src/share/classes/com/sun/tools/javac/comp/ConstFold.java

Mon, 07 Feb 2011 18:10:13 +0000

author
mcimadamore
date
Mon, 07 Feb 2011 18:10:13 +0000
changeset 858
96d4226bdd60
parent 581
f2fdd52e4e87
child 1374
c002fdee76fd
permissions
-rw-r--r--

7007615: java_util/generics/phase2/NameClashTest02 fails since jdk7/pit/b123.
Summary: override clash algorithm is not implemented correctly
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2006, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import com.sun.tools.javac.code.*;
duke@1 29 import com.sun.tools.javac.jvm.*;
duke@1 30 import com.sun.tools.javac.util.*;
duke@1 31
duke@1 32 import com.sun.tools.javac.code.Type.*;
duke@1 33
duke@1 34 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 35 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 36
duke@1 37 /** Helper class for constant folding, used by the attribution phase.
duke@1 38 * This class is marked strictfp as mandated by JLS 15.4.
duke@1 39 *
jjg@581 40 * <p><b>This is NOT part of any supported API.
jjg@581 41 * If you write code that depends on this, you do so at your own risk.
duke@1 42 * This code and its internal interfaces are subject to change or
duke@1 43 * deletion without notice.</b>
duke@1 44 */
duke@1 45 strictfp class ConstFold {
duke@1 46 protected static final Context.Key<ConstFold> constFoldKey =
duke@1 47 new Context.Key<ConstFold>();
duke@1 48
duke@1 49 private Symtab syms;
duke@1 50
duke@1 51 public static ConstFold instance(Context context) {
duke@1 52 ConstFold instance = context.get(constFoldKey);
duke@1 53 if (instance == null)
duke@1 54 instance = new ConstFold(context);
duke@1 55 return instance;
duke@1 56 }
duke@1 57
duke@1 58 private ConstFold(Context context) {
duke@1 59 context.put(constFoldKey, this);
duke@1 60
duke@1 61 syms = Symtab.instance(context);
duke@1 62 }
duke@1 63
duke@1 64 static Integer minusOne = -1;
duke@1 65 static Integer zero = 0;
duke@1 66 static Integer one = 1;
duke@1 67
duke@1 68 /** Convert boolean to integer (true = 1, false = 0).
duke@1 69 */
duke@1 70 private static Integer b2i(boolean b) {
duke@1 71 return b ? one : zero;
duke@1 72 }
duke@1 73 private static int intValue(Object x) { return ((Number)x).intValue(); }
duke@1 74 private static long longValue(Object x) { return ((Number)x).longValue(); }
duke@1 75 private static float floatValue(Object x) { return ((Number)x).floatValue(); }
duke@1 76 private static double doubleValue(Object x) { return ((Number)x).doubleValue(); }
duke@1 77
duke@1 78 /** Fold binary or unary operation, returning constant type reflecting the
duke@1 79 * operations result. Return null if fold failed due to an
duke@1 80 * arithmetic exception.
duke@1 81 * @param opcode The operation's opcode instruction (usually a byte code),
duke@1 82 * as entered by class Symtab.
duke@1 83 * @param argtypes The operation's argument types (a list of length 1 or 2).
duke@1 84 * Argument types are assumed to have non-null constValue's.
duke@1 85 */
duke@1 86 Type fold(int opcode, List<Type> argtypes) {
duke@1 87 int argCount = argtypes.length();
duke@1 88 if (argCount == 1)
duke@1 89 return fold1(opcode, argtypes.head);
duke@1 90 else if (argCount == 2)
duke@1 91 return fold2(opcode, argtypes.head, argtypes.tail.head);
duke@1 92 else
duke@1 93 throw new AssertionError();
duke@1 94 }
duke@1 95
duke@1 96 /** Fold unary operation.
duke@1 97 * @param opcode The operation's opcode instruction (usually a byte code),
duke@1 98 * as entered by class Symtab.
duke@1 99 * opcode's ifeq to ifge are for postprocessing
duke@1 100 * xcmp; ifxx pairs of instructions.
duke@1 101 * @param operand The operation's operand type.
duke@1 102 * Argument types are assumed to have non-null constValue's.
