src/share/classes/com/sun/tools/javac/comp/Lower.java

Tue, 02 Nov 2010 12:01:35 +0000

author
mcimadamore
date
Tue, 02 Nov 2010 12:01:35 +0000
changeset 731
fadc6d3e63f4
parent 700
7b413ac1a720
child 745
4328728e0409
permissions
-rw-r--r--

6939780: add a warning to detect diamond sites
Summary: added hidden compiler flag '-XDfindDiamond' to detect 'diamondifiable' sites
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.jvm.*;
jjg@657 32 import com.sun.tools.javac.main.RecognizedOptions.PkgInfo;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.code.Symbol.*;
duke@1 39 import com.sun.tools.javac.tree.JCTree.*;
duke@1 40 import com.sun.tools.javac.code.Type.*;
duke@1 41
duke@1 42 import com.sun.tools.javac.jvm.Target;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 48
duke@1 49 /** This pass translates away some syntactic sugar: inner classes,
duke@1 50 * class literals, assertions, foreach loops, etc.
duke@1 51 *
jjg@581 52 * <p><b>This is NOT part of any supported API.
jjg@581 53 * If you write code that depends on this, you do so at your own risk.
duke@1 54 * This code and its internal interfaces are subject to change or
duke@1 55 * deletion without notice.</b>
duke@1 56 */
duke@1 57 public class Lower extends TreeTranslator {
duke@1 58 protected static final Context.Key<Lower> lowerKey =
duke@1 59 new Context.Key<Lower>();
duke@1 60
duke@1 61 public static Lower instance(Context context) {
duke@1 62 Lower instance = context.get(lowerKey);
duke@1 63 if (instance == null)
duke@1 64 instance = new Lower(context);
duke@1 65 return instance;
duke@1 66 }
duke@1 67
jjg@113 68 private Names names;
duke@1 69 private Log log;
duke@1 70 private Symtab syms;
mcimadamore@688 71 private Scope.ScopeCounter scopeCounter;
duke@1 72 private Resolve rs;
duke@1 73 private Check chk;
duke@1 74 private Attr attr;
duke@1 75 private TreeMaker make;
duke@1 76 private DiagnosticPosition make_pos;
duke@1 77 private ClassWriter writer;
duke@1 78 private ClassReader reader;
duke@1 79 private ConstFold cfolder;
duke@1 80 private Target target;
duke@1 81 private Source source;
duke@1 82 private boolean allowEnums;
duke@1 83 private final Name dollarAssertionsDisabled;
duke@1 84 private final Name classDollar;
duke@1 85 private Types types;
duke@1 86 private boolean debugLower;
jjg@657 87 private PkgInfo pkginfoOpt;
duke@1 88
duke@1 89 protected Lower(Context context) {
duke@1 90 context.put(lowerKey, this);
jjg@113 91 names = Names.instance(context);
duke@1 92 log = Log.instance(context);
duke@1 93 syms = Symtab.instance(context);
mcimadamore@688 94 scopeCounter = Scope.ScopeCounter.instance(context);
duke@1 95 rs = Resolve.instance(context);
duke@1 96 chk = Check.instance(context);
duke@1 97 attr = Attr.instance(context);
duke@1 98 make = TreeMaker.instance(context);
duke@1 99 writer = ClassWriter.instance(context);
duke@1 100 reader = ClassReader.instance(context);
duke@1 101 cfolder = ConstFold.instance(context);
duke@1 102 target = Target.instance(context);
duke@1 103 source = Source.instance(context);
duke@1 104 allowEnums = source.allowEnums();
duke@1 105 dollarAssertionsDisabled = names.
duke@1 106 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 107 classDollar = names.
duke@1 108 fromString("class" + target.syntheticNameChar());
duke@1 109
duke@1 110 types = Types.instance(context);
duke@1 111 Options options = Options.instance(context);
jjg@700 112 debugLower = options.isSet("debuglower");
jjg@657 113 pkginfoOpt = PkgInfo.get(options);
duke@1 114 }
duke@1 115
duke@1 116 /** The currently enclosing class.
duke@1 117 */
duke@1 118 ClassSymbol currentClass;
duke@1 119
duke@1 120 /** A queue of all translated classes.
duke@1 121 */
duke@1 122 ListBuffer<JCTree> translated;
duke@1 123
duke@1 124 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 125 */
duke@1 126 Env<AttrContext> attrEnv;
duke@1 127
duke@1 128 /** A hash table mapping syntax trees to their ending source positions.
duke@1 129 */
duke@1 130 Map<JCTree, Integer> endPositions;
duke@1 131
duke@1 132 /**************************************************************************
duke@1 133 * Global mappings
duke@1 134 *************************************************************************/
duke@1 135
duke@1 136 /** A hash table mapping local classes to their definitions.
duke@1 137 */
duke@1 138 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 139
duke@1 140 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 141 * to the actually referred symbol in superclasses.
duke@1 142 */
duke@1 143 Map<Symbol,Symbol> actualSymbols;
duke@1 144
duke@1 145 /** The current method definition.
duke@1 146 */
duke@1 147 JCMethodDecl currentMethodDef;
duke@1 148
duke@1 149 /** The current method symbol.
duke@1 150 */
duke@1 151 MethodSymbol currentMethodSym;
duke@1 152
duke@1 153 /** The currently enclosing outermost class definition.
duke@1 154 */
duke@1 155 JCClassDecl outermostClassDef;
duke@1 156
duke@1 157 /** The currently enclosing outermost member definition.
duke@1 158 */
duke@1 159 JCTree outermostMemberDef;
duke@1 160
duke@1 161 /** A navigator class for assembling a mapping from local class symbols
duke@1 162 * to class definition trees.
duke@1 163 * There is only one case; all other cases simply traverse down the tree.
duke@1 164 */
duke@1 165 class ClassMap extends TreeScanner {
duke@1 166
duke@1 167 /** All encountered class defs are entered into classdefs table.
duke@1 168 */
duke@1 169 public void visitClassDef(JCClassDecl tree) {
duke@1 170 classdefs.put(tree.sym, tree);
duke@1 171 super.visitClassDef(tree);
duke@1 172 }
duke@1 173 }
duke@1 174 ClassMap classMap = new ClassMap();
duke@1 175
duke@1 176 /** Map a class symbol to its definition.
duke@1 177 * @param c The class symbol of which we want to determine the definition.
duke@1 178 */
duke@1 179 JCClassDecl classDef(ClassSymbol c) {
duke@1 180 // First lookup the class in the classdefs table.
duke@1 181 JCClassDecl def = classdefs.get(c);
duke@1 182 if (def == null && outermostMemberDef != null) {
duke@1 183 // If this fails, traverse outermost member definition, entering all
duke@1 184 // local classes into classdefs, and try again.
duke@1 185 classMap.scan(outermostMemberDef);
duke@1 186 def = classdefs.get(c);
duke@1 187 }
duke@1 188 if (def == null) {
duke@1 189 // If this fails, traverse outermost class definition, entering all
duke@1 190 // local classes into classdefs, and try again.
duke@1 191 classMap.scan(outermostClassDef);
duke@1 192 def = classdefs.get(c);
duke@1 193 }
duke@1 194 return def;
duke@1 195 }
duke@1 196
duke@1 197 /** A hash table mapping class symbols to lists of free variables.
duke@1 198 * accessed by them. Only free variables of the method immediately containing
duke@1 199 * a class are associated with that class.
duke@1 200 */
duke@1 201 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 202
duke@1 203 /** A navigator class for collecting the free variables accessed
duke@1 204 * from a local class.
duke@1 205 * There is only one case; all other cases simply traverse down the tree.
duke@1 206 */
duke@1 207 class FreeVarCollector extends TreeScanner {
duke@1 208
duke@1 209 /** The owner of the local class.
duke@1 210 */
duke@1 211 Symbol owner;
duke@1 212
duke@1 213 /** The local class.
duke@1 214 */
duke@1 215 ClassSymbol clazz;
duke@1 216
duke@1 217 /** The list of owner's variables accessed from within the local class,
duke@1 218 * without any duplicates.
duke@1 219 */
duke@1 220 List<VarSymbol> fvs;
duke@1 221
duke@1 222 FreeVarCollector(ClassSymbol clazz) {
duke@1 223 this.clazz = clazz;
duke@1 224 this.owner = clazz.owner;
duke@1 225 this.fvs = List.nil();
duke@1 226 }
duke@1 227
duke@1 228 /** Add free variable to fvs list unless it is already there.
duke@1 229 */
duke@1 230 private void addFreeVar(VarSymbol v) {
duke@1 231 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 232 if (l.head == v) return;
duke@1 233 fvs = fvs.prepend(v);
duke@1 234 }
duke@1 235
duke@1 236 /** Add all free variables of class c to fvs list
duke@1 237 * unless they are already there.
duke@1 238 */
duke@1 239 private void addFreeVars(ClassSymbol c) {
duke@1 240 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 241 if (fvs != null) {
duke@1 242 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 243 addFreeVar(l.head);
duke@1 244 }
duke@1 245 }
duke@1 246 }
duke@1 247
duke@1 248 /** If tree refers to a variable in owner of local class, add it to
duke@1 249 * free variables list.
duke@1 250 */
duke@1 251 public void visitIdent(JCIdent tree) {
duke@1 252 result = tree;
duke@1 253 visitSymbol(tree.sym);
duke@1 254 }
duke@1 255 // where
duke@1 256 private void visitSymbol(Symbol _sym) {
duke@1 257 Symbol sym = _sym;
duke@1 258 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 259 while (sym != null && sym.owner != owner)
duke@1 260 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 261 if (sym != null && sym.owner == owner) {
duke@1 262 VarSymbol v = (VarSymbol)sym;
duke@1 263 if (v.getConstValue() == null) {
duke@1 264 addFreeVar(v);
duke@1 265 }
duke@1 266 } else {
duke@1 267 if (outerThisStack.head != null &&
duke@1 268 outerThisStack.head != _sym)
duke@1 269 visitSymbol(outerThisStack.head);
duke@1 270 }
duke@1 271 }
duke@1 272 }
duke@1 273
duke@1 274 /** If tree refers to a class instance creation expression
duke@1 275 * add all free variables of the freshly created class.
duke@1 276 */
duke@1 277 public void visitNewClass(JCNewClass tree) {
duke@1 278 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 279 addFreeVars(c);
duke@1 280 if (tree.encl == null &&
duke@1 281 c.hasOuterInstance() &&
duke@1 282 outerThisStack.head != null)
duke@1 283 visitSymbol(outerThisStack.head);
duke@1 284 super.visitNewClass(tree);
duke@1 285 }
duke@1 286
duke@1 287 /** If tree refers to a qualified this or super expression
duke@1 288 * for anything but the current class, add the outer this
duke@1 289 * stack as a free variable.
duke@1 290 */
duke@1 291 public void visitSelect(JCFieldAccess tree) {
duke@1 292 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 293 tree.selected.type.tsym != clazz &&
duke@1 294 outerThisStack.head != null)
duke@1 295 visitSymbol(outerThisStack.head);
duke@1 296 super.visitSelect(tree);
duke@1 297 }
duke@1 298
duke@1 299 /** If tree refers to a superclass constructor call,
duke@1 300 * add all free variables of the superclass.
duke@1 301 */
duke@1 302 public void visitApply(JCMethodInvocation tree) {
duke@1 303 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 304 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
duke@1 305 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 306 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 307 if (c.hasOuterInstance() &&
duke@1 308 tree.meth.getTag() != JCTree.SELECT &&
duke@1 309 outerThisStack.head != null)
duke@1 310 visitSymbol(outerThisStack.head);
duke@1 311 }
duke@1 312 super.visitApply(tree);
duke@1 313 }
duke@1 314 }
duke@1 315
duke@1 316 /** Return the variables accessed from within a local class, which
duke@1 317 * are declared in the local class' owner.
duke@1 318 * (in reverse order of first access).
duke@1 319 */
duke@1 320 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 321 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 322 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 323 if (fvs == null) {
duke@1 324 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 325 collector.scan(classDef(c));
duke@1 326 fvs = collector.fvs;
duke@1 327 freevarCache.put(c, fvs);
duke@1 328 }
duke@1 329 return fvs;
duke@1 330 } else {
duke@1 331 return List.nil();
duke@1 332 }
duke@1 333 }
duke@1 334
duke@1 335 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 336
duke@1 337 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 338 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 339 if (map == null)
duke@1 340 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 341 return map;
duke@1 342 }
duke@1 343
duke@1 344 /** This map gives a translation table to be used for enum
duke@1 345 * switches.
duke@1 346 *
duke@1 347 * <p>For each enum that appears as the type of a switch
duke@1 348 * expression, we maintain an EnumMapping to assist in the
duke@1 349 * translation, as exemplified by the following example:
duke@1 350 *
duke@1 351 * <p>we translate
duke@1 352 * <pre>
duke@1 353 * switch(colorExpression) {
duke@1 354 * case red: stmt1;
duke@1 355 * case green: stmt2;
duke@1 356 * }
duke@1 357 * </pre>
duke@1 358 * into
duke@1 359 * <pre>
duke@1 360 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 361 * case 1: stmt1;
duke@1 362 * case 2: stmt2
duke@1 363 * }
duke@1 364 * </pre>
darcy@430 365 * with the auxiliary table initialized as follows:
duke@1 366 * <pre>
duke@1 367 * class Outer$0 {
duke@1 368 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 369 * static {
duke@1 370 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 371 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 372 * }
duke@1 373 * }
duke@1 374 * </pre>
duke@1 375 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 376 */
duke@1 377 class EnumMapping {
duke@1 378 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 379 this.forEnum = forEnum;
duke@1 380 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 381 this.pos = pos;
duke@1 382 Name varName = names
duke@1 383 .fromString(target.syntheticNameChar() +
duke@1 384 "SwitchMap" +
duke@1 385 target.syntheticNameChar() +
duke@1 386 writer.xClassName(forEnum.type).toString()
duke@1 387 .replace('/', '.')
duke@1 388 .replace('.', target.syntheticNameChar()));
duke@1 389 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 390 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 391 varName,
duke@1 392 new ArrayType(syms.intType, syms.arrayClass),
duke@1 393 outerCacheClass);
duke@1 394 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 395 }
duke@1 396
duke@1 397 DiagnosticPosition pos = null;
duke@1 398
duke@1 399 // the next value to use
duke@1 400 int next = 1; // 0 (unused map elements) go to the default label
duke@1 401
duke@1 402 // the enum for which this is a map
duke@1 403 final TypeSymbol forEnum;
duke@1 404
duke@1 405 // the field containing the map
duke@1 406 final VarSymbol mapVar;
duke@1 407
duke@1 408 // the mapped values
duke@1 409 final Map<VarSymbol,Integer> values;
duke@1 410
duke@1 411 JCLiteral forConstant(VarSymbol v) {
duke@1 412 Integer result = values.get(v);
duke@1 413 if (result == null)
duke@1 414 values.put(v, result = next++);
duke@1 415 return make.Literal(result);
duke@1 416 }
duke@1 417
duke@1 418 // generate the field initializer for the map
duke@1 419 void translate() {
duke@1 420 make.at(pos.getStartPosition());
duke@1 421 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 422
duke@1 423 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 424 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 425 names.values,
duke@1 426 forEnum.type,
duke@1 427 List.<Type>nil());
duke@1 428 JCExpression size = make // Color.values().length
duke@1 429 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 430 syms.lengthVar);
duke@1 431 JCExpression mapVarInit = make
duke@1 432 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 433 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 434
duke@1 435 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 436 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 437 Symbol ordinalMethod = lookupMethod(pos,
duke@1 438 names.ordinal,
duke@1 439 forEnum.type,
duke@1 440 List.<Type>nil());
duke@1 441 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 442 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 443 syms.noSuchFieldErrorType,
duke@1 444 syms.noSymbol),
duke@1 445 null),
duke@1 446 make.Block(0, List.<JCStatement>nil())));
duke@1 447 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 448 VarSymbol enumerator = e.getKey();
duke@1 449 Integer mappedValue = e.getValue();
duke@1 450 JCExpression assign = make
duke@1 451 .Assign(make.Indexed(mapVar,
duke@1 452 make.App(make.Select(make.QualIdent(enumerator),
duke@1 453 ordinalMethod))),
duke@1 454 make.Literal(mappedValue))
duke@1 455 .setType(syms.intType);
duke@1 456 JCStatement exec = make.Exec(assign);
duke@1 457 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 458 stmts.append(_try);
duke@1 459 }
duke@1 460
duke@1 461 owner.defs = owner.defs
duke@1 462 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 463 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 464 }
duke@1 465 }
duke@1 466
duke@1 467
duke@1 468 /**************************************************************************
duke@1 469 * Tree building blocks
duke@1 470 *************************************************************************/
duke@1 471
duke@1 472 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 473 * pos as make_pos, for use in diagnostics.
duke@1 474 **/
duke@1 475 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 476 make_pos = pos;
duke@1 477 return make.at(pos);
duke@1 478 }
duke@1 479
duke@1 480 /** Make an attributed tree representing a literal. This will be an
duke@1 481 * Ident node in the case of boolean literals, a Literal node in all
duke@1 482 * other cases.
duke@1 483 * @param type The literal's type.
duke@1 484 * @param value The literal's value.
duke@1 485 */
duke@1 486 JCExpression makeLit(Type type, Object value) {
duke@1 487 return make.Literal(type.tag, value).setType(type.constType(value));
duke@1 488 }
duke@1 489
duke@1 490 /** Make an attributed tree representing null.
duke@1 491 */
duke@1 492 JCExpression makeNull() {
duke@1 493 return makeLit(syms.botType, null);
duke@1 494 }
duke@1 495
duke@1 496 /** Make an attributed class instance creation expression.
duke@1 497 * @param ctype The class type.
duke@1 498 * @param args The constructor arguments.
duke@1 499 */
duke@1 500 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 501 JCNewClass tree = make.NewClass(null,
duke@1 502 null, make.QualIdent(ctype.tsym), args, null);
duke@1 503 tree.constructor = rs.resolveConstructor(
duke@1 504 make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
duke@1 505 tree.type = ctype;
duke@1 506 return tree;
duke@1 507 }
duke@1 508
duke@1 509 /** Make an attributed unary expression.
duke@1 510 * @param optag The operators tree tag.
duke@1 511 * @param arg The operator's argument.
