;
  2796                 if (currentMethodSym.owner.hasOuterInstance())
  2797                     params = params.tail; // drop this$n
  2798                 tree.args = tree.args
  2799                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
  2800                     .prepend(make.Ident(params.head.sym)); // name
  2803             // If we are calling a constructor of a class with an outer
  2804             // instance, and the call
  2805             // is qualified, pass qualifier as first argument in front of
  2806             // the explicit constructor arguments. If the call
  2807             // is not qualified, pass the correct outer instance as
  2808             // first argument.
  2809             if (c.hasOuterInstance()) {
  2810                 JCExpression thisArg;
  2811                 if (tree.meth.getTag() == JCTree.SELECT) {
  2812                     thisArg = attr.
  2813                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
  2814                     tree.meth = make.Ident(constructor);
  2815                     ((JCIdent) tree.meth).name = methName;
  2816                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
  2817                     // local class or this() call
  2818                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
  2819                 } else {
  2820                     // super() call of nested class - never pick 'this'
  2821                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
  2823                 tree.args = tree.args.prepend(thisArg);
  2825         } else {
  2826             // We are seeing a normal method invocation; translate this as usual.
  2827             tree.meth = translate(tree.meth);
  2829             // If the translated method itself is an Apply tree, we are
  2830             // seeing an access method invocation. In this case, append
  2831             // the method arguments to the arguments of the access method.
  2832             if (tree.meth.getTag() == JCTree.APPLY) {
  2833                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
  2834                 app.args = tree.args.prependList(app.args);
  2835                 result = app;
  2836                 return;
  2839         result = tree;
  2842     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
  2843         List<JCExpression> args = _args;
  2844         if (parameters.isEmpty()) return args;
  2845         boolean anyChanges = false;
  2846         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
  2847         while (parameters.tail.nonEmpty()) {
  2848             JCExpression arg = translate(args.head, parameters.head);
  2849             anyChanges |= (arg != args.head);
  2850             result.append(arg);
  2851             args = args.tail;
  2852             parameters = parameters.tail;
  2854         Type parameter = parameters.head;
  2855         if (varargsElement != null) {
  2856             anyChanges = true;
  2857             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
  2858             while (args.nonEmpty()) {
  2859                 JCExpression arg = translate(args.head, varargsElement);
  2860                 elems.append(arg);
  2861                 args = args.tail;
  2863             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
  2864                                                List.<JCExpression>nil(),
  2865                                                elems.toList());
  2866             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
  2867             result.append(boxedArgs);
  2868         } else {
  2869             if (args.length() != 1) throw new AssertionError(args);
  2870             JCExpression arg = translate(args.head, parameter);
  2871             anyChanges |= (arg != args.head);
  2872             result.append(arg);
  2873             if (!anyChanges) return _args;
  2875         return result.toList();
  2878     /** Expand a boxing or unboxing conversion if needed. */
  2879     @SuppressWarnings("unchecked") // XXX unchecked
  2880     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
  2881         boolean havePrimitive = tree.type.isPrimitive();
  2882         if (havePrimitive == type.isPrimitive())
  2883             return tree;
  2884         if (havePrimitive) {
  2885             Type unboxedTarget = types.unboxedType(type);
  2886             if (unboxedTarget.tag != NONE) {
  2887                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
  2888                     tree.type = unboxedTarget.constType(tree.type.constValue());
  2889                 return (T)boxPrimitive((JCExpression)tree, type);
  2890             } else {
  2891                 tree = (T)boxPrimitive((JCExpression)tree);
  2893         } else {
  2894             tree = (T)unbox((JCExpression)tree, type);
  2896         return tree;
  2899     /** Box up a single primitive expression. */
  2900     JCExpression boxPrimitive(JCExpression tree) {
  2901         return boxPrimitive(tree, types.boxedClass(tree.type).type);
  2904     /** Box up a single primitive expression. */
  2905     JCExpression boxPrimitive(JCExpression tree, Type box) {
  2906         make_at(tree.pos());
  2907         if (target.boxWithConstructors()) {
  2908             Symbol ctor = lookupConstructor(tree.pos(),
  2909                                             box,
  2910                                             List.<Type>nil()
  2911                                             .prepend(tree.type));
  2912             return make.Create(ctor, List.of(tree));
  2913         } else {
  2914             Symbol valueOfSym = lookupMethod(tree.pos(),
  2915                                              names.valueOf,
  2916                                              box,
  2917                                              List.<Type>nil()
  2918                                              .prepend(tree.type));
  2919             return make.App(make.QualIdent(valueOfSym), List.of(tree));
  2923     /** Unbox an object to a primitive value. */
  2924     JCExpression unbox(JCExpression tree, Type primitive) {
  2925         Type unboxedType = types.unboxedType(tree.type);
  2926         if (unboxedType.tag == NONE) {
  2927             unboxedType = primitive;
  2928             if (!unboxedType.isPrimitive())
  2929                 throw new AssertionError(unboxedType);
  2930             make_at(tree.pos());
  2931             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
  2932         } else {
  2933             // There must be a conversion from unboxedType to primitive.
