src/share/classes/com/sun/tools/javac/comp/LambdaToMethod.java

changeset 0
959103a6100f
child 2525
2eb010b6cb22
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/classes/com/sun/tools/javac/comp/LambdaToMethod.java	Wed Apr 27 01:34:52 2016 +0800
     1.3 @@ -0,0 +1,2254 @@
     1.4 +/*
     1.5 + * Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.  Oracle designates this
    1.11 + * particular file as subject to the "Classpath" exception as provided
    1.12 + * by Oracle in the LICENSE file that accompanied this code.
    1.13 + *
    1.14 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.15 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.16 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.17 + * version 2 for more details (a copy is included in the LICENSE file that
    1.18 + * accompanied this code).
    1.19 + *
    1.20 + * You should have received a copy of the GNU General Public License version
    1.21 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.22 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.23 + *
    1.24 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.25 + * or visit www.oracle.com if you need additional information or have any
    1.26 + * questions.
    1.27 + */
    1.28 +package com.sun.tools.javac.comp;
    1.29 +
    1.30 +import com.sun.tools.javac.tree.*;
    1.31 +import com.sun.tools.javac.tree.JCTree.*;
    1.32 +import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    1.33 +import com.sun.tools.javac.tree.TreeMaker;
    1.34 +import com.sun.tools.javac.tree.TreeTranslator;
    1.35 +import com.sun.tools.javac.code.Attribute;
    1.36 +import com.sun.tools.javac.code.Kinds;
    1.37 +import com.sun.tools.javac.code.Scope;
    1.38 +import com.sun.tools.javac.code.Symbol;
    1.39 +import com.sun.tools.javac.code.Symbol.ClassSymbol;
    1.40 +import com.sun.tools.javac.code.Symbol.DynamicMethodSymbol;
    1.41 +import com.sun.tools.javac.code.Symbol.MethodSymbol;
    1.42 +import com.sun.tools.javac.code.Symbol.TypeSymbol;
    1.43 +import com.sun.tools.javac.code.Symbol.VarSymbol;
    1.44 +import com.sun.tools.javac.code.Symtab;
    1.45 +import com.sun.tools.javac.code.Type;
    1.46 +import com.sun.tools.javac.code.Type.MethodType;
    1.47 +import com.sun.tools.javac.code.Types;
    1.48 +import com.sun.tools.javac.comp.LambdaToMethod.LambdaAnalyzerPreprocessor.*;
    1.49 +import com.sun.tools.javac.comp.Lower.BasicFreeVarCollector;
    1.50 +import com.sun.tools.javac.jvm.*;
    1.51 +import com.sun.tools.javac.util.*;
    1.52 +import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    1.53 +import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    1.54 +
    1.55 +import java.util.EnumMap;
    1.56 +import java.util.HashMap;
    1.57 +import java.util.HashSet;
    1.58 +import java.util.LinkedHashMap;
    1.59 +import java.util.Map;
    1.60 +import java.util.Set;
    1.61 +
    1.62 +import static com.sun.tools.javac.comp.LambdaToMethod.LambdaSymbolKind.*;
    1.63 +import static com.sun.tools.javac.code.Flags.*;
    1.64 +import static com.sun.tools.javac.code.Kinds.*;
    1.65 +import static com.sun.tools.javac.code.TypeTag.*;
    1.66 +import static com.sun.tools.javac.tree.JCTree.Tag.*;
    1.67 +
    1.68 +/**
    1.69 + * This pass desugars lambda expressions into static methods
    1.70 + *
    1.71 + *  <p><b>This is NOT part of any supported API.
    1.72 + *  If you write code that depends on this, you do so at your own risk.
    1.73 + *  This code and its internal interfaces are subject to change or
    1.74 + *  deletion without notice.</b>
    1.75 + */
    1.76 +public class LambdaToMethod extends TreeTranslator {
    1.77 +
    1.78 +    private Attr attr;
    1.79 +    private JCDiagnostic.Factory diags;
    1.80 +    private Log log;
    1.81 +    private Lower lower;
    1.82 +    private Names names;
    1.83 +    private Symtab syms;
    1.84 +    private Resolve rs;
    1.85 +    private TreeMaker make;
    1.86 +    private Types types;
    1.87 +    private TransTypes transTypes;
    1.88 +    private Env<AttrContext> attrEnv;
    1.89 +
    1.90 +    /** the analyzer scanner */
    1.91 +    private LambdaAnalyzerPreprocessor analyzer;
    1.92 +
    1.93 +    /** map from lambda trees to translation contexts */
    1.94 +    private Map<JCTree, TranslationContext<?>> contextMap;
    1.95 +
    1.96 +    /** current translation context (visitor argument) */
    1.97 +    private TranslationContext<?> context;
    1.98 +
    1.99 +    /** info about the current class being processed */
   1.100 +    private KlassInfo kInfo;
   1.101 +
   1.102 +    /** dump statistics about lambda code generation */
   1.103 +    private boolean dumpLambdaToMethodStats;
   1.104 +
   1.105 +    /** force serializable representation, for stress testing **/
   1.106 +    private final boolean forceSerializable;
   1.107 +
   1.108 +    /** Flag for alternate metafactories indicating the lambda object is intended to be serializable */
   1.109 +    public static final int FLAG_SERIALIZABLE = 1 << 0;
   1.110 +
   1.111 +    /** Flag for alternate metafactories indicating the lambda object has multiple targets */
   1.112 +    public static final int FLAG_MARKERS = 1 << 1;
   1.113 +
   1.114 +    /** Flag for alternate metafactories indicating the lambda object requires multiple bridges */
   1.115 +    public static final int FLAG_BRIDGES = 1 << 2;
   1.116 +
   1.117 +    // <editor-fold defaultstate="collapsed" desc="Instantiating">
   1.118 +    protected static final Context.Key<LambdaToMethod> unlambdaKey =
   1.119 +            new Context.Key<LambdaToMethod>();
   1.120 +
   1.121 +    public static LambdaToMethod instance(Context context) {
   1.122 +        LambdaToMethod instance = context.get(unlambdaKey);
   1.123 +        if (instance == null) {
   1.124 +            instance = new LambdaToMethod(context);
   1.125 +        }
   1.126 +        return instance;
   1.127 +    }
   1.128 +    private LambdaToMethod(Context context) {
   1.129 +        context.put(unlambdaKey, this);
   1.130 +        diags = JCDiagnostic.Factory.instance(context);
   1.131 +        log = Log.instance(context);
   1.132 +        lower = Lower.instance(context);
   1.133 +        names = Names.instance(context);
   1.134 +        syms = Symtab.instance(context);
   1.135 +        rs = Resolve.instance(context);
   1.136 +        make = TreeMaker.instance(context);
   1.137 +        types = Types.instance(context);
   1.138 +        transTypes = TransTypes.instance(context);
   1.139 +        analyzer = new LambdaAnalyzerPreprocessor();
   1.140 +        Options options = Options.instance(context);
   1.141 +        dumpLambdaToMethodStats = options.isSet("dumpLambdaToMethodStats");
   1.142 +        attr = Attr.instance(context);
   1.143 +        forceSerializable = options.isSet("forceSerializable");
   1.144 +    }
   1.145 +    // </editor-fold>
   1.146 +
   1.147 +    private class KlassInfo {
   1.148 +
   1.149 +        /**
   1.150 +         * list of methods to append
   1.151 +         */
   1.152 +        private ListBuffer<JCTree> appendedMethodList;
   1.153 +
   1.154 +        /**
   1.155 +         * list of deserialization cases
   1.156 +         */
   1.157 +        private final Map<String, ListBuffer<JCStatement>> deserializeCases;
   1.158 +
   1.159 +       /**
   1.160 +         * deserialize method symbol
   1.161 +         */
   1.162 +        private final MethodSymbol deserMethodSym;
   1.163 +
   1.164 +        /**
   1.165 +         * deserialize method parameter symbol
   1.166 +         */
   1.167 +        private final VarSymbol deserParamSym;
   1.168 +
   1.169 +        private final JCClassDecl clazz;
   1.170 +
   1.171 +        private KlassInfo(JCClassDecl clazz) {
   1.172 +            this.clazz = clazz;
   1.173 +            appendedMethodList = new ListBuffer<>();
   1.174 +            deserializeCases = new HashMap<String, ListBuffer<JCStatement>>();
   1.175 +            MethodType type = new MethodType(List.of(syms.serializedLambdaType), syms.objectType,
   1.176 +                    List.<Type>nil(), syms.methodClass);
   1.177 +            deserMethodSym = makePrivateSyntheticMethod(STATIC, names.deserializeLambda, type, clazz.sym);
   1.178 +            deserParamSym = new VarSymbol(FINAL, names.fromString("lambda"),
   1.179 +                    syms.serializedLambdaType, deserMethodSym);
   1.180 +        }
   1.181 +
   1.182 +        private void addMethod(JCTree decl) {
   1.183 +            appendedMethodList = appendedMethodList.prepend(decl);
   1.184 +        }
   1.185 +    }
   1.186 +
   1.187 +    // <editor-fold defaultstate="collapsed" desc="translate methods">
   1.188 +    @Override
   1.189 +    public <T extends JCTree> T translate(T tree) {
   1.190 +        TranslationContext<?> newContext = contextMap.get(tree);
   1.191 +        return translate(tree, newContext != null ? newContext : context);
   1.192 +    }
   1.193 +
   1.194 +    <T extends JCTree> T translate(T tree, TranslationContext<?> newContext) {
   1.195 +        TranslationContext<?> prevContext = context;
   1.196 +        try {
   1.197 +            context = newContext;
   1.198 +            return super.translate(tree);
   1.199 +        }
   1.200 +        finally {
   1.201 +            context = prevContext;
   1.202 +        }
   1.203 +    }
   1.204 +
   1.205 +    <T extends JCTree> List<T> translate(List<T> trees, TranslationContext<?> newContext) {
   1.206 +        ListBuffer<T> buf = new ListBuffer<>();
   1.207 +        for (T tree : trees) {
   1.208 +            buf.append(translate(tree, newContext));
   1.209 +        }
   1.210 +        return buf.toList();
   1.211 +    }
   1.212 +
   1.213 +    public JCTree translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
   1.214 +        this.make = make;
   1.215 +        this.attrEnv = env;
   1.216 +        this.context = null;
   1.217 +        this.contextMap = new HashMap<JCTree, TranslationContext<?>>();
   1.218 +        return translate(cdef);
   1.219 +    }
   1.220 +    // </editor-fold>
   1.221 +
   1.222 +    // <editor-fold defaultstate="collapsed" desc="visitor methods">
   1.223 +    /**
   1.224 +     * Visit a class.
   1.225 +     * Maintain the translatedMethodList across nested classes.
   1.226 +     * Append the translatedMethodList to the class after it is translated.
   1.227 +     * @param tree
   1.228 +     */
   1.229 +    @Override
   1.230 +    public void visitClassDef(JCClassDecl tree) {
   1.231 +        if (tree.sym.owner.kind == PCK) {
   1.232 +            //analyze class
   1.233 +            tree = analyzer.analyzeAndPreprocessClass(tree);
   1.234 +        }
   1.235 +        KlassInfo prevKlassInfo = kInfo;
   1.236 +        try {
   1.237 +            kInfo = new KlassInfo(tree);
   1.238 +            super.visitClassDef(tree);
   1.239 +            if (!kInfo.deserializeCases.isEmpty()) {
   1.240 +                int prevPos = make.pos;
   1.241 +                try {
   1.242 +                    make.at(tree);
   1.243 +                    kInfo.addMethod(makeDeserializeMethod(tree.sym));
   1.244 +                } finally {
   1.245 +                    make.at(prevPos);
   1.246 +                }
   1.247 +            }
   1.248 +            //add all translated instance methods here
   1.249 +            List<JCTree> newMethods = kInfo.appendedMethodList.toList();
   1.250 +            tree.defs = tree.defs.appendList(newMethods);
   1.251 +            for (JCTree lambda : newMethods) {
   1.252 +                tree.sym.members().enter(((JCMethodDecl)lambda).sym);
   1.253 +            }
   1.254 +            result = tree;
   1.255 +        } finally {
   1.256 +            kInfo = prevKlassInfo;
   1.257 +        }
   1.258 +    }
   1.259 +
   1.260 +    /**
   1.261 +     * Translate a lambda into a method to be inserted into the class.
   1.262 +     * Then replace the lambda site with an invokedynamic call of to lambda
   1.263 +     * meta-factory, which will use the lambda method.
   1.264 +     * @param tree
   1.265 +     */
   1.266 +    @Override
   1.267 +    public void visitLambda(JCLambda tree) {
   1.268 +        LambdaTranslationContext localContext = (LambdaTranslationContext)context;
   1.269 +        MethodSymbol sym = (MethodSymbol)localContext.translatedSym;
   1.270 +        MethodType lambdaType = (MethodType) sym.type;
   1.271 +
   1.272 +        {
   1.273 +            Symbol owner = localContext.owner;
   1.274 +            ListBuffer<Attribute.TypeCompound> ownerTypeAnnos = new ListBuffer<Attribute.TypeCompound>();
   1.275 +            ListBuffer<Attribute.TypeCompound> lambdaTypeAnnos = new ListBuffer<Attribute.TypeCompound>();
   1.276 +
   1.277 +            for (Attribute.TypeCompound tc : owner.getRawTypeAttributes()) {
   1.278 +                if (tc.position.onLambda == tree) {
   1.279 +                    lambdaTypeAnnos.append(tc);
   1.280 +                } else {
   1.281 +                    ownerTypeAnnos.append(tc);
   1.282 +                }
   1.283 +            }
   1.284 +            if (lambdaTypeAnnos.nonEmpty()) {
   1.285 +                owner.setTypeAttributes(ownerTypeAnnos.toList());
   1.286 +                sym.setTypeAttributes(lambdaTypeAnnos.toList());
   1.287 +            }
   1.288 +        }
   1.289 +
   1.290 +        //create the method declaration hoisting the lambda body
   1.291 +        JCMethodDecl lambdaDecl = make.MethodDef(make.Modifiers(sym.flags_field),
   1.292 +                sym.name,
   1.293 +                make.QualIdent(lambdaType.getReturnType().tsym),
   1.294 +                List.<JCTypeParameter>nil(),
   1.295 +                localContext.syntheticParams,
   1.296 +                lambdaType.getThrownTypes() == null ?