duke@1 512 */
duke@1 513 JCUnary makeUnary(int optag, JCExpression arg) {
duke@1 514 JCUnary tree = make.Unary(optag, arg);
duke@1 515 tree.operator = rs.resolveUnaryOperator(
duke@1 516 make_pos, optag, attrEnv, arg.type);
duke@1 517 tree.type = tree.operator.type.getReturnType();
duke@1 518 return tree;
duke@1 519 }
duke@1 520
duke@1 521 /** Make an attributed binary expression.
duke@1 522 * @param optag The operators tree tag.
duke@1 523 * @param lhs The operator's left argument.
duke@1 524 * @param rhs The operator's right argument.
duke@1 525 */
duke@1 526 JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
duke@1 527 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 528 tree.operator = rs.resolveBinaryOperator(
duke@1 529 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 530 tree.type = tree.operator.type.getReturnType();
duke@1 531 return tree;
duke@1 532 }
duke@1 533
duke@1 534 /** Make an attributed assignop expression.
duke@1 535 * @param optag The operators tree tag.
duke@1 536 * @param lhs The operator's left argument.
duke@1 537 * @param rhs The operator's right argument.
duke@1 538 */
duke@1 539 JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
duke@1 540 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 541 tree.operator = rs.resolveBinaryOperator(
duke@1 542 make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
duke@1 543 tree.type = lhs.type;
duke@1 544 return tree;
duke@1 545 }
duke@1 546
duke@1 547 /** Convert tree into string object, unless it has already a
duke@1 548 * reference type..
duke@1 549 */
duke@1 550 JCExpression makeString(JCExpression tree) {
duke@1 551 if (tree.type.tag >= CLASS) {
duke@1 552 return tree;
duke@1 553 } else {
duke@1 554 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 555 names.valueOf,
duke@1 556 syms.stringType,
duke@1 557 List.of(tree.type));
duke@1 558 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 559 }
duke@1 560 }
duke@1 561
duke@1 562 /** Create an empty anonymous class definition and enter and complete
duke@1 563 * its symbol. Return the class definition's symbol.
duke@1 564 * and create
duke@1 565 * @param flags The class symbol's flags
duke@1 566 * @param owner The class symbol's owner
duke@1 567 */
duke@1 568 ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
duke@1 569 // Create class symbol.
duke@1 570 ClassSymbol c = reader.defineClass(names.empty, owner);
duke@1 571 c.flatname = chk.localClassName(c);
duke@1 572 c.sourcefile = owner.sourcefile;
duke@1 573 c.completer = null;
mcimadamore@688 574 c.members_field = new Scope.ClassScope(c, scopeCounter);
duke@1 575 c.flags_field = flags;
duke@1 576 ClassType ctype = (ClassType) c.type;
duke@1 577 ctype.supertype_field = syms.objectType;
duke@1 578 ctype.interfaces_field = List.nil();
duke@1 579
duke@1 580 JCClassDecl odef = classDef(owner);
duke@1 581
duke@1 582 // Enter class symbol in owner scope and compiled table.
duke@1 583 enterSynthetic(odef.pos(), c, owner.members());
duke@1 584 chk.compiled.put(c.flatname, c);
duke@1 585
duke@1 586 // Create class definition tree.
duke@1 587 JCClassDecl cdef = make.ClassDef(
duke@1 588 make.Modifiers(flags), names.empty,
duke@1 589 List.<JCTypeParameter>nil(),
duke@1 590 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 591 cdef.sym = c;
duke@1 592 cdef.type = c.type;
duke@1 593
duke@1 594 // Append class definition tree to owner's definitions.
duke@1 595 odef.defs = odef.defs.prepend(cdef);
duke@1 596
duke@1 597 return c;
duke@1 598 }
duke@1 599
duke@1 600 /**************************************************************************
duke@1 601 * Symbol manipulation utilities
duke@1 602 *************************************************************************/
duke@1 603
duke@1 604 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 605 * @param pos Position for error reporting.
duke@1 606 * @param sym The symbol.
duke@1 607 * @param s The scope.
duke@1 608 */
duke@1 609 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 610 s.enter(sym);
mcimadamore@359 611 }
mcimadamore@359 612
darcy@609 613 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 614 * obtained by appending '$' chars at the end of the name until no match
darcy@609 615 * is found.
darcy@609 616 *
darcy@609 617 * @param name base name
darcy@609 618 * @param s scope in which the name has to be unique
darcy@609 619 * @return fresh synthetic name
darcy@609 620 */
darcy@609 621 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 622 do {
darcy@609 623 name = name.append(
darcy@609 624 target.syntheticNameChar(),
darcy@609 625 names.empty);
darcy@609 626 } while (lookupSynthetic(name, s) != null);
darcy@609 627 return name;
darcy@609 628 }
darcy@609 629
mcimadamore@359 630 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 631 * with user-defined symbols.
mcimadamore@359 632 *
mcimadamore@359 633 * @param translatedTrees lowered class trees
mcimadamore@359 634 */
mcimadamore@359 635 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 636 for (JCTree t : translatedTrees) {
mcimadamore@359 637 t.accept(conflictsChecker);
mcimadamore@359 638 }
mcimadamore@359 639 }
mcimadamore@359 640
mcimadamore@359 641 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 642
mcimadamore@359 643 TypeSymbol currentClass;
mcimadamore@359 644
mcimadamore@359 645 @Override
mcimadamore@359 646 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 647 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 648 super.visitMethodDef(that);
mcimadamore@359 649 }
mcimadamore@359 650
mcimadamore@359 651 @Override
mcimadamore@359 652 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 653 if (that.sym.owner.kind == TYP) {
mcimadamore@359 654 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 655 }
mcimadamore@359 656 super.visitVarDef(that);
mcimadamore@359 657 }
mcimadamore@359 658
mcimadamore@359 659 @Override
mcimadamore@359 660 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 661 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 662 currentClass = that.sym;
mcimadamore@359 663 try {
mcimadamore@359 664 super.visitClassDef(that);
mcimadamore@359 665 }
mcimadamore@359 666 finally {
mcimadamore@359 667 currentClass = prevCurrentClass;
duke@1 668 }
duke@1 669 }
mcimadamore@359 670 };
duke@1 671
duke@1 672 /** Look up a synthetic name in a given scope.
duke@1 673 * @param scope The scope.
duke@1 674 * @param name The name.
duke@1 675 */
duke@1 676 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 677 Symbol sym = s.lookup(name).sym;
duke@1 678 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 679 }
duke@1 680
duke@1 681 /** Look up a method in a given scope.
duke@1 682 */
duke@1 683 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
duke@1 684 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
duke@1 685 }
duke@1 686
duke@1 687 /** Look up a constructor.
duke@1 688 */
duke@1 689 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 690 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 691 }
duke@1 692
duke@1 693 /** Look up a field.
duke@1 694 */
duke@1 695 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 696 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 697 }
duke@1 698
jjg@595 699 /** Anon inner classes are used as access constructor tags.
jjg@595 700 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 701 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 702 * However, there is a small possibility that an existing class will not
jjg@595 703 * be generated as expected if it is inside a conditional with a constant
jjg@595 704 * expression. If that is found to be the case, create an empty class here.
jjg@595 705 */
jjg@595 706 private void checkAccessConstructorTags() {
jjg@595 707 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 708 ClassSymbol c = l.head;
jjg@595 709 if (isTranslatedClassAvailable(c))
jjg@595 710 continue;
jjg@595 711 // Create class definition tree.
jjg@595 712 JCClassDecl cdef = make.ClassDef(
jjg@595 713 make.Modifiers(STATIC | SYNTHETIC), names.empty,
jjg@595 714 List.<JCTypeParameter>nil(),
jjg@595 715 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@595 716 cdef.sym = c;
jjg@595 717 cdef.type = c.type;
jjg@595 718 // add it to the list of classes to be generated
jjg@595 719 translated.append(cdef);
jjg@595 720 }
jjg@595 721 }
jjg@595 722 // where
jjg@595 723 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 724 for (JCTree tree: translated) {
jjg@595 725 if (tree.getTag() == JCTree.CLASSDEF
jjg@595 726 && ((JCClassDecl) tree).sym == c) {
jjg@595 727 return true;
jjg@595 728 }
jjg@595 729 }
jjg@595 730 return false;
jjg@595 731 }
jjg@595 732
duke@1 733 /**************************************************************************
duke@1 734 * Access methods
duke@1 735 *************************************************************************/
duke@1 736
duke@1 737 /** Access codes for dereferencing, assignment,
duke@1 738 * and pre/post increment/decrement.
duke@1 739 * Access codes for assignment operations are determined by method accessCode
duke@1 740 * below.
duke@1 741 *
duke@1 742 * All access codes for accesses to the current class are even.
duke@1 743 * If a member of the superclass should be accessed instead (because
duke@1 744 * access was via a qualified super), add one to the corresponding code
duke@1 745 * for the current class, making the number odd.
duke@1 746 * This numbering scheme is used by the backend to decide whether
duke@1 747 * to issue an invokevirtual or invokespecial call.
duke@1 748 *
duke@1 749 * @see Gen.visitSelect(Select tree)
duke@1 750 */
duke@1 751 private static final int
duke@1 752 DEREFcode = 0,
duke@1 753 ASSIGNcode = 2,
duke@1 754 PREINCcode = 4,
duke@1 755 PREDECcode = 6,
duke@1 756 POSTINCcode = 8,
duke@1 757 POSTDECcode = 10,
duke@1 758 FIRSTASGOPcode = 12;
duke@1 759
duke@1 760 /** Number of access codes
duke@1 761 */
duke@1 762 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 763
duke@1 764 /** A mapping from symbols to their access numbers.
duke@1 765 */
duke@1 766 private Map<Symbol,Integer> accessNums;
duke@1 767
duke@1 768 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 769 * access code.
duke@1 770 */
duke@1 771 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 772
duke@1 773 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 774 */
duke@1 775 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 776
jjg@595 777 /** A list of all class symbols used for access constructor tags.
jjg@595 778 */
jjg@595 779 private List<ClassSymbol> accessConstrTags;
jjg@595 780
duke@1 781 /** A queue for all accessed symbols.
duke@1 782 */
duke@1 783 private ListBuffer<Symbol> accessed;
duke@1 784
duke@1 785 /** Map bytecode of binary operation to access code of corresponding
duke@1 786 * assignment operation. This is always an even number.
duke@1 787 */
duke@1 788 private static int accessCode(int bytecode) {
duke@1 789 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 790 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 791 else if (bytecode == ByteCodes.string_add)
duke@1 792 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 793 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 794 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 795 else
duke@1 796 return -1;
duke@1 797 }
duke@1 798
duke@1 799 /** return access code for identifier,
duke@1 800 * @param tree The tree representing the identifier use.
duke@1 801 * @param enclOp The closest enclosing operation node of tree,
duke@1 802 * null if tree is not a subtree of an operation.
duke@1 803 */
duke@1 804 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 805 if (enclOp == null)
duke@1 806 return DEREFcode;
duke@1 807 else if (enclOp.getTag() == JCTree.ASSIGN &&
duke@1 808 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 809 return ASSIGNcode;
duke@1 810 else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
duke@1 811 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
duke@1 812 return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
duke@1 813 else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
duke@1 814 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 815 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 816 else
duke@1 817 return DEREFcode;
duke@1 818 }
duke@1 819
duke@1 820 /** Return binary operator that corresponds to given access code.
duke@1 821 */
duke@1 822 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 823 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 824 e != null;
duke@1 825 e = e.sibling) {
duke@1 826 if (e.sym instanceof OperatorSymbol) {
duke@1 827 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 828 if (accessCode(op.opcode) == acode) return op;
duke@1 829 }
duke@1 830 }
duke@1 831 return null;
duke@1 832 }
duke@1 833
duke@1 834 /** Return tree tag for assignment operation corresponding
duke@1 835 * to given binary operator.
duke@1 836 */
duke@1 837 private static int treeTag(OperatorSymbol operator) {
duke@1 838 switch (operator.opcode) {
duke@1 839 case ByteCodes.ior: case ByteCodes.lor:
duke@1 840 return JCTree.BITOR_ASG;
duke@1 841 case ByteCodes.ixor: case ByteCodes.lxor:
duke@1 842 return JCTree.BITXOR_ASG;
duke@1 843 case ByteCodes.iand: case ByteCodes.land:
duke@1 844 return JCTree.BITAND_ASG;
duke@1 845 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 846 case ByteCodes.ishll: case ByteCodes.lshll:
duke@1 847 return JCTree.SL_ASG;
duke@1 848 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 849 case ByteCodes.ishrl: case ByteCodes.lshrl:
duke@1 850 return JCTree.SR_ASG;
duke@1 851 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 852 case ByteCodes.iushrl: case ByteCodes.lushrl:
duke@1 853 return JCTree.USR_ASG;
duke@1 854 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 855 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 856 case ByteCodes.string_add:
duke@1 857 return JCTree.PLUS_ASG;
duke@1 858 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 859 case ByteCodes.fsub: case ByteCodes.dsub:
duke@1 860 return JCTree.MINUS_ASG;
duke@1 861 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 862 case ByteCodes.fmul: case ByteCodes.dmul:
duke@1 863 return JCTree.MUL_ASG;
duke@1 864 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 865 case ByteCodes.fdiv: case ByteCodes.ddiv:
duke@1 866 return JCTree.DIV_ASG;
duke@1 867 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 868 case ByteCodes.fmod: case ByteCodes.dmod:
duke@1 869 return JCTree.MOD_ASG;
duke@1 870 default:
duke@1 871 throw new AssertionError();
duke@1 872 }
duke@1 873 }
duke@1 874
duke@1 875 /** The name of the access method with number `anum' and access code `acode'.
duke@1 876 */
duke@1 877 Name accessName(int anum, int acode) {
duke@1 878 return names.fromString(
duke@1 879 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 880 }
duke@1 881
duke@1 882 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 883 * @param sym The accessed private symbol.
duke@1 884 * @param tree The accessing tree.
duke@1 885 * @param enclOp The closest enclosing operation node of tree,
duke@1 886 * null if tree is not a subtree of an operation.
duke@1 887 * @param protAccess Is access to a protected symbol in another
duke@1 888 * package?
duke@1 889 * @param refSuper Is access via a (qualified) C.super?
duke@1 890 */
duke@1 891 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 892 boolean protAccess, boolean refSuper) {
duke@1 893 ClassSymbol accOwner = refSuper && protAccess
duke@1 894 // For access via qualified super (T.super.x), place the
duke@1 895 // access symbol on T.
duke@1 896 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 897 // Otherwise pretend that the owner of an accessed
duke@1 898 // protected symbol is the enclosing class of the current
duke@1 899 // class which is a subclass of the symbol's owner.
duke@1 900 : accessClass(sym, protAccess, tree);
duke@1 901
duke@1 902 Symbol vsym = sym;
duke@1 903 if (sym.owner != accOwner) {
duke@1 904 vsym = sym.clone(accOwner);
duke@1 905 actualSymbols.put(vsym, sym);
duke@1 906 }
duke@1 907
duke@1 908 Integer anum // The access number of the access method.
duke@1 909 = accessNums.get(vsym);
duke@1 910 if (anum == null) {
duke@1 911 anum = accessed.length();
duke@1 912 accessNums.put(vsym, anum);
duke@1 913 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 914 accessed.append(vsym);
duke@1 915 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 916 }
duke@1 917
duke@1 918 int acode; // The access code of the access method.
duke@1 919 List<Type> argtypes; // The argument types of the access method.
duke@1 920 Type restype; // The result type of the access method.
darcy@430 921 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 922 switch (vsym.kind) {
duke@1 923 case VAR:
duke@1 924 acode = accessCode(tree, enclOp);
duke@1 925 if (acode >= FIRSTASGOPcode) {
duke@1 926 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 927 if (operator.opcode == string_add)
duke@1 928 argtypes = List.of(syms.objectType);
duke@1 929 else
duke@1 930 argtypes = operator.type.getParameterTypes().tail;
duke@1 931 } else if (acode == ASSIGNcode)
duke@1 932 argtypes = List.of(vsym.erasure(types));
duke@1 933 else
duke@1 934 argtypes = List.nil();
duke@1 935 restype = vsym.erasure(types);
duke@1 936 thrown = List.nil();
duke@1 937 break;
duke@1 938 case MTH:
duke@1 939 acode = DEREFcode;
duke@1 940 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 941 restype = vsym.erasure(types).getReturnType();
duke@1 942 thrown = vsym.type.getThrownTypes();
duke@1 943 break;
duke@1 944 default:
duke@1 945 throw new AssertionError();
duke@1 946 }
duke@1 947
duke@1 948 // For references via qualified super, increment acode by one,
duke@1 949 // making it odd.
duke@1 950 if (protAccess && refSuper) acode++;
duke@1 951
duke@1 952 // Instance access methods get instance as first parameter.
duke@1 953 // For protected symbols this needs to be the instance as a member
duke@1 954 // of the type containing the accessed symbol, not the class
duke@1 955 // containing the access method.
duke@1 956 if ((vsym.flags() & STATIC) == 0) {
duke@1 957 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 958 }
duke@1 959 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 960 MethodSymbol accessor = accessors[acode];
duke@1 961 if (accessor == null) {
duke@1 962 accessor = new MethodSymbol(
duke@1 963 STATIC | SYNTHETIC,
duke@1 964 accessName(anum.intValue(), acode),
duke@1 965 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 966 accOwner);
duke@1 967 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 968 accessors[acode] = accessor;
duke@1 969 }
duke@1 970 return accessor;
duke@1 971 }
duke@1 972
duke@1 973 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 974 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 975 * sym is static.
duke@1 976 * @param sym The accessed symbol.
duke@1 977 */
duke@1 978 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 979 return (sym.flags() & STATIC) != 0
duke@1 980 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 981 : makeOwnerThis(pos, sym, true);
duke@1 982 }
duke@1 983
duke@1 984 /** Do we need an access method to reference private symbol?
duke@1 985 */
duke@1 986 boolean needsPrivateAccess(Symbol sym) {
duke@1 987 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 988 return false;
duke@1 989 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 990 // private constructor in local class: relax protection
duke@1 991 sym.flags_field &= ~PRIVATE;
duke@1 992 return false;
duke@1 993 } else {
duke@1 994 return true;
duke@1 995 }
duke@1 996 }
duke@1 997
duke@1 998 /** Do we need an access method to reference symbol in other package?
duke@1 999 */
duke@1 1000 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 1001 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1002 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1003 sym.packge() == currentClass.packge())
duke@1 1004 return false;
duke@1 1005 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1006 return true;
duke@1 1007 if ((sym.flags() & STATIC) != 0 ||
duke@1 1008 tree.getTag() != JCTree.SELECT ||
duke@1 1009 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1010 return false;
duke@1 1011 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1012 }
duke@1 1013
duke@1 1014 /** The class in which an access method for given symbol goes.