  2934             if (!types.isSubtype(unboxedType, primitive))
  2935                 throw new AssertionError(tree);
  2937         make_at(tree.pos());
  2938         Symbol valueSym = lookupMethod(tree.pos(),
  2939                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
  2940                                        tree.type,
  2941                                        List.<Type>nil());
  2942         return make.App(make.Select(tree, valueSym));
  2945     /** Visitor method for parenthesized expressions.
  2946      *  If the subexpression has changed, omit the parens.
  2947      */
  2948     public void visitParens(JCParens tree) {
  2949         JCTree expr = translate(tree.expr);
  2950         result = ((expr == tree.expr) ? tree : expr);
  2953     public void visitIndexed(JCArrayAccess tree) {
  2954         tree.indexed = translate(tree.indexed);
  2955         tree.index = translate(tree.index, syms.intType);
  2956         result = tree;
  2959     public void visitAssign(JCAssign tree) {
  2960         tree.lhs = translate(tree.lhs, tree);
  2961         tree.rhs = translate(tree.rhs, tree.lhs.type);
  2963         // If translated left hand side is an Apply, we are
  2964         // seeing an access method invocation. In this case, append
  2965         // right hand side as last argument of the access method.
  2966         if (tree.lhs.getTag() == JCTree.APPLY) {
  2967             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  2968             app.args = List.of(tree.rhs).prependList(app.args);
  2969             result = app;
  2970         } else {
  2971             result = tree;
  2975     public void visitAssignop(final JCAssignOp tree) {
  2976         if (!tree.lhs.type.isPrimitive() &&
  2977             tree.operator.type.getReturnType().isPrimitive()) {
  2978             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
  2979             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
  2980             // (but without recomputing x)
  2981             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
  2982                     public JCTree build(final JCTree lhs) {
  2983                         int newTag = tree.getTag() - JCTree.ASGOffset;
  2984                         // Erasure (TransTypes) can change the type of
  2985                         // tree.lhs.  However, we can still get the
  2986                         // unerased type of tree.lhs as it is stored
  2987                         // in tree.type in Attr.
  2988                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
  2989                                                                       newTag,
  2990                                                                       attrEnv,
  2991                                                                       tree.type,
  2992                                                                       tree.rhs.type);
  2993                         JCExpression expr = (JCExpression)lhs;
  2994                         if (expr.type != tree.type)
  2995                             expr = make.TypeCast(tree.type, expr);
  2996                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
  2997                         opResult.operator = newOperator;
  2998                         opResult.type = newOperator.type.getReturnType();
  2999                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
  3000                                                           opResult);
  3001                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
  3003                 });
  3004             result = translate(newTree);
  3005             return;
  3007         tree.lhs = translate(tree.lhs, tree);
  3008         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
  3010         // If translated left hand side is an Apply, we are
  3011         // seeing an access method invocation. In this case, append
  3012         // right hand side as last argument of the access method.