   1.297 +                    List.<JCExpression>nil() :
   1.298 +                    make.Types(lambdaType.getThrownTypes()),
   1.299 +                null,
   1.300 +                null);
   1.301 +        lambdaDecl.sym = sym;
   1.302 +        lambdaDecl.type = lambdaType;
   1.303 +
   1.304 +        //translate lambda body
   1.305 +        //As the lambda body is translated, all references to lambda locals,
   1.306 +        //captured variables, enclosing members are adjusted accordingly
   1.307 +        //to refer to the static method parameters (rather than i.e. acessing to
   1.308 +        //captured members directly).
   1.309 +        lambdaDecl.body = translate(makeLambdaBody(tree, lambdaDecl));
   1.310 +
   1.311 +        //Add the method to the list of methods to be added to this class.
   1.312 +        kInfo.addMethod(lambdaDecl);
   1.313 +
   1.314 +        //now that we have generated a method for the lambda expression,
   1.315 +        //we can translate the lambda into a method reference pointing to the newly
   1.316 +        //created method.
   1.317 +        //
   1.318 +        //Note that we need to adjust the method handle so that it will match the
   1.319 +        //signature of the SAM descriptor - this means that the method reference
   1.320 +        //should be added the following synthetic arguments:
   1.321 +        //
   1.322 +        // * the "this" argument if it is an instance method
   1.323 +        // * enclosing locals captured by the lambda expression
   1.324 +
   1.325 +        ListBuffer<JCExpression> syntheticInits = new ListBuffer<>();
   1.326 +
   1.327 +        if (!sym.isStatic()) {
   1.328 +            syntheticInits.append(makeThis(
   1.329 +                    sym.owner.enclClass().asType(),
   1.330 +                    localContext.owner.enclClass()));
   1.331 +        }
   1.332 +
   1.333 +        //add captured locals
   1.334 +        for (Symbol fv : localContext.getSymbolMap(CAPTURED_VAR).keySet()) {
   1.335 +            if (fv != localContext.self) {
   1.336 +                JCTree captured_local = make.Ident(fv).setType(fv.type);
   1.337 +                syntheticInits.append((JCExpression) captured_local);
   1.338 +            }
   1.339 +        }
   1.340 +
   1.341 +        //then, determine the arguments to the indy call
   1.342 +        List<JCExpression> indy_args = translate(syntheticInits.toList(), localContext.prev);
   1.343 +
   1.344 +        //build a sam instance using an indy call to the meta-factory
   1.345 +        int refKind = referenceKind(sym);
   1.346 +
   1.347 +        //convert to an invokedynamic call
   1.348 +        result = makeMetafactoryIndyCall(context, refKind, sym, indy_args);
   1.349 +    }
   1.350 +
   1.351 +    private JCIdent makeThis(Type type, Symbol owner) {
   1.352 +        VarSymbol _this = new VarSymbol(PARAMETER | FINAL | SYNTHETIC,
   1.353 +                names._this,
   1.354 +                type,
   1.355 +                owner);
   1.356 +        return make.Ident(_this);
   1.357 +    }
   1.358 +
   1.359 +    /**
   1.360 +     * Translate a method reference into an invokedynamic call to the
   1.361 +     * meta-factory.
   1.362 +     * @param tree
   1.363 +     */
   1.364 +    @Override
   1.365 +    public void visitReference(JCMemberReference tree) {
   1.366 +        ReferenceTranslationContext localContext = (ReferenceTranslationContext)context;
   1.367 +
   1.368 +        //first determine the method symbol to be used to generate the sam instance
   1.369 +        //this is either the method reference symbol, or the bridged reference symbol
   1.370 +        Symbol refSym = localContext.needsBridge()
   1.371 +                ? localContext.bridgeSym
   1.372 +                : localContext.isSignaturePolymorphic()
   1.373 +                ? localContext.sigPolySym
   1.374 +                : tree.sym;
   1.375 +
   1.376 +        //build the bridge method, if needed
   1.377 +        if (localContext.needsBridge()) {
   1.378 +            bridgeMemberReference(tree, localContext);
   1.379 +        }
   1.380 +
   1.381 +        //the qualifying expression is treated as a special captured arg
   1.382 +        JCExpression init;
   1.383 +        switch(tree.kind) {
   1.384 +
   1.385 +            case IMPLICIT_INNER:    /** Inner :: new */
   1.386 +            case SUPER:             /** super :: instMethod */
   1.387 +                init = makeThis(
   1.388 +                    localContext.owner.enclClass().asType(),
   1.389 +                    localContext.owner.enclClass());
   1.390 +                break;
   1.391 +
   1.392 +            case BOUND:             /** Expr :: instMethod */
   1.393 +                init = tree.getQualifierExpression();
   1.394 +                init = attr.makeNullCheck(init);
   1.395 +                break;
   1.396 +
   1.397 +            case UNBOUND:           /** Type :: instMethod */
   1.398 +            case STATIC:            /** Type :: staticMethod */
   1.399 +            case TOPLEVEL:          /** Top level :: new */
   1.400 +            case ARRAY_CTOR:        /** ArrayType :: new */
   1.401 +                init = null;
   1.402 +                break;
   1.403 +
   1.404 +            default:
   1.405 +                throw new InternalError("Should not have an invalid kind");
   1.406 +        }
   1.407 +
   1.408 +        List<JCExpression> indy_args = init==null? List.<JCExpression>nil() : translate(List.of(init), localContext.prev);
   1.409 +
   1.410 +
   1.411 +        //build a sam instance using an indy call to the meta-factory
   1.412 +        result = makeMetafactoryIndyCall(localContext, localContext.referenceKind(), refSym, indy_args);
   1.413 +    }
   1.414 +
   1.415 +    /**
   1.416 +     * Translate identifiers within a lambda to the mapped identifier
   1.417 +     * @param tree
   1.418 +     */
   1.419 +    @Override
   1.420 +    public void visitIdent(JCIdent tree) {
   1.421 +        if (context == null || !analyzer.lambdaIdentSymbolFilter(tree.sym)) {
   1.422 +            super.visitIdent(tree);
   1.423 +        } else {
   1.424 +            int prevPos = make.pos;
   1.425 +            try {
   1.426 +                make.at(tree);
   1.427 +
   1.428 +                LambdaTranslationContext lambdaContext = (LambdaTranslationContext) context;
   1.429 +                JCTree ltree = lambdaContext.translate(tree);
   1.430 +                if (ltree != null) {
   1.431 +                    result = ltree;
   1.432 +                } else {
   1.433 +                    //access to untranslated symbols (i.e. compile-time constants,
   1.434 +                    //members defined inside the lambda body, etc.) )
   1.435 +                    super.visitIdent(tree);
   1.436 +                }
   1.437 +            } finally {
   1.438 +                make.at(prevPos);
   1.439 +            }
   1.440 +        }
   1.441 +    }
   1.442 +
   1.443 +    @Override
   1.444 +    public void visitVarDef(JCVariableDecl tree) {
   1.445 +        LambdaTranslationContext lambdaContext = (LambdaTranslationContext)context;
   1.446 +        if (context != null && lambdaContext.getSymbolMap(LOCAL_VAR).containsKey(tree.sym)) {
   1.447 +            tree.init = translate(tree.init);
   1.448 +            tree.sym = (VarSymbol) lambdaContext.getSymbolMap(LOCAL_VAR).get(tree.sym);
   1.449 +            result = tree;
   1.450 +        } else if (context != null && lambdaContext.getSymbolMap(TYPE_VAR).containsKey(tree.sym)) {
   1.451 +            JCExpression init = translate(tree.init);
   1.452 +            VarSymbol xsym = (VarSymbol)lambdaContext.getSymbolMap(TYPE_VAR).get(tree.sym);
   1.453 +            int prevPos = make.pos;
   1.454 +            try {
   1.455 +                result = make.at(tree).VarDef(xsym, init);
   1.456 +            } finally {
   1.457 +                make.at(prevPos);
   1.458 +            }
   1.459 +            // Replace the entered symbol for this variable
   1.460 +            Scope sc = tree.sym.owner.members();
   1.461 +            if (sc != null) {
   1.462 +                sc.remove(tree.sym);
   1.463 +                sc.enter(xsym);
   1.464 +            }
   1.465 +        } else {
   1.466 +            super.visitVarDef(tree);
   1.467 +        }
   1.468 +    }
   1.469 +
   1.470 +    // </editor-fold>
   1.471 +
   1.472 +    // <editor-fold defaultstate="collapsed" desc="Translation helper methods">
   1.473 +
   1.474 +    private JCBlock makeLambdaBody(JCLambda tree, JCMethodDecl lambdaMethodDecl) {
   1.475 +        return tree.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
   1.476 +                makeLambdaExpressionBody((JCExpression)tree.body, lambdaMethodDecl) :
   1.477 +                makeLambdaStatementBody((JCBlock)tree.body, lambdaMethodDecl, tree.canCompleteNormally);
   1.478 +    }
   1.479 +
   1.480 +    private JCBlock makeLambdaExpressionBody(JCExpression expr, JCMethodDecl lambdaMethodDecl) {
   1.481 +        Type restype = lambdaMethodDecl.type.getReturnType();
   1.482 +        boolean isLambda_void = expr.type.hasTag(VOID);
   1.483 +        boolean isTarget_void = restype.hasTag(VOID);
   1.484 +        boolean isTarget_Void = types.isSameType(restype, types.boxedClass(syms.voidType).type);
   1.485 +        int prevPos = make.pos;
   1.486 +        try {
   1.487 +            if (isTarget_void) {
   1.488 +                //target is void:
   1.489 +                // BODY;
   1.490 +                JCStatement stat = make.at(expr).Exec(expr);
   1.491 +                return make.Block(0, List.<JCStatement>of(stat));
   1.492 +            } else if (isLambda_void && isTarget_Void) {
   1.493 +                //void to Void conversion:
   1.494 +                // BODY; return null;
   1.495 +                ListBuffer<JCStatement> stats = new ListBuffer<>();
   1.496 +                stats.append(make.at(expr).Exec(expr));
   1.497 +                stats.append(make.Return(make.Literal(BOT, null).setType(syms.botType)));
   1.498 +                return make.Block(0, stats.toList());
   1.499 +            } else {
   1.500 +                //non-void to non-void conversion:
   1.501 +                // return (TYPE)BODY;
   1.502 +                JCExpression retExpr = transTypes.coerce(attrEnv, expr, restype);
   1.503 +                return make.at(retExpr).Block(0, List.<JCStatement>of(make.Return(retExpr)));
   1.504 +            }
   1.505 +        } finally {
   1.506 +            make.at(prevPos);
   1.507 +        }
   1.508 +    }
   1.509 +
   1.510 +    private JCBlock makeLambdaStatementBody(JCBlock block, final JCMethodDecl lambdaMethodDecl, boolean completeNormally) {
   1.511 +        final Type restype = lambdaMethodDecl.type.getReturnType();
   1.512 +        final boolean isTarget_void = restype.hasTag(VOID);
   1.513 +        boolean isTarget_Void = types.isSameType(restype, types.boxedClass(syms.voidType).type);
   1.514 +
   1.515 +        class LambdaBodyTranslator extends TreeTranslator {
   1.516 +
   1.517 +            @Override
   1.518 +            public void visitClassDef(JCClassDecl tree) {
   1.519 +                //do NOT recurse on any inner classes
   1.520 +                result = tree;
   1.521 +            }
   1.522 +
   1.523 +            @Override
   1.524 +            public void visitLambda(JCLambda tree) {
   1.525 +                //do NOT recurse on any nested lambdas
   1.526 +                result = tree;
   1.527 +            }
   1.528 +
   1.529 +            @Override
   1.530 +            public void visitReturn(JCReturn tree) {
   1.531 +                boolean isLambda_void = tree.expr == null;
   1.532 +                if (isTarget_void && !isLambda_void) {
   1.533 +                    //Void to void conversion:
   1.534 +                    // { TYPE $loc = RET-EXPR; return; }
   1.535 +                    VarSymbol loc = makeSyntheticVar(0, names.fromString("$loc"), tree.expr.type, lambdaMethodDecl.sym);
   1.536 +                    JCVariableDecl varDef = make.VarDef(loc, tree.expr);
   1.537 +                    result = make.Block(0, List.<JCStatement>of(varDef, make.Return(null)));
   1.538 +                } else if (!isTarget_void || !isLambda_void) {
   1.539 +                    //non-void to non-void conversion:
   1.540 +                    // return (TYPE)RET-EXPR;
   1.541 +                    tree.expr = transTypes.coerce(attrEnv, tree.expr, restype);
   1.542 +                    result = tree;
   1.543 +                } else {
   1.544 +                    result = tree;
   1.545 +                }
   1.546 +
   1.547 +            }
   1.548 +        }
   1.549 +
   1.550 +        JCBlock trans_block = new LambdaBodyTranslator().translate(block);
   1.551 +        if (completeNormally && isTarget_Void) {
   1.552 +            //there's no return statement and the lambda (possibly inferred)
   1.553 +            //return type is java.lang.Void; emit a synthetic return statement
   1.554 +            trans_block.stats = trans_block.stats.append(make.Return(make.Literal(BOT, null).setType(syms.botType)));
   1.555 +        }
   1.556 +        return trans_block;
   1.557 +    }
   1.558 +
   1.559 +    private JCMethodDecl makeDeserializeMethod(Symbol kSym) {
   1.560 +        ListBuffer<JCCase> cases = new ListBuffer<>();
   1.561 +        ListBuffer<JCBreak> breaks = new ListBuffer<>();
   1.562 +        for (Map.Entry<String, ListBuffer<JCStatement>> entry : kInfo.deserializeCases.entrySet()) {
   1.563 +            JCBreak br = make.Break(null);
   1.564 +            breaks.add(br);
   1.565 +            List<JCStatement> stmts = entry.getValue().append(br).toList();
   1.566 +            cases.add(make.Case(make.Literal(entry.getKey()), stmts));
   1.567 +        }
   1.568 +        JCSwitch sw = make.Switch(deserGetter("getImplMethodName", syms.stringType), cases.toList());
   1.569 +        for (JCBreak br : breaks) {
   1.570 +            br.target = sw;
   1.571 +        }
   1.572 +        JCBlock body = make.Block(0L, List.<JCStatement>of(
   1.573 +                sw,
   1.574 +                make.Throw(makeNewClass(
   1.575 +                    syms.illegalArgumentExceptionType,
   1.576 +                    List.<JCExpression>of(make.Literal("Invalid lambda deserialization"))))));
   1.577 +        JCMethodDecl deser = make.MethodDef(make.Modifiers(kInfo.deserMethodSym.flags()),
   1.578 +                        names.deserializeLambda,
   1.579 +                        make.QualIdent(kInfo.deserMethodSym.getReturnType().tsym),
   1.580 +                        List.<JCTypeParameter>nil(),
   1.581 +                        List.of(make.VarDef(kInfo.deserParamSym, null)),
   1.582 +                        List.<JCExpression>nil(),
   1.583 +                        body,
   1.584 +                        null);
   1.585 +        deser.sym = kInfo.deserMethodSym;
   1.586 +        deser.type = kInfo.deserMethodSym.type;
   1.587 +        //System.err.printf("DESER: '%s'\n", deser);
   1.588 +        return deser;
   1.589 +    }
   1.590 +
   1.591 +    /** Make an attributed class instance creation expression.