duke@1 1015 * @param sym The access symbol
duke@1 1016 * @param protAccess Is access to a protected symbol in another
duke@1 1017 * package?
duke@1 1018 */
duke@1 1019 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1020 if (protAccess) {
duke@1 1021 Symbol qualifier = null;
duke@1 1022 ClassSymbol c = currentClass;
duke@1 1023 if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
duke@1 1024 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1025 while (!qualifier.isSubClass(c, types)) {
duke@1 1026 c = c.owner.enclClass();
duke@1 1027 }
duke@1 1028 return c;
duke@1 1029 } else {
duke@1 1030 while (!c.isSubClass(sym.owner, types)) {
duke@1 1031 c = c.owner.enclClass();
duke@1 1032 }
duke@1 1033 }
duke@1 1034 return c;
duke@1 1035 } else {
duke@1 1036 // the symbol is private
duke@1 1037 return sym.owner.enclClass();
duke@1 1038 }
duke@1 1039 }
duke@1 1040
duke@1 1041 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1042 * @param sym The accessed symbol.
duke@1 1043 * @param tree The tree referring to the symbol.
duke@1 1044 * @param enclOp The closest enclosing operation node of tree,
duke@1 1045 * null if tree is not a subtree of an operation.
duke@1 1046 * @param refSuper Is access via a (qualified) C.super?
duke@1 1047 */
duke@1 1048 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1049 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1050 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1051 sym.owner.enclClass() != currentClass) {
duke@1 1052 // A constant is replaced by its constant value.
duke@1 1053 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1054 if (cv != null) {
duke@1 1055 make.at(tree.pos);
duke@1 1056 return makeLit(sym.type, cv);
duke@1 1057 }
duke@1 1058 // Otherwise replace the variable by its proxy.
duke@1 1059 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 1060 assert sym != null && (sym.flags_field & FINAL) != 0;
duke@1 1061 tree = make.at(tree.pos).Ident(sym);
duke@1 1062 }
duke@1 1063 JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
duke@1 1064 switch (sym.kind) {
duke@1 1065 case TYP:
duke@1 1066 if (sym.owner.kind != PCK) {
duke@1 1067 // Convert type idents to
duke@1 1068 // <flat name> or <package name> . <flat name>
duke@1 1069 Name flatname = Convert.shortName(sym.flatName());
duke@1 1070 while (base != null &&
duke@1 1071 TreeInfo.symbol(base) != null &&
duke@1 1072 TreeInfo.symbol(base).kind != PCK) {
duke@1 1073 base = (base.getTag() == JCTree.SELECT)
duke@1 1074 ? ((JCFieldAccess) base).selected
duke@1 1075 : null;
duke@1 1076 }
duke@1 1077 if (tree.getTag() == JCTree.IDENT) {
duke@1 1078 ((JCIdent) tree).name = flatname;
duke@1 1079 } else if (base == null) {
duke@1 1080 tree = make.at(tree.pos).Ident(sym);
duke@1 1081 ((JCIdent) tree).name = flatname;
duke@1 1082 } else {
duke@1 1083 ((JCFieldAccess) tree).selected = base;
duke@1 1084 ((JCFieldAccess) tree).name = flatname;
duke@1 1085 }
duke@1 1086 }
duke@1 1087 break;
duke@1 1088 case MTH: case VAR:
duke@1 1089 if (sym.owner.kind == TYP) {
duke@1 1090
duke@1 1091 // Access methods are required for
duke@1 1092 // - private members,
duke@1 1093 // - protected members in a superclass of an
duke@1 1094 // enclosing class contained in another package.
duke@1 1095 // - all non-private members accessed via a qualified super.
duke@1 1096 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1097 || needsProtectedAccess(sym, tree);
duke@1 1098 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1099
duke@1 1100 // A base has to be supplied for
duke@1 1101 // - simple identifiers accessing variables in outer classes.
duke@1 1102 boolean baseReq =
duke@1 1103 base == null &&
duke@1 1104 sym.owner != syms.predefClass &&
duke@1 1105 !sym.isMemberOf(currentClass, types);
duke@1 1106
duke@1 1107 if (accReq || baseReq) {
duke@1 1108 make.at(tree.pos);
duke@1 1109
duke@1 1110 // Constants are replaced by their constant value.
duke@1 1111 if (sym.kind == VAR) {
duke@1 1112 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1113 if (cv != null) return makeLit(sym.type, cv);
duke@1 1114 }
duke@1 1115
duke@1 1116 // Private variables and methods are replaced by calls
duke@1 1117 // to their access methods.
duke@1 1118 if (accReq) {
duke@1 1119 List<JCExpression> args = List.nil();
duke@1 1120 if ((sym.flags() & STATIC) == 0) {
duke@1 1121 // Instance access methods get instance
duke@1 1122 // as first parameter.
duke@1 1123 if (base == null)
duke@1 1124 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1125 args = args.prepend(base);
duke@1 1126 base = null; // so we don't duplicate code
duke@1 1127 }
duke@1 1128 Symbol access = accessSymbol(sym, tree,
duke@1 1129 enclOp, protAccess,
duke@1 1130 refSuper);
duke@1 1131 JCExpression receiver = make.Select(
duke@1 1132 base != null ? base : make.QualIdent(access.owner),
duke@1 1133 access);
duke@1 1134 return make.App(receiver, args);
duke@1 1135
duke@1 1136 // Other accesses to members of outer classes get a
duke@1 1137 // qualifier.
duke@1 1138 } else if (baseReq) {
duke@1 1139 return make.at(tree.pos).Select(
duke@1 1140 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1141 }
duke@1 1142 }
duke@1 1143 }
duke@1 1144 }
duke@1 1145 return tree;
duke@1 1146 }
duke@1 1147
duke@1 1148 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1149 * @param tree The identifier tree.
duke@1 1150 */
duke@1 1151 JCExpression access(JCExpression tree) {
duke@1 1152 Symbol sym = TreeInfo.symbol(tree);
duke@1 1153 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1154 }
duke@1 1155
duke@1 1156 /** Return access constructor for a private constructor,
duke@1 1157 * or the constructor itself, if no access constructor is needed.
duke@1 1158 * @param pos The position to report diagnostics, if any.
duke@1 1159 * @param constr The private constructor.
duke@1 1160 */
duke@1 1161 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1162 if (needsPrivateAccess(constr)) {
duke@1 1163 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1164 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1165 if (aconstr == null) {
duke@1 1166 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1167 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1168 argtypes = argtypes
duke@1 1169 .prepend(syms.intType)
duke@1 1170 .prepend(syms.stringType);
duke@1 1171 aconstr = new MethodSymbol(
duke@1 1172 SYNTHETIC,
duke@1 1173 names.init,
duke@1 1174 new MethodType(
duke@1 1175 argtypes.append(
duke@1 1176 accessConstructorTag().erasure(types)),
duke@1 1177 constr.type.getReturnType(),
duke@1 1178 constr.type.getThrownTypes(),
duke@1 1179 syms.methodClass),
duke@1 1180 accOwner);
duke@1 1181 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1182 accessConstrs.put(constr, aconstr);
duke@1 1183 accessed.append(constr);
duke@1 1184 }
duke@1 1185 return aconstr;
duke@1 1186 } else {
duke@1 1187 return constr;
duke@1 1188 }
duke@1 1189 }
duke@1 1190
duke@1 1191 /** Return an anonymous class nested in this toplevel class.
duke@1 1192 */
duke@1 1193 ClassSymbol accessConstructorTag() {
duke@1 1194 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1195 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1196 target.syntheticNameChar() +
duke@1 1197 "1");
duke@1 1198 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1199 if (ctag == null)
duke@1 1200 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
jjg@595 1201 // keep a record of all tags, to verify that all are generated as required
jjg@595 1202 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1203 return ctag;
duke@1 1204 }
duke@1 1205
duke@1 1206 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1207 * @param sym The symbol.
duke@1 1208 */
duke@1 1209 void makeAccessible(Symbol sym) {
duke@1 1210 JCClassDecl cdef = classDef(sym.owner.enclClass());
duke@1 1211 assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
duke@1 1212 if (sym.name == names.init) {
duke@1 1213 cdef.defs = cdef.defs.prepend(
duke@1 1214 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1215 } else {
duke@1 1216 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1217 for (int i = 0; i < NCODES; i++) {
duke@1 1218 if (accessors[i] != null)
duke@1 1219 cdef.defs = cdef.defs.prepend(
duke@1 1220 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1221 }
duke@1 1222 }
duke@1 1223 }
duke@1 1224
duke@1 1225 /** Construct definition of an access method.
duke@1 1226 * @param pos The source code position of the definition.
duke@1 1227 * @param vsym The private or protected symbol.
duke@1 1228 * @param accessor The access method for the symbol.
duke@1 1229 * @param acode The access code.
duke@1 1230 */
duke@1 1231 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1232 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1233 currentClass = vsym.owner.enclClass();
duke@1 1234 make.at(pos);
duke@1 1235 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1236
duke@1 1237 // Find actual symbol
duke@1 1238 Symbol sym = actualSymbols.get(vsym);
duke@1 1239 if (sym == null) sym = vsym;
duke@1 1240
duke@1 1241 JCExpression ref; // The tree referencing the private symbol.
duke@1 1242 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1243 if ((sym.flags() & STATIC) != 0) {
duke@1 1244 ref = make.Ident(sym);
duke@1 1245 args = make.Idents(md.params);
duke@1 1246 } else {
duke@1 1247 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1248 args = make.Idents(md.params.tail);
duke@1 1249 }
duke@1 1250 JCStatement stat; // The statement accessing the private symbol.
duke@1 1251 if (sym.kind == VAR) {
duke@1 1252 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1253 int acode1 = acode - (acode & 1);
duke@1 1254
duke@1 1255 JCExpression expr; // The access method's return value.
duke@1 1256 switch (acode1) {
duke@1 1257 case DEREFcode:
duke@1 1258 expr = ref;
duke@1 1259 break;
duke@1 1260 case ASSIGNcode:
duke@1 1261 expr = make.Assign(ref, args.head);
duke@1 1262 break;
duke@1 1263 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
duke@1 1264 expr = makeUnary(
duke@1 1265 ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
duke@1 1266 break;
duke@1 1267 default:
duke@1 1268 expr = make.Assignop(
duke@1 1269 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1270 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1271 }
duke@1 1272 stat = make.Return(expr.setType(sym.type));
duke@1 1273 } else {
duke@1 1274 stat = make.Call(make.App(ref, args));
duke@1 1275 }
duke@1 1276 md.body = make.Block(0, List.of(stat));
duke@1 1277
duke@1 1278 // Make sure all parameters, result types and thrown exceptions
duke@1 1279 // are accessible.
duke@1 1280 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1281 l.head.vartype = access(l.head.vartype);
duke@1 1282 md.restype = access(md.restype);
duke@1 1283 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1284 l.head = access(l.head);
duke@1 1285
duke@1 1286 return md;
duke@1 1287 }
duke@1 1288
duke@1 1289 /** Construct definition of an access constructor.
duke@1 1290 * @param pos The source code position of the definition.
duke@1 1291 * @param constr The private constructor.
duke@1 1292 * @param accessor The access method for the constructor.
duke@1 1293 */
duke@1 1294 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1295 make.at(pos);
duke@1 1296 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1297 accessor.externalType(types),
duke@1 1298 null);
duke@1 1299 JCIdent callee = make.Ident(names._this);
duke@1 1300 callee.sym = constr;
duke@1 1301 callee.type = constr.type;
duke@1 1302 md.body =
duke@1 1303 make.Block(0, List.<JCStatement>of(
duke@1 1304 make.Call(
duke@1 1305 make.App(
duke@1 1306 callee,
duke@1 1307 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1308 return md;
duke@1 1309 }
duke@1 1310
duke@1 1311 /**************************************************************************
duke@1 1312 * Free variables proxies and this$n
duke@1 1313 *************************************************************************/
duke@1 1314
duke@1 1315 /** A scope containing all free variable proxies for currently translated
duke@1 1316 * class, as well as its this$n symbol (if needed).
duke@1 1317 * Proxy scopes are nested in the same way classes are.
duke@1 1318 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1319 * in an additional innermost scope, where they represent the constructor
duke@1 1320 * parameters.
duke@1 1321 */
duke@1 1322 Scope proxies;
duke@1 1323
darcy@609 1324 /** A scope containing all unnamed resource variables/saved
darcy@609 1325 * exception variables for translated TWR blocks
darcy@609 1326 */
darcy@609 1327 Scope twrVars;
darcy@609 1328
duke@1 1329 /** A stack containing the this$n field of the currently translated
duke@1 1330 * classes (if needed) in innermost first order.
duke@1 1331 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1332 * in an additional innermost scope, where they represent the constructor
duke@1 1333 * parameters.
duke@1 1334 */
duke@1 1335 List<VarSymbol> outerThisStack;
duke@1 1336
duke@1 1337 /** The name of a free variable proxy.
duke@1 1338 */
duke@1 1339 Name proxyName(Name name) {
duke@1 1340 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1341 }
duke@1 1342
duke@1 1343 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1344 * @param pos The source code position of the definition.
duke@1 1345 * @param freevars The free variables.
duke@1 1346 * @param owner The class in which the definitions go.
duke@1 1347 */
duke@1 1348 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1349 long flags = FINAL | SYNTHETIC;
duke@1 1350 if (owner.kind == TYP &&
duke@1 1351 target.usePrivateSyntheticFields())
duke@1 1352 flags |= PRIVATE;
duke@1 1353 List<JCVariableDecl> defs = List.nil();
duke@1 1354 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1355 VarSymbol v = l.head;
duke@1 1356 VarSymbol proxy = new VarSymbol(
duke@1 1357 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1358 proxies.enter(proxy);
duke@1 1359 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1360 vd.vartype = access(vd.vartype);
duke@1 1361 defs = defs.prepend(vd);
duke@1 1362 }
duke@1 1363 return defs;
duke@1 1364 }
duke@1 1365
duke@1 1366 /** The name of a this$n field
duke@1 1367 * @param type The class referenced by the this$n field
duke@1 1368 */
duke@1 1369 Name outerThisName(Type type, Symbol owner) {
duke@1 1370 Type t = type.getEnclosingType();
duke@1 1371 int nestingLevel = 0;
duke@1 1372 while (t.tag == CLASS) {
duke@1 1373 t = t.getEnclosingType();
duke@1 1374 nestingLevel++;
duke@1 1375 }
duke@1 1376 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1377 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1378 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1379 return result;
duke@1 1380 }
duke@1 1381
duke@1 1382 /** Definition for this$n field.
duke@1 1383 * @param pos The source code position of the definition.
duke@1 1384 * @param owner The class in which the definition goes.
duke@1 1385 */
duke@1 1386 JCVariableDecl outerThisDef(int pos, Symbol owner) {
duke@1 1387 long flags = FINAL | SYNTHETIC;
duke@1 1388 if (owner.kind == TYP &&
duke@1 1389 target.usePrivateSyntheticFields())
duke@1 1390 flags |= PRIVATE;
duke@1 1391 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
duke@1 1392 VarSymbol outerThis = new VarSymbol(
duke@1 1393 flags, outerThisName(target, owner), target, owner);
duke@1 1394 outerThisStack = outerThisStack.prepend(outerThis);
duke@1 1395 JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
duke@1 1396 vd.vartype = access(vd.vartype);
duke@1 1397 return vd;
duke@1 1398 }
duke@1 1399
duke@1 1400 /** Return a list of trees that load the free variables in given list,
duke@1 1401 * in reverse order.
duke@1 1402 * @param pos The source code position to be used for the trees.
duke@1 1403 * @param freevars The list of free variables.
duke@1 1404 */
duke@1 1405 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1406 List<JCExpression> args = List.nil();
duke@1 1407 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1408 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1409 return args;
duke@1 1410 }
duke@1 1411 //where
duke@1 1412 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1413 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1414 }
duke@1 1415
duke@1 1416 /** Construct a tree simulating the expression <C.this>.
duke@1 1417 * @param pos The source code position to be used for the tree.
duke@1 1418 * @param c The qualifier class.
duke@1 1419 */
duke@1 1420 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1421 if (currentClass == c) {
duke@1 1422 // in this case, `this' works fine
duke@1 1423 return make.at(pos).This(c.erasure(types));
duke@1 1424 } else {
duke@1 1425 // need to go via this$n
duke@1 1426 return makeOuterThis(pos, c);
duke@1 1427 }
duke@1 1428 }
duke@1 1429
darcy@609 1430 /** Optionally replace a try statement with an automatic resource
darcy@609 1431 * management (ARM) block.
darcy@609 1432 * @param tree The try statement to inspect.
darcy@609 1433 * @return An ARM block, or the original try block if there are no
darcy@609 1434 * resources to manage.
darcy@609 1435 */
darcy@609 1436 JCTree makeArmTry(JCTry tree) {
darcy@609 1437 make_at(tree.pos());
darcy@609 1438 twrVars = twrVars.dup();
darcy@609 1439 JCBlock armBlock = makeArmBlock(tree.resources, tree.body, 0);
darcy@609 1440 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@609 1441 result = translate(armBlock);
darcy@609 1442 else
darcy@609 1443 result = translate(make.Try(armBlock, tree.catchers, tree.finalizer));
darcy@609 1444 twrVars = twrVars.leave();
darcy@609 1445 return result;
darcy@609 1446 }
darcy@609 1447
darcy@609 1448 private JCBlock makeArmBlock(List<JCTree> resources, JCBlock block, int depth) {
darcy@609 1449 if (resources.isEmpty())
darcy@609 1450 return block;
darcy@609 1451
darcy@609 1452 // Add resource declaration or expression to block statements
darcy@609 1453 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1454 JCTree resource = resources.head;
darcy@609 1455 JCExpression expr = null;
darcy@609 1456 if (resource instanceof JCVariableDecl) {
darcy@609 1457 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1458 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1459 stats.add(var);
darcy@609 1460 } else {
darcy@609 1461 assert resource instanceof JCExpression;
darcy@609 1462 VarSymbol syntheticTwrVar =
darcy@609 1463 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1464 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1465 depth), twrVars),
darcy@609 1466 (resource.type.tag == TypeTags.BOT) ?