  3013         if (tree.lhs.getTag() == JCTree.APPLY) {
  3014             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  3015             // if operation is a += on strings,
  3016             // make sure to convert argument to string
  3017             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
  3018               ? makeString(tree.rhs)
  3019               : tree.rhs;
  3020             app.args = List.of(rhs).prependList(app.args);
  3021             result = app;
  3022         } else {
  3023             result = tree;
  3027     /** Lower a tree of the form e++ or e-- where e is an object type */
  3028     JCTree lowerBoxedPostop(final JCUnary tree) {
  3029         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
  3030         // or
  3031         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
  3032         // where OP is += or -=
  3033         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
  3034         return abstractLval(tree.arg, new TreeBuilder() {
  3035                 public JCTree build(final JCTree tmp1) {
  3036                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
  3037                             public JCTree build(final JCTree tmp2) {
  3038                                 int opcode = (tree.getTag() == JCTree.POSTINC)
  3039                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
  3040                                 JCTree lhs = cast
  3041                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
  3042                                     : tmp1;
  3043                                 JCTree update = makeAssignop(opcode,
  3044                                                              lhs,
  3045                                                              make.Literal(1));
  3046                                 return makeComma(update, tmp2);
  3048                         });
  3050             });
  3053     public void visitUnary(JCUnary tree) {
  3054         boolean isUpdateOperator =
  3055             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
  3056         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
  3057             switch(tree.getTag()) {
  3058             case JCTree.PREINC:            // ++ e
  3059                     // translate to e += 1
  3060             case JCTree.PREDEC:            // -- e
  3061                     // translate to e -= 1
  3063                     int opcode = (tree.getTag() == JCTree.PREINC)
  3064                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
  3065                     JCAssignOp newTree = makeAssignop(opcode,
  3066                                                     tree.arg,
  3067                                                     make.Literal(1));
  3068                     result = translate(newTree, tree.type);
  3069                     return;
  3071             case JCTree.POSTINC:           // e ++
  3072             case JCTree.POSTDEC:           // e --
  3074                     result = translate(lowerBoxedPostop(tree), tree.type);
  3075                     return;
  3078             throw new AssertionError(tree);
  3081         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
  3083         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
  3084             tree.type = cfolder.fold1(bool_not, tree.arg.type);
  3087         // If translated left hand side is an Apply, we are
  3088         // seeing an access method invocation. In this case, return
  3089         // that access method invocation as result.
  3090         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
  3091             result = tree.arg;
  3092         } else {
  3093             result = tree;
  3097     public void visitBinary(JCBinary tree) {
  3098         List<Type> formals = tree.operator.type.getParameterTypes();
  3099         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
  3100         switch (tree.getTag()) {
  3101         case JCTree.OR:
  3102             if (lhs.type.isTrue()) {
  3103                 result = lhs;
  3104                 return;
  3106             if (lhs.type.isFalse()) {
  3107                 result = translate(tree.rhs, formals.tail.head);
  3108                 return;
  3110             break;
  3111         case JCTree.AND:
  3112             if (lhs.type.isFalse()) {
  3113                 result = lhs;
  3114                 return;
  3116             if (lhs.type.isTrue()) {
  3117                 result = translate(tree.rhs, formals.tail.head);
  3118                 return;
  3120             break;
  3122         tree.rhs = translate(tree.rhs, formals.tail.head);
  3123         result = tree;
  3126     public void visitIdent(JCIdent tree) {
  3127         result = access(tree.sym, tree, enclOp, false);
  3130     /** Translate away the foreach loop.  */
  3131     public void visitForeachLoop(JCEnhancedForLoop tree) {
  3132         if (types.elemtype(tree.expr.type) == null)
  3133             visitIterableForeachLoop(tree);
  3134         else
  3135             visitArrayForeachLoop(tree);
  3137         // where
  3138         /**
  3139          * A statement of the form
  3141          * <pre>
  3142          *     for ( T v : arrayexpr ) stmt;
  3143          * </pre>
  3145          * (where arrayexpr is of an array type) gets translated to
  3147          * <pre>
  3148          *     for ( { arraytype #arr = arrayexpr;
  3149          *             int #len = array.length;
  3150          *             int #i = 0; };
  3151          *           #i < #len; i$++ ) {
  3152          *         T v = arr$[#i];
  3153          *         stmt;
  3154          *     }
  3155          * </pre>
  3157          * where #arr, #len, and #i are freshly named synthetic local variables.
  3158          */
  3159         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
  3160             make_at(tree.expr.pos());
  3161             VarSymbol arraycache = new VarSymbol(0,
  3162                                                  names.fromString("arr" + target.syntheticNameChar()),
  3163                                                  tree.expr.type,
  3164                                                  currentMethodSym);
  3165             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
  3166             VarSymbol lencache = new VarSymbol(0,
  3167                                                names.fromString("len" + target.syntheticNameChar()),
  3168                                                syms.intType,
  3169                                                currentMethodSym);
  3170             JCStatement lencachedef = make.
  3171                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
  3172             VarSymbol index = new VarSymbol(0,
  3173                                             names.fromString("i" + target.syntheticNameChar()),
  3174                                             syms.intType,
  3175                                             currentMethodSym);
  3177             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
  3178             indexdef.init.type = indexdef.type = syms.intType.constType(0);
  3180             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
  3181             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
  3183             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
  3185             Type elemtype = types.elemtype(tree.expr.type);
  3186             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
  3187                                                     make.Ident(index)).setType(elemtype);
  3188             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3189                                                   tree.var.name,
  3190                                                   tree.var.vartype,
  3191                                                   loopvarinit).setType(tree.var.type);
  3192             loopvardef.sym = tree.var.sym;
  3193             JCBlock body = make.
  3194                 Block(0, List.of(loopvardef, tree.body));
  3196             result = translate(make.