   1.592 +     *  @param ctype    The class type.
   1.593 +     *  @param args     The constructor arguments.
   1.594 +     *  @param cons     The constructor symbol
   1.595 +     */
   1.596 +    JCNewClass makeNewClass(Type ctype, List<JCExpression> args, Symbol cons) {
   1.597 +        JCNewClass tree = make.NewClass(null,
   1.598 +            null, make.QualIdent(ctype.tsym), args, null);
   1.599 +        tree.constructor = cons;
   1.600 +        tree.type = ctype;
   1.601 +        return tree;
   1.602 +    }
   1.603 +
   1.604 +    /** Make an attributed class instance creation expression.
   1.605 +     *  @param ctype    The class type.
   1.606 +     *  @param args     The constructor arguments.
   1.607 +     */
   1.608 +    JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
   1.609 +        return makeNewClass(ctype, args,
   1.610 +                rs.resolveConstructor(null, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil()));
   1.611 +     }
   1.612 +
   1.613 +    private void addDeserializationCase(int implMethodKind, Symbol refSym, Type targetType, MethodSymbol samSym,
   1.614 +            DiagnosticPosition pos, List<Object> staticArgs, MethodType indyType) {
   1.615 +        String functionalInterfaceClass = classSig(targetType);
   1.616 +        String functionalInterfaceMethodName = samSym.getSimpleName().toString();
   1.617 +        String functionalInterfaceMethodSignature = typeSig(types.erasure(samSym.type));
   1.618 +        String implClass = classSig(types.erasure(refSym.owner.type));
   1.619 +        String implMethodName = refSym.getQualifiedName().toString();
   1.620 +        String implMethodSignature = typeSig(types.erasure(refSym.type));
   1.621 +
   1.622 +        JCExpression kindTest = eqTest(syms.intType, deserGetter("getImplMethodKind", syms.intType), make.Literal(implMethodKind));
   1.623 +        ListBuffer<JCExpression> serArgs = new ListBuffer<>();
   1.624 +        int i = 0;
   1.625 +        for (Type t : indyType.getParameterTypes()) {
   1.626 +            List<JCExpression> indexAsArg = new ListBuffer<JCExpression>().append(make.Literal(i)).toList();
   1.627 +            List<Type> argTypes = new ListBuffer<Type>().append(syms.intType).toList();
   1.628 +            serArgs.add(make.TypeCast(types.erasure(t), deserGetter("getCapturedArg", syms.objectType, argTypes, indexAsArg)));
   1.629 +            ++i;
   1.630 +        }
   1.631 +        JCStatement stmt = make.If(
   1.632 +                deserTest(deserTest(deserTest(deserTest(deserTest(
   1.633 +                    kindTest,
   1.634 +                    "getFunctionalInterfaceClass", functionalInterfaceClass),
   1.635 +                    "getFunctionalInterfaceMethodName", functionalInterfaceMethodName),
   1.636 +                    "getFunctionalInterfaceMethodSignature", functionalInterfaceMethodSignature),
   1.637 +                    "getImplClass", implClass),
   1.638 +                    "getImplMethodSignature", implMethodSignature),
   1.639 +                make.Return(makeIndyCall(
   1.640 +                    pos,
   1.641 +                    syms.lambdaMetafactory,
   1.642 +                    names.altMetafactory,
   1.643 +                    staticArgs, indyType, serArgs.toList(), samSym.name)),
   1.644 +                null);
   1.645 +        ListBuffer<JCStatement> stmts = kInfo.deserializeCases.get(implMethodName);
   1.646 +        if (stmts == null) {
   1.647 +            stmts = new ListBuffer<>();
   1.648 +            kInfo.deserializeCases.put(implMethodName, stmts);
   1.649 +        }
   1.650 +        /****
   1.651 +        System.err.printf("+++++++++++++++++\n");
   1.652 +        System.err.printf("*functionalInterfaceClass: '%s'\n", functionalInterfaceClass);
   1.653 +        System.err.printf("*functionalInterfaceMethodName: '%s'\n", functionalInterfaceMethodName);
   1.654 +        System.err.printf("*functionalInterfaceMethodSignature: '%s'\n", functionalInterfaceMethodSignature);
   1.655 +        System.err.printf("*implMethodKind: %d\n", implMethodKind);
   1.656 +        System.err.printf("*implClass: '%s'\n", implClass);
   1.657 +        System.err.printf("*implMethodName: '%s'\n", implMethodName);
   1.658 +        System.err.printf("*implMethodSignature: '%s'\n", implMethodSignature);
   1.659 +        ****/
   1.660 +        stmts.append(stmt);
   1.661 +    }
   1.662 +
   1.663 +    private JCExpression eqTest(Type argType, JCExpression arg1, JCExpression arg2) {
   1.664 +        JCBinary testExpr = make.Binary(JCTree.Tag.EQ, arg1, arg2);
   1.665 +        testExpr.operator = rs.resolveBinaryOperator(null, JCTree.Tag.EQ, attrEnv, argType, argType);
   1.666 +        testExpr.setType(syms.booleanType);
   1.667 +        return testExpr;
   1.668 +    }
   1.669 +
   1.670 +    private JCExpression deserTest(JCExpression prev, String func, String lit) {
   1.671 +        MethodType eqmt = new MethodType(List.of(syms.objectType), syms.booleanType, List.<Type>nil(), syms.methodClass);
   1.672 +        Symbol eqsym = rs.resolveQualifiedMethod(null, attrEnv, syms.objectType, names.equals, List.of(syms.objectType), List.<Type>nil());
   1.673 +        JCMethodInvocation eqtest = make.Apply(
   1.674 +                List.<JCExpression>nil(),
   1.675 +                make.Select(deserGetter(func, syms.stringType), eqsym).setType(eqmt),
   1.676 +                List.<JCExpression>of(make.Literal(lit)));
   1.677 +        eqtest.setType(syms.booleanType);
   1.678 +        JCBinary compound = make.Binary(JCTree.Tag.AND, prev, eqtest);
   1.679 +        compound.operator = rs.resolveBinaryOperator(null, JCTree.Tag.AND, attrEnv, syms.booleanType, syms.booleanType);
   1.680 +        compound.setType(syms.booleanType);
   1.681 +        return compound;
   1.682 +    }
   1.683 +
   1.684 +    private JCExpression deserGetter(String func, Type type) {
   1.685 +        return deserGetter(func, type, List.<Type>nil(), List.<JCExpression>nil());
   1.686 +    }
   1.687 +
   1.688 +    private JCExpression deserGetter(String func, Type type, List<Type> argTypes, List<JCExpression> args) {
   1.689 +        MethodType getmt = new MethodType(argTypes, type, List.<Type>nil(), syms.methodClass);
   1.690 +        Symbol getsym = rs.resolveQualifiedMethod(null, attrEnv, syms.serializedLambdaType, names.fromString(func), argTypes, List.<Type>nil());
   1.691 +        return make.Apply(
   1.692 +                    List.<JCExpression>nil(),
   1.693 +                    make.Select(make.Ident(kInfo.deserParamSym).setType(syms.serializedLambdaType), getsym).setType(getmt),
   1.694 +                    args).setType(type);
   1.695 +    }
   1.696 +
   1.697 +    /**
   1.698 +     * Create new synthetic method with given flags, name, type, owner
   1.699 +     */
   1.700 +    private MethodSymbol makePrivateSyntheticMethod(long flags, Name name, Type type, Symbol owner) {
   1.701 +        return new MethodSymbol(flags | SYNTHETIC | PRIVATE, name, type, owner);
   1.702 +    }
   1.703 +
   1.704 +    /**
   1.705 +     * Create new synthetic variable with given flags, name, type, owner
   1.706 +     */
   1.707 +    private VarSymbol makeSyntheticVar(long flags, String name, Type type, Symbol owner) {
   1.708 +        return makeSyntheticVar(flags, names.fromString(name), type, owner);
   1.709 +    }
   1.710 +
   1.711 +    /**
   1.712 +     * Create new synthetic variable with given flags, name, type, owner
   1.713 +     */
   1.714 +    private VarSymbol makeSyntheticVar(long flags, Name name, Type type, Symbol owner) {
   1.715 +        return new VarSymbol(flags | SYNTHETIC, name, type, owner);
   1.716 +    }
   1.717 +
   1.718 +    /**
   1.719 +     * Set varargsElement field on a given tree (must be either a new class tree
   1.720 +     * or a method call tree)
   1.721 +     */
   1.722 +    private void setVarargsIfNeeded(JCTree tree, Type varargsElement) {
   1.723 +        if (varargsElement != null) {
   1.724 +            switch (tree.getTag()) {
   1.725 +                case APPLY: ((JCMethodInvocation)tree).varargsElement = varargsElement; break;
   1.726 +                case NEWCLASS: ((JCNewClass)tree).varargsElement = varargsElement; break;
   1.727 +                default: throw new AssertionError();
   1.728 +            }
   1.729 +        }
   1.730 +    }
   1.731 +
   1.732 +    /**
   1.733 +     * Convert method/constructor arguments by inserting appropriate cast
   1.734 +     * as required by type-erasure - this is needed when bridging a lambda/method
   1.735 +     * reference, as the bridged signature might require downcast to be compatible
   1.736 +     * with the generated signature.
   1.737 +     */
   1.738 +    private List<JCExpression> convertArgs(Symbol meth, List<JCExpression> args, Type varargsElement) {
   1.739 +       Assert.check(meth.kind == Kinds.MTH);
   1.740 +       List<Type> formals = types.erasure(meth.type).getParameterTypes();
   1.741 +       if (varargsElement != null) {
   1.742 +           Assert.check((meth.flags() & VARARGS) != 0);
   1.743 +       }
   1.744 +       return transTypes.translateArgs(args, formals, varargsElement, attrEnv);
   1.745 +    }
   1.746 +
   1.747 +    // </editor-fold>
   1.748 +
   1.749 +    /**
   1.750 +     * Generate an adapter method "bridge" for a method reference which cannot
   1.751 +     * be used directly.
   1.752 +     */
   1.753 +    private class MemberReferenceBridger {
   1.754 +
   1.755 +        private final JCMemberReference tree;
   1.756 +        private final ReferenceTranslationContext localContext;
   1.757 +        private final ListBuffer<JCExpression> args = new ListBuffer<>();
   1.758 +        private final ListBuffer<JCVariableDecl> params = new ListBuffer<>();
   1.759 +
   1.760 +        MemberReferenceBridger(JCMemberReference tree, ReferenceTranslationContext localContext) {
   1.761 +            this.tree = tree;
   1.762 +            this.localContext = localContext;
   1.763 +        }
   1.764 +
   1.765 +        /**
   1.766 +         * Generate the bridge
   1.767 +         */
   1.768 +        JCMethodDecl bridge() {
   1.769 +            int prevPos = make.pos;
   1.770 +            try {
   1.771 +                make.at(tree);
   1.772 +                Type samDesc = localContext.bridgedRefSig();
   1.773 +                List<Type> samPTypes = samDesc.getParameterTypes();
   1.774 +
   1.775 +                //an extra argument is prepended to the signature of the bridge in case
   1.776 +                //the member reference is an instance method reference (in which case
   1.777 +                //the receiver expression is passed to the bridge itself).
   1.778 +                Type recType = null;
   1.779 +                switch (tree.kind) {
   1.780 +                    case IMPLICIT_INNER:
   1.781 +                        recType = tree.sym.owner.type.getEnclosingType();
   1.782 +                        break;
   1.783 +                    case BOUND:
   1.784 +                        recType = tree.getQualifierExpression().type;
   1.785 +                        break;
   1.786 +                    case UNBOUND:
   1.787 +                        recType = samPTypes.head;
   1.788 +                        samPTypes = samPTypes.tail;
   1.789 +                        break;
   1.790 +                }
   1.791 +
   1.792 +                //generate the parameter list for the bridged member reference - the
   1.793 +                //bridge signature will match the signature of the target sam descriptor
   1.794 +
   1.795 +                VarSymbol rcvr = (recType == null)
   1.796 +                        ? null
   1.797 +                        : addParameter("rec$", recType, false);
   1.798 +
   1.799 +                List<Type> refPTypes = tree.sym.type.getParameterTypes();
   1.800 +                int refSize = refPTypes.size();
   1.801 +                int samSize = samPTypes.size();
   1.802 +                // Last parameter to copy from referenced method
   1.803 +                int last = localContext.needsVarArgsConversion() ? refSize - 1 : refSize;
   1.804 +
   1.805 +                List<Type> l = refPTypes;
   1.806 +                // Use parameter types of the referenced method, excluding final var args
   1.807 +                for (int i = 0; l.nonEmpty() && i < last; ++i) {
   1.808 +                    addParameter("x$" + i, l.head, true);
   1.809 +                    l = l.tail;
   1.810 +                }
   1.811 +                // Flatten out the var args
   1.812 +                for (int i = last; i < samSize; ++i) {
   1.813 +                    addParameter("xva$" + i, tree.varargsElement, true);
   1.814 +                }
   1.815 +
   1.816 +                //generate the bridge method declaration
   1.817 +                JCMethodDecl bridgeDecl = make.MethodDef(make.Modifiers(localContext.bridgeSym.flags()),
   1.818 +                        localContext.bridgeSym.name,
   1.819 +                        make.QualIdent(samDesc.getReturnType().tsym),
   1.820 +                        List.<JCTypeParameter>nil(),
   1.821 +                        params.toList(),
   1.822 +                        tree.sym.type.getThrownTypes() == null
   1.823 +                        ? List.<JCExpression>nil()
   1.824 +                        : make.Types(tree.sym.type.getThrownTypes()),
   1.825 +                        null,
   1.826 +                        null);
   1.827 +                bridgeDecl.sym = (MethodSymbol) localContext.bridgeSym;
   1.828 +                bridgeDecl.type = localContext.bridgeSym.type =
   1.829 +                        types.createMethodTypeWithParameters(samDesc, TreeInfo.types(params.toList()));
   1.830 +
   1.831 +                //bridge method body generation - this can be either a method call or a
   1.832 +                //new instance creation expression, depending on the member reference kind
   1.833 +                JCExpression bridgeExpr = (tree.getMode() == ReferenceMode.INVOKE)
   1.834 +                        ? bridgeExpressionInvoke(makeReceiver(rcvr))
   1.835 +                        : bridgeExpressionNew();
   1.836 +
   1.837 +                //the body is either a return expression containing a method call,
   1.838 +                //or the method call itself, depending on whether the return type of
   1.839 +                //the bridge is non-void/void.