darcy@609 1467 syms.autoCloseableType : resource.type,
darcy@609 1468 currentMethodSym);
darcy@609 1469 twrVars.enter(syntheticTwrVar);
darcy@609 1470 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1471 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1472 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1473 stats.add(syntheticTwrVarDecl);
darcy@609 1474 }
darcy@609 1475
darcy@609 1476 // Add primaryException declaration
darcy@609 1477 VarSymbol primaryException =
darcy@609 1478 new VarSymbol(SYNTHETIC,
darcy@609 1479 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1480 depth), twrVars),
darcy@609 1481 syms.throwableType,
darcy@609 1482 currentMethodSym);
darcy@609 1483 twrVars.enter(primaryException);
darcy@609 1484 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1485 stats.add(primaryExceptionTreeDecl);
darcy@609 1486
darcy@609 1487 // Create catch clause that saves exception and then rethrows it
darcy@609 1488 VarSymbol param =
darcy@609 1489 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1490 names.fromString("t" +
darcy@609 1491 target.syntheticNameChar()),
darcy@609 1492 syms.throwableType,
darcy@609 1493 currentMethodSym);
darcy@609 1494 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1495 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1496 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1497 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1498 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1499
darcy@609 1500 int oldPos = make.pos;
darcy@609 1501 make.at(TreeInfo.endPos(block));
darcy@609 1502 JCBlock finallyClause = makeArmFinallyClause(primaryException, expr);
darcy@609 1503 make.at(oldPos);
darcy@609 1504 JCTry outerTry = make.Try(makeArmBlock(resources.tail, block, depth + 1),
darcy@609 1505 List.<JCCatch>of(catchClause),
darcy@609 1506 finallyClause);
darcy@609 1507 stats.add(outerTry);
darcy@609 1508 return make.Block(0L, stats.toList());
darcy@609 1509 }
darcy@609 1510
darcy@609 1511 private JCBlock makeArmFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@609 1512 // primaryException.addSuppressedException(catchException);
darcy@609 1513 VarSymbol catchException =
darcy@609 1514 new VarSymbol(0, make.paramName(2),
darcy@609 1515 syms.throwableType,
darcy@609 1516 currentMethodSym);
darcy@609 1517 JCStatement addSuppressionStatement =
darcy@609 1518 make.Exec(makeCall(make.Ident(primaryException),
darcy@609 1519 names.fromString("addSuppressedException"),
darcy@609 1520 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1521
darcy@609 1522 // try { resource.close(); } catch (e) { primaryException.addSuppressedException(e); }
darcy@609 1523 JCBlock tryBlock =
darcy@609 1524 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1525 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1526 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1527 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1528 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
darcy@609 1529
darcy@609 1530 // if (resource != null) resourceClose;
darcy@609 1531 JCExpression nullCheck = makeBinary(JCTree.NE,
darcy@609 1532 make.Ident(primaryException),
darcy@609 1533 makeNull());
darcy@609 1534 JCIf closeIfStatement = make.If(nullCheck,
darcy@609 1535 tryTree,
darcy@609 1536 makeResourceCloseInvocation(resource));
darcy@609 1537 return make.Block(0L, List.<JCStatement>of(closeIfStatement));
darcy@609 1538 }
darcy@609 1539
darcy@609 1540 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
darcy@609 1541 // create resource.close() method invocation
darcy@609 1542 JCExpression resourceClose = makeCall(resource, names.close, List.<JCExpression>nil());
darcy@609 1543 return make.Exec(resourceClose);
darcy@609 1544 }
darcy@609 1545
duke@1 1546 /** Construct a tree that represents the outer instance
duke@1 1547 * <C.this>. Never pick the current `this'.
duke@1 1548 * @param pos The source code position to be used for the tree.
duke@1 1549 * @param c The qualifier class.
duke@1 1550 */
duke@1 1551 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1552 List<VarSymbol> ots = outerThisStack;
duke@1 1553 if (ots.isEmpty()) {
duke@1 1554 log.error(pos, "no.encl.instance.of.type.in.scope", c);
duke@1 1555 assert false;
duke@1 1556 return makeNull();
duke@1 1557 }
duke@1 1558 VarSymbol ot = ots.head;
duke@1 1559 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1560 TypeSymbol otc = ot.type.tsym;
duke@1 1561 while (otc != c) {
duke@1 1562 do {
duke@1 1563 ots = ots.tail;
duke@1 1564 if (ots.isEmpty()) {
duke@1 1565 log.error(pos,
duke@1 1566 "no.encl.instance.of.type.in.scope",
duke@1 1567 c);
duke@1 1568 assert false; // should have been caught in Attr
duke@1 1569 return tree;
duke@1 1570 }
duke@1 1571 ot = ots.head;
duke@1 1572 } while (ot.owner != otc);
duke@1 1573 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1574 chk.earlyRefError(pos, c);
duke@1 1575 assert false; // should have been caught in Attr
duke@1 1576 return makeNull();
duke@1 1577 }
duke@1 1578 tree = access(make.at(pos).Select(tree, ot));
duke@1 1579 otc = ot.type.tsym;
duke@1 1580 }
duke@1 1581 return tree;
duke@1 1582 }
duke@1 1583
duke@1 1584 /** Construct a tree that represents the closest outer instance
duke@1 1585 * <C.this> such that the given symbol is a member of C.
duke@1 1586 * @param pos The source code position to be used for the tree.
duke@1 1587 * @param sym The accessed symbol.
duke@1 1588 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1589 * sym's owner, even if it doesn't contain sym
duke@1 1590 * due to hiding, overriding, or non-inheritance
duke@1 1591 * due to protection?
duke@1 1592 */
duke@1 1593 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1594 Symbol c = sym.owner;
duke@1 1595 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1596 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1597 // in this case, `this' works fine
duke@1 1598 return make.at(pos).This(c.erasure(types));
duke@1 1599 } else {
duke@1 1600 // need to go via this$n
duke@1 1601 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1602 }
duke@1 1603 }
duke@1 1604
duke@1 1605 /**
duke@1 1606 * Similar to makeOwnerThis but will never pick "this".
duke@1 1607 */
duke@1 1608 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1609 Symbol c = sym.owner;
duke@1 1610 List<VarSymbol> ots = outerThisStack;
duke@1 1611 if (ots.isEmpty()) {
duke@1 1612 log.error(pos, "no.encl.instance.of.type.in.scope", c);
duke@1 1613 assert false;
duke@1 1614 return makeNull();
duke@1 1615 }
duke@1 1616 VarSymbol ot = ots.head;
duke@1 1617 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1618 TypeSymbol otc = ot.type.tsym;
duke@1 1619 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1620 do {
duke@1 1621 ots = ots.tail;
duke@1 1622 if (ots.isEmpty()) {
duke@1 1623 log.error(pos,
duke@1 1624 "no.encl.instance.of.type.in.scope",
duke@1 1625 c);
duke@1 1626 assert false;
duke@1 1627 return tree;
duke@1 1628 }
duke@1 1629 ot = ots.head;
duke@1 1630 } while (ot.owner != otc);
duke@1 1631 tree = access(make.at(pos).Select(tree, ot));
duke@1 1632 otc = ot.type.tsym;
duke@1 1633 }
duke@1 1634 return tree;
duke@1 1635 }
duke@1 1636
duke@1 1637 /** Return tree simulating the assignment <this.name = name>, where
duke@1 1638 * name is the name of a free variable.
duke@1 1639 */
duke@1 1640 JCStatement initField(int pos, Name name) {
duke@1 1641 Scope.Entry e = proxies.lookup(name);
duke@1 1642 Symbol rhs = e.sym;
duke@1 1643 assert rhs.owner.kind == MTH;
duke@1 1644 Symbol lhs = e.next().sym;
duke@1 1645 assert rhs.owner.owner == lhs.owner;
duke@1 1646 make.at(pos);
duke@1 1647 return
duke@1 1648 make.Exec(
duke@1 1649 make.Assign(
duke@1 1650 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1651 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1652 }
duke@1 1653
duke@1 1654 /** Return tree simulating the assignment <this.this$n = this$n>.
duke@1 1655 */
duke@1 1656 JCStatement initOuterThis(int pos) {
duke@1 1657 VarSymbol rhs = outerThisStack.head;
duke@1 1658 assert rhs.owner.kind == MTH;
duke@1 1659 VarSymbol lhs = outerThisStack.tail.head;
duke@1 1660 assert rhs.owner.owner == lhs.owner;
duke@1 1661 make.at(pos);
duke@1 1662 return
duke@1 1663 make.Exec(
duke@1 1664 make.Assign(
duke@1 1665 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1666 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1667 }
duke@1 1668
duke@1 1669 /**************************************************************************
duke@1 1670 * Code for .class
duke@1 1671 *************************************************************************/
duke@1 1672
duke@1 1673 /** Return the symbol of a class to contain a cache of
duke@1 1674 * compiler-generated statics such as class$ and the
duke@1 1675 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1676 * (unless one already exists) and return its symbol. However,
duke@1 1677 * for backward compatibility in 1.4 and earlier we use the
duke@1 1678 * top-level class itself.
duke@1 1679 */
duke@1 1680 private ClassSymbol outerCacheClass() {
duke@1 1681 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1682 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1683 !target.useInnerCacheClass()) return clazz;
duke@1 1684 Scope s = clazz.members();
duke@1 1685 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1686 if (e.sym.kind == TYP &&
duke@1 1687 e.sym.name == names.empty &&
duke@1 1688 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
duke@1 1689 return makeEmptyClass(STATIC | SYNTHETIC, clazz);
duke@1 1690 }
duke@1 1691
duke@1 1692 /** Return symbol for "class$" method. If there is no method definition
duke@1 1693 * for class$, construct one as follows:
duke@1 1694 *
duke@1 1695 * class class$(String x0) {
duke@1 1696 * try {
duke@1 1697 * return Class.forName(x0);
duke@1 1698 * } catch (ClassNotFoundException x1) {
duke@1 1699 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1700 * }
duke@1 1701 * }
duke@1 1702 */
duke@1 1703 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1704 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1705 MethodSymbol classDollarSym =
duke@1 1706 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1707 outerCacheClass.members());
duke@1 1708 if (classDollarSym == null) {
duke@1 1709 classDollarSym = new MethodSymbol(
duke@1 1710 STATIC | SYNTHETIC,
duke@1 1711 classDollar,
duke@1 1712 new MethodType(
duke@1 1713 List.of(syms.stringType),
duke@1 1714 types.erasure(syms.classType),
duke@1 1715 List.<Type>nil(),
duke@1 1716 syms.methodClass),
duke@1 1717 outerCacheClass);
duke@1 1718 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1719
duke@1 1720 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1721 try {
duke@1 1722 md.body = classDollarSymBody(pos, md);
duke@1 1723 } catch (CompletionFailure ex) {
duke@1 1724 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1725 chk.completionError(pos, ex);
duke@1 1726 }
duke@1 1727 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1728 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1729 }
duke@1 1730 return classDollarSym;
duke@1 1731 }
duke@1 1732
duke@1 1733 /** Generate code for class$(String name). */
duke@1 1734 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1735 MethodSymbol classDollarSym = md.sym;
duke@1 1736 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1737
duke@1 1738 JCBlock returnResult;
duke@1 1739
duke@1 1740 // in 1.4.2 and above, we use
duke@1 1741 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1742 // which requires we cache the current loader in cl$
duke@1 1743 if (target.classLiteralsNoInit()) {
duke@1 1744 // clsym = "private static ClassLoader cl$"
duke@1 1745 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1746 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1747 syms.classLoaderType,
duke@1 1748 outerCacheClass);
duke@1 1749 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1750
duke@1 1751 // emit "private static ClassLoader cl$;"
duke@1 1752 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1753 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1754 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1755
duke@1 1756 // newcache := "new cache$1[0]"
duke@1 1757 JCNewArray newcache = make.
duke@1 1758 NewArray(make.Type(outerCacheClass.type),
duke@1 1759 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1760 null);
duke@1 1761 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1762 syms.arrayClass);
duke@1 1763
duke@1 1764 // forNameSym := java.lang.Class.forName(
duke@1 1765 // String s,boolean init,ClassLoader loader)
duke@1 1766 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1767 types.erasure(syms.classType),
duke@1 1768 List.of(syms.stringType,
duke@1 1769 syms.booleanType,
duke@1 1770 syms.classLoaderType));
duke@1 1771 // clvalue := "(cl$ == null) ?
duke@1 1772 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1773 JCExpression clvalue =
duke@1 1774 make.Conditional(
duke@1 1775 makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
duke@1 1776 make.Assign(
duke@1 1777 make.Ident(clsym),
duke@1 1778 makeCall(
duke@1 1779 makeCall(makeCall(newcache,
duke@1 1780 names.getClass,
duke@1 1781 List.<JCExpression>nil()),
duke@1 1782 names.getComponentType,
duke@1 1783 List.<JCExpression>nil()),
duke@1 1784 names.getClassLoader,
duke@1 1785 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1786 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1787
duke@1 1788 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1789 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1790 makeLit(syms.booleanType, 0),
duke@1 1791 clvalue);
duke@1 1792 returnResult = make.
duke@1 1793 Block(0, List.<JCStatement>of(make.
duke@1 1794 Call(make. // return
duke@1 1795 App(make.
duke@1 1796 Ident(forNameSym), args))));
duke@1 1797 } else {
duke@1 1798 // forNameSym := java.lang.Class.forName(String s)
duke@1 1799 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1800 names.forName,
duke@1 1801 types.erasure(syms.classType),
duke@1 1802 List.of(syms.stringType));
duke@1 1803 // returnResult := "{ return Class.forName(param1); }"
duke@1 1804 returnResult = make.
duke@1 1805 Block(0, List.of(make.
duke@1 1806 Call(make. // return
duke@1 1807 App(make.
duke@1 1808 QualIdent(forNameSym),
duke@1 1809 List.<JCExpression>of(make.
duke@1 1810 Ident(md.params.
duke@1 1811 head.sym))))));
duke@1 1812 }
duke@1 1813
duke@1 1814 // catchParam := ClassNotFoundException e1
duke@1 1815 VarSymbol catchParam =
duke@1 1816 new VarSymbol(0, make.paramName(1),
duke@1 1817 syms.classNotFoundExceptionType,
duke@1 1818 classDollarSym);
duke@1 1819
duke@1 1820 JCStatement rethrow;
duke@1 1821 if (target.hasInitCause()) {
duke@1 1822 // rethrow = "throw new NoClassDefFoundError().initCause(e);
duke@1 1823 JCTree throwExpr =
duke@1 1824 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1825 List.<JCExpression>nil()),
duke@1 1826 names.initCause,
duke@1 1827 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 1828 rethrow = make.Throw(throwExpr);
duke@1 1829 } else {
duke@1 1830 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 1831 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 1832 names.getMessage,
duke@1 1833 syms.classNotFoundExceptionType,
duke@1 1834 List.<Type>nil());
duke@1 1835 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 1836 rethrow = make.
duke@1 1837 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1838 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 1839 getMessageSym),
duke@1 1840 List.<JCExpression>nil()))));
duke@1 1841 }
duke@1 1842
duke@1 1843 // rethrowStmt := "( $rethrow )"
duke@1 1844 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 1845
duke@1 1846 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 1847 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 1848 rethrowStmt);
duke@1 1849
duke@1 1850 // tryCatch := "try $returnResult $catchBlock"
duke@1 1851 JCStatement tryCatch = make.Try(returnResult,
duke@1 1852 List.of(catchBlock), null);
duke@1 1853
duke@1 1854 return make.Block(0, List.of(tryCatch));
duke@1 1855 }
duke@1 1856 // where
duke@1 1857 /** Create an attributed tree of the form left.name(). */
duke@1 1858 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
duke@1 1859 assert left.type != null;
duke@1 1860 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 1861 TreeInfo.types(args));
duke@1 1862 return make.App(make.Select(left, funcsym), args);
duke@1 1863 }
duke@1 1864
duke@1 1865 /** The Name Of The variable to cache T.class values.
duke@1 1866 * @param sig The signature of type T.
duke@1 1867 */
duke@1 1868 private Name cacheName(String sig) {
duke@1 1869 StringBuffer buf = new StringBuffer();
duke@1 1870 if (sig.startsWith("[")) {
duke@1 1871 buf = buf.append("array");
duke@1 1872 while (sig.startsWith("[")) {
duke@1 1873 buf = buf.append(target.syntheticNameChar());
duke@1 1874 sig = sig.substring(1);
duke@1 1875 }
duke@1 1876 if (sig.startsWith("L")) {
duke@1 1877 sig = sig.substring(0, sig.length() - 1);
duke@1 1878 }
duke@1 1879 } else {
duke@1 1880 buf = buf.append("class" + target.syntheticNameChar());
duke@1 1881 }
duke@1 1882 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 1883 return names.fromString(buf.toString());
duke@1 1884 }
duke@1 1885
duke@1 1886 /** The variable symbol that caches T.class values.
duke@1 1887 * If none exists yet, create a definition.
duke@1 1888 * @param sig The signature of type T.
duke@1 1889 * @param pos The position to report diagnostics, if any.
duke@1 1890 */
duke@1 1891 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 1892 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1893 Name cname = cacheName(sig);
duke@1 1894 VarSymbol cacheSym =
duke@1 1895 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 1896 if (cacheSym == null) {
duke@1 1897 cacheSym = new VarSymbol(
duke@1 1898 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 1899 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 1900
duke@1 1901 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 1902 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1903 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 1904 }
duke@1 1905 return cacheSym;
duke@1 1906 }
duke@1 1907
duke@1 1908 /** The tree simulating a T.class expression.
duke@1 1909 * @param clazz The tree identifying type T.
duke@1 1910 */
duke@1 1911 private JCExpression classOf(JCTree clazz) {
duke@1 1912 return classOfType(clazz.type, clazz.pos());
duke@1 1913 }
duke@1 1914
duke@1 1915 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
duke@1 1916 switch (type.tag) {
duke@1 1917 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 1918 case DOUBLE: case BOOLEAN: case VOID:
duke@1 1919 // replace with <BoxedClass>.TYPE
duke@1 1920 ClassSymbol c = types.boxedClass(type);
duke@1 1921 Symbol typeSym =
duke@1 1922 rs.access(
duke@1 1923 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 1924 pos, c.type, names.TYPE, true);
duke@1 1925 if (typeSym.kind == VAR)
duke@1 1926 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 1927 return make.QualIdent(typeSym);
duke@1 1928 case CLASS: case ARRAY:
duke@1 1929 if (target.hasClassLiterals()) {
duke@1 1930 VarSymbol sym = new VarSymbol(
duke@1 1931 STATIC | PUBLIC | FINAL, names._class,
duke@1 1932 syms.classType, type.tsym);
duke@1 1933 return make_at(pos).Select(make.Type(type), sym);
duke@1 1934 }
duke@1 1935 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 1936 // where
duke@1 1937 // - <tsig> is the type signature of T,
duke@1 1938 // - <cache> is the cache variable for tsig.