  3197                                ForLoop(loopinit,
  3198                                        cond,
  3199                                        List.of(step),
  3200                                        body));
  3201             patchTargets(body, tree, result);
  3203         /** Patch up break and continue targets. */
  3204         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
  3205             class Patcher extends TreeScanner {
  3206                 public void visitBreak(JCBreak tree) {
  3207                     if (tree.target == src)
  3208                         tree.target = dest;
  3210                 public void visitContinue(JCContinue tree) {
  3211                     if (tree.target == src)
  3212                         tree.target = dest;
  3214                 public void visitClassDef(JCClassDecl tree) {}
  3216             new Patcher().scan(body);
  3218         /**
  3219          * A statement of the form
  3221          * <pre>
  3222          *     for ( T v : coll ) stmt ;
  3223          * </pre>
  3225          * (where coll implements Iterable<? extends T>) gets translated to
  3227          * <pre>
  3228          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
  3229          *         T v = (T) #i.next();
  3230          *         stmt;
  3231          *     }
  3232          * </pre>
  3234          * where #i is a freshly named synthetic local variable.
  3235          */
  3236         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
  3237             make_at(tree.expr.pos());
  3238             Type iteratorTarget = syms.objectType;
  3239             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
  3240                                               syms.iterableType.tsym);
  3241             if (iterableType.getTypeArguments().nonEmpty())
  3242                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
  3243             Type eType = tree.expr.type;
  3244             tree.expr.type = types.erasure(eType);
  3245             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
  3246                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
  3247             Symbol iterator = lookupMethod(tree.expr.pos(),
  3248                                            names.iterator,
  3249                                            types.erasure(syms.iterableType),
  3250                                            List.<Type>nil());
  3251             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
  3252                                             types.erasure(iterator.type.getReturnType()),
  3253                                             currentMethodSym);
  3254             JCStatement init = make.
  3255                 VarDef(itvar,
  3256                        make.App(make.Select(tree.expr, iterator)));
  3257             Symbol hasNext = lookupMethod(tree.expr.pos(),
  3258                                           names.hasNext,
  3259                                           itvar.type,
  3260                                           List.<Type>nil());
  3261             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
  3262             Symbol next = lookupMethod(tree.expr.pos(),
  3263                                        names.next,
  3264                                        itvar.type,
  3265                                        List.<Type>nil());
  3266             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
  3267             if (tree.var.type.isPrimitive())
  3268                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
  3269             else
  3270                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
  3271             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3272                                                   tree.var.name,
  3273                                                   tree.var.vartype,
  3274                                                   vardefinit).setType(tree.var.type);
  3275             indexDef.sym = tree.var.sym;
  3276             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
  3277             body.endpos = TreeInfo.endPos(tree.body);
  3278             result = translate(make.
  3279                 ForLoop(List.of(init),
  3280                         cond,
  3281                         List.<JCExpressionStatement>nil(),
  3282                         body));
  3283             patchTargets(body, tree, result);
  3286     public void visitVarDef(JCVariableDecl tree) {
  3287         MethodSymbol oldMethodSym = currentMethodSym;
  3288         tree.mods = translate(tree.mods);
  3289         tree.vartype = translate(tree.vartype);
  3290         if (currentMethodSym == null) {
  3291             // A class or instance field initializer.
  3292             currentMethodSym =
  3293                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
  3294                                  names.empty, null,
  3295                                  currentClass);
  3297         if (tree.init != null) tree.init = translate(tree.init, tree.type);
  3298         result = tree;
  3299         currentMethodSym = oldMethodSym;
  3302     public void visitBlock(JCBlock tree) {
  3303         MethodSymbol oldMethodSym = currentMethodSym;
  3304         if (currentMethodSym == null) {
  3305             // Block is a static or instance initializer.