   1.840 +                bridgeDecl.body = makeLambdaExpressionBody(bridgeExpr, bridgeDecl);
   1.841 +
   1.842 +                return bridgeDecl;
   1.843 +            } finally {
   1.844 +                make.at(prevPos);
   1.845 +            }
   1.846 +        }
   1.847 +        //where
   1.848 +            private JCExpression makeReceiver(VarSymbol rcvr) {
   1.849 +                if (rcvr == null) return null;
   1.850 +                JCExpression rcvrExpr = make.Ident(rcvr);
   1.851 +                Type rcvrType = tree.sym.enclClass().type;
   1.852 +                if (!rcvr.type.tsym.isSubClass(rcvrType.tsym, types)) {
   1.853 +                    rcvrExpr = make.TypeCast(make.Type(rcvrType), rcvrExpr).setType(rcvrType);
   1.854 +                }
   1.855 +                return rcvrExpr;
   1.856 +            }
   1.857 +
   1.858 +        /**
   1.859 +         * determine the receiver of the bridged method call - the receiver can
   1.860 +         * be either the synthetic receiver parameter or a type qualifier; the
   1.861 +         * original qualifier expression is never used here, as it might refer
   1.862 +         * to symbols not available in the static context of the bridge
   1.863 +         */
   1.864 +        private JCExpression bridgeExpressionInvoke(JCExpression rcvr) {
   1.865 +            JCExpression qualifier =
   1.866 +                    tree.sym.isStatic() ?
   1.867 +                        make.Type(tree.sym.owner.type) :
   1.868 +                        (rcvr != null) ?
   1.869 +                            rcvr :
   1.870 +                            tree.getQualifierExpression();
   1.871 +
   1.872 +            //create the qualifier expression
   1.873 +            JCFieldAccess select = make.Select(qualifier, tree.sym.name);
   1.874 +            select.sym = tree.sym;
   1.875 +            select.type = tree.sym.erasure(types);
   1.876 +
   1.877 +            //create the method call expression
   1.878 +            JCExpression apply = make.Apply(List.<JCExpression>nil(), select,
   1.879 +                    convertArgs(tree.sym, args.toList(), tree.varargsElement)).
   1.880 +                    setType(tree.sym.erasure(types).getReturnType());
   1.881 +
   1.882 +            apply = transTypes.coerce(apply, localContext.generatedRefSig().getReturnType());
   1.883 +            setVarargsIfNeeded(apply, tree.varargsElement);
   1.884 +            return apply;
   1.885 +        }
   1.886 +
   1.887 +        /**
   1.888 +         * the enclosing expression is either 'null' (no enclosing type) or set
   1.889 +         * to the first bridge synthetic parameter
   1.890 +         */
   1.891 +        private JCExpression bridgeExpressionNew() {
   1.892 +            if (tree.kind == ReferenceKind.ARRAY_CTOR) {
   1.893 +                //create the array creation expression
   1.894 +                JCNewArray newArr = make.NewArray(
   1.895 +                        make.Type(types.elemtype(tree.getQualifierExpression().type)),
   1.896 +                        List.of(make.Ident(params.first())),
   1.897 +                        null);
   1.898 +                newArr.type = tree.getQualifierExpression().type;
   1.899 +                return newArr;
   1.900 +            } else {
   1.901 +                JCExpression encl = null;
   1.902 +                switch (tree.kind) {
   1.903 +                    case UNBOUND:
   1.904 +                    case IMPLICIT_INNER:
   1.905 +                        encl = make.Ident(params.first());
   1.906 +                }
   1.907 +
   1.908 +                //create the instance creation expression
   1.909 +                JCNewClass newClass = make.NewClass(encl,
   1.910 +                        List.<JCExpression>nil(),
   1.911 +                        make.Type(tree.getQualifierExpression().type),
   1.912 +                        convertArgs(tree.sym, args.toList(), tree.varargsElement),
   1.913 +                        null);
   1.914 +                newClass.constructor = tree.sym;
   1.915 +                newClass.constructorType = tree.sym.erasure(types);
   1.916 +                newClass.type = tree.getQualifierExpression().type;
   1.917 +                setVarargsIfNeeded(newClass, tree.varargsElement);
   1.918 +                return newClass;
   1.919 +            }
   1.920 +        }
   1.921 +
   1.922 +        private VarSymbol addParameter(String name, Type p, boolean genArg) {
   1.923 +            VarSymbol vsym = new VarSymbol(0, names.fromString(name), p, localContext.bridgeSym);
   1.924 +            params.append(make.VarDef(vsym, null));
   1.925 +            if (genArg) {
   1.926 +                args.append(make.Ident(vsym));
   1.927 +            }
   1.928 +            return vsym;
   1.929 +        }
   1.930 +    }
   1.931 +
   1.932 +    /**
   1.933 +     * Bridges a member reference - this is needed when:
   1.934 +     * * Var args in the referenced method need to be flattened away
   1.935 +     * * super is used
   1.936 +     */
   1.937 +    private void bridgeMemberReference(JCMemberReference tree, ReferenceTranslationContext localContext) {
   1.938 +        kInfo.addMethod(new MemberReferenceBridger(tree, localContext).bridge());
   1.939 +    }
   1.940 +
   1.941 +    private MethodType typeToMethodType(Type mt) {
   1.942 +        Type type = types.erasure(mt);
   1.943 +        return new MethodType(type.getParameterTypes(),
   1.944 +                        type.getReturnType(),
   1.945 +                        type.getThrownTypes(),
   1.946 +                        syms.methodClass);
   1.947 +    }
   1.948 +
   1.949 +    /**
   1.950 +     * Generate an indy method call to the meta factory
   1.951 +     */
   1.952 +    private JCExpression makeMetafactoryIndyCall(TranslationContext<?> context,
   1.953 +            int refKind, Symbol refSym, List<JCExpression> indy_args) {
   1.954 +        JCFunctionalExpression tree = context.tree;
   1.955 +        //determine the static bsm args
   1.956 +        MethodSymbol samSym = (MethodSymbol) types.findDescriptorSymbol(tree.type.tsym);
   1.957 +        List<Object> staticArgs = List.<Object>of(
   1.958 +                typeToMethodType(samSym.type),
   1.959 +                new Pool.MethodHandle(refKind, refSym, types),
   1.960 +                typeToMethodType(tree.getDescriptorType(types)));
   1.961 +
   1.962 +        //computed indy arg types
   1.963 +        ListBuffer<Type> indy_args_types = new ListBuffer<>();
   1.964 +        for (JCExpression arg : indy_args) {
   1.965 +            indy_args_types.append(arg.type);
   1.966 +        }
   1.967 +
   1.968 +        //finally, compute the type of the indy call
   1.969 +        MethodType indyType = new MethodType(indy_args_types.toList(),
   1.970 +                tree.type,
   1.971 +                List.<Type>nil(),
   1.972 +                syms.methodClass);
   1.973 +
   1.974 +        Name metafactoryName = context.needsAltMetafactory() ?
   1.975 +                names.altMetafactory : names.metafactory;
   1.976 +
   1.977 +        if (context.needsAltMetafactory()) {
   1.978 +            ListBuffer<Object> markers = new ListBuffer<>();
   1.979 +            for (Type t : tree.targets.tail) {
   1.980 +                if (t.tsym != syms.serializableType.tsym) {
   1.981 +                    markers.append(t.tsym);
   1.982 +                }
   1.983 +            }
   1.984 +            int flags = context.isSerializable() ? FLAG_SERIALIZABLE : 0;
   1.985 +            boolean hasMarkers = markers.nonEmpty();
   1.986 +            boolean hasBridges = context.bridges.nonEmpty();
   1.987 +            if (hasMarkers) {
   1.988 +                flags |= FLAG_MARKERS;
   1.989 +            }
   1.990 +            if (hasBridges) {
   1.991 +                flags |= FLAG_BRIDGES;
   1.992 +            }
   1.993 +            staticArgs = staticArgs.append(flags);
   1.994 +            if (hasMarkers) {
   1.995 +                staticArgs = staticArgs.append(markers.length());
   1.996 +                staticArgs = staticArgs.appendList(markers.toList());
   1.997 +            }
   1.998 +            if (hasBridges) {
   1.999 +                staticArgs = staticArgs.append(context.bridges.length() - 1);
  1.1000 +                for (Symbol s : context.bridges) {
  1.1001 +                    Type s_erasure = s.erasure(types);
  1.1002 +                    if (!types.isSameType(s_erasure, samSym.erasure(types))) {
  1.1003 +                        staticArgs = staticArgs.append(s.erasure(types));
  1.1004 +                    }
  1.1005 +                }
  1.1006 +            }
  1.1007 +            if (context.isSerializable()) {
  1.1008 +                int prevPos = make.pos;
  1.1009 +                try {
  1.1010 +                    make.at(kInfo.clazz);
  1.1011 +                    addDeserializationCase(refKind, refSym, tree.type, samSym,
  1.1012 +                            tree, staticArgs, indyType);
  1.1013 +                } finally {
  1.1014 +                    make.at(prevPos);
  1.1015 +                }
  1.1016 +            }
  1.1017 +        }
  1.1018 +
  1.1019 +        return makeIndyCall(tree, syms.lambdaMetafactory, metafactoryName, staticArgs, indyType, indy_args, samSym.name);
  1.1020 +    }
  1.1021 +
  1.1022 +    /**
  1.1023 +     * Generate an indy method call with given name, type and static bootstrap
  1.1024 +     * arguments types
  1.1025 +     */
  1.1026 +    private JCExpression makeIndyCall(DiagnosticPosition pos, Type site, Name bsmName,
  1.1027 +            List<Object> staticArgs, MethodType indyType, List<JCExpression> indyArgs,
  1.1028 +            Name methName) {
  1.1029 +        int prevPos = make.pos;
  1.1030 +        try {
  1.1031 +            make.at(pos);
  1.1032 +            List<Type> bsm_staticArgs = List.of(syms.methodHandleLookupType,
  1.1033 +                    syms.stringType,
  1.1034 +                    syms.methodTypeType).appendList(bsmStaticArgToTypes(staticArgs));
  1.1035 +
  1.1036 +            Symbol bsm = rs.resolveInternalMethod(pos, attrEnv, site,
  1.1037 +                    bsmName, bsm_staticArgs, List.<Type>nil());
  1.1038 +
  1.1039 +            DynamicMethodSymbol dynSym =
  1.1040 +                    new DynamicMethodSymbol(methName,
  1.1041 +                                            syms.noSymbol,
  1.1042 +                                            bsm.isStatic() ?
  1.1043 +                                                ClassFile.REF_invokeStatic :
  1.1044 +                                                ClassFile.REF_invokeVirtual,
  1.1045 +                                            (MethodSymbol)bsm,
  1.1046 +                                            indyType,
  1.1047 +                                            staticArgs.toArray());
  1.1048 +
  1.1049 +            JCFieldAccess qualifier = make.Select(make.QualIdent(site.tsym), bsmName);
  1.1050 +            qualifier.sym = dynSym;
  1.1051 +            qualifier.type = indyType.getReturnType();
  1.1052 +
  1.1053 +            JCMethodInvocation proxyCall = make.Apply(List.<JCExpression>nil(), qualifier, indyArgs);
  1.1054 +            proxyCall.type = indyType.getReturnType();
  1.1055 +            return proxyCall;
  1.1056 +        } finally {
  1.1057 +            make.at(prevPos);
  1.1058 +        }
  1.1059 +    }
  1.1060 +    //where
  1.1061 +    private List<Type> bsmStaticArgToTypes(List<Object> args) {
  1.1062 +        ListBuffer<Type> argtypes = new ListBuffer<>();
  1.1063 +        for (Object arg : args) {
  1.1064 +            argtypes.append(bsmStaticArgToType(arg));
  1.1065 +        }
  1.1066 +        return argtypes.toList();
  1.1067 +    }
  1.1068 +
  1.1069 +    private Type bsmStaticArgToType(Object arg) {
  1.1070 +        Assert.checkNonNull(arg);
  1.1071 +        if (arg instanceof ClassSymbol) {
  1.1072 +            return syms.classType;
  1.1073 +        } else if (arg instanceof Integer) {
  1.1074 +            return syms.intType;
  1.1075 +        } else if (arg instanceof Long) {
  1.1076 +            return syms.longType;
  1.1077 +        } else if (arg instanceof Float) {
  1.1078 +            return syms.floatType;
  1.1079 +        } else if (arg instanceof Double) {
  1.1080 +            return syms.doubleType;
  1.1081 +        } else if (arg instanceof String) {
  1.1082 +            return syms.stringType;
  1.1083 +        } else if (arg instanceof Pool.MethodHandle) {
  1.1084 +            return syms.methodHandleType;
  1.1085 +        } else if (arg instanceof MethodType) {
  1.1086 +            return syms.methodTypeType;
  1.1087 +        } else {
  1.1088 +            Assert.error("bad static arg " + arg.getClass());
  1.1089 +            return null;
  1.1090 +        }
  1.1091 +    }
  1.1092 +
  1.1093 +    /**
  1.1094 +     * Get the opcode associated with this method reference
  1.1095 +     */
  1.1096 +    private int referenceKind(Symbol refSym) {
  1.1097 +        if (refSym.isConstructor()) {
  1.1098 +            return ClassFile.REF_newInvokeSpecial;
  1.1099 +        } else {
  1.1100 +            if (refSym.isStatic()) {
  1.1101 +                return ClassFile.REF_invokeStatic;
  1.1102 +            } else if ((refSym.flags() & PRIVATE) != 0) {
  1.1103 +                return ClassFile.REF_invokeSpecial;
  1.1104 +            } else if (refSym.enclClass().isInterface()) {
  1.1105 +                return ClassFile.REF_invokeInterface;
  1.1106 +            } else {
  1.1107 +                return ClassFile.REF_invokeVirtual;
  1.1108 +            }
  1.1109 +        }
  1.1110 +    }
  1.1111 +
  1.1112 +    // <editor-fold defaultstate="collapsed" desc="Lambda/reference analyzer">
  1.1113 +    /**
  1.1114 +     * This visitor collects information about translation of a lambda expression.