duke@1 103 */
duke@1 104 Type fold1(int opcode, Type operand) {
duke@1 105 try {
duke@1 106 Object od = operand.constValue();
duke@1 107 switch (opcode) {
duke@1 108 case nop:
duke@1 109 return operand;
duke@1 110 case ineg: // unary -
duke@1 111 return syms.intType.constType(-intValue(od));
duke@1 112 case ixor: // ~
duke@1 113 return syms.intType.constType(~intValue(od));
duke@1 114 case bool_not: // !
duke@1 115 return syms.booleanType.constType(b2i(intValue(od) == 0));
duke@1 116 case ifeq:
duke@1 117 return syms.booleanType.constType(b2i(intValue(od) == 0));
duke@1 118 case ifne:
duke@1 119 return syms.booleanType.constType(b2i(intValue(od) != 0));
duke@1 120 case iflt:
duke@1 121 return syms.booleanType.constType(b2i(intValue(od) < 0));
duke@1 122 case ifgt:
duke@1 123 return syms.booleanType.constType(b2i(intValue(od) > 0));
duke@1 124 case ifle:
duke@1 125 return syms.booleanType.constType(b2i(intValue(od) <= 0));
duke@1 126 case ifge:
duke@1 127 return syms.booleanType.constType(b2i(intValue(od) >= 0));
duke@1 128
duke@1 129 case lneg: // unary -
duke@1 130 return syms.longType.constType(new Long(-longValue(od)));
duke@1 131 case lxor: // ~
duke@1 132 return syms.longType.constType(new Long(~longValue(od)));
duke@1 133
duke@1 134 case fneg: // unary -
duke@1 135 return syms.floatType.constType(new Float(-floatValue(od)));
duke@1 136
duke@1 137 case dneg: // ~
duke@1 138 return syms.doubleType.constType(new Double(-doubleValue(od)));
duke@1 139
duke@1 140 default:
duke@1 141 return null;
duke@1 142 }
duke@1 143 } catch (ArithmeticException e) {
duke@1 144 return null;
duke@1 145 }
duke@1 146 }
duke@1 147
duke@1 148 /** Fold binary operation.
duke@1 149 * @param opcode The operation's opcode instruction (usually a byte code),
duke@1 150 * as entered by class Symtab.
duke@1 151 * opcode's ifeq to ifge are for postprocessing
duke@1 152 * xcmp; ifxx pairs of instructions.
duke@1 153 * @param left The type of the operation's left operand.
duke@1 154 * @param right The type of the operation's right operand.
duke@1 155 */
duke@1 156 Type fold2(int opcode, Type left, Type right) {
duke@1 157 try {
duke@1 158 if (opcode > ByteCodes.preMask) {
duke@1 159 // we are seeing a composite instruction of the form xcmp; ifxx.
duke@1 160 // In this case fold both instructions separately.
duke@1 161 Type t1 = fold2(opcode >> ByteCodes.preShift, left, right);
duke@1 162 return (t1.constValue() == null) ? t1
duke@1 163 : fold1(opcode & ByteCodes.preMask, t1);
duke@1 164 } else {
duke@1 165 Object l = left.constValue();
duke@1 166 Object r = right.constValue();
duke@1 167 switch (opcode) {
duke@1 168 case iadd:
duke@1 169 return syms.intType.constType(intValue(l) + intValue(r));
duke@1 170 case isub:
duke@1 171 return syms.intType.constType(intValue(l) - intValue(r));
duke@1 172 case imul:
duke@1 173 return syms.intType.constType(intValue(l) * intValue(r));
duke@1 174 case idiv:
duke@1 175 return syms.intType.constType(intValue(l) / intValue(r));
duke@1 176 case imod:
duke@1 177 return syms.intType.constType(intValue(l) % intValue(r));
duke@1 178 case iand:
duke@1 179 return (left.tag == BOOLEAN
duke@1 180 ? syms.booleanType : syms.intType)
duke@1 181 .constType(intValue(l) & intValue(r));
duke@1 182 case bool_and:
duke@1 183 return syms.booleanType.constType(b2i((intValue(l) & intValue(r)) != 0));
duke@1 184 case ior:
duke@1 185 return (left.tag == BOOLEAN
duke@1 186 ? syms.booleanType : syms.intType)