  3306             currentMethodSym =
  3307                 new MethodSymbol(tree.flags | BLOCK,
  3308                                  names.empty, null,
  3309                                  currentClass);
  3311         super.visitBlock(tree);
  3312         currentMethodSym = oldMethodSym;
  3315     public void visitDoLoop(JCDoWhileLoop tree) {
  3316         tree.body = translate(tree.body);
  3317         tree.cond = translate(tree.cond, syms.booleanType);
  3318         result = tree;
  3321     public void visitWhileLoop(JCWhileLoop tree) {
  3322         tree.cond = translate(tree.cond, syms.booleanType);
  3323         tree.body = translate(tree.body);
  3324         result = tree;
  3327     public void visitForLoop(JCForLoop tree) {
  3328         tree.init = translate(tree.init);
  3329         if (tree.cond != null)
  3330             tree.cond = translate(tree.cond, syms.booleanType);
  3331         tree.step = translate(tree.step);
  3332         tree.body = translate(tree.body);
  3333         result = tree;
  3336     public void visitReturn(JCReturn tree) {
  3337         if (tree.expr != null)
  3338             tree.expr = translate(tree.expr,
  3339                                   types.erasure(currentMethodDef
  3340                                                 .restype.type));
  3341         result = tree;
  3344     public void visitSwitch(JCSwitch tree) {
  3345         Type selsuper = types.supertype(tree.selector.type);
  3346         boolean enumSwitch = selsuper != null &&
  3347             (tree.selector.type.tsym.flags() & ENUM) != 0;
  3348         boolean stringSwitch = selsuper != null &&
  3349             types.isSameType(tree.selector.type, syms.stringType);
  3350         Type target = enumSwitch ? tree.selector.type :
  3351             (stringSwitch? syms.stringType : syms.intType);
  3352         tree.selector = translate(tree.selector, target);
  3353         tree.cases = translateCases(tree.cases);
  3354         if (enumSwitch) {
  3355             result = visitEnumSwitch(tree);
  3356         } else if (stringSwitch) {
  3357             result = visitStringSwitch(tree);
  3358         } else {
  3359             result = tree;
  3363     public JCTree visitEnumSwitch(JCSwitch tree) {
  3364         TypeSymbol enumSym = tree.selector.type.tsym;
  3365         EnumMapping map = mapForEnum(tree.pos(), enumSym);
  3366         make_at(tree.pos());
  3367         Symbol ordinalMethod = lookupMethod(tree.pos(),
  3368                                             names.ordinal,
  3369                                             tree.selector.type,
  3370                                             List.<Type>nil());
  3371         JCArrayAccess selector = make.Indexed(map.mapVar,
  3372                                         make.App(make.Select(tree.selector,
  3373                                                              ordinalMethod)));
  3374         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
  3375         for (JCCase c : tree.cases) {
  3376             if (c.pat != null) {
  3377                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
  3378                 JCLiteral pat = map.forConstant(label);
  3379                 cases.append(make.Case(pat, c.stats));
  3380             } else {
  3381                 cases.append(c);
  3384         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
  3385         patchTargets(enumSwitch, tree, enumSwitch);
  3386         return enumSwitch;
  3389     public JCTree visitStringSwitch(JCSwitch tree) {
  3390         List<JCCase> caseList = tree.getCases();
  3391         int alternatives = caseList.size();
  3393         if (alternatives == 0) { // Strange but legal possibility
  3394             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
  3395         } else {
  3396             /*
  3397              * The general approach used is to translate a single
  3398              * string switch statement into a series of two chained
  3399              * switch statements: the first a synthesized statement
  3400              * switching on the argument string's hash value and
  3401              * computing a string's position in the list of original
  3402              * case labels, if any, followed by a second switch on the
  3403              * computed integer value.  The second switch has the same
  3404              * code structure as the original string switch statement
  3405              * except that the string case labels are replaced with
  3406              * positional integer constants starting at 0.
  3408              * The first switch statement can be thought of as an
  3409              * inlined map from strings to their position in the case
  3410              * label list.  An alternate implementation would use an
  3411              * actual Map for this purpose, as done for enum switches.
  3413              * With some additional effort, it would be possible to
  3414              * use a single switch statement on the hash code of the
  3415              * argument, but care would need to be taken to preserve
  3416              * the proper control flow in the presence of hash
  3417              * collisions and other complications, such as
  3418              * fallthroughs.  Switch statements with one or two
  3419              * alternatives could also be specially translated into
  3420              * if-then statements to omit the computation of the hash
  3421              * code.
  3423              * The generated code assumes that the hashing algorithm
  3424              * of String is the same in the compilation environment as
  3425              * in the environment the code will run in.  The string
  3426              * hashing algorithm in the SE JDK has been unchanged
  3427              * since at least JDK 1.2.  Since the algorithm has been
  3428              * specified since that release as well, it is very
  3429              * unlikely to be changed in the future.
  3431              * Different hashing algorithms, such as the length of the
  3432              * strings or a perfect hashing algorithm over the
  3433              * particular set of case labels, could potentially be
  3434              * used instead of String.hashCode.
  3435              */
  3437             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
  3439             // Map from String case labels to their original position in
  3440             // the list of case labels.