  1.1115 +     * More specifically, it keeps track of the enclosing contexts and captured locals
  1.1116 +     * accessed by the lambda being translated (as well as other useful info).
  1.1117 +     * It also translates away problems for LambdaToMethod.
  1.1118 +     */
  1.1119 +    class LambdaAnalyzerPreprocessor extends TreeTranslator {
  1.1120 +
  1.1121 +        /** the frame stack - used to reconstruct translation info about enclosing scopes */
  1.1122 +        private List<Frame> frameStack;
  1.1123 +
  1.1124 +        /**
  1.1125 +         * keep the count of lambda expression (used to generate unambiguous
  1.1126 +         * names)
  1.1127 +         */
  1.1128 +        private int lambdaCount = 0;
  1.1129 +
  1.1130 +        /**
  1.1131 +         * keep the count of lambda expression defined in given context (used to
  1.1132 +         * generate unambiguous names for serializable lambdas)
  1.1133 +         */
  1.1134 +        private class SyntheticMethodNameCounter {
  1.1135 +            private Map<String, Integer> map = new HashMap<>();
  1.1136 +            int getIndex(StringBuilder buf) {
  1.1137 +                String temp = buf.toString();
  1.1138 +                Integer count = map.get(temp);
  1.1139 +                if (count == null) {
  1.1140 +                    count = 0;
  1.1141 +                }
  1.1142 +                ++count;
  1.1143 +                map.put(temp, count);
  1.1144 +                return count;
  1.1145 +            }
  1.1146 +        }
  1.1147 +        private SyntheticMethodNameCounter syntheticMethodNameCounts =
  1.1148 +                new SyntheticMethodNameCounter();
  1.1149 +
  1.1150 +        private Map<Symbol, JCClassDecl> localClassDefs;
  1.1151 +
  1.1152 +        /**
  1.1153 +         * maps for fake clinit symbols to be used as owners of lambda occurring in
  1.1154 +         * a static var init context
  1.1155 +         */
  1.1156 +        private Map<ClassSymbol, Symbol> clinits =
  1.1157 +                new HashMap<ClassSymbol, Symbol>();
  1.1158 +
  1.1159 +        private JCClassDecl analyzeAndPreprocessClass(JCClassDecl tree) {
  1.1160 +            frameStack = List.nil();
  1.1161 +            localClassDefs = new HashMap<Symbol, JCClassDecl>();
  1.1162 +            return translate(tree);
  1.1163 +        }
  1.1164 +
  1.1165 +        @Override
  1.1166 +        public void visitBlock(JCBlock tree) {
  1.1167 +            List<Frame> prevStack = frameStack;
  1.1168 +            try {
  1.1169 +                if (frameStack.nonEmpty() && frameStack.head.tree.hasTag(CLASSDEF)) {
  1.1170 +                    frameStack = frameStack.prepend(new Frame(tree));
  1.1171 +                }
  1.1172 +                super.visitBlock(tree);
  1.1173 +            }
  1.1174 +            finally {
  1.1175 +                frameStack = prevStack;
  1.1176 +            }
  1.1177 +        }
  1.1178 +
  1.1179 +        @Override
  1.1180 +        public void visitClassDef(JCClassDecl tree) {
  1.1181 +            List<Frame> prevStack = frameStack;
  1.1182 +            SyntheticMethodNameCounter prevSyntheticMethodNameCounts =
  1.1183 +                    syntheticMethodNameCounts;
  1.1184 +            Map<ClassSymbol, Symbol> prevClinits = clinits;
  1.1185 +            DiagnosticSource prevSource = log.currentSource();
  1.1186 +            try {
  1.1187 +                log.useSource(tree.sym.sourcefile);
  1.1188 +                syntheticMethodNameCounts = new SyntheticMethodNameCounter();
  1.1189 +                prevClinits = new HashMap<ClassSymbol, Symbol>();
  1.1190 +                if (tree.sym.owner.kind == MTH) {
  1.1191 +                    localClassDefs.put(tree.sym, tree);
  1.1192 +                }
  1.1193 +                if (directlyEnclosingLambda() != null) {
  1.1194 +                    tree.sym.owner = owner();
  1.1195 +                    if (tree.sym.hasOuterInstance()) {
  1.1196 +                        //if a class is defined within a lambda, the lambda must capture
  1.1197 +                        //its enclosing instance (if any)
  1.1198 +                        TranslationContext<?> localContext = context();
  1.1199 +                        while (localContext != null) {
  1.1200 +                            if (localContext.tree.getTag() == LAMBDA) {
  1.1201 +                                ((LambdaTranslationContext)localContext)
  1.1202 +                                        .addSymbol(tree.sym.type.getEnclosingType().tsym, CAPTURED_THIS);
  1.1203 +                            }
  1.1204 +                            localContext = localContext.prev;
  1.1205 +                        }
  1.1206 +                    }
  1.1207 +                }
  1.1208 +                frameStack = frameStack.prepend(new Frame(tree));
  1.1209 +                super.visitClassDef(tree);
  1.1210 +            }
  1.1211 +            finally {
  1.1212 +                log.useSource(prevSource.getFile());
  1.1213 +                frameStack = prevStack;
  1.1214 +                syntheticMethodNameCounts = prevSyntheticMethodNameCounts;
  1.1215 +                clinits = prevClinits;
  1.1216 +            }
  1.1217 +        }
  1.1218 +
  1.1219 +        @Override
  1.1220 +        public void visitIdent(JCIdent tree) {
  1.1221 +            if (context() != null && lambdaIdentSymbolFilter(tree.sym)) {
  1.1222 +                if (tree.sym.kind == VAR &&
  1.1223 +                        tree.sym.owner.kind == MTH &&
  1.1224 +                        tree.type.constValue() == null) {
  1.1225 +                    TranslationContext<?> localContext = context();
  1.1226 +                    while (localContext != null) {
  1.1227 +                        if (localContext.tree.getTag() == LAMBDA) {
  1.1228 +                            JCTree block = capturedDecl(localContext.depth, tree.sym);
  1.1229 +                            if (block == null) break;
  1.1230 +                            ((LambdaTranslationContext)localContext)
  1.1231 +                                    .addSymbol(tree.sym, CAPTURED_VAR);
  1.1232 +                        }
  1.1233 +                        localContext = localContext.prev;
  1.1234 +                    }
  1.1235 +                } else if (tree.sym.owner.kind == TYP) {
  1.1236 +                    TranslationContext<?> localContext = context();
  1.1237 +                    while (localContext != null) {
  1.1238 +                        if (localContext.tree.hasTag(LAMBDA)) {
  1.1239 +                            JCTree block = capturedDecl(localContext.depth, tree.sym);
  1.1240 +                            if (block == null) break;
  1.1241 +                            switch (block.getTag()) {
  1.1242 +                                case CLASSDEF:
  1.1243 +                                    JCClassDecl cdecl = (JCClassDecl)block;
  1.1244 +                                    ((LambdaTranslationContext)localContext)
  1.1245 +                                            .addSymbol(cdecl.sym, CAPTURED_THIS);
  1.1246 +                                    break;
  1.1247 +                                default:
  1.1248 +                                    Assert.error("bad block kind");
  1.1249 +                            }
  1.1250 +                        }
  1.1251 +                        localContext = localContext.prev;
  1.1252 +                    }
  1.1253 +                }
  1.1254 +            }
  1.1255 +            super.visitIdent(tree);
  1.1256 +        }
  1.1257 +
  1.1258 +        @Override
  1.1259 +        public void visitLambda(JCLambda tree) {
  1.1260 +            List<Frame> prevStack = frameStack;
  1.1261 +            try {
  1.1262 +                LambdaTranslationContext context = (LambdaTranslationContext)makeLambdaContext(tree);
  1.1263 +                frameStack = frameStack.prepend(new Frame(tree));
  1.1264 +                for (JCVariableDecl param : tree.params) {
  1.1265 +                    context.addSymbol(param.sym, PARAM);
  1.1266 +                    frameStack.head.addLocal(param.sym);
  1.1267 +                }
  1.1268 +                contextMap.put(tree, context);
  1.1269 +                super.visitLambda(tree);
  1.1270 +                context.complete();
  1.1271 +            }
  1.1272 +            finally {
  1.1273 +                frameStack = prevStack;
  1.1274 +            }
  1.1275 +        }
  1.1276 +
  1.1277 +        @Override
  1.1278 +        public void visitMethodDef(JCMethodDecl tree) {
  1.1279 +            List<Frame> prevStack = frameStack;
  1.1280 +            try {
  1.1281 +                frameStack = frameStack.prepend(new Frame(tree));
  1.1282 +                super.visitMethodDef(tree);
  1.1283 +            }
  1.1284 +            finally {
  1.1285 +                frameStack = prevStack;
  1.1286 +            }
  1.1287 +        }
  1.1288 +
  1.1289 +        @Override
  1.1290 +        public void visitNewClass(JCNewClass tree) {
  1.1291 +            TypeSymbol def = tree.type.tsym;
  1.1292 +            boolean inReferencedClass = currentlyInClass(def);
  1.1293 +            boolean isLocal = def.isLocal();
  1.1294 +            if ((inReferencedClass && isLocal || lambdaNewClassFilter(context(), tree))) {
  1.1295 +                TranslationContext<?> localContext = context();
  1.1296 +                while (localContext != null) {
  1.1297 +                    if (localContext.tree.getTag() == LAMBDA) {
  1.1298 +                        ((LambdaTranslationContext)localContext)
  1.1299 +                                .addSymbol(tree.type.getEnclosingType().tsym, CAPTURED_THIS);
  1.1300 +                    }
  1.1301 +                    localContext = localContext.prev;
  1.1302 +                }
  1.1303 +            }
  1.1304 +            if (context() != null && !inReferencedClass && isLocal) {
  1.1305 +                LambdaTranslationContext lambdaContext = (LambdaTranslationContext)context();
  1.1306 +                captureLocalClassDefs(def, lambdaContext);
  1.1307 +            }
  1.1308 +            super.visitNewClass(tree);
  1.1309 +        }
  1.1310 +        //where
  1.1311 +            void captureLocalClassDefs(Symbol csym, final LambdaTranslationContext lambdaContext) {
  1.1312 +                JCClassDecl localCDef = localClassDefs.get(csym);
  1.1313 +                if (localCDef != null && lambdaContext.freeVarProcessedLocalClasses.add(csym)) {
  1.1314 +                    BasicFreeVarCollector fvc = lower.new BasicFreeVarCollector() {
  1.1315 +                        @Override
  1.1316 +                        void addFreeVars(ClassSymbol c) {
  1.1317 +                            captureLocalClassDefs(c, lambdaContext);
  1.1318 +                        }
  1.1319 +                        @Override
  1.1320 +                        void visitSymbol(Symbol sym) {
  1.1321 +                            if (sym.kind == VAR &&
  1.1322 +                                    sym.owner.kind == MTH &&
  1.1323 +                                    ((VarSymbol)sym).getConstValue() == null) {
  1.1324 +                                TranslationContext<?> localContext = context();
  1.1325 +                                while (localContext != null) {
  1.1326 +                                    if (localContext.tree.getTag() == LAMBDA) {
  1.1327 +                                        JCTree block = capturedDecl(localContext.depth, sym);
  1.1328 +                                        if (block == null) break;
  1.1329 +                                        ((LambdaTranslationContext)localContext).addSymbol(sym, CAPTURED_VAR);
  1.1330 +                                    }
  1.1331 +                                    localContext = localContext.prev;
  1.1332 +                                }
  1.1333 +                            }
  1.1334 +                        }
  1.1335 +                    };
  1.1336 +                    fvc.scan(localCDef);
  1.1337 +                }
  1.1338 +        }
  1.1339 +        //where
  1.1340 +        boolean currentlyInClass(Symbol csym) {
  1.1341 +            for (Frame frame : frameStack) {
  1.1342 +                if (frame.tree.hasTag(JCTree.Tag.CLASSDEF)) {
  1.1343 +                    JCClassDecl cdef = (JCClassDecl) frame.tree;
  1.1344 +                    if (cdef.sym == csym) {
  1.1345 +                        return true;
  1.1346 +                    }
  1.1347 +                }
  1.1348 +            }
  1.1349 +            return false;
  1.1350 +        }
  1.1351 +
  1.1352 +        /**
  1.1353 +         * Method references to local class constructors, may, if the local
  1.1354 +         * class references local variables, have implicit constructor
  1.1355 +         * parameters added in Lower; As a result, the invokedynamic bootstrap
  1.1356 +         * information added in the LambdaToMethod pass will have the wrong
  1.1357 +         * signature. Hooks between Lower and LambdaToMethod have been added to
  1.1358 +         * handle normal "new" in this case. This visitor converts potentially
  1.1359 +         * effected method references into a lambda containing a normal "new" of
  1.1360 +         * the class.