duke@1 187 .constType(intValue(l) | intValue(r));
duke@1 188 case bool_or:
duke@1 189 return syms.booleanType.constType(b2i((intValue(l) | intValue(r)) != 0));
duke@1 190 case ixor:
duke@1 191 return (left.tag == BOOLEAN
duke@1 192 ? syms.booleanType : syms.intType)
duke@1 193 .constType(intValue(l) ^ intValue(r));
duke@1 194 case ishl: case ishll:
duke@1 195 return syms.intType.constType(intValue(l) << intValue(r));
duke@1 196 case ishr: case ishrl:
duke@1 197 return syms.intType.constType(intValue(l) >> intValue(r));
duke@1 198 case iushr: case iushrl:
duke@1 199 return syms.intType.constType(intValue(l) >>> intValue(r));
duke@1 200 case if_icmpeq:
duke@1 201 return syms.booleanType.constType(
duke@1 202 b2i(intValue(l) == intValue(r)));
duke@1 203 case if_icmpne:
duke@1 204 return syms.booleanType.constType(
duke@1 205 b2i(intValue(l) != intValue(r)));
duke@1 206 case if_icmplt:
duke@1 207 return syms.booleanType.constType(
duke@1 208 b2i(intValue(l) < intValue(r)));
duke@1 209 case if_icmpgt:
duke@1 210 return syms.booleanType.constType(
duke@1 211 b2i(intValue(l) > intValue(r)));
duke@1 212 case if_icmple:
duke@1 213 return syms.booleanType.constType(
duke@1 214 b2i(intValue(l) <= intValue(r)));
duke@1 215 case if_icmpge:
duke@1 216 return syms.booleanType.constType(
duke@1 217 b2i(intValue(l) >= intValue(r)));
duke@1 218
duke@1 219 case ladd:
duke@1 220 return syms.longType.constType(
duke@1 221 new Long(longValue(l) + longValue(r)));
duke@1 222 case lsub:
duke@1 223 return syms.longType.constType(
duke@1 224 new Long(longValue(l) - longValue(r)));
duke@1 225 case lmul:
duke@1 226 return syms.longType.constType(
duke@1 227 new Long(longValue(l) * longValue(r)));
duke@1 228 case ldiv:
duke@1 229 return syms.longType.constType(
duke@1 230 new Long(longValue(l) / longValue(r)));
duke@1 231 case lmod:
duke@1 232 return syms.longType.constType(
duke@1 233 new Long(longValue(l) % longValue(r)));
duke@1 234 case land:
duke@1 235 return syms.longType.constType(
duke@1 236 new Long(longValue(l) & longValue(r)));
duke@1 237 case lor:
duke@1 238 return syms.longType.constType(
duke@1 239 new Long(longValue(l) | longValue(r)));
duke@1 240 case lxor:
duke@1 241 return syms.longType.constType(
duke@1 242 new Long(longValue(l) ^ longValue(r)));
duke@1 243 case lshl: case lshll:
duke@1 244 return syms.longType.constType(
duke@1 245 new Long(longValue(l) << intValue(r)));
duke@1 246 case lshr: case lshrl:
duke@1 247 return syms.longType.constType(
duke@1 248 new Long(longValue(l) >> intValue(r)));
duke@1 249 case lushr:
duke@1 250 return syms.longType.constType(
duke@1 251 new Long(longValue(l) >>> intValue(r)));
duke@1 252 case lcmp:
duke@1 253 if (longValue(l) < longValue(r))
duke@1 254 return syms.intType.constType(minusOne);
duke@1 255 else if (longValue(l) > longValue(r))
duke@1 256 return syms.intType.constType(one);
duke@1 257 else
duke@1 258 return syms.intType.constType(zero);
duke@1 259 case fadd:
duke@1 260 return syms.floatType.constType(
duke@1 261 new Float(floatValue(l) + floatValue(r)));
duke@1 262 case fsub:
duke@1 263 return syms.floatType.constType(
duke@1 264 new Float(floatValue(l) - floatValue(r)));
duke@1 265 case fmul:
duke@1 266 return syms.floatType.constType(
duke@1 267 new Float(floatValue(l) * floatValue(r)));
duke@1 268 case fdiv:
duke@1 269 return syms.floatType.constType(
duke@1 270 new Float(floatValue(l) / floatValue(r)));