  3441             Map<String, Integer> caseLabelToPosition =
  3442                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
  3444             // Map of hash codes to the string case labels having that hashCode.
  3445             Map<Integer, Set<String>> hashToString =
  3446                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
  3448             int casePosition = 0;
  3449             for(JCCase oneCase : caseList) {
  3450                 JCExpression expression = oneCase.getExpression();
  3452                 if (expression != null) { // expression for a "default" case is null
  3453                     String labelExpr = (String) expression.type.constValue();
  3454                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
  3455                     Assert.checkNull(mapping);
  3456                     int hashCode = labelExpr.hashCode();
  3458                     Set<String> stringSet = hashToString.get(hashCode);
  3459                     if (stringSet == null) {
  3460                         stringSet = new LinkedHashSet<String>(1, 1.0f);
  3461                         stringSet.add(labelExpr);
  3462                         hashToString.put(hashCode, stringSet);
  3463                     } else {
  3464                         boolean added = stringSet.add(labelExpr);
  3465                         Assert.check(added);
  3468                 casePosition++;
  3471             // Synthesize a switch statement that has the effect of
  3472             // mapping from a string to the integer position of that
  3473             // string in the list of case labels.  This is done by
  3474             // switching on the hashCode of the string followed by an
  3475             // if-then-else chain comparing the input for equality
  3476             // with all the case labels having that hash value.
  3478             /*
  3479              * s$ = top of stack;
  3480              * tmp$ = -1;
  3481              * switch($s.hashCode()) {
  3482              *     case caseLabel.hashCode:
  3483              *         if (s$.equals("caseLabel_1")
  3484              *           tmp$ = caseLabelToPosition("caseLabel_1");
  3485              *         else if (s$.equals("caseLabel_2"))
  3486              *           tmp$ = caseLabelToPosition("caseLabel_2");
  3487              *         ...
  3488              *         break;
  3489              * ...
  3490              * }
  3491              */
  3493             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
  3494                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
  3495                                                syms.stringType,
  3496                                                currentMethodSym);
  3497             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
  3499             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
  3500                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
  3501                                                  syms.intType,
  3502                                                  currentMethodSym);
  3503             JCVariableDecl dollar_tmp_def =
  3504                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
  3505             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
  3506             stmtList.append(dollar_tmp_def);
  3507             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
  3508             // hashCode will trigger nullcheck on original switch expression
  3509             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
  3510                                                        names.hashCode,
  3511                                                        List.<JCExpression>nil()).setType(syms.intType);
  3512             JCSwitch switch1 = make.Switch(hashCodeCall,
  3513                                         caseBuffer.toList());
  3514             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
  3515                 int hashCode = entry.getKey();
  3516                 Set<String> stringsWithHashCode = entry.getValue();
  3517                 Assert.check(stringsWithHashCode.size() >= 1);
  3519                 JCStatement elsepart = null;
  3520                 for(String caseLabel : stringsWithHashCode ) {
  3521                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
  3522                                                                    names.equals,
  3523                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
  3524                     elsepart = make.If(stringEqualsCall,
  3525                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
  3526                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
  3527                                                  setType(dollar_tmp.type)),
  3528                                        elsepart);
  3531                 ListBuffer<JCStatement> lb = ListBuffer.lb();
  3532                 JCBreak breakStmt = make.Break(null);
  3533                 breakStmt.target = switch1;
  3534                 lb.append(elsepart).append(breakStmt);
  3536                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
  3539             switch1.cases = caseBuffer.toList();
  3540             stmtList.append(switch1);
  3542             // Make isomorphic switch tree replacing string labels
  3543             // with corresponding integer ones from the label to
  3544             // position map.
  3546             ListBuffer<JCCase> lb = ListBuffer.lb();
  3547             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
  3548             for(JCCase oneCase : caseList ) {
  3549                 // Rewire up old unlabeled break statements to the
  3550                 // replacement switch being created.
  3551                 patchTargets(oneCase, tree, switch2);
  3553                 boolean isDefault = (oneCase.getExpression() == null);
  3554                 JCExpression caseExpr;
  3555                 if (isDefault)
  3556                     caseExpr = null;
  3557                 else {
  3558                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
  3559                                                                     getExpression().