duke@1 1939 String sig =
duke@1 1940 writer.xClassName(type).toString().replace('/', '.');
duke@1 1941 Symbol cs = cacheSym(pos, sig);
duke@1 1942 return make_at(pos).Conditional(
duke@1 1943 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
duke@1 1944 make.Assign(
duke@1 1945 make.Ident(cs),
duke@1 1946 make.App(
duke@1 1947 make.Ident(classDollarSym(pos)),
duke@1 1948 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 1949 .setType(syms.stringType))))
duke@1 1950 .setType(types.erasure(syms.classType)),
duke@1 1951 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 1952 default:
duke@1 1953 throw new AssertionError();
duke@1 1954 }
duke@1 1955 }
duke@1 1956
duke@1 1957 /**************************************************************************
duke@1 1958 * Code for enabling/disabling assertions.
duke@1 1959 *************************************************************************/
duke@1 1960
duke@1 1961 // This code is not particularly robust if the user has
duke@1 1962 // previously declared a member named '$assertionsDisabled'.
duke@1 1963 // The same faulty idiom also appears in the translation of
duke@1 1964 // class literals above. We should report an error if a
duke@1 1965 // previous declaration is not synthetic.
duke@1 1966
duke@1 1967 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 1968 // Outermost class may be either true class or an interface.
duke@1 1969 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 1970
duke@1 1971 // note that this is a class, as an interface can't contain a statement.
duke@1 1972 ClassSymbol container = currentClass;
duke@1 1973
duke@1 1974 VarSymbol assertDisabledSym =
duke@1 1975 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 1976 container.members());
duke@1 1977 if (assertDisabledSym == null) {
duke@1 1978 assertDisabledSym =
duke@1 1979 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 1980 dollarAssertionsDisabled,
duke@1 1981 syms.booleanType,
duke@1 1982 container);
duke@1 1983 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 1984 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 1985 names.desiredAssertionStatus,
duke@1 1986 types.erasure(syms.classType),
duke@1 1987 List.<Type>nil());
duke@1 1988 JCClassDecl containerDef = classDef(container);
duke@1 1989 make_at(containerDef.pos());
duke@1 1990 JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
duke@1 1991 classOfType(types.erasure(outermostClass.type),
duke@1 1992 containerDef.pos()),
duke@1 1993 desiredAssertionStatusSym)));
duke@1 1994 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 1995 notStatus);
duke@1 1996 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 1997 }
duke@1 1998 make_at(pos);
duke@1 1999 return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
duke@1 2000 }
duke@1 2001
duke@1 2002
duke@1 2003 /**************************************************************************
duke@1 2004 * Building blocks for let expressions
duke@1 2005 *************************************************************************/
duke@1 2006
duke@1 2007 interface TreeBuilder {
duke@1 2008 JCTree build(JCTree arg);
duke@1 2009 }
duke@1 2010
duke@1 2011 /** Construct an expression using the builder, with the given rval
duke@1 2012 * expression as an argument to the builder. However, the rval
duke@1 2013 * expression must be computed only once, even if used multiple
duke@1 2014 * times in the result of the builder. We do that by
duke@1 2015 * constructing a "let" expression that saves the rvalue into a
duke@1 2016 * temporary variable and then uses the temporary variable in
duke@1 2017 * place of the expression built by the builder. The complete
duke@1 2018 * resulting expression is of the form
duke@1 2019 * <pre>
duke@1 2020 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2021 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2022 * </pre>
duke@1 2023 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2024 * in the let expression.
duke@1 2025 */
duke@1 2026 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2027 rval = TreeInfo.skipParens(rval);
duke@1 2028 switch (rval.getTag()) {
duke@1 2029 case JCTree.LITERAL:
duke@1 2030 return builder.build(rval);
duke@1 2031 case JCTree.IDENT:
duke@1 2032 JCIdent id = (JCIdent) rval;
duke@1 2033 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2034 return builder.build(rval);
duke@1 2035 }
duke@1 2036 VarSymbol var =
duke@1 2037 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2038 names.fromString(
duke@1 2039 target.syntheticNameChar()
duke@1 2040 + "" + rval.hashCode()),
duke@1 2041 type,
duke@1 2042 currentMethodSym);
mcimadamore@4 2043 rval = convert(rval,type);
duke@1 2044 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2045 JCTree built = builder.build(make.Ident(var));
duke@1 2046 JCTree res = make.LetExpr(def, built);
duke@1 2047 res.type = built.type;
duke@1 2048 return res;
duke@1 2049 }
duke@1 2050
duke@1 2051 // same as above, with the type of the temporary variable computed
duke@1 2052 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2053 return abstractRval(rval, rval.type, builder);
duke@1 2054 }
duke@1 2055
duke@1 2056 // same as above, but for an expression that may be used as either
duke@1 2057 // an rvalue or an lvalue. This requires special handling for
duke@1 2058 // Select expressions, where we place the left-hand-side of the
duke@1 2059 // select in a temporary, and for Indexed expressions, where we
duke@1 2060 // place both the indexed expression and the index value in temps.
duke@1 2061 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2062 lval = TreeInfo.skipParens(lval);
duke@1 2063 switch (lval.getTag()) {
duke@1 2064 case JCTree.IDENT:
duke@1 2065 return builder.build(lval);
duke@1 2066 case JCTree.SELECT: {
duke@1 2067 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2068 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2069 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2070 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2071 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2072 public JCTree build(final JCTree selected) {
duke@1 2073 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2074 }
duke@1 2075 });
duke@1 2076 }
duke@1 2077 case JCTree.INDEXED: {
duke@1 2078 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2079 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2080 public JCTree build(final JCTree indexed) {
duke@1 2081 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2082 public JCTree build(final JCTree index) {
duke@1 2083 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2084 (JCExpression)index);
duke@1 2085 newLval.setType(i.type);
duke@1 2086 return builder.build(newLval);
duke@1 2087 }
duke@1 2088 });
duke@1 2089 }
duke@1 2090 });
duke@1 2091 }
mcimadamore@133 2092 case JCTree.TYPECAST: {
mcimadamore@133 2093 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2094 }
duke@1 2095 }
duke@1 2096 throw new AssertionError(lval);
duke@1 2097 }
duke@1 2098
duke@1 2099 // evaluate and discard the first expression, then evaluate the second.
duke@1 2100 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2101 return abstractRval(expr1, new TreeBuilder() {
duke@1 2102 public JCTree build(final JCTree discarded) {
duke@1 2103 return expr2;
duke@1 2104 }
duke@1 2105 });
duke@1 2106 }
duke@1 2107
duke@1 2108 /**************************************************************************
duke@1 2109 * Translation methods
duke@1 2110 *************************************************************************/
duke@1 2111
duke@1 2112 /** Visitor argument: enclosing operator node.
duke@1 2113 */
duke@1 2114 private JCExpression enclOp;
duke@1 2115
duke@1 2116 /** Visitor method: Translate a single node.
duke@1 2117 * Attach the source position from the old tree to its replacement tree.
duke@1 2118 */
duke@1 2119 public <T extends JCTree> T translate(T tree) {
duke@1 2120 if (tree == null) {
duke@1 2121 return null;
duke@1 2122 } else {
duke@1 2123 make_at(tree.pos());
duke@1 2124 T result = super.translate(tree);
duke@1 2125 if (endPositions != null && result != tree) {
duke@1 2126 Integer endPos = endPositions.remove(tree);
duke@1 2127 if (endPos != null) endPositions.put(result, endPos);
duke@1 2128 }
duke@1 2129 return result;
duke@1 2130 }
duke@1 2131 }
duke@1 2132
duke@1 2133 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2134 */
duke@1 2135 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2136 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2137 }
duke@1 2138
duke@1 2139 /** Visitor method: Translate tree.
duke@1 2140 */
duke@1 2141 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2142 JCExpression prevEnclOp = this.enclOp;
duke@1 2143 this.enclOp = enclOp;
duke@1 2144 T res = translate(tree);
duke@1 2145 this.enclOp = prevEnclOp;
duke@1 2146 return res;
duke@1 2147 }
duke@1 2148
duke@1 2149 /** Visitor method: Translate list of trees.
duke@1 2150 */
duke@1 2151 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2152 JCExpression prevEnclOp = this.enclOp;
duke@1 2153 this.enclOp = enclOp;
duke@1 2154 List<T> res = translate(trees);
duke@1 2155 this.enclOp = prevEnclOp;
duke@1 2156 return res;
duke@1 2157 }
duke@1 2158
duke@1 2159 /** Visitor method: Translate list of trees.
duke@1 2160 */
duke@1 2161 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2162 if (trees == null) return null;
duke@1 2163 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2164 l.head = translate(l.head, type);
duke@1 2165 return trees;
duke@1 2166 }
duke@1 2167
duke@1 2168 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2169 if (needPackageInfoClass(tree)) {
duke@1 2170 Name name = names.package_info;
duke@1 2171 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2172 if (target.isPackageInfoSynthetic())
duke@1 2173 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2174 flags = flags | Flags.SYNTHETIC;
duke@1 2175 JCClassDecl packageAnnotationsClass
duke@1 2176 = make.ClassDef(make.Modifiers(flags,
duke@1 2177 tree.packageAnnotations),
duke@1 2178 name, List.<JCTypeParameter>nil(),
duke@1 2179 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2180 ClassSymbol c = tree.packge.package_info;
jjg@483 2181 c.flags_field |= flags;
duke@1 2182 c.attributes_field = tree.packge.attributes_field;
duke@1 2183 ClassType ctype = (ClassType) c.type;
duke@1 2184 ctype.supertype_field = syms.objectType;
duke@1 2185 ctype.interfaces_field = List.nil();
duke@1 2186 packageAnnotationsClass.sym = c;
duke@1 2187
duke@1 2188 translated.append(packageAnnotationsClass);
duke@1 2189 }
duke@1 2190 }
jjg@657 2191 // where
jjg@657 2192 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2193 switch (pkginfoOpt) {
jjg@657 2194 case ALWAYS:
jjg@657 2195 return true;
jjg@657 2196 case LEGACY:
jjg@657 2197 return tree.packageAnnotations.nonEmpty();
jjg@657 2198 case NONEMPTY:
jjg@657 2199 for (Attribute.Compound a: tree.packge.attributes_field) {
jjg@657 2200 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2201 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2202 return true;
jjg@657 2203 }
jjg@657 2204 return false;
jjg@657 2205 }
jjg@657 2206 throw new AssertionError();
jjg@657 2207 }
duke@1 2208
duke@1 2209 public void visitClassDef(JCClassDecl tree) {
duke@1 2210 ClassSymbol currentClassPrev = currentClass;
duke@1 2211 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2212 currentClass = tree.sym;
duke@1 2213 currentMethodSym = null;
duke@1 2214 classdefs.put(currentClass, tree);
duke@1 2215
duke@1 2216 proxies = proxies.dup(currentClass);
duke@1 2217 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2218
duke@1 2219 // If this is an enum definition
duke@1 2220 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2221 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2222 visitEnumDef(tree);
duke@1 2223
duke@1 2224 // If this is a nested class, define a this$n field for
duke@1 2225 // it and add to proxies.
duke@1 2226 JCVariableDecl otdef = null;
duke@1 2227 if (currentClass.hasOuterInstance())
duke@1 2228 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2229
duke@1 2230 // If this is a local class, define proxies for all its free variables.
duke@1 2231 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2232 tree.pos, freevars(currentClass), currentClass);
duke@1 2233
duke@1 2234 // Recursively translate superclass, interfaces.
duke@1 2235 tree.extending = translate(tree.extending);
duke@1 2236 tree.implementing = translate(tree.implementing);
duke@1 2237
duke@1 2238 // Recursively translate members, taking into account that new members
duke@1 2239 // might be created during the translation and prepended to the member
duke@1 2240 // list `tree.defs'.
duke@1 2241 List<JCTree> seen = List.nil();
duke@1 2242 while (tree.defs != seen) {
duke@1 2243 List<JCTree> unseen = tree.defs;
duke@1 2244 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2245 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2246 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2247 l.head = translate(l.head);
duke@1 2248 outermostMemberDef = outermostMemberDefPrev;
duke@1 2249 }
duke@1 2250 seen = unseen;
duke@1 2251 }
duke@1 2252
duke@1 2253 // Convert a protected modifier to public, mask static modifier.
duke@1 2254 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2255 tree.mods.flags &= ClassFlags;
duke@1 2256
duke@1 2257 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2258 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2259
duke@1 2260 // Add this$n and free variables proxy definitions to class.
duke@1 2261 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2262 tree.defs = tree.defs.prepend(l.head);
duke@1 2263 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2264 }
duke@1 2265 if (currentClass.hasOuterInstance()) {
duke@1 2266 tree.defs = tree.defs.prepend(otdef);
duke@1 2267 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2268 }
duke@1 2269
duke@1 2270 proxies = proxies.leave();
duke@1 2271 outerThisStack = prevOuterThisStack;
duke@1 2272
duke@1 2273 // Append translated tree to `translated' queue.
duke@1 2274 translated.append(tree);
duke@1 2275
duke@1 2276 currentClass = currentClassPrev;
duke@1 2277 currentMethodSym = currentMethodSymPrev;
duke@1 2278
duke@1 2279 // Return empty block {} as a placeholder for an inner class.
duke@1 2280 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2281 }
duke@1 2282
duke@1 2283 /** Translate an enum class. */
duke@1 2284 private void visitEnumDef(JCClassDecl tree) {
duke@1 2285 make_at(tree.pos());
duke@1 2286
duke@1 2287 // add the supertype, if needed
duke@1 2288 if (tree.extending == null)
duke@1 2289 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2290
duke@1 2291 // classOfType adds a cache field to tree.defs unless
duke@1 2292 // target.hasClassLiterals().
duke@1 2293 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2294 setType(types.erasure(syms.classType));
duke@1 2295
duke@1 2296 // process each enumeration constant, adding implicit constructor parameters
duke@1 2297 int nextOrdinal = 0;
duke@1 2298 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2299 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2300 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2301 for (List<JCTree> defs = tree.defs;
duke@1 2302 defs.nonEmpty();
duke@1 2303 defs=defs.tail) {
duke@1 2304 if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2305 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2306 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2307 values.append(make.QualIdent(var.sym));
duke@1 2308 enumDefs.append(var);
duke@1 2309 } else {
duke@1 2310 otherDefs.append(defs.head);
duke@1 2311 }
duke@1 2312 }
duke@1 2313
duke@1 2314 // private static final T[] #VALUES = { a, b, c };
duke@1 2315 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2316 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2317 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2318 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2319 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2320 valuesName,
duke@1 2321 arrayType,
duke@1 2322 tree.type.tsym);
duke@1 2323 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2324 List.<JCExpression>nil(),
duke@1 2325 values.toList());
duke@1 2326 newArray.type = arrayType;
duke@1 2327 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2328 tree.sym.members().enter(valuesVar);
duke@1 2329
duke@1 2330 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2331 tree.type, List.<Type>nil());
jjg@86 2332 List<JCStatement> valuesBody;
jjg@86 2333 if (useClone()) {
jjg@86 2334 // return (T[]) $VALUES.clone();
jjg@86 2335 JCTypeCast valuesResult =
jjg@86 2336 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2337 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2338 syms.arrayCloneMethod)));
jjg@86 2339 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2340 } else {
jjg@86 2341 // template: T[] $result = new T[$values.length];
jjg@86 2342 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2343 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2344 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2345 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2346 resultName,
jjg@86 2347 arrayType,
jjg@86 2348 valuesSym);
jjg@86 2349 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2350 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2351 null);
jjg@86 2352 resultArray.type = arrayType;
jjg@86 2353 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2354
jjg@86 2355 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2356 if (systemArraycopyMethod == null) {
jjg@86 2357 systemArraycopyMethod =
jjg@86 2358 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2359 names.fromString("arraycopy"),
jjg@86 2360 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2361 syms.intType,
jjg@86 2362 syms.objectType,
jjg@86 2363 syms.intType,
jjg@86 2364 syms.intType),
jjg@86 2365 syms.voidType,
jjg@86 2366 List.<Type>nil(),
jjg@86 2367 syms.methodClass),
jjg@86 2368 syms.systemType.tsym);
jjg@86 2369 }
jjg@86 2370 JCStatement copy =
jjg@86 2371 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2372 systemArraycopyMethod),
jjg@86 2373 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2374 make.Ident(resultVar), make.Literal(0),
jjg@86 2375 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2376
jjg@86 2377 // template: return $result;
jjg@86 2378 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2379 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2380 }
jjg@86 2381
duke@1 2382 JCMethodDecl valuesDef =
jjg@86 2383 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2384
duke@1 2385 enumDefs.append(valuesDef);
duke@1 2386
jjg@86 2387 if (debugLower)
jjg@86 2388 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2389
duke@1 2390 /** The template for the following code is:
duke@1 2391 *
duke@1 2392 * public static E valueOf(String name) {
duke@1 2393 * return (E)Enum.valueOf(E.class, name);
duke@1 2394 * }
duke@1 2395 *
duke@1 2396 * where E is tree.sym
duke@1 2397 */
duke@1 2398 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2399 names.valueOf,
duke@1 2400 tree.sym.type,
duke@1 2401 List.of(syms.stringType));
duke@1 2402 assert (valueOfSym.flags() & STATIC) != 0;
duke@1 2403 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2404 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2405 JCStatement enum_ValueOf =
duke@1 2406 make.Return(make.TypeCast(tree.sym.type,
duke@1 2407 makeCall(make.Ident(syms.enumSym),
duke@1 2408 names.valueOf,
duke@1 2409 List.of(e_class, nameVal))));
duke@1 2410 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2411 make.Block(0, List.of(enum_ValueOf)));
duke@1 2412 nameVal.sym = valueOf.params.head.sym;
duke@1 2413 if (debugLower)
duke@1 2414 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2415 enumDefs.append(valueOf);
duke@1 2416
duke@1 2417 enumDefs.appendList(otherDefs.toList());
duke@1 2418 tree.defs = enumDefs.toList();
duke@1 2419
duke@1 2420 // Add the necessary members for the EnumCompatibleMode
duke@1 2421 if (target.compilerBootstrap(tree.sym)) {
duke@1 2422 addEnumCompatibleMembers(tree);
duke@1 2423 }
duke@1 2424 }
jjg@86 2425 // where
jjg@86 2426 private MethodSymbol systemArraycopyMethod;
jjg@86 2427 private boolean useClone() {
jjg@86 2428 try {
jjg@86 2429 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2430 return (e.sym != null);
jjg@86 2431 }
jjg@86 2432 catch (CompletionFailure e) {
jjg@86 2433 return false;
jjg@86 2434 }
jjg@86 2435 }
duke@1 2436
duke@1 2437 /** Translate an enumeration constant and its initializer. */
duke@1 2438 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2439 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2440 varDef.args = varDef.args.