duke@1 271 case fmod:
duke@1 272 return syms.floatType.constType(
duke@1 273 new Float(floatValue(l) % floatValue(r)));
duke@1 274 case fcmpg: case fcmpl:
duke@1 275 if (floatValue(l) < floatValue(r))
duke@1 276 return syms.intType.constType(minusOne);
duke@1 277 else if (floatValue(l) > floatValue(r))
duke@1 278 return syms.intType.constType(one);
duke@1 279 else if (floatValue(l) == floatValue(r))
duke@1 280 return syms.intType.constType(zero);
duke@1 281 else if (opcode == fcmpg)
duke@1 282 return syms.intType.constType(one);
duke@1 283 else
duke@1 284 return syms.intType.constType(minusOne);
duke@1 285 case dadd:
duke@1 286 return syms.doubleType.constType(
duke@1 287 new Double(doubleValue(l) + doubleValue(r)));
duke@1 288 case dsub:
duke@1 289 return syms.doubleType.constType(
duke@1 290 new Double(doubleValue(l) - doubleValue(r)));
duke@1 291 case dmul:
duke@1 292 return syms.doubleType.constType(
duke@1 293 new Double(doubleValue(l) * doubleValue(r)));
duke@1 294 case ddiv:
duke@1 295 return syms.doubleType.constType(
duke@1 296 new Double(doubleValue(l) / doubleValue(r)));
duke@1 297 case dmod:
duke@1 298 return syms.doubleType.constType(
duke@1 299 new Double(doubleValue(l) % doubleValue(r)));
duke@1 300 case dcmpg: case dcmpl:
duke@1 301 if (doubleValue(l) < doubleValue(r))
duke@1 302 return syms.intType.constType(minusOne);
duke@1 303 else if (doubleValue(l) > doubleValue(r))
duke@1 304 return syms.intType.constType(one);
duke@1 305 else if (doubleValue(l) == doubleValue(r))
duke@1 306 return syms.intType.constType(zero);
duke@1 307 else if (opcode == dcmpg)
duke@1 308 return syms.intType.constType(one);
duke@1 309 else
duke@1 310 return syms.intType.constType(minusOne);
duke@1 311 case if_acmpeq:
duke@1 312 return syms.booleanType.constType(b2i(l.equals(r)));
duke@1 313 case if_acmpne:
duke@1 314 return syms.booleanType.constType(b2i(!l.equals(r)));
duke@1 315 case string_add:
duke@1 316 return syms.stringType.constType(
duke@1 317 left.stringValue() + right.stringValue());
duke@1 318 default:
duke@1 319 return null;
duke@1 320 }
duke@1 321 }
duke@1 322 } catch (ArithmeticException e) {
duke@1 323 return null;
duke@1 324 }
duke@1 325 }
duke@1 326
duke@1 327 /** Coerce constant type to target type.
duke@1 328 * @param etype The source type of the coercion,
duke@1 329 * which is assumed to be a constant type compatble with
duke@1 330 * ttype.
duke@1 331 * @param ttype The target type of the coercion.
duke@1 332 */
duke@1 333 Type coerce(Type etype, Type ttype) {
duke@1 334 // WAS if (etype.baseType() == ttype.baseType())
duke@1 335 if (etype.tsym.type == ttype.tsym.type)
duke@1 336 return etype;
duke@1 337 if (etype.tag <= DOUBLE) {
duke@1 338 Object n = etype.constValue();
duke@1 339 switch (ttype.tag) {
duke@1 340 case BYTE:
duke@1 341 return syms.byteType.constType(0 + (byte)intValue(n));
duke@1 342 case CHAR:
duke@1 343 return syms.charType.constType(0 + (char)intValue(n));
duke@1 344 case SHORT:
duke@1 345 return syms.shortType.constType(0 + (short)intValue(n));
duke@1 346 case INT:
duke@1 347 return syms.intType.constType(intValue(n));
duke@1 348 case LONG:
duke@1 349 return syms.longType.constType(longValue(n));
duke@1 350 case FLOAT:
duke@1 351 return syms.floatType.constType(floatValue(n));
duke@1 352 case DOUBLE:
duke@1 353 return syms.doubleType.constType(doubleValue(n));
duke@1 354 }
duke@1 355 }
duke@1 356 return ttype;
duke@1 357 }
duke@1 358 }

mercurial