  3560                                                                     type.constValue()));
  3563                 lb.append(make.Case(caseExpr,
  3564                                     oneCase.getStatements()));
  3567             switch2.cases = lb.toList();
  3568             stmtList.append(switch2);
  3570             return make.Block(0L, stmtList.toList());
  3574     public void visitNewArray(JCNewArray tree) {
  3575         tree.elemtype = translate(tree.elemtype);
  3576         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
  3577             if (t.head != null) t.head = translate(t.head, syms.intType);
  3578         tree.elems = translate(tree.elems, types.elemtype(tree.type));
  3579         result = tree;
  3582     public void visitSelect(JCFieldAccess tree) {
  3583         // need to special case-access of the form C.super.x
  3584         // these will always need an access method.
  3585         boolean qualifiedSuperAccess =
  3586             tree.selected.getTag() == JCTree.SELECT &&
  3587             TreeInfo.name(tree.selected) == names._super;
  3588         tree.selected = translate(tree.selected);
  3589         if (tree.name == names._class)
  3590             result = classOf(tree.selected);
  3591         else if (tree.name == names._this || tree.name == names._super)
  3592             result = makeThis(tree.pos(), tree.selected.type.tsym);
  3593         else
  3594             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
  3597     public void visitLetExpr(LetExpr tree) {
  3598         tree.defs = translateVarDefs(tree.defs);
  3599         tree.expr = translate(tree.expr, tree.type);
  3600         result = tree;
  3603     // There ought to be nothing to rewrite here;
  3604     // we don't generate code.
  3605     public void visitAnnotation(JCAnnotation tree) {
  3606         result = tree;
  3609     @Override
  3610     public void visitTry(JCTry tree) {
  3611         if (tree.resources.isEmpty()) {
  3612             super.visitTry(tree);
  3613         } else {
  3614             result = makeTwrTry(tree);
  3618 /**************************************************************************
  3619  * main method
  3620  *************************************************************************/
  3622     /** Translate a toplevel class and return a list consisting of
  3623      *  the translated class and translated versions of all inner classes.
  3624      *  @param env   The attribution environment current at the class definition.
  3625      *               We need this for resolving some additional symbols.
  3626      *  @param cdef  The tree representing the class definition.
  3627      */
  3628     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
  3629         ListBuffer<JCTree> translated = null;
  3630         try {
  3631             attrEnv = env;
  3632             this.make = make;
  3633             endPositions = env.toplevel.endPositions;
  3634             currentClass = null;
  3635             currentMethodDef = null;
  3636             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
  3637             outermostMemberDef = null;
  3638             this.translated = new ListBuffer<JCTree>();
  3639             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
  3640             actualSymbols = new HashMap<Symbol,Symbol>();
  3641             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
  3642             proxies = new Scope(syms.noSymbol);
  3643             twrVars = new Scope(syms.noSymbol);
  3644             outerThisStack = List.nil();
  3645             accessNums = new HashMap<Symbol,Integer>();
  3646             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
  3647             accessConstrs = new HashMap<Symbol,MethodSymbol>();
  3648             accessConstrTags = List.nil();
  3649             accessed = new ListBuffer<Symbol>();
  3650             translate(cdef, (JCExpression)null);
  3651             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
  3652                 makeAccessible(l.head);
  3653             for (EnumMapping map : enumSwitchMap.values())
  3654                 map.translate();
  3655             checkConflicts(this.translated.toList());
  3656             checkAccessConstructorTags();
  3657             translated = this.translated;
  3658         } finally {
  3659             // note that recursive invocations of this method fail hard
  3660             attrEnv = null;
  3661             this.make = null;
  3662             endPositions = null;
  3663             currentClass = null;
  3664             currentMethodDef = null;
  3665             outermostClassDef = null;
  3666             outermostMemberDef = null;
  3667             this.translated = null;
  3668             classdefs = null;
  3669             actualSymbols = null;
  3670             freevarCache = null;
  3671             proxies = null;
  3672             outerThisStack = null;
  3673             accessNums = null;
  3674             accessSyms = null;
  3675             accessConstrs = null;
  3676             accessConstrTags = null;
  3677             accessed = null;
  3678             enumSwitchMap.clear();
  3680         return translated.toList();
  3683     //////////////////////////////////////////////////////////////
  3684     // The following contributed by Borland for bootstrapping purposes
  3685     //////////////////////////////////////////////////////////////
  3686     private void addEnumCompatibleMembers(JCClassDecl cdef) {
  3687         make_at(null);
  3689         // Add the special enum fields
  3690         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
  3691         VarSymbol nameFieldSym = addEnumNameField(cdef);
  3693         // Add the accessor methods for name and ordinal
  3694         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
  3695         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
  3697         // Add the toString method
  3698         addEnumToString(cdef, nameFieldSym);
  3700         // Add the compareTo method
  3701         addEnumCompareTo(cdef, ordinalFieldSym);
  3704     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
  3705         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
  3706                                           names.fromString("$ordinal"),