duke@1 2441 prepend(makeLit(syms.intType, ordinal)).
duke@1 2442 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2443 }
duke@1 2444
duke@1 2445 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2446 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2447 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2448 // argument list for each constructor of an enum.
duke@1 2449 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2450 Param(names.fromString(target.syntheticNameChar() +
duke@1 2451 "enum" + target.syntheticNameChar() + "name"),
duke@1 2452 syms.stringType, tree.sym);
duke@1 2453 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2454
duke@1 2455 JCVariableDecl ordParam = make.
duke@1 2456 Param(names.fromString(target.syntheticNameChar() +
duke@1 2457 "enum" + target.syntheticNameChar() +
duke@1 2458 "ordinal"),
duke@1 2459 syms.intType, tree.sym);
duke@1 2460 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2461
duke@1 2462 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2463
duke@1 2464 MethodSymbol m = tree.sym;
duke@1 2465 Type olderasure = m.erasure(types);
duke@1 2466 m.erasure_field = new MethodType(
duke@1 2467 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2468 olderasure.getReturnType(),
duke@1 2469 olderasure.getThrownTypes(),
duke@1 2470 syms.methodClass);
duke@1 2471
duke@1 2472 if (target.compilerBootstrap(m.owner)) {
duke@1 2473 // Initialize synthetic name field
duke@1 2474 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
duke@1 2475 tree.sym.owner.members());
duke@1 2476 JCIdent nameIdent = make.Ident(nameParam.sym);
duke@1 2477 JCIdent id1 = make.Ident(nameVarSym);
duke@1 2478 JCAssign newAssign = make.Assign(id1, nameIdent);
duke@1 2479 newAssign.type = id1.type;
duke@1 2480 JCExpressionStatement nameAssign = make.Exec(newAssign);
duke@1 2481 nameAssign.type = id1.type;
duke@1 2482 tree.body.stats = tree.body.stats.prepend(nameAssign);
duke@1 2483
duke@1 2484 // Initialize synthetic ordinal field
duke@1 2485 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
duke@1 2486 tree.sym.owner.members());
duke@1 2487 JCIdent ordIdent = make.Ident(ordParam.sym);
duke@1 2488 id1 = make.Ident(ordinalVarSym);
duke@1 2489 newAssign = make.Assign(id1, ordIdent);
duke@1 2490 newAssign.type = id1.type;
duke@1 2491 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
duke@1 2492 ordinalAssign.type = id1.type;
duke@1 2493 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
duke@1 2494 }
duke@1 2495 }
duke@1 2496
duke@1 2497 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2498 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2499 try {
duke@1 2500 currentMethodDef = tree;
duke@1 2501 currentMethodSym = tree.sym;
duke@1 2502 visitMethodDefInternal(tree);
duke@1 2503 } finally {
duke@1 2504 currentMethodDef = prevMethodDef;
duke@1 2505 currentMethodSym = prevMethodSym;
duke@1 2506 }
duke@1 2507 }
duke@1 2508 //where
duke@1 2509 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2510 if (tree.name == names.init &&
duke@1 2511 (currentClass.isInner() ||
duke@1 2512 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2513 // We are seeing a constructor of an inner class.
duke@1 2514 MethodSymbol m = tree.sym;
duke@1 2515
duke@1 2516 // Push a new proxy scope for constructor parameters.
duke@1 2517 // and create definitions for any this$n and proxy parameters.
duke@1 2518 proxies = proxies.dup(m);
duke@1 2519 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2520 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2521 JCVariableDecl otdef = null;
duke@1 2522 if (currentClass.hasOuterInstance())
duke@1 2523 otdef = outerThisDef(tree.pos, m);
duke@1 2524 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2525
duke@1 2526 // Recursively translate result type, parameters and thrown list.
duke@1 2527 tree.restype = translate(tree.restype);
duke@1 2528 tree.params = translateVarDefs(tree.params);
duke@1 2529 tree.thrown = translate(tree.thrown);
duke@1 2530
duke@1 2531 // when compiling stubs, don't process body
duke@1 2532 if (tree.body == null) {
duke@1 2533 result = tree;
duke@1 2534 return;
duke@1 2535 }
duke@1 2536
duke@1 2537 // Add this$n (if needed) in front of and free variables behind
duke@1 2538 // constructor parameter list.
duke@1 2539 tree.params = tree.params.appendList(fvdefs);
duke@1 2540 if (currentClass.hasOuterInstance())
duke@1 2541 tree.params = tree.params.prepend(otdef);
duke@1 2542
duke@1 2543 // If this is an initial constructor, i.e., it does not start with
duke@1 2544 // this(...), insert initializers for this$n and proxies
duke@1 2545 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2546 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2547
duke@1 2548 List<JCStatement> added = List.nil();
duke@1 2549 if (fvs.nonEmpty()) {
duke@1 2550 List<Type> addedargtypes = List.nil();
duke@1 2551 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2552 if (TreeInfo.isInitialConstructor(tree))
duke@1 2553 added = added.prepend(
duke@1 2554 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2555 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2556 }
duke@1 2557 Type olderasure = m.erasure(types);
duke@1 2558 m.erasure_field = new MethodType(
duke@1 2559 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2560 olderasure.getReturnType(),
duke@1 2561 olderasure.getThrownTypes(),
duke@1 2562 syms.methodClass);
duke@1 2563 }
duke@1 2564 if (currentClass.hasOuterInstance() &&
duke@1 2565 TreeInfo.isInitialConstructor(tree))
duke@1 2566 {
duke@1 2567 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2568 }
duke@1 2569
duke@1 2570 // pop local variables from proxy stack
duke@1 2571 proxies = proxies.leave();
duke@1 2572
duke@1 2573 // recursively translate following local statements and
duke@1 2574 // combine with this- or super-call
duke@1 2575 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2576 if (target.initializeFieldsBeforeSuper())
duke@1 2577 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2578 else
duke@1 2579 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2580
duke@1 2581 outerThisStack = prevOuterThisStack;
duke@1 2582 } else {
duke@1 2583 super.visitMethodDef(tree);
duke@1 2584 }
duke@1 2585 result = tree;
duke@1 2586 }
duke@1 2587
jjg@308 2588 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 2589 tree.underlyingType = translate(tree.underlyingType);
jjg@308 2590 result = tree.underlyingType;
jjg@308 2591 }
jjg@308 2592
duke@1 2593 public void visitTypeCast(JCTypeCast tree) {
duke@1 2594 tree.clazz = translate(tree.clazz);
duke@1 2595 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2596 tree.expr = translate(tree.expr, tree.type);
duke@1 2597 else
duke@1 2598 tree.expr = translate(tree.expr);
duke@1 2599 result = tree;
duke@1 2600 }
duke@1 2601
duke@1 2602 public void visitNewClass(JCNewClass tree) {
duke@1 2603 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2604
duke@1 2605 // Box arguments, if necessary
duke@1 2606 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2607 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2608 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2609 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2610 tree.varargsElement = null;
duke@1 2611
duke@1 2612 // If created class is local, add free variables after
duke@1 2613 // explicit constructor arguments.
duke@1 2614 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2615 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2616 }
duke@1 2617
duke@1 2618 // If an access constructor is used, append null as a last argument.
duke@1 2619 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2620 if (constructor != tree.constructor) {
duke@1 2621 tree.args = tree.args.append(makeNull());
duke@1 2622 tree.constructor = constructor;
duke@1 2623 }
duke@1 2624
duke@1 2625 // If created class has an outer instance, and new is qualified, pass
duke@1 2626 // qualifier as first argument. If new is not qualified, pass the
duke@1 2627 // correct outer instance as first argument.
duke@1 2628 if (c.hasOuterInstance()) {
duke@1 2629 JCExpression thisArg;
duke@1 2630 if (tree.encl != null) {
duke@1 2631 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2632 thisArg.type = tree.encl.type;
duke@1 2633 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2634 // local class
duke@1 2635 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2636 } else {
duke@1 2637 // nested class
duke@1 2638 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2639 }
duke@1 2640 tree.args = tree.args.prepend(thisArg);
duke@1 2641 }
duke@1 2642 tree.encl = null;
duke@1 2643
duke@1 2644 // If we have an anonymous class, create its flat version, rather
duke@1 2645 // than the class or interface following new.
duke@1 2646 if (tree.def != null) {
duke@1 2647 translate(tree.def);
duke@1 2648 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2649 tree.def = null;
duke@1 2650 } else {
duke@1 2651 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2652 }
duke@1 2653 result = tree;
duke@1 2654 }
duke@1 2655
duke@1 2656 // Simplify conditionals with known constant controlling expressions.
duke@1 2657 // This allows us to avoid generating supporting declarations for
duke@1 2658 // the dead code, which will not be eliminated during code generation.
duke@1 2659 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2660 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2661 // are guaranteed to have no side-effects. More aggressive
duke@1 2662 // constant propagation would require that we take care to
duke@1 2663 // preserve possible side-effects in the condition expression.
duke@1 2664
duke@1 2665 /** Visitor method for conditional expressions.
duke@1 2666 */
duke@1 2667 public void visitConditional(JCConditional tree) {
duke@1 2668 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2669 if (cond.type.isTrue()) {
duke@1 2670 result = convert(translate(tree.truepart, tree.type), tree.type);
duke@1 2671 } else if (cond.type.isFalse()) {
duke@1 2672 result = convert(translate(tree.falsepart, tree.type), tree.type);
duke@1 2673 } else {
duke@1 2674 // Condition is not a compile-time constant.
duke@1 2675 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2676 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2677 result = tree;
duke@1 2678 }
duke@1 2679 }
duke@1 2680 //where
duke@1 2681 private JCTree convert(JCTree tree, Type pt) {
sundar@691 2682 if (tree.type == pt || tree.type.tag == TypeTags.BOT)
sundar@691 2683 return tree;
duke@1 2684 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
duke@1 2685 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
duke@1 2686 : pt;
duke@1 2687 return result;
duke@1 2688 }
duke@1 2689
duke@1 2690 /** Visitor method for if statements.
duke@1 2691 */
duke@1 2692 public void visitIf(JCIf tree) {
duke@1 2693 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2694 if (cond.type.isTrue()) {
duke@1 2695 result = translate(tree.thenpart);
duke@1 2696 } else if (cond.type.isFalse()) {
duke@1 2697 if (tree.elsepart != null) {
duke@1 2698 result = translate(tree.elsepart);
duke@1 2699 } else {
duke@1 2700 result = make.Skip();
duke@1 2701 }
duke@1 2702 } else {
duke@1 2703 // Condition is not a compile-time constant.
duke@1 2704 tree.thenpart = translate(tree.thenpart);
duke@1 2705 tree.elsepart = translate(tree.elsepart);
duke@1 2706 result = tree;
duke@1 2707 }
duke@1 2708 }
duke@1 2709
duke@1 2710 /** Visitor method for assert statements. Translate them away.
duke@1 2711 */
duke@1 2712 public void visitAssert(JCAssert tree) {
duke@1 2713 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2714 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2715 if (!tree.cond.type.isTrue()) {
duke@1 2716 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2717 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2718 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2719 if (!tree.cond.type.isFalse()) {
duke@1 2720 cond = makeBinary
duke@1 2721 (JCTree.AND,
duke@1 2722 cond,
duke@1 2723 makeUnary(JCTree.NOT, tree.cond));
duke@1 2724 }
duke@1 2725 result =
duke@1 2726 make.If(cond,
duke@1 2727 make_at(detailPos).
duke@1 2728 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2729 null);
duke@1 2730 } else {
duke@1 2731 result = make.Skip();
duke@1 2732 }
duke@1 2733 }
duke@1 2734
duke@1 2735 public void visitApply(JCMethodInvocation tree) {
duke@1 2736 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2737 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2738 if (allowEnums &&
duke@1 2739 meth.name==names.init &&
duke@1 2740 meth.owner == syms.enumSym)
duke@1 2741 argtypes = argtypes.tail.tail;
duke@1 2742 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2743 tree.varargsElement = null;
duke@1 2744 Name methName = TreeInfo.name(tree.meth);
duke@1 2745 if (meth.name==names.init) {
duke@1 2746 // We are seeing a this(...) or super(...) constructor call.
duke@1 2747 // If an access constructor is used, append null as a last argument.
duke@1 2748 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2749 if (constructor != meth) {
duke@1 2750 tree.args = tree.args.append(makeNull());
duke@1 2751 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2752 }
duke@1 2753
duke@1 2754 // If we are calling a constructor of a local class, add
duke@1 2755 // free variables after explicit constructor arguments.
duke@1 2756 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2757 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2758 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2759 }
duke@1 2760
duke@1 2761 // If we are calling a constructor of an enum class, pass
duke@1 2762 // along the name and ordinal arguments
duke@1 2763 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2764 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2765 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2766 params = params.tail; // drop this$n
duke@1 2767 tree.args = tree.args
duke@1 2768 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2769 .prepend(make.Ident(params.head.sym)); // name
duke@1 2770 }
duke@1 2771
duke@1 2772 // If we are calling a constructor of a class with an outer
duke@1 2773 // instance, and the call
duke@1 2774 // is qualified, pass qualifier as first argument in front of
duke@1 2775 // the explicit constructor arguments. If the call
duke@1 2776 // is not qualified, pass the correct outer instance as
duke@1 2777 // first argument.
duke@1 2778 if (c.hasOuterInstance()) {
duke@1 2779 JCExpression thisArg;
duke@1 2780 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 2781 thisArg = attr.
duke@1 2782 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2783 tree.meth = make.Ident(constructor);
duke@1 2784 ((JCIdent) tree.meth).name = methName;
duke@1 2785 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2786 // local class or this() call
duke@1 2787 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2788 } else {
duke@1 2789 // super() call of nested class
duke@1 2790 thisArg = makeOwnerThis(tree.meth.pos(), c, false);
duke@1 2791 }
duke@1 2792 tree.args = tree.args.prepend(thisArg);
duke@1 2793 }
duke@1 2794 } else {
duke@1 2795 // We are seeing a normal method invocation; translate this as usual.
duke@1 2796 tree.meth = translate(tree.meth);
duke@1 2797
duke@1 2798 // If the translated method itself is an Apply tree, we are
duke@1 2799 // seeing an access method invocation. In this case, append
duke@1 2800 // the method arguments to the arguments of the access method.
duke@1 2801 if (tree.meth.getTag() == JCTree.APPLY) {
duke@1 2802 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 2803 app.args = tree.args.prependList(app.args);
duke@1 2804 result = app;
duke@1 2805 return;
duke@1 2806 }
duke@1 2807 }
duke@1 2808 result = tree;
duke@1 2809 }
duke@1 2810
duke@1 2811 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 2812 List<JCExpression> args = _args;
duke@1 2813 if (parameters.isEmpty()) return args;
duke@1 2814 boolean anyChanges = false;
duke@1 2815 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 2816 while (parameters.tail.nonEmpty()) {
duke@1 2817 JCExpression arg = translate(args.head, parameters.head);
duke@1 2818 anyChanges |= (arg != args.head);
duke@1 2819 result.append(arg);
duke@1 2820 args = args.tail;
duke@1 2821 parameters = parameters.tail;
duke@1 2822 }
duke@1 2823 Type parameter = parameters.head;
duke@1 2824 if (varargsElement != null) {
duke@1 2825 anyChanges = true;
duke@1 2826 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 2827 while (args.nonEmpty()) {
duke@1 2828 JCExpression arg = translate(args.head, varargsElement);
duke@1 2829 elems.append(arg);
duke@1 2830 args = args.tail;
duke@1 2831 }
duke@1 2832 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 2833 List.<JCExpression>nil(),
duke@1 2834 elems.toList());
duke@1 2835 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 2836 result.append(boxedArgs);
duke@1 2837 } else {
duke@1 2838 if (args.length() != 1) throw new AssertionError(args);
duke@1 2839 JCExpression arg = translate(args.head, parameter);
duke@1 2840 anyChanges |= (arg != args.head);
duke@1 2841 result.append(arg);
duke@1 2842 if (!anyChanges) return _args;
duke@1 2843 }
duke@1 2844 return result.toList();
duke@1 2845 }
duke@1 2846
duke@1 2847 /** Expand a boxing or unboxing conversion if needed. */
duke@1 2848 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 2849 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 2850 boolean havePrimitive = tree.type.isPrimitive();
duke@1 2851 if (havePrimitive == type.isPrimitive())
duke@1 2852 return tree;
duke@1 2853 if (havePrimitive) {
duke@1 2854 Type unboxedTarget = types.unboxedType(type);
duke@1 2855 if (unboxedTarget.tag != NONE) {
mcimadamore@253 2856 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 2857 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 2858 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 2859 } else {
duke@1 2860 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 2861 }
duke@1 2862 } else {
duke@1 2863 tree = (T)unbox((JCExpression)tree, type);
duke@1 2864 }
duke@1 2865 return tree;
duke@1 2866 }
duke@1 2867
duke@1 2868 /** Box up a single primitive expression. */
duke@1 2869 JCExpression boxPrimitive(JCExpression tree) {
duke@1 2870 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 2871 }
duke@1 2872
duke@1 2873 /** Box up a single primitive expression. */
duke@1 2874 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 2875 make_at(tree.pos());
duke@1 2876 if (target.boxWithConstructors()) {
duke@1 2877 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 2878 box,
duke@1 2879 List.<Type>nil()
duke@1 2880 .prepend(tree.type));
duke@1 2881 return make.Create(ctor, List.of(tree));
duke@1 2882 } else {
duke@1 2883 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2884 names.valueOf,
duke@1 2885 box,
duke@1 2886 List.<Type>nil()
duke@1 2887 .prepend(tree.type));
duke@1 2888 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 2889 }
duke@1 2890 }
duke@1 2891
duke@1 2892 /** Unbox an object to a primitive value. */
duke@1 2893 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 2894 Type unboxedType = types.unboxedType(tree.type);
jrose@665 2895 if (unboxedType.tag == NONE) {
jrose@665 2896 unboxedType = primitive;
jrose@665 2897 if (!unboxedType.isPrimitive())
jrose@665 2898 throw new AssertionError(unboxedType);
jrose@665 2899 make_at(tree.pos());
jrose@665 2900 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 2901 } else {
jrose@665 2902 // There must be a conversion from unboxedType to primitive.