  1.1361 +         *
  1.1362 +         * @param tree
  1.1363 +         */
  1.1364 +        @Override
  1.1365 +        public void visitReference(JCMemberReference tree) {
  1.1366 +            if (tree.getMode() == ReferenceMode.NEW
  1.1367 +                    && tree.kind != ReferenceKind.ARRAY_CTOR
  1.1368 +                    && tree.sym.owner.isLocal()) {
  1.1369 +                MethodSymbol consSym = (MethodSymbol) tree.sym;
  1.1370 +                List<Type> ptypes = ((MethodType) consSym.type).getParameterTypes();
  1.1371 +                Type classType = consSym.owner.type;
  1.1372 +
  1.1373 +                // Build lambda parameters
  1.1374 +                // partially cloned from TreeMaker.Params until 8014021 is fixed
  1.1375 +                Symbol owner = owner();
  1.1376 +                ListBuffer<JCVariableDecl> paramBuff = new ListBuffer<JCVariableDecl>();
  1.1377 +                int i = 0;
  1.1378 +                for (List<Type> l = ptypes; l.nonEmpty(); l = l.tail) {
  1.1379 +                    JCVariableDecl param = make.Param(make.paramName(i++), l.head, owner);
  1.1380 +                    param.sym.pos = tree.pos;
  1.1381 +                    paramBuff.append(param);
  1.1382 +                }
  1.1383 +                List<JCVariableDecl> params = paramBuff.toList();
  1.1384 +
  1.1385 +                // Make new-class call
  1.1386 +                JCNewClass nc = makeNewClass(classType, make.Idents(params));
  1.1387 +                nc.pos = tree.pos;
  1.1388 +
  1.1389 +                // Make lambda holding the new-class call
  1.1390 +                JCLambda slam = make.Lambda(params, nc);
  1.1391 +                slam.targets = tree.targets;
  1.1392 +                slam.type = tree.type;
  1.1393 +                slam.pos = tree.pos;
  1.1394 +
  1.1395 +                // Now it is a lambda, process as such
  1.1396 +                visitLambda(slam);
  1.1397 +            } else {
  1.1398 +                super.visitReference(tree);
  1.1399 +                contextMap.put(tree, makeReferenceContext(tree));
  1.1400 +            }
  1.1401 +        }
  1.1402 +
  1.1403 +        @Override
  1.1404 +        public void visitSelect(JCFieldAccess tree) {
  1.1405 +            if (context() != null && tree.sym.kind == VAR &&
  1.1406 +                        (tree.sym.name == names._this ||
  1.1407 +                         tree.sym.name == names._super)) {
  1.1408 +                // A select of this or super means, if we are in a lambda,
  1.1409 +                // we much have an instance context
  1.1410 +                TranslationContext<?> localContext = context();
  1.1411 +                while (localContext != null) {
  1.1412 +                    if (localContext.tree.hasTag(LAMBDA)) {
  1.1413 +                        JCClassDecl clazz = (JCClassDecl)capturedDecl(localContext.depth, tree.sym);
  1.1414 +                        if (clazz == null) break;
  1.1415 +                        ((LambdaTranslationContext)localContext).addSymbol(clazz.sym, CAPTURED_THIS);
  1.1416 +                    }
  1.1417 +                    localContext = localContext.prev;
  1.1418 +                }
  1.1419 +            }
  1.1420 +            super.visitSelect(tree);
  1.1421 +        }
  1.1422 +
  1.1423 +        @Override
  1.1424 +        public void visitVarDef(JCVariableDecl tree) {
  1.1425 +            TranslationContext<?> context = context();
  1.1426 +            LambdaTranslationContext ltc = (context != null && context instanceof LambdaTranslationContext)?
  1.1427 +                    (LambdaTranslationContext)context :
  1.1428 +                    null;
  1.1429 +            if (ltc != null) {
  1.1430 +                if (frameStack.head.tree.hasTag(LAMBDA)) {
  1.1431 +                    ltc.addSymbol(tree.sym, LOCAL_VAR);
  1.1432 +                }
  1.1433 +                // Check for type variables (including as type arguments).
  1.1434 +                // If they occur within class nested in a lambda, mark for erasure
  1.1435 +                Type type = tree.sym.asType();
  1.1436 +                if (inClassWithinLambda() && !types.isSameType(types.erasure(type), type)) {
  1.1437 +                    ltc.addSymbol(tree.sym, TYPE_VAR);
  1.1438 +                }
  1.1439 +            }
  1.1440 +
  1.1441 +            List<Frame> prevStack = frameStack;
  1.1442 +            try {
  1.1443 +                if (tree.sym.owner.kind == MTH) {
  1.1444 +                    frameStack.head.addLocal(tree.sym);
  1.1445 +                }
  1.1446 +                frameStack = frameStack.prepend(new Frame(tree));
  1.1447 +                super.visitVarDef(tree);
  1.1448 +            }
  1.1449 +            finally {
  1.1450 +                frameStack = prevStack;
  1.1451 +            }
  1.1452 +        }
  1.1453 +
  1.1454 +        /**
  1.1455 +         * Return a valid owner given the current declaration stack
  1.1456 +         * (required to skip synthetic lambda symbols)
  1.1457 +         */
  1.1458 +        private Symbol owner() {
  1.1459 +            return owner(false);
  1.1460 +        }
  1.1461 +
  1.1462 +        @SuppressWarnings("fallthrough")
  1.1463 +        private Symbol owner(boolean skipLambda) {
  1.1464 +            List<Frame> frameStack2 = frameStack;
  1.1465 +            while (frameStack2.nonEmpty()) {
  1.1466 +                switch (frameStack2.head.tree.getTag()) {
  1.1467 +                    case VARDEF:
  1.1468 +                        if (((JCVariableDecl)frameStack2.head.tree).sym.isLocal()) {
  1.1469 +                            frameStack2 = frameStack2.tail;
  1.1470 +                            break;
  1.1471 +                        }
  1.1472 +                        JCClassDecl cdecl = (JCClassDecl)frameStack2.tail.head.tree;
  1.1473 +                        return initSym(cdecl.sym,
  1.1474 +                                ((JCVariableDecl)frameStack2.head.tree).sym.flags() & STATIC);
  1.1475 +                    case BLOCK:
  1.1476 +                        JCClassDecl cdecl2 = (JCClassDecl)frameStack2.tail.head.tree;
  1.1477 +                        return initSym(cdecl2.sym,
  1.1478 +                                ((JCBlock)frameStack2.head.tree).flags & STATIC);
  1.1479 +                    case CLASSDEF:
  1.1480 +                        return ((JCClassDecl)frameStack2.head.tree).sym;
  1.1481 +                    case METHODDEF:
  1.1482 +                        return ((JCMethodDecl)frameStack2.head.tree).sym;
  1.1483 +                    case LAMBDA:
  1.1484 +                        if (!skipLambda)
  1.1485 +                            return ((LambdaTranslationContext)contextMap
  1.1486 +                                    .get(frameStack2.head.tree)).translatedSym;
  1.1487 +                    default:
  1.1488 +                        frameStack2 = frameStack2.tail;
  1.1489 +                }
  1.1490 +            }
  1.1491 +            Assert.error();
  1.1492 +            return null;
  1.1493 +        }
  1.1494 +
  1.1495 +        private Symbol initSym(ClassSymbol csym, long flags) {
  1.1496 +            boolean isStatic = (flags & STATIC) != 0;
  1.1497 +            if (isStatic) {
  1.1498 +                /* static clinits are generated in Gen, so we need to use a fake
  1.1499 +                 * one. Attr creates a fake clinit method while attributing
  1.1500 +                 * lambda expressions used as initializers of static fields, so
  1.1501 +                 * let's use that one.
  1.1502 +                 */
  1.1503 +                MethodSymbol clinit = attr.removeClinit(csym);
  1.1504 +                if (clinit != null) {
  1.1505 +                    clinits.put(csym, clinit);
  1.1506 +                    return clinit;
  1.1507 +                }
  1.1508 +
  1.1509 +                /* if no clinit is found at Attr, then let's try at clinits.
  1.1510 +                 */
  1.1511 +                clinit = (MethodSymbol)clinits.get(csym);
  1.1512 +                if (clinit == null) {
  1.1513 +                    /* no luck, let's create a new one
  1.1514 +                     */
  1.1515 +                    clinit = makePrivateSyntheticMethod(STATIC,
  1.1516 +                            names.clinit,
  1.1517 +                            new MethodType(List.<Type>nil(), syms.voidType,
  1.1518 +                                List.<Type>nil(), syms.methodClass),
  1.1519 +                            csym);
  1.1520 +                    clinits.put(csym, clinit);
  1.1521 +                }
  1.1522 +                return clinit;
  1.1523 +            } else {
  1.1524 +                //get the first constructor and treat it as the instance init sym
  1.1525 +                for (Symbol s : csym.members_field.getElementsByName(names.init)) {
  1.1526 +                    return s;
  1.1527 +                }
  1.1528 +            }
  1.1529 +            Assert.error("init not found");
  1.1530 +            return null;
  1.1531 +        }
  1.1532 +
  1.1533 +        private JCTree directlyEnclosingLambda() {
  1.1534 +            if (frameStack.isEmpty()) {
  1.1535 +                return null;
  1.1536 +            }
  1.1537 +            List<Frame> frameStack2 = frameStack;
  1.1538 +            while (frameStack2.nonEmpty()) {
  1.1539 +                switch (frameStack2.head.tree.getTag()) {
  1.1540 +                    case CLASSDEF:
  1.1541 +                    case METHODDEF:
  1.1542 +                        return null;
  1.1543 +                    case LAMBDA:
  1.1544 +                        return frameStack2.head.tree;
  1.1545 +                    default:
  1.1546 +                        frameStack2 = frameStack2.tail;
  1.1547 +                }
  1.1548 +            }
  1.1549 +            Assert.error();
  1.1550 +            return null;
  1.1551 +        }
  1.1552 +
  1.1553 +        private boolean inClassWithinLambda() {
  1.1554 +            if (frameStack.isEmpty()) {
  1.1555 +                return false;
  1.1556 +            }
  1.1557 +            List<Frame> frameStack2 = frameStack;
  1.1558 +            boolean classFound = false;
  1.1559 +            while (frameStack2.nonEmpty()) {
  1.1560 +                switch (frameStack2.head.tree.getTag()) {
  1.1561 +                    case LAMBDA:
  1.1562 +                        return classFound;
  1.1563 +                    case CLASSDEF:
  1.1564 +                        classFound = true;
  1.1565 +                        frameStack2 = frameStack2.tail;
  1.1566 +                        break;
  1.1567 +                    default:
  1.1568 +                        frameStack2 = frameStack2.tail;
  1.1569 +                }
  1.1570 +            }
  1.1571 +            // No lambda
  1.1572 +            return false;
  1.1573 +        }
  1.1574 +
  1.1575 +        /**
  1.1576 +         * Return the declaration corresponding to a symbol in the enclosing
  1.1577 +         * scope; the depth parameter is used to filter out symbols defined
  1.1578 +         * in nested scopes (which do not need to undergo capture).
  1.1579 +         */
  1.1580 +        private JCTree capturedDecl(int depth, Symbol sym) {
  1.1581 +            int currentDepth = frameStack.size() - 1;
  1.1582 +            for (Frame block : frameStack) {
  1.1583 +                switch (block.tree.getTag()) {
  1.1584 +                    case CLASSDEF:
  1.1585 +                        ClassSymbol clazz = ((JCClassDecl)block.tree).sym;
  1.1586 +                        if (sym.isMemberOf(clazz, types)) {
  1.1587 +                            return currentDepth > depth ? null : block.tree;
  1.1588 +                        }
  1.1589 +                        break;
  1.1590 +                    case VARDEF:
  1.1591 +                        if (((JCVariableDecl)block.tree).sym == sym &&
  1.1592 +                                sym.owner.kind == MTH) { //only locals are captured
  1.1593 +                            return currentDepth > depth ? null : block.tree;
  1.1594 +                        }
  1.1595 +                        break;
  1.1596 +                    case BLOCK:
  1.1597 +                    case METHODDEF:
  1.1598 +                    case LAMBDA:
  1.1599 +                        if (block.locals != null && block.locals.contains(sym)) {
  1.1600 +                            return currentDepth > depth ? null : block.tree;
  1.1601 +                        }
  1.1602 +                        break;
  1.1603 +                    default:
  1.1604 +                        Assert.error("bad decl kind " + block.tree.getTag());
  1.1605 +                }
  1.1606 +                currentDepth--;
  1.1607 +            }
  1.1608 +            return null;
  1.1609 +        }
  1.1610 +
  1.1611 +        private TranslationContext<?> context() {
  1.1612 +            for (Frame frame : frameStack) {
  1.1613 +                TranslationContext<?> context = contextMap.get(frame.tree);
  1.1614 +                if (context != null) {
  1.1615 +                    return context;
  1.1616 +                }
  1.1617 +            }
  1.1618 +            return null;
  1.1619 +        }
  1.1620 +
  1.1621 +        /**
  1.1622 +         *  This is used to filter out those identifiers that needs to be adjusted
  1.1623 +         *  when translating away lambda expressions
  1.1624 +         */
  1.1625 +        private boolean lambdaIdentSymbolFilter(Symbol sym) {
  1.1626 +            return (sym.kind == VAR || sym.kind == MTH)
  1.1627 +                    && !sym.isStatic()
  1.1628 +                    && sym.name != names.init;
  1.1629 +        }
  1.1630 +
  1.1631 +        /**
  1.1632 +         * This is used to filter out those new class expressions that need to
  1.1633 +         * be qualified with an enclosing tree
  1.1634 +         */
  1.1635 +        private boolean lambdaNewClassFilter(TranslationContext<?> context, JCNewClass tree) {
  1.1636 +            if (context != null
  1.1637 +                    && tree.encl == null
  1.1638 +                    && tree.def == null
  1.1639 +                    && !tree.type.getEnclosingType().hasTag(NONE)) {
  1.1640 +                Type encl = tree.type.getEnclosingType();
  1.1641 +                Type current = context.owner.enclClass().type;
  1.1642 +                while (!current.hasTag(NONE)) {
  1.1643 +                    if (current.tsym.isSubClass(encl.tsym, types)) {
  1.1644 +                        return true;
  1.1645 +                    }
  1.1646 +                    current = current.getEnclosingType();
  1.1647 +                }
  1.1648 +                return false;
  1.1649 +            } else {
  1.1650 +                return false;
  1.1651 +            }
  1.1652 +        }
  1.1653 +
  1.1654 +        private TranslationContext<JCLambda> makeLambdaContext(JCLambda tree) {
  1.1655 +            return new LambdaTranslationContext(tree);
  1.1656 +        }
  1.1657 +
  1.1658 +        private TranslationContext<JCMemberReference> makeReferenceContext(JCMemberReference tree) {
  1.1659 +            return new ReferenceTranslationContext(tree);
  1.1660 +        }
  1.1661 +
  1.1662 +        private class Frame {
  1.1663 +            final JCTree tree;
  1.1664 +            List<Symbol> locals;
  1.1665 +
  1.1666 +            public Frame(JCTree tree) {
  1.1667 +                this.tree = tree;
  1.1668 +            }
  1.1669 +
  1.1670 +            void addLocal(Symbol sym) {
  1.1671 +                if (locals == null) {
  1.1672 +                    locals = List.nil();
  1.1673 +                }
  1.1674 +                locals = locals.prepend(sym);
  1.1675 +            }
  1.1676 +        }
  1.1677 +
  1.1678 +        /**
  1.1679 +         * This class is used to store important information regarding translation of
  1.1680 +         * lambda expression/method references (see subclasses).