  3707                                           syms.intType,
  3708                                           cdef.sym);
  3709         cdef.sym.members().enter(ordinal);
  3710         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
  3711         return ordinal;
  3714     private VarSymbol addEnumNameField(JCClassDecl cdef) {
  3715         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
  3716                                           names.fromString("$name"),
  3717                                           syms.stringType,
  3718                                           cdef.sym);
  3719         cdef.sym.members().enter(name);
  3720         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
  3721         return name;
  3724     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
  3725         // Add the accessor methods for ordinal
  3726         Symbol ordinalSym = lookupMethod(cdef.pos(),
  3727                                          names.ordinal,
  3728                                          cdef.type,
  3729                                          List.<Type>nil());
  3731         Assert.check(ordinalSym instanceof MethodSymbol);
  3733         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
  3734         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
  3735                                                     make.Block(0L, List.of(ret))));
  3737         return (MethodSymbol)ordinalSym;
  3740     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
  3741         // Add the accessor methods for name
  3742         Symbol nameSym = lookupMethod(cdef.pos(),
  3743                                    names._name,
  3744                                    cdef.type,
  3745                                    List.<Type>nil());
  3747         Assert.check(nameSym instanceof MethodSymbol);
  3749         JCStatement ret = make.Return(make.Ident(nameSymbol));
  3751         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
  3752                                                     make.Block(0L, List.of(ret))));
  3754         return (MethodSymbol)nameSym;
  3757     private MethodSymbol addEnumToString(JCClassDecl cdef,
  3758                                          VarSymbol nameSymbol) {
  3759         Symbol toStringSym = lookupMethod(cdef.pos(),
  3760                                           names.toString,
  3761                                           cdef.type,
  3762                                           List.<Type>nil());
  3764         JCTree toStringDecl = null;
  3765         if (toStringSym != null)
  3766             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
  3768         if (toStringDecl != null)
  3769             return (MethodSymbol)toStringSym;
  3771         JCStatement ret = make.Return(make.Ident(nameSymbol));
  3773         JCTree resTypeTree = make.Type(syms.stringType);
  3775         MethodType toStringType = new MethodType(List.<Type>nil(),
  3776                                                  syms.stringType,
  3777                                                  List.<Type>nil(),
  3778                                                  cdef.sym);
  3779         toStringSym = new MethodSymbol(PUBLIC,
  3780                                        names.toString,
  3781                                        toStringType,
  3782                                        cdef.type.tsym);
  3783         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
  3784                                       make.Block(0L, List.of(ret)));
  3786         cdef.defs = cdef.defs.prepend(toStringDecl);
  3787         cdef.sym.members().enter(toStringSym);
  3789         return (MethodSymbol)toStringSym;
  3792     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
  3793         Symbol compareToSym = lookupMethod(cdef.pos(),
  3794                                    names.compareTo,
  3795                                    cdef.type,
  3796                                    List.of(cdef.sym.type));
  3798         Assert.check(compareToSym instanceof MethodSymbol);
  3800         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
  3802         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
  3804         JCModifiers mod1 = make.Modifiers(0L);
  3805         Name oName = names.fromString("o");
  3806         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
  3808         JCIdent paramId1 = make.Ident(names.java_lang_Object);
  3809         paramId1.type = cdef.type;
  3810         paramId1.sym = par1.sym;
  3812         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
  3814         JCIdent par1UsageId = make.Ident(par1.sym);
  3815         JCIdent castTargetIdent = make.Ident(cdef.sym);
  3816         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
  3817         cast.setType(castTargetIdent.type);
  3819         Name otherName = names.fromString("other");
  3821         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
  3822                                               otherName,
  3823                                               cdef.type,
  3824                                               compareToSym);
  3825         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
  3826         blockStatements.append(otherVar);
  3828         JCIdent id1 = make.Ident(ordinalSymbol);
  3830         JCIdent fLocUsageId = make.Ident(otherVarSym);
  3831         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
  3832         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
  3833         JCReturn ret = make.Return(bin);
  3834         blockStatements.append(ret);
  3835         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
  3836                                                    make.Block(0L,
  3837                                                               blockStatements.toList()));
  3838         compareToMethod.params = List.of(par1);
  3839         cdef.defs = cdef.defs.append(compareToMethod);
  3841         return (MethodSymbol)compareToSym;
  3843     //////////////////////////////////////////////////////////////
  3844     // The above contributed by Borland for bootstrapping purposes
  3845     //////////////////////////////////////////////////////////////

mercurial