jrose@665 2903 if (!types.isSubtype(unboxedType, primitive))
jrose@665 2904 throw new AssertionError(tree);
jrose@665 2905 }
duke@1 2906 make_at(tree.pos());
duke@1 2907 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 2908 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 2909 tree.type,
duke@1 2910 List.<Type>nil());
duke@1 2911 return make.App(make.Select(tree, valueSym));
duke@1 2912 }
duke@1 2913
duke@1 2914 /** Visitor method for parenthesized expressions.
duke@1 2915 * If the subexpression has changed, omit the parens.
duke@1 2916 */
duke@1 2917 public void visitParens(JCParens tree) {
duke@1 2918 JCTree expr = translate(tree.expr);
duke@1 2919 result = ((expr == tree.expr) ? tree : expr);
duke@1 2920 }
duke@1 2921
duke@1 2922 public void visitIndexed(JCArrayAccess tree) {
duke@1 2923 tree.indexed = translate(tree.indexed);
duke@1 2924 tree.index = translate(tree.index, syms.intType);
duke@1 2925 result = tree;
duke@1 2926 }
duke@1 2927
duke@1 2928 public void visitAssign(JCAssign tree) {
duke@1 2929 tree.lhs = translate(tree.lhs, tree);
duke@1 2930 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 2931
duke@1 2932 // If translated left hand side is an Apply, we are
duke@1 2933 // seeing an access method invocation. In this case, append
duke@1 2934 // right hand side as last argument of the access method.
duke@1 2935 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2936 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2937 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 2938 result = app;
duke@1 2939 } else {
duke@1 2940 result = tree;
duke@1 2941 }
duke@1 2942 }
duke@1 2943
duke@1 2944 public void visitAssignop(final JCAssignOp tree) {
duke@1 2945 if (!tree.lhs.type.isPrimitive() &&
duke@1 2946 tree.operator.type.getReturnType().isPrimitive()) {
duke@1 2947 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
duke@1 2948 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
duke@1 2949 // (but without recomputing x)
mcimadamore@133 2950 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
duke@1 2951 public JCTree build(final JCTree lhs) {
duke@1 2952 int newTag = tree.getTag() - JCTree.ASGOffset;
duke@1 2953 // Erasure (TransTypes) can change the type of
duke@1 2954 // tree.lhs. However, we can still get the
duke@1 2955 // unerased type of tree.lhs as it is stored
duke@1 2956 // in tree.type in Attr.
duke@1 2957 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
duke@1 2958 newTag,
duke@1 2959 attrEnv,
duke@1 2960 tree.type,
duke@1 2961 tree.rhs.type);
duke@1 2962 JCExpression expr = (JCExpression)lhs;
duke@1 2963 if (expr.type != tree.type)
duke@1 2964 expr = make.TypeCast(tree.type, expr);
duke@1 2965 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
duke@1 2966 opResult.operator = newOperator;
duke@1 2967 opResult.type = newOperator.type.getReturnType();
duke@1 2968 JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
duke@1 2969 opResult);
duke@1 2970 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
duke@1 2971 }
duke@1 2972 });
duke@1 2973 result = translate(newTree);
duke@1 2974 return;
duke@1 2975 }
duke@1 2976 tree.lhs = translate(tree.lhs, tree);
duke@1 2977 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
duke@1 2978
duke@1 2979 // If translated left hand side is an Apply, we are
duke@1 2980 // seeing an access method invocation. In this case, append
duke@1 2981 // right hand side as last argument of the access method.
duke@1 2982 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2983 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2984 // if operation is a += on strings,
duke@1 2985 // make sure to convert argument to string
duke@1 2986 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
duke@1 2987 ? makeString(tree.rhs)
duke@1 2988 : tree.rhs;
duke@1 2989 app.args = List.of(rhs).prependList(app.args);
duke@1 2990 result = app;
duke@1 2991 } else {
duke@1 2992 result = tree;
duke@1 2993 }
duke@1 2994 }
duke@1 2995
duke@1 2996 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 2997 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 2998 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 2999 // or
duke@1 3000 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3001 // where OP is += or -=
mcimadamore@133 3002 final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
mcimadamore@133 3003 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3004 public JCTree build(final JCTree tmp1) {
duke@1 3005 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3006 public JCTree build(final JCTree tmp2) {
duke@1 3007 int opcode = (tree.getTag() == JCTree.POSTINC)
duke@1 3008 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 3009 JCTree lhs = cast
duke@1 3010 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3011 : tmp1;
duke@1 3012 JCTree update = makeAssignop(opcode,
duke@1 3013 lhs,
duke@1 3014 make.Literal(1));
duke@1 3015 return makeComma(update, tmp2);
duke@1 3016 }
duke@1 3017 });
duke@1 3018 }
duke@1 3019 });
duke@1 3020 }
duke@1 3021
duke@1 3022 public void visitUnary(JCUnary tree) {
duke@1 3023 boolean isUpdateOperator =
duke@1 3024 JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
duke@1 3025 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3026 switch(tree.getTag()) {
duke@1 3027 case JCTree.PREINC: // ++ e
duke@1 3028 // translate to e += 1
duke@1 3029 case JCTree.PREDEC: // -- e
duke@1 3030 // translate to e -= 1
duke@1 3031 {
duke@1 3032 int opcode = (tree.getTag() == JCTree.PREINC)
duke@1 3033 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 3034 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3035 tree.arg,
duke@1 3036 make.Literal(1));
duke@1 3037 result = translate(newTree, tree.type);
duke@1 3038 return;
duke@1 3039 }
duke@1 3040 case JCTree.POSTINC: // e ++
duke@1 3041 case JCTree.POSTDEC: // e --
duke@1 3042 {
duke@1 3043 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3044 return;
duke@1 3045 }
duke@1 3046 }
duke@1 3047 throw new AssertionError(tree);
duke@1 3048 }
duke@1 3049
duke@1 3050 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3051
duke@1 3052 if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
duke@1 3053 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3054 }
duke@1 3055
duke@1 3056 // If translated left hand side is an Apply, we are
duke@1 3057 // seeing an access method invocation. In this case, return
darcy@430 3058 // that access method invocation as result.
duke@1 3059 if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
duke@1 3060 result = tree.arg;
duke@1 3061 } else {
duke@1 3062 result = tree;
duke@1 3063 }
duke@1 3064 }
duke@1 3065
duke@1 3066 public void visitBinary(JCBinary tree) {
duke@1 3067 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3068 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3069 switch (tree.getTag()) {
duke@1 3070 case JCTree.OR:
duke@1 3071 if (lhs.type.isTrue()) {
duke@1 3072 result = lhs;
duke@1 3073 return;
duke@1 3074 }
duke@1 3075 if (lhs.type.isFalse()) {
duke@1 3076 result = translate(tree.rhs, formals.tail.head);
duke@1 3077 return;
duke@1 3078 }
duke@1 3079 break;
duke@1 3080 case JCTree.AND:
duke@1 3081 if (lhs.type.isFalse()) {
duke@1 3082 result = lhs;
duke@1 3083 return;
duke@1 3084 }
duke@1 3085 if (lhs.type.isTrue()) {
duke@1 3086 result = translate(tree.rhs, formals.tail.head);
duke@1 3087 return;
duke@1 3088 }
duke@1 3089 break;
duke@1 3090 }
duke@1 3091 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3092 result = tree;
duke@1 3093 }
duke@1 3094
duke@1 3095 public void visitIdent(JCIdent tree) {
duke@1 3096 result = access(tree.sym, tree, enclOp, false);
duke@1 3097 }
duke@1 3098
duke@1 3099 /** Translate away the foreach loop. */
duke@1 3100 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3101 if (types.elemtype(tree.expr.type) == null)
duke@1 3102 visitIterableForeachLoop(tree);
duke@1 3103 else
duke@1 3104 visitArrayForeachLoop(tree);
duke@1 3105 }
duke@1 3106 // where
duke@1 3107 /**
darcy@430 3108 * A statement of the form
duke@1 3109 *
duke@1 3110 * <pre>
duke@1 3111 * for ( T v : arrayexpr ) stmt;
duke@1 3112 * </pre>
duke@1 3113 *
duke@1 3114 * (where arrayexpr is of an array type) gets translated to
duke@1 3115 *
duke@1 3116 * <pre>
duke@1 3117 * for ( { arraytype #arr = arrayexpr;
duke@1 3118 * int #len = array.length;
duke@1 3119 * int #i = 0; };
duke@1 3120 * #i < #len; i$++ ) {
duke@1 3121 * T v = arr$[#i];
duke@1 3122 * stmt;
duke@1 3123 * }
duke@1 3124 * </pre>
duke@1 3125 *
duke@1 3126 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3127 */
duke@1 3128 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3129 make_at(tree.expr.pos());
duke@1 3130 VarSymbol arraycache = new VarSymbol(0,
duke@1 3131 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3132 tree.expr.type,
duke@1 3133 currentMethodSym);
duke@1 3134 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 3135 VarSymbol lencache = new VarSymbol(0,
duke@1 3136 names.fromString("len" + target.syntheticNameChar()),
duke@1 3137 syms.intType,
duke@1 3138 currentMethodSym);
duke@1 3139 JCStatement lencachedef = make.
duke@1 3140 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 3141 VarSymbol index = new VarSymbol(0,
duke@1 3142 names.fromString("i" + target.syntheticNameChar()),
duke@1 3143 syms.intType,
duke@1 3144 currentMethodSym);
duke@1 3145
duke@1 3146 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3147 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3148
duke@1 3149 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
duke@1 3150 JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
duke@1 3151
duke@1 3152 JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
duke@1 3153
duke@1 3154 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3155 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3156 make.Ident(index)).setType(elemtype);
mcimadamore@33 3157 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3158 tree.var.name,
mcimadamore@33 3159 tree.var.vartype,
mcimadamore@33 3160 loopvarinit).setType(tree.var.type);
mcimadamore@33 3161 loopvardef.sym = tree.var.sym;
duke@1 3162 JCBlock body = make.
mcimadamore@33 3163 Block(0, List.of(loopvardef, tree.body));
duke@1 3164
duke@1 3165 result = translate(make.
duke@1 3166 ForLoop(loopinit,
duke@1 3167 cond,
duke@1 3168 List.of(step),
duke@1 3169 body));
duke@1 3170 patchTargets(body, tree, result);
duke@1 3171 }
duke@1 3172 /** Patch up break and continue targets. */
duke@1 3173 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3174 class Patcher extends TreeScanner {
duke@1 3175 public void visitBreak(JCBreak tree) {
duke@1 3176 if (tree.target == src)
duke@1 3177 tree.target = dest;
duke@1 3178 }
duke@1 3179 public void visitContinue(JCContinue tree) {
duke@1 3180 if (tree.target == src)
duke@1 3181 tree.target = dest;
duke@1 3182 }
duke@1 3183 public void visitClassDef(JCClassDecl tree) {}
duke@1 3184 }
duke@1 3185 new Patcher().scan(body);
duke@1 3186 }
duke@1 3187 /**
duke@1 3188 * A statement of the form
duke@1 3189 *
duke@1 3190 * <pre>
duke@1 3191 * for ( T v : coll ) stmt ;
duke@1 3192 * </pre>
duke@1 3193 *
duke@1 3194 * (where coll implements Iterable<? extends T>) gets translated to
duke@1 3195 *
duke@1 3196 * <pre>
duke@1 3197 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3198 * T v = (T) #i.next();
duke@1 3199 * stmt;
duke@1 3200 * }
duke@1 3201 * </pre>
duke@1 3202 *
duke@1 3203 * where #i is a freshly named synthetic local variable.
duke@1 3204 */
duke@1 3205 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3206 make_at(tree.expr.pos());
duke@1 3207 Type iteratorTarget = syms.objectType;
duke@1 3208 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3209 syms.iterableType.tsym);
duke@1 3210 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3211 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3212 Type eType = tree.expr.type;
duke@1 3213 tree.expr.type = types.erasure(eType);
duke@1 3214 if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
duke@1 3215 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3216 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3217 names.iterator,
duke@1 3218 types.erasure(syms.iterableType),
duke@1 3219 List.<Type>nil());
duke@1 3220 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 3221 types.erasure(iterator.type.getReturnType()),
duke@1 3222 currentMethodSym);
duke@1 3223 JCStatement init = make.
duke@1 3224 VarDef(itvar,
duke@1 3225 make.App(make.Select(tree.expr, iterator)));
duke@1 3226 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3227 names.hasNext,
duke@1 3228 itvar.type,
duke@1 3229 List.<Type>nil());
duke@1 3230 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3231 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3232 names.next,
duke@1 3233 itvar.type,
duke@1 3234 List.<Type>nil());
duke@1 3235 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3236 if (tree.var.type.isPrimitive())
mcimadamore@81 3237 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3238 else
mcimadamore@81 3239 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3240 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3241 tree.var.name,
mcimadamore@33 3242 tree.var.vartype,
mcimadamore@33 3243 vardefinit).setType(tree.var.type);
mcimadamore@33 3244 indexDef.sym = tree.var.sym;
duke@1 3245 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3246 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3247 result = translate(make.
duke@1 3248 ForLoop(List.of(init),
duke@1 3249 cond,
duke@1 3250 List.<JCExpressionStatement>nil(),
duke@1 3251 body));
duke@1 3252 patchTargets(body, tree, result);
duke@1 3253 }
duke@1 3254
duke@1 3255 public void visitVarDef(JCVariableDecl tree) {
duke@1 3256 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3257 tree.mods = translate(tree.mods);
duke@1 3258 tree.vartype = translate(tree.vartype);
duke@1 3259 if (currentMethodSym == null) {
duke@1 3260 // A class or instance field initializer.
duke@1 3261 currentMethodSym =
duke@1 3262 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3263 names.empty, null,
duke@1 3264 currentClass);
duke@1 3265 }
duke@1 3266 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3267 result = tree;
duke@1 3268 currentMethodSym = oldMethodSym;
duke@1 3269 }
duke@1 3270
duke@1 3271 public void visitBlock(JCBlock tree) {
duke@1 3272 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3273 if (currentMethodSym == null) {
duke@1 3274 // Block is a static or instance initializer.
duke@1 3275 currentMethodSym =
duke@1 3276 new MethodSymbol(tree.flags | BLOCK,
duke@1 3277 names.empty, null,
duke@1 3278 currentClass);
duke@1 3279 }
duke@1 3280 super.visitBlock(tree);
duke@1 3281 currentMethodSym = oldMethodSym;
duke@1 3282 }
duke@1 3283
duke@1 3284 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3285 tree.body = translate(tree.body);
duke@1 3286 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3287 result = tree;
duke@1 3288 }
duke@1 3289
duke@1 3290 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3291 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3292 tree.body = translate(tree.body);
duke@1 3293 result = tree;
duke@1 3294 }
duke@1 3295
duke@1 3296 public void visitForLoop(JCForLoop tree) {
duke@1 3297 tree.init = translate(tree.init);
duke@1 3298 if (tree.cond != null)
duke@1 3299 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3300 tree.step = translate(tree.step);
duke@1 3301 tree.body = translate(tree.body);
duke@1 3302 result = tree;
duke@1 3303 }
duke@1 3304
duke@1 3305 public void visitReturn(JCReturn tree) {
duke@1 3306 if (tree.expr != null)
duke@1 3307 tree.expr = translate(tree.expr,
duke@1 3308 types.erasure(currentMethodDef
duke@1 3309 .restype.type));
duke@1 3310 result = tree;
duke@1 3311 }
duke@1 3312
duke@1 3313 public void visitSwitch(JCSwitch tree) {
duke@1 3314 Type selsuper = types.supertype(tree.selector.type);
duke@1 3315 boolean enumSwitch = selsuper != null &&
duke@1 3316 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3317 boolean stringSwitch = selsuper != null &&
darcy@430 3318 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3319 Type target = enumSwitch ? tree.selector.type :
darcy@430 3320 (stringSwitch? syms.stringType : syms.intType);
duke@1 3321 tree.selector = translate(tree.selector, target);
duke@1 3322 tree.cases = translateCases(tree.cases);
duke@1 3323 if (enumSwitch) {
duke@1 3324 result = visitEnumSwitch(tree);
darcy@430 3325 } else if (stringSwitch) {
darcy@430 3326 result = visitStringSwitch(tree);
duke@1 3327 } else {
duke@1 3328 result = tree;
duke@1 3329 }
duke@1 3330 }
duke@1 3331
duke@1 3332 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3333 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3334 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3335 make_at(tree.pos());
duke@1 3336 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3337 names.ordinal,
duke@1 3338 tree.selector.type,
duke@1 3339 List.<Type>nil());
duke@1 3340 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3341 make.App(make.Select(tree.selector,
duke@1 3342 ordinalMethod)));
duke@1 3343 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3344 for (JCCase c : tree.cases) {
duke@1 3345 if (c.pat != null) {
duke@1 3346 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3347 JCLiteral pat = map.forConstant(label);
duke@1 3348 cases.append(make.Case(pat, c.stats));
duke@1 3349 } else {
duke@1 3350 cases.append(c);
duke@1 3351 }
duke@1 3352 }
darcy@443 3353 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3354 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3355 return enumSwitch;
duke@1 3356 }
duke@1 3357
darcy@430 3358 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3359 List<JCCase> caseList = tree.getCases();
darcy@430 3360 int alternatives = caseList.size();
darcy@430 3361
darcy@430 3362 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3363 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3364 } else {
darcy@430 3365 /*
darcy@430 3366 * The general approach used is to translate a single
darcy@430 3367 * string switch statement into a series of two chained
darcy@430 3368 * switch statements: the first a synthesized statement
darcy@430 3369 * switching on the argument string's hash value and
darcy@430 3370 * computing a string's position in the list of original
darcy@430 3371 * case labels, if any, followed by a second switch on the
darcy@430 3372 * computed integer value. The second switch has the same
darcy@430 3373 * code structure as the original string switch statement
darcy@430 3374 * except that the string case labels are replaced with
darcy@430 3375 * positional integer constants starting at 0.