  1.1681 +         */
  1.1682 +        private abstract class TranslationContext<T extends JCFunctionalExpression> {
  1.1683 +
  1.1684 +            /** the underlying (untranslated) tree */
  1.1685 +            final T tree;
  1.1686 +
  1.1687 +            /** points to the adjusted enclosing scope in which this lambda/mref expression occurs */
  1.1688 +            final Symbol owner;
  1.1689 +
  1.1690 +            /** the depth of this lambda expression in the frame stack */
  1.1691 +            final int depth;
  1.1692 +
  1.1693 +            /** the enclosing translation context (set for nested lambdas/mref) */
  1.1694 +            final TranslationContext<?> prev;
  1.1695 +
  1.1696 +            /** list of methods to be bridged by the meta-factory */
  1.1697 +            final List<Symbol> bridges;
  1.1698 +
  1.1699 +            TranslationContext(T tree) {
  1.1700 +                this.tree = tree;
  1.1701 +                this.owner = owner();
  1.1702 +                this.depth = frameStack.size() - 1;
  1.1703 +                this.prev = context();
  1.1704 +                ClassSymbol csym =
  1.1705 +                        types.makeFunctionalInterfaceClass(attrEnv, names.empty, tree.targets, ABSTRACT | INTERFACE);
  1.1706 +                this.bridges = types.functionalInterfaceBridges(csym);
  1.1707 +            }
  1.1708 +
  1.1709 +            /** does this functional expression need to be created using alternate metafactory? */
  1.1710 +            boolean needsAltMetafactory() {
  1.1711 +                return tree.targets.length() > 1 ||
  1.1712 +                        isSerializable() ||
  1.1713 +                        bridges.length() > 1;
  1.1714 +            }
  1.1715 +
  1.1716 +            /** does this functional expression require serialization support? */
  1.1717 +            boolean isSerializable() {
  1.1718 +                if (forceSerializable) {
  1.1719 +                    return true;
  1.1720 +                }
  1.1721 +                for (Type target : tree.targets) {
  1.1722 +                    if (types.asSuper(target, syms.serializableType.tsym) != null) {
  1.1723 +                        return true;
  1.1724 +                    }
  1.1725 +                }
  1.1726 +                return false;
  1.1727 +            }
  1.1728 +
  1.1729 +            /**
  1.1730 +             * @return Name of the enclosing method to be folded into synthetic
  1.1731 +             * method name
  1.1732 +             */
  1.1733 +            String enclosingMethodName() {
  1.1734 +                return syntheticMethodNameComponent(owner.name);
  1.1735 +            }
  1.1736 +
  1.1737 +            /**
  1.1738 +             * @return Method name in a form that can be folded into a
  1.1739 +             * component of a synthetic method name
  1.1740 +             */
  1.1741 +            String syntheticMethodNameComponent(Name name) {
  1.1742 +                if (name == null) {
  1.1743 +                    return "null";
  1.1744 +                }
  1.1745 +                String methodName = name.toString();
  1.1746 +                if (methodName.equals("<clinit>")) {
  1.1747 +                    methodName = "static";
  1.1748 +                } else if (methodName.equals("<init>")) {
  1.1749 +                    methodName = "new";
  1.1750 +                }
  1.1751 +                return methodName;
  1.1752 +            }
  1.1753 +        }
  1.1754 +
  1.1755 +        /**
  1.1756 +         * This class retains all the useful information about a lambda expression;
  1.1757 +         * the contents of this class are filled by the LambdaAnalyzer visitor,
  1.1758 +         * and the used by the main translation routines in order to adjust references
  1.1759 +         * to captured locals/members, etc.
  1.1760 +         */
  1.1761 +        private class LambdaTranslationContext extends TranslationContext<JCLambda> {
  1.1762 +
  1.1763 +            /** variable in the enclosing context to which this lambda is assigned */
  1.1764 +            final Symbol self;
  1.1765 +
  1.1766 +            /** variable in the enclosing context to which this lambda is assigned */
  1.1767 +            final Symbol assignedTo;
  1.1768 +
  1.1769 +            Map<LambdaSymbolKind, Map<Symbol, Symbol>> translatedSymbols;
  1.1770 +
  1.1771 +            /** the synthetic symbol for the method hoisting the translated lambda */
  1.1772 +            Symbol translatedSym;
  1.1773 +
  1.1774 +            List<JCVariableDecl> syntheticParams;
  1.1775 +
  1.1776 +            /**
  1.1777 +             * to prevent recursion, track local classes processed
  1.1778 +             */
  1.1779 +            final Set<Symbol> freeVarProcessedLocalClasses;
  1.1780 +
  1.1781 +            LambdaTranslationContext(JCLambda tree) {
  1.1782 +                super(tree);
  1.1783 +                Frame frame = frameStack.head;
  1.1784 +                switch (frame.tree.getTag()) {
  1.1785 +                    case VARDEF:
  1.1786 +                        assignedTo = self = ((JCVariableDecl) frame.tree).sym;
  1.1787 +                        break;
  1.1788 +                    case ASSIGN:
  1.1789 +                        self = null;
  1.1790 +                        assignedTo = TreeInfo.symbol(((JCAssign) frame.tree).getVariable());
  1.1791 +                        break;
  1.1792 +                    default:
  1.1793 +                        assignedTo = self = null;
  1.1794 +                        break;
  1.1795 +                 }
  1.1796 +
  1.1797 +                // This symbol will be filled-in in complete
  1.1798 +                this.translatedSym = makePrivateSyntheticMethod(0, null, null, owner.enclClass());
  1.1799 +
  1.1800 +                if (dumpLambdaToMethodStats) {
  1.1801 +                    log.note(tree, "lambda.stat", needsAltMetafactory(), translatedSym);
  1.1802 +                }
  1.1803 +                translatedSymbols = new EnumMap<>(LambdaSymbolKind.class);
  1.1804 +
  1.1805 +                translatedSymbols.put(PARAM, new LinkedHashMap<Symbol, Symbol>());
  1.1806 +                translatedSymbols.put(LOCAL_VAR, new LinkedHashMap<Symbol, Symbol>());
  1.1807 +                translatedSymbols.put(CAPTURED_VAR, new LinkedHashMap<Symbol, Symbol>());
  1.1808 +                translatedSymbols.put(CAPTURED_THIS, new LinkedHashMap<Symbol, Symbol>());
  1.1809 +                translatedSymbols.put(TYPE_VAR, new LinkedHashMap<Symbol, Symbol>());
  1.1810 +
  1.1811 +                freeVarProcessedLocalClasses = new HashSet<>();
  1.1812 +            }
  1.1813 +
  1.1814 +             /**
  1.1815 +             * For a serializable lambda, generate a disambiguating string
  1.1816 +             * which maximizes stability across deserialization.
  1.1817 +             *
  1.1818 +             * @return String to differentiate synthetic lambda method names
  1.1819 +             */
  1.1820 +            private String serializedLambdaDisambiguation() {
  1.1821 +                StringBuilder buf = new StringBuilder();
  1.1822 +                // Append the enclosing method signature to differentiate
  1.1823 +                // overloaded enclosing methods.  For lambdas enclosed in
  1.1824 +                // lambdas, the generated lambda method will not have type yet,
  1.1825 +                // but the enclosing method's name will have been generated
  1.1826 +                // with this same method, so it will be unique and never be
  1.1827 +                // overloaded.
  1.1828 +                Assert.check(
  1.1829 +                        owner.type != null ||
  1.1830 +                        directlyEnclosingLambda() != null);
  1.1831 +                if (owner.type != null) {
  1.1832 +                    buf.append(typeSig(owner.type));
  1.1833 +                    buf.append(":");
  1.1834 +                }
  1.1835 +
  1.1836 +                // Add target type info
  1.1837 +                buf.append(types.findDescriptorSymbol(tree.type.tsym).owner.flatName());
  1.1838 +                buf.append(" ");
  1.1839 +
  1.1840 +                // Add variable assigned to
  1.1841 +                if (assignedTo != null) {
  1.1842 +                    buf.append(assignedTo.flatName());
  1.1843 +                    buf.append("=");
  1.1844 +                }
  1.1845 +                //add captured locals info: type, name, order
  1.1846 +                for (Symbol fv : getSymbolMap(CAPTURED_VAR).keySet()) {
  1.1847 +                    if (fv != self) {
  1.1848 +                        buf.append(typeSig(fv.type));
  1.1849 +                        buf.append(" ");
  1.1850 +                        buf.append(fv.flatName());
  1.1851 +                        buf.append(",");
  1.1852 +                    }
  1.1853 +                }
  1.1854 +
  1.1855 +                return buf.toString();
  1.1856 +            }
  1.1857 +
  1.1858 +            /**
  1.1859 +             * For a non-serializable lambda, generate a simple method.
  1.1860 +             *
  1.1861 +             * @return Name to use for the synthetic lambda method name
  1.1862 +             */
  1.1863 +            private Name lambdaName() {
  1.1864 +                return names.lambda.append(names.fromString(enclosingMethodName() + "$" + lambdaCount++));
  1.1865 +            }
  1.1866 +
  1.1867 +            /**
  1.1868 +             * For a serializable lambda, generate a method name which maximizes
  1.1869 +             * name stability across deserialization.
  1.1870 +             *
  1.1871 +             * @return Name to use for the synthetic lambda method name
  1.1872 +             */
  1.1873 +            private Name serializedLambdaName() {
  1.1874 +                StringBuilder buf = new StringBuilder();
  1.1875 +                buf.append(names.lambda);
  1.1876 +                // Append the name of the method enclosing the lambda.
  1.1877 +                buf.append(enclosingMethodName());
  1.1878 +                buf.append('$');
  1.1879 +                // Append a hash of the disambiguating string : enclosing method
  1.1880 +                // signature, etc.
  1.1881 +                String disam = serializedLambdaDisambiguation();
  1.1882 +                buf.append(Integer.toHexString(disam.hashCode()));
  1.1883 +                buf.append('$');
  1.1884 +                // The above appended name components may not be unique, append
  1.1885 +                // a count based on the above name components.
  1.1886 +                buf.append(syntheticMethodNameCounts.getIndex(buf));
  1.1887 +                String result = buf.toString();
  1.1888 +                //System.err.printf("serializedLambdaName: %s -- %s\n", result, disam);
  1.1889 +                return names.fromString(result);
  1.1890 +            }
  1.1891 +
  1.1892 +            /**
  1.1893 +             * Translate a symbol of a given kind into something suitable for the
  1.1894 +             * synthetic lambda body
  1.1895 +             */
  1.1896 +            Symbol translate(Name name, final Symbol sym, LambdaSymbolKind skind) {
  1.1897 +                Symbol ret;
  1.1898 +                switch (skind) {
  1.1899 +                    case CAPTURED_THIS:
  1.1900 +                        ret = sym;  // self represented
  1.1901 +                        break;
  1.1902 +                    case TYPE_VAR:
  1.1903 +                        // Just erase the type var
  1.1904 +                        ret = new VarSymbol(sym.flags(), name,
  1.1905 +                                types.erasure(sym.type), sym.owner);
  1.1906 +
  1.1907 +                        /* this information should also be kept for LVT generation at Gen
  1.1908 +                         * a Symbol with pos < startPos won't be tracked.
  1.1909 +                         */
  1.1910 +                        ((VarSymbol)ret).pos = ((VarSymbol)sym).pos;
  1.1911 +                        break;
  1.1912 +                    case CAPTURED_VAR:
  1.1913 +                        ret = new VarSymbol(SYNTHETIC | FINAL | PARAMETER, name, types.erasure(sym.type), translatedSym) {
  1.1914 +                            @Override
  1.1915 +                            public Symbol baseSymbol() {
  1.1916 +                                //keep mapping with original captured symbol
  1.1917 +                                return sym;
  1.1918 +                            }
  1.1919 +                        };
  1.1920 +                        break;
  1.1921 +                    case LOCAL_VAR:
  1.1922 +                        ret = new VarSymbol(sym.flags() & FINAL, name, sym.type, translatedSym);
  1.1923 +                        ((VarSymbol) ret).pos = ((VarSymbol) sym).pos;
  1.1924 +                        break;
  1.1925 +                    case PARAM:
  1.1926 +                        ret = new VarSymbol((sym.flags() & FINAL) | PARAMETER, name, types.erasure(sym.type), translatedSym);
  1.1927 +                        ((VarSymbol) ret).pos = ((VarSymbol) sym).pos;
  1.1928 +                        break;
  1.1929 +                    default:
  1.1930 +                        ret = makeSyntheticVar(FINAL, name, types.erasure(sym.type), translatedSym);
  1.1931 +                        ((VarSymbol) ret).pos = ((VarSymbol) sym).pos;
  1.1932 +                }
  1.1933 +                if (ret != sym) {
  1.1934 +                    ret.setDeclarationAttributes(sym.getRawAttributes());
  1.1935 +                    ret.setTypeAttributes(sym.getRawTypeAttributes());
  1.1936 +                }
  1.1937 +                return ret;
  1.1938 +            }
  1.1939 +
  1.1940 +            void addSymbol(Symbol sym, LambdaSymbolKind skind) {
  1.1941 +                Map<Symbol, Symbol> transMap = getSymbolMap(skind);
  1.1942 +                Name preferredName;
  1.1943 +                switch (skind) {
  1.1944 +                    case CAPTURED_THIS:
  1.1945 +                        preferredName = names.fromString("encl$" + transMap.size());
  1.1946 +                        break;
  1.1947 +                    case CAPTURED_VAR:
  1.1948 +                        preferredName = names.fromString("cap$" + transMap.size());
  1.1949 +                        break;
  1.1950 +                    case LOCAL_VAR:
  1.1951 +                        preferredName = sym.name;
  1.1952 +                        break;
  1.1953 +                    case PARAM:
  1.1954 +                        preferredName = sym.name;
  1.1955 +                        break;
  1.1956 +                    case TYPE_VAR:
  1.1957 +                        preferredName = sym.name;
  1.1958 +                        break;
  1.1959 +                    default: throw new AssertionError();
  1.1960 +                }
  1.1961 +                if (!transMap.containsKey(sym)) {
  1.1962 +                    transMap.put(sym, translate(preferredName, sym, skind));
  1.1963 +                }
  1.1964 +            }
  1.1965 +
  1.1966 +            Map<Symbol, Symbol> getSymbolMap(LambdaSymbolKind skind) {
  1.1967 +                Map<Symbol, Symbol> m = translatedSymbols.get(skind);
  1.1968 +                Assert.checkNonNull(m);
  1.1969 +                return m;
  1.1970 +            }
  1.1971 +
  1.1972 +            JCTree translate(JCIdent lambdaIdent) {
  1.1973 +                for (Map<Symbol, Symbol> m : translatedSymbols.values()) {
  1.1974 +                    if (m.containsKey(lambdaIdent.sym)) {
  1.1975 +                        Symbol tSym = m.get(lambdaIdent.sym);
  1.1976 +                        JCTree t = make.Ident(tSym).setType(lambdaIdent.type);
  1.1977 +                        tSym.setTypeAttributes(lambdaIdent.sym.getRawTypeAttributes());
  1.1978 +                        return t;
  1.1979 +                    }
  1.1980 +                }
  1.1981 +                return null;
  1.1982 +            }
  1.1983 +
  1.1984 +            /**
  1.1985 +             * The translatedSym is not complete/accurate until the analysis is
  1.1986 +             * finished.  Once the analysis is finished, the translatedSym is
  1.1987 +             * "completed" -- updated with type information, access modifiers,
  1.1988 +             * and full parameter list.