darcy@430 3376 *
darcy@430 3377 * The first switch statement can be thought of as an
darcy@430 3378 * inlined map from strings to their position in the case
darcy@430 3379 * label list. An alternate implementation would use an
darcy@430 3380 * actual Map for this purpose, as done for enum switches.
darcy@430 3381 *
darcy@430 3382 * With some additional effort, it would be possible to
darcy@430 3383 * use a single switch statement on the hash code of the
darcy@430 3384 * argument, but care would need to be taken to preserve
darcy@430 3385 * the proper control flow in the presence of hash
darcy@430 3386 * collisions and other complications, such as
darcy@430 3387 * fallthroughs. Switch statements with one or two
darcy@430 3388 * alternatives could also be specially translated into
darcy@430 3389 * if-then statements to omit the computation of the hash
darcy@430 3390 * code.
darcy@430 3391 *
darcy@430 3392 * The generated code assumes that the hashing algorithm
darcy@430 3393 * of String is the same in the compilation environment as
darcy@430 3394 * in the environment the code will run in. The string
darcy@430 3395 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3396 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3397 * specified since that release as well, it is very
darcy@443 3398 * unlikely to be changed in the future.
darcy@443 3399 *
darcy@443 3400 * Different hashing algorithms, such as the length of the
darcy@443 3401 * strings or a perfect hashing algorithm over the
darcy@443 3402 * particular set of case labels, could potentially be
darcy@443 3403 * used instead of String.hashCode.
darcy@430 3404 */
darcy@430 3405
darcy@430 3406 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3407
darcy@430 3408 // Map from String case labels to their original position in
darcy@430 3409 // the list of case labels.
darcy@430 3410 Map<String, Integer> caseLabelToPosition =
darcy@430 3411 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3412
darcy@430 3413 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3414 Map<Integer, Set<String>> hashToString =
darcy@430 3415 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3416
darcy@430 3417 int casePosition = 0;
darcy@430 3418 for(JCCase oneCase : caseList) {
darcy@430 3419 JCExpression expression = oneCase.getExpression();
darcy@430 3420
darcy@430 3421 if (expression != null) { // expression for a "default" case is null
darcy@430 3422 String labelExpr = (String) expression.type.constValue();
darcy@430 3423 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
darcy@430 3424 assert mapping == null;
darcy@430 3425 int hashCode = labelExpr.hashCode();
darcy@430 3426
darcy@430 3427 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3428 if (stringSet == null) {
darcy@430 3429 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3430 stringSet.add(labelExpr);
darcy@430 3431 hashToString.put(hashCode, stringSet);
darcy@430 3432 } else {
darcy@430 3433 boolean added = stringSet.add(labelExpr);
darcy@430 3434 assert added;
darcy@430 3435 }
darcy@430 3436 }
darcy@430 3437 casePosition++;
darcy@430 3438 }
darcy@430 3439
darcy@430 3440 // Synthesize a switch statement that has the effect of
darcy@430 3441 // mapping from a string to the integer position of that
darcy@430 3442 // string in the list of case labels. This is done by
darcy@430 3443 // switching on the hashCode of the string followed by an
darcy@430 3444 // if-then-else chain comparing the input for equality
darcy@430 3445 // with all the case labels having that hash value.
darcy@430 3446
darcy@430 3447 /*
darcy@430 3448 * s$ = top of stack;
darcy@430 3449 * tmp$ = -1;
darcy@430 3450 * switch($s.hashCode()) {
darcy@430 3451 * case caseLabel.hashCode:
darcy@430 3452 * if (s$.equals("caseLabel_1")
darcy@430 3453 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3454 * else if (s$.equals("caseLabel_2"))
darcy@430 3455 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3456 * ...
darcy@430 3457 * break;
darcy@430 3458 * ...
darcy@430 3459 * }
darcy@430 3460 */
darcy@430 3461
darcy@430 3462 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3463 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3464 syms.stringType,
darcy@430 3465 currentMethodSym);
darcy@430 3466 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3467
darcy@430 3468 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3469 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3470 syms.intType,
darcy@430 3471 currentMethodSym);
darcy@430 3472 JCVariableDecl dollar_tmp_def =
darcy@430 3473 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3474 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3475 stmtList.append(dollar_tmp_def);
darcy@430 3476 ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
darcy@430 3477 // hashCode will trigger nullcheck on original switch expression
darcy@430 3478 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3479 names.hashCode,
darcy@430 3480 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3481 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3482 caseBuffer.toList());
darcy@430 3483 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3484 int hashCode = entry.getKey();
darcy@430 3485 Set<String> stringsWithHashCode = entry.getValue();
darcy@430 3486 assert stringsWithHashCode.size() >= 1;
darcy@430 3487
darcy@430 3488 JCStatement elsepart = null;
darcy@430 3489 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3490 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3491 names.equals,
darcy@430 3492 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3493 elsepart = make.If(stringEqualsCall,
darcy@430 3494 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3495 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3496 setType(dollar_tmp.type)),
darcy@430 3497 elsepart);
darcy@430 3498 }
darcy@430 3499
darcy@430 3500 ListBuffer<JCStatement> lb = ListBuffer.lb();
darcy@430 3501 JCBreak breakStmt = make.Break(null);
darcy@430 3502 breakStmt.target = switch1;
darcy@430 3503 lb.append(elsepart).append(breakStmt);
darcy@430 3504
darcy@430 3505 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3506 }
darcy@430 3507
darcy@430 3508 switch1.cases = caseBuffer.toList();
darcy@430 3509 stmtList.append(switch1);
darcy@430 3510
darcy@430 3511 // Make isomorphic switch tree replacing string labels
darcy@430 3512 // with corresponding integer ones from the label to
darcy@430 3513 // position map.
darcy@430 3514
darcy@430 3515 ListBuffer<JCCase> lb = ListBuffer.lb();
darcy@430 3516 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3517 for(JCCase oneCase : caseList ) {
darcy@430 3518 // Rewire up old unlabeled break statements to the
darcy@430 3519 // replacement switch being created.
darcy@430 3520 patchTargets(oneCase, tree, switch2);
darcy@430 3521
darcy@430 3522 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3523 JCExpression caseExpr;
darcy@430 3524 if (isDefault)
darcy@430 3525 caseExpr = null;
darcy@430 3526 else {
darcy@430 3527 caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
darcy@430 3528 getExpression().
darcy@430 3529 type.constValue()));
darcy@430 3530 }
darcy@430 3531
darcy@430 3532 lb.append(make.Case(caseExpr,
darcy@430 3533 oneCase.getStatements()));
darcy@430 3534 }
darcy@430 3535
darcy@430 3536 switch2.cases = lb.toList();
darcy@430 3537 stmtList.append(switch2);
darcy@430 3538
darcy@430 3539 return make.Block(0L, stmtList.toList());
darcy@430 3540 }
darcy@430 3541 }
darcy@430 3542
duke@1 3543 public void visitNewArray(JCNewArray tree) {
duke@1 3544 tree.elemtype = translate(tree.elemtype);
duke@1 3545 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3546 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3547 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3548 result = tree;
duke@1 3549 }
duke@1 3550
duke@1 3551 public void visitSelect(JCFieldAccess tree) {
duke@1 3552 // need to special case-access of the form C.super.x
duke@1 3553 // these will always need an access method.
duke@1 3554 boolean qualifiedSuperAccess =
duke@1 3555 tree.selected.getTag() == JCTree.SELECT &&
duke@1 3556 TreeInfo.name(tree.selected) == names._super;
duke@1 3557 tree.selected = translate(tree.selected);
duke@1 3558 if (tree.name == names._class)
duke@1 3559 result = classOf(tree.selected);
duke@1 3560 else if (tree.name == names._this || tree.name == names._super)
duke@1 3561 result = makeThis(tree.pos(), tree.selected.type.tsym);
duke@1 3562 else
duke@1 3563 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3564 }
duke@1 3565
duke@1 3566 public void visitLetExpr(LetExpr tree) {
duke@1 3567 tree.defs = translateVarDefs(tree.defs);
duke@1 3568 tree.expr = translate(tree.expr, tree.type);
duke@1 3569 result = tree;
duke@1 3570 }
duke@1 3571
duke@1 3572 // There ought to be nothing to rewrite here;
duke@1 3573 // we don't generate code.
duke@1 3574 public void visitAnnotation(JCAnnotation tree) {
duke@1 3575 result = tree;
duke@1 3576 }
duke@1 3577
darcy@609 3578 @Override
darcy@609 3579 public void visitTry(JCTry tree) {
darcy@609 3580 if (tree.resources.isEmpty()) {
darcy@609 3581 super.visitTry(tree);
darcy@609 3582 } else {
darcy@609 3583 result = makeArmTry(tree);
darcy@609 3584 }
darcy@609 3585 }
darcy@609 3586
duke@1 3587 /**************************************************************************
duke@1 3588 * main method
duke@1 3589 *************************************************************************/
duke@1 3590
duke@1 3591 /** Translate a toplevel class and return a list consisting of
duke@1 3592 * the translated class and translated versions of all inner classes.
duke@1 3593 * @param env The attribution environment current at the class definition.
duke@1 3594 * We need this for resolving some additional symbols.
duke@1 3595 * @param cdef The tree representing the class definition.
duke@1 3596 */
duke@1 3597 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3598 ListBuffer<JCTree> translated = null;
duke@1 3599 try {
duke@1 3600 attrEnv = env;
duke@1 3601 this.make = make;
duke@1 3602 endPositions = env.toplevel.endPositions;
duke@1 3603 currentClass = null;
duke@1 3604 currentMethodDef = null;
duke@1 3605 outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
duke@1 3606 outermostMemberDef = null;
duke@1 3607 this.translated = new ListBuffer<JCTree>();
duke@1 3608 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3609 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3610 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3611 proxies = new Scope(syms.noSymbol);
darcy@609 3612 twrVars = new Scope(syms.noSymbol);
duke@1 3613 outerThisStack = List.nil();
duke@1 3614 accessNums = new HashMap<Symbol,Integer>();
duke@1 3615 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3616 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3617 accessConstrTags = List.nil();
duke@1 3618 accessed = new ListBuffer<Symbol>();
duke@1 3619 translate(cdef, (JCExpression)null);
duke@1 3620 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3621 makeAccessible(l.head);
duke@1 3622 for (EnumMapping map : enumSwitchMap.values())
duke@1 3623 map.translate();
mcimadamore@359 3624 checkConflicts(this.translated.toList());
jjg@595 3625 checkAccessConstructorTags();
duke@1 3626 translated = this.translated;
duke@1 3627 } finally {
duke@1 3628 // note that recursive invocations of this method fail hard
duke@1 3629 attrEnv = null;
duke@1 3630 this.make = null;
duke@1 3631 endPositions = null;
duke@1 3632 currentClass = null;
duke@1 3633 currentMethodDef = null;
duke@1 3634 outermostClassDef = null;
duke@1 3635 outermostMemberDef = null;
duke@1 3636 this.translated = null;
duke@1 3637 classdefs = null;
duke@1 3638 actualSymbols = null;
duke@1 3639 freevarCache = null;
duke@1 3640 proxies = null;
duke@1 3641 outerThisStack = null;
duke@1 3642 accessNums = null;
duke@1 3643 accessSyms = null;
duke@1 3644 accessConstrs = null;
jjg@595 3645 accessConstrTags = null;
duke@1 3646 accessed = null;
duke@1 3647 enumSwitchMap.clear();
duke@1 3648 }
duke@1 3649 return translated.toList();
duke@1 3650 }
duke@1 3651
duke@1 3652 //////////////////////////////////////////////////////////////
duke@1 3653 // The following contributed by Borland for bootstrapping purposes
duke@1 3654 //////////////////////////////////////////////////////////////
duke@1 3655 private void addEnumCompatibleMembers(JCClassDecl cdef) {
duke@1 3656 make_at(null);
duke@1 3657
duke@1 3658 // Add the special enum fields
duke@1 3659 VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
duke@1 3660 VarSymbol nameFieldSym = addEnumNameField(cdef);
duke@1 3661
duke@1 3662 // Add the accessor methods for name and ordinal
duke@1 3663 MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
duke@1 3664 MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
duke@1 3665
duke@1 3666 // Add the toString method
duke@1 3667 addEnumToString(cdef, nameFieldSym);
duke@1 3668
duke@1 3669 // Add the compareTo method
duke@1 3670 addEnumCompareTo(cdef, ordinalFieldSym);
duke@1 3671 }
duke@1 3672
duke@1 3673 private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
duke@1 3674 VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3675 names.fromString("$ordinal"),
duke@1 3676 syms.intType,
duke@1 3677 cdef.sym);
duke@1 3678 cdef.sym.members().enter(ordinal);
duke@1 3679 cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
duke@1 3680 return ordinal;
duke@1 3681 }
duke@1 3682
duke@1 3683 private VarSymbol addEnumNameField(JCClassDecl cdef) {
duke@1 3684 VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3685 names.fromString("$name"),
duke@1 3686 syms.stringType,
duke@1 3687 cdef.sym);
duke@1 3688 cdef.sym.members().enter(name);
duke@1 3689 cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
duke@1 3690 return name;
duke@1 3691 }
duke@1 3692
duke@1 3693 private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3694 // Add the accessor methods for ordinal
duke@1 3695 Symbol ordinalSym = lookupMethod(cdef.pos(),
duke@1 3696 names.ordinal,
duke@1 3697 cdef.type,
duke@1 3698 List.<Type>nil());
duke@1 3699
duke@1 3700 assert(ordinalSym != null);
duke@1 3701 assert(ordinalSym instanceof MethodSymbol);
duke@1 3702
duke@1 3703 JCStatement ret = make.Return(make.Ident(ordinalSymbol));
duke@1 3704 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
duke@1 3705 make.Block(0L, List.of(ret))));
duke@1 3706
duke@1 3707 return (MethodSymbol)ordinalSym;
duke@1 3708 }
duke@1 3709
duke@1 3710 private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
duke@1 3711 // Add the accessor methods for name
duke@1 3712 Symbol nameSym = lookupMethod(cdef.pos(),
duke@1 3713 names._name,
duke@1 3714 cdef.type,
duke@1 3715 List.<Type>nil());
duke@1 3716
duke@1 3717 assert(nameSym != null);
duke@1 3718 assert(nameSym instanceof MethodSymbol);
duke@1 3719
duke@1 3720 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3721
duke@1 3722 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
duke@1 3723 make.Block(0L, List.of(ret))));
duke@1 3724
duke@1 3725 return (MethodSymbol)nameSym;
duke@1 3726 }
duke@1 3727
duke@1 3728 private MethodSymbol addEnumToString(JCClassDecl cdef,
duke@1 3729 VarSymbol nameSymbol) {
duke@1 3730 Symbol toStringSym = lookupMethod(cdef.pos(),
duke@1 3731 names.toString,
duke@1 3732 cdef.type,
duke@1 3733 List.<Type>nil());
duke@1 3734
duke@1 3735 JCTree toStringDecl = null;
duke@1 3736 if (toStringSym != null)
duke@1 3737 toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
duke@1 3738
duke@1 3739 if (toStringDecl != null)
duke@1 3740 return (MethodSymbol)toStringSym;
duke@1 3741
duke@1 3742 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3743
duke@1 3744 JCTree resTypeTree = make.Type(syms.stringType);
duke@1 3745
duke@1 3746 MethodType toStringType = new MethodType(List.<Type>nil(),
duke@1 3747 syms.stringType,
duke@1 3748 List.<Type>nil(),
duke@1 3749 cdef.sym);
duke@1 3750 toStringSym = new MethodSymbol(PUBLIC,
duke@1 3751 names.toString,
duke@1 3752 toStringType,
duke@1 3753 cdef.type.tsym);
duke@1 3754 toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
duke@1 3755 make.Block(0L, List.of(ret)));
duke@1 3756
duke@1 3757 cdef.defs = cdef.defs.prepend(toStringDecl);
duke@1 3758 cdef.sym.members().enter(toStringSym);
duke@1 3759
duke@1 3760 return (MethodSymbol)toStringSym;
duke@1 3761 }
duke@1 3762
duke@1 3763 private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3764 Symbol compareToSym = lookupMethod(cdef.pos(),
duke@1 3765 names.compareTo,
duke@1 3766 cdef.type,
duke@1 3767 List.of(cdef.sym.type));
duke@1 3768
duke@1 3769 assert(compareToSym != null);
duke@1 3770 assert(compareToSym instanceof MethodSymbol);
duke@1 3771
duke@1 3772 JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
duke@1 3773
duke@1 3774 ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
duke@1 3775
duke@1 3776 JCModifiers mod1 = make.Modifiers(0L);
jjg@113 3777 Name oName = names.fromString("o");
duke@1 3778 JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
duke@1 3779
duke@1 3780 JCIdent paramId1 = make.Ident(names.java_lang_Object);
duke@1 3781 paramId1.type = cdef.type;
duke@1 3782 paramId1.sym = par1.sym;
duke@1 3783
duke@1 3784 ((MethodSymbol)compareToSym).params = List.of(par1.sym);
duke@1 3785
duke@1 3786 JCIdent par1UsageId = make.Ident(par1.sym);
duke@1 3787 JCIdent castTargetIdent = make.Ident(cdef.sym);
duke@1 3788 JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
duke@1 3789 cast.setType(castTargetIdent.type);
duke@1 3790
jjg@113 3791 Name otherName = names.fromString("other");
duke@1 3792
duke@1 3793 VarSymbol otherVarSym = new VarSymbol(mod1.flags,
duke@1 3794 otherName,
duke@1 3795 cdef.type,
duke@1 3796 compareToSym);
duke@1 3797 JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
duke@1 3798 blockStatements.append(otherVar);
duke@1 3799
duke@1 3800 JCIdent id1 = make.Ident(ordinalSymbol);
duke@1 3801
duke@1 3802 JCIdent fLocUsageId = make.Ident(otherVarSym);
duke@1 3803 JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
duke@1 3804 JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
duke@1 3805 JCReturn ret = make.Return(bin);
duke@1 3806 blockStatements.append(ret);
duke@1 3807 JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
duke@1 3808 make.Block(0L,
duke@1 3809 blockStatements.toList()));
duke@1 3810 compareToMethod.params = List.of(par1);
duke@1 3811 cdef.defs = cdef.defs.append(compareToMethod);
duke@1 3812
duke@1 3813 return (MethodSymbol)compareToSym;
duke@1 3814 }
duke@1 3815 //////////////////////////////////////////////////////////////
duke@1 3816 // The above contributed by Borland for bootstrapping purposes
duke@1 3817 //////////////////////////////////////////////////////////////
duke@1 3818 }

mercurial