  1.1989 +             */
  1.1990 +            void complete() {
  1.1991 +                if (syntheticParams != null) {
  1.1992 +                    return;
  1.1993 +                }
  1.1994 +                boolean inInterface = translatedSym.owner.isInterface();
  1.1995 +                boolean thisReferenced = !getSymbolMap(CAPTURED_THIS).isEmpty();
  1.1996 +
  1.1997 +                // If instance access isn't needed, make it static.
  1.1998 +                // Interface instance methods must be default methods.
  1.1999 +                // Lambda methods are private synthetic.
  1.2000 +                translatedSym.flags_field = SYNTHETIC | LAMBDA_METHOD |
  1.2001 +                        PRIVATE |
  1.2002 +                        (thisReferenced? (inInterface? DEFAULT : 0) : STATIC);
  1.2003 +
  1.2004 +                //compute synthetic params
  1.2005 +                ListBuffer<JCVariableDecl> params = new ListBuffer<>();
  1.2006 +
  1.2007 +                // The signature of the method is augmented with the following
  1.2008 +                // synthetic parameters:
  1.2009 +                //
  1.2010 +                // 1) reference to enclosing contexts captured by the lambda expression
  1.2011 +                // 2) enclosing locals captured by the lambda expression
  1.2012 +                for (Symbol thisSym : getSymbolMap(CAPTURED_VAR).values()) {
  1.2013 +                    params.append(make.VarDef((VarSymbol) thisSym, null));
  1.2014 +                }
  1.2015 +                for (Symbol thisSym : getSymbolMap(PARAM).values()) {
  1.2016 +                    params.append(make.VarDef((VarSymbol) thisSym, null));
  1.2017 +                }
  1.2018 +                syntheticParams = params.toList();
  1.2019 +
  1.2020 +                // Compute and set the lambda name
  1.2021 +                translatedSym.name = isSerializable()
  1.2022 +                        ? serializedLambdaName()
  1.2023 +                        : lambdaName();
  1.2024 +
  1.2025 +                //prepend synthetic args to translated lambda method signature
  1.2026 +                translatedSym.type = types.createMethodTypeWithParameters(
  1.2027 +                        generatedLambdaSig(),
  1.2028 +                        TreeInfo.types(syntheticParams));
  1.2029 +            }
  1.2030 +
  1.2031 +            Type generatedLambdaSig() {
  1.2032 +                return types.erasure(tree.getDescriptorType(types));
  1.2033 +            }
  1.2034 +        }
  1.2035 +
  1.2036 +        /**
  1.2037 +         * This class retains all the useful information about a method reference;
  1.2038 +         * the contents of this class are filled by the LambdaAnalyzer visitor,
  1.2039 +         * and the used by the main translation routines in order to adjust method
  1.2040 +         * references (i.e. in case a bridge is needed)
  1.2041 +         */
  1.2042 +        private class ReferenceTranslationContext extends TranslationContext<JCMemberReference> {
  1.2043 +
  1.2044 +            final boolean isSuper;
  1.2045 +            final Symbol bridgeSym;
  1.2046 +            final Symbol sigPolySym;
  1.2047 +
  1.2048 +            ReferenceTranslationContext(JCMemberReference tree) {
  1.2049 +                super(tree);
  1.2050 +                this.isSuper = tree.hasKind(ReferenceKind.SUPER);
  1.2051 +                this.bridgeSym = needsBridge()
  1.2052 +                        ? makePrivateSyntheticMethod(isSuper ? 0 : STATIC,
  1.2053 +                                              referenceBridgeName(), null,
  1.2054 +                                              owner.enclClass())
  1.2055 +                        : null;
  1.2056 +                this.sigPolySym = isSignaturePolymorphic()
  1.2057 +                        ? makePrivateSyntheticMethod(tree.sym.flags(),
  1.2058 +                                              tree.sym.name,
  1.2059 +                                              bridgedRefSig(),
  1.2060 +                                              tree.sym.enclClass())
  1.2061 +                        : null;
  1.2062 +                if (dumpLambdaToMethodStats) {
  1.2063 +                    String key = bridgeSym == null ?
  1.2064 +                            "mref.stat" : "mref.stat.1";
  1.2065 +                    log.note(tree, key, needsAltMetafactory(), bridgeSym);
  1.2066 +                }
  1.2067 +            }
  1.2068 +
  1.2069 +            /**
  1.2070 +             * Get the opcode associated with this method reference
  1.2071 +             */
  1.2072 +            int referenceKind() {
  1.2073 +                return LambdaToMethod.this.referenceKind(needsBridge()
  1.2074 +                        ? bridgeSym
  1.2075 +                        : tree.sym);
  1.2076 +            }
  1.2077 +
  1.2078 +            boolean needsVarArgsConversion() {
  1.2079 +                return tree.varargsElement != null;
  1.2080 +            }
  1.2081 +
  1.2082 +            /**
  1.2083 +             * Generate a disambiguating string to increase stability (important
  1.2084 +             * if serialized)
  1.2085 +             *
  1.2086 +             * @return String to differentiate synthetic lambda method names
  1.2087 +             */
  1.2088 +            private String referenceBridgeDisambiguation() {
  1.2089 +                StringBuilder buf = new StringBuilder();
  1.2090 +                // Append the enclosing method signature to differentiate
  1.2091 +                // overloaded enclosing methods.
  1.2092 +                if (owner.type != null) {
  1.2093 +                    buf.append(typeSig(owner.type));
  1.2094 +                    buf.append(":");
  1.2095 +                }
  1.2096 +
  1.2097 +                // Append qualifier type
  1.2098 +                buf.append(classSig(tree.sym.owner.type));
  1.2099 +
  1.2100 +                // Note static/instance
  1.2101 +                buf.append(tree.sym.isStatic()? " S " : " I ");
  1.2102 +
  1.2103 +                // Append referenced signature
  1.2104 +                buf.append(typeSig(tree.sym.erasure(types)));
  1.2105 +
  1.2106 +                return buf.toString();
  1.2107 +            }
  1.2108 +
  1.2109 +            /**
  1.2110 +             * Construct a unique stable name for the method reference bridge
  1.2111 +             *
  1.2112 +             * @return Name to use for the synthetic method name
  1.2113 +             */
  1.2114 +            private Name referenceBridgeName() {
  1.2115 +                StringBuilder buf = new StringBuilder();
  1.2116 +                // Append lambda ID, this is semantically significant
  1.2117 +                buf.append(names.lambda);
  1.2118 +                // Note that it is a method reference bridge
  1.2119 +                buf.append("MR$");
  1.2120 +                // Append the enclosing method name
  1.2121 +                buf.append(enclosingMethodName());
  1.2122 +                buf.append('$');
  1.2123 +                // Append the referenced method name
  1.2124 +                buf.append(syntheticMethodNameComponent(tree.sym.name));
  1.2125 +                buf.append('$');
  1.2126 +                // Append a hash of the disambiguating string : enclosing method
  1.2127 +                // signature, etc.
  1.2128 +                String disam = referenceBridgeDisambiguation();
  1.2129 +                buf.append(Integer.toHexString(disam.hashCode()));
  1.2130 +                buf.append('$');
  1.2131 +                // The above appended name components may not be unique, append
  1.2132 +                // a count based on the above name components.
  1.2133 +                buf.append(syntheticMethodNameCounts.getIndex(buf));
  1.2134 +                String result = buf.toString();
  1.2135 +                return names.fromString(result);
  1.2136 +            }
  1.2137 +
  1.2138 +            /**
  1.2139 +             * @return Is this an array operation like clone()
  1.2140 +             */
  1.2141 +            boolean isArrayOp() {
  1.2142 +                return tree.sym.owner == syms.arrayClass;
  1.2143 +            }
  1.2144 +
  1.2145 +            boolean receiverAccessible() {
  1.2146 +                //hack needed to workaround 292 bug (7087658)
  1.2147 +                //when 292 issue is fixed we should remove this and change the backend
  1.2148 +                //code to always generate a method handle to an accessible method
  1.2149 +                return tree.ownerAccessible;
  1.2150 +            }
  1.2151 +
  1.2152 +            /**
  1.2153 +             * The VM does not support access across nested classes (8010319).
  1.2154 +             * Were that ever to change, this should be removed.
  1.2155 +             */
  1.2156 +            boolean isPrivateInOtherClass() {
  1.2157 +                return  (tree.sym.flags() & PRIVATE) != 0 &&
  1.2158 +                        !types.isSameType(
  1.2159 +                              types.erasure(tree.sym.enclClass().asType()),
  1.2160 +                              types.erasure(owner.enclClass().asType()));
  1.2161 +            }
  1.2162 +
  1.2163 +            /**
  1.2164 +             * Signature polymorphic methods need special handling.
  1.2165 +             * e.g. MethodHandle.invoke() MethodHandle.invokeExact()
  1.2166 +             */
  1.2167 +            final boolean isSignaturePolymorphic() {
  1.2168 +                return  tree.sym.kind == MTH &&
  1.2169 +                        types.isSignaturePolymorphic((MethodSymbol)tree.sym);
  1.2170 +            }
  1.2171 +
  1.2172 +            /**
  1.2173 +             * Does this reference needs a bridge (i.e. var args need to be
  1.2174 +             * expanded or "super" is used)
  1.2175 +             */
  1.2176 +            final boolean needsBridge() {
  1.2177 +                return isSuper || needsVarArgsConversion() || isArrayOp() ||
  1.2178 +                        isPrivateInOtherClass() ||
  1.2179 +                        !receiverAccessible();
  1.2180 +            }
  1.2181 +
  1.2182 +            Type generatedRefSig() {
  1.2183 +                return types.erasure(tree.sym.type);
  1.2184 +            }
  1.2185 +
  1.2186 +            Type bridgedRefSig() {
  1.2187 +                return types.erasure(types.findDescriptorSymbol(tree.targets.head.tsym).type);
  1.2188 +            }
  1.2189 +        }
  1.2190 +    }
  1.2191 +    // </editor-fold>
  1.2192 +
  1.2193 +    /*
  1.2194 +     * These keys provide mappings for various translated lambda symbols
  1.2195 +     * and the prevailing order must be maintained.
  1.2196 +     */
  1.2197 +    enum LambdaSymbolKind {
  1.2198 +        PARAM,          // original to translated lambda parameters
  1.2199 +        LOCAL_VAR,      // original to translated lambda locals
  1.2200 +        CAPTURED_VAR,   // variables in enclosing scope to translated synthetic parameters
  1.2201 +        CAPTURED_THIS,  // class symbols to translated synthetic parameters (for captured member access)
  1.2202 +        TYPE_VAR;       // original to translated lambda type variables
  1.2203 +    }
  1.2204 +
  1.2205 +    /**
  1.2206 +     * ****************************************************************
  1.2207 +     * Signature Generation
  1.2208 +     * ****************************************************************
  1.2209 +     */
  1.2210 +
  1.2211 +    private String typeSig(Type type) {
  1.2212 +        L2MSignatureGenerator sg = new L2MSignatureGenerator();
  1.2213 +        sg.assembleSig(type);
  1.2214 +        return sg.toString();
  1.2215 +    }
  1.2216 +
  1.2217 +    private String classSig(Type type) {
  1.2218 +        L2MSignatureGenerator sg = new L2MSignatureGenerator();
  1.2219 +        sg.assembleClassSig(type);
  1.2220 +        return sg.toString();
  1.2221 +    }
  1.2222 +
  1.2223 +    /**
  1.2224 +     * Signature Generation
  1.2225 +     */
  1.2226 +    private class L2MSignatureGenerator extends Types.SignatureGenerator {
  1.2227 +
  1.2228 +        /**
  1.2229 +         * An output buffer for type signatures.
  1.2230 +         */
  1.2231 +        StringBuilder sb = new StringBuilder();
  1.2232 +
  1.2233 +        L2MSignatureGenerator() {
  1.2234 +            super(types);
  1.2235 +        }
  1.2236 +
  1.2237 +        @Override
  1.2238 +        protected void append(char ch) {
  1.2239 +            sb.append(ch);
  1.2240 +        }
  1.2241 +
  1.2242 +        @Override
  1.2243 +        protected void append(byte[] ba) {
  1.2244 +            sb.append(new String(ba));
  1.2245 +        }
  1.2246 +
  1.2247 +        @Override
  1.2248 +        protected void append(Name name) {
  1.2249 +            sb.append(name.toString());
  1.2250 +        }
  1.2251 +
  1.2252 +        @Override
  1.2253 +        public String toString() {
  1.2254 +            return sb.toString();
  1.2255 +        }
  1.2256 +    }
  1.2257 +}

mercurial